|
21 | 21 | "from requests import get\n", |
22 | 22 | "response = get('https://api.github.com/repos/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/stats/commit_activity').json()\n", |
23 | 23 | "weekly_totals = np.array(map(lambda x: x['total'], response))\n", |
24 | | - "weekly_totals = weekly_totals[np.where(weekly_totals)[0]] # gives me 52 weeks, but project started < 1 year ago so it backwards fills with 0s;" |
| 24 | + "weekly_totals = weekly_totals[np.where(weekly_totals)[0]] # gives me 52 weeks, but project started < 1 year ago so it backwards fills with 0s" |
25 | 25 | ], |
26 | 26 | "language": "python", |
27 | 27 | "metadata": {}, |
|
35 | 35 | "count_data = weekly_totals\n", |
36 | 36 | "n_count_data = len(weekly_totals)\n", |
37 | 37 | "\n", |
38 | | - "plt.bar(range(n_count_data), weekly_totals)\n", |
| 38 | + "plt.bar(range(n_count_data), weekly_totals);\n", |
39 | 39 | "print weekly_totals\n", |
40 | | - "print n_count_data;" |
| 40 | + "print n_count_data" |
41 | 41 | ], |
42 | 42 | "language": "python", |
43 | 43 | "metadata": {}, |
|
71 | 71 | "lambda_1 = pm.Exponential(\"lambda_1\", alpha)\n", |
72 | 72 | "lambda_2 = pm.Exponential(\"lambda_2\", alpha)\n", |
73 | 73 | "\n", |
74 | | - "tau = pm.DiscreteUniform(\"tau\", lower=0, upper=n_count_data);" |
| 74 | + "tau = pm.DiscreteUniform(\"tau\", lower=0, upper=n_count_data)" |
75 | 75 | ], |
76 | 76 | "language": "python", |
77 | 77 | "metadata": {}, |
|
87 | 87 | " out = np.zeros(n_count_data)\n", |
88 | 88 | " out[:tau] = lambda_1 # lambda before tau is lambda1\n", |
89 | 89 | " out[tau:] = lambda_2 # lambda after tau is lambda2\n", |
90 | | - " return out;" |
| 90 | + " return out" |
91 | 91 | ], |
92 | 92 | "language": "python", |
93 | 93 | "metadata": {}, |
|
100 | 100 | "input": [ |
101 | 101 | "observation = pm.Poisson(\"obs\", lambda_, value=count_data, observed=True)\n", |
102 | 102 | "\n", |
103 | | - "model = pm.Model([observation, lambda_1, lambda_2, tau]);" |
| 103 | + "model = pm.Model([observation, lambda_1, lambda_2, tau])" |
104 | 104 | ], |
105 | 105 | "language": "python", |
106 | 106 | "metadata": {}, |
|
113 | 113 | "input": [ |
114 | 114 | "# Mysterious code to be explained in Chapter 3.\n", |
115 | 115 | "mcmc = pm.MCMC(model)\n", |
116 | | - "mcmc.sample(40000, 10000, 1);" |
| 116 | + "mcmc.sample(40000, 10000, 1)" |
117 | 117 | ], |
118 | 118 | "language": "python", |
119 | 119 | "metadata": {}, |
|
142 | 142 | "input": [ |
143 | 143 | "lambda_1_samples = mcmc.trace('lambda_1')[:]\n", |
144 | 144 | "lambda_2_samples = mcmc.trace('lambda_2')[:]\n", |
145 | | - "tau_samples = mcmc.trace('tau')[:];" |
| 145 | + "tau_samples = mcmc.trace('tau')[:]" |
146 | 146 | ], |
147 | 147 | "language": "python", |
148 | 148 | "metadata": {}, |
|
188 | 188 | "plt.legend(loc=\"upper left\")\n", |
189 | 189 | "plt.ylim([0, .75])\n", |
190 | 190 | "plt.xlabel(\"$\\tau$ (in days)\")\n", |
191 | | - "plt.ylabel(\"probability\");" |
| 191 | + "plt.ylabel(\"probability\")" |
192 | 192 | ], |
193 | 193 | "language": "python", |
194 | 194 | "metadata": {}, |
|
211 | 211 | "cell_type": "code", |
212 | 212 | "collapsed": false, |
213 | 213 | "input": [ |
214 | | - "n_count_data;" |
| 214 | + "n_count_data" |
215 | 215 | ], |
216 | 216 | "language": "python", |
217 | 217 | "metadata": {}, |
|
230 | 230 | "cell_type": "code", |
231 | 231 | "collapsed": false, |
232 | 232 | "input": [ |
233 | | - "lambda_2_samples;" |
| 233 | + "lambda_2_samples" |
234 | 234 | ], |
235 | 235 | "language": "python", |
236 | 236 | "metadata": {}, |
|
0 commit comments