We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent ae1bea9 commit 6e2fb82Copy full SHA for 6e2fb82
sklearn/linear_model/ransac.py
@@ -6,13 +6,13 @@
6
7
import numpy as np
8
9
-from ..base import BaseEstimator, MetaEstimatorMixin, clone
+from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone
10
from ..utils import check_random_state, atleast2d_or_csr
11
from ..utils.random import sample_without_replacement
12
from .base import LinearRegression
13
14
15
-class RANSACRegressor(BaseEstimator, MetaEstimatorMixin):
+class RANSACRegressor(BaseEstimator, MetaEstimatorMixin, RegressorMixin):
16
"""RANSAC (RANdom SAmple Consensus) algorithm.
17
18
RANSAC is an iterative algorithm for the robust estimation of parameters
0 commit comments