@@ -777,36 +777,38 @@ class RandomForestClassifier(ForestClassifier):
777777 Note: the search for a split does not stop until at least one
778778 valid partition of the node samples is found, even if it requires to
779779 effectively inspect more than ``max_features`` features.
780- Note: this parameter is tree-specific.
781780
782781 max_depth : integer or None, optional (default=None)
783782 The maximum depth of the tree. If None, then nodes are expanded until
784783 all leaves are pure or until all leaves contain less than
785784 min_samples_split samples.
786785 Ignored if ``max_leaf_nodes`` is not None.
787- Note: this parameter is tree-specific.
788786
789- min_samples_split : integer, optional (default=2)
790- The minimum number of samples required to split an internal node.
791- Note: this parameter is tree-specific.
787+ min_samples_split : int, float, optional (default=2)
788+ The minimum number of samples required to split an internal node:
792789
793- min_samples_leaf : integer, optional (default=1)
794- The minimum number of samples in newly created leaves. A split is
795- discarded if after the split, one of the leaves would contain less then
796- ``min_samples_leaf`` samples.
797- Note: this parameter is tree-specific.
790+ - If int, then consider `min_samples_split` as the minimum number.
791+ - If float, then `min_samples_split` is a percentage and
792+ `ceil(min_samples_split * n_samples)` are the minimum
793+ number of samples for each split.
794+
795+ min_samples_leaf : int, float, optional (default=1)
796+ The minimum number of samples required to be at a leaf node:
797+
798+ - If int, then consider `min_samples_leaf` as the minimum number.
799+ - If float, then `min_samples_leaf` is a percentage and
800+ `ceil(min_samples_leaf * n_samples)` are the minimum
801+ number of samples for each node.
798802
799803 min_weight_fraction_leaf : float, optional (default=0.)
800804 The minimum weighted fraction of the input samples required to be at a
801805 leaf node.
802- Note: this parameter is tree-specific.
803806
804807 max_leaf_nodes : int or None, optional (default=None)
805808 Grow trees with ``max_leaf_nodes`` in best-first fashion.
806809 Best nodes are defined as relative reduction in impurity.
807810 If None then unlimited number of leaf nodes.
808811 If not None then ``max_depth`` will be ignored.
809- Note: this parameter is tree-specific.
810812
811813 bootstrap : boolean, optional (default=True)
812814 Whether bootstrap samples are used when building trees.
@@ -834,7 +836,6 @@ class RandomForestClassifier(ForestClassifier):
834836 new forest.
835837
836838 class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional
837-
838839 Weights associated with classes in the form ``{class_label: weight}``.
839840 If not given, all classes are supposed to have weight one. For
840841 multi-output problems, a list of dicts can be provided in the same
@@ -844,8 +845,9 @@ class RandomForestClassifier(ForestClassifier):
844845 weights inversely proportional to class frequencies in the input data
845846 as ``n_samples / (n_classes * np.bincount(y))``
846847
847- The "balanced_subsample" mode is the same as "balanced" except that weights are
848- computed based on the bootstrap sample for every tree grown.
848+ The "balanced_subsample" mode is the same as "balanced" except that
849+ weights are computed based on the bootstrap sample for every tree
850+ grown.
849851
850852 For multi-output, the weights of each column of y will be multiplied.
851853
@@ -952,7 +954,6 @@ class RandomForestRegressor(ForestRegressor):
952954 criterion : string, optional (default="mse")
953955 The function to measure the quality of a split. The only supported
954956 criterion is "mse" for the mean squared error.
955- Note: this parameter is tree-specific.
956957
957958 max_features : int, float, string or None, optional (default="auto")
958959 The number of features to consider when looking for the best split:
@@ -969,36 +970,38 @@ class RandomForestRegressor(ForestRegressor):
969970 Note: the search for a split does not stop until at least one
970971 valid partition of the node samples is found, even if it requires to
971972 effectively inspect more than ``max_features`` features.
972- Note: this parameter is tree-specific.
973973
974974 max_depth : integer or None, optional (default=None)
975975 The maximum depth of the tree. If None, then nodes are expanded until
976976 all leaves are pure or until all leaves contain less than
977977 min_samples_split samples.
978978 Ignored if ``max_leaf_nodes`` is not None.
979- Note: this parameter is tree-specific.
980979
981- min_samples_split : integer, optional (default=2)
982- The minimum number of samples required to split an internal node.
983- Note: this parameter is tree-specific.
980+ min_samples_split : int, float, optional (default=2)
981+ The minimum number of samples required to split an internal node:
984982
985- min_samples_leaf : integer, optional (default=1)
986- The minimum number of samples in newly created leaves. A split is
987- discarded if after the split, one of the leaves would contain less then
988- ``min_samples_leaf`` samples.
989- Note: this parameter is tree-specific.
983+ - If int, then consider `min_samples_split` as the minimum number.
984+ - If float, then `min_samples_split` is a percentage and
985+ `ceil(min_samples_split * n_samples)` are the minimum
986+ number of samples for each split.
987+
988+ min_samples_leaf : int, float, optional (default=1)
989+ The minimum number of samples required to be at a leaf node:
990+
991+ - If int, then consider `min_samples_leaf` as the minimum number.
992+ - If float, then `min_samples_leaf` is a percentage and
993+ `ceil(min_samples_leaf * n_samples)` are the minimum
994+ number of samples for each node.
990995
991996 min_weight_fraction_leaf : float, optional (default=0.)
992997 The minimum weighted fraction of the input samples required to be at a
993998 leaf node.
994- Note: this parameter is tree-specific.
995999
9961000 max_leaf_nodes : int or None, optional (default=None)
9971001 Grow trees with ``max_leaf_nodes`` in best-first fashion.
9981002 Best nodes are defined as relative reduction in impurity.
9991003 If None then unlimited number of leaf nodes.
10001004 If not None then ``max_depth`` will be ignored.
1001- Note: this parameter is tree-specific.
10021005
10031006 bootstrap : boolean, optional (default=True)
10041007 Whether bootstrap samples are used when building trees.
@@ -1110,7 +1113,6 @@ class ExtraTreesClassifier(ForestClassifier):
11101113 criterion : string, optional (default="gini")
11111114 The function to measure the quality of a split. Supported criteria are
11121115 "gini" for the Gini impurity and "entropy" for the information gain.
1113- Note: this parameter is tree-specific.
11141116
11151117 max_features : int, float, string or None, optional (default="auto")
11161118 The number of features to consider when looking for the best split:
@@ -1127,36 +1129,38 @@ class ExtraTreesClassifier(ForestClassifier):
11271129 Note: the search for a split does not stop until at least one
11281130 valid partition of the node samples is found, even if it requires to
11291131 effectively inspect more than ``max_features`` features.
1130- Note: this parameter is tree-specific.
11311132
11321133 max_depth : integer or None, optional (default=None)
11331134 The maximum depth of the tree. If None, then nodes are expanded until
11341135 all leaves are pure or until all leaves contain less than
11351136 min_samples_split samples.
11361137 Ignored if ``max_leaf_nodes`` is not None.
1137- Note: this parameter is tree-specific.
11381138
1139- min_samples_split : integer, optional (default=2)
1140- The minimum number of samples required to split an internal node.
1141- Note: this parameter is tree-specific.
1139+ min_samples_split : int, float, optional (default=2)
1140+ The minimum number of samples required to split an internal node:
11421141
1143- min_samples_leaf : integer, optional (default=1)
1144- The minimum number of samples in newly created leaves. A split is
1145- discarded if after the split, one of the leaves would contain less then
1146- ``min_samples_leaf`` samples.
1147- Note: this parameter is tree-specific.
1142+ - If int, then consider `min_samples_split` as the minimum number.
1143+ - If float, then `min_samples_split` is a percentage and
1144+ `ceil(min_samples_split * n_samples)` are the minimum
1145+ number of samples for each split.
1146+
1147+ min_samples_leaf : int, float, optional (default=1)
1148+ The minimum number of samples required to be at a leaf node:
1149+
1150+ - If int, then consider `min_samples_leaf` as the minimum number.
1151+ - If float, then `min_samples_leaf` is a percentage and
1152+ `ceil(min_samples_leaf * n_samples)` are the minimum
1153+ number of samples for each node.
11481154
11491155 min_weight_fraction_leaf : float, optional (default=0.)
11501156 The minimum weighted fraction of the input samples required to be at a
11511157 leaf node.
1152- Note: this parameter is tree-specific.
11531158
11541159 max_leaf_nodes : int or None, optional (default=None)
11551160 Grow trees with ``max_leaf_nodes`` in best-first fashion.
11561161 Best nodes are defined as relative reduction in impurity.
11571162 If None then unlimited number of leaf nodes.
11581163 If not None then ``max_depth`` will be ignored.
1159- Note: this parameter is tree-specific.
11601164
11611165 bootstrap : boolean, optional (default=False)
11621166 Whether bootstrap samples are used when building trees.
@@ -1184,7 +1188,6 @@ class ExtraTreesClassifier(ForestClassifier):
11841188 new forest.
11851189
11861190 class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional
1187-
11881191 Weights associated with classes in the form ``{class_label: weight}``.
11891192 If not given, all classes are supposed to have weight one. For
11901193 multi-output problems, a list of dicts can be provided in the same
@@ -1266,7 +1269,8 @@ def __init__(self,
12661269 n_estimators = n_estimators ,
12671270 estimator_params = ("criterion" , "max_depth" , "min_samples_split" ,
12681271 "min_samples_leaf" , "min_weight_fraction_leaf" ,
1269- "max_features" , "max_leaf_nodes" , "random_state" ),
1272+ "max_features" , "max_leaf_nodes" ,
1273+ "random_state" ),
12701274 bootstrap = bootstrap ,
12711275 oob_score = oob_score ,
12721276 n_jobs = n_jobs ,
@@ -1302,7 +1306,6 @@ class ExtraTreesRegressor(ForestRegressor):
13021306 criterion : string, optional (default="mse")
13031307 The function to measure the quality of a split. The only supported
13041308 criterion is "mse" for the mean squared error.
1305- Note: this parameter is tree-specific.
13061309
13071310 max_features : int, float, string or None, optional (default="auto")
13081311 The number of features to consider when looking for the best split:
@@ -1319,44 +1322,44 @@ class ExtraTreesRegressor(ForestRegressor):
13191322 Note: the search for a split does not stop until at least one
13201323 valid partition of the node samples is found, even if it requires to
13211324 effectively inspect more than ``max_features`` features.
1322- Note: this parameter is tree-specific.
13231325
13241326 max_depth : integer or None, optional (default=None)
13251327 The maximum depth of the tree. If None, then nodes are expanded until
13261328 all leaves are pure or until all leaves contain less than
13271329 min_samples_split samples.
13281330 Ignored if ``max_leaf_nodes`` is not None.
1329- Note: this parameter is tree-specific.
13301331
1331- min_samples_split : integer, optional (default=2)
1332- The minimum number of samples required to split an internal node.
1333- Note: this parameter is tree-specific.
1332+ min_samples_split : int, float, optional (default=2)
1333+ The minimum number of samples required to split an internal node:
13341334
1335- min_samples_leaf : integer, optional (default=1)
1336- The minimum number of samples in newly created leaves. A split is
1337- discarded if after the split, one of the leaves would contain less then
1338- ``min_samples_leaf`` samples.
1339- Note: this parameter is tree-specific.
1335+ - If int, then consider `min_samples_split` as the minimum number.
1336+ - If float, then `min_samples_split` is a percentage and
1337+ `ceil(min_samples_split * n_samples)` are the minimum
1338+ number of samples for each split.
1339+
1340+ min_samples_leaf : int, float, optional (default=1)
1341+ The minimum number of samples required to be at a leaf node:
1342+
1343+ - If int, then consider `min_samples_leaf` as the minimum number.
1344+ - If float, then `min_samples_leaf` is a percentage and
1345+ `ceil(min_samples_leaf * n_samples)` are the minimum
1346+ number of samples for each node.
13401347
13411348 min_weight_fraction_leaf : float, optional (default=0.)
13421349 The minimum weighted fraction of the input samples required to be at a
13431350 leaf node.
1344- Note: this parameter is tree-specific.
13451351
13461352 max_leaf_nodes : int or None, optional (default=None)
13471353 Grow trees with ``max_leaf_nodes`` in best-first fashion.
13481354 Best nodes are defined as relative reduction in impurity.
13491355 If None then unlimited number of leaf nodes.
13501356 If not None then ``max_depth`` will be ignored.
1351- Note: this parameter is tree-specific.
13521357
13531358 bootstrap : boolean, optional (default=False)
13541359 Whether bootstrap samples are used when building trees.
1355- Note: this parameter is tree-specific.
13561360
13571361 oob_score : bool
1358- Whether to use out-of-bag samples to estimate
1359- the generalization error.
1362+ Whether to use out-of-bag samples to estimate the generalization error.
13601363
13611364 n_jobs : integer, optional (default=1)
13621365 The number of jobs to run in parallel for both `fit` and `predict`.
@@ -1471,13 +1474,21 @@ class RandomTreesEmbedding(BaseForest):
14711474 min_samples_split samples.
14721475 Ignored if ``max_leaf_nodes`` is not None.
14731476
1474- min_samples_split : integer, optional (default=2)
1475- The minimum number of samples required to split an internal node.
1477+ min_samples_split : int, float, optional (default=2)
1478+ The minimum number of samples required to split an internal node:
1479+
1480+ - If int, then consider `min_samples_split` as the minimum number.
1481+ - If float, then `min_samples_split` is a percentage and
1482+ `ceil(min_samples_split * n_samples)` is the minimum
1483+ number of samples for each split.
1484+
1485+ min_samples_leaf : int, float, optional (default=1)
1486+ The minimum number of samples required to be at a leaf node:
14761487
1477- min_samples_leaf : integer, optional (default=1)
1478- The minimum number of samples in newly created leaves. A split is
1479- discarded if after the split, one of the leaves would contain less then
1480- ``min_samples_leaf`` samples.
1488+ - If int, then consider `min_samples_leaf` as the minimum number.
1489+ - If float, then `min_samples_leaf` is a percentage and
1490+ `ceil(min_samples_leaf * n_samples)` is the minimum
1491+ number of samples for each node .
14811492
14821493 min_weight_fraction_leaf : float, optional (default=0.)
14831494 The minimum weighted fraction of the input samples required to be at a
0 commit comments