@@ -29,19 +29,19 @@ def dbscan(X, eps=0.5, min_samples=5, metric='minkowski', metric_params=None,
2929
3030    Parameters 
3131    ---------- 
32-     X : array or  sparse (CSR) matrix of shape (n_samples, n_features),  or \  
33- array of shape  (n_samples, n_samples)
32+     X : { array-like,  sparse (CSR) matrix}  of shape (n_samples, n_features) or \  
33+ 
3434        A feature array, or array of distances between samples if 
3535        ``metric='precomputed'``. 
3636
37-     eps : float, optional  
37+     eps : float, default=0.5  
3838        The maximum distance between two samples for one to be considered 
3939        as in the neighborhood of the other. This is not a maximum bound 
4040        on the distances of points within a cluster. This is the most 
4141        important DBSCAN parameter to choose appropriately for your data set 
4242        and distance function. 
4343
44-     min_samples : int, optional  
44+     min_samples : int, default=5  
4545        The number of samples (or total weight) in a neighborhood for a point 
4646        to be considered as a core point. This includes the point itself. 
4747
@@ -55,33 +55,33 @@ def dbscan(X, eps=0.5, min_samples=5, metric='minkowski', metric_params=None,
5555        X may be a :term:`sparse graph <sparse graph>`, 
5656        in which case only "nonzero" elements may be considered neighbors. 
5757
58-     metric_params : dict, optional  
58+     metric_params : dict, default=None  
5959        Additional keyword arguments for the metric function. 
6060
6161        .. versionadded:: 0.19 
6262
63-     algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional  
63+     algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'  
6464        The algorithm to be used by the NearestNeighbors module 
6565        to compute pointwise distances and find nearest neighbors. 
6666        See NearestNeighbors module documentation for details. 
6767
68-     leaf_size : int, optional ( default = 30)  
68+     leaf_size : int, default=30  
6969        Leaf size passed to BallTree or cKDTree. This can affect the speed 
7070        of the construction and query, as well as the memory required 
7171        to store the tree. The optimal value depends 
7272        on the nature of the problem. 
7373
74-     p : float, optional  
74+     p : float, default=2  
7575        The power of the Minkowski metric to be used to calculate distance 
7676        between points. 
7777
78-     sample_weight : array,  shape (n_samples,), optional  
78+     sample_weight : array-like of  shape (n_samples,), default=None  
7979        Weight of each sample, such that a sample with a weight of at least 
8080        ``min_samples`` is by itself a core sample; a sample with negative 
8181        weight may inhibit its eps-neighbor from being core. 
8282        Note that weights are absolute, and default to 1. 
8383
84-     n_jobs : int or None, optional ( default=None)  
84+     n_jobs : int,  default=None 
8585        The number of parallel jobs to run for neighbors search. ``None`` means 
8686        1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means 
8787        using all processors. See :term:`Glossary <n_jobs>` for more details. 
@@ -90,10 +90,10 @@ def dbscan(X, eps=0.5, min_samples=5, metric='minkowski', metric_params=None,
9090
9191    Returns 
9292    ------- 
93-     core_samples : array [ n_core_samples]  
93+     core_samples : ndarray of shape ( n_core_samples,)  
9494        Indices of core samples. 
9595
96-     labels : array [ n_samples]  
96+     labels : ndarray of shape ( n_samples,)  
9797        Cluster labels for each point.  Noisy samples are given the label -1. 
9898
9999    See also 
@@ -200,21 +200,21 @@ class DBSCAN(ClusterMixin, BaseEstimator):
200200        The power of the Minkowski metric to be used to calculate distance 
201201        between points. 
202202
203-     n_jobs : int or None , default=None 
203+     n_jobs : int, default=None 
204204        The number of parallel jobs to run. 
205205        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. 
206206        ``-1`` means using all processors. See :term:`Glossary <n_jobs>` 
207207        for more details. 
208208
209209    Attributes 
210210    ---------- 
211-     core_sample_indices_ : array,  shape = [ n_core_samples]  
211+     core_sample_indices_ : ndarray of  shape ( n_core_samples,)  
212212        Indices of core samples. 
213213
214-     components_ : array,  shape = [ n_core_samples, n_features]  
214+     components_ : ndarray of  shape ( n_core_samples, n_features)  
215215        Copy of each core sample found by training. 
216216
217-     labels_ : array,  shape = [ n_samples]  
217+     labels_ : ndarray of  shape ( n_samples)  
218218        Cluster labels for each point in the dataset given to fit(). 
219219        Noisy samples are given the label -1. 
220220
@@ -288,13 +288,13 @@ def fit(self, X, y=None, sample_weight=None):
288288
289289        Parameters 
290290        ---------- 
291-         X : array-like or  sparse matrix,  shape (n_samples, n_features), or \  
291+         X : { array-like,  sparse matrix} of  shape (n_samples, n_features), or \  
292292
293293            Training instances to cluster, or distances between instances if 
294294            ``metric='precomputed'``. If a sparse matrix is provided, it will 
295295            be converted into a sparse ``csr_matrix``. 
296296
297-         sample_weight : array,  shape (n_samples,), optional  
297+         sample_weight : array-like of  shape (n_samples,), default=None  
298298            Weight of each sample, such that a sample with a weight of at least 
299299            ``min_samples`` is by itself a core sample; a sample with a 
300300            negative weight may inhibit its eps-neighbor from being core. 
@@ -367,13 +367,13 @@ def fit_predict(self, X, y=None, sample_weight=None):
367367
368368        Parameters 
369369        ---------- 
370-         X : array-like or  sparse matrix,  shape (n_samples, n_features), or \  
370+         X : { array-like,  sparse matrix} of  shape (n_samples, n_features), or \  
371371
372372            Training instances to cluster, or distances between instances if 
373373            ``metric='precomputed'``. If a sparse matrix is provided, it will 
374374            be converted into a sparse ``csr_matrix``. 
375375
376-         sample_weight : array,  shape (n_samples,), optional  
376+         sample_weight : array-like of  shape (n_samples,), default=None  
377377            Weight of each sample, such that a sample with a weight of at least 
378378            ``min_samples`` is by itself a core sample; a sample with a 
379379            negative weight may inhibit its eps-neighbor from being core. 
@@ -384,7 +384,7 @@ def fit_predict(self, X, y=None, sample_weight=None):
384384
385385        Returns 
386386        ------- 
387-         labels : ndarray,  shape (n_samples,) 
387+         labels : ndarray of  shape (n_samples,) 
388388            Cluster labels. Noisy samples are given the label -1. 
389389        """ 
390390        self .fit (X , sample_weight = sample_weight )
0 commit comments