-
Notifications
You must be signed in to change notification settings - Fork 9.6k
/
Copy pathloss.py
341 lines (289 loc) · 14.1 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Modified from https://github.com/ShoufaChen/DiffusionDet/blob/main/diffusiondet/loss.py # noqa
# This work is licensed under the CC-BY-NC 4.0 License.
# Users should be careful about adopting these features in any commercial matters. # noqa
# For more details, please refer to https://github.com/ShoufaChen/DiffusionDet/blob/main/LICENSE # noqa
from typing import List, Tuple, Union
import torch
import torch.nn as nn
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures.bbox import bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh
from mmdet.utils import ConfigType
@TASK_UTILS.register_module()
class DiffusionDetCriterion(nn.Module):
def __init__(
self,
num_classes,
assigner: Union[ConfigDict, nn.Module],
deep_supervision=True,
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
alpha=0.25,
gamma=2.0,
reduction='sum',
loss_weight=2.0),
loss_bbox=dict(type='L1Loss', reduction='sum', loss_weight=5.0),
loss_giou=dict(type='GIoULoss', reduction='sum', loss_weight=2.0),
):
super().__init__()
self.num_classes = num_classes
if isinstance(assigner, nn.Module):
self.assigner = assigner
else:
self.assigner = TASK_UTILS.build(assigner)
self.deep_supervision = deep_supervision
self.loss_cls = MODELS.build(loss_cls)
self.loss_bbox = MODELS.build(loss_bbox)
self.loss_giou = MODELS.build(loss_giou)
def forward(self, outputs, batch_gt_instances, batch_img_metas):
batch_indices = self.assigner(outputs, batch_gt_instances,
batch_img_metas)
# Compute all the requested losses
loss_cls = self.loss_classification(outputs, batch_gt_instances,
batch_indices)
loss_bbox, loss_giou = self.loss_boxes(outputs, batch_gt_instances,
batch_indices)
losses = dict(
loss_cls=loss_cls, loss_bbox=loss_bbox, loss_giou=loss_giou)
if self.deep_supervision:
assert 'aux_outputs' in outputs
for i, aux_outputs in enumerate(outputs['aux_outputs']):
batch_indices = self.assigner(aux_outputs, batch_gt_instances,
batch_img_metas)
loss_cls = self.loss_classification(aux_outputs,
batch_gt_instances,
batch_indices)
loss_bbox, loss_giou = self.loss_boxes(aux_outputs,
batch_gt_instances,
batch_indices)
tmp_losses = dict(
loss_cls=loss_cls,
loss_bbox=loss_bbox,
loss_giou=loss_giou)
for name, value in tmp_losses.items():
losses[f's.{i}.{name}'] = value
return losses
def loss_classification(self, outputs, batch_gt_instances, indices):
assert 'pred_logits' in outputs
src_logits = outputs['pred_logits']
target_classes_list = [
gt.labels[J] for gt, (_, J) in zip(batch_gt_instances, indices)
]
target_classes = torch.full(
src_logits.shape[:2],
self.num_classes,
dtype=torch.int64,
device=src_logits.device)
for idx in range(len(batch_gt_instances)):
target_classes[idx, indices[idx][0]] = target_classes_list[idx]
src_logits = src_logits.flatten(0, 1)
target_classes = target_classes.flatten(0, 1)
# comp focal loss.
num_instances = max(torch.cat(target_classes_list).shape[0], 1)
loss_cls = self.loss_cls(
src_logits,
target_classes,
) / num_instances
return loss_cls
def loss_boxes(self, outputs, batch_gt_instances, indices):
assert 'pred_boxes' in outputs
pred_boxes = outputs['pred_boxes']
target_bboxes_norm_list = [
gt.norm_bboxes_cxcywh[J]
for gt, (_, J) in zip(batch_gt_instances, indices)
]
target_bboxes_list = [
gt.bboxes[J] for gt, (_, J) in zip(batch_gt_instances, indices)
]
pred_bboxes_list = []
pred_bboxes_norm_list = []
for idx in range(len(batch_gt_instances)):
pred_bboxes_list.append(pred_boxes[idx, indices[idx][0]])
image_size = batch_gt_instances[idx].image_size
pred_bboxes_norm_list.append(pred_boxes[idx, indices[idx][0]] /
image_size)
pred_boxes_cat = torch.cat(pred_bboxes_list)
pred_boxes_norm_cat = torch.cat(pred_bboxes_norm_list)
target_bboxes_cat = torch.cat(target_bboxes_list)
target_bboxes_norm_cat = torch.cat(target_bboxes_norm_list)
if len(pred_boxes_cat) > 0:
num_instances = pred_boxes_cat.shape[0]
loss_bbox = self.loss_bbox(
pred_boxes_norm_cat,
bbox_cxcywh_to_xyxy(target_bboxes_norm_cat)) / num_instances
loss_giou = self.loss_giou(pred_boxes_cat,
target_bboxes_cat) / num_instances
else:
loss_bbox = pred_boxes.sum() * 0
loss_giou = pred_boxes.sum() * 0
return loss_bbox, loss_giou
@TASK_UTILS.register_module()
class DiffusionDetMatcher(nn.Module):
"""This class computes an assignment between the targets and the
predictions of the network For efficiency reasons, the targets don't
include the no_object.
Because of this, in general, there are more predictions than targets. In
this case, we do a 1-to-k (dynamic) matching of the best predictions, while
the others are un-matched (and thus treated as non-objects).
"""
def __init__(self,
match_costs: Union[List[Union[dict, ConfigDict]], dict,
ConfigDict],
center_radius: float = 2.5,
candidate_topk: int = 5,
iou_calculator: ConfigType = dict(type='BboxOverlaps2D'),
**kwargs):
super().__init__()
self.center_radius = center_radius
self.candidate_topk = candidate_topk
if isinstance(match_costs, dict):
match_costs = [match_costs]
elif isinstance(match_costs, list):
assert len(match_costs) > 0, \
'match_costs must not be a empty list.'
self.use_focal_loss = False
self.use_fed_loss = False
for _match_cost in match_costs:
if _match_cost.get('type') == 'FocalLossCost':
self.use_focal_loss = True
if _match_cost.get('type') == 'FedLoss':
self.use_fed_loss = True
raise NotImplementedError
self.match_costs = [
TASK_UTILS.build(match_cost) for match_cost in match_costs
]
self.iou_calculator = TASK_UTILS.build(iou_calculator)
def forward(self, outputs, batch_gt_instances, batch_img_metas):
assert 'pred_logits' in outputs and 'pred_boxes' in outputs
pred_logits = outputs['pred_logits']
pred_bboxes = outputs['pred_boxes']
batch_size = len(batch_gt_instances)
assert batch_size == pred_logits.shape[0] == pred_bboxes.shape[0]
batch_indices = []
for i in range(batch_size):
pred_instances = InstanceData()
pred_instances.bboxes = pred_bboxes[i, ...]
pred_instances.scores = pred_logits[i, ...]
gt_instances = batch_gt_instances[i]
img_meta = batch_img_metas[i]
indices = self.single_assigner(pred_instances, gt_instances,
img_meta)
batch_indices.append(indices)
return batch_indices
def single_assigner(self, pred_instances, gt_instances, img_meta):
with torch.no_grad():
gt_bboxes = gt_instances.bboxes
pred_bboxes = pred_instances.bboxes
num_gt = gt_bboxes.size(0)
if num_gt == 0: # empty object in key frame
valid_mask = pred_bboxes.new_zeros((pred_bboxes.shape[0], ),
dtype=torch.bool)
matched_gt_inds = pred_bboxes.new_zeros((gt_bboxes.shape[0], ),
dtype=torch.long)
return valid_mask, matched_gt_inds
valid_mask, is_in_boxes_and_center = \
self.get_in_gt_and_in_center_info(
bbox_xyxy_to_cxcywh(pred_bboxes),
bbox_xyxy_to_cxcywh(gt_bboxes)
)
cost_list = []
for match_cost in self.match_costs:
cost = match_cost(
pred_instances=pred_instances,
gt_instances=gt_instances,
img_meta=img_meta)
cost_list.append(cost)
pairwise_ious = self.iou_calculator(pred_bboxes, gt_bboxes)
cost_list.append((~is_in_boxes_and_center) * 100.0)
cost_matrix = torch.stack(cost_list).sum(0)
cost_matrix[~valid_mask] = cost_matrix[~valid_mask] + 10000.0
fg_mask_inboxes, matched_gt_inds = \
self.dynamic_k_matching(
cost_matrix, pairwise_ious, num_gt)
return fg_mask_inboxes, matched_gt_inds
def get_in_gt_and_in_center_info(
self, pred_bboxes: Tensor,
gt_bboxes: Tensor) -> Tuple[Tensor, Tensor]:
"""Get the information of which prior is in gt bboxes and gt center
priors."""
xy_target_gts = bbox_cxcywh_to_xyxy(gt_bboxes) # (x1, y1, x2, y2)
pred_bboxes_center_x = pred_bboxes[:, 0].unsqueeze(1)
pred_bboxes_center_y = pred_bboxes[:, 1].unsqueeze(1)
# whether the center of each anchor is inside a gt box
b_l = pred_bboxes_center_x > xy_target_gts[:, 0].unsqueeze(0)
b_r = pred_bboxes_center_x < xy_target_gts[:, 2].unsqueeze(0)
b_t = pred_bboxes_center_y > xy_target_gts[:, 1].unsqueeze(0)
b_b = pred_bboxes_center_y < xy_target_gts[:, 3].unsqueeze(0)
# (b_l.long()+b_r.long()+b_t.long()+b_b.long())==4 [300,num_gt] ,
is_in_boxes = ((b_l.long() + b_r.long() + b_t.long() +
b_b.long()) == 4)
is_in_boxes_all = is_in_boxes.sum(1) > 0 # [num_query]
# in fixed center
center_radius = 2.5
# Modified to self-adapted sampling --- the center size depends
# on the size of the gt boxes
# https://github.com/dulucas/UVO_Challenge/blob/main/Track1/detection/mmdet/core/bbox/assigners/rpn_sim_ota_assigner.py#L212 # noqa
b_l = pred_bboxes_center_x > (
gt_bboxes[:, 0] -
(center_radius *
(xy_target_gts[:, 2] - xy_target_gts[:, 0]))).unsqueeze(0)
b_r = pred_bboxes_center_x < (
gt_bboxes[:, 0] +
(center_radius *
(xy_target_gts[:, 2] - xy_target_gts[:, 0]))).unsqueeze(0)
b_t = pred_bboxes_center_y > (
gt_bboxes[:, 1] -
(center_radius *
(xy_target_gts[:, 3] - xy_target_gts[:, 1]))).unsqueeze(0)
b_b = pred_bboxes_center_y < (
gt_bboxes[:, 1] +
(center_radius *
(xy_target_gts[:, 3] - xy_target_gts[:, 1]))).unsqueeze(0)
is_in_centers = ((b_l.long() + b_r.long() + b_t.long() +
b_b.long()) == 4)
is_in_centers_all = is_in_centers.sum(1) > 0
is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
is_in_boxes_and_center = (is_in_boxes & is_in_centers)
return is_in_boxes_anchor, is_in_boxes_and_center
def dynamic_k_matching(self, cost: Tensor, pairwise_ious: Tensor,
num_gt: int) -> Tuple[Tensor, Tensor]:
"""Use IoU and matching cost to calculate the dynamic top-k positive
targets."""
matching_matrix = torch.zeros_like(cost)
# select candidate topk ious for dynamic-k calculation
candidate_topk = min(self.candidate_topk, pairwise_ious.size(0))
topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=0)
# calculate dynamic k for each gt
dynamic_ks = torch.clamp(topk_ious.sum(0).int(), min=1)
for gt_idx in range(num_gt):
_, pos_idx = torch.topk(
cost[:, gt_idx], k=dynamic_ks[gt_idx], largest=False)
matching_matrix[:, gt_idx][pos_idx] = 1
del topk_ious, dynamic_ks, pos_idx
prior_match_gt_mask = matching_matrix.sum(1) > 1
if prior_match_gt_mask.sum() > 0:
_, cost_argmin = torch.min(cost[prior_match_gt_mask, :], dim=1)
matching_matrix[prior_match_gt_mask, :] *= 0
matching_matrix[prior_match_gt_mask, cost_argmin] = 1
while (matching_matrix.sum(0) == 0).any():
matched_query_id = matching_matrix.sum(1) > 0
cost[matched_query_id] += 100000.0
unmatch_id = torch.nonzero(
matching_matrix.sum(0) == 0, as_tuple=False).squeeze(1)
for gt_idx in unmatch_id:
pos_idx = torch.argmin(cost[:, gt_idx])
matching_matrix[:, gt_idx][pos_idx] = 1.0
if (matching_matrix.sum(1) > 1).sum() > 0:
_, cost_argmin = torch.min(cost[prior_match_gt_mask], dim=1)
matching_matrix[prior_match_gt_mask] *= 0
matching_matrix[prior_match_gt_mask, cost_argmin, ] = 1
assert not (matching_matrix.sum(0) == 0).any()
# get foreground mask inside box and center prior
fg_mask_inboxes = matching_matrix.sum(1) > 0
matched_gt_inds = matching_matrix[fg_mask_inboxes, :].argmax(1)
return fg_mask_inboxes, matched_gt_inds