|  | 
|  | 1 | +# 115. [Distinct Subsequences](https://leetcode.com/problems/distinct-subsequences/) | 
|  | 2 | + | 
|  | 3 | +## Approach 1: Recursion with Memoization | 
|  | 4 | + | 
|  | 5 | +### Solution | 
|  | 6 | +python | 
|  | 7 | +```python | 
|  | 8 | +# Time Complexity: O(n * m) | 
|  | 9 | +# Space Complexity: O(n * m) | 
|  | 10 | +class Solution: | 
|  | 11 | +    def numDistinct(self, s: str, t: str) -> int: | 
|  | 12 | +        # Memoization table | 
|  | 13 | +        memo = [[-1 for _ in range(len(t))] for _ in range(len(s))] | 
|  | 14 | +        return self.numDistinctHelper(s, t, 0, 0, memo) | 
|  | 15 | +     | 
|  | 16 | +    def numDistinctHelper(self, s: str, t: str, sIndex: int, tIndex: int, memo: list) -> int: | 
|  | 17 | +        # If t is exhausted, one subsequence is found | 
|  | 18 | +        if tIndex == len(t): | 
|  | 19 | +            return 1 | 
|  | 20 | +        # If s is exhausted first, no subsequence can be formed | 
|  | 21 | +        if sIndex == len(s): | 
|  | 22 | +            return 0 | 
|  | 23 | +        # Check memoization table | 
|  | 24 | +        if memo[sIndex][tIndex] != -1: | 
|  | 25 | +            return memo[sIndex][tIndex] | 
|  | 26 | +         | 
|  | 27 | +        # If characters match, both decisions can be made | 
|  | 28 | +        if s[sIndex] == t[tIndex]: | 
|  | 29 | +            memo[sIndex][tIndex] = self.numDistinctHelper(s, t, sIndex + 1, tIndex + 1, memo) + \ | 
|  | 30 | +                                   self.numDistinctHelper(s, t, sIndex + 1, tIndex, memo) | 
|  | 31 | +        else: | 
|  | 32 | +            # If characters don't match, skip the current character in s | 
|  | 33 | +            memo[sIndex][tIndex] = self.numDistinctHelper(s, t, sIndex + 1, tIndex, memo) | 
|  | 34 | +         | 
|  | 35 | +        return memo[sIndex][tIndex] | 
|  | 36 | +``` | 
|  | 37 | + | 
|  | 38 | +## Approach 2: Dynamic Programming | 
|  | 39 | + | 
|  | 40 | +### Solution | 
|  | 41 | +python | 
|  | 42 | +```python | 
|  | 43 | +# Time Complexity: O(n * m) | 
|  | 44 | +# Space Complexity: O(n * m) | 
|  | 45 | +class Solution: | 
|  | 46 | +    def numDistinct(self, s: str, t: str) -> int: | 
|  | 47 | +        # DP table | 
|  | 48 | +        dp = [[0] * (len(t) + 1) for _ in range(len(s) + 1)] | 
|  | 49 | + | 
|  | 50 | +        # Base case: empty t can be formed by all possible substrings of s | 
|  | 51 | +        for i in range(len(s) + 1): | 
|  | 52 | +            dp[i][len(t)] = 1 | 
|  | 53 | + | 
|  | 54 | +        # Fill the table in reverse order | 
|  | 55 | +        for i in range(len(s) - 1, -1, -1): | 
|  | 56 | +            for j in range(len(t) - 1, -1, -1): | 
|  | 57 | +                if s[i] == t[j]: | 
|  | 58 | +                    # Both using the character and ignoring it | 
|  | 59 | +                    dp[i][j] = dp[i + 1][j + 1] + dp[i + 1][j] | 
|  | 60 | +                else: | 
|  | 61 | +                    # Ignore the character in s | 
|  | 62 | +                    dp[i][j] = dp[i + 1][j] | 
|  | 63 | + | 
|  | 64 | +        # Result is the number of ways to form t[0...m] from s[0...n] | 
|  | 65 | +        return dp[0][0] | 
|  | 66 | +``` | 
|  | 67 | + | 
|  | 68 | +## Approach 3: Dynamic Programming with Space Optimization | 
|  | 69 | + | 
|  | 70 | +### Solution | 
|  | 71 | +python | 
|  | 72 | +```python | 
|  | 73 | +# Time Complexity: O(n * m) | 
|  | 74 | +# Space Complexity: O(m) | 
|  | 75 | +class Solution: | 
|  | 76 | +    def numDistinct(self, s: str, t: str) -> int: | 
|  | 77 | +        # Previous and current row for space optimization | 
|  | 78 | +        prev = [0] * (len(t) + 1) | 
|  | 79 | +        curr = [0] * (len(t) + 1) | 
|  | 80 | +         | 
|  | 81 | +        # Base case: empty t can be formed by all possible substrings of s | 
|  | 82 | +        for i in range(len(s) + 1): | 
|  | 83 | +            prev[len(t)] = 1 | 
|  | 84 | +         | 
|  | 85 | +        # Fill the table in reverse order | 
|  | 86 | +        for i in range(len(s) - 1, -1, -1): | 
|  | 87 | +            for j in range(len(t) - 1, -1, -1): | 
|  | 88 | +                if s[i] == t[j]: | 
|  | 89 | +                    curr[j] = prev[j + 1] + prev[j] | 
|  | 90 | +                else: | 
|  | 91 | +                    curr[j] = prev[j] | 
|  | 92 | +            # Move current row to previous for next iteration | 
|  | 93 | +            prev = curr[:] | 
|  | 94 | +         | 
|  | 95 | +        # Result is the number of ways to form t[0...m] from s[0...n] | 
|  | 96 | +        return prev[0] | 
|  | 97 | +``` | 
|  | 98 | + | 
0 commit comments