|
215 | 215 | " label=\"Trip price guess\")\n", |
216 | 216 | "plt.autoscale(tight=True)\n", |
217 | 217 | "p3 = plt.Rectangle((0, 0), 1, 1, fc=sp3.get_facecolor()[0])\n", |
218 | | - "plt.legend([p3], [sp3.get_label()])\n" |
| 218 | + "plt.legend([p3], [sp3.get_label()]);" |
219 | 219 | ], |
220 | 220 | "language": "python", |
221 | 221 | "metadata": {}, |
|
260 | 260 | "mcmc = pm.MCMC([true_price, prize_1, prize_2, price_estimate, error])\n", |
261 | 261 | "mcmc.sample(50000, 10000)\n", |
262 | 262 | "\n", |
263 | | - "price_trace = mcmc.trace(\"true_price\")[:]\n" |
| 263 | + "price_trace = mcmc.trace(\"true_price\")[:];" |
264 | 264 | ], |
265 | 265 | "language": "python", |
266 | 266 | "metadata": {}, |
|
300 | 300 | "plt.vlines(mu_prior, 0, 1.1 * np.max(_hist[0]), label=\"prior's mean\",\n", |
301 | 301 | " linestyles=\"--\")\n", |
302 | 302 | "plt.vlines(price_trace.mean(), 0, 1.1 * np.max(_hist[0]), label=\"posterior's mean\", linestyles=\"-.\")\n", |
303 | | - "plt.legend(loc=\"upper left\")\n" |
| 303 | + "plt.legend(loc=\"upper left\");" |
304 | 304 | ], |
305 | 305 | "language": "python", |
306 | 306 | "metadata": {}, |
|
381 | 381 | "plt.legend(loc=\"upper left\", title=\"Risk parameter\")\n", |
382 | 382 | "plt.xlabel(\"price bid\")\n", |
383 | 383 | "plt.ylabel(\"expected loss\")\n", |
384 | | - "plt.xlim(5000, 30000)\n" |
| 384 | + "plt.xlim(5000, 30000);" |
385 | 385 | ], |
386 | 386 | "language": "python", |
387 | 387 | "metadata": {}, |
|
434 | 434 | "plt.xlabel(\"price guess\")\n", |
435 | 435 | "plt.ylabel(\"expected loss\")\n", |
436 | 436 | "plt.xlim(7000, 30000)\n", |
437 | | - "plt.ylim(-1000, 80000)\n" |
| 437 | + "plt.ylim(-1000, 80000);" |
438 | 438 | ], |
439 | 439 | "language": "python", |
440 | 440 | "metadata": {}, |
|
594 | 594 | "true_value = -.02\n", |
595 | 595 | "plt.plot(pred, [stock_loss(true_value, _p) for _p in pred], alpha=0.6, label=\"Loss associated with\\n prediction if true value=-0.02\", lw=3)\n", |
596 | 596 | "plt.legend()\n", |
597 | | - "plt.title(\"Stock returns loss if true value=0.05, -0.02\")\n" |
| 597 | + "plt.title(\"Stock returns loss if true value=0.05, -0.02\");" |
598 | 598 | ], |
599 | 599 | "language": "python", |
600 | 600 | "metadata": {}, |
|
642 | 642 | "plt.plot(X, ls_coef_ * X + ls_intercept, label=\"Least-squares line\")\n", |
643 | 643 | "plt.xlim(X.min(), X.max())\n", |
644 | 644 | "plt.ylim(Y.min(), Y.max())\n", |
645 | | - "plt.legend(loc=\"upper left\")\n" |
| 645 | + "plt.legend(loc=\"upper left\");" |
646 | 646 | ], |
647 | 647 | "language": "python", |
648 | 648 | "metadata": {}, |
|
695 | 695 | "mcmc = pm.MCMC([obs, beta, alpha, std, prec])\n", |
696 | 696 | "\n", |
697 | 697 | "mcmc.sample(100000, 80000)\n", |
698 | | - "mcplot(mcmc)\n" |
| 698 | + "mcplot(mcmc);" |
699 | 699 | ], |
700 | 700 | "language": "python", |
701 | 701 | "metadata": {}, |
|
783 | 783 | "figsize(12.5, 6)\n", |
784 | 784 | "from scipy.optimize import fmin\n", |
785 | 785 | "\n", |
| 786 | + "\n", |
786 | 787 | "def stock_loss(price, pred, coef=500):\n", |
787 | 788 | " \"\"\"vectorized for numpy\"\"\"\n", |
788 | 789 | " sol = np.zeros_like(price)\n", |
|
816 | 817 | "plt.plot(X, ls_coef_ * X + ls_intercept, label=\"Least-squares prediction\")\n", |
817 | 818 | "plt.xlim(X.min(), X.max())\n", |
818 | 819 | "plt.plot(trading_signals, opt_predictions, label=\"Bayes action prediction\")\n", |
819 | | - "plt.legend(loc=\"upper left\")\n" |
| 820 | + "plt.legend(loc=\"upper left\");" |
820 | 821 | ], |
821 | 822 | "language": "python", |
822 | 823 | "metadata": {}, |
|
905 | 906 | "fig = draw_sky(data)\n", |
906 | 907 | "plt.title(\"Galaxy positions and ellipcities of sky %d.\" % n_sky)\n", |
907 | 908 | "plt.xlabel(\"x-position\")\n", |
908 | | - "plt.ylabel(\"y-position\")\n" |
| 909 | + "plt.ylabel(\"y-position\");" |
909 | 910 | ], |
910 | 911 | "language": "python", |
911 | 912 | "metadata": {}, |
|
1012 | 1013 | "\n", |
1013 | 1014 | "@pm.deterministic\n", |
1014 | 1015 | "def mean(mass=mass_large, h_pos=halo_position, glx_pos=data[:, :2]):\n", |
1015 | | - " return mass / f_distance(glx_pos, h_pos, 240) * tangential_distance(glx_pos, h_pos)\n" |
| 1016 | + " return mass / f_distance(glx_pos, h_pos, 240) * tangential_distance(glx_pos, h_pos);" |
1016 | 1017 | ], |
1017 | 1018 | "language": "python", |
1018 | 1019 | "metadata": {}, |
|
1028 | 1029 | "mcmc = pm.MCMC([ellpty, mean, halo_position, mass_large])\n", |
1029 | 1030 | "map_ = pm.MAP([ellpty, mean, halo_position, mass_large])\n", |
1030 | 1031 | "map_.fit()\n", |
1031 | | - "mcmc.sample(200000, 140000, 3)\n" |
| 1032 | + "mcmc.sample(200000, 140000, 3);" |
1032 | 1033 | ], |
1033 | 1034 | "language": "python", |
1034 | 1035 | "metadata": {}, |
|
1070 | 1071 | "plt.ylabel(\"y-position\")\n", |
1071 | 1072 | "scatter(t[:, 0], t[:, 1], alpha=0.015, c=\"r\")\n", |
1072 | 1073 | "plt.xlim(0, 4200)\n", |
1073 | | - "plt.ylim(0, 4200)\n" |
| 1074 | + "plt.ylim(0, 4200);" |
1074 | 1075 | ], |
1075 | 1076 | "language": "python", |
1076 | 1077 | "metadata": {}, |
|
1099 | 1100 | " delimiter=\",\",\n", |
1100 | 1101 | " usecols=[1, 2, 3, 4, 5, 6, 7, 8, 9],\n", |
1101 | 1102 | " skip_header=1)\n", |
1102 | | - "print halo_data[n_sky]\n" |
| 1103 | + "print halo_data[n_sky];" |
1103 | 1104 | ], |
1104 | 1105 | "language": "python", |
1105 | 1106 | "metadata": {}, |
|
1139 | 1140 | "plt.xlim(0, 4200)\n", |
1140 | 1141 | "plt.ylim(0, 4200)\n", |
1141 | 1142 | "\n", |
1142 | | - "print \"True halo location:\", halo_data[n_sky][3], halo_data[n_sky][4]\n" |
| 1143 | + "print \"True halo location:\", halo_data[n_sky][3], halo_data[n_sky][4];" |
1143 | 1144 | ], |
1144 | 1145 | "language": "python", |
1145 | 1146 | "metadata": {}, |
|
1170 | 1171 | "collapsed": false, |
1171 | 1172 | "input": [ |
1172 | 1173 | "mean_posterior = t.mean(axis=0).reshape(1, 2)\n", |
1173 | | - "print mean_posterior\n" |
| 1174 | + "print mean_posterior;" |
1174 | 1175 | ], |
1175 | 1176 | "language": "python", |
1176 | 1177 | "metadata": {}, |
|
1208 | 1209 | "random_guess = np.random.randint(0, 4200, size=(1, 2))\n", |
1209 | 1210 | "print \"Using a random location:\", random_guess\n", |
1210 | 1211 | "main_score(nhalo_all, x_true_all, y_true_all, x_ref_all, y_ref_all, random_guess)\n", |
1211 | | - "print\n" |
| 1212 | + "print;" |
1212 | 1213 | ], |
1213 | 1214 | "language": "python", |
1214 | 1215 | "metadata": {}, |
|
1307 | 1308 | "\n", |
1308 | 1309 | " mcmc = pm.MCMC([ellpty, mean, halo_positions, mass_large])\n", |
1309 | 1310 | " mcmc.sample(samples, burn_in, thin)\n", |
1310 | | - " return mcmc.trace(\"halo_positions\")[:]\n" |
| 1311 | + " return mcmc.trace(\"halo_positions\")[:];" |
1311 | 1312 | ], |
1312 | 1313 | "language": "python", |
1313 | 1314 | "metadata": {}, |
|
1323 | 1324 | " dtype=None,\n", |
1324 | 1325 | " skip_header=1,\n", |
1325 | 1326 | " delimiter=\",\",\n", |
1326 | | - " usecols=[1, 2, 3, 4])\n" |
| 1327 | + " usecols=[1, 2, 3, 4]);" |
1327 | 1328 | ], |
1328 | 1329 | "language": "python", |
1329 | 1330 | "metadata": {}, |
|
1338 | 1339 | "samples = 10.5e5\n", |
1339 | 1340 | "traces = halo_posteriors(3, data, samples=samples,\n", |
1340 | 1341 | " burn_in=9.5e5,\n", |
1341 | | - " thin=10)\n" |
| 1342 | + " thin=10);" |
1342 | 1343 | ], |
1343 | 1344 | "language": "python", |
1344 | 1345 | "metadata": {}, |
|
1383 | 1384 | "\n", |
1384 | 1385 | "# plt.legend(scatterpoints=1)\n", |
1385 | 1386 | "plt.xlim(0, 4200)\n", |
1386 | | - "plt.ylim(0, 4200)\n" |
| 1387 | + "plt.ylim(0, 4200);" |
1387 | 1388 | ], |
1388 | 1389 | "language": "python", |
1389 | 1390 | "metadata": {}, |
|
1434 | 1435 | "random_guess = np.random.randint(0, 4200, size=(1, 2))\n", |
1435 | 1436 | "print \"Using a random location:\", random_guess\n", |
1436 | 1437 | "main_score([1], x_true_all, y_true_all, x_ref_all, y_ref_all, random_guess)\n", |
1437 | | - "print\n" |
| 1438 | + "print;" |
1438 | 1439 | ], |
1439 | 1440 | "language": "python", |
1440 | 1441 | "metadata": {}, |
|
1514 | 1515 | "def css_styling():\n", |
1515 | 1516 | " styles = open(\"../styles/custom.css\", \"r\").read()\n", |
1516 | 1517 | " return HTML(styles)\n", |
1517 | | - "css_styling()\n" |
| 1518 | + "css_styling();" |
1518 | 1519 | ], |
1519 | 1520 | "language": "python", |
1520 | 1521 | "metadata": {}, |
|
0 commit comments