@@ -62,27 +62,49 @@ def __init__(self, penalty='l2', dual=False, eps=1e-4, C=1.0,
6262 dual = dual , loss = 'lr' , eps = eps , C = C ,
6363 fit_intercept = fit_intercept )
6464
65- def predict_proba (self , T ):
65+ def predict_proba (self , X ):
6666 """
6767 Probability estimates.
6868
6969 The returned estimates for all classes are ordered by the
7070 label of classes.
71+
72+ Parameters
73+ ----------
74+ X : array-like, shape = [n_samples, n_features]
75+
76+ Returns
77+ -------
78+ T : array-like, shape = [n_samples, n_classes]
79+ Returns the probability of the sample for each class in
80+ the model, where classes are ordered by arithmetical
81+ order.
7182 """
72- T = np .asanyarray (T , dtype = np .float64 , order = 'C' )
73- probas = _liblinear .predict_prob_wrap (T , self .raw_coef_ ,
83+ X = np .asanyarray (X , dtype = np .float64 , order = 'C' )
84+ probas = _liblinear .predict_prob_wrap (X , self .raw_coef_ ,
7485 self ._get_solver_type (),
7586 self .eps , self .C ,
7687 self .class_weight_label ,
7788 self .class_weight , self .label_ ,
7889 self ._get_bias ())
7990 return probas [:,np .argsort (self .label_ )]
8091
81- def predict_log_proba (self , T ):
92+ def predict_log_proba (self , X ):
8293 """
8394 Log of Probability estimates.
8495
8596 The returned estimates for all classes are ordered by the
8697 label of classes.
98+
99+ Parameters
100+ ----------
101+ X : array-like, shape = [n_samples, n_features]
102+
103+ Returns
104+ -------
105+ X : array-like, shape = [n_samples, n_classes]
106+ Returns the log-probabilities of the sample for each class in
107+ the model, where classes are ordered by arithmetical
108+ order.
87109 """
88- return np .log (self .predict_proba (T ))
110+ return np .log (self .predict_proba (X ))
0 commit comments