Skip to content

Commit 5026cb0

Browse files
authored
add densenet
1 parent e4bd5ac commit 5026cb0

File tree

1 file changed

+228
-0
lines changed

1 file changed

+228
-0
lines changed

CNNs/densenet.py

Lines changed: 228 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,228 @@
1+
"""
2+
DenseNet, original: https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
3+
"""
4+
import re
5+
from collections import OrderedDict
6+
7+
import torch
8+
import torch.nn as nn
9+
import torch.nn.functional as F
10+
import torch.utils.model_zoo as model_zoo
11+
import torchvision.transforms as transforms
12+
13+
from PIL import Image
14+
import numpy as np
15+
16+
model_urls = {
17+
'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
18+
'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
19+
'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
20+
'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
21+
}
22+
23+
24+
class _DenseLayer(nn.Sequential):
25+
"""Basic unit of DenseBlock (using bottleneck layer) """
26+
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
27+
super(_DenseLayer, self).__init__()
28+
self.add_module("norm1", nn.BatchNorm2d(num_input_features))
29+
self.add_module("relu1", nn.ReLU(inplace=True))
30+
self.add_module("conv1", nn.Conv2d(num_input_features, bn_size*growth_rate,
31+
kernel_size=1, stride=1, bias=False))
32+
self.add_module("norm2", nn.BatchNorm2d(bn_size*growth_rate))
33+
self.add_module("relu2", nn.ReLU(inplace=True))
34+
self.add_module("conv2", nn.Conv2d(bn_size*growth_rate, growth_rate,
35+
kernel_size=3, stride=1, padding=1, bias=False))
36+
self.drop_rate = drop_rate
37+
38+
def forward(self, x):
39+
new_features = super(_DenseLayer, self).forward(x)
40+
if self.drop_rate > 0:
41+
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
42+
return torch.cat([x, new_features], 1)
43+
44+
class _DenseBlock(nn.Sequential):
45+
"""DenseBlock"""
46+
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
47+
super(_DenseBlock, self).__init__()
48+
for i in range(num_layers):
49+
layer = _DenseLayer(num_input_features+i*growth_rate, growth_rate, bn_size,
50+
drop_rate)
51+
self.add_module("denselayer%d" % (i+1,), layer)
52+
53+
54+
class _Transition(nn.Sequential):
55+
"""Transition layer between two adjacent DenseBlock"""
56+
def __init__(self, num_input_feature, num_output_features):
57+
super(_Transition, self).__init__()
58+
self.add_module("norm", nn.BatchNorm2d(num_input_feature))
59+
self.add_module("relu", nn.ReLU(inplace=True))
60+
self.add_module("conv", nn.Conv2d(num_input_feature, num_output_features,
61+
kernel_size=1, stride=1, bias=False))
62+
self.add_module("pool", nn.AvgPool2d(2, stride=2))
63+
64+
65+
class DenseNet(nn.Module):
66+
"DenseNet-BC model"
67+
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,
68+
bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=1000):
69+
"""
70+
:param growth_rate: (int) number of filters used in DenseLayer, `k` in the paper
71+
:param block_config: (list of 4 ints) number of layers in each DenseBlock
72+
:param num_init_features: (int) number of filters in the first Conv2d
73+
:param bn_size: (int) the factor using in the bottleneck layer
74+
:param compression_rate: (float) the compression rate used in Transition Layer
75+
:param drop_rate: (float) the drop rate after each DenseLayer
76+
:param num_classes: (int) number of classes for classification
77+
"""
78+
super(DenseNet, self).__init__()
79+
# first Conv2d
80+
self.features = nn.Sequential(OrderedDict([
81+
("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
82+
("norm0", nn.BatchNorm2d(num_init_features)),
83+
("relu0", nn.ReLU(inplace=True)),
84+
("pool0", nn.MaxPool2d(3, stride=2, padding=1))
85+
]))
86+
87+
# DenseBlock
88+
num_features = num_init_features
89+
for i, num_layers in enumerate(block_config):
90+
block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)
91+
self.features.add_module("denseblock%d" % (i + 1), block)
92+
num_features += num_layers*growth_rate
93+
if i != len(block_config) - 1:
94+
transition = _Transition(num_features, int(num_features*compression_rate))
95+
self.features.add_module("transition%d" % (i + 1), transition)
96+
num_features = int(num_features * compression_rate)
97+
98+
# final bn+ReLU
99+
self.features.add_module("norm5", nn.BatchNorm2d(num_features))
100+
self.features.add_module("relu5", nn.ReLU(inplace=True))
101+
102+
# classification layer
103+
self.classifier = nn.Linear(num_features, num_classes)
104+
105+
# params initialization
106+
for m in self.modules():
107+
if isinstance(m, nn.Conv2d):
108+
nn.init.kaiming_normal_(m.weight)
109+
elif isinstance(m, nn.BatchNorm2d):
110+
nn.init.constant_(m.bias, 0)
111+
nn.init.constant_(m.weight, 1)
112+
elif isinstance(m, nn.Linear):
113+
nn.init.constant_(m.bias, 0)
114+
115+
def forward(self, x):
116+
features = self.features(x)
117+
out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)
118+
out = self.classifier(out)
119+
return out
120+
121+
class DenseNet_MNIST(nn.Module):
122+
"""DenseNet for MNIST dataset"""
123+
def __init__(self, growth_rate=12, block_config=(6, 6, 6), num_init_features=16,
124+
bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=10):
125+
"""
126+
:param growth_rate: (int) number of filters used in DenseLayer, `k` in the paper
127+
:param block_config: (list of 2 ints) number of layers in each DenseBlock
128+
:param num_init_features: (int) number of filters in the first Conv2d
129+
:param bn_size: (int) the factor using in the bottleneck layer
130+
:param compression_rate: (float) the compression rate used in Transition Layer
131+
:param drop_rate: (float) the drop rate after each DenseLayer
132+
:param num_classes: (int) number of classes for classification
133+
"""
134+
super(DenseNet_MNIST, self).__init__()
135+
# first Conv2d
136+
self.features = nn.Sequential(OrderedDict([
137+
("conv0", nn.Conv2d(1, num_init_features, kernel_size=3, stride=1, padding=1, bias=False)),
138+
("norm0", nn.BatchNorm2d(num_init_features)),
139+
("relu0", nn.ReLU(inplace=True)),
140+
]))
141+
142+
# DenseBlock
143+
num_features = num_init_features
144+
for i, num_layers in enumerate(block_config):
145+
block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)
146+
self.features.add_module("denseblock%d" % (i + 1), block)
147+
num_features += num_layers * growth_rate
148+
if i != len(block_config) - 1:
149+
transition = _Transition(num_features, int(num_features * compression_rate))
150+
self.features.add_module("transition%d" % (i + 1), transition)
151+
num_features = int(num_features * compression_rate)
152+
153+
# final bn+ReLU
154+
self.features.add_module("norm5", nn.BatchNorm2d(num_features))
155+
self.features.add_module("relu5", nn.ReLU(inplace=True))
156+
157+
# classification layer
158+
self.classifier = nn.Linear(num_features, num_classes)
159+
160+
# params initialization
161+
for m in self.modules():
162+
if isinstance(m, nn.Conv2d):
163+
nn.init.kaiming_normal_(m.weight)
164+
elif isinstance(m, nn.BatchNorm2d):
165+
nn.init.constant_(m.bias, 0)
166+
nn.init.constant_(m.weight, 1)
167+
elif isinstance(m, nn.Linear):
168+
nn.init.constant_(m.bias, 0)
169+
170+
def forward(self, x):
171+
features = self.features(x)
172+
out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)
173+
out = self.classifier(out)
174+
return out
175+
176+
177+
def densenet121(pretrained=False, **kwargs):
178+
"""DenseNet121"""
179+
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),
180+
**kwargs)
181+
182+
if pretrained:
183+
# '.'s are no longer allowed in module names, but pervious _DenseLayer
184+
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
185+
# They are also in the checkpoints in model_urls. This pattern is used
186+
# to find such keys.
187+
pattern = re.compile(
188+
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
189+
state_dict = model_zoo.load_url(model_urls['densenet121'])
190+
for key in list(state_dict.keys()):
191+
res = pattern.match(key)
192+
if res:
193+
new_key = res.group(1) + res.group(2)
194+
state_dict[new_key] = state_dict[key]
195+
del state_dict[key]
196+
model.load_state_dict(state_dict)
197+
return model
198+
199+
if __name__ == "__main__":
200+
densenet = densenet121(pretrained=True)
201+
densenet.eval()
202+
203+
img = Image.open("./images/cat.jpg")
204+
205+
trans_ops = transforms.Compose([
206+
transforms.Resize(256),
207+
transforms.CenterCrop(224),
208+
transforms.ToTensor(),
209+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
210+
std=[0.229, 0.224, 0.225])
211+
])
212+
213+
images = trans_ops(img).view(-1, 3, 224, 224)
214+
print(images)
215+
outputs = densenet(images)
216+
217+
_, predictions = outputs.topk(5, dim=1)
218+
219+
labels = list(map(lambda s: s.strip(), open("./data/imagenet/synset_words.txt").readlines()))
220+
for idx in predictions.numpy()[0]:
221+
print("Predicted labels:", labels[idx])
222+
223+
224+
225+
226+
227+
228+

0 commit comments

Comments
 (0)