@@ -24,19 +24,19 @@ def gapminder(
24
24
25
25
Parameters
26
26
----------
27
- datetimes: bool
27
+ datetimes : bool
28
28
Whether or not 'year' column will converted to datetime type
29
29
30
- centroids: bool
30
+ centroids : bool
31
31
If True, ['centroid_lat', 'centroid_lon'] columns are added
32
32
33
- year: int | None
33
+ year : int | None
34
34
If provided, the dataset will be filtered for that year
35
35
36
- pretty_names: bool
36
+ pretty_names : bool
37
37
If True, prettifies the column names
38
38
39
- return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
39
+ return_type : {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
40
40
Type of the resulting dataframe
41
41
42
42
Returns
@@ -91,10 +91,10 @@ def tips(pretty_names=False, return_type="pandas"):
91
91
92
92
Parameters
93
93
----------
94
- pretty_names: bool
94
+ pretty_names : bool
95
95
If True, prettifies the column names
96
96
97
- return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
97
+ return_type : {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
98
98
Type of the resulting dataframe
99
99
100
100
Returns
@@ -128,7 +128,7 @@ def iris(return_type="pandas"):
128
128
129
129
Parameters
130
130
----------
131
- return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
131
+ return_type : {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
132
132
Type of the resulting dataframe
133
133
134
134
Returns
@@ -146,7 +146,7 @@ def wind(return_type="pandas"):
146
146
147
147
Parameters
148
148
----------
149
- return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
149
+ return_type : {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
150
150
Type of the resulting dataframe
151
151
152
152
Returns
@@ -165,7 +165,7 @@ def election(return_type="pandas"):
165
165
166
166
Parameters
167
167
----------
168
- return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
168
+ return_type : {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
169
169
Type of the resulting dataframe
170
170
171
171
Returns
@@ -183,9 +183,9 @@ def election_geojson():
183
183
184
184
Returns
185
185
-------
186
- A GeoJSON-formatted `dict` with 58 polygon or multi-polygon features whose `id`
187
- is an electoral district numerical ID and whose `district` property is the ID and
188
- district name.
186
+ A GeoJSON-formatted `dict` with 58 polygon or multi-polygon features whose `id`
187
+ is an electoral district numerical ID and whose `district` property is the ID and
188
+ district name.
189
189
"""
190
190
import gzip
191
191
import json
@@ -209,13 +209,13 @@ def carshare(return_type="pandas"):
209
209
210
210
Parameters
211
211
----------
212
- return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
212
+ return_type : {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
213
213
Type of the resulting dataframe
214
214
215
215
Returns
216
216
-------
217
217
Dataframe of `return_type` type
218
- Dataframe` with 249 rows and the following columns:
218
+ Dataframe with 249 rows and the following columns:
219
219
`['centroid_lat', 'centroid_lon', 'car_hours', 'peak_hour']`.
220
220
"""
221
221
return _get_dataset ("carshare" , return_type = return_type )
@@ -227,14 +227,14 @@ def stocks(indexed=False, datetimes=False, return_type="pandas"):
227
227
228
228
Parameters
229
229
----------
230
- indexed: bool
230
+ indexed : bool
231
231
Whether or not the 'date' column is used as the index and the column index
232
232
is named 'company'. Applicable only if `return_type='pandas'`
233
233
234
- datetimes: bool
234
+ datetimes : bool
235
235
Whether or not the 'date' column will be of datetime type
236
236
237
- return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
237
+ return_type : {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
238
238
Type of the resulting dataframe
239
239
240
240
Returns
@@ -272,11 +272,11 @@ def experiment(indexed=False, return_type="pandas"):
272
272
273
273
Parameters
274
274
----------
275
- indexed: bool
275
+ indexed : bool
276
276
If True, then the index is named "participant".
277
277
Applicable only if `return_type='pandas'`
278
278
279
- return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
279
+ return_type : {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
280
280
Type of the resulting dataframe
281
281
282
282
Returns
@@ -308,11 +308,11 @@ def medals_wide(indexed=False, return_type="pandas"):
308
308
309
309
Parameters
310
310
----------
311
- indexed: bool
311
+ indexed : bool
312
312
Whether or not the 'nation' column is used as the index and the column index
313
313
is named 'medal'. Applicable only if `return_type='pandas'`
314
314
315
- return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
315
+ return_type : {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
316
316
Type of the resulting dataframe
317
317
318
318
Returns
@@ -345,11 +345,11 @@ def medals_long(indexed=False, return_type="pandas"):
345
345
346
346
Parameters
347
347
----------
348
- indexed: bool
348
+ indexed : bool
349
349
Whether or not the 'nation' column is used as the index.
350
350
Applicable only if `return_type='pandas'`
351
351
352
- return_type: {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
352
+ return_type : {'pandas', 'polars', 'pyarrow', 'modin', 'cudf'}
353
353
Type of the resulting dataframe
354
354
355
355
Returns
0 commit comments