Skip to content

Commit 3ca3e95

Browse files
committed
DOC rm references to deprecated stuff
1 parent 77e69ed commit 3ca3e95

File tree

4 files changed

+3
-31
lines changed

4 files changed

+3
-31
lines changed

doc/modules/classes.rst

Lines changed: 0 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -502,9 +502,6 @@ From text
502502

503503
**User guide:** See the :ref:`linear_model` section for further details.
504504

505-
For dense data
506-
--------------
507-
508505
.. currentmodule:: sklearn
509506

510507
.. autosummary::
@@ -549,27 +546,6 @@ For dense data
549546
linear_model.orthogonal_mp
550547
linear_model.orthogonal_mp_gram
551548

552-
For sparse data
553-
---------------
554-
555-
.. automodule:: sklearn.linear_model.sparse
556-
:no-members:
557-
:no-inherited-members:
558-
559-
**User guide:** See the :ref:`linear_model` section for further details.
560-
561-
.. currentmodule:: sklearn
562-
563-
.. autosummary::
564-
:toctree: generated/
565-
:template: class.rst
566-
567-
linear_model.Lasso
568-
linear_model.ElasticNet
569-
linear_model.sparse.SGDClassifier
570-
linear_model.sparse.SGDRegressor
571-
linear_model.LogisticRegression
572-
573549

574550
.. _manifold_ref:
575551

doc/modules/sgd.rst

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -193,8 +193,6 @@ scale of the target variables.
193193
- :ref:`example_linear_model_plot_sgd_ols.py`,
194194

195195

196-
.. currentmodule:: sklearn.linear_model.sparse
197-
198196
Stochastic Gradient Descent for sparse data
199197
===========================================
200198

examples/applications/plot_tomography_l1_reconstruction.py

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -21,10 +21,9 @@
2121
addition to the data-fidelity term corresponding to a linear regression,
2222
we penalize the L1 norm of the image to account for its sparsity. The
2323
resulting optimization problem is called the :ref:`lasso`. We use the
24-
class :class:`sklearn.linear_model.sparse.Lasso`, that uses the
25-
coordinate descent algorithm. Importantly, this implementation is more
26-
computationally efficient on a sparse matrix, as the projection operator
27-
used here.
24+
class :class:`sklearn.linear_model.Lasso`, that uses the coordinate descent
25+
algorithm. Importantly, this implementation is more computationally efficient
26+
on a sparse matrix, than the projection operator used here.
2827
2928
The reconstruction with L1 penalization gives a result with zero error
3029
(all pixels are successfully labeled with 0 or 1), even if noise was

sklearn/linear_model/setup.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,6 @@ def configuration(parent_package='', top_path=None):
3636

3737
# add other directories
3838
config.add_subpackage('tests')
39-
config.add_subpackage('sparse')
4039

4140
return config
4241

0 commit comments

Comments
 (0)