|
| 1 | +""" |
| 2 | +DenseNet, original: https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py |
| 3 | +""" |
| 4 | +import re |
| 5 | +from collections import OrderedDict |
| 6 | + |
| 7 | +import torch |
| 8 | +import torch.nn as nn |
| 9 | +import torch.nn.functional as F |
| 10 | +import torch.utils.model_zoo as model_zoo |
| 11 | +import torchvision.transforms as transforms |
| 12 | + |
| 13 | +from PIL import Image |
| 14 | +import numpy as np |
| 15 | + |
| 16 | +model_urls = { |
| 17 | + 'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth', |
| 18 | + 'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth', |
| 19 | + 'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth', |
| 20 | + 'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth', |
| 21 | +} |
| 22 | + |
| 23 | + |
| 24 | +class _DenseLayer(nn.Sequential): |
| 25 | + """Basic unit of DenseBlock (using bottleneck layer) """ |
| 26 | + def __init__(self, num_input_features, growth_rate, bn_size, drop_rate): |
| 27 | + super(_DenseLayer, self).__init__() |
| 28 | + self.add_module("norm1", nn.BatchNorm2d(num_input_features)) |
| 29 | + self.add_module("relu1", nn.ReLU(inplace=True)) |
| 30 | + self.add_module("conv1", nn.Conv2d(num_input_features, bn_size*growth_rate, |
| 31 | + kernel_size=1, stride=1, bias=False)) |
| 32 | + self.add_module("norm2", nn.BatchNorm2d(bn_size*growth_rate)) |
| 33 | + self.add_module("relu2", nn.ReLU(inplace=True)) |
| 34 | + self.add_module("conv2", nn.Conv2d(bn_size*growth_rate, growth_rate, |
| 35 | + kernel_size=3, stride=1, padding=1, bias=False)) |
| 36 | + self.drop_rate = drop_rate |
| 37 | + |
| 38 | + def forward(self, x): |
| 39 | + new_features = super(_DenseLayer, self).forward(x) |
| 40 | + if self.drop_rate > 0: |
| 41 | + new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) |
| 42 | + return torch.cat([x, new_features], 1) |
| 43 | + |
| 44 | +class _DenseBlock(nn.Sequential): |
| 45 | + """DenseBlock""" |
| 46 | + def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate): |
| 47 | + super(_DenseBlock, self).__init__() |
| 48 | + for i in range(num_layers): |
| 49 | + layer = _DenseLayer(num_input_features+i*growth_rate, growth_rate, bn_size, |
| 50 | + drop_rate) |
| 51 | + self.add_module("denselayer%d" % (i+1,), layer) |
| 52 | + |
| 53 | + |
| 54 | +class _Transition(nn.Sequential): |
| 55 | + """Transition layer between two adjacent DenseBlock""" |
| 56 | + def __init__(self, num_input_feature, num_output_features): |
| 57 | + super(_Transition, self).__init__() |
| 58 | + self.add_module("norm", nn.BatchNorm2d(num_input_feature)) |
| 59 | + self.add_module("relu", nn.ReLU(inplace=True)) |
| 60 | + self.add_module("conv", nn.Conv2d(num_input_feature, num_output_features, |
| 61 | + kernel_size=1, stride=1, bias=False)) |
| 62 | + self.add_module("pool", nn.AvgPool2d(2, stride=2)) |
| 63 | + |
| 64 | + |
| 65 | +class DenseNet(nn.Module): |
| 66 | + "DenseNet-BC model" |
| 67 | + def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, |
| 68 | + bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=1000): |
| 69 | + """ |
| 70 | + :param growth_rate: (int) number of filters used in DenseLayer, `k` in the paper |
| 71 | + :param block_config: (list of 4 ints) number of layers in each DenseBlock |
| 72 | + :param num_init_features: (int) number of filters in the first Conv2d |
| 73 | + :param bn_size: (int) the factor using in the bottleneck layer |
| 74 | + :param compression_rate: (float) the compression rate used in Transition Layer |
| 75 | + :param drop_rate: (float) the drop rate after each DenseLayer |
| 76 | + :param num_classes: (int) number of classes for classification |
| 77 | + """ |
| 78 | + super(DenseNet, self).__init__() |
| 79 | + # first Conv2d |
| 80 | + self.features = nn.Sequential(OrderedDict([ |
| 81 | + ("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), |
| 82 | + ("norm0", nn.BatchNorm2d(num_init_features)), |
| 83 | + ("relu0", nn.ReLU(inplace=True)), |
| 84 | + ("pool0", nn.MaxPool2d(3, stride=2, padding=1)) |
| 85 | + ])) |
| 86 | + |
| 87 | + # DenseBlock |
| 88 | + num_features = num_init_features |
| 89 | + for i, num_layers in enumerate(block_config): |
| 90 | + block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate) |
| 91 | + self.features.add_module("denseblock%d" % (i + 1), block) |
| 92 | + num_features += num_layers*growth_rate |
| 93 | + if i != len(block_config) - 1: |
| 94 | + transition = _Transition(num_features, int(num_features*compression_rate)) |
| 95 | + self.features.add_module("transition%d" % (i + 1), transition) |
| 96 | + num_features = int(num_features * compression_rate) |
| 97 | + |
| 98 | + # final bn+ReLU |
| 99 | + self.features.add_module("norm5", nn.BatchNorm2d(num_features)) |
| 100 | + self.features.add_module("relu5", nn.ReLU(inplace=True)) |
| 101 | + |
| 102 | + # classification layer |
| 103 | + self.classifier = nn.Linear(num_features, num_classes) |
| 104 | + |
| 105 | + # params initialization |
| 106 | + for m in self.modules(): |
| 107 | + if isinstance(m, nn.Conv2d): |
| 108 | + nn.init.kaiming_normal_(m.weight) |
| 109 | + elif isinstance(m, nn.BatchNorm2d): |
| 110 | + nn.init.constant_(m.bias, 0) |
| 111 | + nn.init.constant_(m.weight, 1) |
| 112 | + elif isinstance(m, nn.Linear): |
| 113 | + nn.init.constant_(m.bias, 0) |
| 114 | + |
| 115 | + def forward(self, x): |
| 116 | + features = self.features(x) |
| 117 | + out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1) |
| 118 | + out = self.classifier(out) |
| 119 | + return out |
| 120 | + |
| 121 | +class DenseNet_MNIST(nn.Module): |
| 122 | + """DenseNet for MNIST dataset""" |
| 123 | + def __init__(self, growth_rate=12, block_config=(6, 6, 6), num_init_features=16, |
| 124 | + bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=10): |
| 125 | + """ |
| 126 | + :param growth_rate: (int) number of filters used in DenseLayer, `k` in the paper |
| 127 | + :param block_config: (list of 2 ints) number of layers in each DenseBlock |
| 128 | + :param num_init_features: (int) number of filters in the first Conv2d |
| 129 | + :param bn_size: (int) the factor using in the bottleneck layer |
| 130 | + :param compression_rate: (float) the compression rate used in Transition Layer |
| 131 | + :param drop_rate: (float) the drop rate after each DenseLayer |
| 132 | + :param num_classes: (int) number of classes for classification |
| 133 | + """ |
| 134 | + super(DenseNet_MNIST, self).__init__() |
| 135 | + # first Conv2d |
| 136 | + self.features = nn.Sequential(OrderedDict([ |
| 137 | + ("conv0", nn.Conv2d(1, num_init_features, kernel_size=3, stride=1, padding=1, bias=False)), |
| 138 | + ("norm0", nn.BatchNorm2d(num_init_features)), |
| 139 | + ("relu0", nn.ReLU(inplace=True)), |
| 140 | + ])) |
| 141 | + |
| 142 | + # DenseBlock |
| 143 | + num_features = num_init_features |
| 144 | + for i, num_layers in enumerate(block_config): |
| 145 | + block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate) |
| 146 | + self.features.add_module("denseblock%d" % (i + 1), block) |
| 147 | + num_features += num_layers * growth_rate |
| 148 | + if i != len(block_config) - 1: |
| 149 | + transition = _Transition(num_features, int(num_features * compression_rate)) |
| 150 | + self.features.add_module("transition%d" % (i + 1), transition) |
| 151 | + num_features = int(num_features * compression_rate) |
| 152 | + |
| 153 | + # final bn+ReLU |
| 154 | + self.features.add_module("norm5", nn.BatchNorm2d(num_features)) |
| 155 | + self.features.add_module("relu5", nn.ReLU(inplace=True)) |
| 156 | + |
| 157 | + # classification layer |
| 158 | + self.classifier = nn.Linear(num_features, num_classes) |
| 159 | + |
| 160 | + # params initialization |
| 161 | + for m in self.modules(): |
| 162 | + if isinstance(m, nn.Conv2d): |
| 163 | + nn.init.kaiming_normal_(m.weight) |
| 164 | + elif isinstance(m, nn.BatchNorm2d): |
| 165 | + nn.init.constant_(m.bias, 0) |
| 166 | + nn.init.constant_(m.weight, 1) |
| 167 | + elif isinstance(m, nn.Linear): |
| 168 | + nn.init.constant_(m.bias, 0) |
| 169 | + |
| 170 | + def forward(self, x): |
| 171 | + features = self.features(x) |
| 172 | + out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1) |
| 173 | + out = self.classifier(out) |
| 174 | + return out |
| 175 | + |
| 176 | + |
| 177 | +def densenet121(pretrained=False, **kwargs): |
| 178 | + """DenseNet121""" |
| 179 | + model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), |
| 180 | + **kwargs) |
| 181 | + |
| 182 | + if pretrained: |
| 183 | + # '.'s are no longer allowed in module names, but pervious _DenseLayer |
| 184 | + # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. |
| 185 | + # They are also in the checkpoints in model_urls. This pattern is used |
| 186 | + # to find such keys. |
| 187 | + pattern = re.compile( |
| 188 | + r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') |
| 189 | + state_dict = model_zoo.load_url(model_urls['densenet121']) |
| 190 | + for key in list(state_dict.keys()): |
| 191 | + res = pattern.match(key) |
| 192 | + if res: |
| 193 | + new_key = res.group(1) + res.group(2) |
| 194 | + state_dict[new_key] = state_dict[key] |
| 195 | + del state_dict[key] |
| 196 | + model.load_state_dict(state_dict) |
| 197 | + return model |
| 198 | + |
| 199 | +if __name__ == "__main__": |
| 200 | + densenet = densenet121(pretrained=True) |
| 201 | + densenet.eval() |
| 202 | + |
| 203 | + img = Image.open("./images/cat.jpg") |
| 204 | + |
| 205 | + trans_ops = transforms.Compose([ |
| 206 | + transforms.Resize(256), |
| 207 | + transforms.CenterCrop(224), |
| 208 | + transforms.ToTensor(), |
| 209 | + transforms.Normalize(mean=[0.485, 0.456, 0.406], |
| 210 | + std=[0.229, 0.224, 0.225]) |
| 211 | + ]) |
| 212 | + |
| 213 | + images = trans_ops(img).view(-1, 3, 224, 224) |
| 214 | + print(images) |
| 215 | + outputs = densenet(images) |
| 216 | + |
| 217 | + _, predictions = outputs.topk(5, dim=1) |
| 218 | + |
| 219 | + labels = list(map(lambda s: s.strip(), open("./data/imagenet/synset_words.txt").readlines())) |
| 220 | + for idx in predictions.numpy()[0]: |
| 221 | + print("Predicted labels:", labels[idx]) |
| 222 | + |
| 223 | + |
| 224 | + |
| 225 | + |
| 226 | + |
| 227 | + |
| 228 | + |
0 commit comments