@@ -39,7 +39,7 @@ class RBFSampler(TransformerMixin, BaseEstimator):
3939 Number of Monte Carlo samples per original feature.
4040 Equals the dimensionality of the computed feature space.
4141
42- random_state : int, RandomState instance or None, optional ( default=None)
42+ random_state : int, RandomState instance or None, default=None
4343 Pseudo-random number generator to control the generation of the random
4444 weights and random offset when fitting the training data.
4545 Pass an int for reproducible output across multiple function calls.
@@ -153,7 +153,7 @@ class SkewedChi2Sampler(TransformerMixin, BaseEstimator):
153153 number of Monte Carlo samples per original feature.
154154 Equals the dimensionality of the computed feature space.
155155
156- random_state : int, RandomState instance or None, optional ( default=None)
156+ random_state : int, RandomState instance or None, default=None
157157 Pseudo-random number generator to control the generation of the random
158158 weights and random offset when fitting the training data.
159159 Pass an int for reproducible output across multiple function calls.
@@ -271,9 +271,9 @@ class AdditiveChi2Sampler(TransformerMixin, BaseEstimator):
271271
272272 Parameters
273273 ----------
274- sample_steps : int, optional
274+ sample_steps : int, default=2
275275 Gives the number of (complex) sampling points.
276- sample_interval : float, optional
276+ sample_interval : float, default=None
277277 Sampling interval. Must be specified when sample_steps not in {1,2,3}.
278278
279279 Attributes
@@ -364,7 +364,7 @@ def transform(self, X):
364364
365365 Returns
366366 -------
367- X_new : {array , sparse matrix}, \
367+ X_new : {ndarray , sparse matrix}, \
368368 shape = (n_samples, n_features * (2*sample_steps + 1))
369369 Whether the return value is an array of sparse matrix depends on
370370 the type of the input X.
@@ -473,15 +473,15 @@ class Nystroem(TransformerMixin, BaseEstimator):
473473 degree : float, default=None
474474 Degree of the polynomial kernel. Ignored by other kernels.
475475
476- kernel_params : mapping of string to any, optional
476+ kernel_params : dict, default=None
477477 Additional parameters (keyword arguments) for kernel function passed
478478 as callable object.
479479
480480 n_components : int
481481 Number of features to construct.
482482 How many data points will be used to construct the mapping.
483483
484- random_state : int, RandomState instance or None, optional ( default=None)
484+ random_state : int, RandomState instance or None, default=None
485485 Pseudo-random number generator to control the uniform sampling without
486486 replacement of n_components of the training data to construct the basis
487487 kernel.
@@ -490,13 +490,13 @@ class Nystroem(TransformerMixin, BaseEstimator):
490490
491491 Attributes
492492 ----------
493- components_ : array, shape (n_components, n_features)
493+ components_ : ndarray of shape (n_components, n_features)
494494 Subset of training points used to construct the feature map.
495495
496- component_indices_ : array, shape (n_components)
496+ component_indices_ : ndarray of shape (n_components)
497497 Indices of ``components_`` in the training set.
498498
499- normalization_ : array, shape (n_components, n_components)
499+ normalization_ : ndarray of shape (n_components, n_components)
500500 Normalization matrix needed for embedding.
501501 Square root of the kernel matrix on ``components_``.
502502
@@ -601,7 +601,7 @@ def transform(self, X):
601601
602602 Returns
603603 -------
604- X_transformed : array, shape= (n_samples, n_components)
604+ X_transformed : ndarray of shape (n_samples, n_components)
605605 Transformed data.
606606 """
607607 check_is_fitted (self )
0 commit comments