|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# PyTorch DQN Implemenation\n", |
| 8 | + "\n", |
| 9 | + "<br/>" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": 1, |
| 15 | + "metadata": { |
| 16 | + "collapsed": false |
| 17 | + }, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "%matplotlib inline\n", |
| 21 | + "\n", |
| 22 | + "import torch\n", |
| 23 | + "import torch.nn as nn\n", |
| 24 | + "import gym\n", |
| 25 | + "import random\n", |
| 26 | + "import numpy as np\n", |
| 27 | + "import torchvision.transforms as transforms\n", |
| 28 | + "import matplotlib.pyplot as plt\n", |
| 29 | + "from torch.autograd import Variable\n", |
| 30 | + "from collections import deque, namedtuple" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": 2, |
| 36 | + "metadata": { |
| 37 | + "collapsed": false |
| 38 | + }, |
| 39 | + "outputs": [ |
| 40 | + { |
| 41 | + "name": "stderr", |
| 42 | + "output_type": "stream", |
| 43 | + "text": [ |
| 44 | + "[2017-03-09 21:31:48,174] Making new env: CartPole-v0\n" |
| 45 | + ] |
| 46 | + } |
| 47 | + ], |
| 48 | + "source": [ |
| 49 | + "env = gym.envs.make(\"CartPole-v0\")" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": 3, |
| 55 | + "metadata": { |
| 56 | + "collapsed": true |
| 57 | + }, |
| 58 | + "outputs": [], |
| 59 | + "source": [ |
| 60 | + "class Net(nn.Module):\n", |
| 61 | + " def __init__(self):\n", |
| 62 | + " super(Net, self).__init__()\n", |
| 63 | + " self.fc1 = nn.Linear(4, 128)\n", |
| 64 | + " self.tanh = nn.Tanh()\n", |
| 65 | + " self.fc2 = nn.Linear(128, 2)\n", |
| 66 | + " self.init_weights()\n", |
| 67 | + " \n", |
| 68 | + " def init_weights(self):\n", |
| 69 | + " self.fc1.weight.data.uniform_(-0.1, 0.1)\n", |
| 70 | + " self.fc2.weight.data.uniform_(-0.1, 0.1)\n", |
| 71 | + " \n", |
| 72 | + " def forward(self, x):\n", |
| 73 | + " out = self.fc1(x)\n", |
| 74 | + " out = self.tanh(out)\n", |
| 75 | + " out = self.fc2(out)\n", |
| 76 | + " return out" |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "code", |
| 81 | + "execution_count": 4, |
| 82 | + "metadata": { |
| 83 | + "collapsed": false |
| 84 | + }, |
| 85 | + "outputs": [], |
| 86 | + "source": [ |
| 87 | + "def make_epsilon_greedy_policy(network, epsilon, nA):\n", |
| 88 | + " def policy(state):\n", |
| 89 | + " sample = random.random()\n", |
| 90 | + " if sample < (1-epsilon) + (epsilon/nA):\n", |
| 91 | + " q_values = network(state.view(1, -1))\n", |
| 92 | + " action = q_values.data.max(1)[1][0, 0]\n", |
| 93 | + " else:\n", |
| 94 | + " action = random.randrange(nA)\n", |
| 95 | + " return action\n", |
| 96 | + " return policy" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": 5, |
| 102 | + "metadata": { |
| 103 | + "collapsed": true |
| 104 | + }, |
| 105 | + "outputs": [], |
| 106 | + "source": [ |
| 107 | + "class ReplayMemory(object):\n", |
| 108 | + " \n", |
| 109 | + " def __init__(self, capacity):\n", |
| 110 | + " self.memory = deque()\n", |
| 111 | + " self.capacity = capacity\n", |
| 112 | + " \n", |
| 113 | + " def push(self, transition):\n", |
| 114 | + " if len(self.memory) > self.capacity:\n", |
| 115 | + " self.memory.popleft()\n", |
| 116 | + " self.memory.append(transition)\n", |
| 117 | + " \n", |
| 118 | + " def sample(self, batch_size):\n", |
| 119 | + " return random.sample(self.memory, batch_size)\n", |
| 120 | + " \n", |
| 121 | + " def __len__(self):\n", |
| 122 | + " return len(self.memory)" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": 6, |
| 128 | + "metadata": { |
| 129 | + "collapsed": true |
| 130 | + }, |
| 131 | + "outputs": [], |
| 132 | + "source": [ |
| 133 | + "def to_tensor(ndarray, volatile=False):\n", |
| 134 | + " return Variable(torch.from_numpy(ndarray), volatile=volatile).float()" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "code", |
| 139 | + "execution_count": 7, |
| 140 | + "metadata": { |
| 141 | + "collapsed": false |
| 142 | + }, |
| 143 | + "outputs": [], |
| 144 | + "source": [ |
| 145 | + "def deep_q_learning(num_episodes=10, batch_size=100, \n", |
| 146 | + " discount_factor=0.95, epsilon=0.1, epsilon_decay=0.95):\n", |
| 147 | + "\n", |
| 148 | + " # Q-Network and memory \n", |
| 149 | + " net = Net()\n", |
| 150 | + " memory = ReplayMemory(10000)\n", |
| 151 | + " \n", |
| 152 | + " # Loss and Optimizer\n", |
| 153 | + " criterion = nn.MSELoss()\n", |
| 154 | + " optimizer = torch.optim.Adam(net.parameters(), lr=0.001)\n", |
| 155 | + " \n", |
| 156 | + " for i_episode in range(num_episodes):\n", |
| 157 | + " \n", |
| 158 | + " # Set policy (TODO: decaying epsilon)\n", |
| 159 | + " #if (i_episode+1) % 100 == 0:\n", |
| 160 | + " # epsilon *= 0.9\n", |
| 161 | + " \n", |
| 162 | + " policy = make_epsilon_greedy_policy(\n", |
| 163 | + " net, epsilon, env.action_space.n)\n", |
| 164 | + " \n", |
| 165 | + " # Start an episode\n", |
| 166 | + " state = env.reset()\n", |
| 167 | + " \n", |
| 168 | + " for t in range(10000):\n", |
| 169 | + " \n", |
| 170 | + " # Sample action from epsilon greed policy\n", |
| 171 | + " action = policy(to_tensor(state)) \n", |
| 172 | + " next_state, reward, done, _ = env.step(action)\n", |
| 173 | + " \n", |
| 174 | + " \n", |
| 175 | + " # Restore transition in memory\n", |
| 176 | + " memory.push([state, action, reward, next_state])\n", |
| 177 | + " \n", |
| 178 | + " \n", |
| 179 | + " if len(memory) >= batch_size:\n", |
| 180 | + " # Sample mini-batch transitions from memory\n", |
| 181 | + " batch = memory.sample(batch_size)\n", |
| 182 | + " state_batch = np.vstack([trans[0] for trans in batch])\n", |
| 183 | + " action_batch =np.vstack([trans[1] for trans in batch]) \n", |
| 184 | + " reward_batch = np.vstack([trans[2] for trans in batch])\n", |
| 185 | + " next_state_batch = np.vstack([trans[3] for trans in batch])\n", |
| 186 | + " \n", |
| 187 | + " # Forward + Backward + Opimize\n", |
| 188 | + " net.zero_grad()\n", |
| 189 | + " q_values = net(to_tensor(state_batch))\n", |
| 190 | + " next_q_values = net(to_tensor(next_state_batch, volatile=True))\n", |
| 191 | + " next_q_values.volatile = False\n", |
| 192 | + " \n", |
| 193 | + " td_target = to_tensor(reward_batch) + discount_factor * (next_q_values).max(1)[0]\n", |
| 194 | + " loss = criterion(q_values.gather(1, \n", |
| 195 | + " to_tensor(action_batch).long().view(-1, 1)), td_target)\n", |
| 196 | + " loss.backward()\n", |
| 197 | + " optimizer.step()\n", |
| 198 | + " \n", |
| 199 | + " if done:\n", |
| 200 | + " break\n", |
| 201 | + " \n", |
| 202 | + " state = next_state\n", |
| 203 | + " \n", |
| 204 | + " if len(memory) >= batch_size and (i_episode+1) % 10 == 0:\n", |
| 205 | + " print ('episode: %d, time: %d, loss: %.4f' %(i_episode, t, loss.data[0]))\n", |
| 206 | + " " |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "code", |
| 211 | + "execution_count": 8, |
| 212 | + "metadata": { |
| 213 | + "collapsed": false |
| 214 | + }, |
| 215 | + "outputs": [ |
| 216 | + { |
| 217 | + "name": "stdout", |
| 218 | + "output_type": "stream", |
| 219 | + "text": [ |
| 220 | + "episode: 9, time: 9, loss: 0.9945\n", |
| 221 | + "episode: 19, time: 9, loss: 1.8221\n", |
| 222 | + "episode: 29, time: 9, loss: 4.3124\n", |
| 223 | + "episode: 39, time: 8, loss: 6.9764\n", |
| 224 | + "episode: 49, time: 9, loss: 6.8300\n", |
| 225 | + "episode: 59, time: 8, loss: 5.5186\n", |
| 226 | + "episode: 69, time: 9, loss: 4.1160\n", |
| 227 | + "episode: 79, time: 9, loss: 2.4802\n", |
| 228 | + "episode: 89, time: 13, loss: 0.7890\n", |
| 229 | + "episode: 99, time: 10, loss: 0.2805\n", |
| 230 | + "episode: 109, time: 12, loss: 0.1323\n", |
| 231 | + "episode: 119, time: 13, loss: 0.0519\n", |
| 232 | + "episode: 129, time: 18, loss: 0.0176\n", |
| 233 | + "episode: 139, time: 22, loss: 0.0067\n", |
| 234 | + "episode: 149, time: 17, loss: 0.0114\n", |
| 235 | + "episode: 159, time: 26, loss: 0.0017\n", |
| 236 | + "episode: 169, time: 23, loss: 0.0018\n", |
| 237 | + "episode: 179, time: 21, loss: 0.0023\n", |
| 238 | + "episode: 189, time: 11, loss: 0.0024\n", |
| 239 | + "episode: 199, time: 7, loss: 0.0040\n", |
| 240 | + "episode: 209, time: 8, loss: 0.0030\n", |
| 241 | + "episode: 219, time: 7, loss: 0.0070\n", |
| 242 | + "episode: 229, time: 9, loss: 0.0031\n", |
| 243 | + "episode: 239, time: 9, loss: 0.0029\n", |
| 244 | + "episode: 249, time: 8, loss: 0.0046\n", |
| 245 | + "episode: 259, time: 8, loss: 0.0009\n", |
| 246 | + "episode: 269, time: 10, loss: 0.0020\n", |
| 247 | + "episode: 279, time: 9, loss: 0.0025\n", |
| 248 | + "episode: 289, time: 8, loss: 0.0015\n", |
| 249 | + "episode: 299, time: 10, loss: 0.0009\n", |
| 250 | + "episode: 309, time: 8, loss: 0.0012\n", |
| 251 | + "episode: 319, time: 8, loss: 0.0034\n", |
| 252 | + "episode: 329, time: 8, loss: 0.0008\n", |
| 253 | + "episode: 339, time: 9, loss: 0.0021\n", |
| 254 | + "episode: 349, time: 8, loss: 0.0018\n", |
| 255 | + "episode: 359, time: 9, loss: 0.0017\n", |
| 256 | + "episode: 369, time: 9, loss: 0.0006\n", |
| 257 | + "episode: 379, time: 9, loss: 0.0023\n", |
| 258 | + "episode: 389, time: 10, loss: 0.0017\n", |
| 259 | + "episode: 399, time: 8, loss: 0.0018\n", |
| 260 | + "episode: 409, time: 8, loss: 0.0023\n", |
| 261 | + "episode: 419, time: 9, loss: 0.0020\n", |
| 262 | + "episode: 429, time: 9, loss: 0.0006\n", |
| 263 | + "episode: 439, time: 10, loss: 0.0006\n", |
| 264 | + "episode: 449, time: 10, loss: 0.0025\n", |
| 265 | + "episode: 459, time: 9, loss: 0.0013\n", |
| 266 | + "episode: 469, time: 8, loss: 0.0011\n", |
| 267 | + "episode: 479, time: 8, loss: 0.0005\n", |
| 268 | + "episode: 489, time: 8, loss: 0.0004\n", |
| 269 | + "episode: 499, time: 7, loss: 0.0017\n", |
| 270 | + "episode: 509, time: 7, loss: 0.0004\n", |
| 271 | + "episode: 519, time: 10, loss: 0.0008\n", |
| 272 | + "episode: 529, time: 11, loss: 0.0006\n", |
| 273 | + "episode: 539, time: 9, loss: 0.0010\n", |
| 274 | + "episode: 549, time: 8, loss: 0.0006\n", |
| 275 | + "episode: 559, time: 8, loss: 0.0012\n", |
| 276 | + "episode: 569, time: 9, loss: 0.0011\n", |
| 277 | + "episode: 579, time: 8, loss: 0.0010\n", |
| 278 | + "episode: 589, time: 8, loss: 0.0008\n", |
| 279 | + "episode: 599, time: 10, loss: 0.0010\n", |
| 280 | + "episode: 609, time: 8, loss: 0.0005\n", |
| 281 | + "episode: 619, time: 9, loss: 0.0004\n", |
| 282 | + "episode: 629, time: 8, loss: 0.0007\n", |
| 283 | + "episode: 639, time: 10, loss: 0.0014\n", |
| 284 | + "episode: 649, time: 10, loss: 0.0004\n", |
| 285 | + "episode: 659, time: 9, loss: 0.0008\n", |
| 286 | + "episode: 669, time: 8, loss: 0.0005\n", |
| 287 | + "episode: 679, time: 8, loss: 0.0003\n", |
| 288 | + "episode: 689, time: 9, loss: 0.0009\n", |
| 289 | + "episode: 699, time: 8, loss: 0.0004\n", |
| 290 | + "episode: 709, time: 8, loss: 0.0013\n", |
| 291 | + "episode: 719, time: 8, loss: 0.0006\n", |
| 292 | + "episode: 729, time: 7, loss: 0.0021\n", |
| 293 | + "episode: 739, time: 9, loss: 0.0023\n", |
| 294 | + "episode: 749, time: 9, loss: 0.0039\n", |
| 295 | + "episode: 759, time: 8, loss: 0.0030\n", |
| 296 | + "episode: 769, time: 9, loss: 0.0016\n", |
| 297 | + "episode: 779, time: 7, loss: 0.0041\n", |
| 298 | + "episode: 789, time: 8, loss: 0.0050\n", |
| 299 | + "episode: 799, time: 8, loss: 0.0041\n", |
| 300 | + "episode: 809, time: 11, loss: 0.0053\n", |
| 301 | + "episode: 819, time: 7, loss: 0.0018\n", |
| 302 | + "episode: 829, time: 9, loss: 0.0019\n", |
| 303 | + "episode: 839, time: 11, loss: 0.0017\n", |
| 304 | + "episode: 849, time: 8, loss: 0.0029\n", |
| 305 | + "episode: 859, time: 9, loss: 0.0012\n", |
| 306 | + "episode: 869, time: 9, loss: 0.0036\n", |
| 307 | + "episode: 879, time: 7, loss: 0.0017\n", |
| 308 | + "episode: 889, time: 9, loss: 0.0016\n", |
| 309 | + "episode: 899, time: 10, loss: 0.0023\n", |
| 310 | + "episode: 909, time: 8, loss: 0.0032\n", |
| 311 | + "episode: 919, time: 8, loss: 0.0015\n", |
| 312 | + "episode: 929, time: 9, loss: 0.0021\n", |
| 313 | + "episode: 939, time: 9, loss: 0.0015\n", |
| 314 | + "episode: 949, time: 9, loss: 0.0016\n", |
| 315 | + "episode: 959, time: 9, loss: 0.0013\n", |
| 316 | + "episode: 969, time: 12, loss: 0.0029\n", |
| 317 | + "episode: 979, time: 7, loss: 0.0016\n", |
| 318 | + "episode: 989, time: 7, loss: 0.0012\n", |
| 319 | + "episode: 999, time: 9, loss: 0.0013\n" |
| 320 | + ] |
| 321 | + } |
| 322 | + ], |
| 323 | + "source": [ |
| 324 | + "deep_q_learning(1000)" |
| 325 | + ] |
| 326 | + }, |
| 327 | + { |
| 328 | + "cell_type": "code", |
| 329 | + "execution_count": null, |
| 330 | + "metadata": { |
| 331 | + "collapsed": true |
| 332 | + }, |
| 333 | + "outputs": [], |
| 334 | + "source": [] |
| 335 | + } |
| 336 | + ], |
| 337 | + "metadata": { |
| 338 | + "anaconda-cloud": {}, |
| 339 | + "kernelspec": { |
| 340 | + "display_name": "Python 2", |
| 341 | + "language": "python", |
| 342 | + "name": "python2" |
| 343 | + }, |
| 344 | + "language_info": { |
| 345 | + "codemirror_mode": { |
| 346 | + "name": "ipython", |
| 347 | + "version": 2 |
| 348 | + }, |
| 349 | + "file_extension": ".py", |
| 350 | + "mimetype": "text/x-python", |
| 351 | + "name": "python", |
| 352 | + "nbconvert_exporter": "python", |
| 353 | + "pygments_lexer": "ipython2", |
| 354 | + "version": "2.7.13" |
| 355 | + } |
| 356 | + }, |
| 357 | + "nbformat": 4, |
| 358 | + "nbformat_minor": 1 |
| 359 | +} |
0 commit comments