-
Notifications
You must be signed in to change notification settings - Fork 9.6k
/
Copy pathhead.py
1034 lines (879 loc) · 42 KB
/
head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Modified from https://github.com/ShoufaChen/DiffusionDet/blob/main/diffusiondet/detector.py # noqa
# Modified from https://github.com/ShoufaChen/DiffusionDet/blob/main/diffusiondet/head.py # noqa
# This work is licensed under the CC-BY-NC 4.0 License.
# Users should be careful about adopting these features in any commercial matters. # noqa
# For more details, please refer to https://github.com/ShoufaChen/DiffusionDet/blob/main/LICENSE # noqa
import copy
import math
import random
import warnings
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_activation_layer
from mmcv.ops import batched_nms
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import SampleList
from mmdet.structures.bbox import (bbox2roi, bbox_cxcywh_to_xyxy,
bbox_xyxy_to_cxcywh, get_box_wh,
scale_boxes)
from mmdet.utils import InstanceList
_DEFAULT_SCALE_CLAMP = math.log(100000.0 / 16)
def cosine_beta_schedule(timesteps, s=0.008):
"""Cosine schedule as proposed in
https://openreview.net/forum?id=-NEXDKk8gZ."""
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps, dtype=torch.float64)
alphas_cumprod = torch.cos(
((x / timesteps) + s) / (1 + s) * math.pi * 0.5)**2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return torch.clip(betas, 0, 0.999)
def extract(a, t, x_shape):
"""extract the appropriate t index for a batch of indices."""
batch_size = t.shape[0]
out = a.gather(-1, t)
return out.reshape(batch_size, *((1, ) * (len(x_shape) - 1)))
class SinusoidalPositionEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, time):
device = time.device
half_dim = self.dim // 2
embeddings = math.log(10000) / (half_dim - 1)
embeddings = torch.exp(
torch.arange(half_dim, device=device) * -embeddings)
embeddings = time[:, None] * embeddings[None, :]
embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
return embeddings
@MODELS.register_module()
class DynamicDiffusionDetHead(nn.Module):
def __init__(self,
num_classes=80,
feat_channels=256,
num_proposals=500,
num_heads=6,
prior_prob=0.01,
snr_scale=2.0,
timesteps=1000,
sampling_timesteps=1,
self_condition=False,
box_renewal=True,
use_ensemble=True,
deep_supervision=True,
ddim_sampling_eta=1.0,
criterion=dict(
type='DiffusionDetCriterion',
num_classes=80,
assigner=dict(
type='DiffusionDetMatcher',
match_costs=[
dict(
type='FocalLossCost',
alpha=2.0,
gamma=0.25,
weight=2.0),
dict(
type='BBoxL1Cost',
weight=5.0,
box_format='xyxy'),
dict(type='IoUCost', iou_mode='giou', weight=2.0)
],
center_radius=2.5,
candidate_topk=5),
),
single_head=dict(
type='DiffusionDetHead',
num_cls_convs=1,
num_reg_convs=3,
dim_feedforward=2048,
num_heads=8,
dropout=0.0,
act_cfg=dict(type='ReLU'),
dynamic_conv=dict(dynamic_dim=64, dynamic_num=2)),
roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(
type='RoIAlign', output_size=7, sampling_ratio=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
test_cfg=None,
**kwargs) -> None:
super().__init__()
self.roi_extractor = MODELS.build(roi_extractor)
self.num_classes = num_classes
self.num_classes = num_classes
self.feat_channels = feat_channels
self.num_proposals = num_proposals
self.num_heads = num_heads
# Build Diffusion
assert isinstance(timesteps, int), 'The type of `timesteps` should ' \
f'be int but got {type(timesteps)}'
assert sampling_timesteps <= timesteps
self.timesteps = timesteps
self.sampling_timesteps = sampling_timesteps
self.snr_scale = snr_scale
self.ddim_sampling = self.sampling_timesteps < self.timesteps
self.ddim_sampling_eta = ddim_sampling_eta
self.self_condition = self_condition
self.box_renewal = box_renewal
self.use_ensemble = use_ensemble
self._build_diffusion()
# Build assigner
assert criterion.get('assigner', None) is not None
assigner = TASK_UTILS.build(criterion.get('assigner'))
# Init parameters.
self.use_focal_loss = assigner.use_focal_loss
self.use_fed_loss = assigner.use_fed_loss
# build criterion
criterion.update(deep_supervision=deep_supervision)
self.criterion = TASK_UTILS.build(criterion)
# Build Dynamic Head.
single_head_ = single_head.copy()
single_head_num_classes = single_head_.get('num_classes', None)
if single_head_num_classes is None:
single_head_.update(num_classes=num_classes)
else:
if single_head_num_classes != num_classes:
warnings.warn(
'The `num_classes` of `DynamicDiffusionDetHead` and '
'`SingleDiffusionDetHead` should be same, changing '
f'`single_head.num_classes` to {num_classes}')
single_head_.update(num_classes=num_classes)
single_head_feat_channels = single_head_.get('feat_channels', None)
if single_head_feat_channels is None:
single_head_.update(feat_channels=feat_channels)
else:
if single_head_feat_channels != feat_channels:
warnings.warn(
'The `feat_channels` of `DynamicDiffusionDetHead` and '
'`SingleDiffusionDetHead` should be same, changing '
f'`single_head.feat_channels` to {feat_channels}')
single_head_.update(feat_channels=feat_channels)
default_pooler_resolution = roi_extractor['roi_layer'].get(
'output_size')
assert default_pooler_resolution is not None
single_head_pooler_resolution = single_head_.get('pooler_resolution')
if single_head_pooler_resolution is None:
single_head_.update(pooler_resolution=default_pooler_resolution)
else:
if single_head_pooler_resolution != default_pooler_resolution:
warnings.warn(
'The `pooler_resolution` of `DynamicDiffusionDetHead` '
'and `SingleDiffusionDetHead` should be same, changing '
f'`single_head.pooler_resolution` to {num_classes}')
single_head_.update(
pooler_resolution=default_pooler_resolution)
single_head_.update(
use_focal_loss=self.use_focal_loss, use_fed_loss=self.use_fed_loss)
single_head_module = MODELS.build(single_head_)
self.num_heads = num_heads
self.head_series = nn.ModuleList(
[copy.deepcopy(single_head_module) for _ in range(num_heads)])
self.deep_supervision = deep_supervision
# Gaussian random feature embedding layer for time
time_dim = feat_channels * 4
self.time_mlp = nn.Sequential(
SinusoidalPositionEmbeddings(feat_channels),
nn.Linear(feat_channels, time_dim), nn.GELU(),
nn.Linear(time_dim, time_dim))
self.prior_prob = prior_prob
self.test_cfg = test_cfg
self.use_nms = self.test_cfg.get('use_nms', True)
self._init_weights()
def _init_weights(self):
# init all parameters.
bias_value = -math.log((1 - self.prior_prob) / self.prior_prob)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
# initialize the bias for focal loss and fed loss.
if self.use_focal_loss or self.use_fed_loss:
if p.shape[-1] == self.num_classes or \
p.shape[-1] == self.num_classes + 1:
nn.init.constant_(p, bias_value)
def _build_diffusion(self):
betas = cosine_beta_schedule(self.timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.)
self.register_buffer('betas', betas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod',
torch.sqrt(1. - alphas_cumprod))
self.register_buffer('log_one_minus_alphas_cumprod',
torch.log(1. - alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod',
torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod',
torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
# equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (
1. - alphas_cumprod)
self.register_buffer('posterior_variance', posterior_variance)
# log calculation clipped because the posterior variance is 0 at
# the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped',
torch.log(posterior_variance.clamp(min=1e-20)))
self.register_buffer(
'posterior_mean_coef1',
betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer('posterior_mean_coef2',
(1. - alphas_cumprod_prev) * torch.sqrt(alphas) /
(1. - alphas_cumprod))
def forward(self, features, init_bboxes, init_t, init_features=None):
time = self.time_mlp(init_t, )
inter_class_logits = []
inter_pred_bboxes = []
bs = len(features[0])
bboxes = init_bboxes
if init_features is not None:
init_features = init_features[None].repeat(1, bs, 1)
proposal_features = init_features.clone()
else:
proposal_features = None
for head_idx, single_head in enumerate(self.head_series):
class_logits, pred_bboxes, proposal_features = single_head(
features, bboxes, proposal_features, self.roi_extractor, time)
if self.deep_supervision:
inter_class_logits.append(class_logits)
inter_pred_bboxes.append(pred_bboxes)
bboxes = pred_bboxes.detach()
if self.deep_supervision:
return torch.stack(inter_class_logits), torch.stack(
inter_pred_bboxes)
else:
return class_logits[None, ...], pred_bboxes[None, ...]
def loss(self, x: Tuple[Tensor], batch_data_samples: SampleList) -> dict:
"""Perform forward propagation and loss calculation of the detection
head on the features of the upstream network.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
Returns:
dict: A dictionary of loss components.
"""
prepare_outputs = self.prepare_training_targets(batch_data_samples)
(batch_gt_instances, batch_pred_instances, batch_gt_instances_ignore,
batch_img_metas) = prepare_outputs
batch_diff_bboxes = torch.stack([
pred_instances.diff_bboxes_abs
for pred_instances in batch_pred_instances
])
batch_time = torch.stack(
[pred_instances.time for pred_instances in batch_pred_instances])
pred_logits, pred_bboxes = self(x, batch_diff_bboxes, batch_time)
output = {
'pred_logits': pred_logits[-1],
'pred_boxes': pred_bboxes[-1]
}
if self.deep_supervision:
output['aux_outputs'] = [{
'pred_logits': a,
'pred_boxes': b
} for a, b in zip(pred_logits[:-1], pred_bboxes[:-1])]
losses = self.criterion(output, batch_gt_instances, batch_img_metas)
return losses
def prepare_training_targets(self, batch_data_samples):
# hard-setting seed to keep results same (if necessary)
# random.seed(0)
# torch.manual_seed(0)
# torch.cuda.manual_seed_all(0)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
batch_gt_instances = []
batch_pred_instances = []
batch_gt_instances_ignore = []
batch_img_metas = []
for data_sample in batch_data_samples:
img_meta = data_sample.metainfo
gt_instances = data_sample.gt_instances
gt_bboxes = gt_instances.bboxes
h, w = img_meta['img_shape']
image_size = gt_bboxes.new_tensor([w, h, w, h])
norm_gt_bboxes = gt_bboxes / image_size
norm_gt_bboxes_cxcywh = bbox_xyxy_to_cxcywh(norm_gt_bboxes)
pred_instances = self.prepare_diffusion(norm_gt_bboxes_cxcywh,
image_size)
gt_instances.set_metainfo(dict(image_size=image_size))
gt_instances.norm_bboxes_cxcywh = norm_gt_bboxes_cxcywh
batch_gt_instances.append(gt_instances)
batch_pred_instances.append(pred_instances)
batch_img_metas.append(data_sample.metainfo)
if 'ignored_instances' in data_sample:
batch_gt_instances_ignore.append(data_sample.ignored_instances)
else:
batch_gt_instances_ignore.append(None)
return (batch_gt_instances, batch_pred_instances,
batch_gt_instances_ignore, batch_img_metas)
def prepare_diffusion(self, gt_boxes, image_size):
device = gt_boxes.device
time = torch.randint(
0, self.timesteps, (1, ), dtype=torch.long, device=device)
noise = torch.randn(self.num_proposals, 4, device=device)
num_gt = gt_boxes.shape[0]
if num_gt < self.num_proposals:
# 3 * sigma = 1/2 --> sigma: 1/6
box_placeholder = torch.randn(
self.num_proposals - num_gt, 4, device=device) / 6. + 0.5
box_placeholder[:, 2:] = torch.clip(
box_placeholder[:, 2:], min=1e-4)
x_start = torch.cat((gt_boxes, box_placeholder), dim=0)
else:
select_mask = [True] * self.num_proposals + \
[False] * (num_gt - self.num_proposals)
random.shuffle(select_mask)
x_start = gt_boxes[select_mask]
x_start = (x_start * 2. - 1.) * self.snr_scale
# noise sample
x = self.q_sample(x_start=x_start, time=time, noise=noise)
x = torch.clamp(x, min=-1 * self.snr_scale, max=self.snr_scale)
x = ((x / self.snr_scale) + 1) / 2.
diff_bboxes = bbox_cxcywh_to_xyxy(x)
# convert to abs bboxes
diff_bboxes_abs = diff_bboxes * image_size
metainfo = dict(time=time.squeeze(-1))
pred_instances = InstanceData(metainfo=metainfo)
pred_instances.diff_bboxes = diff_bboxes
pred_instances.diff_bboxes_abs = diff_bboxes_abs
pred_instances.noise = noise
return pred_instances
# forward diffusion
def q_sample(self, x_start, time, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
x_start_shape = x_start.shape
sqrt_alphas_cumprod_t = extract(self.sqrt_alphas_cumprod, time,
x_start_shape)
sqrt_one_minus_alphas_cumprod_t = extract(
self.sqrt_one_minus_alphas_cumprod, time, x_start_shape)
return sqrt_alphas_cumprod_t * x_start + \
sqrt_one_minus_alphas_cumprod_t * noise
def predict(self,
x: Tuple[Tensor],
batch_data_samples: SampleList,
rescale: bool = False) -> InstanceList:
"""Perform forward propagation of the detection head and predict
detection results on the features of the upstream network.
Args:
x (tuple[Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[obj:`InstanceData`]: Detection results of each image
after the post process.
"""
# hard-setting seed to keep results same (if necessary)
# seed = 0
# random.seed(seed)
# torch.manual_seed(seed)
# torch.cuda.manual_seed_all(seed)
device = x[-1].device
batch_img_metas = [
data_samples.metainfo for data_samples in batch_data_samples
]
(time_pairs, batch_noise_bboxes, batch_noise_bboxes_raw,
batch_image_size) = self.prepare_testing_targets(
batch_img_metas, device)
predictions = self.predict_by_feat(
x,
time_pairs=time_pairs,
batch_noise_bboxes=batch_noise_bboxes,
batch_noise_bboxes_raw=batch_noise_bboxes_raw,
batch_image_size=batch_image_size,
device=device,
batch_img_metas=batch_img_metas)
return predictions
def predict_by_feat(self,
x,
time_pairs,
batch_noise_bboxes,
batch_noise_bboxes_raw,
batch_image_size,
device,
batch_img_metas=None,
cfg=None,
rescale=True):
batch_size = len(batch_img_metas)
cfg = self.test_cfg if cfg is None else cfg
cfg = copy.deepcopy(cfg)
ensemble_score, ensemble_label, ensemble_coord = [], [], []
for time, time_next in time_pairs:
batch_time = torch.full((batch_size, ),
time,
device=device,
dtype=torch.long)
# self_condition = x_start if self.self_condition else None
pred_logits, pred_bboxes = self(x, batch_noise_bboxes, batch_time)
x_start = pred_bboxes[-1]
x_start = x_start / batch_image_size[:, None, :]
x_start = bbox_xyxy_to_cxcywh(x_start)
x_start = (x_start * 2 - 1.) * self.snr_scale
x_start = torch.clamp(
x_start, min=-1 * self.snr_scale, max=self.snr_scale)
pred_noise = self.predict_noise_from_start(batch_noise_bboxes_raw,
batch_time, x_start)
pred_noise_list, x_start_list = [], []
noise_bboxes_list, num_remain_list = [], []
if self.box_renewal: # filter
score_thr = cfg.get('score_thr', 0)
for img_id in range(batch_size):
score_per_image = pred_logits[-1][img_id]
score_per_image = torch.sigmoid(score_per_image)
value, _ = torch.max(score_per_image, -1, keepdim=False)
keep_idx = value > score_thr
num_remain_list.append(torch.sum(keep_idx))
pred_noise_list.append(pred_noise[img_id, keep_idx, :])
x_start_list.append(x_start[img_id, keep_idx, :])
noise_bboxes_list.append(batch_noise_bboxes[img_id,
keep_idx, :])
if time_next < 0:
# Not same as original DiffusionDet
if self.use_ensemble and self.sampling_timesteps > 1:
box_pred_per_image, scores_per_image, labels_per_image = \
self.inference(
box_cls=pred_logits[-1],
box_pred=pred_bboxes[-1],
cfg=cfg,
device=device)
ensemble_score.append(scores_per_image)
ensemble_label.append(labels_per_image)
ensemble_coord.append(box_pred_per_image)
continue
alpha = self.alphas_cumprod[time]
alpha_next = self.alphas_cumprod[time_next]
sigma = self.ddim_sampling_eta * ((1 - alpha / alpha_next) *
(1 - alpha_next) /
(1 - alpha)).sqrt()
c = (1 - alpha_next - sigma**2).sqrt()
batch_noise_bboxes_list = []
batch_noise_bboxes_raw_list = []
for idx in range(batch_size):
pred_noise = pred_noise_list[idx]
x_start = x_start_list[idx]
noise_bboxes = noise_bboxes_list[idx]
num_remain = num_remain_list[idx]
noise = torch.randn_like(noise_bboxes)
noise_bboxes = x_start * alpha_next.sqrt() + \
c * pred_noise + sigma * noise
if self.box_renewal: # filter
# replenish with randn boxes
if num_remain < self.num_proposals:
noise_bboxes = torch.cat(
(noise_bboxes,
torch.randn(
self.num_proposals - num_remain,
4,
device=device)),
dim=0)
else:
select_mask = [True] * self.num_proposals + \
[False] * (num_remain -
self.num_proposals)
random.shuffle(select_mask)
noise_bboxes = noise_bboxes[select_mask]
# raw noise boxes
batch_noise_bboxes_raw_list.append(noise_bboxes)
# resize to xyxy
noise_bboxes = torch.clamp(
noise_bboxes,
min=-1 * self.snr_scale,
max=self.snr_scale)
noise_bboxes = ((noise_bboxes / self.snr_scale) + 1) / 2
noise_bboxes = bbox_cxcywh_to_xyxy(noise_bboxes)
noise_bboxes = noise_bboxes * batch_image_size[idx]
batch_noise_bboxes_list.append(noise_bboxes)
batch_noise_bboxes = torch.stack(batch_noise_bboxes_list)
batch_noise_bboxes_raw = torch.stack(batch_noise_bboxes_raw_list)
if self.use_ensemble and self.sampling_timesteps > 1:
box_pred_per_image, scores_per_image, labels_per_image = \
self.inference(
box_cls=pred_logits[-1],
box_pred=pred_bboxes[-1],
cfg=cfg,
device=device)
ensemble_score.append(scores_per_image)
ensemble_label.append(labels_per_image)
ensemble_coord.append(box_pred_per_image)
if self.use_ensemble and self.sampling_timesteps > 1:
steps = len(ensemble_score)
results_list = []
for idx in range(batch_size):
ensemble_score_per_img = [
ensemble_score[i][idx] for i in range(steps)
]
ensemble_label_per_img = [
ensemble_label[i][idx] for i in range(steps)
]
ensemble_coord_per_img = [
ensemble_coord[i][idx] for i in range(steps)
]
scores_per_image = torch.cat(ensemble_score_per_img, dim=0)
labels_per_image = torch.cat(ensemble_label_per_img, dim=0)
box_pred_per_image = torch.cat(ensemble_coord_per_img, dim=0)
if self.use_nms:
det_bboxes, keep_idxs = batched_nms(
box_pred_per_image, scores_per_image, labels_per_image,
cfg.nms)
box_pred_per_image = box_pred_per_image[keep_idxs]
labels_per_image = labels_per_image[keep_idxs]
scores_per_image = det_bboxes[:, -1]
results = InstanceData()
results.bboxes = box_pred_per_image
results.scores = scores_per_image
results.labels = labels_per_image
results_list.append(results)
else:
box_cls = pred_logits[-1]
box_pred = pred_bboxes[-1]
results_list = self.inference(box_cls, box_pred, cfg, device)
if rescale:
results_list = self.do_results_post_process(
results_list, cfg, batch_img_metas=batch_img_metas)
return results_list
@staticmethod
def do_results_post_process(results_list, cfg, batch_img_metas=None):
processed_results = []
for results, img_meta in zip(results_list, batch_img_metas):
assert img_meta.get('scale_factor') is not None
scale_factor = [1 / s for s in img_meta['scale_factor']]
results.bboxes = scale_boxes(results.bboxes, scale_factor)
# clip w, h
h, w = img_meta['ori_shape']
results.bboxes[:, 0::2] = results.bboxes[:, 0::2].clamp(
min=0, max=w)
results.bboxes[:, 1::2] = results.bboxes[:, 1::2].clamp(
min=0, max=h)
# filter small size bboxes
if cfg.get('min_bbox_size', 0) >= 0:
w, h = get_box_wh(results.bboxes)
valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size)
if not valid_mask.all():
results = results[valid_mask]
processed_results.append(results)
return processed_results
def prepare_testing_targets(self, batch_img_metas, device):
# [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == timesteps
times = torch.linspace(
-1, self.timesteps - 1, steps=self.sampling_timesteps + 1)
times = list(reversed(times.int().tolist()))
# [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
time_pairs = list(zip(times[:-1], times[1:]))
noise_bboxes_list = []
noise_bboxes_raw_list = []
image_size_list = []
for img_meta in batch_img_metas:
h, w = img_meta['img_shape']
image_size = torch.tensor([w, h, w, h],
dtype=torch.float32,
device=device)
noise_bboxes_raw = torch.randn((self.num_proposals, 4),
device=device)
noise_bboxes = torch.clamp(
noise_bboxes_raw, min=-1 * self.snr_scale, max=self.snr_scale)
noise_bboxes = ((noise_bboxes / self.snr_scale) + 1) / 2
noise_bboxes = bbox_cxcywh_to_xyxy(noise_bboxes)
noise_bboxes = noise_bboxes * image_size
noise_bboxes_raw_list.append(noise_bboxes_raw)
noise_bboxes_list.append(noise_bboxes)
image_size_list.append(image_size[None])
batch_noise_bboxes = torch.stack(noise_bboxes_list)
batch_image_size = torch.cat(image_size_list)
batch_noise_bboxes_raw = torch.stack(noise_bboxes_raw_list)
return (time_pairs, batch_noise_bboxes, batch_noise_bboxes_raw,
batch_image_size)
def predict_noise_from_start(self, x_t, t, x0):
results = (extract(
self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / \
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
return results
def inference(self, box_cls, box_pred, cfg, device):
"""
Args:
box_cls (Tensor): tensor of shape (batch_size, num_proposals, K).
The tensor predicts the classification probability for
each proposal.
box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4).
The tensor predicts 4-vector (x,y,w,h) box
regression values for every proposal
Returns:
results (List[Instances]): a list of #images elements.
"""
results = []
if self.use_focal_loss or self.use_fed_loss:
scores = torch.sigmoid(box_cls)
labels = torch.arange(
self.num_classes,
device=device).unsqueeze(0).repeat(self.num_proposals,
1).flatten(0, 1)
box_pred_list = []
scores_list = []
labels_list = []
for i, (scores_per_image,
box_pred_per_image) in enumerate(zip(scores, box_pred)):
scores_per_image, topk_indices = scores_per_image.flatten(
0, 1).topk(
self.num_proposals, sorted=False)
labels_per_image = labels[topk_indices]
box_pred_per_image = box_pred_per_image.view(-1, 1, 4).repeat(
1, self.num_classes, 1).view(-1, 4)
box_pred_per_image = box_pred_per_image[topk_indices]
if self.use_ensemble and self.sampling_timesteps > 1:
box_pred_list.append(box_pred_per_image)
scores_list.append(scores_per_image)
labels_list.append(labels_per_image)
continue
if self.use_nms:
det_bboxes, keep_idxs = batched_nms(
box_pred_per_image, scores_per_image, labels_per_image,
cfg.nms)
box_pred_per_image = box_pred_per_image[keep_idxs]
labels_per_image = labels_per_image[keep_idxs]
# some nms would reweight the score, such as softnms
scores_per_image = det_bboxes[:, -1]
result = InstanceData()
result.bboxes = box_pred_per_image
result.scores = scores_per_image
result.labels = labels_per_image
results.append(result)
else:
# For each box we assign the best class or the second
# best if the best on is `no_object`.
scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1)
for i, (scores_per_image, labels_per_image,
box_pred_per_image) in enumerate(
zip(scores, labels, box_pred)):
if self.use_ensemble and self.sampling_timesteps > 1:
return box_pred_per_image, scores_per_image, \
labels_per_image
if self.use_nms:
det_bboxes, keep_idxs = batched_nms(
box_pred_per_image, scores_per_image, labels_per_image,
cfg.nms)
box_pred_per_image = box_pred_per_image[keep_idxs]
labels_per_image = labels_per_image[keep_idxs]
# some nms would reweight the score, such as softnms
scores_per_image = det_bboxes[:, -1]
result = InstanceData()
result.bboxes = box_pred_per_image
result.scores = scores_per_image
result.labels = labels_per_image
results.append(result)
if self.use_ensemble and self.sampling_timesteps > 1:
return box_pred_list, scores_list, labels_list
else:
return results
@MODELS.register_module()
class SingleDiffusionDetHead(nn.Module):
def __init__(
self,
num_classes=80,
feat_channels=256,
dim_feedforward=2048,
num_cls_convs=1,
num_reg_convs=3,
num_heads=8,
dropout=0.0,
pooler_resolution=7,
scale_clamp=_DEFAULT_SCALE_CLAMP,
bbox_weights=(2.0, 2.0, 1.0, 1.0),
use_focal_loss=True,
use_fed_loss=False,
act_cfg=dict(type='ReLU', inplace=True),
dynamic_conv=dict(dynamic_dim=64, dynamic_num=2)
) -> None:
super().__init__()
self.feat_channels = feat_channels
# Dynamic
self.self_attn = nn.MultiheadAttention(
feat_channels, num_heads, dropout=dropout)
self.inst_interact = DynamicConv(
feat_channels=feat_channels,
pooler_resolution=pooler_resolution,
dynamic_dim=dynamic_conv['dynamic_dim'],
dynamic_num=dynamic_conv['dynamic_num'])
self.linear1 = nn.Linear(feat_channels, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, feat_channels)
self.norm1 = nn.LayerNorm(feat_channels)
self.norm2 = nn.LayerNorm(feat_channels)
self.norm3 = nn.LayerNorm(feat_channels)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = build_activation_layer(act_cfg)
# block time mlp
self.block_time_mlp = nn.Sequential(
nn.SiLU(), nn.Linear(feat_channels * 4, feat_channels * 2))
# cls.
cls_module = list()
for _ in range(num_cls_convs):
cls_module.append(nn.Linear(feat_channels, feat_channels, False))
cls_module.append(nn.LayerNorm(feat_channels))
cls_module.append(nn.ReLU(inplace=True))
self.cls_module = nn.ModuleList(cls_module)
# reg.
reg_module = list()
for _ in range(num_reg_convs):
reg_module.append(nn.Linear(feat_channels, feat_channels, False))
reg_module.append(nn.LayerNorm(feat_channels))
reg_module.append(nn.ReLU(inplace=True))
self.reg_module = nn.ModuleList(reg_module)
# pred.
self.use_focal_loss = use_focal_loss
self.use_fed_loss = use_fed_loss
if self.use_focal_loss or self.use_fed_loss:
self.class_logits = nn.Linear(feat_channels, num_classes)
else:
self.class_logits = nn.Linear(feat_channels, num_classes + 1)
self.bboxes_delta = nn.Linear(feat_channels, 4)
self.scale_clamp = scale_clamp
self.bbox_weights = bbox_weights
def forward(self, features, bboxes, pro_features, pooler, time_emb):
"""
:param bboxes: (N, num_boxes, 4)
:param pro_features: (N, num_boxes, feat_channels)
"""
N, num_boxes = bboxes.shape[:2]
# roi_feature.
proposal_boxes = list()
for b in range(N):
proposal_boxes.append(bboxes[b])
rois = bbox2roi(proposal_boxes)
roi_features = pooler(features, rois)
if pro_features is None:
pro_features = roi_features.view(N, num_boxes, self.feat_channels,
-1).mean(-1)
roi_features = roi_features.view(N * num_boxes, self.feat_channels,
-1).permute(2, 0, 1)
# self_att.
pro_features = pro_features.view(N, num_boxes,
self.feat_channels).permute(1, 0, 2)
pro_features2 = self.self_attn(
pro_features, pro_features, value=pro_features)[0]
pro_features = pro_features + self.dropout1(pro_features2)
pro_features = self.norm1(pro_features)
# inst_interact.
pro_features = pro_features.view(
num_boxes, N,
self.feat_channels).permute(1, 0,
2).reshape(1, N * num_boxes,
self.feat_channels)
pro_features2 = self.inst_interact(pro_features, roi_features)
pro_features = pro_features + self.dropout2(pro_features2)
obj_features = self.norm2(pro_features)
# obj_feature.
obj_features2 = self.linear2(
self.dropout(self.activation(self.linear1(obj_features))))
obj_features = obj_features + self.dropout3(obj_features2)
obj_features = self.norm3(obj_features)
fc_feature = obj_features.transpose(0, 1).reshape(N * num_boxes, -1)
scale_shift = self.block_time_mlp(time_emb)
scale_shift = torch.repeat_interleave(scale_shift, num_boxes, dim=0)
scale, shift = scale_shift.chunk(2, dim=1)
fc_feature = fc_feature * (scale + 1) + shift
cls_feature = fc_feature.clone()
reg_feature = fc_feature.clone()
for cls_layer in self.cls_module:
cls_feature = cls_layer(cls_feature)
for reg_layer in self.reg_module:
reg_feature = reg_layer(reg_feature)
class_logits = self.class_logits(cls_feature)
bboxes_deltas = self.bboxes_delta(reg_feature)
pred_bboxes = self.apply_deltas(bboxes_deltas, bboxes.view(-1, 4))
return (class_logits.view(N, num_boxes,
-1), pred_bboxes.view(N, num_boxes,
-1), obj_features)
def apply_deltas(self, deltas, boxes):
"""Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.
Args:
deltas (Tensor): transformation deltas of shape (N, k*4),
where k >= 1. deltas[i] represents k potentially
different class-specific box transformations for
the single box boxes[i].
boxes (Tensor): boxes to transform, of shape (N, 4)
"""
boxes = boxes.to(deltas.dtype)
widths = boxes[:, 2] - boxes[:, 0]
heights = boxes[:, 3] - boxes[:, 1]
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = self.bbox_weights
dx = deltas[:, 0::4] / wx
dy = deltas[:, 1::4] / wy
dw = deltas[:, 2::4] / ww
dh = deltas[:, 3::4] / wh
# Prevent sending too large values into torch.exp()
dw = torch.clamp(dw, max=self.scale_clamp)
dh = torch.clamp(dh, max=self.scale_clamp)
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
pred_w = torch.exp(dw) * widths[:, None]
pred_h = torch.exp(dh) * heights[:, None]
pred_boxes = torch.zeros_like(deltas)
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # x1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # y1
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # x2
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h # y2
return pred_boxes
class DynamicConv(nn.Module):
def __init__(self,
feat_channels: int,
dynamic_dim: int = 64,
dynamic_num: int = 2,
pooler_resolution: int = 7) -> None:
super().__init__()
self.feat_channels = feat_channels
self.dynamic_dim = dynamic_dim
self.dynamic_num = dynamic_num
self.num_params = self.feat_channels * self.dynamic_dim
self.dynamic_layer = nn.Linear(self.feat_channels,
self.dynamic_num * self.num_params)
self.norm1 = nn.LayerNorm(self.dynamic_dim)
self.norm2 = nn.LayerNorm(self.feat_channels)
self.activation = nn.ReLU(inplace=True)
num_output = self.feat_channels * pooler_resolution**2
self.out_layer = nn.Linear(num_output, self.feat_channels)