|
73 | 73 | from sklearn.linear_model import LogisticRegression |
74 | 74 |
|
75 | 75 | from elm import ELMClassifier |
76 | | -from random_hidden_layer import RBFRandomHiddenLayer |
77 | | -from random_hidden_layer import SimpleRandomHiddenLayer |
| 76 | +from random_layer import RBFRandomLayer, SimpleRandomLayer |
78 | 77 |
|
79 | 78 |
|
80 | 79 | def get_data_bounds(X): |
@@ -137,25 +136,25 @@ def make_classifiers(): |
137 | 136 |
|
138 | 137 | # pass user defined transfer func |
139 | 138 | sinsq = (lambda x: np.power(np.sin(x), 2.0)) |
140 | | - srhl_sinsq = SimpleRandomHiddenLayer(n_hidden=nh, |
141 | | - activation_func=sinsq, |
142 | | - random_state=0) |
| 139 | + srhl_sinsq = SimpleRandomLayer(n_hidden=nh, |
| 140 | + activation_func=sinsq, |
| 141 | + random_state=0) |
143 | 142 |
|
144 | 143 | # use internal transfer funcs |
145 | | - srhl_tanh = SimpleRandomHiddenLayer(n_hidden=nh, |
146 | | - activation_func='tanh', |
147 | | - random_state=0) |
| 144 | + srhl_tanh = SimpleRandomLayer(n_hidden=nh, |
| 145 | + activation_func='tanh', |
| 146 | + random_state=0) |
148 | 147 |
|
149 | | - srhl_tribas = SimpleRandomHiddenLayer(n_hidden=nh, |
150 | | - activation_func='tribas', |
151 | | - random_state=0) |
| 148 | + srhl_tribas = SimpleRandomLayer(n_hidden=nh, |
| 149 | + activation_func='tribas', |
| 150 | + random_state=0) |
152 | 151 |
|
153 | | - srhl_hardlim = SimpleRandomHiddenLayer(n_hidden=nh, |
154 | | - activation_func='hardlim', |
155 | | - random_state=0) |
| 152 | + srhl_hardlim = SimpleRandomLayer(n_hidden=nh, |
| 153 | + activation_func='hardlim', |
| 154 | + random_state=0) |
156 | 155 |
|
157 | 156 | # use gaussian RBF |
158 | | - srhl_rbf = RBFRandomHiddenLayer(n_hidden=nh*2, gamma=0.1, random_state=0) |
| 157 | + srhl_rbf = RBFRandomLayer(n_hidden=nh*2, gamma=0.1, random_state=0) |
159 | 158 |
|
160 | 159 | log_reg = LogisticRegression() |
161 | 160 |
|
|
0 commit comments