@@ -20,7 +20,7 @@ cdef extern from "linear.h":
2020    void  destroy_param (parameter * )
2121
2222cdef extern from  " liblinear_helper.c" 
23-     void  copy_w(char  * , model * , int , int , int )
23+     void  copy_w(char  * , model * , int )
2424    parameter * set_parameter (int , double , double , int ,
2525                             char  * , char  * )
2626    problem * set_problem (char  * , char  * , np.npy_intp * , double )
@@ -89,11 +89,11 @@ def train_wrap ( np.ndarray[np.float64_t, ndim=2, mode='c'] X,
8989    if  bias >  0 : nr_feature =  nr_feature +  1 
9090    if  nr_class ==  2 :
9191        w =  np.empty((1 , nr_feature),order = ' F' 
92-         copy_w(w.data, model, nr_feature, 0 , 0 )
92+         copy_w(w.data, model, nr_feature)
9393    else :
9494        len_w =  (nr_class) *  nr_feature
9595        w =  np.empty((nr_class, nr_feature),order = ' F' 
96-         copy_w(w.data, model, len_w,nr_class,nr_feature )
96+         copy_w(w.data, model, len_w)
9797
9898    cdef np.ndarray[np.int32_t, ndim= 1 , mode= ' c' 
9999    label =  np.empty(nr_class, dtype = np.int32)
@@ -146,11 +146,11 @@ def csr_train_wrap ( int n_features,
146146    if  bias >  0 : nr_feature =  nr_feature +  1 
147147    if  nr_class ==  2 :
148148        w =  np.empty((1 , nr_feature),order = ' F' 
149-         copy_w(w.data, model, nr_feature, 0 , 0 )
149+         copy_w(w.data, model, nr_feature)
150150    else :
151151        len_w =  (nr_class *  nr_feature)
152152        w =  np.empty((nr_class, nr_feature),order = ' F' 
153-         copy_w(w.data, model, len_w,nr_class,nr_feature )
153+         copy_w(w.data, model, len_w)
154154
155155    cdef np.ndarray[np.int32_t, ndim= 1 , mode= ' c' 
156156    label =  np.empty((nr_class), dtype = np.int32)
0 commit comments