@@ -41,7 +41,7 @@ def _check_X(X, n_components=None, n_features=None, ensure_min_samples=1):
4141
4242 Parameters
4343 ----------
44- X : array-like, shape (n_samples, n_features)
44+ X : array-like of shape (n_samples, n_features)
4545
4646 n_components : int
4747
@@ -88,7 +88,7 @@ def _check_initial_parameters(self, X):
8888
8989 Parameters
9090 ----------
91- X : array-like, shape (n_samples, n_features)
91+ X : array-like of shape (n_samples, n_features)
9292 """
9393 if self .n_components < 1 :
9494 raise ValueError ("Invalid value for 'n_components': %d "
@@ -125,7 +125,7 @@ def _check_parameters(self, X):
125125
126126 Parameters
127127 ----------
128- X : array-like, shape (n_samples, n_features)
128+ X : array-like of shape (n_samples, n_features)
129129 """
130130 pass
131131
@@ -134,7 +134,7 @@ def _initialize_parameters(self, X, random_state):
134134
135135 Parameters
136136 ----------
137- X : array-like, shape (n_samples, n_features)
137+ X : array-like of shape (n_samples, n_features)
138138
139139 random_state : RandomState
140140 A random number generator instance that controls the random seed
@@ -162,9 +162,9 @@ def _initialize(self, X, resp):
162162
163163 Parameters
164164 ----------
165- X : array-like, shape (n_samples, n_features)
165+ X : array-like of shape (n_samples, n_features)
166166
167- resp : array-like, shape (n_samples, n_components)
167+ resp : array-like of shape (n_samples, n_components)
168168 """
169169 pass
170170
@@ -182,7 +182,7 @@ def fit(self, X, y=None):
182182
183183 Parameters
184184 ----------
185- X : array-like, shape (n_samples, n_features)
185+ X : array-like of shape (n_samples, n_features)
186186 List of n_features-dimensional data points. Each row
187187 corresponds to a single data point.
188188
@@ -208,7 +208,7 @@ def fit_predict(self, X, y=None):
208208
209209 Parameters
210210 ----------
211- X : array-like, shape (n_samples, n_features)
211+ X : array-like of shape (n_samples, n_features)
212212 List of n_features-dimensional data points. Each row
213213 corresponds to a single data point.
214214
@@ -284,7 +284,7 @@ def _e_step(self, X):
284284
285285 Parameters
286286 ----------
287- X : array-like, shape (n_samples, n_features)
287+ X : array-like of shape (n_samples, n_features)
288288
289289 Returns
290290 -------
@@ -304,9 +304,9 @@ def _m_step(self, X, log_resp):
304304
305305 Parameters
306306 ----------
307- X : array-like, shape (n_samples, n_features)
307+ X : array-like of shape (n_samples, n_features)
308308
309- log_resp : array-like, shape (n_samples, n_components)
309+ log_resp : array-like of shape (n_samples, n_components)
310310 Logarithm of the posterior probabilities (or responsibilities) of
311311 the point of each sample in X.
312312 """
@@ -325,7 +325,7 @@ def score_samples(self, X):
325325
326326 Parameters
327327 ----------
328- X : array-like, shape (n_samples, n_features)
328+ X : array-like of shape (n_samples, n_features)
329329 List of n_features-dimensional data points. Each row
330330 corresponds to a single data point.
331331
@@ -344,7 +344,7 @@ def score(self, X, y=None):
344344
345345 Parameters
346346 ----------
347- X : array-like, shape (n_samples, n_dimensions)
347+ X : array-like of shape (n_samples, n_dimensions)
348348 List of n_features-dimensional data points. Each row
349349 corresponds to a single data point.
350350
@@ -360,7 +360,7 @@ def predict(self, X):
360360
361361 Parameters
362362 ----------
363- X : array-like, shape (n_samples, n_features)
363+ X : array-like of shape (n_samples, n_features)
364364 List of n_features-dimensional data points. Each row
365365 corresponds to a single data point.
366366
@@ -378,7 +378,7 @@ def predict_proba(self, X):
378378
379379 Parameters
380380 ----------
381- X : array-like, shape (n_samples, n_features)
381+ X : array-like of shape (n_samples, n_features)
382382 List of n_features-dimensional data points. Each row
383383 corresponds to a single data point.
384384
@@ -398,8 +398,8 @@ def sample(self, n_samples=1):
398398
399399 Parameters
400400 ----------
401- n_samples : int, optional
402- Number of samples to generate. Defaults to 1.
401+ n_samples : int, default=1
402+ Number of samples to generate.
403403
404404 Returns
405405 -------
@@ -447,7 +447,7 @@ def _estimate_weighted_log_prob(self, X):
447447
448448 Parameters
449449 ----------
450- X : array-like, shape (n_samples, n_features)
450+ X : array-like of shape (n_samples, n_features)
451451
452452 Returns
453453 -------
@@ -473,7 +473,7 @@ def _estimate_log_prob(self, X):
473473
474474 Parameters
475475 ----------
476- X : array-like, shape (n_samples, n_features)
476+ X : array-like of shape (n_samples, n_features)
477477
478478 Returns
479479 -------
@@ -490,7 +490,7 @@ def _estimate_log_prob_resp(self, X):
490490
491491 Parameters
492492 ----------
493- X : array-like, shape (n_samples, n_features)
493+ X : array-like of shape (n_samples, n_features)
494494
495495 Returns
496496 -------
0 commit comments