Skip to content

Commit d8be25f

Browse files
violetrthomasjpfan
andauthored
DOC fixes default values documentation in sklearn/mixture module (scikit-learn#17476)
* fixes default values documentation in sklearn/mixture * sklearn/mixtures extra changes to doc Co-authored-by: Thomas J. Fan <[email protected]>
1 parent cacf6bf commit d8be25f

File tree

3 files changed

+119
-119
lines changed

3 files changed

+119
-119
lines changed

sklearn/mixture/_base.py

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ def _check_X(X, n_components=None, n_features=None, ensure_min_samples=1):
4141
4242
Parameters
4343
----------
44-
X : array-like, shape (n_samples, n_features)
44+
X : array-like of shape (n_samples, n_features)
4545
4646
n_components : int
4747
@@ -88,7 +88,7 @@ def _check_initial_parameters(self, X):
8888
8989
Parameters
9090
----------
91-
X : array-like, shape (n_samples, n_features)
91+
X : array-like of shape (n_samples, n_features)
9292
"""
9393
if self.n_components < 1:
9494
raise ValueError("Invalid value for 'n_components': %d "
@@ -125,7 +125,7 @@ def _check_parameters(self, X):
125125
126126
Parameters
127127
----------
128-
X : array-like, shape (n_samples, n_features)
128+
X : array-like of shape (n_samples, n_features)
129129
"""
130130
pass
131131

@@ -134,7 +134,7 @@ def _initialize_parameters(self, X, random_state):
134134
135135
Parameters
136136
----------
137-
X : array-like, shape (n_samples, n_features)
137+
X : array-like of shape (n_samples, n_features)
138138
139139
random_state : RandomState
140140
A random number generator instance that controls the random seed
@@ -162,9 +162,9 @@ def _initialize(self, X, resp):
162162
163163
Parameters
164164
----------
165-
X : array-like, shape (n_samples, n_features)
165+
X : array-like of shape (n_samples, n_features)
166166
167-
resp : array-like, shape (n_samples, n_components)
167+
resp : array-like of shape (n_samples, n_components)
168168
"""
169169
pass
170170

@@ -182,7 +182,7 @@ def fit(self, X, y=None):
182182
183183
Parameters
184184
----------
185-
X : array-like, shape (n_samples, n_features)
185+
X : array-like of shape (n_samples, n_features)
186186
List of n_features-dimensional data points. Each row
187187
corresponds to a single data point.
188188
@@ -208,7 +208,7 @@ def fit_predict(self, X, y=None):
208208
209209
Parameters
210210
----------
211-
X : array-like, shape (n_samples, n_features)
211+
X : array-like of shape (n_samples, n_features)
212212
List of n_features-dimensional data points. Each row
213213
corresponds to a single data point.
214214
@@ -284,7 +284,7 @@ def _e_step(self, X):
284284
285285
Parameters
286286
----------
287-
X : array-like, shape (n_samples, n_features)
287+
X : array-like of shape (n_samples, n_features)
288288
289289
Returns
290290
-------
@@ -304,9 +304,9 @@ def _m_step(self, X, log_resp):
304304
305305
Parameters
306306
----------
307-
X : array-like, shape (n_samples, n_features)
307+
X : array-like of shape (n_samples, n_features)
308308
309-
log_resp : array-like, shape (n_samples, n_components)
309+
log_resp : array-like of shape (n_samples, n_components)
310310
Logarithm of the posterior probabilities (or responsibilities) of
311311
the point of each sample in X.
312312
"""
@@ -325,7 +325,7 @@ def score_samples(self, X):
325325
326326
Parameters
327327
----------
328-
X : array-like, shape (n_samples, n_features)
328+
X : array-like of shape (n_samples, n_features)
329329
List of n_features-dimensional data points. Each row
330330
corresponds to a single data point.
331331
@@ -344,7 +344,7 @@ def score(self, X, y=None):
344344
345345
Parameters
346346
----------
347-
X : array-like, shape (n_samples, n_dimensions)
347+
X : array-like of shape (n_samples, n_dimensions)
348348
List of n_features-dimensional data points. Each row
349349
corresponds to a single data point.
350350
@@ -360,7 +360,7 @@ def predict(self, X):
360360
361361
Parameters
362362
----------
363-
X : array-like, shape (n_samples, n_features)
363+
X : array-like of shape (n_samples, n_features)
364364
List of n_features-dimensional data points. Each row
365365
corresponds to a single data point.
366366
@@ -378,7 +378,7 @@ def predict_proba(self, X):
378378
379379
Parameters
380380
----------
381-
X : array-like, shape (n_samples, n_features)
381+
X : array-like of shape (n_samples, n_features)
382382
List of n_features-dimensional data points. Each row
383383
corresponds to a single data point.
384384
@@ -398,8 +398,8 @@ def sample(self, n_samples=1):
398398
399399
Parameters
400400
----------
401-
n_samples : int, optional
402-
Number of samples to generate. Defaults to 1.
401+
n_samples : int, default=1
402+
Number of samples to generate.
403403
404404
Returns
405405
-------
@@ -447,7 +447,7 @@ def _estimate_weighted_log_prob(self, X):
447447
448448
Parameters
449449
----------
450-
X : array-like, shape (n_samples, n_features)
450+
X : array-like of shape (n_samples, n_features)
451451
452452
Returns
453453
-------
@@ -473,7 +473,7 @@ def _estimate_log_prob(self, X):
473473
474474
Parameters
475475
----------
476-
X : array-like, shape (n_samples, n_features)
476+
X : array-like of shape (n_samples, n_features)
477477
478478
Returns
479479
-------
@@ -490,7 +490,7 @@ def _estimate_log_prob_resp(self, X):
490490
491491
Parameters
492492
----------
493-
X : array-like, shape (n_samples, n_features)
493+
X : array-like of shape (n_samples, n_features)
494494
495495
Returns
496496
-------

0 commit comments

Comments
 (0)