|  | 
| 73 | 73 | from sklearn.linear_model import LogisticRegression | 
| 74 | 74 | 
 | 
| 75 | 75 | from elm import ELMClassifier | 
| 76 |  | -from random_hidden_layer import RBFRandomHiddenLayer | 
| 77 |  | -from random_hidden_layer import SimpleRandomHiddenLayer | 
|  | 76 | +from random_layer import RBFRandomLayer, SimpleRandomLayer | 
| 78 | 77 | 
 | 
| 79 | 78 | 
 | 
| 80 | 79 | def get_data_bounds(X): | 
| @@ -137,25 +136,25 @@ def make_classifiers(): | 
| 137 | 136 | 
 | 
| 138 | 137 |     # pass user defined transfer func | 
| 139 | 138 |     sinsq = (lambda x: np.power(np.sin(x), 2.0)) | 
| 140 |  | -    srhl_sinsq = SimpleRandomHiddenLayer(n_hidden=nh, | 
| 141 |  | -                                         activation_func=sinsq, | 
| 142 |  | -                                         random_state=0) | 
|  | 139 | +    srhl_sinsq = SimpleRandomLayer(n_hidden=nh, | 
|  | 140 | +                                   activation_func=sinsq, | 
|  | 141 | +                                   random_state=0) | 
| 143 | 142 | 
 | 
| 144 | 143 |     # use internal transfer funcs | 
| 145 |  | -    srhl_tanh = SimpleRandomHiddenLayer(n_hidden=nh, | 
| 146 |  | -                                        activation_func='tanh', | 
| 147 |  | -                                        random_state=0) | 
|  | 144 | +    srhl_tanh = SimpleRandomLayer(n_hidden=nh, | 
|  | 145 | +                                  activation_func='tanh', | 
|  | 146 | +                                  random_state=0) | 
| 148 | 147 | 
 | 
| 149 |  | -    srhl_tribas = SimpleRandomHiddenLayer(n_hidden=nh, | 
| 150 |  | -                                          activation_func='tribas', | 
| 151 |  | -                                          random_state=0) | 
|  | 148 | +    srhl_tribas = SimpleRandomLayer(n_hidden=nh, | 
|  | 149 | +                                    activation_func='tribas', | 
|  | 150 | +                                    random_state=0) | 
| 152 | 151 | 
 | 
| 153 |  | -    srhl_hardlim = SimpleRandomHiddenLayer(n_hidden=nh, | 
| 154 |  | -                                           activation_func='hardlim', | 
| 155 |  | -                                           random_state=0) | 
|  | 152 | +    srhl_hardlim = SimpleRandomLayer(n_hidden=nh, | 
|  | 153 | +                                     activation_func='hardlim', | 
|  | 154 | +                                     random_state=0) | 
| 156 | 155 | 
 | 
| 157 | 156 |     # use gaussian RBF | 
| 158 |  | -    srhl_rbf = RBFRandomHiddenLayer(n_hidden=nh*2, gamma=0.1, random_state=0) | 
|  | 157 | +    srhl_rbf = RBFRandomLayer(n_hidden=nh*2, gamma=0.1, random_state=0) | 
| 159 | 158 | 
 | 
| 160 | 159 |     log_reg = LogisticRegression() | 
| 161 | 160 | 
 | 
|  | 
0 commit comments