@@ -23,7 +23,7 @@ def calc_delta_r(x_predicted,y_predicted,x_true,y_true):
2323    """ Compute the scalar distance between predicted halo centers 
2424    and the true halo centers. Predictions are matched to the closest 
2525    halo center. 
26-     Notes: It takes in the predicted and true positions, and then loops over each possile  configuration and finds the most optimal one. 
26+     Notes: It takes in the predicted and true positions, and then loops over each possible  configuration and finds the most optimal one. 
2727    Arguments: 
2828        x_predicted, y_predicted: vector for predicted x- and y-positions (1 to 3 elements) 
2929        x_true, y_true: vector for known x- and y-positions (1 to 3 elements) 
@@ -34,11 +34,11 @@ def calc_delta_r(x_predicted,y_predicted,x_true,y_true):
3434       e.g if true_halo_indexes=[0,1] and measured_halo_indexes=[1,0] then the first x,y coordinates of the true halo position matches the second input of the predicted x,y coordinates. 
3535    """ 
3636
37-     num_halos = len (x_true ) #Only works for number of halso  > 1 
37+     num_halos = len (x_true ) #Only works for number of halos  > 1 
3838    num_configurations = mt .factorial (num_halos ) #The number of possible different comb 
3939    configurations = np .zeros ([num_halos ,num_configurations ],int ) #The array of combinations 
4040                                                                #I will pass back 
41-     distances  =  np .zeros ([num_configurations ],float ) #THe  array of the distances 
41+     distances  =  np .zeros ([num_configurations ],float ) #The  array of the distances 
4242                                                     #for all possible combinations 
4343
4444    radial_distance = []  #The vector of distances 
@@ -49,7 +49,7 @@ def calc_delta_r(x_predicted,y_predicted,x_true,y_true):
4949    count = 0  #For the index of the distances array 
5050    true_halo_indexes = [] #The tuples which will show the order of halos picked 
5151    predicted_halo_indexes = []
52-     distances_perm = np .zeros ([num_configurations ,num_halos ],float ) #The distance between eac  
52+     distances_perm = np .zeros ([num_configurations ,num_halos ],float ) #The distance between each  
5353                                                                  #true and predicted 
5454                                                                  #halo for every comb 
5555    true_halo_indexes_perm = [] #log of all the permutations of true halos used 
@@ -63,9 +63,9 @@ def calc_delta_r(x_predicted,y_predicted,x_true,y_true):
6363            distances_perm [count ,j ]= np .sqrt ((x_true [j ]- x_predicted [int (perm [j ])])** 2 \
6464                                      + (y_true [j ]- y_predicted [int (perm [j ])])** 2 )
6565                                      #This array logs the distance between true and 
66-                                       #predicted halo for ALL configruations  
66+                                       #predicted halo for ALL configurations  
6767
68-             which_true_halos .append (j ) #logthe  order in which I try each true halo 
68+             which_true_halos .append (j ) #log the  order in which I try each true halo 
6969            which_predicted_halos .append (int (perm [j ])) #log the order in which I true 
7070                                                       #each predicted halo 
7171        true_halo_indexes_perm .append (which_true_halos ) #this is a tuple of tuples of 
@@ -109,7 +109,7 @@ def calc_theta(x_predicted, y_predicted, x_true, y_true, x_ref, y_ref):
109109
110110
111111                     # Angle at which the halo is at 
112-                                                      #with respect to the reference poitn  
112+                                                      #with respect to the reference point  
113113    phi [x_true  !=  x_ref ] =  np .arctan ((y_predicted [x_true  !=  x_predicted ]- \
114114                                      y_true [x_true  !=  x_predicted ])\
115115                    / (x_predicted [x_true  !=  x_predicted ]- \
@@ -165,7 +165,7 @@ def get_ref(x_halo,y_halo,weight):
165165    """ Gets the reference point of the system of halos by weighted averaging the x and y 
166166    coordinates. 
167167    Arguments: 
168-          x_halo, y_halo: Vector num_halos referrin  to the coordinates of the halos 
168+          x_halo, y_halo: Vector num_halos referring  to the coordinates of the halos 
169169         weight: the weight which will be assigned to the position of the halo 
170170         num_halos: number of halos in the system 
171171    Returns: 
@@ -190,7 +190,7 @@ def main_score( nhalo_all, x_true_all, y_true_all, x_ref_all, y_ref_all, sky_pre
190190    r = np .array ([],dtype = float ) # The array which I will log all the calculated radial distances 
191191    angle = np .array ([],dtype = float ) #The array which I will log all the calculated angles 
192192    #Load in the sky_ids from the true 
193-     num_halos_total = 0  #Keep track of how many halos are iput  into the metric 
193+     num_halos_total = 0  #Keep track of how many halos are input  into the metric 
194194
195195
196196
@@ -205,12 +205,12 @@ def main_score( nhalo_all, x_true_all, y_true_all, x_ref_all, y_ref_all, sky_pre
205205        x_predicted = np .array ([],dtype = float )
206206        y_predicted = np .array ([],dtype = float )
207207        for  i  in  xrange (nhalo ):
208-             x_predicted = np .append (x_predicted ,float (sky [0 ])) #get the predictd  values 
208+             x_predicted = np .append (x_predicted ,float (sky [0 ])) #get the predicted  values 
209209            y_predicted = np .append (y_predicted ,float (sky [1 ]))
210210            #The solution file for the test data provides masses  
211211            #to calculate the centre of mass where as the Training_halo.csv 
212212            #direct provides x_ref y_ref. So in the case of test data 
213-             #we need to calculae  the ref point from the masses using 
213+             #we need to calculate  the ref point from the masses using 
214214            #Get_ref() 
215215
216216        x_ref = x_ref_all [selectskyinsolutions ]
@@ -219,7 +219,7 @@ def main_score( nhalo_all, x_true_all, y_true_all, x_ref_all, y_ref_all, sky_pre
219219        num_halos_total = num_halos_total + nhalo 
220220
221221
222-         #Single halo case, this needs to be separately caluclated  since 
222+         #Single halo case, this needs to be separately calculated  since 
223223        #x_ref = x_true 
224224        if  nhalo  ==  1 :
225225            #What is the radial distance between the true and predicted position 
@@ -260,15 +260,15 @@ def main_score( nhalo_all, x_true_all, y_true_all, x_ref_all, y_ref_all, sky_pre
260260    # Find what the average distance the estimate is from the halo position 
261261    av_r = sum (r )/ len (r )
262262
263-     #In order to quanitfy  the orientation invariance we will express each angle  
264-     # as a vector and find the average vecor  
263+     #In order to quantify  the orientation invariance we will express each angle  
264+     # as a vector and find the average vector  
265265    #R_bar^2=(1/N Sum^Ncos(theta))^2+(1/N Sum^Nsin(theta))**2 
266266
267267    N  =  float (num_halos_total )
268268    angle_vec  =  np .sqrt (( 1.0 / N  *  sum (np .cos (angle )) )** 2  +  \
269269        ( 1.0 / N  *  sum (np .sin (angle )) )** 2 )
270270
271-     W1 = 1. / 1000.  #Weight the av_r such that < 1 i  a good score > 1 isnt  so good. 
271+     W1 = 1. / 1000.  #Weight the av_r such that < 1 is  a good score > 1 is not  so good. 
272272    W2 = 1. 
273273    metric  =  W1 * av_r  +  W2 * angle_vec  #Weighted metric, weights TBD 
274274    print  'Your average distance in pixels you are away from the true halo is' , av_r 
@@ -304,7 +304,7 @@ def main(user_fname, fname):
304304
305305
306306
307-     num_halos_total = 0  #Keep track of how many halos are iput  into the metric 
307+     num_halos_total = 0  #Keep track of how many halos are input  into the metric 
308308
309309
310310    sky_prediction  =  c .reader (open (user_fname , 'rb' )) #Open the result.csv    
@@ -314,9 +314,9 @@ def main(user_fname, fname):
314314        with  open (user_fname , 'r' ) as  f :   
315315            header  =  float ((f .readline ()).split (',' )[1 ]) #try and make where the 
316316                                                         #first input would be 
317-                                                          #a float, if succed its  
318-                                                          #not a header 
319-         print  'THE INPUT FILE DOESNT  APPEAR TO HAVE A HEADER' 
317+                                                          #a float, if succeed it  
318+                                                          #is  not a header 
319+         print  'THE INPUT FILE DOES NOT  APPEAR TO HAVE A HEADER' 
320320    except  :
321321        print  'THE INPUT FILE APPEARS TO HAVE A HEADER, SKIPPING THE FIRST LINE' 
322322
@@ -343,7 +343,7 @@ def main(user_fname, fname):
343343        x_predicted = np .array ([],dtype = float )
344344        y_predicted = np .array ([],dtype = float )
345345        for  i  in  xrange (nhalo ):
346-             x_predicted = np .append (x_predicted ,float (sky [2 * i + 1 ])) #get the predictd  values 
346+             x_predicted = np .append (x_predicted ,float (sky [2 * i + 1 ])) #get the predicted  values 
347347            y_predicted = np .append (y_predicted ,float (sky [2 * i + 2 ]))
348348            #The solution file for the test data provides masses  
349349            #to calculate the centre of mass where as the Training_halo.csv 
@@ -357,7 +357,7 @@ def main(user_fname, fname):
357357        num_halos_total = num_halos_total + nhalo 
358358
359359
360-         #Single halo case, this needs to be separately caluclated  since 
360+         #Single halo case, this needs to be separately calculated  since 
361361        #x_ref = x_true 
362362        if  nhalo  ==  1 :
363363            #What is the radial distance between the true and predicted position 
@@ -398,15 +398,15 @@ def main(user_fname, fname):
398398    # Find what the average distance the estimate is from the halo position 
399399    av_r = sum (r )/ len (r )
400400
401-     #In order to quanitfy  the orientation invariance we will express each angle  
402-     # as a vector and find the average vecor  
401+     #In order to quantify  the orientation invariance we will express each angle  
402+     # as a vector and find the average vector  
403403    #R_bar^2=(1/N Sum^Ncos(theta))^2+(1/N Sum^Nsin(theta))**2 
404404
405405    N  =  float (num_halos_total )
406406    angle_vec  =  np .sqrt (( 1.0 / N  *  sum (np .cos (angle )) )** 2  +  \
407407        ( 1.0 / N  *  sum (np .sin (angle )) )** 2 )
408408
409-     W1 = 1. / 1000.  #Weight the av_r such that < 1 i  a good score > 1 isnt  so good. 
409+     W1 = 1. / 1000.  #Weight the av_r such that < 1 is  a good score > 1 is not  so good. 
410410    W2 = 1. 
411411    metric  =  W1 * av_r  +  W2 * angle_vec  #Weighted metric, weights TBD 
412412    print  'Your average distance in pixels you are away from the true halo is' , av_r 
0 commit comments