@@ -63,7 +63,7 @@ function concat1d_(tensors: Array<Tensor1D|TensorLike>): Tensor1D {
63
63
* | r2, g2, b2, r4, g4, b4 |
64
64
*
65
65
*
66
- * @param tensors A list of`tf.Tensor`s to concatenate.
66
+ * @param tensors A list of `tf.Tensor`s to concatenate.
67
67
* @param axis The axis to concatenate along.
68
68
* @return The concatenated array.
69
69
*/
@@ -73,7 +73,8 @@ function concat2d_(
73
73
}
74
74
75
75
/**
76
- * Concatenates a list of`tf.Tensor3D`s along an axis. See `concat` for details.
76
+ * Concatenates a list of `tf.Tensor3D`s along an axis.
77
+ * See `concat` for details.
77
78
*
78
79
* For example, if:
79
80
* A: shape(2, 1, 3) = | r1, g1, b1 |
@@ -108,9 +109,10 @@ function concat3d_(
108
109
}
109
110
110
111
/**
111
- * Concatenates a list of`tf.Tensor4D`s along an axis. See `concat` for details.
112
+ * Concatenates a list of `tf.Tensor4D`s along an axis.
113
+ * See `concat` for details.
112
114
*
113
- * @param tensors A list of`tf.Tensor`s to concatenate.
115
+ * @param tensors A list of `tf.Tensor`s to concatenate.
114
116
* @param axis The axis to concate along.
115
117
* @return The concatenated array.
116
118
*/
@@ -120,7 +122,7 @@ function concat4d_(
120
122
}
121
123
122
124
/**
123
- * Concatenates a list of`tf.Tensor`s along a given axis.
125
+ * Concatenates a list of `tf.Tensor`s along a given axis.
124
126
*
125
127
* The tensors ranks and types must match, and their sizes must match in all
126
128
* dimensions except `axis`.
@@ -185,14 +187,14 @@ function concat_<T extends Tensor>(tensors: Array<T|TensorLike>, axis = 0): T {
185
187
}
186
188
187
189
/**
188
- * Splits a`tf.Tensor` into sub tensors.
190
+ * Splits a `tf.Tensor` into sub tensors.
189
191
*
190
192
* If `numOrSizeSplits` is a number, splits `x` along dimension `axis`
191
193
* into `numOrSizeSplits` smaller tensors.
192
194
* Requires that `numOrSizeSplits` evenly divides `x.shape[axis]`.
193
195
*
194
196
* If `numOrSizeSplits` is a number array, splits `x` into
195
- * `( numOrSizeSplits.length` pieces. The shape of the `i`-th piece has the
197
+ * `numOrSizeSplits.length` pieces. The shape of the `i`-th piece has the
196
198
* same size as `x` except along dimension `axis` where the size is
197
199
* `numOrSizeSplits[i]`.
198
200
*
0 commit comments