-
-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathmeet.py
1226 lines (1077 loc) · 50.4 KB
/
meet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
from typing import Callable
from mypy import join
from mypy.erasetype import erase_type
from mypy.maptype import map_instance_to_supertype
from mypy.state import state
from mypy.subtypes import (
are_parameters_compatible,
find_member,
is_callable_compatible,
is_equivalent,
is_proper_subtype,
is_same_type,
is_subtype,
)
from mypy.typeops import is_recursive_pair, make_simplified_union, tuple_fallback
from mypy.types import (
MYPYC_NATIVE_INT_NAMES,
TUPLE_LIKE_INSTANCE_NAMES,
AnyType,
CallableType,
DeletedType,
ErasedType,
FunctionLike,
Instance,
LiteralType,
NoneType,
Overloaded,
Parameters,
ParamSpecType,
PartialType,
ProperType,
TupleType,
Type,
TypeAliasType,
TypedDictType,
TypeGuardedType,
TypeOfAny,
TypeType,
TypeVarLikeType,
TypeVarTupleType,
TypeVarType,
TypeVisitor,
UnboundType,
UninhabitedType,
UnionType,
UnpackType,
find_unpack_in_list,
get_proper_type,
get_proper_types,
is_named_instance,
split_with_prefix_and_suffix,
)
# TODO Describe this module.
def trivial_meet(s: Type, t: Type) -> ProperType:
"""Return one of types (expanded) if it is a subtype of other, otherwise bottom type."""
if is_subtype(s, t):
return get_proper_type(s)
elif is_subtype(t, s):
return get_proper_type(t)
else:
if state.strict_optional:
return UninhabitedType()
else:
return NoneType()
def meet_types(s: Type, t: Type) -> ProperType:
"""Return the greatest lower bound of two types."""
if is_recursive_pair(s, t):
# This case can trigger an infinite recursion, general support for this will be
# tricky, so we use a trivial meet (like for protocols).
return trivial_meet(s, t)
s = get_proper_type(s)
t = get_proper_type(t)
if isinstance(s, Instance) and isinstance(t, Instance) and s.type == t.type:
# Code in checker.py should merge any extra_items where possible, so we
# should have only compatible extra_items here. We check this before
# the below subtype check, so that extra_attrs will not get erased.
if (s.extra_attrs or t.extra_attrs) and is_same_type(s, t):
if s.extra_attrs and t.extra_attrs:
if len(s.extra_attrs.attrs) > len(t.extra_attrs.attrs):
# Return the one that has more precise information.
return s
return t
if s.extra_attrs:
return s
return t
if not isinstance(s, UnboundType) and not isinstance(t, UnboundType):
if is_proper_subtype(s, t, ignore_promotions=True):
return s
if is_proper_subtype(t, s, ignore_promotions=True):
return t
if isinstance(s, ErasedType):
return s
if isinstance(s, AnyType):
return t
if isinstance(s, UnionType) and not isinstance(t, UnionType):
s, t = t, s
# Meets/joins require callable type normalization.
s, t = join.normalize_callables(s, t)
return t.accept(TypeMeetVisitor(s))
def narrow_declared_type(declared: Type, narrowed: Type) -> Type:
"""Return the declared type narrowed down to another type."""
# TODO: check infinite recursion for aliases here.
if isinstance(narrowed, TypeGuardedType): # type: ignore[misc]
# A type guard forces the new type even if it doesn't overlap the old.
return narrowed.type_guard
original_declared = declared
original_narrowed = narrowed
declared = get_proper_type(declared)
narrowed = get_proper_type(narrowed)
if declared == narrowed:
return original_declared
if isinstance(declared, UnionType):
return make_simplified_union(
[
narrow_declared_type(x, narrowed)
for x in declared.relevant_items()
# This (ugly) special-casing is needed to support checking
# branches like this:
# x: Union[float, complex]
# if isinstance(x, int):
# ...
if (
is_overlapping_types(x, narrowed, ignore_promotions=True)
or is_subtype(narrowed, x, ignore_promotions=False)
)
]
)
if is_enum_overlapping_union(declared, narrowed):
return original_narrowed
elif not is_overlapping_types(declared, narrowed, prohibit_none_typevar_overlap=True):
if state.strict_optional:
return UninhabitedType()
else:
return NoneType()
elif isinstance(narrowed, UnionType):
return make_simplified_union(
[narrow_declared_type(declared, x) for x in narrowed.relevant_items()]
)
elif isinstance(narrowed, AnyType):
return original_narrowed
elif isinstance(narrowed, TypeVarType) and is_subtype(narrowed.upper_bound, declared):
return narrowed
elif isinstance(declared, TypeType) and isinstance(narrowed, TypeType):
return TypeType.make_normalized(narrow_declared_type(declared.item, narrowed.item))
elif (
isinstance(declared, TypeType)
and isinstance(narrowed, Instance)
and narrowed.type.is_metaclass()
):
# We'd need intersection types, so give up.
return original_declared
elif isinstance(declared, Instance):
if declared.type.alt_promote:
# Special case: low-level integer type can't be narrowed
return original_declared
if (
isinstance(narrowed, Instance)
and narrowed.type.alt_promote
and narrowed.type.alt_promote.type is declared.type
):
# Special case: 'int' can't be narrowed down to a native int type such as
# i64, since they have different runtime representations.
return original_declared
return meet_types(original_declared, original_narrowed)
elif isinstance(declared, (TupleType, TypeType, LiteralType)):
return meet_types(original_declared, original_narrowed)
elif isinstance(declared, TypedDictType) and isinstance(narrowed, Instance):
# Special case useful for selecting TypedDicts from unions using isinstance(x, dict).
if narrowed.type.fullname == "builtins.dict" and all(
isinstance(t, AnyType) for t in get_proper_types(narrowed.args)
):
return original_declared
return meet_types(original_declared, original_narrowed)
return original_narrowed
def get_possible_variants(typ: Type) -> list[Type]:
"""This function takes any "Union-like" type and returns a list of the available "options".
Specifically, there are currently exactly three different types that can have
"variants" or are "union-like":
- Unions
- TypeVars with value restrictions
- Overloads
This function will return a list of each "option" present in those types.
If this function receives any other type, we return a list containing just that
original type. (E.g. pretend the type was contained within a singleton union).
The only current exceptions are regular TypeVars and ParamSpecs. For these "TypeVarLike"s,
we return a list containing that TypeVarLike's upper bound.
This function is useful primarily when checking to see if two types are overlapping:
the algorithm to check if two unions are overlapping is fundamentally the same as
the algorithm for checking if two overloads are overlapping.
Normalizing both kinds of types in the same way lets us reuse the same algorithm
for both.
"""
typ = get_proper_type(typ)
if isinstance(typ, TypeVarType):
if len(typ.values) > 0:
return typ.values
else:
return [typ.upper_bound]
elif isinstance(typ, ParamSpecType):
# Extract 'object' from the final mro item
upper_bound = get_proper_type(typ.upper_bound)
if isinstance(upper_bound, Instance):
return [Instance(upper_bound.type.mro[-1], [])]
return [AnyType(TypeOfAny.implementation_artifact)]
elif isinstance(typ, TypeVarTupleType):
return [typ.upper_bound]
elif isinstance(typ, UnionType):
return list(typ.items)
elif isinstance(typ, Overloaded):
# Note: doing 'return typ.items()' makes mypy
# infer a too-specific return type of List[CallableType]
return list(typ.items)
else:
return [typ]
def is_enum_overlapping_union(x: ProperType, y: ProperType) -> bool:
"""Return True if x is an Enum, and y is an Union with at least one Literal from x"""
return (
isinstance(x, Instance)
and x.type.is_enum
and isinstance(y, UnionType)
and any(
isinstance(p := get_proper_type(z), LiteralType) and x.type == p.fallback.type
for z in y.relevant_items()
)
)
def is_literal_in_union(x: ProperType, y: ProperType) -> bool:
"""Return True if x is a Literal and y is an Union that includes x"""
return (
isinstance(x, LiteralType)
and isinstance(y, UnionType)
and any(x == get_proper_type(z) for z in y.items)
)
def is_object(t: ProperType) -> bool:
return isinstance(t, Instance) and t.type.fullname == "builtins.object"
def is_overlapping_types(
left: Type,
right: Type,
ignore_promotions: bool = False,
prohibit_none_typevar_overlap: bool = False,
overlap_for_overloads: bool = False,
seen_types: set[tuple[Type, Type]] | None = None,
) -> bool:
"""Can a value of type 'left' also be of type 'right' or vice-versa?
If 'ignore_promotions' is True, we ignore promotions while checking for overlaps.
If 'prohibit_none_typevar_overlap' is True, we disallow None from overlapping with
TypeVars (in both strict-optional and non-strict-optional mode).
If 'overlap_for_overloads' is True, we check for overlaps more strictly (to avoid false
positives), for example: None only overlaps with explicitly optional types, Any
doesn't overlap with anything except object, we don't ignore positional argument names.
"""
if isinstance(left, TypeGuardedType) or isinstance( # type: ignore[misc]
right, TypeGuardedType
):
# A type guard forces the new type even if it doesn't overlap the old.
return True
if seen_types is None:
seen_types = set()
if (left, right) in seen_types:
return True
if isinstance(left, TypeAliasType) and isinstance(right, TypeAliasType):
seen_types.add((left, right))
left, right = get_proper_types((left, right))
def _is_overlapping_types(left: Type, right: Type) -> bool:
"""Encode the kind of overlapping check to perform.
This function mostly exists, so we don't have to repeat keyword arguments everywhere.
"""
return is_overlapping_types(
left,
right,
ignore_promotions=ignore_promotions,
prohibit_none_typevar_overlap=prohibit_none_typevar_overlap,
overlap_for_overloads=overlap_for_overloads,
seen_types=seen_types.copy(),
)
# We should never encounter this type.
if isinstance(left, PartialType) or isinstance(right, PartialType):
assert False, "Unexpectedly encountered partial type"
# We should also never encounter these types, but it's possible a few
# have snuck through due to unrelated bugs. For now, we handle these
# in the same way we handle 'Any'.
#
# TODO: Replace these with an 'assert False' once we are more confident.
illegal_types = (UnboundType, ErasedType, DeletedType)
if isinstance(left, illegal_types) or isinstance(right, illegal_types):
return True
# When running under non-strict optional mode, simplify away types of
# the form 'Union[A, B, C, None]' into just 'Union[A, B, C]'.
if not state.strict_optional:
if isinstance(left, UnionType):
left = UnionType.make_union(left.relevant_items())
if isinstance(right, UnionType):
right = UnionType.make_union(right.relevant_items())
left, right = get_proper_types((left, right))
# 'Any' may or may not be overlapping with the other type
if isinstance(left, AnyType) or isinstance(right, AnyType):
return not overlap_for_overloads or is_object(left) or is_object(right)
# We check for complete overlaps next as a general-purpose failsafe.
# If this check fails, we start checking to see if there exists a
# *partial* overlap between types.
#
# These checks will also handle the NoneType and UninhabitedType cases for us.
# enums are sometimes expanded into an Union of Literals
# when that happens we want to make sure we treat the two as overlapping
# and crucially, we want to do that *fast* in case the enum is large
# so we do it before expanding variants below to avoid O(n**2) behavior
if (
is_enum_overlapping_union(left, right)
or is_enum_overlapping_union(right, left)
or is_literal_in_union(left, right)
or is_literal_in_union(right, left)
):
return True
def is_none_object_overlap(t1: Type, t2: Type) -> bool:
t1, t2 = get_proper_types((t1, t2))
return (
isinstance(t1, NoneType)
and isinstance(t2, Instance)
and t2.type.fullname == "builtins.object"
)
if overlap_for_overloads:
if is_none_object_overlap(left, right) or is_none_object_overlap(right, left):
return False
def _is_subtype(left: Type, right: Type) -> bool:
if overlap_for_overloads:
return is_proper_subtype(left, right, ignore_promotions=ignore_promotions)
else:
return is_subtype(left, right, ignore_promotions=ignore_promotions)
if _is_subtype(left, right) or _is_subtype(right, left):
return True
# See the docstring for 'get_possible_variants' for more info on what the
# following lines are doing.
left_possible = get_possible_variants(left)
right_possible = get_possible_variants(right)
# Now move on to checking multi-variant types like Unions. We also perform
# the same logic if either type happens to be a TypeVar/ParamSpec/TypeVarTuple.
#
# Handling the TypeVarLikes now lets us simulate having them bind to the corresponding
# type -- if we deferred these checks, the "return-early" logic of the other
# checks will prevent us from detecting certain overlaps.
#
# If both types are singleton variants (and are not TypeVarLikes), we've hit the base case:
# we skip these checks to avoid infinitely recursing.
def is_none_typevarlike_overlap(t1: Type, t2: Type) -> bool:
t1, t2 = get_proper_types((t1, t2))
return isinstance(t1, NoneType) and isinstance(t2, TypeVarLikeType)
if prohibit_none_typevar_overlap:
if is_none_typevarlike_overlap(left, right) or is_none_typevarlike_overlap(right, left):
return False
if (
len(left_possible) > 1
or len(right_possible) > 1
or isinstance(left, TypeVarLikeType)
or isinstance(right, TypeVarLikeType)
):
for l in left_possible:
for r in right_possible:
if _is_overlapping_types(l, r):
return True
return False
# Now that we've finished handling TypeVarLikes, we're free to end early
# if one one of the types is None and we're running in strict-optional mode.
# (None only overlaps with None in strict-optional mode).
#
# We must perform this check after the TypeVarLike checks because
# a TypeVar could be bound to None, for example.
if state.strict_optional and isinstance(left, NoneType) != isinstance(right, NoneType):
return False
# Next, we handle single-variant types that may be inherently partially overlapping:
#
# - TypedDicts
# - Tuples
#
# If we cannot identify a partial overlap and end early, we degrade these two types
# into their 'Instance' fallbacks.
if isinstance(left, TypedDictType) and isinstance(right, TypedDictType):
return are_typed_dicts_overlapping(left, right, _is_overlapping_types)
elif typed_dict_mapping_pair(left, right):
# Overlaps between TypedDicts and Mappings require dedicated logic.
return typed_dict_mapping_overlap(left, right, overlapping=_is_overlapping_types)
elif isinstance(left, TypedDictType):
left = left.fallback
elif isinstance(right, TypedDictType):
right = right.fallback
if is_tuple(left) and is_tuple(right):
return are_tuples_overlapping(left, right, _is_overlapping_types)
elif isinstance(left, TupleType):
left = tuple_fallback(left)
elif isinstance(right, TupleType):
right = tuple_fallback(right)
# Next, we handle single-variant types that cannot be inherently partially overlapping,
# but do require custom logic to inspect.
#
# As before, we degrade into 'Instance' whenever possible.
if isinstance(left, TypeType) and isinstance(right, TypeType):
return _is_overlapping_types(left.item, right.item)
def _type_object_overlap(left: Type, right: Type) -> bool:
"""Special cases for type object types overlaps."""
# TODO: these checks are a bit in gray area, adjust if they cause problems.
left, right = get_proper_types((left, right))
# 1. Type[C] vs Callable[..., C] overlap even if the latter is not class object.
if isinstance(left, TypeType) and isinstance(right, CallableType):
return _is_overlapping_types(left.item, right.ret_type)
# 2. Type[C] vs Meta, where Meta is a metaclass for C.
if isinstance(left, TypeType) and isinstance(right, Instance):
if isinstance(left.item, Instance):
left_meta = left.item.type.metaclass_type
if left_meta is not None:
return _is_overlapping_types(left_meta, right)
# builtins.type (default metaclass) overlaps with all metaclasses
return right.type.has_base("builtins.type")
elif isinstance(left.item, AnyType):
return right.type.has_base("builtins.type")
# 3. Callable[..., C] vs Meta is considered below, when we switch to fallbacks.
return False
if isinstance(left, TypeType) or isinstance(right, TypeType):
return _type_object_overlap(left, right) or _type_object_overlap(right, left)
if isinstance(left, Parameters) and isinstance(right, Parameters):
return are_parameters_compatible(
left,
right,
is_compat=_is_overlapping_types,
is_proper_subtype=False,
ignore_pos_arg_names=not overlap_for_overloads,
allow_partial_overlap=True,
)
# A `Parameters` does not overlap with anything else, however
if isinstance(left, Parameters) or isinstance(right, Parameters):
return False
if isinstance(left, CallableType) and isinstance(right, CallableType):
return is_callable_compatible(
left,
right,
is_compat=_is_overlapping_types,
is_proper_subtype=False,
ignore_pos_arg_names=not overlap_for_overloads,
allow_partial_overlap=True,
)
call = None
other = None
if isinstance(left, CallableType) and isinstance(right, Instance):
call = find_member("__call__", right, right, is_operator=True)
other = left
if isinstance(right, CallableType) and isinstance(left, Instance):
call = find_member("__call__", left, left, is_operator=True)
other = right
if isinstance(get_proper_type(call), FunctionLike):
assert call is not None and other is not None
return _is_overlapping_types(call, other)
if isinstance(left, CallableType):
left = left.fallback
if isinstance(right, CallableType):
right = right.fallback
if isinstance(left, LiteralType) and isinstance(right, LiteralType):
if left.value == right.value:
# If values are the same, we still need to check if fallbacks are overlapping,
# this is done below.
left = left.fallback
right = right.fallback
else:
return False
elif isinstance(left, LiteralType):
left = left.fallback
elif isinstance(right, LiteralType):
right = right.fallback
# Finally, we handle the case where left and right are instances.
if isinstance(left, Instance) and isinstance(right, Instance):
# First we need to handle promotions and structural compatibility for instances
# that came as fallbacks, so simply call is_subtype() to avoid code duplication.
if _is_subtype(left, right) or _is_subtype(right, left):
return True
if right.type.fullname == "builtins.int" and left.type.fullname in MYPYC_NATIVE_INT_NAMES:
return True
# Two unrelated types cannot be partially overlapping: they're disjoint.
if left.type.has_base(right.type.fullname):
left = map_instance_to_supertype(left, right.type)
elif right.type.has_base(left.type.fullname):
right = map_instance_to_supertype(right, left.type)
else:
return False
if right.type.has_type_var_tuple_type:
# Similar to subtyping, we delegate the heavy lifting to the tuple overlap.
assert right.type.type_var_tuple_prefix is not None
assert right.type.type_var_tuple_suffix is not None
prefix = right.type.type_var_tuple_prefix
suffix = right.type.type_var_tuple_suffix
tvt = right.type.defn.type_vars[prefix]
assert isinstance(tvt, TypeVarTupleType)
fallback = tvt.tuple_fallback
left_prefix, left_middle, left_suffix = split_with_prefix_and_suffix(
left.args, prefix, suffix
)
right_prefix, right_middle, right_suffix = split_with_prefix_and_suffix(
right.args, prefix, suffix
)
left_args = left_prefix + (TupleType(list(left_middle), fallback),) + left_suffix
right_args = right_prefix + (TupleType(list(right_middle), fallback),) + right_suffix
else:
left_args = left.args
right_args = right.args
if len(left_args) == len(right_args):
# Note: we don't really care about variance here, since the overlapping check
# is symmetric and since we want to return 'True' even for partial overlaps.
#
# For example, suppose we have two types Wrapper[Parent] and Wrapper[Child].
# It doesn't matter whether Wrapper is covariant or contravariant since
# either way, one of the two types will overlap with the other.
#
# Similarly, if Wrapper was invariant, the two types could still be partially
# overlapping -- what if Wrapper[Parent] happened to contain only instances of
# specifically Child?
#
# Or, to use a more concrete example, List[Union[A, B]] and List[Union[B, C]]
# would be considered partially overlapping since it's possible for both lists
# to contain only instances of B at runtime.
if all(
_is_overlapping_types(left_arg, right_arg)
for left_arg, right_arg in zip(left_args, right_args)
):
return True
return False
# We ought to have handled every case by now: we conclude the
# two types are not overlapping, either completely or partially.
#
# Note: it's unclear however, whether returning False is the right thing
# to do when inferring reachability -- see https://github.com/python/mypy/issues/5529
assert type(left) != type(right), f"{type(left)} vs {type(right)}"
return False
def is_overlapping_erased_types(
left: Type, right: Type, *, ignore_promotions: bool = False
) -> bool:
"""The same as 'is_overlapping_erased_types', except the types are erased first."""
return is_overlapping_types(
erase_type(left),
erase_type(right),
ignore_promotions=ignore_promotions,
prohibit_none_typevar_overlap=True,
)
def are_typed_dicts_overlapping(
left: TypedDictType, right: TypedDictType, is_overlapping: Callable[[Type, Type], bool]
) -> bool:
"""Returns 'true' if left and right are overlapping TypeDictTypes."""
# All required keys in left are present and overlapping with something in right
for key in left.required_keys:
if key not in right.items:
return False
if not is_overlapping(left.items[key], right.items[key]):
return False
# Repeat check in the other direction
for key in right.required_keys:
if key not in left.items:
return False
if not is_overlapping(left.items[key], right.items[key]):
return False
# The presence of any additional optional keys does not affect whether the two
# TypedDicts are partially overlapping: the dicts would be overlapping if the
# keys happened to be missing.
return True
def are_tuples_overlapping(
left: Type, right: Type, is_overlapping: Callable[[Type, Type], bool]
) -> bool:
"""Returns true if left and right are overlapping tuples."""
left, right = get_proper_types((left, right))
left = adjust_tuple(left, right) or left
right = adjust_tuple(right, left) or right
assert isinstance(left, TupleType), f"Type {left} is not a tuple"
assert isinstance(right, TupleType), f"Type {right} is not a tuple"
# This algorithm works well if only one tuple is variadic, if both are
# variadic we may get rare false negatives for overlapping prefix/suffix.
# Also, this ignores empty unpack case, but it is probably consistent with
# how we handle e.g. empty lists in overload overlaps.
# TODO: write a more robust algorithm for cases where both types are variadic.
left_unpack = find_unpack_in_list(left.items)
right_unpack = find_unpack_in_list(right.items)
if left_unpack is not None:
left = expand_tuple_if_possible(left, len(right.items))
if right_unpack is not None:
right = expand_tuple_if_possible(right, len(left.items))
if len(left.items) != len(right.items):
return False
if not all(is_overlapping(l, r) for l, r in zip(left.items, right.items)):
return False
# Check that the tuples aren't from e.g. different NamedTuples.
if is_named_instance(right.partial_fallback, "builtins.tuple") or is_named_instance(
left.partial_fallback, "builtins.tuple"
):
return True
else:
return is_overlapping(left.partial_fallback, right.partial_fallback)
def expand_tuple_if_possible(tup: TupleType, target: int) -> TupleType:
if len(tup.items) > target + 1:
return tup
extra = target + 1 - len(tup.items)
new_items = []
for it in tup.items:
if not isinstance(it, UnpackType):
new_items.append(it)
continue
unpacked = get_proper_type(it.type)
if isinstance(unpacked, TypeVarTupleType):
instance = unpacked.tuple_fallback
else:
# Nested non-variadic tuples should be normalized at this point.
assert isinstance(unpacked, Instance)
instance = unpacked
assert instance.type.fullname == "builtins.tuple"
new_items.extend([instance.args[0]] * extra)
return tup.copy_modified(items=new_items)
def adjust_tuple(left: ProperType, r: ProperType) -> TupleType | None:
"""Find out if `left` is a Tuple[A, ...], and adjust its length to `right`"""
if isinstance(left, Instance) and left.type.fullname == "builtins.tuple":
n = r.length() if isinstance(r, TupleType) else 1
return TupleType([left.args[0]] * n, left)
return None
def is_tuple(typ: Type) -> bool:
typ = get_proper_type(typ)
return isinstance(typ, TupleType) or (
isinstance(typ, Instance) and typ.type.fullname == "builtins.tuple"
)
class TypeMeetVisitor(TypeVisitor[ProperType]):
def __init__(self, s: ProperType) -> None:
self.s = s
def visit_unbound_type(self, t: UnboundType) -> ProperType:
if isinstance(self.s, NoneType):
if state.strict_optional:
return UninhabitedType()
else:
return self.s
elif isinstance(self.s, UninhabitedType):
return self.s
else:
return AnyType(TypeOfAny.special_form)
def visit_any(self, t: AnyType) -> ProperType:
return self.s
def visit_union_type(self, t: UnionType) -> ProperType:
if isinstance(self.s, UnionType):
meets: list[Type] = []
for x in t.items:
for y in self.s.items:
meets.append(meet_types(x, y))
else:
meets = [meet_types(x, self.s) for x in t.items]
return make_simplified_union(meets)
def visit_none_type(self, t: NoneType) -> ProperType:
if state.strict_optional:
if isinstance(self.s, NoneType) or (
isinstance(self.s, Instance) and self.s.type.fullname == "builtins.object"
):
return t
else:
return UninhabitedType()
else:
return t
def visit_uninhabited_type(self, t: UninhabitedType) -> ProperType:
return t
def visit_deleted_type(self, t: DeletedType) -> ProperType:
if isinstance(self.s, NoneType):
if state.strict_optional:
return t
else:
return self.s
elif isinstance(self.s, UninhabitedType):
return self.s
else:
return t
def visit_erased_type(self, t: ErasedType) -> ProperType:
return self.s
def visit_type_var(self, t: TypeVarType) -> ProperType:
if isinstance(self.s, TypeVarType) and self.s.id == t.id:
return self.s
else:
return self.default(self.s)
def visit_param_spec(self, t: ParamSpecType) -> ProperType:
if self.s == t:
return self.s
else:
return self.default(self.s)
def visit_type_var_tuple(self, t: TypeVarTupleType) -> ProperType:
if isinstance(self.s, TypeVarTupleType) and self.s.id == t.id:
return self.s if self.s.min_len > t.min_len else t
else:
return self.default(self.s)
def visit_unpack_type(self, t: UnpackType) -> ProperType:
raise NotImplementedError
def visit_parameters(self, t: Parameters) -> ProperType:
if isinstance(self.s, Parameters):
if len(t.arg_types) != len(self.s.arg_types):
return self.default(self.s)
from mypy.join import join_types
return t.copy_modified(
arg_types=[join_types(s_a, t_a) for s_a, t_a in zip(self.s.arg_types, t.arg_types)]
)
else:
return self.default(self.s)
def visit_instance(self, t: Instance) -> ProperType:
if isinstance(self.s, Instance):
if t.type == self.s.type:
if is_subtype(t, self.s) or is_subtype(self.s, t):
# Combine type arguments. We could have used join below
# equivalently.
args: list[Type] = []
# N.B: We use zip instead of indexing because the lengths might have
# mismatches during daemon reprocessing.
if t.type.has_type_var_tuple_type:
# We handle meet of variadic instances by simply creating correct mapping
# for type arguments and compute the individual meets same as for regular
# instances. All the heavy lifting is done in the meet of tuple types.
s = self.s
assert s.type.type_var_tuple_prefix is not None
assert s.type.type_var_tuple_suffix is not None
prefix = s.type.type_var_tuple_prefix
suffix = s.type.type_var_tuple_suffix
tvt = s.type.defn.type_vars[prefix]
assert isinstance(tvt, TypeVarTupleType)
fallback = tvt.tuple_fallback
s_prefix, s_middle, s_suffix = split_with_prefix_and_suffix(
s.args, prefix, suffix
)
t_prefix, t_middle, t_suffix = split_with_prefix_and_suffix(
t.args, prefix, suffix
)
s_args = s_prefix + (TupleType(list(s_middle), fallback),) + s_suffix
t_args = t_prefix + (TupleType(list(t_middle), fallback),) + t_suffix
else:
t_args = t.args
s_args = self.s.args
for ta, sa, tv in zip(t_args, s_args, t.type.defn.type_vars):
meet = self.meet(ta, sa)
if isinstance(tv, TypeVarTupleType):
# Correctly unpack possible outcomes of meets of tuples: it can be
# either another tuple type or Never (normalized as *tuple[Never, ...])
if isinstance(meet, TupleType):
args.extend(meet.items)
continue
else:
assert isinstance(meet, UninhabitedType)
meet = UnpackType(tv.tuple_fallback.copy_modified(args=[meet]))
args.append(meet)
return Instance(t.type, args)
else:
if state.strict_optional:
return UninhabitedType()
else:
return NoneType()
else:
alt_promote = t.type.alt_promote
if alt_promote and alt_promote.type is self.s.type:
return t
alt_promote = self.s.type.alt_promote
if alt_promote and alt_promote.type is t.type:
return self.s
if is_subtype(t, self.s):
return t
elif is_subtype(self.s, t):
# See also above comment.
return self.s
else:
if state.strict_optional:
return UninhabitedType()
else:
return NoneType()
elif isinstance(self.s, FunctionLike) and t.type.is_protocol:
call = join.unpack_callback_protocol(t)
if call:
return meet_types(call, self.s)
elif isinstance(self.s, FunctionLike) and self.s.is_type_obj() and t.type.is_metaclass():
if is_subtype(self.s.fallback, t):
return self.s
return self.default(self.s)
elif isinstance(self.s, TypeType):
return meet_types(t, self.s)
elif isinstance(self.s, TupleType):
return meet_types(t, self.s)
elif isinstance(self.s, LiteralType):
return meet_types(t, self.s)
elif isinstance(self.s, TypedDictType):
return meet_types(t, self.s)
return self.default(self.s)
def visit_callable_type(self, t: CallableType) -> ProperType:
if isinstance(self.s, CallableType) and join.is_similar_callables(t, self.s):
if is_equivalent(t, self.s):
return join.combine_similar_callables(t, self.s)
result = meet_similar_callables(t, self.s)
# We set the from_type_type flag to suppress error when a collection of
# concrete class objects gets inferred as their common abstract superclass.
if not (
(t.is_type_obj() and t.type_object().is_abstract)
or (self.s.is_type_obj() and self.s.type_object().is_abstract)
):
result.from_type_type = True
if isinstance(get_proper_type(result.ret_type), UninhabitedType):
# Return a plain None or <uninhabited> instead of a weird function.
return self.default(self.s)
return result
elif isinstance(self.s, TypeType) and t.is_type_obj() and not t.is_generic():
# In this case we are able to potentially produce a better meet.
res = meet_types(self.s.item, t.ret_type)
if not isinstance(res, (NoneType, UninhabitedType)):
return TypeType.make_normalized(res)
return self.default(self.s)
elif isinstance(self.s, Instance) and self.s.type.is_protocol:
call = join.unpack_callback_protocol(self.s)
if call:
return meet_types(t, call)
return self.default(self.s)
def visit_overloaded(self, t: Overloaded) -> ProperType:
# TODO: Implement a better algorithm that covers at least the same cases
# as TypeJoinVisitor.visit_overloaded().
s = self.s
if isinstance(s, FunctionLike):
if s.items == t.items:
return Overloaded(t.items)
elif is_subtype(s, t):
return s
elif is_subtype(t, s):
return t
else:
return meet_types(t.fallback, s.fallback)
elif isinstance(self.s, Instance) and self.s.type.is_protocol:
call = join.unpack_callback_protocol(self.s)
if call:
return meet_types(t, call)
return meet_types(t.fallback, s)
def meet_tuples(self, s: TupleType, t: TupleType) -> list[Type] | None:
"""Meet two tuple types while handling variadic entries.
This is surprisingly tricky, and we don't handle some tricky corner cases.
Most of the trickiness comes from the variadic tuple items like *tuple[X, ...]
since they can have arbitrary partial overlaps (while *Ts can't be split). This
function is roughly a mirror of join_tuples() w.r.t. to the fact that fixed
tuples are subtypes of variadic ones but not vice versa.
"""
s_unpack_index = find_unpack_in_list(s.items)
t_unpack_index = find_unpack_in_list(t.items)
if s_unpack_index is None and t_unpack_index is None:
if s.length() == t.length():
items: list[Type] = []
for i in range(t.length()):
items.append(self.meet(t.items[i], s.items[i]))
return items
return None
if s_unpack_index is not None and t_unpack_index is not None:
# The only simple case we can handle if both tuples are variadic
# is when their structure fully matches. Other cases are tricky because
# a variadic item is effectively a union of tuples of all length, thus
# potentially causing overlap between a suffix in `s` and a prefix
# in `t` (see how this is handled in is_subtype() for details).
# TODO: handle more cases (like when both prefix/suffix are shorter in s or t).
if s.length() == t.length() and s_unpack_index == t_unpack_index:
unpack_index = s_unpack_index
s_unpack = s.items[unpack_index]
assert isinstance(s_unpack, UnpackType)
s_unpacked = get_proper_type(s_unpack.type)
t_unpack = t.items[unpack_index]
assert isinstance(t_unpack, UnpackType)
t_unpacked = get_proper_type(t_unpack.type)
if not (isinstance(s_unpacked, Instance) and isinstance(t_unpacked, Instance)):
return None
meet = self.meet(s_unpacked, t_unpacked)
if not isinstance(meet, Instance):
return None
m_prefix: list[Type] = []
for si, ti in zip(s.items[:unpack_index], t.items[:unpack_index]):
m_prefix.append(meet_types(si, ti))
m_suffix: list[Type] = []
for si, ti in zip(s.items[unpack_index + 1 :], t.items[unpack_index + 1 :]):
m_suffix.append(meet_types(si, ti))
return m_prefix + [UnpackType(meet)] + m_suffix
return None
if s_unpack_index is not None:
variadic = s
unpack_index = s_unpack_index
fixed = t
else:
assert t_unpack_index is not None
variadic = t
unpack_index = t_unpack_index
fixed = s
# If one tuple is variadic one, and the other one is fixed, the meet will be fixed.
unpack = variadic.items[unpack_index]
assert isinstance(unpack, UnpackType)
unpacked = get_proper_type(unpack.type)
if not isinstance(unpacked, Instance):
return None
if fixed.length() < variadic.length() - 1:
return None