|
| 1 | +# -*- coding:utf-8 -*- |
| 2 | + |
| 3 | +# 第二章拷贝的 Array 代码 |
| 4 | + |
| 5 | + |
| 6 | +class Array(object): |
| 7 | + |
| 8 | + def __init__(self, size=32): |
| 9 | + self._size = size |
| 10 | + self._items = [None] * size |
| 11 | + |
| 12 | + def __getitem__(self, index): |
| 13 | + return self._items[index] |
| 14 | + |
| 15 | + def __setitem__(self, index, value): |
| 16 | + self._items[index] = value |
| 17 | + |
| 18 | + def __len__(self): |
| 19 | + return self._size |
| 20 | + |
| 21 | + def clear(self, value=None): |
| 22 | + for i in range(self._items): |
| 23 | + self._items[i] = value |
| 24 | + |
| 25 | + def __iter__(self): |
| 26 | + for item in self._items: |
| 27 | + yield item |
| 28 | + |
| 29 | +##################################################### |
| 30 | +# heap 实现 |
| 31 | +##################################################### |
| 32 | + |
| 33 | + |
| 34 | +class MaxHeap(object): |
| 35 | + """ |
| 36 | + Heaps: |
| 37 | + 完全二叉树,最大堆的非叶子节点的值都比孩子大,最小堆的非叶子结点的值都比孩子小 |
| 38 | + Heap包含两个属性,order property 和 shape property(a complete binary tree),在插入 |
| 39 | + 一个新节点的时候,始终要保持这两个属性 |
| 40 | + 插入操作:保持堆属性和完全二叉树属性, sift-up 操作维持堆属性 |
| 41 | + extract操作:只获取根节点数据,并把树最底层最右节点copy到根节点后,sift-down操作维持堆属性 |
| 42 | +
|
| 43 | + 用数组实现heap,从根节点开始,从上往下从左到右给每个节点编号,则根据完全二叉树的 |
| 44 | + 性质,给定一个节点i, 其父亲和孩子节点的编号分别是: |
| 45 | + parent = (i-1) // 2 |
| 46 | + left = 2 * i + 1 |
| 47 | + rgiht = 2 * i + 2 |
| 48 | + 使用数组实现堆一方面效率更高,节省树节点的内存占用,一方面还可以避免复杂的指针操作,减少 |
| 49 | + 调试难度。 |
| 50 | +
|
| 51 | + """ |
| 52 | + |
| 53 | + def __init__(self, maxsize=None): |
| 54 | + self.maxsize = maxsize |
| 55 | + self._elements = Array(maxsize) |
| 56 | + self._count = 0 |
| 57 | + |
| 58 | + def __len__(self): |
| 59 | + return self._count |
| 60 | + |
| 61 | + def add(self, value): |
| 62 | + if self._count >= self.maxsize: |
| 63 | + raise Exception('full') |
| 64 | + self._elements[self._count] = value |
| 65 | + self._count += 1 |
| 66 | + self._siftup(self._count-1) # 维持堆的特性 |
| 67 | + |
| 68 | + def _siftup(self, ndx): |
| 69 | + if ndx > 0: |
| 70 | + parent = int((ndx-1)/2) |
| 71 | + if self._elements[ndx] > self._elements[parent]: # 如果插入的值大于 parent,一直交换 |
| 72 | + self._elements[ndx], self._elements[parent] = self._elements[parent], self._elements[ndx] |
| 73 | + self._siftup(parent) # 递归 |
| 74 | + |
| 75 | + def extract(self): |
| 76 | + if self._count <= 0: |
| 77 | + raise Exception('empty') |
| 78 | + value = self._elements[0] # 保存 root 值 |
| 79 | + self._count -= 1 |
| 80 | + self._elements[0] = self._elements[self._count] # 最右下的节点放到root后siftDown |
| 81 | + self._siftdown(0) # 维持堆特性 |
| 82 | + return value |
| 83 | + |
| 84 | + def _siftdown(self, ndx): |
| 85 | + left = 2 * ndx + 1 |
| 86 | + right = 2 * ndx + 2 |
| 87 | + # determine which node contains the larger value |
| 88 | + largest = ndx |
| 89 | + if (left < self._count and # 有左孩子 |
| 90 | + self._elements[left] >= self._elements[largest] and |
| 91 | + self._elements[left] >= self._elements[right]): # 原书这个地方没写实际上找的未必是largest |
| 92 | + largest = left |
| 93 | + elif right < self._count and self._elements[right] >= self._elements[largest]: |
| 94 | + largest = right |
| 95 | + if largest != ndx: |
| 96 | + self._elements[ndx], self._elements[largest] = self._elements[largest], self._elements[ndx] |
| 97 | + self._siftdown(largest) |
| 98 | + |
| 99 | + |
| 100 | +class PriorityQueue(object): |
| 101 | + def __init__(self, maxsize): |
| 102 | + self.maxsize = maxsize |
| 103 | + self._maxheap = MaxHeap(maxsize) |
| 104 | + |
| 105 | + def push(self, priority, value): |
| 106 | + entry = (priority, value) # 注意这里把这个 tuple push进去,python 比较 tuple 从第一个开始比较 |
| 107 | + self._maxheap.add(entry) |
| 108 | + |
| 109 | + def pop(self, with_priority=False): |
| 110 | + entry = self._maxheap.extract() |
| 111 | + if with_priority: |
| 112 | + return entry |
| 113 | + else: |
| 114 | + return entry[1] |
| 115 | + |
| 116 | + def is_empty(self): |
| 117 | + return len(self._maxheap) == 0 |
| 118 | + |
| 119 | + |
| 120 | +def test_priority_queue(): |
| 121 | + size = 5 |
| 122 | + pq = PriorityQueue(size) |
| 123 | + pq.push(5, 'purple') |
| 124 | + pq.push(0, 'white') |
| 125 | + pq.push(3, 'orange') |
| 126 | + pq.push(1, 'black') |
| 127 | + |
| 128 | + res = [] |
| 129 | + while not pq.is_empty(): |
| 130 | + res.append(pq.pop()) |
| 131 | + assert res == ['purple', 'orange', 'black', 'white'] |
0 commit comments