From 6a26e543a38663ffcef0fd03fa2b3fff6ac5dcdc Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Mon, 17 Apr 2023 22:18:14 -0400 Subject: [PATCH 01/16] Creado mediante Colaboratory --- AutoGPT.ipynb | 313 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 313 insertions(+) create mode 100644 AutoGPT.ipynb diff --git a/AutoGPT.ipynb b/AutoGPT.ipynb new file mode 100644 index 0000000..a08803e --- /dev/null +++ b/AutoGPT.ipynb @@ -0,0 +1,313 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WId1soeCTrje" + }, + "source": [ + "# AUTO GPT\n", + "Repositorio GITHUB: https://github.com/Torantulino/Auto-GPT.\n", + "\n", + "Creador de la hoja de Colab: **Álex Goia - Youtube: alexgoiadev**\n", + "\n", + "*Auto-GPT es una aplicación experimental de código abierto que muestra las capacidades del modelo de lenguaje GPT-4. Este programa, impulsado por GPT-4 , encadena los “pensamientos” de LLM para lograr de forma autónoma cualquier objetivo que te hayas fijado.*" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PbQp5imIT2mf" + }, + "source": [ + "## Añade tu clave de openai\n", + "Aquí puedes ver cómo: https://www.youtube.com/watch?v=3JE6-_1wYBs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "IFbGo6miQjl-" + }, + "outputs": [], + "source": [ + "import os\n", + "api_key = \"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\" #@param {type:\"string\"}\n", + "os.environ[\"OPENAI_API_KEY\"] = api_key\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bYu5dgXCbUrj" + }, + "source": [ + "## *Instalación* 🍹\n", + "Instalamos repositorio y las dependencias necesarias" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "kKycBEp5THBT", + "outputId": "805596c2-3f56-4a72-d223-334c9d6279d1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cloning into 'Auto-GPT'...\n", + "remote: Enumerating objects: 4053, done.\u001b[K\n", + "remote: Counting objects: 100% (8/8), done.\u001b[K\n", + "remote: Compressing objects: 100% (8/8), done.\u001b[K\n", + "remote: Total 4053 (delta 0), reused 5 (delta 0), pack-reused 4045\u001b[K\n", + "Receiving objects: 100% (4053/4053), 1.03 MiB | 5.16 MiB/s, done.\n", + "Resolving deltas: 100% (2694/2694), done.\n", + "/content/Auto-GPT\n", + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 1)) (4.11.2)\n", + "Requirement already satisfied: colorama==0.4.6 in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 2)) (0.4.6)\n", + "Requirement already satisfied: openai==0.27.2 in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 3)) (0.27.2)\n", + "Requirement already satisfied: playsound==1.2.2 in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 4)) (1.2.2)\n", + "Requirement already satisfied: python-dotenv==1.0.0 in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 5)) (1.0.0)\n", + "Requirement already satisfied: pyyaml==6.0 in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 6)) (6.0)\n", + "Requirement already satisfied: readability-lxml==0.8.1 in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 7)) (0.8.1)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 8)) (2.28.2)\n", + "Requirement already satisfied: tiktoken==0.3.3 in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 9)) (0.3.3)\n", + "Requirement already satisfied: gTTS==2.3.1 in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 10)) (2.3.1)\n", + "Requirement already satisfied: docker in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 11)) (6.0.1)\n", + "Requirement already satisfied: duckduckgo-search in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 12)) (2.8.6)\n", + "Requirement already satisfied: google-api-python-client in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 13)) (2.84.0)\n", + "Requirement already satisfied: pinecone-client==2.2.1 in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 14)) (2.2.1)\n", + "Requirement already satisfied: redis in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 15)) (4.5.4)\n", + "Requirement already satisfied: orjson in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 16)) (3.8.10)\n", + "Requirement already satisfied: Pillow in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 17)) (8.4.0)\n", + "Requirement already satisfied: selenium in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 18)) (4.8.3)\n", + "Requirement already satisfied: webdriver-manager in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 19)) (3.8.6)\n", + "Requirement already satisfied: coverage in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 20)) (7.2.3)\n", + "Requirement already satisfied: flake8 in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 21)) (6.0.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 22)) (1.22.4)\n", + "Requirement already satisfied: pre-commit in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 23)) (3.2.2)\n", + "Requirement already satisfied: black in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 24)) (23.3.0)\n", + "Requirement already satisfied: sourcery in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 25)) (1.2.0)\n", + "Requirement already satisfied: isort in /usr/local/lib/python3.9/dist-packages (from -r requirements.txt (line 26)) (5.12.0)\n", + "Requirement already satisfied: aiohttp in /usr/local/lib/python3.9/dist-packages (from openai==0.27.2->-r requirements.txt (line 3)) (3.8.4)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.9/dist-packages (from openai==0.27.2->-r requirements.txt (line 3)) (4.65.0)\n", + "Requirement already satisfied: lxml in /usr/local/lib/python3.9/dist-packages (from readability-lxml==0.8.1->-r requirements.txt (line 7)) (4.9.2)\n", + "Requirement already satisfied: chardet in /usr/local/lib/python3.9/dist-packages (from readability-lxml==0.8.1->-r requirements.txt (line 7)) (4.0.0)\n", + "Requirement already satisfied: cssselect in /usr/local/lib/python3.9/dist-packages (from readability-lxml==0.8.1->-r requirements.txt (line 7)) (1.2.0)\n", + "Requirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.9/dist-packages (from tiktoken==0.3.3->-r requirements.txt (line 9)) (2022.10.31)\n", + "Requirement already satisfied: click<8.2,>=7.1 in /usr/local/lib/python3.9/dist-packages (from gTTS==2.3.1->-r requirements.txt (line 10)) (8.1.3)\n", + "Requirement already satisfied: urllib3>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from pinecone-client==2.2.1->-r requirements.txt (line 14)) (1.26.15)\n", + "Requirement already satisfied: typing-extensions>=3.7.4 in /usr/local/lib/python3.9/dist-packages (from pinecone-client==2.2.1->-r requirements.txt (line 14)) (4.5.0)\n", + "Requirement already satisfied: python-dateutil>=2.5.3 in /usr/local/lib/python3.9/dist-packages (from pinecone-client==2.2.1->-r requirements.txt (line 14)) (2.8.2)\n", + "Requirement already satisfied: dnspython>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from pinecone-client==2.2.1->-r requirements.txt (line 14)) (2.3.0)\n", + "Requirement already satisfied: loguru>=0.5.0 in /usr/local/lib/python3.9/dist-packages (from pinecone-client==2.2.1->-r requirements.txt (line 14)) (0.7.0)\n", + "Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.9/dist-packages (from beautifulsoup4->-r requirements.txt (line 1)) (2.4)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->-r requirements.txt (line 8)) (3.4)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.9/dist-packages (from requests->-r requirements.txt (line 8)) (2.0.12)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->-r requirements.txt (line 8)) (2022.12.7)\n", + "Requirement already satisfied: packaging>=14.0 in /usr/local/lib/python3.9/dist-packages (from docker->-r requirements.txt (line 11)) (23.0)\n", + "Requirement already satisfied: websocket-client>=0.32.0 in /usr/local/lib/python3.9/dist-packages (from docker->-r requirements.txt (line 11)) (1.5.1)\n", + "Requirement already satisfied: httplib2<1dev,>=0.15.0 in /usr/local/lib/python3.9/dist-packages (from google-api-python-client->-r requirements.txt (line 13)) (0.21.0)\n", + "Requirement already satisfied: google-auth<3.0.0dev,>=1.19.0 in /usr/local/lib/python3.9/dist-packages (from google-api-python-client->-r requirements.txt (line 13)) (2.17.2)\n", + "Requirement already satisfied: uritemplate<5,>=3.0.1 in /usr/local/lib/python3.9/dist-packages (from google-api-python-client->-r requirements.txt (line 13)) (4.1.1)\n", + "Requirement already satisfied: google-auth-httplib2>=0.1.0 in /usr/local/lib/python3.9/dist-packages (from google-api-python-client->-r requirements.txt (line 13)) (0.1.0)\n", + "Requirement already satisfied: google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5 in /usr/local/lib/python3.9/dist-packages (from google-api-python-client->-r requirements.txt (line 13)) (2.11.0)\n", + "Requirement already satisfied: async-timeout>=4.0.2 in /usr/local/lib/python3.9/dist-packages (from redis->-r requirements.txt (line 15)) (4.0.2)\n", + "Requirement already satisfied: trio~=0.17 in /usr/local/lib/python3.9/dist-packages (from selenium->-r requirements.txt (line 18)) (0.22.0)\n", + "Requirement already satisfied: trio-websocket~=0.9 in /usr/local/lib/python3.9/dist-packages (from selenium->-r requirements.txt (line 18)) (0.10.2)\n", + "Requirement already satisfied: pycodestyle<2.11.0,>=2.10.0 in /usr/local/lib/python3.9/dist-packages (from flake8->-r requirements.txt (line 21)) (2.10.0)\n", + "Requirement already satisfied: mccabe<0.8.0,>=0.7.0 in /usr/local/lib/python3.9/dist-packages (from flake8->-r requirements.txt (line 21)) (0.7.0)\n", + "Requirement already satisfied: pyflakes<3.1.0,>=3.0.0 in /usr/local/lib/python3.9/dist-packages (from flake8->-r requirements.txt (line 21)) (3.0.1)\n", + "Requirement already satisfied: identify>=1.0.0 in /usr/local/lib/python3.9/dist-packages (from pre-commit->-r requirements.txt (line 23)) (2.5.22)\n", + "Requirement already satisfied: nodeenv>=0.11.1 in /usr/local/lib/python3.9/dist-packages (from pre-commit->-r requirements.txt (line 23)) (1.7.0)\n", + "Requirement already satisfied: virtualenv>=20.10.0 in /usr/local/lib/python3.9/dist-packages (from pre-commit->-r requirements.txt (line 23)) (20.21.0)\n", + "Requirement already satisfied: cfgv>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from pre-commit->-r requirements.txt (line 23)) (3.3.1)\n", + "Requirement already satisfied: pathspec>=0.9.0 in /usr/local/lib/python3.9/dist-packages (from black->-r requirements.txt (line 24)) (0.11.1)\n", + "Requirement already satisfied: platformdirs>=2 in /usr/local/lib/python3.9/dist-packages (from black->-r requirements.txt (line 24)) (3.2.0)\n", + "Requirement already satisfied: mypy-extensions>=0.4.3 in /usr/local/lib/python3.9/dist-packages (from black->-r requirements.txt (line 24)) (1.0.0)\n", + "Requirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.9/dist-packages (from black->-r requirements.txt (line 24)) (2.0.1)\n", + "Requirement already satisfied: protobuf!=3.20.0,!=3.20.1,!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.19.5 in /usr/local/lib/python3.9/dist-packages (from google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5->google-api-python-client->-r requirements.txt (line 13)) (3.20.3)\n", + "Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.56.2 in /usr/local/lib/python3.9/dist-packages (from google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5->google-api-python-client->-r requirements.txt (line 13)) (1.59.0)\n", + "Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.9/dist-packages (from google-auth<3.0.0dev,>=1.19.0->google-api-python-client->-r requirements.txt (line 13)) (4.9)\n", + "Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.9/dist-packages (from google-auth<3.0.0dev,>=1.19.0->google-api-python-client->-r requirements.txt (line 13)) (1.16.0)\n", + "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from google-auth<3.0.0dev,>=1.19.0->google-api-python-client->-r requirements.txt (line 13)) (5.3.0)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.9/dist-packages (from google-auth<3.0.0dev,>=1.19.0->google-api-python-client->-r requirements.txt (line 13)) (0.2.8)\n", + "Requirement already satisfied: pyparsing!=3.0.0,!=3.0.1,!=3.0.2,!=3.0.3,<4,>=2.4.2 in /usr/local/lib/python3.9/dist-packages (from httplib2<1dev,>=0.15.0->google-api-python-client->-r requirements.txt (line 13)) (3.0.9)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.9/dist-packages (from nodeenv>=0.11.1->pre-commit->-r requirements.txt (line 23)) (67.6.1)\n", + "Requirement already satisfied: outcome in /usr/local/lib/python3.9/dist-packages (from trio~=0.17->selenium->-r requirements.txt (line 18)) (1.2.0)\n", + "Requirement already satisfied: sortedcontainers in /usr/local/lib/python3.9/dist-packages (from trio~=0.17->selenium->-r requirements.txt (line 18)) (2.4.0)\n", + "Requirement already satisfied: async-generator>=1.9 in /usr/local/lib/python3.9/dist-packages (from trio~=0.17->selenium->-r requirements.txt (line 18)) (1.10)\n", + "Requirement already satisfied: sniffio in /usr/local/lib/python3.9/dist-packages (from trio~=0.17->selenium->-r requirements.txt (line 18)) (1.3.0)\n", + "Requirement already satisfied: exceptiongroup>=1.0.0rc9 in /usr/local/lib/python3.9/dist-packages (from trio~=0.17->selenium->-r requirements.txt (line 18)) (1.1.1)\n", + "Requirement already satisfied: attrs>=19.2.0 in /usr/local/lib/python3.9/dist-packages (from trio~=0.17->selenium->-r requirements.txt (line 18)) (22.2.0)\n", + "Requirement already satisfied: wsproto>=0.14 in /usr/local/lib/python3.9/dist-packages (from trio-websocket~=0.9->selenium->-r requirements.txt (line 18)) (1.2.0)\n", + "Requirement already satisfied: PySocks!=1.5.7,<2.0,>=1.5.6 in /usr/local/lib/python3.9/dist-packages (from urllib3>=1.21.1->pinecone-client==2.2.1->-r requirements.txt (line 14)) (1.7.1)\n", + "Requirement already satisfied: distlib<1,>=0.3.6 in /usr/local/lib/python3.9/dist-packages (from virtualenv>=20.10.0->pre-commit->-r requirements.txt (line 23)) (0.3.6)\n", + "Requirement already satisfied: filelock<4,>=3.4.1 in /usr/local/lib/python3.9/dist-packages (from virtualenv>=20.10.0->pre-commit->-r requirements.txt (line 23)) (3.11.0)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.9/dist-packages (from aiohttp->openai==0.27.2->-r requirements.txt (line 3)) (1.3.3)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.9/dist-packages (from aiohttp->openai==0.27.2->-r requirements.txt (line 3)) (1.8.2)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.9/dist-packages (from aiohttp->openai==0.27.2->-r requirements.txt (line 3)) (6.0.4)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.9/dist-packages (from aiohttp->openai==0.27.2->-r requirements.txt (line 3)) (1.3.1)\n", + "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.9/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3.0.0dev,>=1.19.0->google-api-python-client->-r requirements.txt (line 13)) (0.4.8)\n", + "Requirement already satisfied: h11<1,>=0.9.0 in /usr/local/lib/python3.9/dist-packages (from wsproto>=0.14->trio-websocket~=0.9->selenium->-r requirements.txt (line 18)) (0.14.0)\n" + ] + } + ], + "source": [ + "!git clone https://github.com/Torantulino/Auto-GPT \n", + "%cd /content/Auto-GPT \n", + "!pip install -r requirements.txt " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-0kby7V-UhYM" + }, + "source": [ + "## Ejecución ☝" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true, + "base_uri": "https://localhost:8080/" + }, + "id": "WI8y8VvjUlSY", + "outputId": "02c01e85-4584-4210-eff2-b621e6ca5772" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: The file 'auto-gpt.json' does not exist. Local memory would not be saved to a file.\n", + "\u001b[32mWelcome to Auto-GPT! \u001b[0m Enter the name of your AI and its role below. Entering nothing will load defaults.\n", + "\u001b[32mName your AI: \u001b[0m For example, 'Entrepreneur-GPT'\n", + "AI Name: Twitter Trends\n", + "\u001b[94mTwitter Trends here! \u001b[0m I am at your service.\n", + "\u001b[32mDescribe your AI's role: \u001b[0m For example, 'an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth.'\n", + "Twitter Trends is: una inteligencia artificial que encuentre tweets virales sobre tecnología\n", + "\u001b[32mEnter up to 5 goals for your AI: \u001b[0m For example: Increase net worth, Grow Twitter Account, Develop and manage multiple businesses autonomously'\n", + "Enter nothing to load defaults, enter nothing when finished.\n", + "\u001b[94mGoal\u001b[0m 1: Busques 3 tendencias actuales sobre tecnología\n", + "\u001b[94mGoal\u001b[0m 2: Redactes 3 tweets \n", + "\u001b[94mGoal\u001b[0m 3: Listes por pantalla\n", + "\u001b[94mGoal\u001b[0m 4: \n", + "Using memory of type: LocalCache\n", + "\n", + "\u001b[33mTWITTER TRENDS THOUGHTS: \u001b[0m I think I should search for technology trends to find some viral tweets.\n", + "\u001b[33mREASONING: \u001b[0m Searching for the latest trends in technology can help me find viral tweets that are currently circulating on Twitter.\n", + "\u001b[33mPLAN: \u001b[0m\n", + "\u001b[32m- \u001b[0m Perform a Google search to find the latest trends in technology.\n", + "\u001b[32m- \u001b[0m Review the search results to identify viral tweets related to technology.\n", + "\u001b[32m- \u001b[0m Draft three tweets related to technology.\n", + "\u001b[32m- \u001b[0m List the tweets on the screen.\n", + "\u001b[33mCRITICISM: \u001b[0m I need to ensure that the tweets I draft are within the proper social and legal boundaries. I also need to ensure that the selected trends are recent enough to attract attention.\n", + "Attempting to fix JSON by finding outermost brackets \u001b[0m\n", + "\u001b[32mApparently json was fixed. \u001b[0m\n", + "\u001b[36mNEXT ACTION: \u001b[0m COMMAND = \u001b[36mgoogle\u001b[0m ARGUMENTS = \u001b[36m{'input': 'latest technology trends on Twitter'}\u001b[0m\n", + "Enter 'y' to authorise command, 'y -N' to run N continuous commands, 'n' to exit program, or enter feedback for Twitter Trends...\n", + "\u001b[35mInput:\u001b[0m\u001b[33mSYSTEM: \u001b[0m Human feedback:\n", + " \u001b[0m Warning: Failed to parse AI output, attempting to fix.\n", + " If you see this warning frequently, it's likely that your prompt is confusing the AI. Try changing it up slightly.\n", + "\u001b[31mFailed to fix AI output, telling the AI. \u001b[0m \n", + "\u001b[31mError: Invalid JSON\n", + " \u001b[0m Please let me know how I can assist you.\n", + "Attempting to fix JSON by finding outermost brackets \u001b[0m\n", + "\u001b[31mError: Invalid JSON, setting it to empty JSON now.\n", + " \u001b[0m \n", + "\u001b[33mTWITTER TRENDS THOUGHTS: \u001b[0m None\n", + "\u001b[33mREASONING: \u001b[0m None\n", + "\u001b[33mCRITICISM: \u001b[0m None\n", + "Attempting to fix JSON by finding outermost brackets \u001b[0m\n", + "\u001b[31mError: Invalid JSON, setting it to empty JSON now.\n", + " \u001b[0m \n", + "\u001b[36mNEXT ACTION: \u001b[0m COMMAND = \u001b[36mError:\u001b[0m ARGUMENTS = \u001b[36m'dict' object has no attribute 'replace'\u001b[0m\n", + "Enter 'y' to authorise command, 'y -N' to run N continuous commands, 'n' to exit program, or enter feedback for Twitter Trends...\n", + "\u001b[35mInput:\u001b[0my\n", + "\u001b[35m-=-=-=-=-=-=-= COMMAND AUTHORISED BY USER -=-=-=-=-=-=-= \u001b[0m\n", + "\u001b[33mSYSTEM: \u001b[0m Command Error: threw the following error: 'dict' object has no attribute 'replace'\n", + "\u001b[33mTWITTER TRENDS THOUGHTS: \u001b[0m I found an article about the latest technology trends, but it seems a bit too broad for what I'm looking for. Instead, I'll try to find technology trends for a specific industry.\n", + "\u001b[33mREASONING: \u001b[0m Finding technology trends for a specific industry can help me draft tweets on a topic that will be more likely to attract attention from a particular audience.\n", + "\u001b[33mPLAN: \u001b[0m\n", + "\u001b[32m- \u001b[0m Perform a Google search for technology trends related to a specific industry.\n", + "\u001b[32m- \u001b[0m Review the search results to identify viral tweets related to the industry.\n", + "\u001b[32m- \u001b[0m Draft three tweets related to technology and the industry.\n", + "\u001b[32m- \u001b[0m List the tweets on the screen.\n", + "\u001b[33mCRITICISM: \u001b[0m I need to ensure that the tweets I draft are within the proper social and legal boundaries. I also need to ensure that the selected trends are recent enough to attract attention. Additionally, I need to ensure that the technology trends I find are relevant to the industry.\n", + "Attempting to fix JSON by finding outermost brackets \u001b[0m\n", + "\u001b[32mApparently json was fixed. \u001b[0m\n", + "\u001b[36mNEXT ACTION: \u001b[0m COMMAND = \u001b[36mgoogle\u001b[0m ARGUMENTS = \u001b[36m{'input': 'technology trends [industry name] on Twitter'}\u001b[0m\n", + "Enter 'y' to authorise command, 'y -N' to run N continuous commands, 'n' to exit program, or enter feedback for Twitter Trends...\n", + "\u001b[35mInput:\u001b[0my\n", + "\u001b[35m-=-=-=-=-=-=-= COMMAND AUTHORISED BY USER -=-=-=-=-=-=-= \u001b[0m\n", + "\u001b[33mSYSTEM: \u001b[0m Command google returned: [ { \"title\": \"Top Industry Trends on Twitter to Watch in 2023 for Technology Sector ...\", \"href\": \"https://www.globaldata.com/reports/top-industry-trends-on-twitter-to-watch-in-2023-for-technology-sector//", \"body\": \"The \\\"Top Industry Trends on Twitter to Watch in 2023 for Technology Sector\\\" analyzed the top trends on Twitter tracked by GlobalData's Social Media Analytics platform, over the period 1st Jan 2021 - 28 Dec 2022 and identified the list of top six trends, which are shortlisted based on the total posts during the selected period. \\\"Fusion ...\" }, { \"title\": \"Twitter tech trends in 2021 - Protocol\", \"href\": \"https://www.protocol.com/biggest-tech-twitter-trends-2021/", \"body\": \"The biggest tech Twitter trends of 2021. Gary Gensler's top moments on crypto in 2021. China's nationalistic cancel culture was out of control in 2021. The best of the internet in 2021. What tech CEOs said this year (or, earnings calls crunched by AI) The year in enterprise tech. 2021 was a post-cable year. How 2021 changed the way we work forever\" }, { \"title\": \"Twitter Publishes New Industry Trend Reports Based on Rising Areas of ...\", \"href\": \"https://www.socialmediatoday.com/news/twitter-publishes-new-industry-trend-reports-based-on-rising-areas-of-tweet/617317//", \"body\": \"Twitter has published a new range of industry reports, based on rising trends, in order to provide more context as to the key elements of focus among its userbase in each sector.. The new trend reports, which Twitter's collectively calling its 'Birdseye Report', were compiled by Twitter data partners, including Hootsuite, Meltwater, Sprinklr and more.\" }, { \"title\": \"The Top 10 Tech Trends In 2023 Everyone Must Be Ready For - Forbes\", \"href\": \"https://www.forbes.com/sites/bernardmarr/2022/11/21/the-top-10-tech-trends-in-2023-everyone-must-be-ready-for//", \"body\": \"To stay on top of the latest on new and emerging business and tech trends, make sure to subscribe to my newsletter, follow me on Twitter, LinkedIn, and YouTube, and check out my books 'Tech ...\" }, { \"title\": \"Digital Trends (@DigitalTrends) / Twitter\", \"href\": \"https://twitter.com/DigitalTrends/", \"body\": \"Tech for the way we live. | TikTok & Instagram: @DigitalTrends. Portland, OR && New York, NY digitaltrends.com Joined May 2008. 1,266 Following. 1.9M Followers. Tweets. Replies. Media. Likes. Digital Trends's Tweets. ... Digital Trends. The Premier League offers some of the best soccer out there. We're here to tell you how to watch a free ...\" }, { \"title\": \"The Must-Follow Twitter Accounts For the Tech-Minded - Digital Trends\", \"href\": \"https://www.digitaltrends.com/social-media/tech-people-influencers-follow-twitter//", \"body\": \"LinkedIn. Similar to Swisher, Mims reports on and opines about the tech industry for The Wall Street Journal. His Twitter account is filled with news and his opinions about technology trends, and ...\" }, { \"title\": \"5 Twitter Trends for 2022/2023: Latest Predictions According To Experts\", \"href\": \"https://financesonline.com/twitter-trends//", \"body\": \"These are the company itself, market forces or external developments, and trends in social media and social search. It is in the context of these factors that we've identified these Twitter trends. 1. Twitter remains a dominant site for news. A 2018 Pew Research Center study revealed some interesting insights.\" }, { \"title\": \"Twitter list: top ten technology and innovation tweeters\", \"href\": \"https://www.theguardian.com/sustainable-business/twitter-list-technology-innovation-top-ten/", \"body\": \"Winner #indyvoices most influential tech tweeter ∞ UCL ∞ Founder @gotofdn @BCSWomen ∞ Trustee Bletchley Park ∞ Knitter ∞ 4 fab kids ∞ Legendary Punctuation!! Jeff McMahon @jeffmcmahon_chi\" } ]\n", + "\u001b[33mTWITTER TRENDS THOUGHTS: \u001b[0m I found a list of technology trends on Twitter. Now, I need to review the search results to identify viral tweets related to technology.\n", + "\u001b[33mREASONING: \u001b[0m Reviewing the search results to identify viral tweets related to the technology trends found can help me draft tweets that are more relevant and likely to attract attention.\n", + "\u001b[33mPLAN: \u001b[0m\n", + "\u001b[32m- \u001b[0m Browse the website to identify technology trends\\n- Perform a Google search for viral tweets related to the technology trends found.\\n- Draft three tweets inspired by the most popular tweets.\\n- List the tweets on the screen.\n", + "\u001b[33mCRITICISM: \u001b[0m I need to ensure that the selected tweets are recent enough and within the proper social and legal boundaries.\n", + "Attempting to fix JSON by finding outermost brackets \u001b[0m\n", + "\u001b[32mApparently json was fixed. \u001b[0m\n", + "\u001b[36mNEXT ACTION: \u001b[0m COMMAND = \u001b[36mbrowse_website\u001b[0m ARGUMENTS = \u001b[36m{'url': 'https://www.globaldata.com/reports/top-industry-trends-on-twitter-to-watch-in-2023-for-technology-sector/', 'question': 'What are the top technology trends found on Twitter?'}\u001b[0m\n", + "Enter 'y' to authorise command, 'y -N' to run N continuous commands, 'n' to exit program, or enter feedback for Twitter Trends...\n", + "\u001b[35mInput:\u001b[0my\n", + "\u001b[35m-=-=-=-=-=-=-= COMMAND AUTHORISED BY USER -=-=-=-=-=-=-= \u001b[0m\n", + "[WDM] - Downloading: 100% 6.75M/6.75M [00:01<00:00, 6.86MB/s]\n", + "\u001b[33mSYSTEM: \u001b[0m Command browse_website returned: Error: Message: unknown error: cannot find Chrome binary Stacktrace: #0 0x555a3a9d6fe3 #1 0x555a3a715d36 #2 0x555a3a73cf4a #3 0x555a3a73aa9b #4 0x555a3a77caf7 #5 0x555a3a77c11f #6 0x555a3a773693 #7 0x555a3a74603a #8 0x555a3a74717e #9 0x555a3a998dbd #10 0x555a3a99cc6c #11 0x555a3a9a64b0 #12 0x555a3a99dd63 #13 0x555a3a970c35 #14 0x555a3a9c1138 #15 0x555a3a9c12c7 #16 0x555a3a9cf093 #17 0x7f5ec4927609 start_thread\n", + "\u001b[33mTWITTER TRENDS THOUGHTS: \u001b[0m I think I should search for technology trends to find some viral tweets.\n", + "\u001b[33mREASONING: \u001b[0m Searching for the latest trends in technology can help me find viral tweets that are currently circulating on Twitter.\n", + "\u001b[33mPLAN: \u001b[0m\n", + "\u001b[32m- \u001b[0m Perform a Google search to find the latest trends in technology.\\n- Review the search results to identify viral tweets related to technology.\\n- Draft three tweets related to technology.\\n- List the tweets on the screen.\n", + "\u001b[33mCRITICISM: \u001b[0m I need to ensure that the tweets I draft are within the proper social and legal boundaries. I also need to ensure that the selected trends are recent enough to attract attention.\n", + "Attempting to fix JSON by finding outermost brackets \u001b[0m\n", + "\u001b[32mApparently json was fixed. \u001b[0m\n", + "\u001b[36mNEXT ACTION: \u001b[0m COMMAND = \u001b[36mgoogle\u001b[0m ARGUMENTS = \u001b[36m{'input': 'latest technology trends on Twitter'}\u001b[0m\n", + "Enter 'y' to authorise command, 'y -N' to run N continuous commands, 'n' to exit program, or enter feedback for Twitter Trends...\n", + "\u001b[35mInput:\u001b[0m" + ] + } + ], + "source": [ + "!python -m autogpt" + ] + } + ], + "metadata": { + "colab": { + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file From 3a669a4c39c1cbecfeab0a7d2057f0ab11da3a76 Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Tue, 24 Oct 2023 12:55:59 -0300 Subject: [PATCH 02/16] Creado mediante Colaboratory --- proyectoIAPrediccion.ipynb | 219 +++++++++++++++++++++++++++++++++++++ 1 file changed, 219 insertions(+) create mode 100644 proyectoIAPrediccion.ipynb diff --git a/proyectoIAPrediccion.ipynb b/proyectoIAPrediccion.ipynb new file mode 100644 index 0000000..3d923e0 --- /dev/null +++ b/proyectoIAPrediccion.ipynb @@ -0,0 +1,219 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "authorship_tag": "ABX9TyMwjdk5Ut+cy6M0j8j+tK6i", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import plotly.express as px\n", + "from wordcloud import WordCloud\n", + "import geopandas as gpd" + ], + "metadata": { + "id": "H7kZjC_GUZZd" + }, + "execution_count": 20, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "9_FId2wvQAgd" + }, + "outputs": [], + "source": [ + "\n", + "# Leer los datos\n", + "GES_Data = \"global_electricity_statistics_cleaned_2.csv\"\n", + "new_data = pd.read_csv(GES_Data)\n" + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Ver los primeros datos\n", + "print(data.head())\n", + "\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "lWY6qwmkQ2PL", + "outputId": "8b34e09a-3d35-419c-e717-996503396768" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Country Latitude Longitude Features Region \\\n", + "0 Afghanistan 34.5328 69.1658 net generation Asia & Oceania \n", + "1 Afghanistan 34.5328 69.1658 net consumption Asia & Oceania \n", + "2 Afghanistan 34.5328 69.1658 installed capacity Asia & Oceania \n", + "3 Afghanistan 34.5328 69.1658 distribution losses Asia & Oceania \n", + "4 Afghanistan 34.5328 69.1658 imports Asia & Oceania \n", + "\n", + " 1980 1981 1982 1983 1984 ... 2012 2013 2014 \\\n", + "0 0.94200 0.99200 0.95200 1.00 1.01900 ... 0.8820 1.1034 1.1590 \n", + "1 0.87606 0.92256 0.88536 0.93 0.94767 ... 3.5490 4.2284 4.3490 \n", + "2 0.37400 0.42700 0.42700 0.45 0.45000 ... 0.5871 0.6011 0.5861 \n", + "3 0.06594 0.06944 0.06664 0.07 0.07133 ... 0.4040 0.4900 0.5200 \n", + "4 0.00000 0.00000 0.00000 0.00 0.00000 ... 3.0710 3.6150 3.7100 \n", + "\n", + " 2015 2016 2017 2018 2019 2020 2021 \n", + "0 1.1832 1.2147 1.26426 1.16493 1.07269 0.80728 0.829094 \n", + "1 4.4402 4.9577 5.26056 5.51093 5.31469 5.28916 5.530597 \n", + "2 0.5871 0.6341 0.63640 0.76740 0.77640 0.77640 0.776400 \n", + "3 0.5220 0.5900 0.61500 0.64000 0.67000 0.67000 0.666854 \n", + "4 3.7790 4.3330 4.61130 4.98600 4.91200 5.15188 5.368357 \n", + "\n", + "[5 rows x 47 columns]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Reordenar los niveles de 'Features' en la secuencia deseada\n", + "feature_order = [\"imports\", \"exports\", \"net imports\", \"installed capacity\", \"net generation\", \"net consumption\", \"distribution losses\"]\n", + "new_data['Features'] = pd.Categorical(new_data['Features'], categories=feature_order, ordered=True)\n", + "\n", + "custom_palette = [\"red\", \"blue\", \"green\",\"purple\", \"#FF7F00\", \"cyan\", \"brown\"]\n", + "\n", + "# Agrupar los datos por 'Year' y 'Region' y calcular la suma de valores\n", + "region_features = new_data.groupby(['Year', 'Region', 'Features']).agg(Total_Value=('Value', 'sum')).reset_index()\n", + "\n", + "# Establecer el estilo de los gráficos en Seaborn a \"whitegrid\"\n", + "sns.set_style(\"whitegrid\")\n", + "\n", + "# Crear el gráfico de líneas con la paleta de colores personalizada\n", + "sns.lineplot(data=region_features, x='Year', y='Total_Value', hue='Region')\n", + "plt.title('Total Values by Region Over Time')\n", + "plt.xlabel('Year')\n", + "plt.ylabel('Total')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 390 + }, + "id": "cYzGOiNeVfY7", + "outputId": "9c2ec83e-7518-4d20-eba9-35e2eccfada9" + }, + "execution_count": 26, + "outputs": [ + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# Agrupar los datos por 'Year' y 'Region' y calcular la suma de valores\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mregion_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Region'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Features'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0magg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mTotal_Value\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Value'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sum'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;31m# Establecer el estilo de los gráficos en Seaborn a \"whitegrid\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mgroupby\u001b[0;34m(self, by, axis, level, as_index, sort, group_keys, squeeze, observed, dropna)\u001b[0m\n\u001b[1;32m 8400\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_axis_number\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8401\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 8402\u001b[0;31m return DataFrameGroupBy(\n\u001b[0m\u001b[1;32m 8403\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8404\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mby\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort, group_keys, squeeze, observed, mutated, dropna)\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mpandas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrouper\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_grouper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 965\u001b[0;31m grouper, exclusions, obj = get_grouper(\n\u001b[0m\u001b[1;32m 966\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 967\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/grouper.py\u001b[0m in \u001b[0;36mget_grouper\u001b[0;34m(obj, key, axis, level, sort, observed, mutated, validate, dropna)\u001b[0m\n\u001b[1;32m 886\u001b[0m \u001b[0min_axis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 888\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgpr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 889\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgpr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mGrouper\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mgpr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkey\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 890\u001b[0m \u001b[0;31m# Add key to exclusions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "custom_palette = [\"#E41A1C\", \"#377EB8\", \"#4DAF4A\", \"#984EA3\", \"#FF7F00\", \"#FFFF33\", \"#A65628\"]\n", + "\n", + "# Filter the data for the past five years and 'exports'\n", + "export_data = new_data[(new_data['Features'] == \"exports\") & (new_data['Year'] >= (new_data['Year'].max() - 4))]\n", + "\n", + "# Group by 'Country' and calculate the total export value\n", + "top_exporting_countries = export_data.groupby('Country')['Value'].sum().reset_index().sort_values(by='Value', ascending=False).head(10)\n", + "\n", + "# Plotting\n", + "plt.figure(figsize=(10,6))\n", + "sns.barplot(x='Value', y='Country', data=top_exporting_countries, palette=custom_palette)\n", + "print(top_exporting_countries)\n", + "\n", + "plt.xlabel('Total Exports')\n", + "plt.ylabel('Country')\n", + "plt.title('Exports - Last 5 Years - Top Ten Countries')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 512 + }, + "id": "pEGfENwGVhHK", + "outputId": "2dc0d837-10ef-4939-a46a-d36246f692a7" + }, + "execution_count": 27, + "outputs": [ + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3801\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3802\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m# Filter the data for the past five years and 'exports'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mexport_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Features'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"exports\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;31m# Group by 'Country' and calculate the total export value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3805\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3806\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3807\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3808\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3809\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3802\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3804\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3805\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3806\u001b[0m \u001b[0;31m# If we have a listlike key, _check_indexing_error will raise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'" + ] + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "RQfTp3HSXLqQ" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file From afbe2d9301bc0ee934fde49418f24c8caa6fb867 Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Tue, 24 Oct 2023 14:40:11 -0300 Subject: [PATCH 03/16] Creado mediante Colaboratory --- proyectoIAPrediccion1.ipynb | 427 ++++++++++++++++++++++++++++++++++++ 1 file changed, 427 insertions(+) create mode 100644 proyectoIAPrediccion1.ipynb diff --git a/proyectoIAPrediccion1.ipynb b/proyectoIAPrediccion1.ipynb new file mode 100644 index 0000000..545a6aa --- /dev/null +++ b/proyectoIAPrediccion1.ipynb @@ -0,0 +1,427 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "authorship_tag": "ABX9TyO/G3k4216Shcdk+qsg6VGs", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import plotly.express as px\n", + "from wordcloud import WordCloud\n", + "import geopandas as gpd" + ], + "metadata": { + "id": "H7kZjC_GUZZd" + }, + "execution_count": 11, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "9_FId2wvQAgd" + }, + "outputs": [], + "source": [ + "\n", + "# Leer los datos\n", + "GES_Data = \"global_electricity_statistics_cleaned_2.csv\"\n", + "data = pd.read_csv(GES_Data)\n" + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Ver los primeros datos\n", + "print(data.head())\n", + "data[\"Features\"].value_counts()\n", + "\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "lWY6qwmkQ2PL", + "outputId": "c63ded1b-f8ec-4a17-8e63-870d6b8494b1" + }, + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Country Latitude Longitude Features Region \\\n", + "0 Afghanistan 34.5328 69.1658 net generation Asia & Oceania \n", + "1 Afghanistan 34.5328 69.1658 net consumption Asia & Oceania \n", + "2 Afghanistan 34.5328 69.1658 installed capacity Asia & Oceania \n", + "3 Afghanistan 34.5328 69.1658 distribution losses Asia & Oceania \n", + "4 Afghanistan 34.5328 69.1658 imports Asia & Oceania \n", + "\n", + " 1980 1981 1982 1983 1984 ... 2012 2013 2014 \\\n", + "0 0.94200 0.99200 0.95200 1.00 1.01900 ... 0.8820 1.1034 1.1590 \n", + "1 0.87606 0.92256 0.88536 0.93 0.94767 ... 3.5490 4.2284 4.3490 \n", + "2 0.37400 0.42700 0.42700 0.45 0.45000 ... 0.5871 0.6011 0.5861 \n", + "3 0.06594 0.06944 0.06664 0.07 0.07133 ... 0.4040 0.4900 0.5200 \n", + "4 0.00000 0.00000 0.00000 0.00 0.00000 ... 3.0710 3.6150 3.7100 \n", + "\n", + " 2015 2016 2017 2018 2019 2020 2021 \n", + "0 1.1832 1.2147 1.26426 1.16493 1.07269 0.80728 0.829094 \n", + "1 4.4402 4.9577 5.26056 5.51093 5.31469 5.28916 5.530597 \n", + "2 0.5871 0.6341 0.63640 0.76740 0.77640 0.77640 0.776400 \n", + "3 0.5220 0.5900 0.61500 0.64000 0.67000 0.67000 0.666854 \n", + "4 3.7790 4.3330 4.61130 4.98600 4.91200 5.15188 5.368357 \n", + "\n", + "[5 rows x 47 columns]\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "net generation 218\n", + "net consumption 218\n", + "installed capacity 218\n", + "distribution losses 218\n", + "imports 218\n", + "exports 218\n", + "net imports 218\n", + "Name: Features, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "year_columns = [str(year) for year in range(1980, 2022)]\n", + "\n", + "# Agrupa los datos por 'Region' y calcula la suma y el promedio\n", + "grouped_data = data.groupby('Region')[year_columns].agg(['sum', 'mean'])\n", + "\n", + "# Para obtener un DataFrame con multi-índice en las columnas\n", + "grouped_data.columns = ['_'.join(col) for col in grouped_data.columns.values]\n", + "\n", + "# Selecciona las columnas con las sumas de los años\n", + "sum_columns = [f'{year}_sum' for year in range(1980, 2022)]\n", + "\n", + "# Crea una nueva variable con solo los continentes y las sumas de cada año\n", + "continent_data = grouped_data[sum_columns].copy()\n", + "\n", + "# Agrega las columnas 'Latitude', 'Longitude', 'Features'\n", + "\n", + "continent_data['Latitude'] = data['Latitude']\n", + "continent_data['Longitude'] = data['Longitude']\n", + "continent_data['Features'] = data['Features']\n", + "\n", + "continent_data.describe()\n", + "print(continent_data.head())\n" + ], + "metadata": { + "id": "9MZcbtw9t95l", + "outputId": "b464bd51-0c3e-453b-cb7f-e0a6646be04d", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 36, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " 1980_sum 1981_sum 1982_sum 1983_sum \\\n", + "Region \n", + "Africa 432.541850 460.785250 476.397650 495.354050 \n", + "Asia & Oceania 2864.244935 2957.279435 3090.396113 3287.500102 \n", + "Central & South America 697.387480 719.348200 762.810040 816.690080 \n", + "Eurasia 0.000000 0.000000 0.000000 0.000000 \n", + "Europe 3855.648000 3889.148000 3925.063000 4094.305000 \n", + "\n", + " 1984_sum 1985_sum 1986_sum 1987_sum \\\n", + "Region \n", + "Africa 538.361450 574.37485 607.126250 630.01165 \n", + "Asia & Oceania 3516.871552 3737.00275 3941.733996 4261.47292 \n", + "Central & South America 877.816480 920.21792 1012.326560 1059.79848 \n", + "Eurasia 0.000000 0.00000 0.000000 0.00000 \n", + "Europe 4290.297000 4485.28900 4582.173000 4759.51300 \n", + "\n", + " 1988_sum 1989_sum ... 2015_sum \\\n", + "Region ... \n", + "Africa 652.186050 677.490950 ... 1785.301548 \n", + "Asia & Oceania 4589.085735 4899.169925 ... 23001.975032 \n", + "Central & South America 1110.278820 1145.412200 ... 2950.511411 \n", + "Eurasia 0.000000 0.000000 ... 3289.639862 \n", + "Europe 4882.790000 5079.253600 ... 9362.665974 \n", + "\n", + " 2016_sum 2017_sum 2018_sum \\\n", + "Region \n", + "Africa 1815.972032 1891.433850 1937.653882 \n", + "Asia & Oceania 24277.047884 25762.027981 27169.634214 \n", + "Central & South America 3004.202061 3023.586834 3074.163513 \n", + "Eurasia 3340.068009 3367.173985 3400.626580 \n", + "Europe 9436.487950 9495.169674 9487.451696 \n", + "\n", + " 2019_sum 2020_sum 2021_sum Latitude \\\n", + "Region \n", + "Africa 1962.910147 1925.467996 1995.010801 NaN \n", + "Asia & Oceania 28150.420606 28902.810243 30933.492914 NaN \n", + "Central & South America 3080.025156 3081.323953 3232.877560 NaN \n", + "Eurasia 3436.885435 3415.806547 3613.188172 NaN \n", + "Europe 9471.206998 9375.803522 9664.609814 NaN \n", + "\n", + " Longitude Features \n", + "Region \n", + "Africa NaN NaN \n", + "Asia & Oceania NaN NaN \n", + "Central & South America NaN NaN \n", + "Eurasia NaN NaN \n", + "Europe NaN NaN \n", + "\n", + "[5 rows x 45 columns]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Crea una figura y un eje\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "\n", + "# Crea un gráfico de barras con 'Features' en el eje x y la suma de cada año en el eje y, coloreado por continente\n", + "sns.barplot(data=continent_data, x='Features', y='sum', hue='Region', ax=ax)\n", + "\n", + "# Muestra el gráfico\n", + "plt.show()" + ], + "metadata": { + "id": "3HyCu76yuvpS", + "outputId": "9c329824-c2a2-46d1-e87b-5a4f03cb98df", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 901 + } + }, + "execution_count": 20, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Crea un gráfico de barras con 'Features' en el eje x y la suma de cada año en el eje y, coloreado por continente\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbarplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcontinent_data\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Features'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'sum'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Region'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# Muestra el gráfico\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/seaborn/categorical.py\u001b[0m in \u001b[0;36mbarplot\u001b[0;34m(data, x, y, hue, order, hue_order, estimator, errorbar, n_boot, units, seed, orient, color, palette, saturation, width, errcolor, errwidth, capsize, dodge, ci, ax, **kwargs)\u001b[0m\n\u001b[1;32m 2753\u001b[0m \u001b[0mestimator\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"size\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2754\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2755\u001b[0;31m plotter = _BarPlotter(x, y, hue, data, order, hue_order,\n\u001b[0m\u001b[1;32m 2756\u001b[0m \u001b[0mestimator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrorbar\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mn_boot\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munits\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mseed\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2757\u001b[0m \u001b[0morient\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpalette\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msaturation\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/seaborn/categorical.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, x, y, hue, data, order, hue_order, estimator, errorbar, n_boot, units, seed, orient, color, palette, saturation, width, errcolor, errwidth, capsize, dodge)\u001b[0m\n\u001b[1;32m 1528\u001b[0m errcolor, errwidth, capsize, dodge):\n\u001b[1;32m 1529\u001b[0m \u001b[0;34m\"\"\"Initialize the plotter.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1530\u001b[0;31m self.establish_variables(x, y, hue, data, orient,\n\u001b[0m\u001b[1;32m 1531\u001b[0m order, hue_order, units)\n\u001b[1;32m 1532\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mestablish_colors\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcolor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpalette\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msaturation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/seaborn/categorical.py\u001b[0m in \u001b[0;36mestablish_variables\u001b[0;34m(self, x, y, hue, data, orient, order, hue_order, units)\u001b[0m\n\u001b[1;32m 539\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvar\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 540\u001b[0m \u001b[0merr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34mf\"Could not interpret input '{var}'\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 541\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 542\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 543\u001b[0m \u001b[0;31m# Figure out the plotting orientation\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Could not interpret input 'Features'" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAH/CAYAAACYSXaPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgtklEQVR4nO3df2zX9Z3A8RcF22pmKx5H+XF1nO6c21RwIF11xHjpbDLDjj8u43ABQnSeG2fUZjfBH3TOjXKbGpKJIzJ3Lrl4sJHpLYPguZ5k2dkLGT8SzQHGMQYxa4Hb0TLcqLSf+2Oxu46ifEtbLK/HI/n+wXvv9/fz/i5vcc99vj/GFEVRBAAAQFJl53oDAAAA55IoAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUis5in7605/G3LlzY8qUKTFmzJh44YUX3nPN1q1b4+Mf/3hUVFTEhz70oXj22WcHsVUAAIChV3IUHT9+PKZPnx5r1qw5o/m//OUv49Zbb42bb745du3aFffee2/ccccd8eKLL5a8WQAAgKE2piiKYtCLx4yJ559/PubNm3faOffff39s2rQpXnvttb6xv/u7v4ujR4/Gli1bBntpAACAITFuuC/Q1tYWDQ0N/cYaGxvj3nvvPe2aEydOxIkTJ/r+3NvbG7/5zW/iz/7sz2LMmDHDtVUAAOB9riiKOHbsWEyZMiXKyobmKxKGPYra29ujpqam31hNTU10dXXF7373u7jwwgtPWdPS0hKPPPLIcG8NAAAYpQ4ePBh/8Rd/MSTPNexRNBjLly+Ppqamvj93dnbGZZddFgcPHoyqqqpzuDMAAOBc6urqitra2rj44ouH7DmHPYomTZoUHR0d/cY6OjqiqqpqwLtEEREVFRVRUVFxynhVVZUoAgAAhvRjNcP+O0X19fXR2trab+yll16K+vr64b40AADAeyo5in7729/Grl27YteuXRHxh6/c3rVrVxw4cCAi/vDWt0WLFvXNv+uuu2Lfvn3x5S9/Ofbs2RNPPfVUfP/734/77rtvaF4BAADAWSg5in7+85/HddddF9ddd11ERDQ1NcV1110XK1asiIiIX//6132BFBHxl3/5l7Fp06Z46aWXYvr06fH444/Hd77znWhsbByilwAAADB4Z/U7RSOlq6srqquro7Oz02eKAAAgseFog2H/TBEAAMD7mSgCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQ2qCiaM2aNTFt2rSorKyMurq62LZt27vOX716dXz4wx+OCy+8MGpra+O+++6L3//+94PaMAAAwFAqOYo2bNgQTU1N0dzcHDt27Ijp06dHY2NjHDp0aMD5zz33XCxbtiyam5tj9+7d8cwzz8SGDRvigQceOOvNAwAAnK2So+iJJ56Iz3/+87FkyZL46Ec/GmvXro2LLroovvvd7w44/5VXXokbb7wxbrvttpg2bVrccsstsWDBgve8uwQAADASSoqi7u7u2L59ezQ0NPzxCcrKoqGhIdra2gZcc8MNN8T27dv7Imjfvn2xefPm+PSnP30W2wYAABga40qZfOTIkejp6Ymampp+4zU1NbFnz54B19x2221x5MiR+OQnPxlFUcTJkyfjrrvuete3z504cSJOnDjR9+eurq5StgkAAHDGhv3b57Zu3RorV66Mp556Knbs2BE//OEPY9OmTfHoo4+edk1LS0tUV1f3PWpra4d7mwAAQFJjiqIoznRyd3d3XHTRRbFx48aYN29e3/jixYvj6NGj8W//9m+nrJkzZ0584hOfiG9+85t9Y//yL/8Sd955Z/z2t7+NsrJTu2ygO0W1tbXR2dkZVVVVZ7pdAADgPNPV1RXV1dVD2gYl3SkqLy+PmTNnRmtra99Yb29vtLa2Rn19/YBr3nrrrVPCZ+zYsRERcboeq6ioiKqqqn4PAACA4VDSZ4oiIpqammLx4sUxa9asmD17dqxevTqOHz8eS5YsiYiIRYsWxdSpU6OlpSUiIubOnRtPPPFEXHfddVFXVxdvvPFGPPzwwzF37ty+OAIAADhXSo6i+fPnx+HDh2PFihXR3t4eM2bMiC1btvR9+cKBAwf63Rl66KGHYsyYMfHQQw/Fm2++GX/+538ec+fOja9//etD9yoAAAAGqaTPFJ0rw/G+QQAAYPQ5558pAgAAON+IIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAILVBRdGaNWti2rRpUVlZGXV1dbFt27Z3nX/06NFYunRpTJ48OSoqKuLKK6+MzZs3D2rDAAAAQ2lcqQs2bNgQTU1NsXbt2qirq4vVq1dHY2Nj7N27NyZOnHjK/O7u7vjUpz4VEydOjI0bN8bUqVPjV7/6VVxyySVDsX8AAICzMqYoiqKUBXV1dXH99dfHk08+GRERvb29UVtbG3fffXcsW7bslPlr166Nb37zm7Fnz5644IILBrXJrq6uqK6ujs7OzqiqqhrUcwAAAKPfcLRBSW+f6+7uju3bt0dDQ8Mfn6CsLBoaGqKtrW3ANT/60Y+ivr4+li5dGjU1NXH11VfHypUro6en57TXOXHiRHR1dfV7AAAADIeSoujIkSPR09MTNTU1/cZramqivb19wDX79u2LjRs3Rk9PT2zevDkefvjhePzxx+NrX/vaaa/T0tIS1dXVfY/a2tpStgkAAHDGhv3b53p7e2PixInx9NNPx8yZM2P+/Pnx4IMPxtq1a0+7Zvny5dHZ2dn3OHjw4HBvEwAASKqkL1qYMGFCjB07Njo6OvqNd3R0xKRJkwZcM3ny5Ljgggti7NixfWMf+chHor29Pbq7u6O8vPyUNRUVFVFRUVHK1gAAAAalpDtF5eXlMXPmzGhtbe0b6+3tjdbW1qivrx9wzY033hhvvPFG9Pb29o29/vrrMXny5AGDCAAAYCSV/Pa5pqamWLduXXzve9+L3bt3xxe+8IU4fvx4LFmyJCIiFi1aFMuXL++b/4UvfCF+85vfxD333BOvv/56bNq0KVauXBlLly4dulcBAAAwSCX/TtH8+fPj8OHDsWLFimhvb48ZM2bEli1b+r584cCBA1FW9sfWqq2tjRdffDHuu+++uPbaa2Pq1Klxzz33xP333z90rwIAAGCQSv6donPB7xQBAAAR74PfKQIAADjfiCIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpDSqK1qxZE9OmTYvKysqoq6uLbdu2ndG69evXx5gxY2LevHmDuSwAAMCQKzmKNmzYEE1NTdHc3Bw7duyI6dOnR2NjYxw6dOhd1+3fvz++9KUvxZw5cwa9WQAAgKFWchQ98cQT8fnPfz6WLFkSH/3oR2Pt2rVx0UUXxXe/+93Trunp6YnPfe5z8cgjj8Tll19+VhsGAAAYSiVFUXd3d2zfvj0aGhr++ARlZdHQ0BBtbW2nXffVr341Jk6cGLfffvsZXefEiRPR1dXV7wEAADAcSoqiI0eORE9PT9TU1PQbr6mpifb29gHX/OxnP4tnnnkm1q1bd8bXaWlpierq6r5HbW1tKdsEAAA4Y8P67XPHjh2LhQsXxrp162LChAlnvG758uXR2dnZ9zh48OAw7hIAAMhsXCmTJ0yYEGPHjo2Ojo5+4x0dHTFp0qRT5v/iF7+I/fv3x9y5c/vGent7/3DhceNi7969ccUVV5yyrqKiIioqKkrZGgAAwKCUdKeovLw8Zs6cGa2trX1jvb290draGvX19afMv+qqq+LVV1+NXbt29T0+85nPxM033xy7du3ytjgAAOCcK+lOUUREU1NTLF68OGbNmhWzZ8+O1atXx/Hjx2PJkiUREbFo0aKYOnVqtLS0RGVlZVx99dX91l9yySUREaeMAwAAnAslR9H8+fPj8OHDsWLFimhvb48ZM2bEli1b+r584cCBA1FWNqwfVQIAABgyY4qiKM71Jt5LV1dXVFdXR2dnZ1RVVZ3r7QAAAOfIcLSBWzoAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhtUFG0Zs2amDZtWlRWVkZdXV1s27bttHPXrVsXc+bMifHjx8f48eOjoaHhXecDAACMpJKjaMOGDdHU1BTNzc2xY8eOmD59ejQ2NsahQ4cGnL9169ZYsGBBvPzyy9HW1ha1tbVxyy23xJtvvnnWmwcAADhbY4qiKEpZUFdXF9dff308+eSTERHR29sbtbW1cffdd8eyZcvec31PT0+MHz8+nnzyyVi0aNEZXbOrqyuqq6ujs7MzqqqqStkuAABwHhmONijpTlF3d3ds3749Ghoa/vgEZWXR0NAQbW1tZ/Qcb731Vrz99ttx6aWXnnbOiRMnoqurq98DAABgOJQURUeOHImenp6oqanpN15TUxPt7e1n9Bz3339/TJkypV9Y/amWlpaorq7ue9TW1payTQAAgDM2ot8+t2rVqli/fn08//zzUVlZedp5y5cvj87Ozr7HwYMHR3CXAABAJuNKmTxhwoQYO3ZsdHR09Bvv6OiISZMmvevaxx57LFatWhU/+clP4tprr33XuRUVFVFRUVHK1gAAAAalpDtF5eXlMXPmzGhtbe0b6+3tjdbW1qivrz/tum984xvx6KOPxpYtW2LWrFmD3y0AAMAQK+lOUUREU1NTLF68OGbNmhWzZ8+O1atXx/Hjx2PJkiUREbFo0aKYOnVqtLS0RETEP/3TP8WKFSviueeei2nTpvV99ugDH/hAfOADHxjClwIAAFC6kqNo/vz5cfjw4VixYkW0t7fHjBkzYsuWLX1fvnDgwIEoK/vjDahvf/vb0d3dHX/7t3/b73mam5vjK1/5ytntHgAA4CyV/DtF54LfKQIAACLeB79TBAAAcL4RRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFIbVBStWbMmpk2bFpWVlVFXVxfbtm171/k/+MEP4qqrrorKysq45pprYvPmzYPaLAAAwFArOYo2bNgQTU1N0dzcHDt27Ijp06dHY2NjHDp0aMD5r7zySixYsCBuv/322LlzZ8ybNy/mzZsXr7322llvHgAA4GyNKYqiKGVBXV1dXH/99fHkk09GRERvb2/U1tbG3XffHcuWLTtl/vz58+P48ePx4x//uG/sE5/4RMyYMSPWrl17Rtfs6uqK6urq6OzsjKqqqlK2CwAAnEeGow3GlTK5u7s7tm/fHsuXL+8bKysri4aGhmhraxtwTVtbWzQ1NfUba2xsjBdeeOG01zlx4kScOHGi78+dnZ0R8Yf/AgAAgLzeaYIS7+28q5Ki6MiRI9HT0xM1NTX9xmtqamLPnj0Drmlvbx9wfnt7+2mv09LSEo888sgp47W1taVsFwAAOE/9z//8T1RXVw/Jc5UURSNl+fLl/e4uHT16ND74wQ/GgQMHhuyFw0C6urqitrY2Dh486K2aDCtnjZHirDFSnDVGSmdnZ1x22WVx6aWXDtlzlhRFEyZMiLFjx0ZHR0e/8Y6Ojpg0adKAayZNmlTS/IiIioqKqKioOGW8urraP2SMiKqqKmeNEeGsMVKcNUaKs8ZIKSsbul8XKumZysvLY+bMmdHa2to31tvbG62trVFfXz/gmvr6+n7zIyJeeuml084HAAAYSSW/fa6pqSkWL14cs2bNitmzZ8fq1avj+PHjsWTJkoiIWLRoUUydOjVaWloiIuKee+6Jm266KR5//PG49dZbY/369fHzn/88nn766aF9JQAAAINQchTNnz8/Dh8+HCtWrIj29vaYMWNGbNmype/LFA4cONDvVtYNN9wQzz33XDz00EPxwAMPxF/91V/FCy+8EFdfffUZX7OioiKam5sHfEsdDCVnjZHirDFSnDVGirPGSBmOs1by7xQBAACcT4bu00kAAACjkCgCAABSE0UAAEBqoggAAEjtfRNFa9asiWnTpkVlZWXU1dXFtm3b3nX+D37wg7jqqquisrIyrrnmmti8efMI7ZTRrpSztm7dupgzZ06MHz8+xo8fHw0NDe95NuEdpf699o7169fHmDFjYt68ecO7Qc4bpZ61o0ePxtKlS2Py5MlRUVERV155pX+PckZKPWurV6+OD3/4w3HhhRdGbW1t3HffffH73/9+hHbLaPTTn/405s6dG1OmTIkxY8bECy+88J5rtm7dGh//+MejoqIiPvShD8Wzzz5b8nXfF1G0YcOGaGpqiubm5tixY0dMnz49Ghsb49ChQwPOf+WVV2LBggVx++23x86dO2PevHkxb968eO2110Z454w2pZ61rVu3xoIFC+Lll1+Otra2qK2tjVtuuSXefPPNEd45o02pZ+0d+/fvjy996UsxZ86cEdopo12pZ627uzs+9alPxf79+2Pjxo2xd+/eWLduXUydOnWEd85oU+pZe+6552LZsmXR3Nwcu3fvjmeeeSY2bNgQDzzwwAjvnNHk+PHjMX369FizZs0Zzf/lL38Zt956a9x8882xa9euuPfee+OOO+6IF198sbQLF+8Ds2fPLpYuXdr3556enmLKlClFS0vLgPM/+9nPFrfeemu/sbq6uuLv//7vh3WfjH6lnrU/dfLkyeLiiy8uvve97w3XFjlPDOasnTx5srjhhhuK73znO8XixYuLv/mbvxmBnTLalXrWvv3tbxeXX3550d3dPVJb5DxR6llbunRp8dd//df9xpqamoobb7xxWPfJ+SMiiueff/5d53z5y18uPvaxj/Ubmz9/ftHY2FjStc75naLu7u7Yvn17NDQ09I2VlZVFQ0NDtLW1Dbimra2t3/yIiMbGxtPOh4jBnbU/9dZbb8Xbb78dl1566XBtk/PAYM/aV7/61Zg4cWLcfvvtI7FNzgODOWs/+tGPor6+PpYuXRo1NTVx9dVXx8qVK6Onp2ekts0oNJizdsMNN8T27dv73mK3b9++2Lx5c3z6058ekT2Tw1B1wbih3NRgHDlyJHp6eqKmpqbfeE1NTezZs2fANe3t7QPOb29vH7Z9MvoN5qz9qfvvvz+mTJlyyj988P8N5qz97Gc/i2eeeSZ27do1AjvkfDGYs7Zv3774j//4j/jc5z4XmzdvjjfeeCO++MUvxttvvx3Nzc0jsW1GocGctdtuuy2OHDkSn/zkJ6Moijh58mTcdddd3j7HkDpdF3R1dcXvfve7uPDCC8/oec75nSIYLVatWhXr16+P559/PiorK8/1djiPHDt2LBYuXBjr1q2LCRMmnOvtcJ7r7e2NiRMnxtNPPx0zZ86M+fPnx4MPPhhr164911vjPLN169ZYuXJlPPXUU7Fjx4744Q9/GJs2bYpHH330XG8NTnHO7xRNmDAhxo4dGx0dHf3GOzo6YtKkSQOumTRpUknzIWJwZ+0djz32WKxatSp+8pOfxLXXXjuc2+Q8UOpZ+8UvfhH79++PuXPn9o319vZGRMS4ceNi7969ccUVVwzvphmVBvP32uTJk+OCCy6IsWPH9o195CMfifb29uju7o7y8vJh3TOj02DO2sMPPxwLFy6MO+64IyIirrnmmjh+/Hjceeed8eCDD0ZZmf9vnrN3ui6oqqo647tEEe+DO0Xl5eUxc+bMaG1t7Rvr7e2N1tbWqK+vH3BNfX19v/kRES+99NJp50PE4M5aRMQ3vvGNePTRR2PLli0xa9askdgqo1ypZ+2qq66KV199NXbt2tX3+MxnPtP3TTq1tbUjuX1GkcH8vXbjjTfGG2+80RfeERGvv/56TJ48WRBxWoM5a2+99dYp4fNOjP/hM/Rw9oasC0r7DojhsX79+qKioqJ49tlni//+7/8u7rzzzuKSSy4p2tvbi6IoioULFxbLli3rm/+f//mfxbhx44rHHnus2L17d9Hc3FxccMEFxauvvnquXgKjRKlnbdWqVUV5eXmxcePG4te//nXf49ixY+fqJTBKlHrW/pRvn+NMlXrWDhw4UFx88cXFP/zDPxR79+4tfvzjHxcTJ04svva1r52rl8AoUepZa25uLi6++OLiX//1X4t9+/YV//7v/15cccUVxWc/+9lz9RIYBY4dO1bs3Lmz2LlzZxERxRNPPFHs3Lmz+NWvflUURVEsW7asWLhwYd/8ffv2FRdddFHxj//4j8Xu3buLNWvWFGPHji22bNlS0nXfF1FUFEXxrW99q7jsssuK8vLyYvbs2cV//dd/9f1nN910U7F48eJ+87///e8XV155ZVFeXl587GMfKzZt2jTCO2a0KuWsffCDHywi4pRHc3PzyG+cUafUv9f+P1FEKUo9a6+88kpRV1dXVFRUFJdffnnx9a9/vTh58uQI75rRqJSz9vbbbxdf+cpXiiuuuKKorKwsamtriy9+8YvF//7v/478xhk1Xn755QH/t9c7Z2vx4sXFTTfddMqaGTNmFOXl5cXll19e/PM//3PJ1x1TFO5fAgAAeZ3zzxQBAACcS6IIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACC1/wMNUgey9g8lPgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "hasta aca\n" + ], + "metadata": { + "id": "keXYd4TrurKV" + } + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Convertir los datos a un formato largo usando melt de pandas\n", + "new_data = pd.melt(data, id_vars=['Country', 'Latitude', 'Longitude', 'Features', 'Region'], var_name='Year', value_name='Value')\n", + "\n", + "# Convertir las columnas al tipo de datos correcto\n", + "new_data['Year'] = new_data['Year'].astype(int)\n", + "new_data['Latitude'] = pd.to_numeric(new_data['Latitude'])\n", + "new_data['Longitude'] = pd.to_numeric(new_data['Longitude'])" + ], + "metadata": { + "id": "Xd6En43Apl_Z", + "outputId": "ff66b8ad-695e-4976-8859-ea466bc350cc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 303 + } + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/lib.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.maybe_convert_numeric\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unable to parse string \" -24.653257\"", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Convertir las columnas al tipo de datos correcto\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Latitude'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numeric\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Latitude'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Longitude'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numeric\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Longitude'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/tools/numeric.py\u001b[0m in \u001b[0;36mto_numeric\u001b[0;34m(arg, errors, downcast)\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0mcoerce_numeric\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0merrors\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m\"ignore\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"raise\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 184\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 185\u001b[0;31m values, _ = lib.maybe_convert_numeric(\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcoerce_numeric\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcoerce_numeric\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m )\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/lib.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.maybe_convert_numeric\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unable to parse string \" -24.653257\" at position 161" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Reordenar los niveles de 'Features' en la secuencia deseada\n", + "feature_order = [\"imports\", \"exports\", \"net imports\", \"installed capacity\", \"net generation\", \"net consumption\", \"distribution losses\"]\n", + "new_data['Features'] = pd.Categorical(new_data['Features'], categories=feature_order, ordered=True)\n", + "\n", + "custom_palette = [\"red\", \"blue\", \"green\",\"purple\", \"#FF7F00\", \"cyan\", \"brown\"]\n", + "\n", + "# Agrupar los datos por 'Year' y 'Region' y calcular la suma de valores\n", + "region_features = new_data.groupby(['Year', 'Region', 'Features']).agg(Total_Value=('Value', 'sum')).reset_index()\n", + "\n", + "# Establecer el estilo de los gráficos en Seaborn a \"whitegrid\"\n", + "sns.set_style(\"whitegrid\")\n", + "\n", + "# Crear el gráfico de líneas con la paleta de colores personalizada\n", + "sns.lineplot(data=region_features, x='Year', y='Total_Value', hue='Region')\n", + "plt.title('Total Values by Region Over Time')\n", + "plt.xlabel('Year')\n", + "plt.ylabel('Total')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 390 + }, + "id": "cYzGOiNeVfY7", + "outputId": "d3044941-773c-479f-a4bf-7e86be3e6785" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# Agrupar los datos por 'Year' y 'Region' y calcular la suma de valores\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mregion_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Region'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Features'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0magg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mTotal_Value\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Value'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sum'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;31m# Establecer el estilo de los gráficos en Seaborn a \"whitegrid\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mgroupby\u001b[0;34m(self, by, axis, level, as_index, sort, group_keys, squeeze, observed, dropna)\u001b[0m\n\u001b[1;32m 8400\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_axis_number\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8401\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 8402\u001b[0;31m return DataFrameGroupBy(\n\u001b[0m\u001b[1;32m 8403\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8404\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mby\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort, group_keys, squeeze, observed, mutated, dropna)\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mpandas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrouper\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_grouper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 965\u001b[0;31m grouper, exclusions, obj = get_grouper(\n\u001b[0m\u001b[1;32m 966\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 967\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/grouper.py\u001b[0m in \u001b[0;36mget_grouper\u001b[0;34m(obj, key, axis, level, sort, observed, mutated, validate, dropna)\u001b[0m\n\u001b[1;32m 886\u001b[0m \u001b[0min_axis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 888\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgpr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 889\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgpr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mGrouper\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mgpr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkey\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 890\u001b[0m \u001b[0;31m# Add key to exclusions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "custom_palette = [\"#E41A1C\", \"#377EB8\", \"#4DAF4A\", \"#984EA3\", \"#FF7F00\", \"#FFFF33\", \"#A65628\"]\n", + "\n", + "# Filter the data for the past five years and 'exports'\n", + "export_data = new_data[(new_data['Features'] == \"exports\") & (new_data['Year'] >= (new_data['Year'].max() - 4))]\n", + "\n", + "# Group by 'Country' and calculate the total export value\n", + "top_exporting_countries = export_data.groupby('Country')['Value'].sum().reset_index().sort_values(by='Value', ascending=False).head(10)\n", + "\n", + "# Plotting\n", + "plt.figure(figsize=(10,6))\n", + "sns.barplot(x='Value', y='Country', data=top_exporting_countries, palette=custom_palette)\n", + "print(top_exporting_countries)\n", + "\n", + "plt.xlabel('Total Exports')\n", + "plt.ylabel('Country')\n", + "plt.title('Exports - Last 5 Years - Top Ten Countries')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 512 + }, + "id": "pEGfENwGVhHK", + "outputId": "2dc0d837-10ef-4939-a46a-d36246f692a7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3801\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3802\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m# Filter the data for the past five years and 'exports'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mexport_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Features'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"exports\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;31m# Group by 'Country' and calculate the total export value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3805\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3806\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3807\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3808\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3809\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3802\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3804\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3805\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3806\u001b[0m \u001b[0;31m# If we have a listlike key, _check_indexing_error will raise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'" + ] + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "RQfTp3HSXLqQ" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file From 5b03bead7a42ffe108d5aa3e038a7e33984112e1 Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Thu, 26 Oct 2023 18:35:24 -0300 Subject: [PATCH 04/16] Creado mediante Colaboratory --- proyectoIAPrediccion1.ipynb | 272 +++++++++++++++++------------------- 1 file changed, 127 insertions(+), 145 deletions(-) diff --git a/proyectoIAPrediccion1.ipynb b/proyectoIAPrediccion1.ipynb index 545a6aa..810fe17 100644 --- a/proyectoIAPrediccion1.ipynb +++ b/proyectoIAPrediccion1.ipynb @@ -4,7 +4,7 @@ "metadata": { "colab": { "provenance": [], - "authorship_tag": "ABX9TyO/G3k4216Shcdk+qsg6VGs", + "authorship_tag": "ABX9TyMvuCp6BHGdTVs22COUmihu", "include_colab_link": true }, "kernelspec": { @@ -35,17 +35,32 @@ "import seaborn as sns\n", "import plotly.express as px\n", "from wordcloud import WordCloud\n", - "import geopandas as gpd" + "import geopandas as gpd\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from keras.models import Sequential\n", + "from keras.layers import LSTM, GRU, Conv1D, MaxPooling1D, Flatten, Dense\n" ], "metadata": { "id": "H7kZjC_GUZZd" }, - "execution_count": 11, + "execution_count": 37, "outputs": [] }, { "cell_type": "code", - "execution_count": 12, + "source": [ + "\n" + ], + "metadata": { + "id": "LwP0v92D2NfV" + }, + "execution_count": 36, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 27, "metadata": { "id": "9_FId2wvQAgd" }, @@ -53,8 +68,8 @@ "source": [ "\n", "# Leer los datos\n", - "GES_Data = \"global_electricity_statistics_cleaned_2.csv\"\n", - "data = pd.read_csv(GES_Data)\n" + "GES_Data = \"global_electricity_statistics_cleaned.csv\"\n", + "df = pd.read_csv(GES_Data)\n" ] }, { @@ -62,8 +77,8 @@ "source": [ "\n", "# Ver los primeros datos\n", - "print(data.head())\n", - "data[\"Features\"].value_counts()\n", + "print(df.head())\n", + "df[\"Features\"].value_counts()\n", "\n" ], "metadata": { @@ -71,170 +86,148 @@ "base_uri": "https://localhost:8080/" }, "id": "lWY6qwmkQ2PL", - "outputId": "c63ded1b-f8ec-4a17-8e63-870d6b8494b1" + "outputId": "fa607404-61b0-4e06-cb42-85fd5d143526" }, - "execution_count": 17, + "execution_count": 28, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - " Country Latitude Longitude Features Region \\\n", - "0 Afghanistan 34.5328 69.1658 net generation Asia & Oceania \n", - "1 Afghanistan 34.5328 69.1658 net consumption Asia & Oceania \n", - "2 Afghanistan 34.5328 69.1658 installed capacity Asia & Oceania \n", - "3 Afghanistan 34.5328 69.1658 distribution losses Asia & Oceania \n", - "4 Afghanistan 34.5328 69.1658 imports Asia & Oceania \n", + " Country Features Region 1980 1981 1982 1983 \\\n", + "0 Algeria net generation Africa 6.683 7.65 8.824 9.615 \n", + "1 Angola net generation Africa 0.905 0.906 0.995 1.028 \n", + "2 Benin net generation Africa 0.005 0.005 0.005 0.005 \n", + "3 Botswana net generation Africa 0.443 0.502 0.489 0.434 \n", + "4 Burkina Faso net generation Africa 0.098 0.108 0.115 0.117 \n", "\n", - " 1980 1981 1982 1983 1984 ... 2012 2013 2014 \\\n", - "0 0.94200 0.99200 0.95200 1.00 1.01900 ... 0.8820 1.1034 1.1590 \n", - "1 0.87606 0.92256 0.88536 0.93 0.94767 ... 3.5490 4.2284 4.3490 \n", - "2 0.37400 0.42700 0.42700 0.45 0.45000 ... 0.5871 0.6011 0.5861 \n", - "3 0.06594 0.06944 0.06664 0.07 0.07133 ... 0.4040 0.4900 0.5200 \n", - "4 0.00000 0.00000 0.00000 0.00 0.00000 ... 3.0710 3.6150 3.7100 \n", + " 1984 1985 1986 ... 2013 2014 2015 2016 \\\n", + "0 10.537 11.569 12.214 ... 56.3134 60.39972 64.68244 66.75504 \n", + "1 1.028 1.028 1.088 ... 7.97606 9.21666 9.30914 10.203511 \n", + "2 0.005 0.005 0.005 ... 0.08848 0.22666 0.31056 0.26004 \n", + "3 0.445 0.456 0.538 ... 0.86868 2.17628 2.79104 2.52984 \n", + "4 0.113 0.115 0.122 ... 0.98268 1.11808 1.43986 1.5509 \n", "\n", - " 2015 2016 2017 2018 2019 2020 2021 \n", - "0 1.1832 1.2147 1.26426 1.16493 1.07269 0.80728 0.829094 \n", - "1 4.4402 4.9577 5.26056 5.51093 5.31469 5.28916 5.530597 \n", - "2 0.5871 0.6341 0.63640 0.76740 0.77640 0.77640 0.776400 \n", - "3 0.5220 0.5900 0.61500 0.64000 0.67000 0.67000 0.666854 \n", - "4 3.7790 4.3330 4.61130 4.98600 4.91200 5.15188 5.368357 \n", + " 2017 2018 2019 2020 2021 Total \n", + "0 71.49546 72.10903 76.685 72.73591277 77.53072719 0.0 \n", + "1 10.67604 12.83194 15.4 16.6 16.429392 0.0 \n", + "2 0.3115 0.19028 0.2017 0.22608 0.24109728 0.0 \n", + "3 2.8438 2.97076 3.0469 2.05144 2.18234816 0.0 \n", + "4 1.64602 1.6464 1.72552 1.647133174 1.761209666 0.0 \n", "\n", - "[5 rows x 47 columns]\n" + "[5 rows x 46 columns]\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ - "net generation 218\n", - "net consumption 218\n", - "installed capacity 218\n", - "distribution losses 218\n", - "imports 218\n", - "exports 218\n", - "net imports 218\n", + "net generation 230\n", + "net consumption 230\n", + "imports 230\n", + "exports 230\n", + "net imports 230\n", + "installed capacity 230\n", + "distribution losses 230\n", "Name: Features, dtype: int64" ] }, "metadata": {}, - "execution_count": 17 + "execution_count": 28 } ] }, { "cell_type": "code", "source": [ - "year_columns = [str(year) for year in range(1980, 2022)]\n", - "\n", - "# Agrupa los datos por 'Region' y calcula la suma y el promedio\n", - "grouped_data = data.groupby('Region')[year_columns].agg(['sum', 'mean'])\n", - "\n", - "# Para obtener un DataFrame con multi-índice en las columnas\n", - "grouped_data.columns = ['_'.join(col) for col in grouped_data.columns.values]\n", + "for country in df['Country'].unique():\n", + " df.loc[df['Country'] == country] = df.loc[df['Country'] == country].replace(np.nan, df.loc[df['Country'] == country].select_dtypes(include=[np.number]).mean(numeric_only=True))\n", + "df['Total'] = df.loc[:, '1980':'2021'].select_dtypes(include=[np.number]).sum(axis=1)\n", "\n", - "# Selecciona las columnas con las sumas de los años\n", - "sum_columns = [f'{year}_sum' for year in range(1980, 2022)]\n", - "\n", - "# Crea una nueva variable con solo los continentes y las sumas de cada año\n", - "continent_data = grouped_data[sum_columns].copy()\n", + "# Guardar el dataframe limpio\n", + "df.to_csv('global_electricity_statistics_cleaned.csv', index=False)" + ], + "metadata": { + "id": "9MZcbtw9t95l" + }, + "execution_count": 32, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Agrupar por región y sumar los valores\n", + "df_grouped = df.drop(columns=['Country']).groupby('Region').sum(numeric_only=True)\n", "\n", - "# Agrega las columnas 'Latitude', 'Longitude', 'Features'\n", + "# Guardar el dataframe agrupado\n", + "df_grouped.to_csv('global_electricity_statistics_by_region.csv')" + ], + "metadata": { + "id": "3HyCu76yuvpS" + }, + "execution_count": 34, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "train, test = train_test_split(df_grouped['Total'], test_size=0.2, random_state=42)\n", "\n", - "continent_data['Latitude'] = data['Latitude']\n", - "continent_data['Longitude'] = data['Longitude']\n", - "continent_data['Features'] = data['Features']\n", + "# Escalar los datos entre 0 y 1\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "train_scaled = scaler.fit_transform(train.values.reshape(-1, 1))\n", + "test_scaled = scaler.transform(test.values.reshape(-1, 1))" + ], + "metadata": { + "id": "nfJrQD1i4qys" + }, + "execution_count": 38, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Definir el modelo LSTM\n", + "model_lstm = Sequential()\n", + "model_lstm.add(LSTM(50, activation='relu', input_shape=(train_scaled.shape[1], 1)))\n", + "model_lstm.add(Dense(1))\n", + "model_lstm.compile(optimizer='adam', loss='mse')\n", "\n", - "continent_data.describe()\n", - "print(continent_data.head())\n" + "#/ Definir el modelo GRU\n", + "#model_gru = Sequential()\n", + "#model_gru.add(GRU(50, activation='relu', input_shape=(train_scaled.shape[1], 1)))\n", + "#model_gru.add(Dense(1))\n", + "#model_gru.compile(optimizer='adam', loss='mse')\n", + "#" ], "metadata": { - "id": "9MZcbtw9t95l", - "outputId": "b464bd51-0c3e-453b-cb7f-e0a6646be04d", - "colab": { - "base_uri": "https://localhost:8080/" - } + "id": "CaTJQmj33IvW" }, - "execution_count": 36, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " 1980_sum 1981_sum 1982_sum 1983_sum \\\n", - "Region \n", - "Africa 432.541850 460.785250 476.397650 495.354050 \n", - "Asia & Oceania 2864.244935 2957.279435 3090.396113 3287.500102 \n", - "Central & South America 697.387480 719.348200 762.810040 816.690080 \n", - "Eurasia 0.000000 0.000000 0.000000 0.000000 \n", - "Europe 3855.648000 3889.148000 3925.063000 4094.305000 \n", - "\n", - " 1984_sum 1985_sum 1986_sum 1987_sum \\\n", - "Region \n", - "Africa 538.361450 574.37485 607.126250 630.01165 \n", - "Asia & Oceania 3516.871552 3737.00275 3941.733996 4261.47292 \n", - "Central & South America 877.816480 920.21792 1012.326560 1059.79848 \n", - "Eurasia 0.000000 0.00000 0.000000 0.00000 \n", - "Europe 4290.297000 4485.28900 4582.173000 4759.51300 \n", - "\n", - " 1988_sum 1989_sum ... 2015_sum \\\n", - "Region ... \n", - "Africa 652.186050 677.490950 ... 1785.301548 \n", - "Asia & Oceania 4589.085735 4899.169925 ... 23001.975032 \n", - "Central & South America 1110.278820 1145.412200 ... 2950.511411 \n", - "Eurasia 0.000000 0.000000 ... 3289.639862 \n", - "Europe 4882.790000 5079.253600 ... 9362.665974 \n", - "\n", - " 2016_sum 2017_sum 2018_sum \\\n", - "Region \n", - "Africa 1815.972032 1891.433850 1937.653882 \n", - "Asia & Oceania 24277.047884 25762.027981 27169.634214 \n", - "Central & South America 3004.202061 3023.586834 3074.163513 \n", - "Eurasia 3340.068009 3367.173985 3400.626580 \n", - "Europe 9436.487950 9495.169674 9487.451696 \n", - "\n", - " 2019_sum 2020_sum 2021_sum Latitude \\\n", - "Region \n", - "Africa 1962.910147 1925.467996 1995.010801 NaN \n", - "Asia & Oceania 28150.420606 28902.810243 30933.492914 NaN \n", - "Central & South America 3080.025156 3081.323953 3232.877560 NaN \n", - "Eurasia 3436.885435 3415.806547 3613.188172 NaN \n", - "Europe 9471.206998 9375.803522 9664.609814 NaN \n", - "\n", - " Longitude Features \n", - "Region \n", - "Africa NaN NaN \n", - "Asia & Oceania NaN NaN \n", - "Central & South America NaN NaN \n", - "Eurasia NaN NaN \n", - "Europe NaN NaN \n", - "\n", - "[5 rows x 45 columns]\n" - ] - } - ] + "execution_count": 47, + "outputs": [] }, { "cell_type": "code", "source": [ - "# Crea una figura y un eje\n", - "fig, ax = plt.subplots(figsize=(10, 6))\n", + "model_lstm.fit(train_scaled, epochs=10, verbose=0)\n", + "#model_gru.fit(train_scaled, epochs=10, verbose=0)\n", "\n", - "# Crea un gráfico de barras con 'Features' en el eje x y la suma de cada año en el eje y, coloreado por continente\n", - "sns.barplot(data=continent_data, x='Features', y='sum', hue='Region', ax=ax)\n", + "# Evaluar los modelos\n", + "mse_lstm = model_lstm.evaluate(test_scaled)\n", + "#mse_gru = model_gru.evaluate(test_scaled)\n", "\n", - "# Muestra el gráfico\n", - "plt.show()" + "print(f'Test MSE LSTM: {mse_lstm}')\n", + "#print(f'Test MSE GRU: {mse_gru}')" ], "metadata": { - "id": "3HyCu76yuvpS", - "outputId": "9c329824-c2a2-46d1-e87b-5a4f03cb98df", + "id": "3wBcalVC41ED", + "outputId": "da1a2eea-ed50-419b-ce48-0f9c5dcd58d9", "colab": { "base_uri": "https://localhost:8080/", - "height": 901 + "height": 616 } }, - "execution_count": 20, + "execution_count": 46, "outputs": [ { "output_type": "error", @@ -243,22 +236,11 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Crea un gráfico de barras con 'Features' en el eje x y la suma de cada año en el eje y, coloreado por continente\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbarplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcontinent_data\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Features'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'sum'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Region'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# Muestra el gráfico\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/seaborn/categorical.py\u001b[0m in \u001b[0;36mbarplot\u001b[0;34m(data, x, y, hue, order, hue_order, estimator, errorbar, n_boot, units, seed, orient, color, palette, saturation, width, errcolor, errwidth, capsize, dodge, ci, ax, **kwargs)\u001b[0m\n\u001b[1;32m 2753\u001b[0m \u001b[0mestimator\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"size\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2754\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2755\u001b[0;31m plotter = _BarPlotter(x, y, hue, data, order, hue_order,\n\u001b[0m\u001b[1;32m 2756\u001b[0m \u001b[0mestimator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrorbar\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mn_boot\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munits\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mseed\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2757\u001b[0m \u001b[0morient\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpalette\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msaturation\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/seaborn/categorical.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, x, y, hue, data, order, hue_order, estimator, errorbar, n_boot, units, seed, orient, color, palette, saturation, width, errcolor, errwidth, capsize, dodge)\u001b[0m\n\u001b[1;32m 1528\u001b[0m errcolor, errwidth, capsize, dodge):\n\u001b[1;32m 1529\u001b[0m \u001b[0;34m\"\"\"Initialize the plotter.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1530\u001b[0;31m self.establish_variables(x, y, hue, data, orient,\n\u001b[0m\u001b[1;32m 1531\u001b[0m order, hue_order, units)\n\u001b[1;32m 1532\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mestablish_colors\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcolor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpalette\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msaturation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/seaborn/categorical.py\u001b[0m in \u001b[0;36mestablish_variables\u001b[0;34m(self, x, y, hue, data, orient, order, hue_order, units)\u001b[0m\n\u001b[1;32m 539\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvar\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 540\u001b[0m \u001b[0merr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34mf\"Could not interpret input '{var}'\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 541\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 542\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 543\u001b[0m \u001b[0;31m# Figure out the plotting orientation\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: Could not interpret input 'Features'" + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_scaled\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m#model_gru.fit(train_scaled, epochs=10, verbose=0)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Evaluar los modelos\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mmse_lstm\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_scaled\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/keras/src/utils/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;31m# To get the full stack trace, call:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;31m# `tf.debugging.disable_traceback_filtering()`\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 70\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwith_traceback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfiltered_tb\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 71\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;32mdel\u001b[0m \u001b[0mfiltered_tb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\u001b[0m in \u001b[0;36mtf__train_function\u001b[0;34m(iterator)\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0mdo_return\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0mretval_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mag__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconverted_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mag__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mld\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstep_function\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mag__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mld\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mag__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mld\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfscope\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 16\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0mdo_return\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: in user code:\n\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 1377, in train_function *\n return step_function(self, iterator)\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 1360, in step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 1349, in run_step **\n outputs = model.train_step(data)\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 1128, in train_step\n self._validate_target_and_loss(y, loss)\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 1082, in _validate_target_and_loss\n raise ValueError(\n\n ValueError: Target data is missing. Your model was compiled with loss=mse, and therefore expects target data to be provided in `fit()`.\n" ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAH/CAYAAACYSXaPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgtklEQVR4nO3df2zX9Z3A8RcF22pmKx5H+XF1nO6c21RwIF11xHjpbDLDjj8u43ABQnSeG2fUZjfBH3TOjXKbGpKJIzJ3Lrl4sJHpLYPguZ5k2dkLGT8SzQHGMQYxa4Hb0TLcqLSf+2Oxu46ifEtbLK/HI/n+wXvv9/fz/i5vcc99vj/GFEVRBAAAQFJl53oDAAAA55IoAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUis5in7605/G3LlzY8qUKTFmzJh44YUX3nPN1q1b4+Mf/3hUVFTEhz70oXj22WcHsVUAAIChV3IUHT9+PKZPnx5r1qw5o/m//OUv49Zbb42bb745du3aFffee2/ccccd8eKLL5a8WQAAgKE2piiKYtCLx4yJ559/PubNm3faOffff39s2rQpXnvttb6xv/u7v4ujR4/Gli1bBntpAACAITFuuC/Q1tYWDQ0N/cYaGxvj3nvvPe2aEydOxIkTJ/r+3NvbG7/5zW/iz/7sz2LMmDHDtVUAAOB9riiKOHbsWEyZMiXKyobmKxKGPYra29ujpqam31hNTU10dXXF7373u7jwwgtPWdPS0hKPPPLIcG8NAAAYpQ4ePBh/8Rd/MSTPNexRNBjLly+Ppqamvj93dnbGZZddFgcPHoyqqqpzuDMAAOBc6urqitra2rj44ouH7DmHPYomTZoUHR0d/cY6OjqiqqpqwLtEEREVFRVRUVFxynhVVZUoAgAAhvRjNcP+O0X19fXR2trab+yll16K+vr64b40AADAeyo5in7729/Grl27YteuXRHxh6/c3rVrVxw4cCAi/vDWt0WLFvXNv+uuu2Lfvn3x5S9/Ofbs2RNPPfVUfP/734/77rtvaF4BAADAWSg5in7+85/HddddF9ddd11ERDQ1NcV1110XK1asiIiIX//6132BFBHxl3/5l7Fp06Z46aWXYvr06fH444/Hd77znWhsbByilwAAADB4Z/U7RSOlq6srqquro7Oz02eKAAAgseFog2H/TBEAAMD7mSgCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQ2qCiaM2aNTFt2rSorKyMurq62LZt27vOX716dXz4wx+OCy+8MGpra+O+++6L3//+94PaMAAAwFAqOYo2bNgQTU1N0dzcHDt27Ijp06dHY2NjHDp0aMD5zz33XCxbtiyam5tj9+7d8cwzz8SGDRvigQceOOvNAwAAnK2So+iJJ56Iz3/+87FkyZL46Ec/GmvXro2LLroovvvd7w44/5VXXokbb7wxbrvttpg2bVrccsstsWDBgve8uwQAADASSoqi7u7u2L59ezQ0NPzxCcrKoqGhIdra2gZcc8MNN8T27dv7Imjfvn2xefPm+PSnP30W2wYAABga40qZfOTIkejp6Ymampp+4zU1NbFnz54B19x2221x5MiR+OQnPxlFUcTJkyfjrrvuete3z504cSJOnDjR9+eurq5StgkAAHDGhv3b57Zu3RorV66Mp556Knbs2BE//OEPY9OmTfHoo4+edk1LS0tUV1f3PWpra4d7mwAAQFJjiqIoznRyd3d3XHTRRbFx48aYN29e3/jixYvj6NGj8W//9m+nrJkzZ0584hOfiG9+85t9Y//yL/8Sd955Z/z2t7+NsrJTu2ygO0W1tbXR2dkZVVVVZ7pdAADgPNPV1RXV1dVD2gYl3SkqLy+PmTNnRmtra99Yb29vtLa2Rn19/YBr3nrrrVPCZ+zYsRERcboeq6ioiKqqqn4PAACA4VDSZ4oiIpqammLx4sUxa9asmD17dqxevTqOHz8eS5YsiYiIRYsWxdSpU6OlpSUiIubOnRtPPPFEXHfddVFXVxdvvPFGPPzwwzF37ty+OAIAADhXSo6i+fPnx+HDh2PFihXR3t4eM2bMiC1btvR9+cKBAwf63Rl66KGHYsyYMfHQQw/Fm2++GX/+538ec+fOja9//etD9yoAAAAGqaTPFJ0rw/G+QQAAYPQ5558pAgAAON+IIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAILVBRdGaNWti2rRpUVlZGXV1dbFt27Z3nX/06NFYunRpTJ48OSoqKuLKK6+MzZs3D2rDAAAAQ2lcqQs2bNgQTU1NsXbt2qirq4vVq1dHY2Nj7N27NyZOnHjK/O7u7vjUpz4VEydOjI0bN8bUqVPjV7/6VVxyySVDsX8AAICzMqYoiqKUBXV1dXH99dfHk08+GRERvb29UVtbG3fffXcsW7bslPlr166Nb37zm7Fnz5644IILBrXJrq6uqK6ujs7OzqiqqhrUcwAAAKPfcLRBSW+f6+7uju3bt0dDQ8Mfn6CsLBoaGqKtrW3ANT/60Y+ivr4+li5dGjU1NXH11VfHypUro6en57TXOXHiRHR1dfV7AAAADIeSoujIkSPR09MTNTU1/cZramqivb19wDX79u2LjRs3Rk9PT2zevDkefvjhePzxx+NrX/vaaa/T0tIS1dXVfY/a2tpStgkAAHDGhv3b53p7e2PixInx9NNPx8yZM2P+/Pnx4IMPxtq1a0+7Zvny5dHZ2dn3OHjw4HBvEwAASKqkL1qYMGFCjB07Njo6OvqNd3R0xKRJkwZcM3ny5Ljgggti7NixfWMf+chHor29Pbq7u6O8vPyUNRUVFVFRUVHK1gAAAAalpDtF5eXlMXPmzGhtbe0b6+3tjdbW1qivrx9wzY033hhvvPFG9Pb29o29/vrrMXny5AGDCAAAYCSV/Pa5pqamWLduXXzve9+L3bt3xxe+8IU4fvx4LFmyJCIiFi1aFMuXL++b/4UvfCF+85vfxD333BOvv/56bNq0KVauXBlLly4dulcBAAAwSCX/TtH8+fPj8OHDsWLFimhvb48ZM2bEli1b+r584cCBA1FW9sfWqq2tjRdffDHuu+++uPbaa2Pq1Klxzz33xP333z90rwIAAGCQSv6donPB7xQBAAAR74PfKQIAADjfiCIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpDSqK1qxZE9OmTYvKysqoq6uLbdu2ndG69evXx5gxY2LevHmDuSwAAMCQKzmKNmzYEE1NTdHc3Bw7duyI6dOnR2NjYxw6dOhd1+3fvz++9KUvxZw5cwa9WQAAgKFWchQ98cQT8fnPfz6WLFkSH/3oR2Pt2rVx0UUXxXe/+93Trunp6YnPfe5z8cgjj8Tll19+VhsGAAAYSiVFUXd3d2zfvj0aGhr++ARlZdHQ0BBtbW2nXffVr341Jk6cGLfffvsZXefEiRPR1dXV7wEAADAcSoqiI0eORE9PT9TU1PQbr6mpifb29gHX/OxnP4tnnnkm1q1bd8bXaWlpierq6r5HbW1tKdsEAAA4Y8P67XPHjh2LhQsXxrp162LChAlnvG758uXR2dnZ9zh48OAw7hIAAMhsXCmTJ0yYEGPHjo2Ojo5+4x0dHTFp0qRT5v/iF7+I/fv3x9y5c/vGent7/3DhceNi7969ccUVV5yyrqKiIioqKkrZGgAAwKCUdKeovLw8Zs6cGa2trX1jvb290draGvX19afMv+qqq+LVV1+NXbt29T0+85nPxM033xy7du3ytjgAAOCcK+lOUUREU1NTLF68OGbNmhWzZ8+O1atXx/Hjx2PJkiUREbFo0aKYOnVqtLS0RGVlZVx99dX91l9yySUREaeMAwAAnAslR9H8+fPj8OHDsWLFimhvb48ZM2bEli1b+r584cCBA1FWNqwfVQIAABgyY4qiKM71Jt5LV1dXVFdXR2dnZ1RVVZ3r7QAAAOfIcLSBWzoAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhNFAEAAKmJIgAAIDVRBAAApCaKAACA1EQRAACQmigCAABSE0UAAEBqoggAAEhtUFG0Zs2amDZtWlRWVkZdXV1s27bttHPXrVsXc+bMifHjx8f48eOjoaHhXecDAACMpJKjaMOGDdHU1BTNzc2xY8eOmD59ejQ2NsahQ4cGnL9169ZYsGBBvPzyy9HW1ha1tbVxyy23xJtvvnnWmwcAADhbY4qiKEpZUFdXF9dff308+eSTERHR29sbtbW1cffdd8eyZcvec31PT0+MHz8+nnzyyVi0aNEZXbOrqyuqq6ujs7MzqqqqStkuAABwHhmONijpTlF3d3ds3749Ghoa/vgEZWXR0NAQbW1tZ/Qcb731Vrz99ttx6aWXnnbOiRMnoqurq98DAABgOJQURUeOHImenp6oqanpN15TUxPt7e1n9Bz3339/TJkypV9Y/amWlpaorq7ue9TW1payTQAAgDM2ot8+t2rVqli/fn08//zzUVlZedp5y5cvj87Ozr7HwYMHR3CXAABAJuNKmTxhwoQYO3ZsdHR09Bvv6OiISZMmvevaxx57LFatWhU/+clP4tprr33XuRUVFVFRUVHK1gAAAAalpDtF5eXlMXPmzGhtbe0b6+3tjdbW1qivrz/tum984xvx6KOPxpYtW2LWrFmD3y0AAMAQK+lOUUREU1NTLF68OGbNmhWzZ8+O1atXx/Hjx2PJkiUREbFo0aKYOnVqtLS0RETEP/3TP8WKFSviueeei2nTpvV99ugDH/hAfOADHxjClwIAAFC6kqNo/vz5cfjw4VixYkW0t7fHjBkzYsuWLX1fvnDgwIEoK/vjDahvf/vb0d3dHX/7t3/b73mam5vjK1/5ytntHgAA4CyV/DtF54LfKQIAACLeB79TBAAAcL4RRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFITRQAAQGqiCAAASE0UAQAAqYkiAAAgNVEEAACkJooAAIDURBEAAJCaKAIAAFIbVBStWbMmpk2bFpWVlVFXVxfbtm171/k/+MEP4qqrrorKysq45pprYvPmzYPaLAAAwFArOYo2bNgQTU1N0dzcHDt27Ijp06dHY2NjHDp0aMD5r7zySixYsCBuv/322LlzZ8ybNy/mzZsXr7322llvHgAA4GyNKYqiKGVBXV1dXH/99fHkk09GRERvb2/U1tbG3XffHcuWLTtl/vz58+P48ePx4x//uG/sE5/4RMyYMSPWrl17Rtfs6uqK6urq6OzsjKqqqlK2CwAAnEeGow3GlTK5u7s7tm/fHsuXL+8bKysri4aGhmhraxtwTVtbWzQ1NfUba2xsjBdeeOG01zlx4kScOHGi78+dnZ0R8Yf/AgAAgLzeaYIS7+28q5Ki6MiRI9HT0xM1NTX9xmtqamLPnj0Drmlvbx9wfnt7+2mv09LSEo888sgp47W1taVsFwAAOE/9z//8T1RXVw/Jc5UURSNl+fLl/e4uHT16ND74wQ/GgQMHhuyFw0C6urqitrY2Dh486K2aDCtnjZHirDFSnDVGSmdnZ1x22WVx6aWXDtlzlhRFEyZMiLFjx0ZHR0e/8Y6Ojpg0adKAayZNmlTS/IiIioqKqKioOGW8urraP2SMiKqqKmeNEeGsMVKcNUaKs8ZIKSsbul8XKumZysvLY+bMmdHa2to31tvbG62trVFfXz/gmvr6+n7zIyJeeuml084HAAAYSSW/fa6pqSkWL14cs2bNitmzZ8fq1avj+PHjsWTJkoiIWLRoUUydOjVaWloiIuKee+6Jm266KR5//PG49dZbY/369fHzn/88nn766aF9JQAAAINQchTNnz8/Dh8+HCtWrIj29vaYMWNGbNmype/LFA4cONDvVtYNN9wQzz33XDz00EPxwAMPxF/91V/FCy+8EFdfffUZX7OioiKam5sHfEsdDCVnjZHirDFSnDVGirPGSBmOs1by7xQBAACcT4bu00kAAACjkCgCAABSE0UAAEBqoggAAEjtfRNFa9asiWnTpkVlZWXU1dXFtm3b3nX+D37wg7jqqquisrIyrrnmmti8efMI7ZTRrpSztm7dupgzZ06MHz8+xo8fHw0NDe95NuEdpf699o7169fHmDFjYt68ecO7Qc4bpZ61o0ePxtKlS2Py5MlRUVERV155pX+PckZKPWurV6+OD3/4w3HhhRdGbW1t3HffffH73/9+hHbLaPTTn/405s6dG1OmTIkxY8bECy+88J5rtm7dGh//+MejoqIiPvShD8Wzzz5b8nXfF1G0YcOGaGpqiubm5tixY0dMnz49Ghsb49ChQwPOf+WVV2LBggVx++23x86dO2PevHkxb968eO2110Z454w2pZ61rVu3xoIFC+Lll1+Otra2qK2tjVtuuSXefPPNEd45o02pZ+0d+/fvjy996UsxZ86cEdopo12pZ627uzs+9alPxf79+2Pjxo2xd+/eWLduXUydOnWEd85oU+pZe+6552LZsmXR3Nwcu3fvjmeeeSY2bNgQDzzwwAjvnNHk+PHjMX369FizZs0Zzf/lL38Zt956a9x8882xa9euuPfee+OOO+6IF198sbQLF+8Ds2fPLpYuXdr3556enmLKlClFS0vLgPM/+9nPFrfeemu/sbq6uuLv//7vh3WfjH6lnrU/dfLkyeLiiy8uvve97w3XFjlPDOasnTx5srjhhhuK73znO8XixYuLv/mbvxmBnTLalXrWvv3tbxeXX3550d3dPVJb5DxR6llbunRp8dd//df9xpqamoobb7xxWPfJ+SMiiueff/5d53z5y18uPvaxj/Ubmz9/ftHY2FjStc75naLu7u7Yvn17NDQ09I2VlZVFQ0NDtLW1Dbimra2t3/yIiMbGxtPOh4jBnbU/9dZbb8Xbb78dl1566XBtk/PAYM/aV7/61Zg4cWLcfvvtI7FNzgODOWs/+tGPor6+PpYuXRo1NTVx9dVXx8qVK6Onp2ekts0oNJizdsMNN8T27dv73mK3b9++2Lx5c3z6058ekT2Tw1B1wbih3NRgHDlyJHp6eqKmpqbfeE1NTezZs2fANe3t7QPOb29vH7Z9MvoN5qz9qfvvvz+mTJlyyj988P8N5qz97Gc/i2eeeSZ27do1AjvkfDGYs7Zv3774j//4j/jc5z4XmzdvjjfeeCO++MUvxttvvx3Nzc0jsW1GocGctdtuuy2OHDkSn/zkJ6Moijh58mTcdddd3j7HkDpdF3R1dcXvfve7uPDCC8/oec75nSIYLVatWhXr16+P559/PiorK8/1djiPHDt2LBYuXBjr1q2LCRMmnOvtcJ7r7e2NiRMnxtNPPx0zZ86M+fPnx4MPPhhr164911vjPLN169ZYuXJlPPXUU7Fjx4744Q9/GJs2bYpHH330XG8NTnHO7xRNmDAhxo4dGx0dHf3GOzo6YtKkSQOumTRpUknzIWJwZ+0djz32WKxatSp+8pOfxLXXXjuc2+Q8UOpZ+8UvfhH79++PuXPn9o319vZGRMS4ceNi7969ccUVVwzvphmVBvP32uTJk+OCCy6IsWPH9o195CMfifb29uju7o7y8vJh3TOj02DO2sMPPxwLFy6MO+64IyIirrnmmjh+/Hjceeed8eCDD0ZZmf9vnrN3ui6oqqo647tEEe+DO0Xl5eUxc+bMaG1t7Rvr7e2N1tbWqK+vH3BNfX19v/kRES+99NJp50PE4M5aRMQ3vvGNePTRR2PLli0xa9askdgqo1ypZ+2qq66KV199NXbt2tX3+MxnPtP3TTq1tbUjuX1GkcH8vXbjjTfGG2+80RfeERGvv/56TJ48WRBxWoM5a2+99dYp4fNOjP/hM/Rw9oasC0r7DojhsX79+qKioqJ49tlni//+7/8u7rzzzuKSSy4p2tvbi6IoioULFxbLli3rm/+f//mfxbhx44rHHnus2L17d9Hc3FxccMEFxauvvnquXgKjRKlnbdWqVUV5eXmxcePG4te//nXf49ixY+fqJTBKlHrW/pRvn+NMlXrWDhw4UFx88cXFP/zDPxR79+4tfvzjHxcTJ04svva1r52rl8AoUepZa25uLi6++OLiX//1X4t9+/YV//7v/15cccUVxWc/+9lz9RIYBY4dO1bs3Lmz2LlzZxERxRNPPFHs3Lmz+NWvflUURVEsW7asWLhwYd/8ffv2FRdddFHxj//4j8Xu3buLNWvWFGPHji22bNlS0nXfF1FUFEXxrW99q7jsssuK8vLyYvbs2cV//dd/9f1nN910U7F48eJ+87///e8XV155ZVFeXl587GMfKzZt2jTCO2a0KuWsffCDHywi4pRHc3PzyG+cUafUv9f+P1FEKUo9a6+88kpRV1dXVFRUFJdffnnx9a9/vTh58uQI75rRqJSz9vbbbxdf+cpXiiuuuKKorKwsamtriy9+8YvF//7v/478xhk1Xn755QH/t9c7Z2vx4sXFTTfddMqaGTNmFOXl5cXll19e/PM//3PJ1x1TFO5fAgAAeZ3zzxQBAACcS6IIAABITRQBAACpiSIAACA1UQQAAKQmigAAgNREEQAAkJooAgAAUhNFAABAaqIIAABITRQBAACpiSIAACC1/wMNUgey9g8lPgAAAABJRU5ErkJggg==\n" - }, - "metadata": {} } ] }, @@ -291,7 +273,7 @@ "height": 303 } }, - "execution_count": 14, + "execution_count": null, "outputs": [ { "output_type": "error", @@ -342,7 +324,7 @@ "id": "cYzGOiNeVfY7", "outputId": "d3044941-773c-479f-a4bf-7e86be3e6785" }, - "execution_count": 7, + "execution_count": null, "outputs": [ { "output_type": "error", From e7d1d39fed44f56b3c6238593a5702918c3a4b16 Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Fri, 27 Oct 2023 01:05:42 -0300 Subject: [PATCH 05/16] Creado mediante Colaboratory --- proyectoIAPrediccion1.ipynb | 764 +++++++++++++++++++++++++++++++++--- 1 file changed, 715 insertions(+), 49 deletions(-) diff --git a/proyectoIAPrediccion1.ipynb b/proyectoIAPrediccion1.ipynb index 810fe17..9e6caa5 100644 --- a/proyectoIAPrediccion1.ipynb +++ b/proyectoIAPrediccion1.ipynb @@ -4,7 +4,7 @@ "metadata": { "colab": { "provenance": [], - "authorship_tag": "ABX9TyMvuCp6BHGdTVs22COUmihu", + "authorship_tag": "ABX9TyMCZ7tRpRFKQ5GHpB0oeBuP", "include_colab_link": true }, "kernelspec": { @@ -32,6 +32,8 @@ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", + "import matplotlib.colors as mcolors\n", + "import matplotlib.cm as cm\n", "import seaborn as sns\n", "import plotly.express as px\n", "from wordcloud import WordCloud\n", @@ -44,51 +46,37 @@ "metadata": { "id": "H7kZjC_GUZZd" }, - "execution_count": 37, + "execution_count": 78, "outputs": [] }, { "cell_type": "code", - "source": [ - "\n" - ], - "metadata": { - "id": "LwP0v92D2NfV" - }, - "execution_count": 36, - "outputs": [] - }, - { - "cell_type": "code", - "execution_count": 27, + "execution_count": 79, "metadata": { "id": "9_FId2wvQAgd" }, "outputs": [], "source": [ - "\n", "# Leer los datos\n", "GES_Data = \"global_electricity_statistics_cleaned.csv\"\n", - "df = pd.read_csv(GES_Data)\n" + "df = pd.read_csv(GES_Data)" ] }, { "cell_type": "code", "source": [ - "\n", "# Ver los primeros datos\n", "print(df.head())\n", - "df[\"Features\"].value_counts()\n", - "\n" + "df[\"Features\"].value_counts()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "lWY6qwmkQ2PL", - "outputId": "fa607404-61b0-4e06-cb42-85fd5d143526" + "outputId": "c78edeb7-a5ea-4070-97f7-f12c402ed54d" }, - "execution_count": 28, + "execution_count": 80, "outputs": [ { "output_type": "stream", @@ -133,7 +121,7 @@ ] }, "metadata": {}, - "execution_count": 28 + "execution_count": 80 } ] }, @@ -143,16 +131,635 @@ "for country in df['Country'].unique():\n", " df.loc[df['Country'] == country] = df.loc[df['Country'] == country].replace(np.nan, df.loc[df['Country'] == country].select_dtypes(include=[np.number]).mean(numeric_only=True))\n", "df['Total'] = df.loc[:, '1980':'2021'].select_dtypes(include=[np.number]).sum(axis=1)\n", + "# Convertir las columnas de los años a numéricas\n", + "cols = [str(year) for year in range(1980, 2022)]\n", + "df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')\n", "\n", - "# Guardar el dataframe limpio\n", - "df.to_csv('global_electricity_statistics_cleaned.csv', index=False)" + "# Agrupar por 'Region' y 'Features', y obtener la suma\n", + "df_grouped = df.groupby(['Region', 'Features']).sum(numeric_only=True)\n" ], "metadata": { "id": "9MZcbtw9t95l" }, - "execution_count": 32, + "execution_count": 81, "outputs": [] }, + { + "cell_type": "markdown", + "source": [ + "base de datos lista con regiones y caracteristicas 1980 al 2021 abajo listo falta red neuronal y entrenamiento\n", + "\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "_28HoIcVTX5H" + } + }, + { + "cell_type": "code", + "source": [ + "# Transponer el DataFrame para que los años sean las columnas y las regiones y características sean las filas\n", + "df_transposed = df_grouped.drop(columns=['Total']).transpose()\n", + "\n", + "# Crear una figura más grande\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "\n", + "# Crear un mapa de colores\n", + "cmap = cm.get_cmap('tab10')\n", + "\n", + "# Crear un diccionario para asignar un color único a cada región\n", + "region_colors = {region: cmap(i) for i, region in enumerate(df_grouped.index.get_level_values('Region').unique())}\n", + "\n", + "# Para cada región y característica, trazar los valores a lo largo de los años\n", + "for region_feature, values in df_transposed.items():\n", + " region = region_feature[0] # Obtener la región de region_feature\n", + " ax.plot(df_transposed.index, values, color=region_colors[region])\n", + "\n", + "# Rotar las etiquetas del eje x\n", + "plt.xticks(rotation=45)\n", + "\n", + "# Añadir una leyenda fuera del gráfico con solo las regiones\n", + "handles = [plt.Line2D([0], [0], color=region_colors[region], lw=2) for region in df_grouped.index.get_level_values('Region').unique()]\n", + "ax.legend(handles, df_grouped.index.get_level_values('Region').unique(), bbox_to_anchor=(1.05, 1), loc='upper left')\n", + "\n", + "# Mostrar el gráfico\n", + "plt.show()" + ], + "metadata": { + "id": "UAOFyFDLLMo-", + "outputId": "491b5bb5-30ac-40d5-da10-237fd7ad0426", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 601 + } + }, + "execution_count": 84, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":8: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.\n", + " cmap = cm.get_cmap('tab10')\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFwAAAIQCAYAAAC8M3rkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZyNZePH8c+ZfcZsxjYm29j3LZI1ajJjK1t2EaWFpEjK8iOPSFSkKA0jS7aQVCL7lizZlxBGZUyMmTFmP+f8/rg5mWwz5szG9/16nZd7ue7rus55Go/znWsxWa1WKyIiIiIiIiIiYjcOOd0BEREREREREZH7jQIXERERERERERE7U+AiIiIiIiIiImJnClxEREREREREROxMgYuIiIiIiIiIiJ0pcBERERERERERsTMFLiIiIiIiIiIidqbARURERERERETEzhS4iIiIiIiIiIjYmVNOdyAnWSwW/v77b7y8vDCZTDndHRERERERySFWq5UrV64QEBCAg4N+Ly0idmDNoE2bNllbt25tLVq0qBWwLl++/LZlX3zxRStg/eijj9Jcv3TpkrVbt25WLy8vq4+Pj7VPnz7WK1eupCmzf/9+a6NGjayurq7WYsWKWd9///2b6l+8eLG1QoUKVldXV2vVqlWt33//fYbey7lz56yAXnrppZdeeumll1566aWXFbCeO3cuQ98pRERuJ8MjXK5evUqNGjXo06cP7du3v2255cuX88svvxAQEHDTve7du3P+/HnWrl1LSkoKzz33HP369WPBggUAxMbG0rx5c4KCgpgxYwYHDx6kT58++Pr60q9fPwC2b99O165dGT9+PK1bt2bBggW0bduWvXv3UrVq1XS9Fy8vLwDOnTuHt7d3Rj8KERERERG5T8TGxlK8eHHbdwQRkcwyWa1W6z0/bDKxfPly2rZtm+b6X3/9Rb169fjpp59o1aoVgwYNYtCgQQAcPXqUypUrs2vXLurUqQPA6tWradmyJX/++ScBAQFMnz6d4cOHExERgYuLCwDDhg1jxYoVHDt2DIDOnTtz9epVVq1aZWv30UcfpWbNmsyYMSNd/Y+NjcXHx4eYmBgFLiIiIiIiDzB9NxARe7P75ESLxULPnj158803qVKlyk33d+zYga+vry1sAQgKCsLBwYGdO3fayjRp0sQWtgAEBwdz/PhxLl++bCsTFBSUpu7g4GB27Nhx274lJSURGxub5iUiIiIiIiIiYm92D1zef/99nJycGDhw4C3vR0REULhw4TTXnJyc8PPzIyIiwlamSJEiacpcP79bmev3b2X8+PH4+PjYXsWLF8/YmxMRERERERERSQe7Bi579uxhypQphIWF5cpdf95++21iYmJsr3PnzuV0l0RERERERETkPmTXbaG3bNlCZGQkJUqUsF0zm80MHjyYjz/+mDNnzuDv709kZGSa51JTU4mKisLf3x8Af39/Lly4kKbM9fO7lbl+/1ZcXV1xdXW99zcoIiIiIiKSC5nNZlJSUnK6GyL3PWdnZxwdHdNV1q6BS8+ePW+5rkrPnj157rnnAKhfvz7R0dHs2bOHhx9+GID169djsVioV6+erczw4cNJSUnB2dkZgLVr11KhQgXy589vK7Nu3TrbYrzXy9SvX9+eb0lERERERCTXslqtREREEB0dndNdEXlg+Pr64u/vf9eZPRkOXOLi4jh58qTt/PTp0+zbtw8/Pz9KlChBgQIF0pR3dnbG39+fChUqAFCpUiVCQkJ44YUXmDFjBikpKQwYMIAuXbrYtpDu1q0bY8aMoW/fvrz11lscOnSIKVOm8NFHH9nqfe2113jssceYPHkyrVq1YuHChezevZsvvvgio29JREREREQkT7oethQuXBgPD49cubSDyP3CarUSHx9vm7VTtGjRO5bPcOCye/dumjVrZjt/4403AOjVqxdhYWHpqmP+/PkMGDCAJ554AgcHBzp06MDUqVNt9318fFizZg39+/fn4YcfpmDBgowaNYp+/frZyjRo0IAFCxYwYsQI3nnnHcqVK8eKFSuoWrVqRt+SiIiIiIhInmM2m21hy39/8S0iWcPd3R2AyMhIChcufMfpRSar1WrNro7lNrGxsfj4+BATE4O3t3dOd0dERERERHJIXvxukJiYyOnTpylVqpTtS6CIZL2EhATOnDlDYGAgbm5uty1n922hRUREREREJPtoGpFI9krvz5wCFxERERERERERO1PgIiIiIiIiIrmK1WqlX79++Pn5YTKZ2Ldv323LmkwmVqxYkW19E0kvBS4iIiIiIiKSI3bs2IGjoyOtWrVKc3316tWEhYWxatUqzp8/f8fNUc6fP0+LFi2yuqsiGabARURERERERHJEaGgor776Kps3b+bvv/+2XT916hRFixalQYMG+Pv74+R08wa7ycnJAPj7++Pq6pptfRZJLwUuIiIiIiIiku3i4uJYtGgRL7/8Mq1atSIsLAyA3r178+qrrxIeHo7JZKJUqVIANG3alAEDBjBo0CAKFixIcHAwcPOUoj///JOuXbvi5+dHvnz5qFOnDjt37gSMIOfpp5+mSJEieHp6UrduXX7++efsfNvyAFHgIiIiIiIiItlu8eLFVKxYkQoVKtCjRw9mzZqF1WplypQpvPvuuxQrVozz58+za9cu2zNz5szBxcWFbdu2MWPGjJvqjIuL47HHHuOvv/5i5cqV7N+/n6FDh2KxWGz3W7Zsybp16/jtt98ICQmhTZs2hIeHZ9v7lgfHzeOyREREREREJM9q88lW/rmSlO3tFvJy5btXG6W7fGhoKD169AAgJCSEmJgYNm3aRNOmTfHy8sLR0RF/f/80z5QrV46JEyfets4FCxbwzz//sGvXLvz8/AAoW7as7X6NGjWoUaOG7Xzs2LEsX76clStXMmDAgHT3XSQ9FLiIiIiIiEj2s1jAkgpOLjndk/vOP1eSiIhNzOlu3NHx48f59ddfWb58OQBOTk507tyZ0NBQmjZtetvnHn744TvWu2/fPmrVqmULW/4rLi6O0aNH8/3333P+/HlSU1NJSEjQCBfJEgpcREREREQk++2bB9s/gZaToPRjOd2b+0ohr5xZQDYj7YaGhpKamkpAQIDtmtVqxdXVlWnTpt32uXz58t2xXnd39zveHzJkCGvXrmXSpEmULVsWd3d3OnbsaFuAV8SeFLiIiIiIiEj2SrgMP4+B+IsQcVCBi51lZFpPTkhNTeWrr75i8uTJNG/ePM29tm3b8vXXX99z3dWrV+fLL78kKirqlqNctm3bRu/evWnXrh1gjHg5c+bMPbcncidaNFdERERERLLXhvFG2FKwAtR7Mad7I9ls1apVXL58mb59+1K1atU0rw4dOhAaGnrPdXft2hV/f3/atm3Ltm3b+OOPP/jmm2/YsWMHYKwBs2zZMvbt28f+/fvp1q2bbUFdEXtT4CIiIiIiItkn4hDsmmkct5wIjs452x/JdqGhoQQFBeHj43PTvQ4dOrB7925iY2PvqW4XFxfWrFlD4cKFadmyJdWqVWPChAk4OjoC8OGHH5I/f34aNGhAmzZtCA4Opnbt2pl6PyK3Y7Jardac7kROiY2NxcfHh5iYGLy9vXO6OyIiIiIi9zerFWa3hPDtUPlp6PRVTvfIJi9+N0hMTOT06dMEBgbi5uaW090ReWCk92dPI1xERERERCR7HPrGCFuc3KH5uJzujYhIllLgIiIiIiIiWS/pCqwZYRw3GQy+xXO2PyIiWUyBi4iIiIiIZL3NH8CV85C/FNR/Nad7IyKS5RS4iIiIiIhI1rp4AnZ8ZhyHvA/OWm9ERO5/ClxERERERCTrWK3w41CwpEC5YKgQktM9EhHJFgpcREREREQk6xz7Hk6tB0cXCBmf070REck2ClxERERERCRrpCTA6reN4wavQoEyOdsfEZFspMBFRERERESyxtaPISYcvB+CxoNzujciItlKgYuIiIiIiNjf5TOw7WPjOHgcuOTLyd6IiGQ7BS4iIiIiImJ/Pw2H1EQIbAKV2+Z0b+Q+c+bMGUwmE/v27cvpruQZTZs2ZdCgQTndjQeKAhcREREREbGvEz/DsVXg4AQtPgCTKad7JLnUjh07cHR0pFWrVhl6rnjx4pw/f56qVatmqn2LxcJbb71FQEAA7u7uVK9enW+//Tbdz69atYrHHnsMLy8vPDw8qFu3LmFhYZnqU1ZZtmwZY8eOzeluPFAUuIiIiIiIiP2kJsPqt4zjR16EwhVztj+Sq4WGhvLqq6+yefNm/v7773Q/5+joiL+/P05OTplqf968eXz00Ud8+OGHHD16lA8//JB8+dI3/e2TTz7h6aefpmHDhuzcuZMDBw7QpUsXXnrpJYYMGZKpfmUFPz8/vLy8crobDxQFLiIiIiIiYj+/fAaXTkK+wtD0rZzujeRicXFxLFq0iJdffplWrVrdNDLk8uXLdO/enUKFCuHu7k65cuWYPXs2cPOUIrPZTN++fQkMDMTd3Z0KFSowZcqUu/bBwcGBQoUK0aVLF0qVKkVQUBBBQUF3fe7cuXMMHjyYQYMG8d5771G5cmXKli3L4MGD+eCDD5g8eTI7d+60lT98+DCtW7fG29sbLy8vGjduzKlTp2z3v/zySypVqoSbmxsVK1bks88+S9PeW2+9Rfny5fHw8KB06dKMHDmSlJQU2/3Ro0dTs2ZN5s6dS6lSpfDx8aFLly5cuXLFVua/U4rmzp1LnTp18PLywt/fn27duhEZGXnX9y7pp8BFRERERETsI/Zv2DTROH7yXXDzydn+SK62ePFiKlasSIUKFejRowezZs3CarXa7o8cOZIjR47w448/cvToUaZPn07BggVvWZfFYqFYsWIsWbKEI0eOMGrUKN555x0WL158xz488cQTxMTEMHLkyAz1fenSpaSkpNxyJMuLL76Ip6cnX3/9NQB//fUXTZo0wdXVlfXr17Nnzx769OlDamoqAPPnz2fUqFGMGzeOo0eP8t577zFy5EjmzJljq9PLy4uwsDCOHDnClClTmDlzJh999FGadk+dOsWKFStYtWoVq1atYtOmTUyYMOG27yElJYWxY8eyf/9+VqxYwZkzZ+jdu3eGPge5s8yNvxIREREREbluzUhIuQrF60H1zjndmwfX549BXA6MVPAsDC9uSnfx0NBQevToAUBISAgxMTFs2rSJpk2bAhAeHk6tWrWoU6cOAKVKlbptXc7OzowZM8Z2HhgYyI4dO1i8eDGdOnW65TPx8fE8+eSTdOvWjbVr15KQkMAHH3yA6dqaQ97e3syaNYuOHTve9Ozvv/+Oj48PRYsWvemei4sLpUuX5vfffwfg008/xcfHh4ULF+Ls7AxA+fLlbeX/7//+j8mTJ9O+fXtb348cOcLnn39Or169ABgxYoStfKlSpRgyZAgLFy5k6NChtusWi4WwsDDbtKGePXuybt06xo0bd8v336dPH9tx6dKlmTp1KnXr1iUuLg5PT89bPiMZo8BFREREREQy78xWOLQUMEGLieCgwfQ5Ji4SrqR/PZSccPz4cX799VeWL18OgJOTE507dyY0NNQWuLz88st06NCBvXv30rx5c9q2bUuDBg1uW+enn37KrFmzCA8PJyEhgeTkZGrWrHnb8mFhYURHR/Ppp58SFxdH06ZNee655/jyyy/5888/iYuLo2HDhpl+r/v27aNx48a2sOVGV69e5dSpU/Tt25cXXnjBdj01NRUfn39HiC1atIipU6dy6tQp4uLiSE1NxdvbO01dpUqVSrNGS9GiRe84RWjPnj2MHj2a/fv3c/nyZSwWC2AEXZUrV77n9yv/UuAiIiIiIiKZY06FH679pr3OcxBQM0e788DzLJzr2w0NDSU1NZWAgADbNavViqurK9OmTcPHx4cWLVpw9uxZfvjhB9auXcsTTzxB//79mTRp0k31LVy4kCFDhjB58mTq16+Pl5cXH3zwQZp1VP7rwIEDVKlSBWdnZ/Lnz8/atWtp3Lgx7dq1o1y5coSEhNxyBAsYI1RiYmL4+++/07wHgOTkZE6dOkWzZs0AcHd3v20f4uLiAJg5cyb16tVLc8/R0REwdnLq3r07Y8aMITg42DZaZvLkyWnK/zfQMZlMthDlv65evUpwcDDBwcHMnz+fQoUKER4eTnBwMMnJybftr2SMAhcREREREcmc3aEQeRjc88PjGVsLQ7JABqb15ITU1FS++uorJk+eTPPmzdPca9u2LV9//TUvvfQSAIUKFaJXr1706tWLxo0b8+abb94ycNm2bRsNGjTglVdesV27cVHaW3nooYdYvnw5V65cwcvLi8KFC/Pzzz/TuHFjVq1axZ49e277bIcOHXjrrbeYPHnyTcHHjBkzuHr1Kl27dgWgevXqzJkzh5SUlJtCkSJFihAQEMAff/xB9+7db9nW9u3bKVmyJMOHD7ddO3v27B3f290cO3aMS5cuMWHCBIoXLw7A7t27M1Wn3Ezj/ERERERE5N7F/QPrr60R8cQo8PDL2f5Irrdq1SouX75M3759qVq1appXhw4dCA0NBWDUqFF8++23nDx5ksOHD7Nq1SoqVap0yzrLlSvH7t27+emnn/j9998ZOXIku3btumM/+vbti9ls5qmnnmL79u0cP36cn376ibi4ODw8PGz9uJUSJUowceJEPv74Y4YPH86xY8c4deoUH374IUOHDmXw4MG2ESsDBgwgNjaWLl26sHv3bk6cOMHcuXM5fvw4AGPGjGH8+PFMnTqV33//nYMHDzJ79mw+/PBD23sLDw9n4cKFnDp1iqlTp9qmYt2rEiVK4OLiwieffMIff/zBypUrGTt2bKbqlJspcBERERERkXu3bjQkxUDRGlC7V/qfizgIG96DlIQs65rkTqGhoQQFBaVZo+S6Dh06sHv3bg4cOICLiwtvv/021atXp0mTJjg6OrJw4cJb1vniiy/Svn17OnfuTL169bh06VKa0S63EhAQwK+//krBggVp3749tWrV4quvvuKrr77i+++/54svvrCFHrcyaNAgli9fzpYtW6hTpw5Vq1ZlwYIFTJ8+Pc0onAIFCrB+/Xri4uJ47LHHePjhh5k5c6ZttMvzzz/Pl19+yezZs6lWrRqPPfYYYWFhBAYGAvDUU0/x+uuvM2DAAGrWrMn27dszvKvSfxUqVIiwsDCWLFlC5cqVmTBhwi1HDknmmKw37rv1gImNjcXHx4eYmJibFhwSEREREZG7+HMPfPm4cdxnDZSod+fy11mtMLsFhO+Aui9Aq5z/opcXvxskJiZy+vRpAgMDcXNzy+nuiDww0vuzpxEuIiIiIiKScRYL/DDYOK7RLf1hC8CBRUbY4pwPGr2eNf0TEclhClxERERERCTjfpsLf/8Grt4QNDr9zyXGwJpr0yEeexN8HsqS7omI5DQFLiIiIiIikjHxUfDzaOO46TDwKpL+ZzdOgKuRUKAcPNo/S7onIpIbKHAREREREZH0u3gSVrwCCVFQqCI80i/9z144DDs/N45bTgQnl6zpo4hILuCU0x0QEREREZFczmqFPzbAL9PhxJprF03Q8gNwdE5/HT+8CVYzVHoKyjyeZd0VEckNFLiIiIiIiMitJccbC9zunAH/HLt20QTlQ6Dha1CyfvrrOrgUzm4DZw8Ifi9LuisikpsocBERERERkbRi/oJdM2FPGCRcNq65eEKtHsYUogJlMlZfYiysGWEcNx4MvsXt2l0RkdxIgYuIiIiIiBjO7YKd0+HwCmPqD4BvSaj3EtTqDm4+91bvpvchLgL8ykCDV+3WXRGR3EyBi4iIiIjIg8ycAke+NdZn+Wv3v9dLNYZHXzamDzk43nv9kceMKUkALSaCk2vm+isikkdolyIRERERkQdRfBRsmQwfV4dv+hphi6ML1OwBL26B3qugYqvMhS1WK/wwBCypULE1lAuyX/9FckipUqX4+OOPc7obWcJkMrFixYqc7kam9e7dm7Zt2+Z0NxS4iIiIiIg8UP75HVYOhA8rwbp34crfkK8wNH0HXj8MbT+FotXt09ahb+DMFnBy00K5cpOIiAheffVVSpcujaurK8WLF6dNmzasW7fOru00bdqUQYMG2bXOuzl58iTBwcF4e3vj5+dHixYt+Oeff+76nNlsZsKECVSsWBF3d3f8/PyoV68eX375pV37N3r0aGrWrGnXOr/++mscHR3p37+/Xeu9F1OmTCEsLCynu6EpRSIiIiIiDwSLBX75DH4eDZYU41rRGvDoK1Clnf2n+iRdSbtQbv6S9q1f8rQzZ87QsGFDfH19+eCDD6hWrRopKSn89NNP9O/fn2PHjt29EjuyWq2YzWacnOzzFblfv37ExMSwadMmPDw82LFjB1ar9a7PjRkzhs8//5xp06ZRp04dYmNj2b17N5cvX7ZLv7JSaGgoQ4cO5fPPP2fy5Mm4ubllex/MZjMmkwkfn3tcb8rONMJFREREROR+d/UifN0Z1gw3wpayQfDcaui3CWp0yZp1VTZNhCvnIX8gNBho//olT3vllVcwmUz8+uuvdOjQgfLly1OlShXeeOMNfvnlF1u56Ohonn/+eQoVKoS3tzePP/44+/fvt92/PlJj7ty5lCpVCh8fH7p06cKVK1cAY2rJpk2bmDJlCiaTCZPJxJkzZ9i4cSMmk4kff/yRhx9+GFdXV7Zu3cqpU6d4+umnKVKkCJ6entStW5eff/45w+/PwcGB4OBgatWqRYUKFejduzeFCxe+63MrV67klVde4ZlnniEwMJAaNWrQt29fhgwZYiuTlJTEwIEDKVy4MG5ubjRq1Ihdu3bZ7oeFheHr65um3hUrVmAymWz3x4wZw/79+22fyY2jQS5evEi7du3w8PCgXLlyrFy58q79Pn36NNu3b2fYsGGUL1+eZcuWpbl/vU+rVq2iQoUKeHh40LFjR+Lj45kzZw6lSpUif/78DBw4ELPZnOa9DhkyhIceeoh8+fJRr149Nm7ceFO9K1eupHLlyri6uhIeHn7TlCKLxcLEiRMpW7Ysrq6ulChRgnHjxtnuv/XWW5QvXx4PDw9Kly7NyJEjSUlJuev7vhsFLiIiIiIi97PTm2F6QzixBhxdodVk6L4UStaHa1/A7O6f48ZoGoAW74Nz9v+mW3KvqKgoVq9eTf/+/cmXL99N928MC5555hkiIyP58ccf2bNnD7Vr1+aJJ54gKirKVubUqVOsWLGCVatWsWrVKjZt2sSECRMAY2pJ/fr1eeGFFzh//jznz5+nePF/tyUfNmwYEyZM4OjRo1SvXp24uDhatmzJunXr+O233wgJCaFNmzaEh4dn6D0+/fTTfPbZZ+zduzdDz/n7+7N+/fo7Tj8aOnQo33zzDXPmzGHv3r2ULVuW4ODgNJ/JnXTu3JnBgwdTpUoV22fSuXNn2/0xY8bQqVMnDhw4QMuWLenevftd6549ezatWrXCx8eHHj16EBoaelOZ+Ph4pk6dysKFC1m9ejUbN26kXbt2/PDDD/zwww/MnTuXzz//nKVLl9qeGTBgADt27GDhwoUcOHCAZ555hpCQEE6cOJGm3vfff58vv/ySw4cP3zLYevvtt5kwYQIjR47kyJEjLFiwgCJFitjue3l5ERYWxpEjR5gyZQozZ87ko48+StfneSeaUiQiIiIicj8yp8LG8cbCuFihYAXoOAv8q2Ztu1Yr/PCmsVBuhZZQPjhr25ObdF7VmYsJF7O93YLuBVnUetFdy508eRKr1UrFihXvWG7r1q38+uuvREZG4upqjMKaNGkSK1asYOnSpfTr1w8wRi+EhYXh5eUFQM+ePVm3bh3jxo3Dx8cHFxcXPDw88Pf3v6mNd999lyeffNJ27ufnR40aNWznY8eOZfny5axcuZIBAwbc/UMA1q9fz7BhwxgzZgytW7dm0aJFNG7cGIBvvvmG3r1720bg/NeHH35Ix44d8ff3p0qVKjRo0ICnn36aFi1aAHD16lWmT59OWFiY7drMmTNZu3YtoaGhvPnmm3ftn7u7O56enjg5Od3yM+nduzddu3YF4L333mPq1Kn8+uuvhISE3LK+65//J598AkCXLl0YPHgwp0+fJjAw0FYuJSWF6dOnU6ZMGQA6duzI3LlzuXDhAp6enlSuXJlmzZqxYcMGOnfuTHh4OLNnzyY8PJyAgAAAhgwZwurVq5k9ezbvvfeerd7PPvsszf9uN7py5QpTpkxh2rRp9OrVC4AyZcrQqFEjW5kRI0bYjkuVKsWQIUNYuHAhQ4cOvevneScKXERERERE7jfR4fDN83Bup3Fe+1kImQAuN48msLsjK+D0JmOh3JDxWd+e3ORiwkUi4yNzuhu3lZ61TAD2799PXFwcBQoUSHM9ISGBU6dO2c5LlSplC1sAihYtSmRk+t5/nTp10pzHxcUxevRovv/+e86fP09qaioJCQkZGuEybNgw+vfvz5AhQ6hSpQpt2rRh7ty5tGnThoMHD6b5ov9flStX5tChQ+zZs4dt27axefNm2rRpQ+/evfnyyy85deoUKSkpNGzY0PaMs7MzjzzyCEePHk13H++kevV/F83Oly8f3t7ed/w8165dy9WrV2nZsiUABQsW5Mknn2TWrFmMHTvWVs7Dw8MWtgAUKVKEUqVK4enpmeba9bYOHjyI2WymfPnyadpLSkpK89+Ei4tLmj7/19GjR0lKSuKJJ564bZlFixYxdepUTp06RVxcHKmpqXh7e9+2fHplOHDZvHkzH3zwAXv27OH8+fMsX77cNjcqJSWFESNG8MMPP/DHH3/g4+NDUFAQEyZMsCVSYAwhe/XVV/nuu+9wcHCgQ4cOTJkyJc0HfeDAAfr378+uXbsoVKgQr7766k3p0pIlSxg5ciRnzpyhXLlyvP/++7b/kUVEREREHkhHVsLKAZAYA67e0OZjqNohe9pOioOfhhvHjV6H/KWyp11Jo6B7wVzdbrly5TCZTHddGDcuLo6iRYumWbPjuhunHTk7O6e5ZzKZsFgs6erLf6c0DRkyhLVr1zJp0iTKli2Lu7s7HTt2JDk5OV31gfFd9vXXXwegRYsWhIaG8swzzzBt2jTCwsKYOHHiHZ93cHCgbt261K1bl0GDBjFv3jx69uzJ8OHD09W+g4PDTaFWRtYjyejnGRoaSlRUFO7u7rZrFouFAwcOMGbMGBwcHG5b753aiouLw9HRkT179uDomHZ7+huzA3d3d9v6NLdyY79uZceOHXTv3p0xY8YQHByMj48PCxcuZPLkyXd8Lj0yHLhcvXqVGjVq0KdPH9q3b5/mXnx8PHv37mXkyJHUqFGDy5cv89prr/HUU0+xe/duW7nu3btz/vx51q5dS0pKCs899xz9+vVjwYIFAMTGxtK8eXOCgoKYMWMGBw8epE+fPvj6+tqGjW3fvp2uXbsyfvx4WrduzYIFC2jbti179+6latUsHiYpIiIiIpLbpCTAT+/A7lnG+UN1oGNo9oYeWyZB7F/gWxIavpZ97Uoa6ZnWk5P8/PwIDg7m008/ZeDAgTeFHtHR0fj6+lK7dm0iIiJwcnKiVKlS99yei4tLmoVY72Tbtm307t2bdu3aAcaX/jNnzmSovYceeojNmzfbpuV06NCBuLg4nnvuOapXr84zzzyTofoqV64MGN/Fy5Qpg4uLC9u2baNkSWPnr5SUFHbt2mXb+rpQoUJcuXKFq1ev2j7bffv2pakzI5/JnVy6dIlvv/2WhQsXUqVKFdt1s9lMo0aNWLNmzW2nIt1NrVq1MJvNREZG2qZk3Yty5crh7u7OunXreP7552+6v337dkqWLJkm0Dp79uw9t3ejDAcuLVq0sM0V+y8fHx/Wrl2b5tq0adN45JFHCA8Pp0SJEhw9epTVq1eza9cu2/CtTz75hJYtWzJp0iQCAgKYP38+ycnJzJo1CxcXF6pUqcK+ffv48MMPbYHLlClTCAkJsc1RGzt2LGvXrmXatGnMmDEjo29LRERERCTvijwKS/tA5BHjvOEgeHwEODrf8TG7ungCtk8zjlu8D853/q2yPNg+/fRTGjZsyCOPPMK7775L9erVSU1NZe3atUyfPp2jR48SFBRE/fr1adu2LRMnTqR8+fL8/ffffP/997Rr1+6m6UC3U6pUKXbu3MmZM2fw9PTEz8/vtmXLlSvHsmXLaNOmDSaTiZEjR6Z7tMx1Q4cO5ZVXXsHf35/OnTsTExPDjh078PDw4NixY2zbtu2204o6duxIw4YNadCgAf7+/pw+fZq3336b8uXLU7FiRZycnHj55Zd588038fPzo0SJEkycOJH4+Hj69u0LQL169fDw8OCdd95h4MCB7Ny5M80uRNc/k9OnT7Nv3z6KFSuGl5eXbZ2cjJg7dy4FChSgU6dON40yadmyJaGhofccuJQvX57u3bvz7LPPMnnyZGrVqsU///zDunXrqF69Oq1atUpXPW5ubrz11lsMHToUFxcXGjZsyD///MPhw4fp27cv5cqVIzw8nIULF1K3bl2+//57li9ffk99/q8s36UoJiYGk8lkG/K1Y8cOfH190/xwBAUF4eDgwM6dO21lmjRpgouLi61McHAwx48ft+0/vmPHDoKCgtK0FRwczI4dO27bl6SkJGJjY9O8RERERETyLKsV9oTBF82MsCVfYei5HJ4ck71hi9UKPw41tpwuFwwVbv0LWpHrSpcuzd69e2nWrBmDBw+matWqPPnkk6xbt47p06cDxvSSH374gSZNmvDcc89Rvnx5unTpwtmzZ9PsMHM3Q4YMwdHRkcqVK1OoUKE7rsfy4Ycfkj9/fho0aECbNm0IDg6mdu3aGXpvL774IosWLeK7777j4Ycf5qmnniI5OZljx47Rs2dP2rZtm2aXnRsFBwfz3Xff0aZNG8qXL0+vXr2oWLEia9aswcnJGC8xYcIEOnToQM+ePalduzYnT57kp59+In/+/IAxgmjevHn88MMPVKtWja+//prRo0enaadDhw6EhITQrFkzChUqxNdff52h93jdrFmzaNeu3S2n9HTo0IGVK1dy8eK9L+A8e/Zsnn32WQYPHkyFChVo27Ytu3btokSJEhmqZ+TIkQwePJhRo0ZRqVIlOnfubFsr5qmnnuL1119nwIAB1KxZk+3btzNy5Mh77vONTNb0rlh0q4dNpjRruPxXYmIiDRs2pGLFisyfPx8wVjmeM2cOx48fT1O2cOHCjBkzhpdffpnmzZsTGBjI559/brt/5MgRqlSpwpEjR6hUqRIuLi7MmTPHNkwL4LPPPmPMmDFcuHDhlv0ZPXo0Y8aMuel6TEyMXRbEERERERHJNgnR8N1rxiK1AGUeh3afg+fNW6JmuSMrYXFPY9vp/r+AX+ns70MmxcbG4uPjk6e+GyQmJtp2gnFz09bbItklvT97WTbCJSUlhU6dOmG1Wm0JZU57++23iYmJsb3OnTuX010SEREREcm4c7vg88ZG2OLgBE++C92/yZmwJTneWDsGjHVb8mDYIiKSFbJkW+jrYcvZs2dZv359moTY39//pi2lUlNTiYqKsu0B7u/vf9Molevndytzq33Er3N1db2neWkiIiIiIrmCxQLbPob1/wOr2VgQt8MsKPZwzvVpy2SIOQc+JYydiUREBMiCES7Xw5YTJ07w888/37Rnev369YmOjmbPnj22a+vXr8disVCvXj1bmc2bN6fZumrt2rVUqFDBNi+tfv36rFu3Lk3da9eupX79+vZ+SyIiIiIiOS/pCsxrD+vGGGFL1Q7w4uacDVsunYLtU43jkPHg4pFzfRERyWUyHLjExcWxb98+27ZS11c2Dg8PJyUlhY4dO7J7927mz5+P2WwmIiKCiIgI277llSpVIiQkhBdeeIFff/2Vbdu2MWDAALp06UJAQAAA3bp1w8XFhb59+3L48GEWLVrElClTeOONN2z9eO2111i9ejWTJ0/m2LFjjB49mt27dzNgwAA7fCwiIiIiIrlIahIs7A5/bABnD3hqGnQIBTefnOuT1Qo/vgXmZCgbBBXTt2OIiMiDIsOL5m7cuJFmzZrddL1Xr16MHj2awMDAWz63YcMGmjZtCkBUVBQDBgzgu+++w8HBgQ4dOjB16lQ8PT1t5Q8cOED//v3ZtWsXBQsW5NVXX+Wtt95KU+eSJUsYMWIEZ86coVy5ckycOJGWLVum+73kxYWxREREROQBYzEbWz4fWQEuntBrJTyUg6Narjv2PSzsBo4u8MovUKBMTvcoU/LidwMtmiuSM9L7s5epXYryurz4l6qIiIiIPECsVvhhCOz6EhycofsSKHPzLz+zXXI8fFoPYsKh8WB4YlRO9yjT8uJ3AwUuIjkjx3cpEhERERGRTNr0vhG2YIL2X+SOsCUpztiVKCYcvIsZgYuIiNwkS3YpEhERERGRTNr1JWwcbxy3/ACqts/Z/iTGwK9fwI7PICHKuBbyHrjky9l+iYjkUgpcRERERERym8PL4fshxvFjw+CRF3KuL/FR8Mt02Pk5JMUY1/xKQ9N3oPLTOdcvEZFcToGLiIiIiEhucmoDfPMCYIU6faHpsJzpR1wkbP8EdoVCylXjWqGK0HgIVGkHjvoqIfefpk2bUrNmTT7++OOc7orcB/S3pIiIiIhIbvHXXljUAywpULmtMZXIZMrePsT8Bdunwp4wSE00rvlXhyZvQsXW4KBlICXzevfuzZw5c266HhwczOrVq3OgR4Zly5bh7OycY+3L/UWBi4iIiIhIbnDxJMzvCMlxEPiYsUiug2P2tX/5DGz9GPbNB3Oyce2hOvDYUCjXPPuDH7nvhYSEMHv27DTXXF1d76kuq9WK2WzGySlzX3H9/Pwy9bzIjRRPi4iIiIjktNi/YW47iL8ERWtCl/ngdG9fPDPs4klY/jJMrQ17ZhthS8lG0HMFPP8zlA9W2CJZwtXVFX9//zSv/Pnzc+bMGUwmE/v27bOVjY6OxmQysXHjRgA2btyIyWTixx9/5OGHH8bV1ZWtW7dy6tQpnn76aYoUKYKnpyd169bl559/TtPuZ599Rrly5XBzc6NIkSJ07NjRdq9p06YMGjTIdj537lzq1KmDl5cX/v7+dOvWjcjIyKz8WOQ+ohEuIiIiIiI5KeEyzOtgbLPsVwa6LwVXr6xv98Jh2DIZDi0DrMa1Mo8bU4dKNsj69kXsYNiwYUyaNInSpUuTP39+zp07R8uWLRk3bhyurq589dVXtGnThuPHj1OiRAl2797NwIEDmTt3Lg0aNCAqKootW7bctv6UlBTGjh1LhQoViIyM5I033qB379788MMP2fguJa9S4CIiIiIiklOS42FBF4g8Ap7+0HM5eBbK2jbPH4BN78OxVf9eq9DSWAy32MNZ27Zki9MdOpJ68WK2t+tUsCCB3yxNd/lVq1bh6emZ5to777xDt27d0l3Hu+++y5NPPmk79/Pzo0aNGrbzsWPHsnz5clauXMmAAQMIDw8nX758tG7dGi8vL0qWLEmtWrVuW3+fPn1sx6VLl2bq1KnUrVuXuLi4m/ou8l8KXEREREREcoI5BZb0hnO/gJsP9FwG+UtmXXsWC2z7CNaPA6sZMBnbOjceDEWrZ127ku1SL14k9cKFnO7GXTVr1ozp06enuebn50dsbGy666hTp06a87i4OEaPHs3333/P+fPnSU1NJSEhgfDwcACefPJJSpYsSenSpQkJCSEkJIR27drh4eFxy/r37NnD6NGj2b9/P5cvX8ZisQAQHh5O5cqVM/J25QGkwEVEREREJLtZLLDyVTjxEzi5QbfFUKRK1rV3JQKW9YPTm4zzSm2g2QgoXDHr2pQc41SwYJ5oN1++fJQtW/am63FxcYCxEO51KSkpt63jRkOGDGHt2rVMmjSJsmXL4u7uTseOHUlONhaC9vLyYu/evWzcuJE1a9YwatQoRo8eza5du/D19U1T19WrVwkODiY4OJj58+dTqFAhwsPDCQ4OttUncicKXEREREREstvPo2D/12ByhGfmQIlHs66tEz/D8hch/iI4exhbTdfsroVw72MZmdaTGxUqZEyrO3/+vG26z40L6N7Jtm3b6N27N+3atQOM8ObMmTNpyjg5OREUFERQUBD/93//h6+vL+vXr6d9+/Zpyh07doxLly4xYcIEihcvDsDu3bsz8c7kQaPARUREREQkO22bAts/MY6fngYVQrKmndRkWP/uv20VqQodZ0Oh8lnTnkgGJSUlERERkeaak5MTBQsW5NFHH2XChAkEBgYSGRnJiBEj0lVnuXLlWLZsGW3atMFkMjFy5EjbNCAw1o35448/aNKkCfnz5+eHH37AYrFQoUKFm+oqUaIELi4ufPLJJ7z00kscOnSIsWPHZu5NywNF20KLiIiIiGSX3+bB2lHG8ZNjoWb6FwfNkKg/YFbwv2HLI/3g+XUKWyRXWb16NUWLFk3zatSoEQCzZs0iNTWVhx9+mEGDBvG///0vXXV++OGH5M+fnwYNGtCmTRuCg4OpXbu27b6vry/Lli3j8ccfp1KlSsyYMYOvv/6aKlVuntJXqFAhwsLCWLJkCZUrV2bChAlMmjTJPm9eHggm640T4x4wsbGx+Pj4EBMTg7e3d053R0RERETuZ8d/hIXdjQVrGwyE5ln0m/KDS+G7QZB8Bdx8oe1nULFV1rR1H8mL3w0SExM5ffo0gYGBuLm55XR3RB4Y6f3Z05QiEREREZGsFr7T2JHIajbWT3nyXfu3kXwVfhgK++YZ5yUaQIeZ4FPM/m2JiMhdKXAREREREclKUX/Awq6QmgjlQ6DNVPsvWBtxEJY8B5dOgMkBmrwJTYaCo/65LyKSU/Q3sIiIiIhIVomPgvmdIP4SFK0JHWfZNwSxWuHXmbBmBJiTwKsotJ8JgY3t14aIiNwTBS4iIiIiIlkhNRkWP2uMOvEuBt0WgUs++9UfHwXfDoDj3xvn5UPg6c8gXwH7tSEiIvdMgYuIiIiIiL1ZrfDda3BmC7h4GWGLl7/96j+7Hb55HmL/AkcXY8ejei/af6qSiIjcMwUuIiIiIiL2tnkS7F8AJkfoFAb+Ve1Tr8Vs1L1pAlgt4FcGnpkNRWvYp34REbEbBS4iIiIiIvZ0cCls+J9x3PIDKBtkn3oTomFRD2PUDECNbkb9rp72qV9EROxKgYuIiIiIiL2c3QErXjaO6w+Aun3tU2/SFZjfEf7cBS6e0OpDqNHZPnWLiEiWUOAiIiIiImIPl07Bwm5gToaKreHJd+1Tb3I8LOhshC1uvtB7FfhXs0/dIiKSZRxyugMiIiIiInlefBQs6AQJURBQC9p/AQ6Oma83JdEIcc5uA1dv6LlcYYuISB6hwEVEREREJDNSk2FRT7h0EnyKQ1c7bf98fVvpPzaAcz7ovhQeqp35ekVygd69e2MymW56hYSE5HTXROxGU4pERERERO6V1QrfDYSzW69t/7wYvIpkvl5zKnzTF078BE5uxrbSJeplvl6RXCQkJITZs2enuebq6npPdVmtVsxmM05O+ooruYdGuIiIiIiI3KvNH8D+r//d/rlI5czXaTHDipfg6EpwdIEuCyCwcebrFcllXF1d8ff3T/PKnz8/Z86cwWQysW/fPlvZ6OhoTCYTGzduBGDjxo2YTCZ+/PFHHn74YVxdXdm6dStJSUkMHDiQwoUL4+bmRqNGjdi1a5etnuvPff/991SvXh03NzceffRRDh06lKZvW7dupXHjxri7u1O8eHEGDhzI1atXs+NjkfuIAhcRERERkXtxYAlsGGcct5pkn+2fLRZYORAOLgEHJ+j0FZR9IvP1itynhg0bxoQJEzh69CjVq1dn6NChfPPNN8yZM4e9e/dStmxZgoODiYqKSvPcm2++yeTJk9m1axeFChWiTZs2pKSkAHDq1ClCQkLo0KEDBw4cYNGiRWzdupUBAwbkxFuUPEzjrUREREREMursDvj2FeO4watQp0/m67Ra4YchsG8emBygQyhUaJH5euWBs/i9XcTHJmd7ux7eLnR6p266y69atQpPT88019555x26deuW7jreffddnnzySQCuXr3K9OnTCQsLo0UL42dn5syZrF27ltDQUN58803bc//3f/9ne27OnDkUK1aM5cuX06lTJ8aPH0/37t0ZNGgQAOXKlWPq1Kk89thjTJ8+HTc3t3T3Tx5sClxERERERDLiv9s/B9lh+2erFdaMgN2hgAnafQ5V2ma+XnkgxccmczU6Kae7cVfNmjVj+vTpaa75+fkRGxub7jrq1KljOz516hQpKSk0bNjQds3Z2ZlHHnmEo0ePpnmufv36adqsUKGCrcz+/fs5cOAA8+fPt5WxWq1YLBZOnz5NpUqV0t0/ebApcBERERERSa/4KJj/zLXtn2tD+5ngYIdZ+uv/BzumGcdPTYXqnTJfpzywPLxd8kS7+fLlo2zZsjddj4uLA4yQ47rr031uVYe9xcXF8eKLLzJw4MCb7pUoUcLu7cn9S4GLiIiIiEh6pCbBoh4Qdera9s8LwcUj8/Vu+gC2TDKOW06C2s9mvk55oGVkWk9uVKhQIQDOnz9PrVq1ANIsoHs7ZcqUwcXFhW3btlGyZEnACGp27dplmx503S+//GILTy5fvszvv/9uG7lSu3Ztjhw5csswSCQjFLiIiIiIiNyN1QorX4Wz28DV237bP2//BDb8zzh+ciw88kLm6xTJI5KSkoiIiEhzzcnJiYIFC/Loo48yYcIEAgMDiYyMZMSIEXetL1++fLz88su8+eab+Pn5UaJECSZOnEh8fDx9+/ZNU/bdd9+lQIECFClShOHDh1OwYEHatm0LwFtvvcWjjz7KgAEDeP7558mXLx9Hjhxh7dq1TJs2zW7vX+5/ClxERERERO5m00Q4sMjY/vmZMPts//zrTGPdFoBmI6DhzdMXRO5nq1evpmjRommuVahQgWPHjjFr1iz69u3Lww8/TIUKFZg4cSLNmze/a50TJkzAYrHQs2dPrly5Qp06dfjpp5/Inz//TeVee+01Tpw4Qc2aNfnuu+9wcTGmRFWvXp1NmzYxfPhwGjdujNVqpUyZMnTu3Nl+b14eCCbrjRPjHjCxsbH4+PgQExODt7d3TndHRERERHKjvV8Zo1sAWn8MdZ7LfJ175sB31wKWxoPhiVGZr1MyJS9+N0hMTOT06dMEBgZq55x02rhxI82aNePy5cv4+vrmdHckj0rvz54dVvgSEREREblP7fzi37ClwUD7hC37F8F3rxnHj/aHx0dmvk4REcl1FLiIiIiIiNzKlsnw45vG8aOvwJN22P758HJY8RJghTp9IXgcmEyZr1dERHIdreEiIiIiInIjqxXWjYGtHxnnTYZCs3cyH4wc+wG+eR6sFqjZw9iRSGGLSLZq2rQpD/CqGpLNFLiIiIiIiFxnscDqt+DXL4zzJ9+Fhq9lvt4/NsGSXmBJhaod4amp4KDB5iIi9zMFLiIiIiIiAOZUYyHbffMBE7SaDHX73vWxu7pwGBb1AHMyVGwN7T4HB8fM1ysiIrmaAhcRERERkdRkWPYCHFlhbP3cdjrUsMMWsLF/w/xnICkWSjSADqHgqH+Ci4g8CPS3vYiIiIg82FISYPGzcGINODjDM7OhUpvM15sYa4QtsX9BgXLQZT44a+teEZEHhQIXEREREXlwJV2Br7vCmS3g5A5d5kHZoMzXa04xQpwLhyBfYeixFDz8Ml+viIjkGQpcREREROTBFB8F8zvCX3vAxQu6L4aSDTJfr9UK370Gf2wAZw/otgjyl8p8vSIikqdoaXQRERERefDERcKcNkbY4p4fen1rn7AFYNP7xsK7JgfoOBseqm2fekUeYE2bNmXQoEF3LFOqVCk+/vjjO5YxmUysWLECgDNnzmAymdi3b59d+ijyXwpcREREROTBEvMnzG7x73Sf3j/AQw/bp+7f5sHG8cZxq8lQIcQ+9YrcZ3r37o3JZOKll1666V7//v0xmUz07t3bdm3ZsmWMHTs2G3uYPhs3bsRkMt3yFRERYZc20hMkSe6kwEVEREREHhyXTsGsFnDpJPgUhz6roUhl+9R9cp0xlQig0etQp4996hW5TxUvXpyFCxeSkJBgu5aYmMiCBQsoUaJEmrJ+fn54eXlldxfT7fjx45w/fz7Nq3DhwjndLclhClxERERE5MEQedQY2RITDn5l4LkfoUAZ+9QdcRAW9wJLKlR7Bh4fZZ96Re5jtWvXpnjx4ixbtsx2bdmyZZQoUYJatWqlKfvfKUWRkZG0adMGd3d3AgMDmT9//k31nzhxgiZNmuDm5kblypVZu3btXft06NAhWrRogaenJ0WKFKFnz55cvHjxrs8VLlwYf3//NC8HB+Pr9q5du3jyyScpWLAgPj4+PPbYY+zdu9f2rNVqZfTo0ZQoUQJXV1cCAgIYOHCg7X2fPXuW119/3TZyRvIOBS4iIiIicv/7+zeY3RLiLkDhKkbY4lvcPnXH/Gls/5x8BUo1hqc/BQf9M1skPfr06cPs2bNt57NmzeK5556763O9e/fm3LlzbNiwgaVLl/LZZ58RGRlpu2+xWGjfvj0uLi7s3LmTGTNm8NZbb92xzujoaB5//HFq1arF7t27Wb16NRcuXKBTp073/gaBK1eu0KtXL7Zu3covv/xCuXLlaNmyJVeuXAHgm2++4aOPPuLzzz/nxIkTrFixgmrVqgFGAFWsWDHeffdd28gZyTu0S5GIiIiI3N/O7oAFnSAp1lirpbsdt2hOiDbClivnoVBF6DwPnFztU7fIPZr39iCuRl/O9nbz+eanx/iPM/RMjx49ePvttzl79iwA27ZtY+HChWzcuPG2z/z+++/8+OOP/Prrr9StWxeA0NBQKlWqZCvz888/c+zYMX766ScCAgIAeO+992jRosVt6502bRq1atXivffes12bNWsWxYsX5/fff6d8+fK3fbZYsWJpzkuWLMnhw4cBePzxx9Pc++KLL/D19WXTpk20bt2a8PBw/P39CQoKwtnZmRIlSvDII48AxlQqR0dHvLy88Pf3v237kjspcBERERGR+5PFAoeXwbcDIDUBSjY0tmh2tdM6EKnJsLgnRB4BT38jyHH3tU/dIplwNfoycVGXcrob6VKoUCFatWpFWFgYVquVVq1aUbBgwTs+c/ToUZycnHj44X8Xu65YsSK+vr5pyhQvXtwWtgDUr1//jvXu37+fDRs24OnpedO9U6dO3TFw2bJlS5o1ZpydnW3HFy5cYMSIEWzcuJHIyEjMZjPx8fGEh4cD8Mwzz/Dxxx9TunRpQkJCaNmyJW3atMHJSV/X87oMj3XcvHkzbdq0ISAgIM2WWtdZrVZGjRpF0aJFcXd3JygoiBMnTqQpExUVRffu3fH29sbX15e+ffsSFxeXpsyBAwdo3Lgxbm5uFC9enIkTJ97UlyVLllCxYkXc3NyoVq0aP/zwQ0bfjoiIiIjcb8wpsH8hfPYofNPXCFvKBhmBiL3CFqsVVr4KpzeDiyd0X2y/KUoimZTPNz+efgWy/ZXPN/899bdPnz6EhYUxZ84c+vTJucWm4+LiaNOmDfv27Uvzur4WzJ0EBgZStmxZ26tkyZK2e7169WLfvn1MmTKF7du3s2/fPgoUKEBycjJgLB58/PhxPvvsM9zd3XnllVdo0qQJKSkpWfp+JetlODK7evUqNWrUoE+fPrRv3/6m+xMnTmTq1KnMmTOHwMBARo4cSXBwMEeOHMHNzQ2A7t27c/78edauXUtKSgrPPfcc/fr1Y8GCBQDExsbSvHlzgoKCmDFjBgcPHqRPnz74+vrSr18/ALZv307Xrl0ZP348rVu3ZsGCBbRt25a9e/dStWrVzHwmIiIiIpIXpSTCvvmw7WOINn5zjKsPPPoSNB5s36k+G8bBgYVgcoRn5kDRGvarWySTMjqtJ6eFhISQnJyMyWQiODj4ruUrVqxIamoqe/bssU0pOn78ONHR0bYylSpV4ty5c5w/f56iRYsC8Msvv9yx3tq1a/PNN99QqlQpu44u2bZtG5999hktW7YE4Ny5czctxOvu7k6bNm1o06YN/fv3p2LFihw8eJDatWvj4uKC2Wy2W38k+2T4v6IWLVrcdt6b1Wrl448/ZsSIETz99NMAfPXVVxQpUoQVK1bQpUsXjh49yurVq9m1axd16tQB4JNPPqFly5ZMmjSJgIAA5s+fT3JyMrNmzcLFxYUqVaqwb98+PvzwQ1vgMmXKFEJCQnjzzTcBGDt2LGvXrmXatGnMmDHjnj4MEREREcmDkuJgz2zYPg3iIoxrHgWhfn+o+zy4edu3vT1hsPkD47jNx1AuyL71izxgHB0dOXr0qO34bipUqEBISAgvvvgi06dPx8nJiUGDBuHu7m4rExQURPny5enVqxcffPABsbGxDB8+/I719u/fn5kzZ9K1a1eGDh2Kn58fJ0+eZOHChXz55Zd37FtkZCSJiYlprhUoUABnZ2fKlSvH3LlzqVOnDrGxsbz55ptp+hoWFobZbKZevXp4eHgwb9483N3dbaNkSpUqxebNm+nSpQuurq53nXIluYddl08/ffo0ERERBAX9+386Pj4+1KtXjx07dgCwY8cOfH19bWELGD8MDg4O7Ny501amSZMmuLi42MoEBwdz/PhxLl++bCtzYzvXy1xv51aSkpKIjY1N8xIRERGRPCrhMmx8Hz6uCmtGGGGL90PQYiIMOgiN37B/2HJiLax6wzhuMhRqP2vf+kUeUN7e3nh7p//ndfbs2QQEBPDYY4/Rvn17+vXrR+HChW33HRwcWL58OQkJCTzyyCM8//zzjBs37o51BgQEsG3bNsxmM82bN6datWoMGjQIX19f2xbPt1OhQgWKFi2a5rVnzx7AWND38uXL1K5dm549ezJw4MA0ffX19WXmzJk0bNiQ6tWr8/PPP/Pdd99RoEABAN59913OnDlDmTJlKFSoULo/I8l5dl2FJyLC+I1CkSJF0lwvUqSI7V5ERESa/7gAnJyc8PPzS1MmMDDwpjqu38ufPz8RERF3bOdWxo8fz5gxY+7hnYmIiIhIrhEXCTs+hV2hxlbMAH6lodHrUL0LOLnc+fl79fc+WNwLrGao0RWavZM17Yg8AMLCwu54/79rhf531yJ/f39WrVqV5lrPnj3TnJcvX54tW7akuWa1Wm3HpUqVSnMOUK5cOZYtW3bHvt2oadOmN9XxX7Vq1WLXrl1prnXs2NF23LZtW9q2bXvb5x999FH279+f7j5J7vFALXv89ttv88Ybb9jOY2NjKV5ci5uJiIiI5AnR52D7VNj7FaReG7pfuIoxkqVKO3C4+1SEe2873NhaOuUqBD4GbaaCyZR17YmISJ5n18Dl+r7gFy5csC1MdP28Zs2atjKRkZFpnktNTSUqKsr2vL+/PxcuXEhT5vr53crcaW9yV1dXXF3tuFiaiIiIiGS9iydh60fGIrWWVOPaQ3WgyRAoH5L1wUfCZZjXEeIuGAFP57lZN4pGRETuG3ZdwyUwMBB/f3/WrVtnuxYbG8vOnTtte57Xr1+f6Oho23w2gPXr12OxWKhXr56tzObNm9Nsg7V27VoqVKhA/vz5bWVubOd6mbvtrS4iIiIieUTkUVjyHHxaF/bNM8KWwCbw7Ep4/meo0CLrw5bYvyGsNVw8Dl4B0H0JuPlkbZsiInJfyPAIl7i4OE6ePGk7P336NPv27cPPz48SJUowaNAg/ve//1GuXDnbttABAQG2OWmVKlUiJCSEF154gRkzZpCSksKAAQPo0qULAQEBAHTr1o0xY8bQt29f3nrrLQ4dOsSUKVP46KOPbO2+9tprPPbYY0yePJlWrVqxcOFCdu/ezRdffJHJj0REREREcpTVCr/OhDXDwZxsXCvfwtjauXjd7OvHhcMw/xmI/QvyFYYeS8HnoexrX0RE8rQMBy67d++mWbNmtvPra6L06tWLsLAwhg4dytWrV+nXrx/R0dE0atSI1atX4+bmZntm/vz5DBgwgCeeeAIHBwc6dOjA1KlTbfd9fHxYs2YN/fv35+GHH6ZgwYKMGjXKtiU0QIMGDViwYAEjRozgnXfeoVy5cqxYsYKqVave0wchIiIiIrlAQjSsHABHvzPOyzWHJ/4P/LP533h/bIJFPSApFgqWh+5LIX/J7O2DiIjkaSbr3ZZUvo/Fxsbi4+NDTExMhrYgExEREZEs8OduWPqcsUCtgzM0/x/UezH7F6fdvxC+HQCWFCjZELrMB/f82dsHyXZ58btBYmIip0+fJjAwMM0vuEUka6X3Z++B2qVIRERERHIhqxV2TIOfRxvrtOQvBR1nw0O1s78fWybB+v8Z51XaQ9vp4KwvsiIiknEKXEREREQk58RHwYqX4ffVxnnltvDU1OxfmNacCt+/AXvnGOcNBkLQGHCw6x4TIiLyAFHgIiIiIiI5I/wXWNrHWJTW0RVaTICHn8v+KURJccZUphNrwOQALSbCIy9kbx9EROS+o8heRERERLKXxQJbJsPslkbYUqAsvLAO6vTJ/rDlygUIa2WELU7u0HmewhaR+1jv3r1tO+jmZRs3bsRkMhEdHZ3TXZE7UOAiIiIiItkn7h+Y3wHWvQtWM1TvDP02gX+17O/LP79DaBCc3wceBaD3KqjYKvv7IfIA6t27NyaTiQkTJqS5vmLFCkx2CF7PnDmDyWRi3759ma7ruoSEBPz8/ChYsCBJSUl2q/deNGjQgPPnz+Pjk83TLyVDFLiIiIiISPY4vRlmNIRT643RJE9/Cu0+B1fP7O/L2e0Q+qSxI5Jfaei7ForVyf5+iDzA3NzceP/997l8+bJd601OTrZrfdd98803VKlShYoVK7JixYosaSM9UlJScHFxwd/f3y7hlGQdBS4iIiIikrUsZtg4Ab56GuIuQKGK0G8D1OqR/VOIAA4tM/qSGA3F6hphS4Ey2d8PkQdcUFAQ/v7+jB8//o7lrgcdrq6ulCpVismTJ6e5X6pUKcaOHcuzzz6Lt7c3/fr1IzAwEIBatWphMplo2rRpmmcmTZpE0aJFKVCgAP379yclJeWu/Q0NDaVHjx706NGD0NDQm+6bTCY+//xzWrdujYeHB5UqVWLHjh2cPHmSpk2bki9fPho0aMCpU6fSPPftt99Su3Zt3NzcKF26NGPGjCE1NTVNvdOnT+epp54iX758jBs37pZTirZt20bTpk3x8PAgf/78BAcH28Ks1atX06hRI3x9fSlQoACtW7e+qR9ifwpcRERERCTrXIkwwo2N48FqgVo94YUNULhS9vfFaoVtU40Fcs3JULE1PLsS8hXM/r6ICI6Ojrz33nt88skn/Pnnn7css2fPHjp16kSXLl04ePAgo0ePZuTIkYSFhaUpN2nSJGrUqMFvv/3GyJEj+fXXXwH4+eefOX/+PMuWLbOV3bBhA6dOnWLDhg3MmTOHsLCwm+r7r1OnTrFjxw46depEp06d2LJlC2fPnr2p3PXgZ9++fVSsWJFu3brx4osv8vbbb7N7926sVisDBgywld+yZQvPPvssr732GkeOHOHzzz8nLCyMcePGpal39OjRtGvXjoMHD9KnT5+b2t23bx9PPPEElStXZseOHWzdupU2bdpgNpsBuHr1Km+88Qa7d+9m3bp1ODg40K5dOywWyx3ft2SOyWq1WnO6EzklNjYWHx8fYmJi8Pb2zunuiIiIiNxfTq6DZf0g/iI454M2H0P1TjnTF4sZVg+DX78wzuu9BMHvgYNjzvRHcp28+N0gMTGR06dPExgYiJubm+36hU9+w3Ila6bV3ImDlwtFXq2VrrK9e/cmOjqaFStWUL9+fSpXrkxoaCgrVqygXbt2XP+a2r17d/755x/WrFlje3bo0KF8//33HD58GDBGuNSqVYvly5fbypw5c4bAwEB+++03atasmabdjRs3curUKRwdjZ//Tp064eDgwMKFC2/b3+HDh3PkyBFbG23btqVmzZqMHj3aVsZkMjFixAjGjh0LwC+//EL9+vUJDQ21hSQLFy7kueeeIyEhATBG+TzxxBO8/fbbtnrmzZvH0KFD+fvvv231Dho0iI8++shWZuPGjTRr1ozLly/j6+tLt27dCA8PZ+vWren6/C9evEihQoU4ePAgVatWTdcz8q/b/ez9l0a4iIiIiIh9WSywbizM62CELUWqwYubcy5sSY6Hxc/+G7Y0HwchExS2yH3LciUZc2z2v+415Hn//feZM2cOR48evene0aNHadiwYZprDRs25MSJE7bRGwB16qR/DaYqVarYwhaAokWLEhkZedvyZrOZOXPm0KNHD9u1Hj16EBYWdtMIkerVq9uOixQpAkC1atXSXEtMTCQ2NhaA/fv38+677+Lp6Wl7vfDCC5w/f574+Ph0v7/rI1xu58SJE3Tt2pXSpUvj7e1NqVKlAAgPD79jvZI5TjndARERERG5j1jMsHIg7JtnnNfpa4wkcb79bwCzVNw/8HUX+Gs3OLpC+8+hSruc6YtINnHwcslT7TZp0oTg4GDefvttevfufU915MuXL91lnZ2d05ybTKY7Tq356aef+Ouvv+jcuXOa62azmXXr1vHkk0/esu7rC9re6tr19uLi4hgzZgzt27e/qd0bR07c7f25u7vf8X6bNm0oWbIkM2fOJCAgAIvFQtWqVbNsgWExKHAREREREfswp8DyF+HQN2ByhKenQc1uOdOXuEjYMQ12hUJyHLjnhy5fQ8n6OdMfkWyU3mk9ucmECROoWbMmFSpUSHO9UqVKbNu2Lc21bdu2Ub58+TSjVP7LxcUIf24cBXOvQkND6dKlC8OHD09zfdy4cYSGhqYJXDKqdu3aHD9+nLJly2aqj9WrV2fdunWMGTPmpnuXLl3i+PHjzJw5k8aNGwOke+qRZI4CFxERERHJvNQkWNoHjq0CByfoOAsqP539/Yg+B9unwt6vIDXRuFakmtGfQuWzvz8iki7VqlWje/fuTJ06Nc31wYMHU7duXcaOHUvnzp3ZsWMH06ZN47PPPrtjfYULF8bd3Z3Vq1dTrFgx3Nzc8PHxyXC//vnnH7777jtWrlx501onzz77LO3atSMqKgo/P78M1w0watQoWrduTYkSJejYsSMODg7s37+fQ4cO8b///S/d9bz99ttUq1aNV155hZdeegkXFxc2bNjAM888g5+fHwUKFOCLL76gaNGihIeHM2zYsHvqr2SM1nARERERkcxJSYCF3YywxdEVuizI/rDl4klY0R+m1jTWaklNhIfqQNeF8NIWhS0iecC7775709Se2rVrs3jxYhYuXEjVqlUZNWoU77777l2nHjk5OTF16lQ+//xzAgICePrpe/s76auvviJfvny3XB/liSeewN3dnXnz5t1T3QDBwcGsWrWKNWvWULduXR599FE++ugjSpYsmaF6ypcvz5o1a9i/fz+PPPII9evX59tvv8XJycm2IPCePXuoWrUqr7/+Oh988ME991nST7sU5bGVyEVERERylaQ4Y42UM1vAyR26fg1lmmVf+xGHYMtkOLLC2HYaILAJNB4MgY/BtfUSRO4mL343SO9OKSJiX+n92dOUIhERERG5N4kxMP8ZOLcTXDyh+xIo2SB72j63C7ZMgt9X/3utfAg0HgLF62ZPH0RERO5AgYuIiIiIZFx8FMxtB+f3gZsP9FgGxdK/Les9sVrh9CZjRMvpzdcumoxdhxq/Af7V7vi4iIhIdlLgIiIiIiIZE/cPfPU0RB4GjwLQcwUUrZ517VmtxkiWzZOM7Z3BWJi3ehdo9DoUzNzuHiIiIllBgYuIiIiIpF/s30bYcvF38CwCz34LhStlTVsWMxxeDls/gguHjGtOblD7WWgwEHyLZ027IiIidqDARURERETS5/JZ+OopuHwGvItBr5VQoEzWtBV5DL55Hi4cNM5dPKFuX6g/ADwLZ02bInnUA7wPikiOSO/PnAIXEREREbm7S6dgzlMQ+yf4loRe30H+jG1bmi5WK+ydAz8Og9QEcPOFR1+GR/qBh5/92xPJw5ydnQGIj4/H3d09h3sj8uCIj48H/v0ZvB0FLiIiIiJyZ5HHjJEtcRegQDljZIt3gP3bSYiG714ztngGKN0M2n0OXkXs35bIfcDR0RFfX18iIyMB8PDwwKSt0EWyjNVqJT4+nsjISHx9fXF0dLxjeQUuIiIiInJ75w/A3LYQfwkKV4FnV2TNlJ7wncYUophwY0HcJ0ZB/VfBwcH+bYncR/z9/QFsoYuIZD1fX1/bz96dKHARERERkVv7cw/MaweJMVC0JvRcbv9pPRYzbP0QNowHqxnyl4IOs6DYw/ZtR+Q+ZTKZKFq0KIULFyYlJSWnuyNy33N2dr7ryJbrFLiIiIiIyM3Obof5nSD5ChSvB92XgJuPfduIPQ/LXoAzW4zzqh2h9Ufg5m3fdkQeAI6Ojun+Eigi2UOBi4iIiIikdWoDLOwGKfFQqjF0XQiunvZt4/hqWPEyJESBcz5oNQlqdAWtPyEiIvcJBS4iIiIiYrBaYc9sY4cgcxKUDYLO88DZjrufpCbB2lGwc4Zx7l8dOs6CguXs14aIiEguoMBFRERERCA+Cla+CsdWGecVWxtBiJOr/dq4eAKWPgcRB43zR1+BoNH2bUNERCSXUOAiIiIi8qA7vRmWvQhX/gYHZyMEefQV++0QZLXCvgXww5uQchU8CkDb6VA+2D71i4iI5EIKXEREREQeVOYU2PAebP0IsEKBstAhFAJq2q+NxFhY9TocWmqcBzaBdl+Ad1H7tSEiIpILKXAREREReRBF/QHfPA9/7THOa/WEFu+DSz77tfHnHmMKUfRZMDnC48Oh4SBw0E4qIiJy/1PgIiIiIvKg2b8Qvh8MyXHGVs9tpkCVdvar32qF7VNh3btgSQXfEtBhFhSva782REREcjkFLiIiIiIPisQY+H4IHFxsnJdoAO2/AN/i9mvDnAKrBsFv84zzKu2g9cfg7mu/NkRERPIABS4iIiIiD4JzvxpTiK5P72k6DBoPtu/0nqQ4WNIbTq4FkwO0mAh1nweTyX5tiIiI5BEKXERERETuZxYzbPkQNo4Hq9mY3tP+SyhRz77txP0DC56Bv38DJ3d4ZjZUaGHfNkRERPIQBS4iIiIi96uYP2FZPzi7zTiv2hFaf2is22JPl07BvA5w+TS4+0G3xVqvRUREHngKXERERETuR4dXwHcDjXVbXDyh5SSo0cX+03v+2gPzO0H8RfAtCT2WQcGy9m1DREQkD1LgIiIiInI/Sb4Kq4fB3q+M84Da0OFLKFDG/m39vgaW9IKUeChaA7otAa8i9m9HREQkD1LgIiIiInK/uHgSvu4Cl04AJmg0CJoNB0dn+7e1dy5895qxLkyZx6HTV+DqZf92RERE8igFLiIiIiL3g7h/YF57Yxcir6LQ7nMo/Zj927FaYfMHsGGccV6jK7SZCk4u9m9LREQkD1PgIiIiIpLXpSTCwm5G2JK/FPRdC56F7d+OORV+GAx7wozzxoPh8ZHa9llEROQWFLiIiIiI5GUWC6x4Gf781dh9qNuSrAlbkuNhaR/4/UfABC0/gEdesH87IiIi9wkFLiIiIiJ52YZxcHgZODhB53lQqLz927h6Cb7uDH/uAkdX6BgKldrYvx0REZH7iAIXERERkbzqt/mwZZJx3GYqBDaxfxuXz8C8DnDpJLj5QteFULK+/dsRERG5zyhwEREREcmLTm8xdgkCYy2VWt3t38bf+2D+M3A1EnyKQ49voFAF+7cjIiJyH1LgIiIiIpLX/PM7LOoOlhSo0h6ajbB/GyfXweJnITkOilSF7kvBu6j92xEREblPKXARERERyUuuXoQFz0BiDBR7BNp+Bg4O9m1j/0L4tj9YUo1pSp3nGQvyioiISLopcBERERHJK65v/3z5DPiWhK5fg7O7/epPjoe1o2DXTOO8akdoOx2cXOzXhoiIyANCgYuIiIhIXmC1GqNOzu0EVx/ovgTyFbRf/X/tgWX9jMVxARq+Bk+Mtv/oGRERkQeEAhcRERGRvGDDe3Bo6bXtn+fab/FacypsmQyb3gerGbyKwtOfQtkn7FO/iIjIA0qBi4iIiEhut+9r2DzROG79MZR+zD71XjwJy/sZo1sAqrSDVh+Ch5996hcREXmA2X2MqNlsZuTIkQQGBuLu7k6ZMmUYO3YsVqvVVsZqtTJq1CiKFi2Ku7s7QUFBnDhxIk09UVFRdO/eHW9vb3x9fenbty9xcXFpyhw4cIDGjRvj5uZG8eLFmThxor3fjoiIiEjOOrMVVr5qHDd6A2r3zHydVivsCoXPGxthi6sPtP8SOs5W2CIiImIndg9c3n//faZPn860adM4evQo77//PhMnTuSTTz6xlZk4cSJTp05lxowZ7Ny5k3z58hEcHExiYqKtTPfu3Tl8+DBr165l1apVbN68mX79+tnux8bG0rx5c0qWLMmePXv44IMPGD16NF988YW935KIiIhIzrh4EhZe2/65clt4fGTm67wSAfOfge/fgJR4YxeiV7ZD9WfAZMp8/SIiIgKAyXrj0BM7aN26NUWKFCE0NNR2rUOHDri7uzNv3jysVisBAQEMHjyYIUOGABATE0ORIkUICwujS5cuHD16lMqVK7Nr1y7q1KkDwOrVq2nZsiV//vknAQEBTJ8+neHDhxMREYGLi7Fy/rBhw1ixYgXHjh1LV19jY2Px8fEhJiYGb29ve34MIiIiIplz9RKEBkHUH1CsLvT6LvM7Eh35Fr4bBAlR4OgKQaOh3ktaGFcEfTcQEfuz+/+7NmjQgHXr1vH7778DsH//frZu3UqLFi0AOH36NBEREQQFBdme8fHxoV69euzYsQOAHTt24OvrawtbAIKCgnBwcGDnzp22Mk2aNLGFLQDBwcEcP36cy5cv37JvSUlJxMbGpnmJiIiI5DqpSbCouxG2+JaALpnc/jkxBpa/BIufNcIW/2rw4iao/4rCFhERkSxi90Vzhw0bRmxsLBUrVsTR0RGz2cy4cePo3r07ABEREQAUKVIkzXNFihSx3YuIiKBw4cJpO+rkhJ+fX5oygYGBN9Vx/V7+/Plv6tv48eMZM2aMHd6liIiISBa5vv1z+A5jbZVuS8Cz0L3Xd2YrLH8ZYsLB5AANB0HTt8HJ5a6PioiIyL2ze+CyePFi5s+fz4IFC6hSpQr79u1j0KBBBAQE0KtXL3s3lyFvv/02b7zxhu08NjaW4sWL52CPRERERP5j4wQ4uMTY/rnTHChc8d7qSU2C9WNh+zTACvlLQbvPocSj9uytiIiI3IbdA5c333yTYcOG0aVLFwCqVavG2bNnGT9+PL169cLf3x+ACxcuULRoUdtzFy5coGbNmgD4+/sTGRmZpt7U1FSioqJsz/v7+3PhwoU0Za6fXy/zX66urri6umb+TYqIiIhkhf2LYNME47j1R1Cm2b3VE3EIlvWDyMPGee1nIfg9cPWyTz9FRETkruw+aTc+Ph6H/8wFdnR0xGKxABAYGIi/vz/r1q2z3Y+NjWXnzp3Ur18fgPr16xMdHc2ePXtsZdavX4/FYqFevXq2Mps3byYlJcVWZu3atVSoUOGW04lEREREcrWz22HlAOO44SAjJMkoiwW2TYGZzYywxaOgsf7LU58obBEREclmdg9c2rRpw7hx4/j+++85c+YMy5cv58MPP6Rdu3YAmEwmBg0axP/+9z9WrlzJwYMHefbZZwkICKBt27YAVKpUiZCQEF544QV+/fVXtm3bxoABA+jSpQsBAQEAdOvWDRcXF/r27cvhw4dZtGgRU6ZMSTNlSERERCRPiPsHlvQGczJUfhqe+L+M12G1wqpBsHaUUU+FlvDKL1Cxpb17KyIiIulg922hr1y5wsiRI1m+fDmRkZEEBATQtWtXRo0aZdtRyGq18n//93988cUXREdH06hRIz777DPKly9vqycqKooBAwbw3Xff4eDgQIcOHZg6dSqenp62MgcOHKB///7s2rWLggUL8uqrr/LWW2+lu6/a+k1ERERynMUC8zvCqXVQqBK8sB5cPDJez/pxsHmisTBuqw/h4d5gMtm9uyL3K303EBF7s3vgkpfoL1URERHJcVs/hp//D5zcod8GKFwp43Xs+hK+H2wct5lihC0ikiH6biAi9mb3KUUiIiIikk7ndhk7CQG0eP/ewpYjK+H7IcZx03cUtoiIiOQSClxEREREckLCZVjaByypULXDvS2Se2YrfPM8YIWHn4PHhtq9myIiInJvFLiIiIiIZDerFVa+CjHhkD8QWn+c8fVWLhyGr7uBOQkqtoZWk7Vmi4iISC6iwEVEREQku+36Eo5+Bw7O0HEWuGVwvYjocJjXAZJioEQD6BAKDo5Z01cRERG5JwpcRERERLLT+QPw0zvG8ZPvwkO1M/b81Uswtz1cOQ+FK0PXr8HZzf79FBERkUxR4CIiIiKSXZLiYOlzYE6G8i3g0Zcz9nzyVVjQCS6dAO9i0OMbcPfNkq6KiIhI5ihwEREREcku3w+GSyfB+yFo+1nG1lwxp8CS3vDXbnDPDz2XgXdAlnVVREREMkeBi4iIiEh22LcADiwEkwN0+BI8/NL/rNUK370GJ9aAkzt0WwyFKmRdX0VERCTTFLiIiIiIZLV/fjdGtwA0fQdKNsjY8+vehX3zweQIz4RB8Ufs3kURERGxLwUuIiIiIlkpJcFYtyUlHgKbQOM3Mvb8zs9h64fGcZspUCHE/n0UERERu1PgIiIiIpKVfhoOFw6BR0FoPzNj2zcfWgY/vmUcPz4CavfMmj6KiIiI3SlwEREREckqR76F3aHGcfvPwcs//c/+sQmWvwhYoe4L0HhIlnRRREREsoYCFxEREZGscPkMfPuqcdxwEJQNSv+z5/fDwu7G9tGVn4YW72dsRyMRERHJcQpcREREROzNnAJL+0JSDBR7xJgOlF5Rp2FeR0i+AqUaQ7svMjYNSURERHIFBS4iIiIi9rbuXfhrN7j5QMdQcHRO33Nx/8C89nA1EopUhS7zwdkta/sqIiIiWUKBi4iIiIg9nVgL26cax09NA98S6XsuKQ4WdIKoP8CnBHRfagQ2IiIikicpcBERERGxl9jz1xa6xVjotvJT6XvOYoFlL8Dfe8HdD3ouA++iWddPERERyXIKXERERETswWI2QpP4S+BfDZr/L/3Pbv0Qjv8Ajq7QfQkULJd1/RQREZFsocBFRERExB42T4IzW8A5H3QMS//aK6fWw4ZxxnGrSVCsTpZ1UURERLKPAhcRERGRzDqzFTZNMI5bfwgFy6bvuehzxm5GVgvU6gm1n826PoqIiEi2csrpDoiIiIjkWYkxsGUy/DLdCE1qdIMaXdL3bGoSLH4WEqKgaA1oOSlr+yoiIiLZSoGLiIiISEaZU2FvGGx4z1izBaDME9Dyg/TXsXqYsUiumy90+krbP4uIiNxnFLiIiIiIpJfVamz7vGYEXDxuXCtY3lggt1xzMJnSV8++r2H3LMAEHb6E/KWyqsciIiKSQxS4iIiIiKTHhcPw03D4Y4Nx7u4Hzd6Bh3uDo3P664k4CKsGGcdNh0G5J+3dUxEREckFFLiIiIiI3MmVC8YuQr/NNdZpcXSBei9B48Hg7puxuhIuw6IekJoIZZ+EJkOzpMsiIiKS8xS4iIiIiNxKSgLs+BS2fgTJcca1yk9D0GjwK53x+iwWWP4SXD4DviWg/RfgoA0jRURE7lcKXERERERuZLHAoW/g59EQ+6dxLaA2BL8HJevfe71bJ8Pvq8HRFTrNBQ8/u3RXREREcicFLiIiIiLXhf8CP70Df+0xzr2LGSNaqnbI3GiUU+th/TjjuNVkCKiZ2Z6KiIhILqfARURERCTqtDGi5cgK49zFExq9DvX7g7N75uqOPgdL+wJWqP0s1O6Zyc6KiIhIXqDARURERB5MVitEHIDf5sOe2WBOBpMD1OoJzYaDV5HMt5GaBIufhYQoKFoTWnyQ+TpFREQkT1DgIiIiIg+W6HA4uAQOLIZ/jv17vXRTaD4O/Kvar63Vw+DvveCeHzp9Bc5u9qtbREREcjUFLiIiInL/S7gMR741Qpaz2/697ugKFVoYU33KPA4mk/3a3LcAds8CTND+S8hf0n51i4iISK6nwEVERETuT6lJcGINHFgEv/9kTBkCwASBjaFaJ6j8FLj52L/t8wdg1evGcdNhUC7I/m2IiIhIrqbARURERO4fFguc+8UIWQ4vh8SYf+8VrgI1OkPVjuDzUNb1IeEyLO4JqYlQrjk0GZp1bYmIiEiupcBFRERE8r5/jhshy4ElEBP+73WvAKj+jDGaxZ5rs9yOxQLLX4LLZ8C3BLT7PHPbSYuIiEiepcBFRERE8iaLBXaHwm9z4fz+f6+7ehtThap3hpINwcEx+/q0dTL8vtpYG6bTXPDwy762RUREJFdR4CIiIiJ5j8UM3/aH/V8b5w5OUPZJY8pQ+RBwds/+Pp1cB+vHGcetJkNAzezvg4iIiOQaClxEREQkbzGnwPIX4dA3YHKEoP+Dmj0gX4Gc61N0OHzzPGA1djyq3TPn+iIiIiK5ggIXERERyTtSk2Hpc3BsFTg4wzOzoVKbnOuPxQKHlsK6sZAQBUVrQosPcq4/IiIikmsocBEREZG8ISURlvS6tkaKi7FGSoWQnOmL1Qon1sK6MXDhkHHN+yHo9BU4u+VMn0RERCRXUeAiIiIiuV9yPCzqDqfWg5MbdFkAZZ/Imb6E74SfR0P4duPc1RsavgaPvgwu+XKmTyIiIpLrKHARERGR3C35KizoDGe2gLMHdFsEgU2yvx8XjsD6sXD8B+PcyQ0e6QeNXtduRCIiInITBS4iIiKSeyXGwoJOEL4DXLyg+xIoWT97+3D5LGwcD/sXAlYwOUCtHvDYMPB5KHv7IiIiInmGAhcRERHJnRKiYV4H+Gs3uPpAz2VQrE72tX/1ImyeBLtDwZxsXKv8NDQbAYXKZ18/REREJE9S4CIiIiK5T3wUzG0L5/eDe37ouQICamZP20lXYMensP0TSI4zrgU2gaDR8NDD2dMHERERyfMUuIiIiEjuEvePEbZcOAQeBeHZb8G/ata3m5oEu2fB5g8g/pJxrWhNI2gp0yzr2xcREZH7igIXERERyT2uRMCcp+DicfAsAs+uhMIVs7ZNixkOLIYN70FMuHHNrww8MRIqPQ0ODlnbvoiIiNyXFLiIiIhI7hDzF8xpA1GnwCsAen0HBctmXXuXTsHBJXBgEUT9YVzzKgpNh0HN7uDonHVti4iIyH1PgYuIiIjkvMtnjbAl+iz4lIBeK8Ev0P7txJ6Hw8uMoOXv3/697uYDjd4wtnl28bB/uyIiIvLAUeAiIiIiOSvqD2MaUcw5yB9ohC2+JexXf8JlOLISDi2F01sAq3Hd5AhlHodqHaFiK3D1sl+bIiIi8sBT4CIiIiI55+IJY2TLlfNQoJwRtngHZL7e5Hj4fTUcXAon1oAl5d97xR81QpYq7SBfwcy3JSIiInILWbIK3F9//UWPHj0oUKAA7u7uVKtWjd27d9vuW61WRo0aRdGiRXF3dycoKIgTJ06kqSMqKoru3bvj7e2Nr68vffv2JS4uLk2ZAwcO0LhxY9zc3ChevDgTJ07MircjIiIiWSHyKMxuaYQthSpB7+8zF7aYU+DEWlj2IkwqB0ufg+PfG2FL4SrwxP/Baweg70/wyAsKW0RERCRL2X2Ey+XLl2nYsCHNmjXjxx9/pFChQpw4cYL8+fPbykycOJGpU6cyZ84cAgMDGTlyJMHBwRw5cgQ3NzcAunfvzvnz51m7di0pKSk899xz9OvXjwULFgAQGxtL8+bNCQoKYsaMGRw8eJA+ffrg6+tLv3797P22RERExJ7+/g3mdTC2Xy5SDZ5dcW8BiMUCf/5qrMlyePm/2zmDMS2p2jNQtSMUqWy3rouIiIikh8lqtVrtWeGwYcPYtm0bW7ZsueV9q9VKQEAAgwcPZsiQIQDExMRQpEgRwsLC6NKlC0ePHqVy5crs2rWLOnXqALB69WpatmzJn3/+SUBAANOnT2f48OFERETg4uJia3vFihUcO3YsXX2NjY3Fx8eHmJgYvL297fDuRURE5K6O/whL+0BKPATUgh7LwMMv4/VcOAKLe8Klk/9e8ygIVdsbQUuxumAy2a/fInJf03cDEbE3u08pWrlyJXXq1OGZZ56hcOHC1KpVi5kzZ9runz59moiICIKCgmzXfHx8qFevHjt27ABgx44d+Pr62sIWgKCgIBwcHNi5c6etTJMmTWxhC0BwcDDHjx/n8uXLt+xbUlISsbGxaV4iIiKSjX6dCQu7GWFLmcfh2ZX3Frac2wWzWxhhi4sX1OhmBDeDj0PLD6D4IwpbREREJEfZPXD5448/mD59OuXKleOnn37i5ZdfZuDAgcyZMweAiIgIAIoUKZLmuSJFitjuRUREULhw4TT3nZyc8PPzS1PmVnXc2MZ/jR8/Hh8fH9urePHimXy3IiIiki4WC/w0HH4YAlYL1H4Wui0Gt3v4LfKp9fDV05AYDcUegUEHoN10KPsEOGo/ABEREckd7P6vEovFQp06dXjvvfcAqFWrFocOHWLGjBn06tXL3s1lyNtvv80bb7xhO4+NjVXoIiIiktVSEmBZPzi60jh/YhQ0euPeRqAc+RaW9jUWwi3zOHSeBy757NtfERERETuw+wiXokWLUrly2oXpKlWqRHh4OAD+/v4AXLhwIU2ZCxcu2O75+/sTGRmZ5n5qaipRUVFpytyqjhvb+C9XV1e8vb3TvERERCQLxf1jbPt8dCU4ukD7L6Hx4HsLW/Z+BUt6G2FL5bbQdaHCFhEREcm17B64NGzYkOPHj6e59vvvv1OyZEkAAgMD8ff3Z926dbb7sbGx7Ny5k/r16wNQv359oqOj2bNnj63M+vXrsVgs1KtXz1Zm8+bNpKSk2MqsXbuWChUqpNkRSURERHLIxRMQGgR/7gI3X+i5Aqo/c291bZsCK1+9Nh2pF3ScBU6u9uytiIiIiF3ZPXB5/fXX+eWXX3jvvfc4efIkCxYs4IsvvqB///4AmEwmBg0axP/+9z9WrlzJwYMHefbZZwkICKBt27aAMSImJCSEF154gV9//ZVt27YxYMAAunTpQkBAAADdunXDxcWFvn37cvjwYRYtWsSUKVPSTBkSERGRHHJ2O4Q+CZfPgG9JeP5nKNUw4/VYrfDzaFg7yjhvOAjaTAEHRzt2VkRERMT+7L4tNMCqVat4++23OXHiBIGBgbzxxhu88MILtvtWq5X/+7//44svviA6OppGjRrx2WefUb58eVuZqKgoBgwYwHfffYeDgwMdOnRg6tSpeHp62socOHCA/v37s2vXLgoWLMirr77KW2+9le5+aus3ERGRLHBwKax4GczJ8NDD0HUReBbKeD0WM3z/BuwJM86DxkCjQfbsqYiIjb4biIi9ZUngklfoL1URERE7slph60ewboxxXrE1tJ8JLh4Zrys1GZb3g8PLweQArT+Gh3N28X0Rub/pu4GI2Jv2ThQREZHMM6fA94Nh7xzj/NH+0HzsvU39Sb4Ki3rCqXXg4AwdvoQqbe3aXREREZGspsBFREREMifpCizuZQQkJgcImQD1Xry3uhIuw/xO8Oev4OwBXeYb2z+LiIiI5DEKXEREROTexfwFCzrDhYPg5G7sHlSx5b3VdSUC5raHyMPGrkbdl0DxR+zaXREREZHsosBFRERE7k3EQWM0ypW/IV9h6LbQWCT3XkSdhrltjV2NPP2h53IoUtmevRURERHJVgpcREREJONO/mxMI0qOg4IVjNEo+UveW10XjsDcdhAXAflLQc8V4Bdoz96KiIiIZDsFLiIiIpJ+FjPs+BR+Hg1WM5RqDJ3ngnv+e6vv3C6Y3xESo6FwZWNki5e/PXssIiIikiMUuIiIiEj6/PM7fPsK/LnLOK/eBZ76BJxc7q2+U+thYXdIiYdij0D3xfce3IiIiIjkMgpcRERE5M6uj2pZ/z8wJ4GrNwSPg1o9wWS6tzoPLIYVr4AlxdiFqPM8cMln336LiIiI5CAFLiIiInJ7/x3VUuYJeGoq+BS7t/osFtjwP9gy2Tiv3BbafwFOrnbproiIiEhuocBFREREbmZOhR3TYMN7N4xqeQ9q9bj3US3JV2FZPzi2yjhv9Do8PgocHOzXbxEREZFcQoGLiIiIpBV5zBjV8tce47xsELSZCj4P3XudMX/C112MraQdXYy1X2p0sU9/RURERHIhBS4iIiJiMKfC9qmwcTyYk8HVB0Leg5rd731UC8Cfu2FhN4i7AB4FocsCKFHPfv0WERERyYUUuIiIiAhEHjUWsf17r3Ferjm0/jhzo1oADi416jUnQeEq0G0h+JbIdHdFREREcjsFLiIiIg8ycypsnwIbJ/w7qqXFBKjRNXOjWiwW2DQBNr1vnJdvAR1mgquXffotIiIiksspcBEREXlQXThirNXy92/GeblgaPMxeAdkrt7keFjxEhz51jhvMBCCRoODY+bqFREREclDFLiIiIg8aMypsO1jY/SJORncfCDkfWMR28yMagGI/Ru+7grn94GDM7SZArW626PXIiIiInmKAhcREZEHSeRRWP6SEYgAlA8x1mrxLpr5uv/aa4QtcRHgUQA6z4eS9TNfr4iIiEgepMBFRETkQXFgCax8FVITjFEtLSZC9c6ZH9UCcGgZrHgZUhOhUCVjcdz8pTJfr4jYWC1WUiKuAuCU3w0Hd/1TXkQkN9Pf0iIiIvc7cwqsGQE7ZxjnpZtCu8/Byz/zdVutsGkibHzPOC/XHDqEgpt35usWESzJZpJOXCbhaBSJx6OwXEmx3TO5OuKU3xVHXzcc87vidO1PR19XI5DxdMZkj0BVRETuiQIXERGR+9mVCFjSG8J3GOeNB0Oz4fZZwDYlAb7tD4e+Mc7rD4An39XiuCKZlBqdSOLRKBKPRZF4KhpSrbZ7JhdHTM4mLFdTsSaZSYmIJyUi/tYVOZmMEMb33xDG+NMVp0IeOHq5ZM8b+g9LYirJ4VdIOhtL8tlYvJ8siWtJhbQicv9R4CIiInK/Cv8FFj8LcRfA1RvazYCKrexT95UIY72Wv/eCgxO0/ghqP2ufukUeMFaLleQ/rxghy9Eo27Sh6xz93HCv6IdbJT9cA30wOTlgSTZjjk7CfDmR1OgkzJeTSI1OxHzZuGa+kgypVlIvJpB6MeGW7Tp4u+DykCcuD3niXMwLl4c87R7CWK1WzJeTSD4bawtYUiKuwr8ZEkllfRW4iMh9SYGLiIjI/cZqhV+/gJ/eAUsqFKpoLGBbsKx96j+7HZb2hSt/g3t+6DwPSjWyT90iuYjVYgWzFavZAharMbrEycEudVuS/jNVKO7fqUKYwKWEN26V/HCv5IdTYY+bpgY5uDjiUNgD58Iet+57qgVzTJItjDFHJ5J6/c/oJMxRiVhik0mMNUIeW72ZDGGsZgspf1+1hStJZ2OxxCbfVM7Rzw3Xkt64lPTGrZxvuusXEclLFLiIiIjcT5Lj4bvX4OBi47xKe3jqE3D1zHzdsedh7ah/6y5YwVgc16905uu+R+YryVgtVhxcHY0vww5aryK3s1qsWJPNWBJTsSYaf1oSzVgTU7EkXfsz8d/71lSL8eB//6e9MYAw/afIf+9ZjSDAmmo16rt+bLZAqgWr2bhuTbWmvWe+YRjGdU4OOLg5Gv/NuTn9+6ebIyZXRxxsx9f+vKGMyQGSTsWQcCyKpFPRaeo3uTriVj4/bpX8cKvgh2M+50x9ziYnB5wKuONUwP2W9y3JZlL+jiP5zzhS/ooj+a84Uv+Jv2UI4+jtgvNDnrgU8zL+vCGEscSnkBR+heRrAUvyuStYUyxpG3Mw4fyQpy1gcS3pjaN3zkxnEhHJTgpcRERE7heXThlTiC4cApMjNB8Lj76S+V2IUpPhl89g8weQHAeYjOlDzccaux1lE0uy2fhiGH6F5HDji535xt+cm7j9F94b/nRwc7J9Cb5+3cnPDQe33PXPIqvZijXFjDXFgjXZ+NNy7U/btWTLTWWsqRZMbk445nPG4drL0dMZBw9nHPI5YXK0zwgNAGuKGXNcCpa4FMxxycafV41zS1wyloS04YklMRVrsjnNdJI8J9WCJc6SdkTKPXL0c8O90rWpQqV87DZ6Jj0cXBxxLeWDa6l/f4YtSWZSzt8Ywlwh9Z8EzLHJmP8bwvi4YHJ1JDXy5ulKJnenNOGKczFPHFy0tpOIPHhy178sRERE5N4cXw3L+kFSDOQrBM+E2Weaz8mf4ce34NJJ47xYXWM76YdqZ77uO7BajLUnks/9G66kRFyF//ziHBNGoGSxGqMYEs2YE82YM9qgowm38vnxqFEIt0oFcHDNvi+HliQzicejSDh4keTwWCxJRohyy9EVdmByc7oWwDjdIpBxxsHTGUcPZyzJ5jRBiuVqyrVwJdkWsliTM/xJ/8vRdC38uhaSuf43FLv2540hhNX6b1Zz48dz48VbXgecTJicHDA5OmC6doyTAyZHkxFCXb9/7Zrt3rVrmEzGyJyk/4zMSbo+Quc295LMN4RNFpwD8l0LWQrgVMg9V+0i5OB6mxDmb2METMpfcST/eYXUiwmYY/4NO50KutvCFZdS3jgVdNdoMxERFLiIiIjkbRYLbJoAm943zovVhU5fgXdA5uqNOg0/DYfj3xvn+QrDk2OgehdwsP9v4c1XU0j+84oxeuWc8ac1MfWmcg7eLrgW98KlhBcuxY3fnJucHYyRHde/1CZd/8J7iykrN0xdsd1PSMVyNcW2YKnJ2QG3Sn5G+FLeD5Oz/d+vJTGVxGNRxB+8SOLxy5D63yTpBiYwOTtgcnbE5HLjnw44uDjefM/JZHtP5qtGUGK5moolPuVaKJVK6i0+23vmaMLR08UIajydcbh+nO9aqHM9PHG9IVxxc8qSzzWrmdydcHB/sP757ODqiGugD66BN4YwqaT8fRVLkhmXYp44emp6kIjIrTxY/48hIiJyP4mPMka1nFxrnNd9AYLfA6dMfPlJjoetH8G2KWBOMnYgeuRFaPoWuPlgTbWQ8tcVUi7EG4vzXhtBYP334Gb/HZJw/Y9UY3HN5HNXbr2LipMDLsU8r4UrXriU8MbJx/WW3Ta5OIKL4z2vC5EScZX4/f8Qf+AfzJcSSThwkYQDFzG5OuJepQAeNQrhWtY3U9NxLAmpJBy9RMLBiySeuJxmq19HPzc8qhXEraIfDvmcr23964CDy7VRGHYYBWG1WG1BzPWXbfpP/I3hjBHQmFwdcMjnci1Ecf43VLk2CsbB07hncnXMVaM0JOs5uDqlCWBEROTWTFarNS/Pos2U2NhYfHx8iImJwdtbW9GJiEgecv4ALOoB0WfByQ1afww1u957fVYrHPkW1oyAmHPGpVKPYW40nuSrhW3TepL/jksTFNiTU0H3NOGKs7+HXdcbSQ+r1UrKX3HE7/+HhAP/pJk24eDhhHu1gnjUKIRLKZ90TZmwxKeQcORayHIyOs00IaeC7rhXK4h7tYI4F82n0EJuy2q1kvJnHAmHL5J4LAqrBRx9XXHyccXRxwVHX1ccfVxtf2q9lHuj7wYiYm8KXPSXqoiI5DX7voZVgyA1EXxLGtsyF61+7/VFHoMfh2L541eSLWVJdn2E5PytSL6c75YLgzp4OOEc4Pnv2hp32j3m2n3TDce2MiZwKuSB67WQxcEjc7uy2JvVYiU5PNYIXw5eTPNZOHi74FGtIO41CuFS3CtNWGK+mkLi4UvEH7pI0sloY32Za5wKexihTbWCOBW5eatfkeusFivJZ2JIOHSJhMMX04R/d+Pg4WQEMDeEMEZA42K7np0L9P6XNcVCSsRVkv+6QvKfcXjWD8DlITvspJZJ+m4gIvamwEV/qYqISF6Rmgw/vQ27vjTOyz4J7b8AD78MV2W1WEn9M5Lkdd+QfPI8yZZypFhLAP/5zbiDCeei+YyRJyW8cSnuhVMBtwcuKLCarST9EW2EL4cupVlfxtHPDY/qhXD0cSHh8CWS/ohOs7ivs38+YyRL1QI4F8mX/Z2XPMOaaiHxVDSJhy6RcOQSlqv/hnwmFwfcKvrhXqUADu7OmGOSSI1Owhxzwys6Od0LGTv6uOJUxAPnwh44F/HA6dqf9t6ty5p6LVz5899Fd1MuxKcJIn1al8ar0UN2bfde6LuBiNibAhf9pSoiInlB+C/GbkHn9xnnj70Fjw1L9wK25tgkks8ZX3aSz8WSfPYy1pSbn3X0df1/9v48TLLsrM9F3z3HHJFzZlVlzT1Vz4NaPWloJNSAwAZJtmVsDWDhIyFkkHSPdfHF51x8AGHusY3P4erAMTbYGCEDZrJaQjSSWj1K6lHqubvmMefImPe8zh9rx5RDVVZVZmVW9XqfZz9r7bV2RuyIzIzY67e/7/clKT1Jas/2HJql0hN6EWGM+3qZ5vdncV+eR/jLDW+t7TnSNyQiy0hmE85ScbkQ+xHe62VaL87RemUB4XUFEy1tkj4wRPr6IVJXlc75vyiEkJW6esWYJW1Y8c9q0mwU7I4QY45lsMayWKOZNZkFizAmmG5KUeVUUtloqrFixS09a2Jtz2PvyJE+MIS9I3/Ox99o1NpAoVCsN8o0V6FQKBSKrczCYfjb/6/0VwFwijKq5ZofWvVHYjdMhJW6LKd8skZUXZqOoKPRwrJP4Vy7G/vmG7EnCxdsOvtmQjN1uQg+METsR7ivLki/l0ZI+tpB0jcMYQ6lN/s0rwhEJBBRLP1yNA101jW6SkQCEcoy3LJNtrDb0t6PBJptLCtbraeM8zY2jlshrVcXaL04h/d6GRF0BRA9b5G+fpj09UM4e4vn5WOkaVqnkpI1vnI0lRCCuBEQzruE002C6QbBTJNwuklU9Tub98Zi38/peRurT4jJoFlGIqzUpLhyZhVxJWNibc9h75AirrUjJ9Oa3mSRcgqF4s2HinBRKrZCoVAotiKtMjzyv8N3fgfiADQdbv0Q3P//gfxY5zARxPhn6gQnpBeCf7JGOLtCxR8NrLyH1XwUm1exneNY7/wg2t2fuLiqRgrFGmhHXsTNgLgZ9rVRe78VLpsT7grpMTqgaVKESTat09K33+nDMiFFBHFfWstFYWjoKQPNMXsEmZ6+I1t0cN9YXObtYwymSF8/RPqGYekJtAZD5o0gdkOC6SbhTJNgutkVYiremh9DS5vY23PYO3IygmV7DmPg8hBX1NpAoVCsNyrCRaFQKBSKrUQUwNP/CR7+vBRdALHnfnj3ryCGryMqu/ivTcmKQSeTO8orLBqNwZQsqTyZxx4zsJ77X9Ff+W/ym/+aH4H3/hkUJi7xi1OsFyIWCD8idiOEFyZtROyGiCBGT5t9pZw3qmpNO1oiqvjd1JWKR5iksMSNoCOmsHoWy/kRAwhETyTFusgmpoZm6miWjmYZaKaWtHIMXeu+x25E7IUy/UcAkSBuhNAIWZuDCphjmY7IslWqVOkpE2dXAWdXv9gQu2FHfAlmuoKM8COsbTkZvZJsxuCbz+NJoVAoVkNFuCgVW6FQKBQbhBCCcLaFd6SCd6QiDTAj0UmTIBKIWCRjMXgthFuHGAQmQrMAE8TZFy961pLCyo4c1mQee0ceI5tU/Jl6Ef7kIzB/EHQT3v3LcPcnl1cSugyIGgHhbLN7B36mSTjbQkQC3dbRbEMulm0j2XR0S7b9c0vGbQNzMIWR37xIn3ZFJP94rWdBHyHckNjr7ws3WrMxahvNNtDzXQHGyFnoOXtJa2HkbTTHQNM0GZXSCgkrfr8XyHn4gSw7D0tHz1joGTPZrP42vXxOswxZtjxO/l9igYiRQmPfmGwRdP+vRHdMs/QeQaXbx0z6FxBV0id8uSGxG3b77d+Z2yPS+BH2jrzy9tmiqLWBQqFYb1SEi0KhUCgU64QQgnCmKQWWw3Jbqazy6uhAz0X+CrdENFuXd5MTYcXekV85XF8IeO4P4Cv/sywfXdgOf+/3YfLOC3hllw4hBHE96BdVkvZs7+V6BE9YO3KkrxsidWAIa3zjSzaLKMY7VKH10pysSFM7n7+VBD1JZUmZ6I4hxRJLl+k59YCo7kMoRYFoPiKad8/9mKaGkbWIW+GKhsArnkbO6pQfNntLEeetPjFFszavFPFGoOlakjpkAs5mn45CoVAothhKcFEoFArFFUfsRfhHK7iHKgSn6xg5C2MwhTmUxhxKYQ6m0PP2RS+oOwJLIq54R1YQWEwNZ2cBZ29RhtobOpqReEt4Zfj+H6Id+hsgRNN1uPn9aHd8GC2dB0PrHmvocn8td+L9Bjz4WfjeH8n9/T8IP/E7kB26qNfbed2xIK75XHSQbCQI590+cSWYbvaVXF6KUXK6JWxHZauZujQ99WOEHyGCmNhP9nvG42RO9La+PDYquwQn6wQn61QfOoYx4CTiyyDOnvMzLj0bsR/hvVGm9eK8rEjT81o1xyB1VQk9b6M7iSmr0y+m6O1+ykB3TJkGc5a/YyEEwouI6gFx3SeqJW29t+32hRdBKIgqXZNlPWNK8aQtopQSUaU9VrDRzCtLSFEoFAqFYj1QgotCoVAoLntEGOMfr+IequAdXMQ/UTunGaZm6RgDqY4AYw6mMIbSsj+QWvFOvIgTgeXQYk+a0BJxwNRxduVx9pZw9hSlAebSx/Ib8Pj/AU/8HxA0ZWDLDR+Ad/0vMLDr4t6MmVdlCtHsq6AZ8AO/BPf+wprLR6+ECGP8U3X8oxW8o1X8Y1Xi5uqiyEWjIX8Po5l+cWUkg+5sjBdJVPNltaGX53HfWCQqe9SfOE39idNoKYPUNYOkrxskdc3gmsrj9hK3QvnYL87hLq1Ik7M6ZX+dfaV1Fy40rScCY/jclZNEkIgzjQDNMTCKzob5vygUCoVCcaWjPFxUnqZCoVBcdohIEJyu4x6S1T78Y9W+RSzISAhnfwl7Z564GRItuITJFpXds7tsamAUbIxBKcAYRZtguol/pLJMaNAsHXtXAWdPEWdfEXtHfvVFcxzJqJOv/29Qn5JjO+6EB34NJt9yEe9Iwve+BF/+tBRxcuPwgf8Eu+8974eJWyHesSr+0Sre0Qr+yRqES94wnYsScUDayBgDKazRdI+4ksUaTm9q6knsR3gHF6X48upCf9SSruHsKZA6MET6uiHMwdSKjxHVfFovz9N6aR7v0GJfqVyj5JC+QZb9tXcVNq0ijUKh6EetDRQKxXqjBBf1oapQKBRbnnZkiXtwUUaXHK7I1Ice9JyFs69Eal8JZ1/xrJUyRBQTLXqE8y7hQksKMfOuFGXm3bMakmqWjr1bpgg5e0vY23PnjkoQAo58C/7ml2DqBTlW2gU/+Mtw4Mcv3sA2aMFX/zk8+1/k/t53wvt+F3Ija/rxcNFNxJUq/tEKwXRzmSClZy2c3QXs3UWc3QWsbdl1S7PZyohY4J+s4b48T+vlBcKZZt+8NZ4hdd0Q6QND6FmL1kvztF6awz9W7XsPzdEM6RuGSF8/LN+7y9C0WKG40lFrA4VCsd4owUV9qCoUCsWWQ4QxwUwT/0RNCiyHkgo/PWgpE2dvkdS+Is7+kvTyWIdFbLvMbbjQFWCiRQ9jKCVThHbk1i40CAEHvw6P/P/gxLflmFOAt//P8Nb/Ccx1MNmcOyhTiKZfBDR45y/C2/9foK+cBiKiWFZOaqcHHakSVbxlx5nDaRm5s7uAvbuAOZxWIgEQzrVovbKA+8o83tHKWd16rR25TiSLqkijUGx91NpAoVCsN8rDRaFQKBSbSlT3Cc40+reZ5jIPFs3SsfckAsu+Eta23IakYmiahpGzMXI27LzAC+44htcehEf+dzjzvBwzbLj9o/COz0F2eH1O9sX/Dn/1z8CvQ3YE3v+7iD3vIK4HhAuNbhpVORGPyq4UV5aKBDpY23I4SfSKvauwqSWStzLmcJr827aTf9t24mZA67Uy7svz0pvFj3D2FElfP0Tq+mHMkqpao1AoFArFmxkluCgUCoXikiBiQTjXIjhT7wgr/pkGcdVf8XgtZWJvy8rUnf2ls3ujbBWiEF76c3j038DsK3LMysDtPwX3fAoKE+vyNHGtTvjgvyF66UlC8W7C3K1EpbcR/oUgKj+xzM9mKZptYO/K4+ySKUL2zrwyRr0A9IxF9tZRsreOIsIYEYkNM/VVKBQKhUJx+aEEF4VCoVCsO7EXEpxu9AgrdYKpJoQrCwHmUAprIos1kUvaLEbJuXxSWEIfvv/f4LF/CwuH5ZhTgDt/Bu762XNGtIgwJm4GsjpMMyBuhMSNgKjR3u9u0aJL7MbADyQbsAgs9niLaMiSvQM9FZgGU5gDjiyJnbOVUes6o5k6mrqqUigUCoVC0YO6NFAoFArFRSGEjFzxj9fwj1fxj9UIphsrVgHSLL0jqHQElvEMunOZfh0FLjz3B/D4v4fKCTmWHoC7Pgl3/gzCLhKVXYITC4SzTaKq3xVOmmGnv9QAeC3oWhVjOIc5MSoFlV5xpehs/WgghUKhUCgUiiucy/QKV6FQKBSbReyG+CdqXYHlRG1ZqWSQZZWtbbk+gcUcSl8ZkRVeHZ75PXji/4T6NLHIEqTuItz7IcLcnYTHQ4JnDhHOt/rKAZ8VXaao6FkLPWNh5Cz0jCn33WMYB/8Mvfw8hlbGmNyJ/vd/B4rbN/Z1KhQKhUKhUCguGCW4KBQKhWJV2r4r/vFqR2BZqWQwpoa9PS99QXYWsHfmMQqbZxga1Xy8oxX8I1X803U0U0d3DLSUmbQGumMmbc+4Y6CnzKQ1+qoRiVgQTc0SPP6XhC8/Q+gPEsS/QKjtJI6L4AHPAUz3n4ypYw2nMUfSGAOOFFOyibCSbEbGREuZy8WoU8/C1/8VHP6m3E9l4J5/JqsQGdZGvoUKhUKhUCgUiotECS4KhUKh6JRCjio+UcUjOF2XJZmP1xCtFaJXSg72LimsODsLWBPZTU1hCRddvCNV/CMVvCMVwtnW+jywqUvhxYSo6kJsANcmW0IiPukFWworoxnM4TRW0hol5/yjemZfh2/8b/DKXyUPbsEdPy2FltzoerwyhUKhUCgUCsUGowQXhUKhuMIRsSCu+YQVTwoqVa8jrEQVj6gq+6umvpg69o4c9s4Czs489s4CRmHzSgZ3PGOOVPESgSVa9PoP0sAay2LvKWDvLKAhjXxjN0J4EbEbJm2E8EJiL0K43fFOlZ8wJq63jX4NwMey5jEnBjD37sMcy2GNpDGH0+ipdfhKXTwB3/p1eP6LIGL5Qm7+ILzz/w0Duy/+8RUKhUKhUCgUlwwluCgUCsUVQOxFMirlVJ2o7CZiSiKu1Hw4e5XgDnrOwig6mMNpKa7sSqJXjM2LXhGxIJhudqJXvCMV4nrQf5AO1vY8zp4Czu4izu4CeuYCU24ac4jnvoR49k+I504Tk0GQwhidwLj/Y2jXfQD0dX4/GnPw6L+Fp34XokQ8uua98AO/BGMH1ve5FAqFQqFQKBSXBCW4KBQKxWVG7Eey3PLJGv6pOv7JOuHsCr4qvehg5B2Moi3LBReStpiMFeTYZqYFCSGIawHhQotwziWcbxFMNfCOVBHukrQmU8OezOPsKeLsKWLvLKA7xoU/eRzDkYfh2f8Cr3wZLQ7QAN3JwPXvgds/AjveAutdptqrwZP/f2m+69fl2O63wbv+V5h8y/o+l0KhUCgUCoXikrLhgsuv//qv84u/+Iv8/M//PL/5m78JgOu6fPazn+VLX/oSnufxwAMP8IUvfIGxsbHOzx0/fpxPfOITfPOb3ySXy/GRj3yEz3/+85hm95QffvhhPvOZz/DSSy8xOTnJL/3SL/HRj350o1+SQqFQXDJEGBOcaeCfquGfrBOcrBPMNFaMWDGKNtb2POZIGnOJoKLn7C1RHUjEgqjqEc5LQSWcd4nmZBsutBD+yqE4mq1j7yp0BZYdeTRrHcSh6ml47g/huf8Ci8e749tuhds+Aje8H1KFi3+epQQuPP0f4dF/A815OTZxsxRa9v3A+gs7CoVCoVAoFIpLzoYKLk899RS/8zu/w0033dQ3/ulPf5oHH3yQP/mTP6FYLPJzP/dzvO997+Pxxx8HIIoi3vve9zI+Ps4TTzzBmTNn+PCHP4xlWfzar/0aAEeOHOG9730vH//4x/nDP/xDvv71r/Oxj32MiYkJHnjggY18WQqFQrEhiCgmmG4SnKx3BZapxoreKnrOwt6Rx96Rw9qRx96ew8hvnq/KUqKqTzDV6Igqsm0RLrgQniUURwNjIIU5lMIckt4ozq4C1rYcmrFOIkQUwhtfk9Esb/xN4pUCpIpw0z+AWz8EEzed/TEu5rm/90fw8K9D9aQcG9ovU4eu+7vrn6qkUCgUCoVCodg0NCHE2YLQL5h6vc5tt93GF77wBX7lV36FW265hd/8zd+kUqkwMjLCF7/4RT7wgQ8A8Oqrr3Ldddfx5JNPctddd/HVr36VH/3RH+X06dOdqJff/u3f5nOf+xyzs7PYts3nPvc5HnzwQV588cXOc37wgx9kcXGRv/7rv17TOVarVYrFIpVKhUJhA+5gKhQKxSoIIQjnXYITNfwTNfyTNfzTDQiXR3joGbMjqrQFFqNgo22RKAgRCYKpBv7xKt6xKv6xKlHZW/0HDA2zV1QZSmEkrTmQ2ri0poXD8OwfSEPa+lR3fNe9MprlwN8BK70xzx1HsuLQN38N5l6XY4Xt8I7PwS3/CAyV4atQKBSbjVobKBSK9WbDrvA++clP8t73vpd3v/vd/Mqv/Epn/JlnniEIAt797nd3xq699lp27tzZEVyefPJJbrzxxr4UowceeIBPfOITvPTSS9x66608+eSTfY/RPuYXfuEXNuolKRQKxQUT1fyusHJCRq+sVG5ZSxnY25OolR057O15jAFny4grAHEzwDtew0/EFf9kbXkqkIZMbRrOJMJKW1xJYxSd9YtWORehB6/8D3j2P8ORR7rj2RG45Sfh1g/D8P6Ne36vDs//IXz7C1A+KsfSg/C2z8BbPrZxAo9CoVAoFAqFYtPZEMHlS1/6Es8++yxPPfXUsrmpqSls26ZUKvWNj42NMTU11TmmV2xpz7fnznZMtVql1WqRTi+/iPU8D8/r3nWtVqvn/+IUCoXiHMRemPitJOLKibosu7wUU8PelpOpQZN5rB05zKH0lvBaaSPipATzsW70SjjbWnacljK6ZaN3FbAn8+tTJvlCqZyCZ34Pnvl9aMy2zxL2vxtu+zBc/UNgbmAKVuUUfPd35PO7FTmWHoA7/ync/XMb4wujUCgUCoVCodhSrPvV8IkTJ/j5n/95HnroIVKp1Ho//EXx+c9/nl/+5V/e7NNQKBRXCEII4npAONsimG7gn6zjn6itXDFIA3M00xFX7Mk81lhmU6sCLSX2I6JFj3DBJThVlylCx2srRuKYw2kprOzK4+wqYI5kNl8oEgKOPQHf/b9lVIuI5Hh+m6wydMs/gtLkxp7D6edl1aGX/gzi5H0b3Ad3/yzc/A/Bzm7s8ysUCoVCoVAotgzrLrg888wzzMzMcNttt3XGoijikUce4bd+67f42te+hu/7LC4u9kW5TE9PMz4+DsD4+Djf/e53+x53enq6M9du22O9xxQKhRWjWwB+8Rd/kc985jOd/Wq1yuTkBl98KxSKy57YDQnnWp0tmO32hRet+DNGyZHCyo489mQOa3sO3dlcn47Yi4gWXcKyR1TubV2iRY+4Hqz4c5qlY+2Qwoq9K4+9s4CRtS7x2Z8FvwEv/Al89z/AdNfXi133wVv/KVzz3o31SIljeP2vpdBy7LHu+O63wd2fhKseUGa4CoVCoVAoFG9C1v0K9F3vehcvvPBC39hP/dRPce211/K5z32OyclJLMvi61//Ou9///sBeO211zh+/Dh33303AHfffTe/+qu/yszMDKOjowA89NBDFAoFDhw40DnmK1/5St/zPPTQQ53HWAnHcXAcZ91eq0KhuHIQYUxYdglnlwsrcc1f/QeTqjrWSBprezc9aDMqBolIdKoBRWWvI6SEZZeo7BI3lkeqLEVzDMzBFOZIOhFYClgTWTRjCwoGC0fgqd+F5/6gm7ZjZeCmvy9Td8au39jn9xuy4tCTX4CFQ3JMN+H698mIlm23buzzKxQKxZVAqwx2DowtJOQrFArFOrHugks+n+eGG27oG8tmswwNDXXG/8k/+Sd85jOfYXBwkEKhwKc+9Snuvvtu7rrrLgDe8573cODAAT70oQ/xG7/xG0xNTfFLv/RLfPKTn+wIJh//+Mf5rd/6Lf75P//n/PRP/zTf+MY3+OM//mMefPDB9X5JCoXiCkPESVWdo1W8oxWCU3XCsgvLCwR10HMW5rAsU2yNyNYcyWAObmBVnbMQ+xHBVIPgdJ3gdAP/dJ1gqrlilaNetJSJOeDI0sudNoUx4GAOpNDTW7xaThzD4W/IaJbXv0Ynd2tgN7zlZ+DWfyS9UjaS6hl46j/A0/9JLhRAlpS+/aek0FPcvrHPr1AoFJc7lZPw6lfg1S/D0cfgH/2x9NhSKBSKK4xNubL+d//u36HrOu9///vxPI8HHniAL3zhC515wzD48pe/zCc+8QnuvvtustksH/nIR/hX/+pfdY7Zs2cPDz74IJ/+9Kf59//+37Njxw5+93d/lwceeGAzXpJCodjCiDDGP1nDO1rFP1LBO1ZFuMtTgTRb7wopw2msRGAxh9ObKkREdb8rqpyRIks411ruE0PyGkYyGCWnT0hpCyybamR7MbgVeP6PpNAxf7A7vv/dUuTY/4Mbn7Zz5vuy2tALfwpxkn41sBvu+qSseOTkNvb5FQqF4nJFCJh9VQosr3wZzjzfP3/iKSW4KBSKKxJNCLHCJfubg2q1SrFYpFKpUCioihEKxZVC7IX4x2p4Ryt4R6r4J2rLIj8025CGr7uL2LvyWKMZ9Ly9qeWXRSyIFlz8MzJqJThdxz/dWDWlSc/b2NuyWNtyWBOyNQdTm29eu57MvCpNcL/3JQgacswpSAPct3xsY0s6g4xgefVB+fxHH+2O77xb+rNc8yOgGxt7DgqFQnE5Esdw8ikpsrz6ZVg43DOpwc674Nr3ys/RoX2bdpq9qLWBQqFYby7TW50KhULRJar7Mj3oSAXvaJXgTH1ZepCetXB2F7D3FHF2F7AmcmjG5ggT7epGwXSDYKpJON3s9IW/ggmvJqsCtUUVOxFYNsMnZsOpz8jw8mNPwLHHYebl7tzItXDnz8BN/wCc/Madg1uF174qKw0d/Ho3mkUz4PoflxEtO27fuOdXKBSKy5XQgyOPyEpxr30VGjPdOcOGvfcnIssPQ250885ToVAoLhFKcFEoFJuKEAJCQexHCC9CBBGxFyH8COHFS/YjYj+W/WQ/mGkSzraWPa4x4MjolT0FnN1FzJH0pkSvxM2AYKZJMNXsEVgaxM1VDGxNHWs8I0WVbVmsCSmu6PYVGkVROSWFlWOPw9HHYf6N/nlNl3c/7/ynsOftsFG/Q68uKw299OfwxkMQed250QPSCPfmD258WWmFQqG43HAr8nPz1S/L1q9355wiXP0eKbLsf/fGiuUKhUKxBVGCi0Kh2DBEEBNWZOnhqOwRLva0ix5xK5QRHWf3eV0T5lgGZ3cBZ08Re08Rs3hpK5LFfpREqiTCynSTcKpBVF2lwpEG5lAaayyDOZ7FGsvI/nBm0yJvNhwhYPGYFFbaIkv56JKDNBi7AXbfC7vugV33QnZ4Y87Hb8IbfyNFlte/BmGPcDd0FdzwPim0jF67Mc+vUCyhXnaZO1knlbXIFG0yBRvTukLF1i2O3wqplz3qZZf6oke97NGs+kRhTBzGRKEgjrptHAk519P2zkehIE7GDVvHcowlm4mdWjKW6p+3ls4nm2kb6Jc6lTQK4MU/g+//NxnR0o4EBMhPSKH8uh+FXfeBuXI0ZuhHLM60KE81GNtToDCUvkQnr1AoFJcOJbgoFIoLJnbDbtnhRY+w7BH1iCpxLTj3g/Ri6uiOjmYbaLaBbhtoTrvfHdec9pyOUXCwdxUwspemnKQIYoJZKayEibASTDeJyu6KJrYARsnBGs9iJqKKNZbFGk2jXekLKSFg/hAceywRWZ6A6sn+YzQdJm6Wwsque2HX3RtbZShw4dDX5ULhta92fWEABvZ0RZax6zcumkZxyQiDCK8Z4rdCvGaytQK8RojXCvGbIV4zwGuFZPI2O28YYsc1A5iXMKKsXnY59OwsB5+ZYepwZdm8kzHJFB0yBZtsIsL07Sd9J2NedBSfiIUUDKKYOJRtRzwIBXHcFhC64kEUrSYyyH6mYDO6q0BxJL0l/KWEEHjNrpjSSMSU+qJHo+x2+sEKxurrRexG6/74pqVjriDE9IkzthRxTFvHckxSWZNs0SFbkpvlrOHv3q3CM78P3/ltqJ7qjg9fDdf+qNy23doxMRdC0Kr6LE43KE81O9vidIPqfPd78/4PXcuBe5XgolAorjyU4KJQKJYR+xFxzSdKtrjqE9UDomqyX/MJFz1Ea5W0mB40S8cYcDBKSRniTuugZy30RFDRLGNLRXaIMCaca3WiVaTA0iScX7k6EMjS0VYnWiWLOZ6RZryXa2Wg80EIqJ6Gqe/Laj5T35dmifXp/uN0E7bdlkSw3AeTd0Jqg40JQx8OfzMRWb4CXrU7V9wpfVlueB9M3KJEli2KEILAjWhWfVo1n1YtoFlL+lUfNxFT/FbQI6yERMH5hc+98K1TmJbOjusG2XXDELtvHCI3kFr311NbcDn07AyHnp1h6nC1b25wW5bAjWhUPeJQdF5P+UxjlUeTGKaeiDE26cTfKQ7jrnjSF5WxQkRGKIjjjaujYKdNRnbmGdudZ2RngdFdefJDqQ1J9RRCUC97lM/IRf7CVIPKTCsRV1xCf21/F07GJDfgkC2lyA04ZIo2pqVjmDq6oWOYGrqhoxtaMpa0poax0rihoRsaYRATeFF3cyMCL1yyv/rmuyFh0m+XvgiDmDCIcevneaOjBzttki3aHQEmW3LIFh1yJYeMuUju0JdIv/wfMfyy/IHcmDQvP/DjxIP7qc65lKcalF86QXm6yeKUfP+91VJok/d4YDy7NrFHoVAoLkNUlSLlRK54EyGEIJxrES16RPVACim1rogS1Xyiqo/w1n7nTc+YGKWVBRVjIIW+DnddNxIRi46w0psSFM65sMriQ8+YSbRKTyrQWPaSRdlsOnEkI1emvg9nvifbqRegOb/8WMOBHW+R6UG775V9O7vx5ygEnH4Onvuv8OJ/B3exO5ffBtf/hBRZtt+uRJZNIo4FrZrfJ6Ksvh8QhReYe6iBkzZxMiZ22sTJWDgZszPWHi+faXL0hTnqZa/vx4d25Nh94xC7bxxmdHfhglM32iLLwWdmmD7SI7JoMLGvyL7bRtl36yi5AZkO2Y7EaFZ8GlWPZsXv73da/6wL2otB00BvCwaJgNArJuimjmH0ig7dfrutzrWYO1lfUfxK5SxGd+UZ3VXotNnS2tNB4yimOueycKYhF/pnmrKdahKc43sslbPIDUgxITuQIldypLjSHis52FtcLBdCimW9YkzoxVK88ZPWjQjbfS851peijtvwaSz61Bc9wjV/78dkzDrZUors+BiaYbA43aQy2yKOVllSaFAYSjEwnqU0nmFgLMPAeJaB8QypnLWlrhHU2kChUKw3SnBRH6qKNwEiFrRemqP2zRMEp89+l7SDqWMUbIy8jZG30PO23M/Z6AUbs5REqThb+4J0KWHFwz9ewz9Rwz9RJThVR6xyt1NzDCmojGcxRzNY41Jk0bfYBeKGEriyUlAncuUFmH4RgubyYzUDRq6B8Ztg4iYZVr7tNrDWP0JgVRrz0lPguf8KMy91x3NjcODHpdAy+dZOuLti/YmjmFYtoFHxaFR8GosezaTfbhsVj1bV53yvQCzHIJ23SOdlak06b5POWaRybRFFtnZbUMla2I6x5lQWIQTzpxoce3GOo9+fZ+pIpS+iLZWzksiXYSYPDOKkz/75V51vcejZWQ49u7LIsv92KbKcj8iwEqEvo3+a1eS9rQXoelcc6Yu6MJdHXRjm8mN0Q183X5Aoilk43WD2WI2ZY1VmjtWYP1lfMaImU7T7BJjRXXmslMHidIvymQYLPcLK4kyTOFxFGNc1iqNpBibkwr40liE/kOoIKpcybexywG+FNCoynaq56FE/9DKNN75Ho9yiEQ/SiAZpikFisfr7Ztq6FFXGMgyMd0WV4mj6svEiUmsDhUKx3ijBRX2oKq5gRBjTfG6G2rdOEs4lhqCmhjmYSoQUKZ50+klrFGzpnXKZiwqxF+KfrEtx5XgN/2SNeAUTW83WpaDSG7EynpXvw2X+Hpw39RlZaeLEd6XAMvcaxCvcPTfTMH5DV1wZvwlGrwNrE3Lw4wgOfQOe+wN49Std80bDget+DG79R7DnHaBfHhf8Ww0hBIEnvVDcRoDXCHAbst8roDQTcaVVW7uQommQyttkEhElnbfJ5G3SBavbz9tSZCnYWJd4kdyq+xx/aYGjL8xx/KUF/J40Sl3XmLiqyO4bh9l1wxClsQyapkmR5ZlZDj47w8zRfpFl2/5SEskyctEiy+VOGETMn2owc7TKzPEas8eqLJxurPy3o7FqKqdp6TJqYjzL4ESWgQnZL46mMQwlrJ4XoQ8v/Rk88X9KYR2kz9b1PwF3/xxi4lZa9YDGoie3ikcUCgbGMpTGM+RKzpbw6bkY1NpAoVCsN0pwUR+qiiuQ2I9oPDVF/ZGTRBUpMGhpk9w928jds+2KTH0RkSCYbiSRK3ILZ5rLL9J1sMay2Dvz2Dvy2DvzmCOZy/4i8aKoz8ArfwUv/YWsHCSWRPykB3qElZtlO7R/8wWM+UPw/B/C838EtdPd8Ylb4NZ/DDd+YGMNeC9DhBC49YDagpuIJ4mI0pQiitcIpB9KI8Dt6a+aKrAKmkbH3FX6QCT9ot0x6Wx7jVzy6ioXSBTFTB2qcPSFeY69MEd5qj/KqziSxsmYzByrdQd7RZbbRshe4upplxuBFzF3osZMTyTM4rR8n9teH21BZTCJXMkPpt7cn9/rgVuBZ/4zfPv/6n6WWlm47cNw1ydgYNfmnt8lRK0NFArFeqMEF/WhqriCiJsB9SfPUH/iFHFD3onV8zb5t20n+9bxyyL9R8QCEcSIIEKEcdLv2cJkLtkP512ZGnSyjljBI8AoOdiT+c5mbc+hq1ByqM8mIsufLxdZtt0GV71HVg+auAkK27eOz4nfgJf/UqYMHXu8O54ehJv+gYxmGb9x885vixAFMZXZFovTTcrTDRanmtLEcvrsBpZnQzc0nKxFKmOSylo4WeuKEFIulMpssyO+nHpjsZvakogs+28fZe+tSmS5WPxWSBjEpPNvolTOS0XlpKw29PTvg58IhbkxeOv/BLf/FGQGN/X0NgO1NlAoFOvN1l99KRSKcxLVfGqPnaLx7TMdw1tjMEX+HTvI3jaGZm1OWLUIYqKqR1TxkzbpVzyiqk/shj0iimw5zzvpvWiO0Seu2JN5jKRahwJozHVFlqOPLRdZrv9xOPB3YWD3Zp3hygghKx499wey0pBfl+OaDvveJaNZrvlhMN9cC1shBM2qz2IipMiqILKtzbVWT+vRIFuwSeVsUlmzI6I4WUsKKT2CSiorTWZTWQvT1tWCt4fiSIabfyDDzT8wie+GnHyljNcK2Xn94AWLLK2az/ypOk7G6qRSGeabOy3GTpvYm5CpKISgVQuozbvUFuTWrHhEQUwU95TFTio/LS2N3TsX9ZTRjiOBbmqy2pFlyHLOtvTQMW0jGdfluGVg2HrPWHde+u60qyIl5sVmt3JSt+2vnqS7ZbSDfwuvPQivPthNGR25Fu75FNz49zb0s1TEgup8i4UzTRZO1ymfabJwpsFdf3cvO68f2rDnVSgUis1CCS4KxWVMuOBSe+QkjaenILm7ao1nyL9zkvSNIxtWZlkIgfCifgElEVF62/hiK2eYGpppoFl6/2a2+wZG3sKeLGBP5lRq0Ep0RJa/gKOPLhFZbpW5+VtRZAl96R9z6BsymmXu9e7cwB4pstz8D6G4ffPO8RIghMBtBFRmW1RnW1RmW1RmWp2Sq767emURK2VIb4WeTRpYZi65F8pmEscCvxXiNXtKRjd792XqVCZvM3lgkPE9BfTz9P6wUyZ7bx25oPOrlz0OPz/L4edmOP3G4jKhzMmYXR+bxCQ43eNt0/G5KVikMtaGfwYKIRCx6IgHcSRk6ekeoaF3PJO3N6z888UQBTH1RTcRVDxqCy71ha64Ul/wLrwy1hZHp4Sh/QMc7b3ksz65bRPkJ3aRr6bJvVIjPxiQG0yd0xT6bMSxoDbfYuF0g4UzyXZaRtuFK0Sjzp2sK8FFoVBckaiUIhU2qLgMCaYb1B4+SfN7M5Bct9g78+TvnyR17eC6XNgKIYgbAeFci3DOJZxvJf0W4YK75tLRmpVUOyo6y1otbS4TUPpEFSWeXBiNOXjlfySRLCuILAd+XEazbBWRpTYtDRqnX4Tpl2DqxeVmvVZGnvet/1iWmN5ii7eLIY4F9bLbEVSqc4mwkogsZxNV2uVWS2PZjnFlaUyWXc0UryzT5yiKceuJt8yS1mt0BRS32S+u+G64quHqSjgZkx3XDrLrhkF2Xj+0ISlBldkWh5+b5dBzS6oXAYWRNKEf0aoFiFVK06+GpmukchbpnIWm0RFvhIBeJac7LkAkb08yKI8FgUBEgjhuiyfdKI3zxcmYDO/IMbwzz8hknuHJHANjmfMWts4HIQSNRZ/FmWanbHFt3qVeliJLcwUD9WVokC065AdT5AdlypxpG30VnlYqiW0sK6XdPUbTNfl+BjGhHxEGsewn+1EYE/pxz3jPMX5M1N4P+6NqojAmDhPxK4yJgpA4jIjiCxdX7bRJftAhN5giP5AiP5QiN+iQH0iRG0x1jJ+rc0kFqURUkWW6myuWAgcwTGl0PDghvXgGt2UZ3VXolETfTNTaQKFQrDdKcFEfqorLCO94ldrDJ3Ffnu+MOVeVKNw/ib2neN6LKyEEcTPsCiltUWXeJZxrnVNU0dImZtFGLziYRUeWiy466EXZGgVbiipX0KJvSxJHcOZ7cORbMiLk6OMgen53E7d0I1kG92zaaXaiVqZe7BdYGrMrH+8UpYfMjR+A698Hqcvrc1oIQRjEBG5E4IX4bkSj7EkxZa4bsVKdb61a2rZNtmhTGElTHElTHMl0ytxeTuVWe2lH7siqRiuLKJ22EdCqBwRnE57WgGnrOJmkfHTG7O+nTRanmxx/ZQGv0R+ZNzyZY+eBIXbdMMjY3uIFV75ZONPg8HMzHHpulrkT9b658b1F9t02wt5bRigMy/wZEQu8Vkir5tOq+TSrQaffqgW06klb82nW/GXnfUnR6IgPhqHJvq6hGRrNir+iSGNYOkPbc4xM5hiezDOyM8/Q9ux5/z37rbAjqpSnm1Ta6XUzLcJzfIeZli7FhKEU+QEnERRSicAiS0hfNpWO6rPwxt/A61+FQ9/spF4KAbGRId71DqK9P0i8+36i7DaiMMZtBNST6J7eCJ/6gofbCM75lJouf8+rRQKtJKwMTmQpDKc2VGy7GNTaQKFQrDdKcFEfqootTNwK8Q5X8A4t4h5clFV3ADRIXz9E/p2T2Dvya3osIQTBqTruqwsEbYFlzkW4Z7lI18AoOpjDacyhVNKmMYfTGCVHmc9uFkLICj2HvylFliOPgrvYf8zELYkny49fepFFCKiehtlXpagylQgrq5WYRoOhfTB2g9zGb4Cx66E4uamRLFEU0yh71MuyBKrXCgncCN8LCbwoEVIiAlfu+0v2Ay9ac3lk3dDID6WkoDKc7ogrhZE0heH0ZZUC1Pa+aCx61Msu9eQ9rC+6NMoetbJHo3yB6RoapDIWqZz0l1nmQ5OxsNNm14emLaykTYw1eFnFsWDmaJVjL85z/KV5Zo7X+qJj7JTB5HWD7LxhiJ0Hhs56R14IwdyJOoeem+Hwc7N9VY00XWPbVSX23SpFlvUoEd2OAGrVfFr1QJ63Jisqo2lJ2/svpfXPa73DckLXE/GkJ5KjP7ojGT9LNGIUxiycbjB7osbciTpzJ2rMnqyvKIZousbAeKYTBdNuTcegOtticabF4lSzI7AsTjfPGqmi6VoSASbFycJQWkZoJIJKKncZG/EKIT9fX/9reO2v4dQz9P2x5sbg6gfg6h+CPe8AJ3deD++7ofy/XZJmVVuQUUL1BY84icAyTL1bPSoRVQYnshRG0pedebZaGygUivVGCS7qQ1WxhRBBhHesinewgntokeBk/8U+ukbm1lHy79iBNZpZ02OG8y2az8/SfH6GcLa14jFG0e4IKV1RJYU5mN40w13FEmpTcPhbcPhhKbJUT/XPOwXY/TbY+w646gdhcO/Gn1NzQQo/8wd7tkOwcAiC5so/kyomwsr1XYFl9Dqw1/b3vF7EsaBZkUKAXEBIcaAtCNTLScrBOn1Dmo6B5Rhki/YyQaU4nCY3mNryC5N2xIVblxEnrZqfiFE9okrZpb7onTNip03blySVGPZKIaWnn+ynk9bOmJf0fWpWfU68ssCxF+c58fLCsrv+Q9uz7Lx+iF3XDzG+r4iua0wfrXLo2RkOPz9Ldc7tHKsbGpPXDbL31hH23DxMOvfmNfQWsaAy22L2eC0RYmrMnqjj1leOqtB07azpVemCTWk0zcBYhmKSUlcay1AYTl9ZpsNxDCe+Lc3DX/sqVE/2z0/cLAWWq39Iiu76xr12+RnqE4UR+aHLT1hZDbU2UCgU640SXNSHqmITEZHAP1XDO7got+PVjvltG3M4jbO/hLOvRGpfET1jnfNxo7pP64U5ms/N4B+v9TyYTvq6QaztOaxEXDEGUypSZSviVmQlobbIMvda/7xhw+RbpcCy9355cW1sgA+634CFw/2CSrvfKq/+c7opzW3b0SpjNyZRKzsuWdSK2wiYO1ln4XSd2oLXuStbL7s0Kv6a/DF0UyNXcsgNpHAyJnbKxHIMrJQUUDr7K40l+5ZtbDk/IiEEgRvRqgeJgOJ30njaY53xnhSf87liyBRscgPS9yI3kCI34HS2bClFtmRfVulQcSyYOVbl+IvzHH95gemj1T5Brv37bla6ERempbPzhiH23jLC7puGL8qE9EpHeq54zLajYI7LiJjaghStTFvvGkCP9ptBX9HvqxAyZfTFP4UX/7xfZDHTsPedSSTLA1DYtmmneaWg1gYKhWK9UYKL+lBVXEKEEITTTdyDi3iHFvEOV5b5pOgFm9S+khRZ9pcw12jYGPsR7svzNJ+bwX2j3DHTRQNnf4nMLaOkbxhCd67gC9PLmSiE409IceXwt+D0s/1mt2iw7RYZGr73HTB51/pHhbTP4fWvwdT3pbiyNJJmKYUdMh1oaB8M7e9upZ1gnFscXA+EENTLHnMnasydrC9bqK2GpmtkS7Y0gBxIRIHBXnEgJc1Ht5hYslbCIKI661KZbXZMeNtbfcG9IPNTkGk1MvpECiq5kkN2QBppZtv7JefKiixYgVbd58TLCxx7SUa/tGoyOsNKGey+cZh9t46w8/ohLOfyEZW2Im4jIPRjsqUrywT6nMwdlCLLC38K8290x50CXPuj0pNr7zvA2oSa2Vcwam2gUCjWG7XyUig2EBEJgukG/olax4slXhIyraVNUnuLXYFlOL3mi0oRCbyDZZrPzdB6eR7hdxfo1o4cmVtGydw0glF484aub2niSEaxvPTnsnRzc75/fmh/IrC8E3bfB5nB9T8HrwYH/1aGp7/+teVeMADpwR4xpUdYGdx76VOBopjydLPjBTF3ss7cifqqBo/5oRTDO3Id74ZeMSVTtC/7MHjfDTuloqtzLSozXXGlvuidMyXKtHRSeYt0zu5P38m1W7unL+evdCFlraRzNlffOc7Vd44jYsHsiRpeK2TbvtKa/GIUayOVtSC72WdxiaiclOlCL/6pjGppY6ZkBMsNH4Cr3gNWavPOUaFQKBTnhRJcFIp1JKp4Ulw5XsM/USU4WUcsKYuoWTr27gKpJE3I2pY7rzvoQgj8EzVaz8/S/P5sn4BjDKbI3DJC5tZRrJFLuxBWrJHeHPyX/xIaM925zBDsf3c3iqW4Y2POoXoaXvsKvPoVWTY66jGdzAzJ/P/d98HQVVJg2Qih5yyIWBB4EV4rpLHoyaiVEzXmjteYP91YsdSopmsMTmQYnswzvEOabQ7tyMnF2mVMFMXdKiLzLrX5FtV5l8pMi8pssxNVsRpWyuhUNiqOtqscpckPpUjn7cvKjHcro+kao7vU3XDFBdCYh5f/Al7873Ds8e64ZsC+H5BV2q75kcuuSptCoVAoJEpwUSgukNiPCE7W8U9IccU/XiNaoVqC5hjYk3nsnXlS+0vYOwto53mHWMSC4EyD1svztJ6fIZzvMWLMWqRvGiZz6yj2ZP7NFXJ9uSAEnHwqEVn+AmpnunOpElz3Y3DD+2D32zfGh6VdzeK1r8KrD8KZ5/vnB/fBtT8iL+on3wr6xS/CAz+iWfHwmiF+K8RrhX19f+m42z9/tsgMyzEY3pGT204psAxuO/9ysluB0I86FUCkoNLTX3BpLHrn9E1J5ayOkFIcSVMczXT6l3UVFoXiSsWryc/iF/5UVpvrrd628x648f2ywlx2eNNOUaFQKBTrgxJcFIo1IGJBONfCP94VV4LpRtcnpY0G1ni2I7DYk3nMkcx5e0AIIQhnmniHZLUi73AF0epekGmWTvr6IdK3jpLaX0IzVPj6lkMI6cPSjmSpnOjOOUW49r1SZNn7zo3xOokCebf0ta/KaJbF4z2TGkzeCdf8MFzzXhi+6ryNbNulf6tzMn2l0ybpLGcr1bpWdFMjnbUY2pHri1wpjqS3rK+KiAW+F+E1AykeNXuEpKaM2KnOd8usttbwPhmmTn4oRX7QIT+U7pSPLo1mKIykr2zDUIXiSsFvwsGH5HfC638NYY/H1MTNMl3ohvdtXGSjQqFQKDYFdZWmeNMghEAEMcINid0I4UXEnX7SuiGxFyHciLhnLJhpItxo2WPqBRt7Mo+TiCvW9jz6BRgkCiGI5l3cw4t4h1bxerENnH1FMjeNkDowdEHPo9hghJBmsy/+mfRlWTzWnbNzMoLkhvfJMHFzbWbI50XlFBx/UoosbzwEXqU7Z6Zh3/3yHK5+AHKj53w4mc7iJoKK2yeoVOdaBN7y/4leTFvHyVg4GRMnbWInm5NJ2iV9u+c4J2NuesRKFMTUF91OhSOvEeI1g06ETjs6p3ffd88enbMSlmMkgkqqv036mby9ZQUmhUJxFgJXemS99Gfw2l9D0OjODe2HG/8e3PB+KXorFAqF4opECS6KKwIhBHEzJJxr9W8LLnEj6Igq57sQ6kWzdKztuU7kir2zsOYKQisRLnqyUtEhKbJEFa//AFPH2V3A2VfC2VfE3p5TkSxblYUj8PwfSqFl4VB33MpIP5TrfwKu+sH1rSYRhTJN6MR35Hb8O/3lQgGRHia66kfwd/8w/thd+KGJ70b4B0N89wx+K8J3QwI3xGtF+K12X0Zi1Ba8s5dO1iBXciiOpCkMpyn0pLUUhtNb2j9FxIJmze/4o7RLRtfKLvUFl1rZW1P0yWoYlt4nKrWFpEzRJj+YopBEquQHUzhZU6X9KBRXCqEHB78uRffXvgp+rTtX2ilThW54v4xqUf/3CoVCccWjBBfFZUXshYRzLuFck3C2RTjvEiTiSm/KzVnRQXNMdMdATxloKdlf3hrojomeMjAGUljjmYsSPKKa36lU5B1a7PNhAcDQZLTMvhKpfSXsnfnz9npRXEKEkCk73/6/ZC5+W80zU1Jcuf59MpLEXqfyGq1FOPm0NNw98R04+QzCb1KLRlgIJ1kI76AcvY8F7SpcbQg/TuPPasRH2oLJ8xf0tIapUxiWKSyFHjGlbby62VEoZ8NtBCycblCeaiSiiifFlAWX+qJHHJ5bgTUtndygrGyUztsrRuL0jjkZCzttbOn3RaFQrDOhL71YXvpz+X3gVbtzhR1w/Y/L74TttymRRaFQKN5kKMFFsSWJ6j7+sRrBbLMbrTLfIj5HRQ6j6GCOpDGHUpjDGczhFEbO7ognWspAs/QNv5scuyHB6Tr+yTr+qTrBqTrhXKv/IA2sHXlS+4o4+0rYuwroqmLI1if0ZCTLt78g04fa7PsBuPkn4ZofAid/cc8hBJSPyKiVE99GHH+K6pl5FsIdLIQ7KYe3sBD+GOVoklCcLcqqKyhYKQM7laT1pIwl7ZJ+2iRTsCgMZ8gWt346i9sIWDjTYOF0g4UzDcpJ/1w+MpoGmaJDftAhN5giP5DqlI7OD6roE4VCcRaiAA5/KxFZ/ge4PSmc+W2JyPITsP0O0NXNE4VCoXizogQXxZYgbgZ4Ryodk9hwurnqsXrOwhxKYw6nE3EljTWSxhhMbYpg0RFXTiXiyskVxJUEayLbSRFy9hTRU+pf8LKhPgtP/yd46ne7pZzNNNz8QXjrx2H02gt/bCFg+iXig9+k+vpLLByfo1zPsxDuZCG8gcXwhwhZWVjRTY2BsSyDExkGt2UZGM+SLTlYKUNGXqRMLMfY8qLJWvCaAQtnmiycrvcJLM3K6sJKbtBhcCJLYSjdJ6bkBh2yJQdDpekpFIq1EoVw9BEpur/6ZWiVu3O5MZkudP1PJNXe1GeLQqFQKJTgotgkYjfsCCze4UWCM41l/irmWAZrIos1nIgrybaZIkXshQSnGom4UutGrqyQmWCUHOn5siOHvT2PtT2HsYU9LRSrMPUCfPu34YU/hihZ2Oe3wZ0/A7d/FDKD5/2QvhuyeGyK8ovPsXj4OOWpJoveEIvhVURcv+LPGKbGwIQUVAa3ZRmckFthOIV+mYoGQggCL+qWim61+0Gn36z4LJyps3C6QeNswsqA03lfBia675GtRE2FQnGxzLwCz/xn+T3QnO+OZ0fgwN+V6UI77wJdRakqFAqFoh91Jaq4JMRehH+sKkscH1okOFVfLrCMpPuiP4ycvSnnKmJBVPOJFj2iRZew7BFOSZFlVXGl2Cuu5KS4sknnr1gH4ghe/5pMGzr6aHd8++1w18/KC+xzlHIWsaC24LI43ZSCylSD8vFpFmdaNFrtv40scF3fz5lGzMCIwcDkMIPb8x0BoTCcRt/CUSoiFrTqgTSfLXvUyx6tmp8IKd3SyL7bs+9GZzflXYHcgIxYGegRnQYnstiqNLJCoVhP/Ca8/BfwzO9L36w2mSG47u/IinO77lUii0KhUCjOirpCVWwIIojwjlWTCJYK/okaLFlYmUMpKbDsLeLsLWEULo1AEbsh0aJHuOglokoirLT7VX/ZufZiFG2s7XkprCQCixJXrhC8Gjz/RWmEWz4ixzQDDvwdKbRM3gnIyIzQi3AbQWdrVnwWp5sdgaUy0yQM4hWeRP6tZPQFSulFBkYdSrt3MHDtdZS2FckPpbacsCKEoFXrF1MaSbnkxqIsmbxWE9qV0HQNO210jWh7WidnMZhE9QxMZHGUsKJQKDaSqRelyPL9PwYv8WXRDLjmh+G2j0i/LkN9DikUCoVibahvDMVFIcKYcL5FMNMinGkSzDQ7LVH/4ssoOV2BZV8Js3ThJZVXI/YjoopHVPGJqlI8WSqqCDc69wPpGkbRxig5mKUU5nBaiStXCEII4lggYoGIIY4F0ewx3O/8N9wXv47r6bjxXlzjrXgjd+OWbsBdcHD/OMBtfAevEeA2QqJwJTGlH52AonmGAeMUJfMUA+kFSru2M3DDrTgH7ofi9kvwipfTTuVxGwFeI8RtJm0jwGvK19eseIm4ch5iigaZgk2uJE1oM3kbJ5MY9ab7q/nYKbMzZ9obb2StUCgUq+LV4aU/k2lDp57ujpd2wW0fhlv/MeTHN+/8FAqFQnHZogSXLY6IYmI3QngRsRvK1osQbpiMh33z6BpGzkbPWRg5K2nlvp6xLtg4UwQRwWyPqDLdTCoIuatGgxgFu19gGUxd+PsQC+Jm0C+k9AorSbsmMQXQMyZG0cEoOR1Rpdt30PNbvzLLlUroR7iNMFn4dwWBfnEg6BwTeFFHPBFCEEeiK6pEgljIvx/ZFyumhEnuSrYeygDVFY6V6LqGkzVJWS7paJpS+Bol/SgDxmlK5kkKxiz6jltg/7th/0dh220bdmc08CIqs00Wp1sylScRTrxGgNtM2p5+HJ1nNEqvmDIgyyRnBxzyAymyA47cLzoYqpS5QqG4XDj9vIxmeeFPwa/JMd2Ea38Ubv8I7HmnMr9VKBQKxUWhBJctQDDdoPK1Y1JE8frFFbFiSsIFooGetdCzbTHG7m+zFkbelukSMy0pqExLgSUqu6suVDXbwBxNY41mMEczWKMZrLEMxmDqgu5aRzUf99UF3EOLRGWvI7AsjZhZ9WXahoxOKToYBXu5qFJ00B2Vc72eCCEIg5jAjQi8UBqhuhGBF511zGvKTYopUgyI1vNvfs3EOKZPKueQKhVI5WwppGSt5VvOwsmYpOJ5rBf/AO3Z34P6dPehsqOJwPIJ2Hs/ZIfW7SyjMKY616Iy02JxRqYvybZFY9E778fTTa3zupyMfL1Osp/OW0pMUSgUVx5uFV78UxnNcub57vjgXpkydMtPQm50005PoVAoFFcWSnDZAgg/xn15/qzHaJaOljLQHTNpDTTHRE8ZaI6BnjLRHANiQVwPiOp+0gbEDZ+4GYKAuB4Q1wPC6bM+3crnkDY7YkpbWDFHMxhF+6LSAYQQBKcbuK/M03p1geBkfdVj9ZzVFVIKbVHF6RNYVKnllYljQavm06z6hF5EGMRy8yOinn7ox4SBnI96+qHff6wUTqSQEngR4sLsO1akEzmStXAyFqmsiZOxlo9lLSzbQDc0NE2TrQ6apqEh0OdfRTvxBNqxx9CnnkMTAboWoxGhmzbarrei778f/ep3o43sP/eJCQHHn4Rv/t/wyv+AOJTjuTF5oX7dj8HYDRd1R1TEgvqi1/GDWZxpSoFlukl13j2ryayTNSmNZsiWHFIZsyOe9Isp3b5pqVQehULxJkAIOPUsPPv78MJ/h6Ahxw1bGuDe/hHY/TZQn4cKhUKhWGfUynQLYAymKP3E/kQ8MbutY3QEFe0iy76KKEnJqQfEvWJM3U9Ema5II2KBNZLuE1Ws0Qx6zlq3xVnsR3gHF3FfXaD16gJxtb/cq7UjR+qaQRkp0xZY8jaausO+DBEL3EZAo+LRWPST1qNR8WksejST/WbVX1dRZDUsx5BbSrZ2ylx1zE63F/8mqR5BxXKMC/tbq8/CoW/Awb+VbXOuO6cDw1cn0SfvktUlrPTaHtdvSAPF7/4HmHmpO77zblke+tofA3Nt3j4iFjRrPrV5l9qC222TfmW2ddYoH9PWKY1lKI5kKI2lKY1lKI3KLZVTZccVCoWiQ21KfnZ/749g5uXu+PDVUiS/+R+uaxSiQqFQKBRLUYLLFsDIWuTeOrGhz6EZGkZeihayFO2lJyy7MlUoSReix4RTs3WcqwZIXztI6trB5Dzf3IRBRKsW0Kz6nciUZtWnWekVVTyaFX/NfhyaBum8jeUYmLaOYRmYlo5p65iWgdHTl62OaSfjSd+0dAxLx04ZWI7ZJ6RYtnFpvW+iEE4+JQWWg3/bHx4OYOdg7zulwLLvXTCw6/wef/4QPPUf4bn/2q1WYabhpr8vhZbxG5efUhTTKHt9IkpvW1/wzmm4qxsaheG2mCLbYiKqZEsXF1GmUCgUVzSBC689CM//ERz6Oojk89ZMwYEfl9EsO+9W0SwKhUKhuCQowUWxYYhY4J+oSYHllXmCqWbfvDHgkL5uiNS1gzh7i1d89IoQAr8VLhNRWjWfZi2gtWTMX6MBcJt03iJbkl4b2aJNpt0vyf1sySGdt7dcyeHzwqtJgeX4d2Rqz8mnu6HhbcZvTKJY3g077lxz5EmHOEK8/hDhd34P/+B38EQWPx7Dz96Nt/e9+GN344cO/ndDvNbr+M0QryUNfGvzLo1F75yRRJoG2ZJDfjBFbjBFfihFPmlLo2nygyn0i4xqUygUijcNQsCJ78L3vggv/nlXIAeYfKuMZLn+JyBd2rRTVCgUCsWbE02IS5FksDWpVqsUi0UqlQqFQmGzT+eyRkQxYdkjnGsRzrUITtVxX18gboTdgzSwdxVIXTtI+rpBzNHMFXen3msGVOdkWkh1rrtV5lzqZXdtpXV70A2NTMEmnZdbpmD1iCgOmZIt26KNsYUW6EII4lAQRTFRGBMFQrZhTBx198MgIvRiAl/6wIR9bUxQrxEuzhLUFgkbDWm+KxxC4RCKFIFwiIWBrmvopo5mWuiGjqZrcqzP20W2uq515ttjIhZ4DQ+/UsFv+fhRivgi9Gjd1MgP9Asp+cFuPzvgbKnfl0KhUFyWLB6H731JpgwtHO6OFyfh5g9KoWVo3+adn+KyQ60NFArFeqMiXC5DhBDEzZBowSUsu0Rll7DsEZWloaaRtzueJ3rBlqaySTqRZl2cmWe0mIgq862OuBLOu4QLK5eH1lIGqWsGSV87iHP1AEb28vaYiKOYetmjMteiOtuiOuf2iCotvF6BaRWslEEmb3eFlIJNOm+R6YgqyX7Bxk6bFy1KRWFMs+p30o9aNT8RPwRxFBNHUvxoCyRxMh5FgjjstnHUne/9eSmoyP22wHK+wtLZsYGzV4yIY8AH/Ag4v8ig5c/VjYjRNLDTZmdzOn0DJ2ViZ7rjTsYiN+CQH0qRUWXFFQqFYmPw6vDyX0qR5eij3XErCwf+LtzyD2HXfaqcs0KhUCi2BEpw2aLEzaAjooRlKWhEZS8RWDyEf2GLSi1tdsSYPlGmZx9DI5xzpagy2yOuLLhnLc2sWTrmUApzSBruOvtLOLsLF234e6loV/HpNZxtVDyai9KPozLnUp93ic9SJQYgXbApDqcoDKcpDKcpjsg2N+iQyduY9vqUpA79iEbFl6a4la6g0qx4NKrdcbcerMvzXQy6rqFbOoahYZg6hqmjG2BqHlZcwwrLmP4MVlzH1FwszZNzuodZGMAa3ok1tgdz4hqsgRHMxC/GcqRnjIgFcSxkG/X0YyENo9t93yOeeQ0x9Qrx9KvEc4eTqj8CW2/iDE1g3/JjODf+EHYxf+HmvQqFQqFYP+IYjj4ifVle+SsI2inKGux5G9z8k7JKnJPb1NNUKBQKhWIpSnDZAgSzTRrfPtMnsIg1+HfoBRtzIIUx4GAOpDAHUmBoRDWfuOoT1XyiTutBKBCtkLAVEk43z/n4K2JoXVFluH8ztuhd/fWu4mOYOoW2oDKSpjic7u4Pp7GcCxdUhBD4btQRS5a1VS8xzfXxW+eOpmmjGxqZokw/SudtaZhr6DLFxpRCSKft9HV0U+ufM7s/Z5jJfCKgLNu3uj+j6xrEEZz5Hhx+WG7Hvw2RJ6sHmUAKsDKw4w6YvAt23gU73gKpiwjpDVw49TQceRSOPib9XyKvO+8A+QnYez/c/lGYvFMZKSoUCsVWoDEvvbqOPQ4v/xVUT3bnBvfJSJabPgilyc07R4VCoVAozoESXLYAcTOk/vjpZeN6zuoTVIzBVHe/lDqv9CAhpNjSEWESIWa5MONDLDAHU1JY6RVVhtIYJWdLiiog030Wp1vMn64zf7LO/OkGC6fr1MveeVXxyRSkwWymx3A2N5DqRKpki+cvLAkhcOvBMvGkvd/siVAJz1ISeCmGpUtD3MTHJZMY5rb3220qu34lvdeMEFA+0hVYjjwCrXL/MdlRKay0t/GbwLiItLPQk0a6RxOB5cR3+wUWgNy4vCO6+z7Y/TYY3KtEFoVCodhsKifh2BPdbe61/vlUEa5/H9zyk1KMV5/bCoVCobgMUILLFsAcTpN7+/ZETElhDjgYAyn0dUo9AdA0DS1joWcsrLHVy0ILIUCwZUUVkOfYrPjMn6ozd6rOwqkG86frLJxpnNU7ZKOr+PitkOp8r69L19+lNu+el5Bip4yOeJJpiyeFtojSFVbWw+NlXWnMwZFvdUWWxeP983Zeih173ymjSoavuriL5tCDU89IceXIIzKCJXT7j8mNSWGlLbAM7VMX6gqFQrGZCAHzB2X0yrEnpcBSOb78uJFrYdc9sOcdcPUPgZW69OeqUCgUCsVFoASXLYCRtSj9yN7NPg1ACjNsobWo74YsnG4wf0pGrMjIlfqq5rSmYzC0LcvQ9hxD27MMbctRGEmTKdgYF1l2OgpjagsutTmXylyL2hJxxW2c2ysllbO6gkmhR0wp9ogpBeei0pIuKX5ThnwffhgOfxOmXuif1y2ZprP3nXLbdhsYF/ix046YOfmMTBM6+TRMfR8iv/+47Gh/BMvQfiWwKBQKxWYSRzD9Yjd65fiT0JjtP0YzYOIm2HUv7LxbbtmhzTlfhUKhUCjWCSW4KLYMbj1g9niNmeNVZo/XmD1RpzrbWvFYTYPSWIbBbTmGd2QZ3JZjaHuOwlDqgqJz4ijueLrUy9LTpb6YeL0selTnWzTK3jk9XlI5i8JQ18+lMJyiMJSmMJIiN5C6aNFn02n7sBz6hhRZTnxnueAxej3su18KLDvvvnATw9aijF459YwUV049Dc355cdlR7riyu63XXzUjEKhUCguDiFg5mV446EkvfM74FX7jzEc6dm16x75XTF5Jzj5zTlfhUKhUCg2CCW4KDaFVt1n9liNmeM15o7LtjbvrnhspmAztCPXE7mSY2A8s+ZqP4EXdQWUspu0XUGlvujRWqNhrmnp5IfTFIdT5IfTy8QVO3UF/ktVTsKhb3ZFltZC/3xhu0wP2vtO2PN2yI+d/3NEAUy/lESuPCNTg+bfWH6cYUuflx13yBz+7bfDwG4lsCgUCsVm4zdlaucbX5NCS+VE/7ydh51vTQSWe2D7bWA6m3OuCoVCoVBcIq7A1aFiq9Gq+cwcrzF7rNaJYKkveCseWxxJM7Irz8hknpFdeYZ35Ejn7HM+hxCCxqJP+UyDhTMNFqYalM80KJ9prinVB2Tp4mxJerrkBvrb/KAUVtL5TTCfvdT4DTj6uBRYDn1juXGhnZfCyr77pdByIZ4otSlZpejkUzJ65cz3IFwhmmlgjxRXtt8h2/Eb1QW6QqFQbBXKR+H1v5Eiy5FH+03KzZT8rth7P+y+F8ZuAP0ySZdVKBQKhWKdUIKLYl0QQtCqBdTmXarzLRanmzIt6HiNenllcaU0lmFkMsfIzkIisuRwMmevUCOEoF72WDjT6Iorp2XfP0spbdMxyPUKKcuElRTpnLWlzYI3jDiGqe91o1iOfxviHpFK02Ukyb4fkNv228+vklAcw9zrcOLb8rGPPykv0pfiFOUdzx1vSUSW2yE7fNEvT6FQKBTrRBTIz/DXvwZv/I38bO+luBOufg9c9R6Z4mlnNuc8FQqFQqHYIijBRbEmhBB4zVAKKnMtqvMutbkW1QWX6pxLbb5F6K9ShUeD0miGkZ15RnflGdkpI1js9Op/fkIIavMuC6cbfeJKeapJ4K0srGi6RnEkzeBEloGJjGzHsxRG0tgp48qPTDkfKqekyW07TWipN0pxJ+xPBJY9b4f0wNofO/Tg9HOJuPJtKbQsLQeNJu92Tr4lSQ26Q5rb6pe5x41CoVBcadSm4eBDUmQ5/HC/F4tmSP+Vq34Qrn5AVhVS37UKhUKhUHRQgsubBBEL4kgQRTFxKNsoTPphLOfCmDiK8ZphIqLIaJW2uHK2CBIANMiVHPKJr8nIpBRXhidzZ/U2icKYhTMN5k7UmDtRZ/ZEjfmT9VWfTzc0SmMZBsazDE5kGJjIMjiRpTSawbDUgn1FWouy/OaRR+QF8+yr/fN2LkkTSkSWwb1rv2huleHEd+Vdz+PfhlPP9oeVA5hpGbWy8y6YvEsKLanierwyhUKhUKwnoS/9tA4/LKNYTj/XP58ZlhEsV/2g/L5IlzbjLBUKhUKhuCxQgssWYO5kjb/53ZfOesxaDF2FEF1hpVdECQVxvIYHWAPpgi2NYod6TGOH0uSHU+QHUucUPLxWyPzJGrPH68ydlJWIymcaxNHy89NNjYGxHlFlmxRWCiNpDEMJK2fFb8qqEEe+BYe/BWeeB9EbgaTJ9J22wLLjLWtPE6rPyAvxY09IgWX2leXHZIaluLLzbtmO3wTmub14FAqFQnGJaVefO/ItKcof/zYEzf5jtt2aiCwPyL6KRlQoFAqFYk0owWULEPox5anmuQ9cRzRdwzA0dFPHMDV0o9vaKYP8UIr8kBRU2hEr+aEU1horA0kTW68TsTJ3ss7ciRrVuZUrETkZk+HJHMM7pJfL8GSe0nhGCStrJQpkZEn7gnmlcs2D+2DvO2Qky553QGZwjY8dSnPbgw/Bwb+VF+ZLGdrfFVgm77owI12FQqFQbDxCyCjHI49IQf7oY+BV+o/JjkgPlv3vgv0/eGHV5xQKhUKhUKy/4PL5z3+eP/uzP+PVV18lnU5zzz338K//9b/mmmuu6Rzjui6f/exn+dKXvoTneTzwwAN84QtfYGys+4V+/PhxPvGJT/DNb36TXC7HRz7yET7/+c9jmt1Tfvjhh/nMZz7DSy+9xOTkJL/0S7/ERz/60fV+SRvO4ESWH//MrcvGl69XV1jALhnSNA3D1DBMHcPU0Q3Z100Nw5CtbujoF2kOG0cxjYpPvexRL7tLWo/qXAu3vnJ1oNygw8ikrEA0PClTjvKDKeWxcj7EMcy8JC+Wj3xLRpv49f5j8tt6BJa3Q3HH2h+/ckqKKwf/Vj7H0ovx8ZvkY+68GybfCrmRi39NCoVCodgYFo5IgaW9NWb6550i7L6v+30xep0SzRUKhUKhWAfWXXD51re+xSc/+Une8pa3EIYh/+Jf/Ave85738PLLL5PNZgH49Kc/zYMPPsif/MmfUCwW+bmf+zne97738fjjjwMQRRHvfe97GR8f54knnuDMmTN8+MMfxrIsfu3Xfg2AI0eO8N73vpePf/zj/OEf/iFf//rX+djHPsbExAQPPPDAer+sDcVOm2y/+jxMSTeYOIppVv2OeFIvu9QXPOqLXUGlWfHOmeak6RoD4xmGJ3N9Aksqex4VbhRdFg7LVJ7D34Kjjy43uk0PyDuSe98Be955flEmoSfDyA8+BAe/DjMvL3/sfe+C/e+WKUjqbqdCoVBsXWpTskzzkYelwLJ4vH/eTMuoxLYoP34zGCroWaFQKBSK9UYTYi3uIBfO7Owso6OjfOtb3+Ltb387lUqFkZERvvjFL/KBD3wAgFdffZXrrruOJ598krvuuouvfvWr/OiP/iinT5/uRL389m//Np/73OeYnZ3Ftm0+97nP8eCDD/Liiy92nuuDH/wgi4uL/PVf//Wazq1arVIsFqlUKhQKhfV/8WukUfE4/Nxs4sFCf9s3JhCCJW3/fNxrjhuJjkGu7Hd9XaJI9I8lZrpxFBP4MWINni+6oXVKK+cGUkkr+/nBFAPjGcw1piApVqBVlhfK7XLNi8f6560s7Lqne8E8duP55dWXj8oIljf+Vj5P0OiZ1KTJ7f53y23braCr36VCoVBsSRpzUog/8qhsl5Zr1k3p1dVOKd1xB5jO5pyrQrGF2SprA4VCceWw4bczKhWZijA4KP0innnmGYIg4N3vfnfnmGuvvZadO3d2BJcnn3ySG2+8sS/F6IEHHuATn/gEL730ErfeeitPPvlk32O0j/mFX/iFVc/F8zw8r1s9pVqtrnrspaQ27/LIl14/94GXEF3vFVOkiJIdcMgnbW7AIZO30S4yNUnRQxTAyaeTUs3fhFPP9Bvd6hZM3ikvlve+A7bfvnajW5BpQiefktWEDv4tzB/sn8+OJgLLu2QUy1o9XhQKhUJxaWmV4ejjXZFlZqnxvgYTN8nviz3vkNEsTm5TTlWhUCgUijczGyq4xHHML/zCL3Dvvfdyww03ADA1NYVt25RKpb5jx8bGmJqa6hzTK7a059tzZzumWq3SarVIp9PLzufzn/88v/zLv7wur209SWUt9t02gqZpaLqGptFtl41paHoyvtKYri0zwdWNHoPcZL/t5dIel8fI1koZpPP2Rfu8KM6BEDB/SIorh74hL5r9Wv8xw1d3KwntunftF8xBS5rbnnwq2Z6G6qn+YzRD+q9clUSxnG+EjEKhUCguDW5ViuVtD5apF4Alkaij18Oet8nU0l33KNFcoVAoFIotwIYKLp/85Cd58cUXeeyxxzbyadbML/7iL/KZz3yms1+tVpmcnNzEM5KUxjL80D+9cbNPQ3EpaC5Ik9tD34BDD0NlSV59ehD23Q9775ftWoxuhZDpQSef7gosUy9AvMS0WNNh7HoZVr73fhklkyqu1ytTKBQKxXrhNxKBJUkROv08iKj/mOGrpbjSFlmyw5tyqgqFQqFQKFZnwwSXn/u5n+PLX/4yjzzyCDt2dBeN4+Pj+L7P4uJiX5TL9PQ04+PjnWO++93v9j3e9PR0Z67dtsd6jykUCitGtwA4joPjqJxlxSUk9ODEd5Molm/C6efouytp2DLKZN8PSIFl/OZzR5l4dTj9bDdy5eRT0Jhdflx2VIork2+R7cQtKqRcoVAotiJeTX5XHHtcpgqdehrisP+YgT2JuPJ22ebHN+dcFQqFQqFQrJl1F1yEEHzqU5/iz//8z3n44YfZs2dP3/ztt9+OZVl8/etf5/3vfz8Ar732GsePH+fuu+8G4O677+ZXf/VXmZmZYXR0FICHHnqIQqHAgQMHOsd85Stf6Xvshx56qPMYCsWm0CnX/LDcjj0BQbP/mJHrpLiy7wdk2LedPftjNhe6efrHvy0fv9fbBaS/y8TNUljZcYdsSztVWU+FQqHYirTK8vP86GPye+LM95ZHsBQnkwiWRGBZS8SjQqFQKBSKLcW6Vyn62Z/9Wb74xS/yl3/5l1xzzTWd8WKx2Ik8+cQnPsFXvvIVfv/3f59CocCnPvUpAJ544glAloW+5ZZb2LZtG7/xG7/B1NQUH/rQh/jYxz7WVxb6hhtu4JOf/CQ//dM/zTe+8Q3+2T/7Zzz44INrLgutnMgV60LlpBRXDn1TpgstjTbJjsLed8pt3/1Q2Hb2x2styruc7VDy6ReXH1Oc7AorO94C4zeBlVqf16NQKBSK9aU+Kz/Xjz0ht+kXWebBUtopvbp23SOFloHdSjRXKC4xam2gUCjWm3UXXLRVLg5+7/d+j49+9KMAuK7LZz/7Wf7oj/4Iz/N44IEH+MIXvtBJFwI4duwYn/jEJ3j44YfJZrN85CMf4dd//dcxzW5QzsMPP8ynP/1pXn75ZXbs2MG//Jf/svMca0F9qCouCLcixZDDD8tUoaXVfqyMvGjed78UWUYPnP2iudcM8eijcOb7LLsQH7kuCSW/D3bcCYWJdX5RCoVCoVg3KqcScSWJYFlaphlg6CoprrRFltLme8opFG921NpAoVCsN+suuFxOqA9VxZoIfemT0hZYlpZr1nTYdltXYNlxJ5j26o+3FjPEoau6Roi73wa5kQ14YQqFQqG4aKIQZl+V3w0nviPThBaPLT9u9HrYnYgrO++B/NjyYxQKxaai1gYKhWK92dAqRQrFZUXow8IhmHkFZl+TF9Czr8oIlqXmhUP7kzSh+2XUSbq0+uP6ja4Z4pFHVzFD3J3k6r9DPp6KYFEoFIqthxCweFyKK6eegVPPwpnnl3t1abr01dp1r9x23qXKNCsUCoVC8SZECS6KNx+hJ0WU2VdhJhFVZl+TYstSIaRNZliWUd6bRLGcLfS7uSDNEI89LiNZznxv+eN2zBCTCBYVSq5QKBRbj+aCFFU6Assz0Jxbfpydh+23wvY7pMAyeSek1N1xhUKhUCje7CjBRXHlEnow90YirLzSI6wcXp7C08bOw8g1MHKtbEevk21hx+rlmiunpLDSNkOcfWX5MYUdMoy8LbBsghmiEIK40SRuNEADzTDQDAMMA03X+1p0fVU/JoVCobgiCVrSQ6tXXCkfWX6cbsH4DbD99u42dNXq3xEKhUKhUCjetCjBRXH5IwRUT8H0S/3b/BurR6w4heWiysi1UNh+diFECJg/1I1eOfbEyrn6w1d38/R33S2rT1zUSxQI1yWqVolrNaJajbheT/brxPUaUa0u5+o14mrSdsbqxPW6LFu9VlYQYjqtYaBl0ujZLEY2h57NoufabTYZ7xnLdueMbDYZy6JZ1kW9LwqFQnFBNOZg6gVZLWj6JZh6UYrlK31nDO3vF1fGblBV4RQKhUKhUKwJJbgoLi/cqoxWmWkLKy/L1qusfLxT7AoqvcJKfmJtESZuRUbJnHy6K7IsLfus6bIs8657EpHlbsgOr/hwIo6lUFKpEC1WiKoV4kpF7rfHKhWiapWosijnkjHh++f5Zq1C+y7sucSXKEJEEQTB0ppJ64a1aye5e+8le999ZO58K0Yuu0HPpFAo3pREgfwMn35RblNJW59e+fjsKOy4A7bfJsWVbbdCeuDSnrNC8SYjqtXQTBM9nd7sU1EoFIp1R1UpUk7kW5M4kpEk0y/CTCKqTL8ozQpXQjdlVMnoARi7vrPF9hCaZaGZZ9EW4wgqJ2DuoCzdOfe69HiZe33li3LDkRfkO++WAsvkneDkiZtNgqkpgjNnCKemCKamZHtmimDqDNHcPFG1en5RJsue28DI5dALBfR8DiOXR8/n5Vg+j1HIo+fyci4v+0Y+h54vJG0ezXHQNA0hBMSxFFWiCBHFECciy7nGw5DYdYnrdeJGQ0bQNBrE9YZsG43uXKMuU5k6x9RXFo9Mk8wtt5C9716y995H6voDMqJGoVAo1kJjHqZf6EasTL8g00ijlcRqDQb3yu+K8RuT9iYo7rjk6Z4KxZuFaHER79AhvIOH8A4dxD94CO/QIcLpabb/239D4Ud+ZLNPUa0NFArFuqMEF/Whuvl4NRmpMvX9nhDvlyFsrXi4yG0jyl9N6Owi1McI4yKhZxLOLxDNzRHOzBLOzRHOzkq/EkDPZNALeYyMje7oGFaEobfQqWNEiximj27HGHaMYQnZt2J0W6CXxhAj1xPmbyCw9hAEecLZOYIzUx1hJZiaIq6sEmWzAlo6jVEs9m16sZD0S93xUhGjUEjmS+jZzBXhrSKCgKhapfX88zQef5z6Y48THO8X04xSiew995C97z6y996DNaZKqCoUioRWWXqsnHxGVn6begFqZ1Y+1s4ngsoNMh1o7AYZ8ejkLu05KxRbACEEhCEiCKRfW3ITZj0J5+eXiSreoUNEcysYTieMfPYzDP/Mz6zreVwIam2gUCjWGyW4qA/VS4cQUD0tL4ynXpB3H6dekCa27UNiCBoGft0kcDOE2ihhXCD0bcJGTFhpEi6UIVzFm2UjMAyIVjHZXYKey2GOj2GNT2BNjGOOj3f7IyMYpRJ6sYhu2xt80pcf/vHjUnx5/HGaT367I5a1ca66imw7/eiO29FTykNBoXhTEAUyauXkU4nI8rT06FqJgT39wsr4DVDcqQxtFVsaEUXd6NCeLVoaOdqzCd9DBAGx78vUXz9ABO3NX7IfIHy/0+/DMDq+ano2g55J2myP51om03NM/5jwPLxDh/vElahcXvW1mtsmcPbtx9m3D2f/Pux9+3D27cPYItfham2gUCjWGyW4qA/VjSEKZCj39IuJwJJEr7TKxIGGX09ElXbrZvEbFkE1hHhtf5JGIYOZdzAzYDoBpl7HNCoYqQgzHWOmIsxUjBAasa8R+TqRMUDsbCMyh4n1IpHIEkU2sSeIqjWiWlUazlarMv2n58JES6exxscTIWUCa3xMCioTE1jj45gTExi5zbtjKoRAeF5iqlsnbtS7/XqPsW6zKV+PrsnQeU2HpK9puhzTNZnO0zOvtfvtecuSm233tfqS/bO2hrHyawkCWt//PvXHHqPx+BO4L7wgBbsEzXHI3HEH2XvvJfOWO3D27kXPKv8XheKyRwionJRRKyeT7czzELrLjx3cK8sw77hDeq2MXgdO/pKf8uWIEALh+3Lx3mz2LOR7+s2m/H3oevc7gd7vB11GSOhaImgtnUv6ydapjKcbaEavEbu5ZH+FCnqmKb8zHEd+f6xzREbn+3Npmmyf4FEnbrYQYSjTbMMIEYUQtlNu1zAWx4gw6HnPZStaK0f0XrZoGtaOHT2iyn7Z7tm75b3a1NpAoVCsN0pwUR+qF4ffkIaEbe+TudcRs68TnT6MX4kJ6qYUV2pmpx95Ky+y22ipFPb2bVgjBcycgZkKMI06plbGjM5gaouYqRhttRuWThEGd8uL8YE9ssLE8NUwvP+8zA/bF2BRpYru2OjF4oan88Su2zHQjTvmudXESLdCXKkSN+o9FYkSMSXpX9LIn3XA2raNzFvuIH3HHWTuuAN79+4V3+OwXKb57W93BJhwamrZMea2CZy9+3D27cVut/v2YQ4ow0uFYsvi1eH0c/0CS335/zepYldc2X6HNLTNDl36891ERBh2fLCiXoGkVxxo1LuREX1iSpO42SOoNJuX3fdFL5plSfGlLcLYidhvJ2O2jebItj2Opi2JEqn3RZCsNZJ1QzHNvkp+na1T8a8bfaI7qZ4bGNbymyBLtxXGRRwvj57pE+B6/2b696NkX9MN7H17ZdTKfhmtYu/Zs6oBrogFwouImwFRKyQ4OY1/7AzpW/aQvmbHJX7Dl6PWBgqFYr1Rgov6UD03QiAWTxMeepboyPcJTx4kPH2MaGaKsFIjcnVCVyd0Ddn3dBBnFyaMUglr507sHduxhjLY+QjbqmBppzEbr6PVTp39nLKjUlAZ3CNFlXZ/cK8UVTbZ50QIQVyrJV4yc4Rzs0QLZaJqW0ypdqsR9YytSyUiTZMXZ7lcx0y3Y7CbXLShISOJ4hgQiFjIO5lxjBBx0hcg4sRcNzlWCDkfC0QYdkOUz6M9G8bwMJlEfMnccTvO1VcvM84VQuAfOtTxfnFfeoloYWH1xxwYkBeDS8QYc2LiivDDUSguKxrzcPwJOPakrPw29X2ZS9qLZshUoLbAsuMtMLhvzWlBbbFcuC5xu3U9hOcSu66MZHBdRGdMtloqhbV9O9a2bVjbtl+SO/FRvUFw8gT+8eMEJ07inzhOODW9RFRJzMY9b0POQUunuykjndSRDHo6g2bo8vshjpd9H7S/CzpzS79HYiGN10XSxnHSRp1oj/7xuFsdb+n4JRSH9EymK3B0Wpleo2UyaKYlo3XMJFrHNPqjcgxzhbl2FI+c09PpFYSUrBRFtvj3khACEcQIP5KtFxE3Q+JWSNwKZNvZT7aGT1zziFsBIgB5EdKPs7vGyMeVaa5CobjyUIKL+lAFIPY8vO89ReuZb+MffI1w+jTRwgLhYp2oERB553kBoGmY42PYkzuxdk5iT05iD2WwMi62PoNRPySNceffgHiVC6nCdhmdkggpcXYHkTFMRIGo4SdllBfl1tvv3a9W0W1bms6WistNadvGtMUiRqmUmNPK/ko+K7HnEc7OEc0lxrwdQaW9zRIl+xcsnhiGNMotFOS5FNvGuQX0QqFTfUjPZfsrEbXFlUxmy1b36Zj1+b78m3v1VZpPP03zu0/R+v73l71neqFA5rbbyLxFijCpAwfQLGvZ44blMv7hw3iHDuEfOox3+DD+oUMEp0+vei56JoO9dy/Ovr04V19D9u67cK69dsu+dwrFZUnlZFdcOf4kzL7aNy0EiMx2ouGbiAeuJy7sJ05vJ/aic9x1b3TusotGk7jV6ogr6yVM6MWiFF+2b0tEmG0dMcbavg2jVDrn4ljEMeHsLMHx4/iJoBL0tGcTi1dDs+3+hXou2++3kc0t89lYJqa0x9LpVVM7txJykR9IIc33O23s+wjPTzxL5HhnzG9vyc/Eou+1G0tFlWwOPZO+LL4DRBjLLRIQxYhQyIqCkUBEST8Z6xyTzBHGPcfExH6MCCKE3yOi+NGq4yK4iEqLfa/BQwRNRNAgwCO4Xue6T354XR77YlBrA4VCsd4oweXN8KHq1aA2JQ1ra1OIymn8wwdpvXYE9+gsrZN1vHmBiM8hqmhgZE3MYhZzcABjdAJz227MsW0YQ8OYQ4MYg0PSUyWaQyu/Lo0OZ16GmVfAq674sJFeJEztJ9C3E8QDBK5DWIsJ5haIyl0RRbgr5PBvIL2VhEQQyKpHtdp5PYZeKGAOD2MOD2MMDvaLJ8UiRqGI0a5OlAgseja75e9wbQSx5+G+8IIUYJ56muZzzyESv5k2WjpN5tZbOilI6ZtvRnec1R+z2cQ7cmS5GHPs2Ip3TI2hIVkZ6d57yN5zD9bo6Lq/ToXiikUImD+EOPoY8euPEr72HcKZ6W70o6sTtgxphB6mCZuCqNpMIu02CMNAdxy0VAot5cg0jFSqM9ZpU46MNjl9muD06TVVndMyGaxtE10hZvt2dNvGP3lKCiwnTxKcPHlOAcgYGJA3JnZMYu2cxJqYkN8H2f7oByMRVlYSnRVbBxH3iCBtYSSMpVARyeiQOIgQXiQFDC8RN3y5H7fH/bbw0T22PccG/sucF1oMRIiwhWhViRtlhN+QQsqSNhQt5nIBx/I1DhVrHB8KOTWks5hPY8ZZPv7Wn+FDt/7kZr+iN8/aQKFQXDKU4LIFPlSjeoPW957HKJUwSyWMgQG0dHrlRXccg1+D1iK4i+BWuv3WIjRmpbhSOwO1M4jqFOFik9aCjbtg0ZqXbRwuv4Nj2BGpUY3UeBZzbBxjYifmjv2Yu2/A2HszxvCYvPMjBNRnZHWhhUOynU/ahSPy/BJEDEHTIGwaBC2bgFGCqETYsghqEcF8lbhWX/ubZRidSBSjVFre790fKGEUCgjf7/iiSPGm0t2vyGiYeLHSFxVztgWAZttSQBkZxhwe6Qgq5shwT38EY3j4rGKA4uyIMMR95RUpvjz9NM1nnlm2CNIsC+fAdaSuvhrnqqs6mzk8fPbHDgL848elCHP4MK3vfZ/md77TMRRu41x9tayMdO+9qjKS4opHxLGMHPC8bipOsi/7fk9ajk/cqBMef5Xo+OuEUycJ58uEzYjINc4t4C9F11euhNIbkZFZUjmlJ3JDS6fRUyk0R4onHTHlAsWJqF4nOHWa4PSpjggTnD6djJ0+a3nbZRgG1rZt2JOTWJOT2DuTNtnfTLP1KxWZBiVTnESMbNvChy/Fj070RpBEb7QjO4Kl8z39RDjpFVLoHYsERJf2slrE0pwXESJiaehLHCbjYbJFCNE71+4HiNCDyEdEPoQ+IvIQkZf0fTnXOaZ/HORrjTWd0MwQWFlquRxTpQxzxQyVXJZGOoPrZBF6BifMkgozOGGGdJTDClNoSXrRtT9R4F0P3HFJ37uV2CprA4VCceWgBJct8KHaeuoxjn7oZ/rGNFPHyBgYKQ3DERh2hGH6GKaLaUcYToxhx7JN+roliH2tT1xpLVhE7vJwYc02SO0eJ33NHtI33UTq9rdiXXUTmpUsKIWA+nSPkCLFFTF/CDFzlLDWIvJ0Ik96tvT3DcIgRdgyCeth+/v4rOiFQlIBaAJzYhxrYhvW+BjG4FAipCRpPrnchkd/iDiW+fOVihRnFhfRLAtzVIorej7/poxA2WxEHOO9cZDm009JAebpp4lmV170GIODfQKM3PZj5FevYCJ8n9b3vkf9scdpPC69YVarjJS9916cq69SfweKTUUEQbeaSmKgLY20k/3Gkv3OmDTAFK5H7LW9TLz18ZDqQc+mMUfHMEdGpUg9PNQVqUeGMYeGMIaGMQp5GYFyGf0/xa5LcObMMlFGeD725A6sHV1hxZqYQDPNzT5lQJYfjmp14kqNqNYgqtaJa02iRou40UQ0XaKmS9z0EK4nv781OpXs0LSeCnf9fXTQdAO0dhW8pAKe0BBCl1EZQodYQ8SJ15vQpDgndITQINaX9RFJBSQ0Od7x/0j6gm7b7m8RhIghCqWwEcuWKJSiRuhB6CFCNxE13ETYkHO9/fZxUvDw8PHxdJ9AiwhMQWBAYNLTaoQm+CaERv94YJqEhkVoWghsDBx0YWMIB004GDhoyZhGCj3Z793QHDRs0BzQUmjayga5Z39vBIgWIq6i6zXu/Dt38ZYfvXkDfgvnx1ZZGygUiisHJbhsgQ/V1t98kTP/8n+RooWvn/+dwTa6tnJJZcPAufpq0jfeSPqmG0kduA5nvIDWSqJh6lNQmyaaPYH7xjH8U9NE8/OErbBfSHENeX7R+Z2fZlmYExPd8snbkn6ymeMTW75MoGLrIYQgOHYM9+WXcd94Ay/ZguMn+oSSXsyJCZyr9vdFxNh7964YuRKWyzSffJL644/TeOxxwunp/scaGZHpR/fdR/aeuzGH3lwVUxTrg4hjWWWsE4XXE23XjsBbOl6rbaiJKgA66AZoRoymx+iGQDNIWrnppsDMGBjj2zF3XoO571bMa+5M0kyH3vQRfmtJLRFR3G1DAUFMHEYILyB2Ey8SLyT2AoQfJB4aoYy4CGNEGMnHCmMZyREJECQiBl2xQjPkpptoq5b4u/IRUdCN5uiL6vCXj6/YBhAFiEQ4IQ7kWBzKsTiEKCAUAbEIibSIWIco0Y8iXbauBU0HWrZGy4GWA00bXBuato7npPCtNIGVJjQzCCONYRQwzQKWlscRWczYxhAGemSixwZ6bGJEstVjAz3pa5GRzMttw95bBHpKYKcNMjmHbC6F5URookIcVQn9RQK3jNdYoFWdp7E4S+h3P8N+8J9+ipve9cCGnd9a2SprA4VCceWgBJet8KE6fwj+6lOQKiFSRWItSxSmiEKbyDOIfI2oGRO1AqK6R1RvEVVrhG1/k3K5z9/E2jZGev8E6R0lUhM2qZKH7s11hBUas0Q+uGULd0FGwbhli6C+9jtwmuNIT5KBEubAIMbAAMbgAObgIEZpAGNoEGt8AmtiHGNw8LIwoVNcGcStFt7BQx0Bpr0tFUw66DrOvr1k77mX7NveRuYtdyxbKPZVRnr8cZrffWqZp5C9fx9GodhTinSF8qSOg2bZPeVM2yVLk3Kmjo2eXiGt4jIxcrycEFHUNdlsp814nkyb8XvSanr2RRgmC1zZymoq7X4oK6q0+8l8Xz8MpNFrbxrjOVIY14KWTidVVHKdCmXL9rMZDN1HFzX0sIwezKG3ptEap9FaZ9Dxu0KKIehfk2tQnITB3bIS3MCexMx8H4xcC8ali94QQsiytLWqFJ5qNaJqNTFODeTvKPARYQhB0B3zA2I/kL+fdgpJj2BBKMDOYA4MohcG0XNF9GwBPZ1Ds9MQ00kviVdJRen026kmlzi15EKQUQYREAECTYuTiBbQDE32RWJaKwRxUqlICIFA9PTpRJiITlirhoZGLCIi4RPFvmxFkLQ+YdK250KxUhsgRIgWRxALtDhGSyojaSJGj+LOmBa3x6LOvh4L9DhGAwILAksnsHUCSye0dULbkJtjEFoGkW0SOSaRbRI7FpFjEDsWwrGJbRNMs6cikaxAhGGgaSZ67GAIGz2yMEILPTR7NgMtaY3ARg8sdN9E80yEryM8iDyNyBPnjAyWl+4hCB8hfBBe0vrJmAciQOD1HNN/nBC+DE7SLXTdQTctdNPBMB1MO4VpO1hOSm6pNHY6hZ1O42TSOJkM6XyGVC6Lbgj8ZplmZZbq3AzV2RkqM9NUZ6fxW62zvxBNIzcwSGFkjNt++Me45u63Xcyf87qwZdYGCoXiikEJLlvgQzVamKX21b/AzFoYGQsjpWGmQddcaXjr1WXr1/r3vRr4dfCqMkzcFeiWwLD7f6WRr+EuWLjlc4sr1kgRZ/cOjLFtmGOTMty7LaQMDGAMDGIOlGRpxMso/FuhiCoVvIMH8V5/XYowr7+B+8Yby31hUikyb72T3H1vI/e2+7B37172WLHn0XruORqPPUb98SfwXnllY09e07plRM+6JWJNOoOeScsKJKl0Tz8lfTDafhcrVOK6HJCL7kbXk6kdDbJS1bKk5HqfqOL7EASb/TL60DKZvmpp/ZXUSt1qasWirFbWEVKy3XSVOJb+XQuHYP6gFPPnD8n98tHEc2EVdAsGdkshZUBWhmtXiKO0E8yzR6vI0r9iSUWUpFJKLDoChIzkiIkbLcKFMlG5KgWUpkxtipteUqY5SDxjgm5ERxLVgabL1BXdTCI2kr5hoemWLL2rW2BYoFtyQaxbaMYmms0KIT00onZERCDFuHaKSU90hOj4boSgCdDpCCCaoYOpoxk6mi3LDmu2iWYb6LaF5ljojiVF3kwKI5tGz6bR8xmMXAa9kCPO2FQNl8VgkUpQYdGvsOgtdjdXthWvwoK7QNkr0wgaF/Sy81Ye27ARCCIREYu4swkhxzrtOVQGS7co2AUKToGCXSBv5+V+suXNAnmjQF4vkDVzZPQsGS1LWsti4xBHgiiMiYKYOBREUdzZj8JkLtniMCYK+sfkJgi8kMCNCLyezY2IV4gwFiJO0maaCNGAuIkQzUQMkb4rJK3o6UsBLELTk5YIQQgiQsQBcRyuGsm51ciWBiiMjFIcHZftyBiF0TEKw6NQcJj2ZjndOM2BwQNM5CY2+3S3zNpAoVBcOSjBZQt8qLa+9l85+vO/umxcM6Q/i+l0vVrMVOLdkuodjzCdGN0WxJGN2xrFrWZpLRi4Uz7BfHOFZwVrxw5S11+fbAdIHTiAOTCw0S9XodgyCCEIZ2ZpPfcc9ccepfHIo4QzM33HWDt3krvvPrJvu4/sW9+Knskse5xwbg73pZfkQrFdgjQpfS38nlKmvk/cnl9StrRdynRp+dsNreBiml3xJZOWQk0qJSNqnBSa46A77eibJALHceR+O0LHSeZsp3/fstEMXUYYBIF8ne3+eezHrreiiLJSlamLeh/sJPKo/TrbrznldKOVLAtMeUdbM4xu3zTkIt8w+vr98waabkjT1xVK0a9Uhn5FhIDG3BJR5SBi/jDMH5PRFVgIYSPo2YSF0LOQm0TktiPS44j0KMIZRtiDCCPXTX1JojQIYpaZhPb1u+LKiumsWxohxQxNoOmJqCGiJMXEI/aaiFaduFlHBO7Z00zCxEBUi0AXxI0a9KaZRGESRdJFz+U6lY26VY5ka46NSeE0lTqr94sQglbYWiaULNt6BJSyV6YVniPqYBUMzaDklBhIDTCYGlzWH0wNMpAa6PRLTglTN4mCmMCXokTgR4ReLEULPyb0ou6cFxL4Eb4r266gERIFAhHREUbiHgGkLYasxS9uPZBRQS5CNBBxE5JWxA2EaKLRBCH346jJhp6YpmGn0tiZDE46g51OY6eTfiaDnc4k++nOvpOM2ZmMjPrxPHy3ReC6BG4Lv7f1esfk/tJjNU2jMDJKYWSM4sgoxdExCiNj5IdHCHIGM8EcZ+pnON04zem63M40znC6fppm2L0+/eV7fpn3XfW+jXuv1shWWRsoFIorByW4bIEPVffRv2Lmf/ksoS9LZ0auWHpttjYMA6KVf9CanOwIK+nrryd14ABGqXRR561QXGkIIfBef4PGY49Sf+RRms8+2xcJoVkWmbfcQfa+t5F7+9uw9+3b0EgvIYSsDtMjwMSNBlHffnPZfNxqEbeaiJab9FuIpI1brVU/Jy43NMfpr0zWV7GsP1pES6X7BSHHScQje2sYmoY+NGYRlTNEs3PEC2Wicp2o2iKuB0Qtjci1iIM0sUh3RRQcBBawtfxShIiXV0tJqqR09jWBZupg6En0hgamgW4ZYJnotomWRGvoKSupPuSgZ1Jy3NDRTE2m21lJ39DRLB3NTDYriQgxk/mkj6Gt6X9XxDHR4iLh9DTB9DThzAzh9AzhzDRBuz89TVQu9/2cMTjYFVLawsr27r6xwjVHGIfMteaYa81RdssriiZLx/z4woyODc2g6BQpOSVKdolBY5gSwxTiAfJRkXSYxw4ypEQaSzjYwsaILaIwJgy6kSFhECVtO1Kk22+3m4GmgWHqGJaObuoYpoZhyH3D1NEN0LUA8BC0U21cRCyNaeOoRRy5RKFLFDQJA5fIbxF4DfxWTf4Nn8fJpPMFssUSmdIAmUIRO53GtGwM28a0LAzLxrRsTLvdt5K5nnnbRjMMIkMQ6QLdNjFsW3oP003zikUso4UExMhIohgpSLXnYiF/L0ujipYuCZbNryAeNYOmFFIapzvCypn6Gc40zhDEK0cSWoFG1jXJtgxGwyIjYZ577/9x3nffR9b+vm4QW2VtoFAorhyU4LIFP1TbOepReYFoYYFwYYGovEhUTvoLZaJymbCc9BcW5J3wBCWuKBTrQ1Rv0Pzud6g/8giNRx4lOH26b96cmOhGv9x1F3o2C7q+pdPthBAQBB3xpSPGuC5xsy3UtLr+JZ6M2unbD/wV5v2elB05RxR1IkM0y1q9f7Z9x+lPq+kp/66nz78yxiXFb0JzDprzxOV5ovmKTKGpNIlqAVEjJnYNIt8hinLEokRMcZ2evKdMbDuNJfQQgScjMuLe1BZpJEocLhlrm4OuPNZJg1kirOi5DOboMObICNboKObICObSdmRk6//+zoPY9wlnZhG+jzUxvuy1NYMm081pZpozzDRnmG5OM92Y7vRnmjPMu/OdhfD5YOkWA84AxVSRkl1iwBhigGEKYoBcIp44QQbTd9A9C1oGQVPgNQJa9QC3HhBfAr8Zw9KxbAPLMTAdA8vWsVIGlt3e752TfbmvY1qGFEsMrSOkGGYinpgami4I3AZeo4pbr9CqVWgulmlUFmlWFqmW52lWF/GbTfxGQ3qLXOTlr552MHNp9FwaI5dCy6XQsw5kHbSsg5a1EVkLkbGIE5EjFCGxiPEjHy/y5BYmbSz7fuTjRm5f2z4uFKtH9mkCrFDHDjTsUMcO9GRfX2Ffww6kUZNnx7hWjG9HeFaMa8f4VoxnRbh2jGfJ/bUWf9JjyCRiSs61GIuKDAVZcq6F0wCt7iHc5ULMu/7Jz3LLe37kgn4X68lWXRsoFIrLFyW4XCEfqrHvE5XL6KkURnG9LtgVCkUbIQT+kaM0Hn2E+qOP0fzud1cvo6vrSQrJGlpTpprIu/wmei6Hkc+jF/IY+UKnNYoF9Hweo9BtjXxelik3Nq7yhCIhjqBVhua8TOlpznfEFFErEy26hLWQqA5Ryyb00kThABEjRGIYoeXW/lwiQgRVCOoIv0bsVolbi8T1MsKtIPyGTGfplJj1+z1B4jWmW1kWelvc6hg8t82eLXTLXmHOSkyhbTQnJUs8jy4RUlao+rWV8SOfelDHj3zCOOwsjKM4IhIRURz17ydjkYgI47BvrBE0OgJKW1CZac5QC2prOhdTMxlKDzFkDzOojTCgDVMQJfKiRCbKk4oy2EEaI7DRPAtcncCN8RohXjPAa4Qreoms6bltnVTOIp2zSeUsUllLCh5WInBYuuybemfMtAx0E3zNwxUtmqJBU9SpxzXqcY1aVEWYEZZt4lg2juHgGA6WYXX7urXiuG3Y4EX4i1Wq87MsLExTWZihWp6jUSnTqlTxa3WiegvR9C4ocyfSBZ4V4ZsCPxEWfDPu9L0l+74Z03IiXDviogr+CDBiMCMdM9IwQx0rac1Ik/1Ixwq1zrwcbx+fiCqhgR1oUkgJN85YXSAIbAhsgZ+0gSNbQzcp+ikyLQOrHiIaa/tdpLI58sMj5IeGyQ+Pcs3d9zF54MYNew1r5UpaGygUiq2BElzUh6pCobgA4laL5lNPUX/0MRqPPop/9OimnYuey3WFmXweLZtBTyXeLOkUeirdafV0Sprntk10O2OylT+TRs9k5AJ7K0frRBFxvS6r1VSrRNUaUa1KXKvLKjbt/XrihSOSMirIVBECF0IPQlf2Iz/pexB5iCAATMACLYWwBhDmMFiDYA+BM4jmDKLZaxO5RdAkbi0ivArCrSK8CrHb7lelmOJVEX6Ds65YNE3+zvM5jJwU3YxcDj2f7x/L59BzyVg+j55LxvJ5+fu9zIW6KI466TU1v0YjaFAP6jSDJvWgTj2o0/AbNMIGDV/ONYLGsuNWS3tYVwQMaENsN3Yxpm9nSIxRiobIhkUcP4vhOoiWQVCPcesBgXdxaX+6oSXiiUUqZyet1TNmkc7anbFUziI2Qmp+jZpfo+7Xqfk1Kn6FilfpeMBUvAqVxGS36lVl61cvKDIHAWlfJ9syybXMpDW6+66BE6z9b1Qg8OyYlh3RciJaToyb9F0nwnMEoQ2RpRE6GpGtoZkGuqZjaia6rmNoct/QDNnXu/32nK7pGLqBjhRC7EDD8sDwwfQFhi8wvBjDE+hehO7FSRuBG6F5IZofX3SEzWqYtoOTzeKkM7LN9Gx9+xkE4NaqtOo13HqNVk223X713JWGVsCwLAptMWVolPzwMPmhkWRshPzwMHZqa0a4qbWBQqFYb5Tgoj5UFQrFOhDV63KBHielZuNIVmmJk/LBcbysJWqXDk7Gg1B6tNSqxG2xoCrL3i4bq9UQF3AhfF7ouqxq1Ltls0mbQVs6lsmgZ7p9zbYRYQBhKF9nEMr9Tj9MyiaHK+9HkUxRqte64km1RlSvEVdrxPX62l+LmUazsz1brttamf799jHWcoPk1RChj2gtELfKS9oFhF+FqCHLLmfSGNmsfJ+SKkOdLdftG9kV5rO5K7ZMuBCCZtjseJcsuAsseouU3fLKY16Zqlc9Z2Wb88HUTSzdkotrXS6wexfipm52Ft5OlMaOUthhGifMYEUprNAhFWQpxINkgwK2l0F3LeKmjt+QlXHOCw2ctImTMXEyFqmsbJ2shZMxSWUsnGzSZky0VIxntGiZNeqiRi3oCie9/XpQ7worPf2LFZ7SZpqSU6LoFCnaBUoiTzFKYzYiokqDuNKEmode9THqAWY9Ql+DTuOZEc1UhOvEBBkdkTbRsg5mLoNdyJEqFsgWSuRKgxTTpb7qRXk739lSRgpN06RZeuDL9CK31W1bTfzW8tZrNQmS1m81cRsN3HoNr1EnXgc/LMOyZNnlVLsEc7e1U2ksx8FKpZfMOasIKRkMc32rcUVhgFuvJyJMFbdep1Wv4ibiTBzHibAyTGF4lPzQMOlCcUuL9WdDrQ0UCsV6owQX9aGqUCguU4TvE9WkIBPXpCgR16rSi8VtScPdlotwW8QtV461XGK3d8zteLh0Ws/b7Jd2bnRTiiNOAT1bwMjk0dM5dCeHliqg2XmwimAVwMiDdhHGuHqIZkRoNugp0DMaelbHyJnoeQuz5KDnnb4KTbrTk55zmUeSXAjtCjrz7rwsLeyWWXAX+reWLDm84C5clAFse3Gds3NkzAw5O0fWypKzZJu1smTNHFktS5osaZHFIYUdp7BFCiu2MSKL0IvxW5FMzWmF+M1Qti3Zes1u/0J1Hjttks5bZAo2mbxNumCTKdik8919K6vhmU1aep1qUO2LLln0FjtRJ+39drSJG7kXdlI9aGjkrBw5W24lp0TRlgJKIc5QCFOkA4uUr2O5AsONEM2AuOHi1Ws0q1Va1QrNakVGkZ3r+TSd7OAghaERCiOj5IdHKAyPUhgZITc0THqgBI78381aWXStKzSGvi8X/okYILf+ft98o94RTtZybmvFME1SuTxONkcqlyeVzSZtrjOezuVwcjlS2RxONoeTznTEE/1N+PmwlVFrA4VCsd5sgdIMCoVC8eZGCAExIAQiliV226V2u23cv985zoC4BHYRY1BglERfpPqKNxm1ZZ2+rojjpDSzK8tcJ8a4wvOkaON5iTDT6oo3rotoNYndVqdKEmGAZjqyTLJpg2mhmRaaYYImq8Romiar1XSfHa2T+iP+n/bOPE6Pos7/n6rufq65k0Ag3JBwEwgQblbkCuCiQLgUlGsRWDlCdBEQuURXDl3dBYlrVERBWQV1FUEQ3R8CHoCEcJ/hJgm5ZuY5u7vq+/ujqqu7n3lm5pnJJHky1DuvTlVX9/Od6u56+un69Le+BYCB8QzAC4DTCXK6QLxrZDFRokN0CDzHwAsuTxyQ7wAAfIhJREFUeFsGvD0P3uaBFzzwvKvSgqvLXFWW99TsOR9iJEmUgpLxhIiWXr/XeKA0ElZqYnjhjhGDIz240kO7VILIBHciup0edLnd6GBd6OCdKLB2FFg78qyALCWEEulB1ghBv0DoSwQ1gdAXasphP873+QJ95ntR00vvap0Xx+PI5N3YC0WnjUQUte4hYL6J77K4vAhvl5aYALpL3lH5FdUVo6+Tnn2oK9ulPDs85d3Rnmk368l8m1tApgqw/gBUrCLsLaK4cgWKi5ejuGI5yr2rUO5bimr/ayCS6B3hWcvk82jrmYjOSRvoZcOUsNI+YSKcxCxhgV9DccVy9C9bhg8WvY7ik8vRv/wDlFatQrWUFFSKCP3VFIYZQyaXU1Mk66mVM7m8nkp5YJrNF+Dl88i3dRjxJNfeDjfT2kMvLRaLxbJusYKLxWJZLzGCQ51AkSqrFy9kYp9kmSBQKEFhlKoFg5Y1KictnGi7hEReCSrm7xOBtMCi1tf12WwWBqCglwbktAdI98gt0yD5oasjwTMCTgHg7Rk4nXnw7k6Vtnvg7R6c9gx4mwenzQXzPrxvkoUUKvZGVQ3N6a31os/vSw0ridb7/X4Uq0WUazWUqxXUqgEc6cLVwkgkkKgloxcPrmhDu+xBt9wO24osXOkhSznk0YYs5eBRDp5Qn2ehA4QcEM11VCWAol4AXy+jw/E43IyaMceNZsbJcHjZWDjJFFxk8w68aMk5cPMMmZwDN8fh5hm4yyBIqKl2Sc1CUwpLWFJagrcjEaW0BIuXLlaiSnkJemvNyxWdmU4zdXMkosRDduJ8cnu71246/6HvK/FixTIUVyxH8d0ovwh9y5fj3ZXLUVq5YkTeHtm2NhQ6u5Dv6EK+swuFri6zXujsRL5Tl+vU9eLhLWEQqPos/wDF5cvw3ssvon/5Mr2uyiv9fc1fSACMc+VN0t6BfHsHcu3tZj2Zz7cpD5NMvoCsFlC8bG7cDc2zWCwWS+thBReL5UMKESmRIBINgro0EhIGKxeRgKFtiaS4kBYYSIsMELEQEYshUu0rkjYbeXiQinOiBZL1R6RYDRgAzpSHRTLlHHAYGGcDtzM2cPrORueq0WhSijZJQKjphBGGerpgAQihpwAm1UmLAtESA4FHFU7kAQYBIFQpUylDCECAMQIcgDlcz9LkAK4L5rnKG0ZPC8272uD09ID3dMPpzChxpd0Dy7nqHHzIEEKiVK5gef8KLO9fiVXFPqwq9aG/VER/pYRypYJypYZq1YdfUwFYhS+VMCKUQOJpkUSJJ91w5QbolhlM0mUOrX1xKpoFx/U4nIyaNtjx1Cw5bobDzTjxdo9DugKCBwi5j5AHanF8BLwGn1fhsypqvIoqlVFmJVSgZtCpyArKQRmVsIJKWEE5VPlABJBQYqrslaDeNXOTybt5TC5MxuS2yZhcmIyN2jYy6QbZSegQOeSEB+H7CCoV+LUK/EoFQbWKoF/l/VoVfuVN9FUrWF6tqhgk1Yrav1qFXy6hWmouxhFjHG09PeiYMAntEyaifeJEtPdMRMeEiSh09xjxJN/RmfJGAZRHSqWvF5W+PpT7elHuXYVlb79phhWV+3pRWrkC/cuXody7qqn6uNmsCqw6YaIJsNrW1YNcRwfy7Z0pISWTz1vvknFANRBgDMi6H15R3GKxjF+s4GKxrKeQIMhqCFkJQRWVykqg0xCyInR5siyErApQoDw1xiWRCGHECDQQKWC2q304mMvAXA64HMwszOTRoCwuVzbiv6v/JtN/g9X9PZaoJ2tQn2Q6FvglPZXxMqCkpzMeat0fZgpbrpckXgFomwS0baCXSUBhIpCfABQmAPkeIL+RSqN1Nzs2xzcGkCTIaBFK4IvyUgt9IiCIUKolkAh1mixTKUGEAiIkhEF6mwwlhNB2hSoLQoEgCBCEIcJQIAwFpJB6HwIJAJKBSQYmOdiAkw8AOQA5OJiEDgAdY3huHI/B1cKHkxA93MhDJBJDIk+RjEpdL/IccfS+XO+v8o7HUKYyyiiiJFVg1z6/zywf+H3oq/UZz5u+xHrRL0LWWuce5jAHjDHknFxKTJncNhkbFTbC5LbJ2DC3ATqCLGRfBaUVy5V3x+sfoH/5cvQv/xteWLEcT6xYoQTPMcLNZNGhBRQlpkxSYspEtd4xYRIK3d3gXHV0iQiV/j4UVyw3QsnSRa+hrEWVSn+vzvei3NuLoDayuDGul0H7RC2k6ECralHr7RMnIdfW/qEWUYQk+KGEH0rUQoFaKFELJfxAwK+VIMu9EJVeiNBHKCRCSRBCQAhCICWELguEgJCAECLeT0qdlwgFgbgLllFBw3m2HTxXQC6TRc5zkPO4Th3kdZrzuMlndZ4xhmI1RH81QJ9O+6shirU4318N0VcN9H4h+mtxebEawhcSN8yejhNnbrauT7/FYrGMOVZwsXxoiLwwSBAgJKg+H3lt6PUob8pCSuVT2wSpoSYiuc9AO6oeQOxKgLo08UY1cuJIlgkywgmt5rShKRjSooJXl0Yig5cQGRyWFhX4IGIGV14XTIsQqTKHDe6p4fBBypP7c/33lJgChvH/oE4E1Pq0QLI8To1osnygmBKUR/53uKcFlKSIsoESUZLr0T6ZtrE/1mEIA4FKf4BKv49KUaf9Pvp7K+jvK6PUW0WlGMAvCyNagACSySUa3rXWqz8EsaI11IAHCQHhBJCuAFwJ5hG4x+LhMTkXuWwWhXwObYU82vIF5HKZ2FskEkU8DichkMQph+PypoQ/IkIxKGJVdRVW1laa2YRMWl6FlSv0em0lVlVV8NdRTSecIMMz6Mx2os1rQ8EtIO/mzVLw6taj7V7dul4yTsZM+2sWcDDGzFTBUZ4j3gcAwloNlWIfSqtWKiFl2TL0L16G/uXLUFz+Vzy/fBn+vnJ504FkM/m8Cqqay6u4Ijk9a40OtqrWCzrNm/0z2byOO5JHW/cEZNva4iFGQYDSyuXoX6His7z74vNqqNGK5SiujNIVEMHIZivijttgOFEnCnrYUVvPBCOs5Ds6x809WkhCsaaEhWI1RFGLCKWaiPPVKirlKmq1CqrVCmpV5bHkBEVkwyIyYRE5UUROFpGXJRRkEe1URgeroANldLISOlBBDyujE2V4bAx/9wehRh7KyKKEHCqURRlZlCmHfmSxROfLiMt9uOAgOJBgOuVMgkPCgUQBhHZIbBJtg0zsL+EwAnclCu+dCuCkNX58FovFsraxgotlnaKGtajhKjKQIF95X6glkY/KfVU+YN+GeREPg9HCx3iEZRwd3NMFy7smb5ZC3bacO0BQgcPGzUPwekdQASorgcoqlSaFk0biSXk5IEYRv8LJAIVJsUAS5QsT0+uRqJLrGiTi7uAQ6SFjOpWSIEPlqSHC2KNDrcuEl0fsOeIHAWpBDVXfR82voVKrodRXRbnPR60UIigSRAVAxQELRvoTNvJ7gGAhiBHAJAQXECxAwAIIHkLwAIKFkDxEyMKBZTxM5ANIFkJwAcnUIlgIySQkD+E4HLlMDoVsHm3ZAtqyBbRn29Gea0NHrh2d+Q505TvRle9Ed6ELkzomoCvfCT5GMSgCGaDkl1AMimrpL6IUqPUoYG5yvegX0R/0q1lytMgSynBUf7vgFtCZ7UxN5xtN6duZjdejQLBmn2wnss7Ye0mpYTJ9qPSvVNPg9vehklz6+lDRU+RW+vtQ7etDGDT3nWScK8+SaMjMJO3pMUF7ekzaAIXOrlRsESKCFCGCWg1hrYbA12mthtCP01qphNKKFQj8GvxKBaVVK2JBZcXyEcVHyXd2ob1nAtq6e7SI0hnHbTHCSicKXd3I5Atr7fcjFBKVQKDiC5VG+cR62ReoJvfRaS2IvTyEvj+FUgIiQDbsQ06UkBX9yIVF5KUSQvKyhLwsoiCLKMgSCrIELn1wGcAlHxmE8BAigwAbsRCbI0AGoV4COGwE9xwGoIkRNRIMZRQQMk+P3NTnnjGoeaYQ37sZM4M7B5Qxpo5DVOCJKjiUmJNlAbII0IPiwOGpaxC58SfW3h+zWCyWtYgVXD5kGC+PZFyOpDCh0wGxM4SK2RDn61MZe4/IurggA4SUtJiyTtFDQYznhMnrVL/dZW5cZgSKButwWDy8JNrHjT0x1ENP4u/rhyXWoAyJxKw6HCznpAQV5tigf6sDEaW8iYwDEgGE5Da9b5SP9ieoeCeVVZCVXlB5FajSB6r2gSq9kJV+tV4rgqr9aqmVIKtFUK0EEiEIHERcv/tzIclpkG4ESZtCwoGAC8nzkF4HpNsO6bRDum2QTh6CF0BODpLnIHkWkmUgWUa9TxQEWSXIUjykxQyhkQQhCCSWQIr3IRPCiTlHMl4nHfg3FlnW9JXiADIA0l8hwUJU3SIqXhEVrx8Vr4SK14+aVwbyIVhews0DIQ8QkA+ffPhUQ4AAgfRRoypqsgrBBIhJLYZISCaBJjpLSQ+Jei+KTrPeYTwuOrwOdOVUoNNo6cp2Ie/mR31mhBQm8G0yAG7RV/n+IJ5ZKFmWFFKamVGoGfJuHj3ZHnTnutNpths9uYFpV6YLnuMNb3iUiDBApb8/FkqMcNKbLovSYh/CUU6L7rgu8l3daQFl4gboSAyhKXR3gzGOarFfeb/oILJLFr2G1578m4l1EtSqKUFlrKYxdjxPDS2KhhhNULFakmVtPRNSwW5HhAghyysRlJYj6F+u0moZNT9AEPg6DeAHAcIgQBDqoXRBgDAMIcIAoVCpFCGECCHDEEIKSCHMPZhDQskLBBVBSt2EoihSORDyIB3SSu2bQYgOlNGhvUU6WRmdKCHHRubRAwD6j4/89PAMJM9AZNrV/TvbCcp2AtlOINcFlusEz3fBKXTDyXfByXeB5bv1drUfz7SjfayD/RIBYU15Q/oltQQlwC8n8npd58kvQdRKQOjDcR0wxgHmAIwD3KnLs4bbQjDUBFATgLfBjDEdCmmxWCytghVcWgyKxIqaAPkC0tdihVkXysvDF5A1oYSLmiqT9Z4dOk7HADGlVR09HKY8LjwO5jkqzTjgUVnGSW/PJPfj4InPpLa5aUHFpLw1hp+ot5eJeBGJ2A2NOsUyJMheH7SiZmJOJONNkBwiL3RQWz30hnM11IcxNUyH6VgjcZrYrvcHg0qRaEqJYU8DYrEajSI9jCrquJuYFiYliOgcmHgXMi6PPCVE7D0Rn7v4fFGqLBmfQwmHyc+NPS6ACXpZl4R6GcWQojFGeXNozw4ulLcHE5BceXmY7VyVE5dqGJorQTktnLQBmTYHuXYXbZ1ZtHfm0dnRgc5sFzozm6U8HwruyN66CykQyAC+9BGIAIEM4lQvHvfMMJWCW0DOzZkhJasDEaEclOP4JfVxS6J8ojwpopSC0mrXISLv5tHutaPNa1NpRqXtXjvaM4lyrw0dmY6UgNKd7UbOzY1ZXeoJg0B5mxT7E6kWU6KyfhW8NRJR/Mro2j53XOQ7O5HvSC4dqfVccltnJ7xsDtAxUPqXL1NDd5Yvw5LXX8WrT/wNxeXL1CxBy5c37RFTD2McXi4LN5OFl02k2Sy8TJx6uRwKXT0pQaXQPQGULaASSJR9NfSl7Ico+gIf+CFKJYHyijIqtZWoVcvwqxVwvxdOdRU8vxdZfxUyQS9yYR/yYS8Koh/tshftsogO6kMnFdHJyuAAsnoZU9ZwPNXAbUfgdSDwOiEyHQi9DohMp1ko2wmZ6UAml0cuV0A2l0Mul4OXyat4VI4HOFmdzwBOBj489IcM/YGDfh/or4Xo0zFLQiERCAlfkMkHglTaJxGs1HkhEYoQvliGQHxg9hWS9ER42qOwQaoW/VtryqJ1gsM5ChkVoyUfpVE+04aC16nzurwtzhcyLvIZNeSuPxm7RcdriWK0mDgutXRZXzWEn4gld33PBjhpqzV7jS0Wi2VdYAWXFqD2Vh+W3/68Elb8tejxoeN2pIaXeNx4dcTChIqd0agsHVcjEZTUYVooicSPhAAyQFThYK6j7KxlpKS6YJfJAJg68GVACEOJ0BcqUGag8qEvEQZCBcVM5ENfQiTyYaDWRSDrhAEywoBlPKHGpzMWLZFoBS1wqe8Kc7hOHXCuPak4A3cYuMPhOFFerUd5YhKCCQiECFmAECEC+GapUQ01WUGVqqjKCiqyjIoooyxLKIUlhAghuYCEhOQCBAHJJSQGengQIwBSvTtm6g0yMQkCgRgh62aRc7PIuTnkvBzybg45N4d8Jq/yXg75TA65TBZtXh45N2eEipzTibyXR87JpTxEctqGx0fv9UBEqIoqykFZzUYjKmBQsTcYY3CYo2Jw8DhGRxSfw2EOXO7Cczw4GQcMDA5XaSADVMMqaqKGPr8PvvDNek3UUvnB1ktBaUAQ2H6/HyGNbjhOkpyTQ0emAx2ZDrRn2tXwG6/T5DsyHejw4u2RiBIJKG1eG1y+5h8LiAh+pRIP10kIKMr7pE5QKfah2t8/4gCtEYxxNcONFkcKesadekEl19Fhtnk5NfuNlALVYlF5wGghp9zXi94PlmLxa6/EAo/2kCn3roQIm7uWha5utE+YiExXDyjfhVq2E31OG/pYHoJ7ENxFyD1I7iHkLgR3IYiByRpyYb+J/5EVReRECXnRj6xYhkKlCCqVEC71URQ1LJU+HFmDIwMzXCRaOpkaApOFj6weDsNHMgwmdaLjbB8VsJLa0Yt21FgWjDsqQCt3wEzqgDkuHMc1qeO4cFy1uI4Lx/XAHAeMOWCcgzP9rMEYJKklGjEsorwkhMQhtLgQEoOQQAgHgdeOwO1EmOlE6LUj8FReem1gjgvOmA41pl48OJyZskjANQFilw8MCttXrSbKAlTXtRfvekJ71kVon4UsFss4xQouLQDjDLI40KWVZbS3RtZR3htZx5TxyIsjG+WdOg+QpIjiqGEtScGjReN2SCER1IRZIsEi9EVK6BCBQBAJG75MiR/xvlokGSCoKAFFagGkJWFQHWye6GzzuAPOeLw+IO9Enis8kU98lgGI3oJFQ0KioSKpNPKQAUBKHIIe906SzHjwRk0oLqvbp25f7jA40fG5kcjAwV1d7jJwJuGQD041cFmFIyvgsgxHVMBFETwsggf9eukD93vB/D6VZxIcoQrSx0JwCDBTJsCZMGWxzw6BOR6Q6wYr9AD5biDfDZbvAQo9JkV+gt4+AWibAJbrBvPcYb9TvvDR5/eht9ZrFrPu98bDPgKVJoeKlPzSmHTMXe6iK9M1ID5G5B3SmelEu9eOgldAwS00THNODg4f+StnIkIoQyNC+MJHTdRQCSvorfWmymqyhlpYQzksoxSUzFS+yfVyWDblpaBk1qllXfkGx2Vu6pqYeCV18U0i8aQzkxBTvI41OjRnMEhK1MplVIrKo6SaiG2iBJV+M1Qn3t4PKUbXjhnjalrgjk7k2zvMVMEp8SQSVLSoks0XVIyTchm1UlGllRJq5TL8cgn9K5Zj+TtvoVosJrxjeo3nTMMp1IeuJNr00KK2CZPgtHfDz3Wi7LZhJQpYHGaxrBagv3clqn3L0N7fh+7+Zehmb6AbRWzESuhEaUDg1CgdVeDUJuOD1FNz2lBzO1HLdMH3uhBkuhFkuhFmuxFmuxBmeyCy3RDZbsiczue64WjxAgCqoTDeNKWaiqdSqoUo+3Fa9kOUfIFyLUS5T6DkhyjXBMqBgFhjv9MCwEq9rFnaMg46ch46ci7acy5yrgPP5fA4g+fwujyDyzkyLofnxHm3bl8jBnGYc63EoVggisQjzqP1hKAEIJQUx7xJxL8p+yEqvkQlCE0MnHhbOjaOkIROfWxq8dCejfMdORediXxHg32dsZqRz2KxWFoQRjTSJ4nxQ19fH7q6utDb24vOzs51Vg/pC4TLq+AJgYU1OTPEmoJ0B1uGVBfkUurgl3GwSzXsIz3kQ4Rp4WToJURYU/uLdTlVMQNcl8PRM3M4Js/g6Jk8ohk8nEQ+nuGjbnaPRN7NOHBcnvBYUCJIJDZEgoij48Lw8fLwIULAL+qx38U4X9NpdZUKFhullZU6vzIuH80MOwamgr+aaYmjKYqTUxX31JVNUDPuNBBOQhmiElZUp1938qMl8lyIhJO+WpxPiiqVsLIax6PgjKPdUx3tyEuhw4u9FpKd9s5s5wBxJe/mBxWGQhmiFJSMsFEJK6gEFVRFNT7eoJI6drNf3RJ5eEQCSpSuTTEk8qgBAEkSkiSICIIECKRiQ0Cabc2Q4Rlk3SyyjlpyTk55+zg5UxZtT27LOBlz3ZLiVrQ+1HVZW4gwQKUv9too98fTAVf6etPeHH29qBb7Rx1fxM1ktWDSEQ/Rae9AvqMDufZO5Nrb4WaycDMeuOOCOxxEhKBWQ1CpwK9UUC2XUCqVUC2VUSuX4JdL8Ctl+OUy/EoJQaWMsFoZuWhSB8vmwfPt4Pk2ONk8uB7G42YzcD01NXbG4wATELV+iMpKoLICbq0XXehHNyuiB0V0sSK6UVrt2WYkOHy3HTW3A77Thpqj8iptR9Vpg+BZhDwDwTIIWAYBc1FDBjVyUZEeSsJBUbgohRz9wkVfwNEfOugLGHoDB30Bx1hOhjcWZBwlQnguh+dwZBwO19FChMORSeRdh+n9lUjhqEnK1NAaSYMOuRFy8CE5RIT2ehEh66IzP1BM6Mx56Mx5aM9ZQWF9olX6BhaLZfxgPVxaAJ5xkNk4nlI1iukhBnhnUGK4S2LoS5guD30JEWovj0CaYTAiSHt8pLeL1H5rJq5F83DO4GbVQ6yTcYxoYUSPQcqcpOiRFEQGCCkMjuvoVG3jvPU8ftY6UgC1fiWM1Pq1MNIf52v9er2YFlIiAcUvqe1RPhzdEICBaOEkH3mc9AC57sR6IyFlAijXhbKsGa+R+sCiKv8uih+8NKSAEIkrgRxFcMWGR8OMENKV7YpFkYT3Qr2IEokrHZmOVMdckkQlrKDox7PKFIOi8f5YWl6KRb2LzHopKKW8Q+rXxyp4arNkeAZZJ4uMk04jwSLjZFBwC2ba36G8bur3GU2MlXpRJlqXkPC4h6yTHZO4LWsSkhJ+tWoECOPRUdL5cgm1Up03hxZZRhvzxMvlU3FOcu0dyruk0A7X8yAZRygBPwzh+wFqtRqqpTKqxX5Uy2X091UQLl0JWatA+lUgqALh2HzfknBO4A7gcJV3OMAdgssJniOQd0IUXB9tjo8Op4YOt4Iup4IC85GHnx5uE+hlKIbwKgl5DlW3ExW3C32sHSuoHR8EBSwN81hFBfTKPFbKPFbJPPqpgD60oZ/y6EMbyshirU4hUwdngMs5HM7gcgZHe2K42vPCdZjZlvMcFDIO2jIuClkXBc9BIRutqzSfSa8XMvozWZXPeQ5c+xttsVgslvUQK7i0AEsW9eHe7zythBMtpLQiyWEe6ZRr7wwlXkTlXtaJl5wDN5Ne97KuymeSZWpx3Nbu0KxzRKhmCggqegaBcjrvl3VZNMNAJZEvx4JJrS8hpBRX05tkCLgLZNqBTDso24Zapg3VTB7VbDuCTAeCbDv8bBt8rwA/U0CQySNwc/DdDHw3C5878GUcyNSXPnzhw5c+KkFFiSbLX0oNw+nz+1AKSk17LYzocBiPZ6OJZqfxCsaTpCvbZcSUZD45PAQAykFZCSS6ztESTc/7QfmDgdPxJrZHYsma8BhxuTtw5p3BFq9xeeTdkRJSEnmPey0nXnDGTZ08rN0hOkSEUE/pWyuXEVRV6lcrymujEqVlVEuRmBIPjalVykpUqZRXz6ODc3iFdjj5drBCO1i2HdLLQrpZSM5BUoLJGpioAaEPGVYha1UU/SqKy5cAi98BhYGZ8W51YSBkeIgMF8g4QqWJxeMCWR4i64TIcqHTEBlHl/MQWUfAZXKkM50PigSHz7IIeNakAcsicPKoZbrhe12ouJ0o8Q6skB14P8jjrUoWi4oZvFPLYxXaUdOzbo2GaKiJ18CjI/L4SAZCLejAp5H4oba5ZlsusU/yc9FQFiWexALLuPHCtFgsFotlDWMFlxah0j/4azLOWcI7I85zl8feG27sqRENeVH5ODVDYQZsS5cbLxA3jqvB7Jul0RP66ekVIw+QWqOhNgnvkKg85T2iRRExuhkuCHreGsYQMCAEQ8AYQgYEYAg9T5VzD0GmgDBTQOAVEHo5BF4WoZtD4GYRuhlUuIsqd1DhDFXGUWGECggVkqhCoCJDVGWAivRR1TE6omEmBD2spqaX/jE614PgMjftKVLnNdLmtaVmn8l7sciQc3LIuBm4zAVnHA5zIEka0ccERQ1rsWiiY7AsKS9JCSpGPNHrYymURMcYBT81XiHa8yPp/dFw3W1LeYmsi3gg6ytEhLBWM+JHTQ9rMflyCbVKxYgiafFEDY3xq2X45QpoDAVCYhzSzUDqAKwBHBU4FAwhMTBIOEzCIwGXhfBIwKMADoUQtX41zfkyQNLq3vsJeSdE3gnixQ2Qd0LknABZI56ERlBxOIEcFWjV51nUWBZVZFFGFhXKoERtKMoMVsgMqsgigAOpJwmWpCYJ1uGrVZlgZjshzkswSCiBzYeLKmVQhV4ogwqyet1DlbJmWwAHq+Nh0pFzsUVXDht35bFxVw4bdeWwsV6f1J5F1qsbLsNVbA/P4dbTw7JeQ6ReLtYqIWqlUKXlABM3aUfHhDU3y5nFYrGsK2wMlxYYpxn4An0fVIx3iOs5sYCyjmO5fCiQMvYGMd4hlYEeJH45Fk6S3iKDbtfrUgWHDABUGUPVCBRRXi1qncfrZhtHlavtNcYQMpYQTRhC7iBgHCHnCBlX2yMxBUAISi2thMvUbDAZJ4MMzyDjZOBxT5Xp9QzPwHXc1HrGycDlrvKU4Fkzq43neHCYY2aVYWAgUDr2ih4ulAzAWg2rKfFkbcYcSQolJiZLYjre+ml466frjdazTtZ2wkaAFAJ+tYKgWjVpUK3AN2l6m1+tGo8S5YGS9iwZbRyTRhAAcA6KpreCmlZdjWbRgZ2JVHc/+glfC19tDmk8SlxHDcfxXILrKA9I5nDAcSAdF6HjwuceqsxDCVlUmRIrKsiiRhlUEqJGGVlUkEWFsibvw8W6HDKzOnTlvYSIMlBQ2agrh/asfd81GoSQCKoCflV10su9ASr9PqqlANVigGo5gF9WnfigKuDXhA62LyAlVKydnItM3kW2zUW+zUO+M4NCZwZtXVm0dWeRa/PU9rwLx2stD7zhIFLB7YnqAuFTfUB8mBSI94nuI9H+kS1V1mAfQfBrAqVVNZT7fVT7A3UtSgFq5RB+JYRfjSZBUEPdZSgbOuDtsP/GOPjTO6yN0zQkrdI3sFgs4wf7i98CeBkHEzdpX9fVaF2IlEdHUtiIPD2GEkHMUJtGIkossIRhFUXO0c8ZSpyjn3MUOUeRMxSZylc4g88YfDD4XKU1BlWWXDhDLc/gFxh81gaftZttYq10hkfe6YtEj2QaTYvrMhce9+BwNVVuNGWuwxwjinjcg8tdszjMMVPsRtPwMuhohdEMSZAQJCCkUMOEEkOF6vN9fh8CGcAXvtnX5EUwJrP2jIRBY4442YbCSf30u5FoEqU5J2eFklEQzY5TLfarmW90Gs2CUy31o1osmnVfiyl+pYKwVoVcA/FBAAAMYIzAoVLlR6GGxQDQwTgZBDEQGnfmGABI5XsxOggek3C5gMclXCaVSBKlXMJjSjwhziCYg5C7qPEsajyDMsuhyAsosjb0sXas5B1YgU6sYh1YiU70oYCwmccH3WFLkhyukvO4id2xQSYZy0MNd4nieBQyLtqy6jNtWbVPIbF/IePA5cN3jJv5mqn+JKU6hMkyMmVKhjWdUr0l43IUMuvno5WUhNBPzBDoC3UfT7wA4omhw6OJeyaFhF8RqJZVp7zS56O4soZSbw3lPl+JJlFnvRoirEWddBqTWQVHHLKcAY7DTaB8L+Oo654QLkB1ooYRPdICCKL2E/83gIalQxw26UY4hMn1huKKZeu6ChaLxbJGWD+fCiytB9HAOCEpMaSRKDKCchLGQ6RmvD248RipsdhTJPYiUfsUOdMCis57HP1ZjhJXnYpKEw/qYwln3MxmknESXh1auHC4E4sWGPqBlkCph33VCVD/osCfyXwUAFRAQEoteugllCGEFKjICkQgjCCytgWN0eIwxwwDioYHRfFFTHndcCETXLVBrJH1JeZIqxIGAYJqBSIIIMIAoa9SEQQIAx+1mo9qrQa/5qNaraFW8+HXfAR+AN+vwfd9hH6AoFZDrVxEUC5ClIsQ1TKoWgL8CtiYOGgSGIMafMIGiiNqiIoaetKUxwUBRAxqcpfmOqMeE8g4ITwu4XEJh0sT1JVxBuYwEGMg7kByDsEdBMxDyJQXScA8+CyDGsugyrOowVOz0SRTUvmqLqtQBr1oSwknDmcoeA5ymTjORxTXo8dzsUkivkchGesjsZ7zos+5yGe4jg2iYoVkXb5GYn8Q0YdWtBSBNB4FlaLy8qgUfVT6fTNcI/IICWoCYU0gCKS6xwfx7INSUEOvg2HR0w8zPTUx43rWPd1uOWeQQgXzDwMJWkNTPHMOPfMfg+MyuB6D6yqRJJPl8LKq7dW0x4VfFQh8QhgQhCCIwWZjIphJCfzVn2Bu/EJqEB+TApwEuAzgCB9c+HBFFW5YhSMq8IIyvLCITK0INyzBFVU4ogZXVLFy6h4ADlzXR2KxWCxjjhVcxjtEQFhTs8WEVSWKhDUgrOhZIJLliXy9WDKgrF4gKSN6vUIAfAaUGEeZM5OWOUeJKS+SMmcoM46S9iopM7092i/PUClwVHgHqqwTtbXgIRLNQBINV4lidkQd7AEP9NFbz4ToEU01G4kbgpSwISERiAA1UYMkiXKoZoRZn2k0HKh+aFBUFokVqe2JYUOR4JQcUlRfltwv2h55mxS8AjzujYtOF+lpSQNB8IVEKCQCQQiERCAkQknwQ5VGZYEgvZ/K10KJWihQC2ScDyWqgUpVuc6HErVAoBoIBLUahF+DCHzwsAZP+sjIAK7wkSEfnvDhSbW4Qq270ocnanBEAFfU4AofrqiBr4FgxREslSc9c4xyoSKCicnRrDUiQEReWE3AGWkxRHXyiHEQ55CcQ2pvkZC7SgjhHnyWRZVnUGNZlHkOZZ5HmedRRAElnkeVKZGk3uPF5QxZV4kWUZrRac7jyLoqzXkOcjrf5jmY4HJktfiR87jeFtuIPhMJJQXPRS6jYobIkFDu91Hu87FqSRl9yysorqjFQwaKFeN5IAShBnW/7wNLdb7BGNggnXHGVWyyKDaY8hRQ3gJSUsJ7QJdFwxuicu09wIjgQD/IRHoYU+JUJFSpFGBOHPssnrWOwdEz2bkeN8HbM3nXDDsxQd2zela8jJoFLwr47nh8RPcdIuWpIUW0yERerYtQauEkQHFVDSXtAVLRwzX8cmCGaazrGQXN8BUJyNG6WBCBQ4DLEI6swQmqcIMSvKAELyjCC/qR9fvg+UVkgn54QT+8oAJXVOCM4b1GMgehm0fgtSFwC6hlulHLdsPPdMLPdCDw2hC6eTWcjyQYCZ1KABJcCgBqnUtRt4+oyzOo0EhRqr/7TMcZYkzvk9wvWabcRRlpt1F1IsEIev/kEESY/cw2fRdlROAyUAuFYDLU62G8UH1ZoPZLlDvCN0K1OpdAyAHJgdABBFeL5AzCYSCHQXKGWoarvMOR36h7TK6jxWKxtBpWcGkFakVg+StKAAnKsegRLZE4YraV69brPpcSVqoACBJAjcWeID6LPEBiD5HkUtGeJCq2CE95lpjP5RkqBUcLIl0mzkjVPAysOSIPkEgQ4YynvEGi2B2R+BHKEIEMIGiw11gww1WGneYzwsRQADgBLFqgUk7pbR4BeQF4AnAF4AmGAssgTx4K5CFPHvLkIgcPOekgRw6y0kWWHGQEQ0ZyeJKBg4GDq5TUsXKm8xRtV49TnOpSMF3HaJ94Xwb1MMdZVB6VwcRDMftFw4RYUohi0D0svUB3uuq3C4BVAFYFc1ww1wXzXDDPA1wXzPXAPC9VzlxXbfO8eLunPgvuqJg2Q10qqLeYIem3mVKafChJxQUQAqEWLkQolLgRSoRSqu2hEj+EkAil6mwGoYSQqoMUSomAVHydgBgCAnypUrVO8ImpMknw9fYaAb5MLqQDe6pHZQdCBTcltXCoN4guCXCSKgwqCXBIOLrcoRAuhXX5EK5UZR4FyOl1T2/z1qgn02AdsdW/TxDU8JxGcEbGW0Q1aCWKCOaoILJaEKmxDCo8hyrLosTyKLE8iqyAIsujxnMI4UAwFyFzIcHhEMGDRLvL0OYxlbpAm8tRcIA2ztDGGDo4Q5aALDiyRMgHHEzqYK1mqJ1aSCrBR/XduBKOpBpNKatqsh8pBaQUIAqUV44evhR93ZLrnJEZ2pQF4DL1/VeBsxlKAFaFDKFkCCRDKAEhGaQe9iD1VYvWozKP1IODNJ23xDWOxtg06v82uERRq3DA4DFVR48xuCYPuHo9znOzrzuS3xkpIWsCVEscT+LYonUBQBBBEFAEIEgvIJ02KCOCBClhSA8hI8T3PaY7zPGvU6wPgSXyifLofCNxSqNRmRmo60AAyGGp4U7JRQkZBIdCOJDg+rvORQiXAjgyMN4FTugrL4SwAlf6cGQIh0LtJakGt0kwSMYh4EBwB5K5EIzr1IHgHBIuQu6A9D6COWAigOf3IeP3IlvrRa62EpmgqESVsARH1Aa/EzAGVsgDrmuOiRgBGaUsEGUh43Fd5gWIUeVSbjukvv8ug3QYBGcQjhIGQk4IORDwKgJeQcCkKncA4QCCAaFUIdmIAcnZwRGtc7OqpgOnxDrqPjMGSB6LGoIzwOEgxwFznUTeBXMc/dsaL9xxwT0PzHHBvQy464K7Hhw3B+Z2wHE9OF4GjuuBexk4Xgauq1MvG+czObhuBplMHl4mBy+bh+flkPVyamhy4mWJy22Xw2KxfDixd78W4L03/g8/u/9zCJl6oFEpIJhySzcpAKkDpkpdFjKm9wWEwxC40KJKATXWZgQUfyzduIngSIBLwJUAF4Aj1dImgU4JOFLt40kGT3K4ejsXBC4JTEi40eeEtqPtOQl7TsKW+XsScKRI7cMlBlkncKlED5MS4EgGFwwOcTjE1L7EzPZoXyZJLfpplpmHOIzRcIbWGq5DAAaXpMY3HKoj08xErQT1gCs4RxilDodg6q2d4FxtZ0wPAVEP95INvk0wrj+rthF3AMfVAldCHmNKbFNl9esqBREkJIhkXUogqGFlVLc91Zqjtj1mwqmqvcM8uNyDyzy4PAOXeXC4B5epWaA85sFjarunyx3mgoPBiUTGWG5U/7NoXZdE64wD3IFyb+AQoQ8R1iDCGsKwCuH7EKGPUAQIhI9QhAjCAKGoQKIGYn0g7oCYo2b7YS6Ek0Xo5iGcLISTg3BUJ8R1s8g4LrKOiwznyHGGLGfIMiDHGXJcCQnpU0xanFNLSNQwrxZCmBDuGIAMY8hwlWYZkGFAhjNkGNS6zhtRotHtKhKi1nOkFNrlRX8PBmm3vL588F7+mNZv3ZNd1xUAAH2/EVB3HQEJAcHUENeACYRmkQi4QMDjdWKkXxxwcGLxN55Y/P1P5XWO4hcUIICYEsUEk7GHKpNwoMQplxGySk6EZPp+yfSQtegFAtd2WOThpm+VPFbPmFZEGdQ+YAxcrSjPuCjlDIxz7e3FtedXMo0X5nA4jIM7ji5j4MyB46hjVnWKhxKb+7s6GlNGUkJKlZJ+piGQHu6l1xMLiEA+gWrxNpAEoQIpy/BBqEX7aa8akjIWyBJ2EImDUoJJFi8hw9b7zcSmM6avq+ZpsVgsawwruLQAi1a8j6c/aE8JBq5QHX5XxEKDJ2OBIhIhHDlQtFCCQiQ8EHhCIDEihBYZuFlPixb1AkZK8FjHHsxjQ/Kd7dpDOC6k40I4LoTrQnBXz+jhQDgeQh4NR1BvBwMnGprgIOAOQnCEYIk3sdGb1riM9CtTCQ7OHTMFcLtXQLvXhrybgyABXwr4FCKQavGlQEAhalKoMgrhk0RNhggTHXLSLs8MiZlSIrdlxEIU0y7NkZux2lflHVKdH4egp6IluCThkYRLEi4BLgie9upwicziIJ13GANjDsBdcN3BZtwF4w4YV+VGvOAu4KiyaBvjukOthYi4SyAgQVG3QJeRyrF4XxUXR515h7laVFCpwzxkmatFBU9t5zowMcvA0fu5+nMO97RYsG46fNGxEOKHZSCKERQ/MOuNcVl0zSPXfr0fAwN3smBOBtxpRspac4xkkuuASHkbESkPJC16uFDiSZapNMMadOKHQOjz5OiOmwfluaFYc9dcEsGPFn1cYeT9wKLvkep0OpBwmNrGAdXJjHzbmPFxg3YZQvI1PksdQ3THGF7kIOg2x9Q3jFiUV2nU8SUuIYkgOcXlTPuUMBY7M8jEHYkIBK7vS9qjSJdDl5PumCunPG68/CKZT+2X9gsEMT1Mg2shILLBYGJqNUyTa6bLn16nyGtJf48iz01K+8jEVyOZi/+R+YsDut2QUZ4ly6DPNelfR/W3I/EiJXwmyjhxOFEeHM5gwaCZ2uY02mjccizNET27NPOKhAH6rJMR44X2yhIQFJpUyFCvh+nyBovU+xMwQEhPp5mG5fXx0PoXLAFmjOU5slgsltbACi4tAH8ni+vKN4GCCigo60XlYfIVU476fcIaRv6k0mh/Bv3KRb8Z5qpTyhzA0+vMid8acyf1FplcB8TV0A/iHMrhOlQpJzAmwRwV+4C7DhwvA+5mQK7qEAvuQOpFcEd7AiiRQXBHTXkMhpBxBOBqKmRw+MSgBlR4COFCUvSuygERR5UIJZIokkS/FChGwzkI8IkhkEDIOCTjxmVaeSI42pOImzHTEswIDlEqzTridcbV86P+DBLpWNINhslgmAyOyeDYqC7fM0avr9W7LKAC0ouCQz3GqYXBaaKMj7u3x2sXaeIE6U4UxW9qo5lT4mFf6eF25v3voB4AfI0HBY48O6LhGaEekhGSzkN5eAiC2S8aIaCGVcSzw0SS6VDr0Z3Oq/MCUZ4gsZdIVMYZg8cYPAdoa6KtkhZlagTUJKE6RBrqynAgNYQmztev6zzifCTQ+ATUKBqalhSHIlFFb5dD+dElB7M07AY3wWDnaCTf8/HwKNKMYpA832uDgddWTfGrYo3oKXYA7eUGPXAIJi9AJAAEAIUAheo3ndQgTqLA5EEhKJEHVMwS/asKQMVaUncjqYbBgiU80hwtdDn6nsXrUlZ3n4vEq+geCLVedz9EKg8tDHItriWFKp5Yj+6hPN7OElIWi70No8/G99lkGh8DY07deuNjTHroReUDt7EB+zCwhG0GhzX+PjPG4EA/w7UIggRCEvig18W6nxTaYrFYxp7x8JSz3rNhx2ZgGRcsM7qpoYkkBAsg4ENCmh98pKJzpCJ1ADoHikvXJgKEKlQHvgqgqjvyybIaCB6ALBjyYMgCyIEhB6ALDHm9LYeRdeIFCCUARdAgy8BtIWLBwNUiQnpppiw9dj85Zj/q4jKCHnMvwaG8PVScDlWWAzCRe5jEMpjAMsg00TkOKERRlFGSZZRFEVVZgQOmhnDA1d4WLjzm6jdPOmUuPK68EjgY2tBcB3R1kfqBGZR0g67P63UzREbNqiSjBXHelOv9kovQ+4JIv9l24mEpOs+10GjycBIPwQ44c8H1w7TQ012HJCH0EpKK7RBCBcONhgdGnklCC4ZRqv0NlGhHrhbvXBBzAWiRE0DcipoVSNIDxpKfNjFAonKWbp/JNJVP7ccGbCfEYkokrqxdnzLAcRm4y2OtM3L3jzCuWyrjMkKGlPjiIU49qPrXSIknVSlRlUBNj2YxfdcmkIARaQZ8iEuYYFBcx6tQrmMAi9dJB4oiEOCQGSoBxHmTRt+dunUYZyVKngJTpfr1ASnUMA1W1zoYABhvjKiM6c/Vlyd8OxL1jo9DDnFs6lwZvxGW9hVJrqsqxXai9Xg7qc4rcXBy1CKdOK8Xhxy1j3R1mdqfSQ6HHAACIAHBfBACqG9+oH9FQoCJVB7xHQEMQjck7asYBWSNGpgWQhgpDwVTFgkkusxsQ7SeFFLWrhvJiIaoMke91NGCADPCAI/LWJyqvPZmNKnazhNejow5Kl6YvrcT48auuhdw87KJJfOkXraoe268nXRbJnDt4MfMIsFMGSIHQJDxukpOD03J713dfuY7mPyeJk8VEreFxLMFN+1b3Wl5Yt/EiCc9M5s+s4zpFCZ19P4OmE71drONmX0YIuEc6ndOi8vqvp8Q0/V2k6ekGMzgbN+OfxpJe7FYLJb1BCu4tAArttkZ33zqWWQFkBOEnCTkJVCQQIGAAjG0kersdoChHUC7znv6rYeLLNxonPYYP0+FUJ3E6G1ztK6WZN68NwNAyGgxRIkiSjCJ4hg4a6gDH+q35yEBAQiCCC6iOAcMDmNwwNAJoHMti0xN0ah3OwyVsB+lsA9lvZTCPpRFvO7L6mpVaTD34OhtYjI2SDpGSFRWv088llyPlIcZQz4mjTchczEXgKcfyj0wuLrMBWNxXj3cuwDT++rPgHlgzNP7eOoz0Ta4qzf0Z4TXelA/Av30zDnMNKzqbTCQfFKPdYW4oN5bJB5CNPjfpSFW0vpB4o2ycpADOGnnOdKXiMAcAlwlGsCVgEtgrgTpcZTSFZBZH6ETIICPkPkImA+f1eCjBh9V+FRDFVXUUEGNqqhQGVWqoEoV+NKHL3wVMJvU8MmBcaISwzUH3U6pwNigeHilKQNUPIIobgSpLg2XWvQmDu0HB4o6ztBCGKkgt5G95Llnib+TPOdR0Fpi6Uth1qPtdfuaq5PMA6A67Y7qticrFdmULJp9RMU1klzFFCOHgRyuh/DpVK8zxwE5HMxxQY6KSaHiVTg6joVaV3muh6xwOHBUrC3oISzE4ZCS2z3pgAlSw2sFAxMELhAvoQQLCSwk8JDAQqkXAoQEQgkmVYfXnGdJgCQwCUDqKY1V9GJAEEhKQAfVhqSmI3I1e9eou9xrDs4AHUdEzUce9ayZum4eB1wOclUKV80sQy4HOQA5KpUOA3FA6llpJCMd2JUQMImAS4QsRM2RCJiAzwVqLFDxWkggRBWhDCAoRCgDhDJEqIevWEZAYoibugfplBgcyfWQcg5HqnsSI6WaML2vWtfliD2A4hd08X5MD7dTMZSg7mNaaVLtXP24MDPMFIC5jyaVXcIBGx0DYOZaPlkWi8Wy5rGCSwvw4isrscdbcsDDFUFNmNMLwqpEVzT5EMyh38DqwInJN8vR82Jy3Sy6YyXr9idTCWVJ95HMm5DIk0R9PnqDpqUXSsgu9WXaxRgUqhgcTCTiBSj3eQcMLmfa+0IFh5MUIqQAofQRUgBBPoRU64J8hGa9BkGB6rwP8ZjqMBcez8LjWWR4LpHP6nyuQT6nO7DJYKMDg5KmhIYG5aZ7G73JMueezP8g8y62wTZAIkQ57NfCSi8qYVF5aIyaep+bxPsw7U4dgiOUTD0hyQBKekuKOPWttkFKSfuJbcwBkAHjGYBlwCOBQy9K+PDqxI5IBEmWR+LJYPFPEj3iuvqy9F5NEH0i4asRfSlNjzzxhp2rOBSqXGrPBB2jgqsFTEIyoWJUcB/SqYF4DcIpQ7AKJC9BsBIkq0KiBkkVSFkDkxIkBCCE7gRKQAjV/vQSTVGenq1j4NFE1Y9IChMmqHV9/Ki6gNdunVCRdNaon8UrFi3I/D3U76vXeXwqTWBrRkOUS/25RHlUx/GIuX8zAIiHN8bCCzPbk8MfI6eTaOpZ00Viukxvw4DPxjaTwaClCRodlekhmiZIdH2qP6O/HxICYAxSH4eMXsWvxfOYTFfPmIpxxaMUOpXJMiTKpG6rOjZW4jNMC4VRHCxVFu8LaJvaXvR3k/bUdyCOu2XqAf290Qceff+ABt/dxPdxLJFQgp2esAtyiDTaTyYXns4n25+oa2vpmbWSExnHD1AUrScvZ2q7+j2LvzOJqZvNd4jF9qNhx9HfTH2n4u9a8vsY5+O6xKJpI7U+qbIyfS3TKuvYeTKP1Y00fRyTJi8eI7sWi8XSWljBpQXYOKyib5BpTWPi7SqSfDQGO/IpkQhS4oYeT03ROGsfgA8iHyBflwVgehw2QwBGIUDaZyVhVyYEAwwjaDRDs7MurwkEhRAiRFWU1sFfjwSHyE3a1a/+I48KJSIowSEDxjJqW0JQYGgDWI95U+zk1Ftf4wYdRUzR7tJcSrWQgCPV8CQmBbgUaiphCtU6heBSLUyGZt3kRZDYJwCTqmNEzIVkHMQdSOaodR2ElribmOHF0escxNS+kjtgUsARPlxRgyN9cFGDK/rBRc2Uc1GFI324YU1NH0qh7qTrx1cS4DIAlyL1+GxZ/4mupjQCADNiQLLM5HUa6JlDyGW6cxZ3glLCBGC2Ky8NpjttTC8wIoJM2I/Fi1iIMB2k5N9RfybubDE1Ex1SnzOhUfVtPtE5Y3EnLap/3EmMRL61J0i0HBQH5uaS4CQEDV6frxMuuIwEDZhyGEEjfgMfbY/FjER5o+2JdGCnXdPgkqWvaV07SrUxlhDIeNxOmP515izV7lbr9A62YYRmo+8tkBbyBoqEddtTn4m8p1jqO1mfH3ffh8RFqPd8Wy8Y8J3RZUh/xwBCx0vr8unQYrFY1hzrveByyy234MYbb8TixYux66674r/+67+w1157retqjYjKgt+juupxmMd1SooayQUY4hFoPUW/jYk8K1jsS6OECT2mOlqS23XcjGi/WMhIjP9OloGrWWqgAvOlbSV9eOrFi+TcqXFgvVS9ET3oDSxX7rVKBGMUgkViF+l1GYldASADtS59cAoBKsefkSE4BYD01TqC2JbU61D7AQGIQrDkW+rE27vo4XYo3xhC4rCdgS2PmZ3iozbvq6LOi2m2LN0Rodh7ikE5Z0hSVzOkaPpPNRzMIzVDlwT01JnRNyLu5AIuiHkDOhrJt4Zx5zXxRjGxv3k5aM5RvY0G6yz5zUyvo85GUlNNdUBSf3eIN5+JekZvgs2xsPTfkNF154ljYQmPtrpOTtTRT9K4M1T3+eT5NceSOE/mFKcOPl2SivUB01YGfM4yagYKROnvQDwkKW5/8WcHuQYUfVbZiTq7Un9GMpZov/H9VbXdaE6baOgV9JAhrjwfJYPDOBxSs5A5ekYg5RUZzZaDSGpWAViZAwceOHfgMAccLhyurbJo4XD0b4MTxWYy8ZkcAJSYfawu3lMUF0rGMaLUbC3CzOgS5ZMxo4jilxZxfKnYvomnM0LiWGxxoFQTzDU6s/qaRDMtmenjWTxMRH0W8TTzSNvhA2JbJeJYITqH9QFe64PDxm2IQAPWhyLyxo0DxUZ/j6X+Bk/8LQ4eH3ddMFvjQ5rwJk2llPIrhfJYNbn0/X2ADdTZ0v+x6Diivx99efSzXhQEOLEO7R2rxAkdh4dIx/RRS/SEEc+qBfO/KkOiPDpnMKXJWciSn00GCFZEMbASFnUsMRXfhkAiVM8eMlSesCIASfVMQyIAhK/WhQ8SPij0AanTsAoSPkrb9g3ZFiwWi2V9Zb0WXO666y7MnTsX8+bNw957741vfetbmDVrFl566SVsuOGG67p6TbOytgqMKuahAMkfO/Pgox8UmQMHjhrXjsTDInfMQxAw2BsQ/YBmhIFYREj2rKMAcclI/OazyR9hxhB1AdW+6lGi3stAjSZR+8YdS20y+TYq1flL1BccYDAPjYwlwv4mZglguk7pmQSU0dRjUd0MB8qbJ4RMRqszn1FBWqMHO0c/UDpwoqtiHjxNmsirBxzHnDVJSkYgYpDkmQdzMg/2iYdyqR/kzcN9YOJQqJrFw5dSwWST8VP08UZDnSTih7c4EK2aahXRkKjE582wlGg/SJCM8+s7UZtyuAsXLlyeNdNbOjwDj7twEE3znIHDXJ1PL1GHDoAOUFn/GB8/tKfKdD3IDDlrTJ0kMegeUS7+7ppH8nRHqtH3pK48tsca/Zkh61Bf7/r7RuIbrP5PfOdT29jAsnjIWNqK+fssWed4S3TmgbgTZ+4BAOpnPknFFaqPMTTgWqIuH3fektuowVlKn2ug/loOXEfivll/T0+eh/TZMXmWyKd+Z5J711+v+toML4Stq6nN11eIBvv2p7Hn1TJeyWdfXtdVsFgsljXCei24fPOb38TZZ5+NM844AwAwb9483HvvvfjBD36ASy+9dB3XrnnavE1x8FZHrOtqWCwjZmAnodHbwlhcSE7ZGftA1HWo6zqAUflgHWnU5ZrBdlo+fLBBVyzrA8MLEglxKzHkMDk1cOxJEIvTqXwk6LHYSyK+HzVIB7kvJWn2XrO270nNCjxpqVLnjMdHVJLw76DE2oBprpr9a/E7mvQ2mXixoAOum7+ZDNoevXioD9YevRCKhMf4RU3qdyi1Tg1+kxK/PAzKK894gACmRdQJxin5MyWIsrrrH7Wz2GZKOE3sa64OxSWNJOD0i6T09ug7kX4VQInvTrqs/sVV9NIr8iJTHkc6ADb0i7HEy7HoeOMXZyr3zrIqtoDFYrGMP9ZbwcX3fTz55JO47LLLTBnnHIceeij+8pe/NPxMrVZDrVYz6319reG+mF+8Euge+eeaf2CyrFmoQa7xdgVrem1dMJIH/4H7svQRrPvDGTHj93vVXOscjY3Rf7qBvSH+xEAfoAadwWSu/lqyVLcl8X/9OkN6I1vNpjzUp8emvTV1bhtsHtyvqn5Lg78wqOCa/szAzvpQf7c5mrtPsYarcefYMcX11tJSQVIgTmdHdhiN69ys1xAaiBDG24nInJOBnlSDrdV5P5mi9HdBeXgOau5DS+QR2kzg/PR6fBHTLxPqPMxY3TqS7V41BjO1dPQvEaCfEiJLUqyKX4CkX3wo+8kjbCAgNsypNiIhwUkPOYOEGVpGkccvB2cEDkd9iqWnRVtW+6Dpc2+xWCzrE+ut4LJs2TIIITB58uRU+eTJk/Hiiy82/My///u/45prrlkb1RsRq2rvjOpz9i19qzBaPwtLKzJ+v1dDdfZaiJar0DjFnmfLGCNTXiVpT4j0UORhhE7EQsRQ29f1vZozFSPGWae1GD94rreuq2CxWCxrhPVWcBkNl112GebOnWvW+/r6sNlmm63DGimmf/yf8Mr//Ni4xRrXTorcPGX8JsKkcRA1QOqZiyL3ziTDPZA0emWmoYEW2CC7JssH22fIPzLIi24WBcyLYiYQ6cif0Xmo+0ADO+OpX1H/vnjdMUS7iTYzB3AYwBnAOcA5iDOAcYA7IA7A9UCu2gZHufCTw9P7c0dvT9rkAGcg7qggunVvykaMaV9SRxKWgCQwEX8fIaRqh1IHLdRTrELqzxEZ13R1/BzQQWuhYzOB67eW0WwaDDqgbbQNiAMuJ05n1PGIvpN1MTziGEzRWt30p0wHHWaRmehvq0PTXvFpTwQev1XlOlixicbi6JTr97IMOqCm/mMpd/HYE8I4REQv5RuEAYrKorf0lMhpi/ocNP42cK5KieIOmwrirK8tI0BKMHPdAIjENZS6jKTKA/oaaw+CqK2CAa5j1olzFSTWYYDjgPG4HZu2HbV/EcZ/L/rbQv09RgQSEpBC/V2p6ySF2idqeybeV/Kcp9fNxTFvzOPzz6L2JPV9luK/r4J2Ij5vpM+B/l5E50MF7mSIpipW+0DPgB7foyM7TN+7WVQefYeiNpH4XtRVFrpxxR32xP5qWAepWFQy7uRDH4v5faTot1K3SZKIf2b1kCLOVKz06Pwyda8xscw419sZGHPUNp7YFwCkAEkCST1Nu0z8ZuvrTFKadkhSTetOggASuk0k8lLothK1CwkWtdP6b0BDD73kb2UiFlH9/pzF14CzAbc0Yvo8Mm3TjPshdV5YfN6MreicsniJzpe5T0b7RyKK2T+5nzq/xADG49mZos+pNsLNTF5xuf4NgR5MJIU6dyK6Nup8qnUJEvp7Z861UNdFCL2u6hzFugNLL0z/vqXWTVw8PYMgY6pNRH9byrgeus3Ez0Ym1Hni+S9x3RnT9dDnC4lzDabrULcNLL1/sj04DuA4IFenDgdcF6TL4bjqfheVufp4SM9uSRJS6tkySYJkqM4h6XNNIi7TKaSaVXPqySc3aLsWi8Wy/rPeCi6TJk2C4zhYsmRJqnzJkiXYaKONGn4mm80im82ujeqNiJ2PPRk41v7QjAUUdZiiB1ox1Dw8TRvVzzn6AU3/DRLCdNDIdITq8jKdmv2jp3xdFj2Qm22JTjxFn9P51Fu9+jd8dePA09sS2agjyPRDcpTn0QOvfliMHnwbrDPPi5dMJk5dF8yx7/wsFotlTUJEWjTQv01aJFCigVT36ej+PUTeiMCWliEW6wZJxRBB6we5lA2vseOAZbLgGQ/wPNsOLBaLZQ2w3goumUwGe+yxBx566CEcc8wxAAApJR566CGcf/7567ZylnUGY8y8obGPDRaLxWIZrzDGANe1v3XjkOiliL22FovFsv6z3gouADB37lycdtpp2HPPPbHXXnvhW9/6Fkqlkpm1yGKxWCwWi8VisVgsFotlXbBeCy4nnXQSPvjgA1x55ZVYvHgxdtttN9x///0DAulaLBaLxWKxWCwWi8VisaxNGI3fOVCHpa+vD11dXejt7UVnZ+e6ro7FYrFYLBaLxWJZR9i+gcViGWtWc2oPi8VisVgsFovFYrFYLBZLPVZwsVgsFovFYrFYLBaLxWIZY6zgYrFYLBaLxWKxWCwWi8UyxljBxWKxWCwWi8VisVgsFotljLGCi8VisVgsFovFYrFYLBbLGGMFF4vFYrFYLBaLxWKxWCyWMcYKLhaLxWKxWCwWi8VisVgsY4wVXCwWi8VisVgsFovFYrFYxhgruFgsFovFYrFYLBaLxWKxjDFWcLFYLBaLxWKxWCwWi8ViGWOs4GKxWCwWi8VisVgsFovFMsZYwcVisVgsFovFYrFYLBaLZYyxgovFYrFYLBaLxWKxWCwWyxhjBReLxWKxWCwWi8VisVgsljHGXdcVWJcQEQCgr69vHdfEYrFYLBaLxWKxrEuiPkHUR7BYLJbV5UMtuPT39wMANttss3VcE4vFYrFYLBaLxdIK9Pf3o6ura11Xw2KxjAMYfYglXCkl3nvvPXR0dIAxtk7r0tfXh8022wxvv/02Ojs7P/Q2Wqku1kbr1mU82WiluownG61UF2ujdesynmy0Ul2sjdaty3iyMZYQEfr7+zFlyhRwbiMvWCyW1edD7eHCOcemm266rquRorOzc7V/cMaTjVaqi7XRunUZTzZaqS7jyUYr1cXaaN26jCcbrVQXa6N16zKebIwV1rPFYrGMJVa6tVgsFovFYrFYLBaLxWIZY6zgYrFYLBaLxWKxWCwWi8UyxljBpUXIZrO46qqrkM1mrY0Wq4u10bp1GU82Wqku48lGK9XF2mjduownG61UF2ujdesynmxYLBZLK/OhDpprsVgsFovFYrFYLBaLxbImsB4uFovFYrFYLBaLxWKxWCxjjBVcLBaLxWKxWCwWi8VisVjGGCu4WCwWi8VisVgsFovFYrGMMVZwsVgsFovFYrFYLBaLxWIZY6zgYrFYLBaLxWKxWCwWi8UyxljBxfKhZywm6pJSjkFNLJahGatJ5Wx7Hd+0yj1tdesxFsdRq9VW20arMZ4mlxyLYxFCjEFNVp+x+M5Uq9Uxs9UK3z+LxWKxWMFlvaNVfgBb5YF+dSgWiwAAxtiobaxYsQIAwPnov0pvvfUWFi5cCGDdn5OIsWpntr2ODWPRVgHbXof7XKu019ESdTxX5ziWLVsGQLWR0XZkX3vtNaxcuXK12uuiRYvw85//HL29vaO28dJLL+Gwww7Dq6++OmobpVIJvu9j5cqVAMauzY/mGtVfj9Wpy7pu677vA4gFsdHUZ/HixQAAx3FWS3R55ZVXsGDBglF/HlBt/uabb8YHH3wwahvPP/88tt9+ezz99NOjvkf39fVh5cqVWLx4MRhjo2ojYRgCiK/JaNvZeLu/WiwWy2ixgkuLs3TpUjzzzDP4+9//DmB0Ha7oRy76ER0Nq1atwptvvokXX3zR1GOkP8KLFy/GY489hv/93/8FoB7oR2rjxRdfxI033ohSqTSiz9WzYMECfPrTn8Zrr702ahvPPvssDjvsMMyfP3/UNp577jlsueWWOPfccwGMriP8xhtv4Ac/+AGuvfZavPbaa6N6qFm6dCmeffZZPProoyCiUXeUbHtNMxbtdSzaKmDbaz0vvfQSrrrqKpx++umYP38+XnzxxRG3kyVLluDll18e8d9OsmjRIsybNw9z587Fgw8+aASPkfLyyy/jC1/4AmbPno3rrrsOixYtGpWNrbfeGp/97GcBjK4j+/TTT2PatGn45S9/OeK/H7Fw4ULstddeeOqpp0wHdqTfvQULFmCfffbBI488MmqB8Pnnn8eJJ56Igw46CLNmzcJf//rXUbX5ZFu7+eab8cwzz4AxNqK2/8ILL+CCCy7AMcccg8svvxxPPvnkiOvyzjvv4MknnwQwevH21Vdfxde+9jWcdtppmD9/Pt54440R23jxxRdxzjnnYNasWTjnnHPw7LPPjrg+r732GqZMmYKjjjoKwOhFl6effhrbbbcd/vKXv4z4sxELFy7E3nvvjTfffNN8f0fTXg888EC89dZbePDBB0dl47nnnsM///M/45BDDsH06dPxwAMPjLiNvPDCC7jwwgtxwgkn4OKLL8Zf/vKX1W7z6/L+arFYLC0BWVqWBQsW0LRp02irrbaiyZMn0+67705//vOfqVQqNW3j2WefpaOOOopWrlxJRERBEIy4Hs888wwdcMABNG3aNJo6dSqdcsopI7axcOFC2mmnnWiXXXah7u5u2n///Uf0eSklFYtF2mqrrYgxRpdddhnVarUR14NInVfXdekLX/hCw7/TDM899xx1d3fT3Llz6fXXXx9VPZ566ilqa2ujAw44gHbYYQd68MEHR1QHInVeN9lkE/qnf/onmjx5Mm2yySb0zjvvjKgeTz/9NG233Xa066670hZbbEE77rgj3XvvvdTb2zsiO7a9xoxVex2Ltkpk22s9zz33HHV1ddHs2bNpv/32o7333ps23XRT+sMf/tD0MT3//PO0+eab04knnkjPPvvsiI4hYuHChTRlyhQ68sgjadq0abTddtvR9ddfT0KIEZ/XiRMn0mmnnUbHHHMM7bPPPvTVr36VpJQjsvPLX/6SNtxwQ9pnn33os5/9rCkXQjT1+QULFlBbWxt98YtfbPpv1vPWW2/R5ptvTp///OdT5dH3p5m6LFiwgPL5PF133XV04okn0h577DHiejz33HPU09NDc+bMoRtvvJFOOOEEOvzww6lSqYzonD7zzDPU09NDZ555Jn3iE5+gI444gnp6euj+++9v2sYLL7xAnZ2ddNppp9Hs2bPpsMMOo2w2S7fffnvTNl588UWaPHkyzZw5k/785z83/bkkzzzzDG2wwQZ04okn0r777kszZ86kc889l4rFYtM2Fi5cSD09PXTOOefQeeedR7NmzaIzzjiDfN8f0Xl97LHHaLPNNqNp06bRrFmzTHmzbZVItZNCobBa7fW9996jbbbZhubOnZsqL5fLI6pHLpeja6+9lubMmUPbbLON+e1r9py88MILNHHiRPq3f/s3uvPOO+mzn/0sTZs2zdwXm7Hz7LPPUk9PD5177rl03nnn0UknnUSu69L3vve9EV3jVrm/WiwWS6tgBZcW5f3336ett96aLr/8cnr66afp8ccfp0MPPZQ23nhjmj9/PvX19Q1r4/XXXzcdvj322MN0YsMwbLoe0Y/4JZdcQg8++CDNnz+fdtllF/rP//zPpm08//zzNHHiRLr88svphRdeoD//+c80efJkeuSRR5q2EXHeeefR2WefTYVCgS644IIBnfnhfsifeeYZKhQKdMUVV5iyvr4+Wrp0adN18H2fTjnlFDrnnHPM33ziiSfo7rvvpqVLl1KlUhnWRvSgd9VVV1GpVKItt9ySLrrooqbrQET0zjvv0NSpU+krX/mKOQ/bbLMN3XHHHU3bePPNN2nzzTenq6++ml555RV699136bDDDqMNN9yQbrrpJlq2bFlTdmx7bczqtNexaKtEtr3WE4YhnXrqqSkh7qmnnqKzzjqLHMeh3/72t0Q0dMft3Xffpf3224923XVX2muvveiss86iZ555punjICJ64403aNq0aXT55ZeT7/tERHTppZfS1KlTm7omEa+99hptscUW9KUvfcmUnXXWWXThhRcS0chEy9/97ne07bbb0te//nXaZZddTJshIurv7x/ysy+88AK5rkvXXnstEanz99BDD9F3v/tdevTRR5sW1n72s5/RQQcdZGx86UtfopNPPpmOO+44euihh4b9/FNPPUWZTIYuvfRSIiL64x//SFtssQX97Gc/a+rvExFVKhU69thj6bzzzjNl3//+9+mUU04h3/fpgw8+aMpOsVikWbNmpQTTJ598knp6eiibzdL//M//mOMcin/913+lY445xqwvWbKErrjiCnIch77zne8Q0dD3kvfff58OOugg2n///enII4+kww8/nB5++OGmjiHirbfeoh133NGcVyKiW265hbbeemt69913m7Lx+uuv0zbbbJNqq1dffTWdeeaZRESmUz/c+ZBS0l/+8hfaYYcd6M4776Rtt92WjjrqKLO9mfpE7TU6Hikl3X333fS1r32NfvrTn9JLL73U1DHdf//9tN9++5l6X3DBBfSxj32MZs6cSbfffvuw3+WnnnqKXNelyy67jIiIFi1aRJttthndcMMNTf19IvUd/8xnPkOf+cxnTNmDDz5Ixx13HK1YsYLefvvtYW1Uq1WaPXs2XXDBBabsvffeo+23354ymQx94xvfIKLhn7Fa5f5qsVgsrYQVXFqUJ554gqZOnUovvvhiqvyMM86gzTffnO68884hf/hKpRJdeOGFNHv2bLrrrrton332oenTp4+oE9vb20uf+MQn6HOf+5wpi36UP/3pTzd1HMuXL6d99tkn9bYyCAI6+OCD6a677qIf/vCH9P777w9rJ/pxPvXUU+mb3/wm/eEPfyDP84zd+fPnD/tQsWTJEurq6qKPfvSjpuzcc8+lfffdl7bffnv62Mc+ZjqzQ53bSqVCM2fOpLvvvpuIiA455BCaPn06tbe30+abb05f/epXacmSJYN+/uWXXybGWOqhc968eTRp0iT629/+NsyZiPn9739Pu+++e6ojc/TRR9N1111H559/Pv3ud78bsh5ERHfffTcddNBB1N/fb9rEr371K8rlcrTddtvR/PnziWj4hyzbXtOsbnsdq7ZKZNtrPb7v00c+8pFUx5GIaOnSpXTeeedRLpejv/zlL0PW46GHHqJZs2bRggUL6LbbbqPdd999RJ2CMAzp29/+Np144on0/vvvm2NZvHgxbb755rRw4cKm7cybN4/OPPNMWrFihTnu888/nw4++GD6yEc+Qqeeeio9+uijTdl7++236ZOf/CQtW7aMvvnNb9L06dNp7ty5dMYZZ9C8efOMMFSPEIKuueYaYozR888/T0REBx98MO26667U1dVF22yzDR1yyCH09NNPD1uHG2+8kT7xiU8QEdG+++5rPCBmz55NjDH6/ve/T0SNr/Hy5ctpzz33TF3bDz74gGbMmNH0PYBI3UumT59ON998sym7/PLLafPNN6ddd92VttxyS/rhD384aD0ili1bRjvuuCP94he/SO07e/ZsOuiggyiTydBf//rXYetz3HHH0VlnnTWg/Gtf+xoxxujee+8dsi6PP/44HXLIIfToo4/SfffdN2LRRUpJP/rRj+iYY46hN954w9zfqtUqbb311sbbbTjuuusu+sxnPpP6ns+dO5emT59Oe+21Fx1wwAHG82e4+1qpVKLZs2fTu+++S7/85S9p6tSpdOyxx9IZZ5xhhOGhmDdvHjHG6Le//S0JIegjH/kIzZw5kzbffHPaZZddaJtttqHHHnts2GO644476J/+6Z+IiOjAAw+kI444gi6//HI6//zziTFGV1111aDH09fXRx/72MdS7bWvr4+OPvpoOvLII4f92xGVSoUOPPBAuvrqq03ZVVddRT09PbTzzjtTV1cXXX311VStVge10d/fT9OnT6d58+YRUSzUnnXWWXTUUUeZczUcrXB/tVgsllbDCi4tyh//+EeaNGkSvfbaa0REqYeHT37yk7TxxhsP2+H67ne/S3feeScRET3yyCMj7sQuWbKEzjjjDGMjesj63ve+Rx/5yEdISpl6AB+sHjfddFPqwe4rX/kKZTIZmjlzJk2bNo0mT55sOgSD2Yj+9p133ml+yH/7299SJpMxrvhvvvnmkMdDRHT88cfT7rvvTvPnz6e9996bDj30UPrmN79Jt9xyC+2yyy60ww47mLdsg9WlUqnQYYcdRvfccw996UtfolmzZtFzzz1HpVKJLrvsMtp5553pBz/4QareSf7617+at5IRTz/9NO2444500003EVFzAsOPfvQj6ujoMJ2zm266iTzPo1NPPZX2339/mjp1Kt1www1D2rr++utpypQpqbIHHniAzjzzTPr4xz9OG220UVOuxH/6059Wu73+93//d0u012984xur3V6j8tVpryeccMJqt1Ui1SlqhfZ6++23r3Z7veGGG8akvX7uc5+jfffdl1asWJEqf+utt2j27Nl01FFHDTlEqVKppDpjP/jBD0ynICmWDHVdbrvtNvr2t7+dKluyZAl1d3fTn/70p2GPIeK1115Ludxfc801lMvl6Gtf+xpdeeWVdNJJJ9HWW2/d1FCyUqlE06dPp6eeeopKpRL993//N02cOJEYY+a4Brs+ixcvps9+9rOUzWZp5513puOOO44WLFhAvu/TPffcQ4cffjidcMIJw3rK3HHHHTR58mSaP38+HXXUUbR8+XKz7atf/Sq5rjvkEIO///3vJh/V9Z577qFcLkf/93//N+w5IFLX7ZOf/CTtsssu9Itf/IK+8IUvUKFQoNtuu43uvfde+trXvkac82EFi6VLl9K+++5L1113nfF0eP3112nKlCl099130xFHHEGnnHIKhWE4ZFu5+uqrabPNNjOeG9G+vu/TueeeSzvssMOwQvCCBQtM/t577zWiy//7f//PlEff/0b3gXvvvdd0xqM69Pf30yabbEI///nPh/zbEStXrkyJ8jfccAPlcjn61re+RfPmzaPzzjuPMplMU4JjtVqlGTNmGBHgj3/8I3V3d6fa6nDeXVdffTU5jkPbbLMNzZ49m1566SUKw5D+/ve/0wknnEB77rnnsCLwfffdR7lcjn70ox/Rcccdl9r/9ttvJ8bYkN6RSU+a6Lw/8sgjxBgzQl0zXHjhhdTR0UG33HILfe5zn6N8Pk8//elP6amnnqI77riDGGN0zz33DPp53/fp6KOPprPOOsvc+9544w2aNGkSPfDAA3T66afT/vvv39QQ4Va4v1osFksrYQWXFkVKSTvssEPKjTj5dmKHHXZIuX4OZYdIPXg+/PDDAzqx5XKZXn/99YYPWNVqlZ588skBtr773e/SPvvskyprlnvvvZe22GIL+vWvf20epA866KDUm/yh+PWvf00zZsww9f3oRz9KjuPQySef3HRdPvWpT5HjOPSJT3wiNTzj3XffpS222GJA7IBGHHfccbT77rvTGWecQT/5yU9S28444wyaMWPGoJ9NnutknS+88MKmO4wRe+yxB02YMIFmzZpFmUyGHnjgAbPt4osvpq222mrAQ0+SF154gbbYYgu6+OKLacmSJfT4449TW1ubcR/eeuut6bvf/e6w9RBC0I477jiq9tqoAzea9loul+mJJ54w6yNtr40ezkfTXpN/YzTtNSkKrW5bjf7G6rTX5HkZTXtNfmbPPfccVXuNbDz//PNj0l7vuusu2m233egb3/jGgOFut912G02ZMoXeeuutpo8r+lz9m9hrrrmmKa+OyFalUqHtt98+5Tn061//uum6VKtVOuqoo1Jvov/85z/ThhtumDrXjfB9n4IgoMMPP9zE+DjppJOos7OTpk2bZoYoDUX0FnvPPfc0ni4R//Ef/0EbbbTRsEOL3njjDTr66KNpjz32SA0tIlKC1LRp0+iuu+4a0kb9tVm0aBHtscce9OUvfzllbygeeughOvHEE+mYY46hqVOnptpVrVajnXbayXgvDMWcOXNo+vTp9KlPfYpuuOEGam9vN154N954I+20004N74HJOv7tb3+j/fffn84//3zToY+2/+EPf6ApU6bQU089NaSNen73u9/REUccQbNmzTLC0UUXXTTA46ZR3ZLnd4899qBf//rXZv1HP/rRgOE4jWzUajU6++yzU+0yEqMaxaZp9Lt52mmn0S9/+UsiUsL+hAkTaPPNN0/9DtVTX5frrruOdtlllwHn7+c//zlNnDixofiTrIsQgk4++WTaaqutjAgehqHZZ8aMGfTNb35zgI3BvMWklNTX10cf//jH6dOf/jSVy+VBr2Oy/LXXXqPPfe5zdOqpp9Luu+9ON954Y2rf/fffn84999whbXzrW9+iffbZhw488EC67LLLqK2tzXzmpz/9KW255Za0atWqhnVJctddd9GMGTNa5v5qsVgs6xo7S1GL8MEHH+DJJ5/EwoUL0d/fD8YYbrjhBixYsAAXXXQRACCbzZqpFHfdddcB02UmbSSnkRVCwHEcHHDAAbj++utRKBTwkY98BEuXLsUll1yCz3zmM6hWq8bGE088YaYl3H333QGoaPnJWQSi2QAYY7j44otx3HHHNaxH/ewsU6dOxe9+9zt8/OMfR09PDwBg7733HvJ8lMtlAGr2mm222QaTJ08G5xxnnXUWXn75Zdx44434zW9+g7PPPtucn0Z2+vr6AAB33HEHLr/8cnzyk5/EBhtsYPadPHkyttxyS/T39w95bQDgP/7jP1CtVnHbbbeZqXZJzzgxa9YsZLNZM91l/XmNznV0/qKo/eeccw7a29vxwx/+MGVvqGN54okn8OMf/xinnnoq9ttvP+y3336oVCoAgMMOOwzZbDZ1DZI2KpUKttlmG3z+85/HPffcg+nTp+OQQw7B2Wefjblz50IIgWw2a44vSblchpTSHAvnHDfccAP+8Y9/NN1eIxtBEKTKwzBsur1GNiqVCvL5PPbYYw9jo9n2GtloNCtSs+01eT6iv0tE2GqrrZpur5GN5Ewbd9xxBy699NKm2+pgdfmP//gPlMvlpttr8ry6rpuy32x7jWwk7T7++OO4/fbbm26v9Ta23HJLfOELX8AvfvGLptvrG2+8ge9973v4/ve/j9///vcAgBNPPBEHHHAAvvvd7+InP/lJ6jMzZ85EoVBIndtGNqJzG12v0047DRdeeCGeeuopfPvb38ZJJ52Ea665xpy/pI37779/wHUD1PeIc25sX3755TjnnHNS53aoumSzWfzmN7/Bxz72MXOdJkyYgMmTJ2PChAkNbTzwwAMAAM/z4LouZsyYgVdffRWf+cxn8PDDD+M3v/kNLrroItxzzz34/Oc/P2Q9NthgA1xzzTX49re/jW222SZ1fqZOnYqenh5kMpkhbWyxxRY45JBD8Oabb2LBggVYtGiRmSWlvb0d3d3dyGazQx5L8jsIqHZzxBFH4Dvf+Q6WLl06YNaVRtfm4IMPxl133YX58+fDdV1ssskmxmYYhujs7MTGG288qJ377rsPgPrunXTSSVi1ahXuu+8+fPnLX8bNN98MAOjq6kI+n09d31WrVpm2EJ27vfbaC0cffTQee+wx3HTTTXj33XfNMWy//fZoa2tLfW+SNupnhYn+1pFHHomLLroInHN87Wtfw7HHHov//M//NNcnsuE4zoB7Y/Leyjk3Nr/0pS/h/PPPN9uTNpL3NSJCJpPBvHnzcNhhh5k6Msaw8cYbY7PNNhvyWCL7O+20ExYsWIBTTz0Vf/rTn/C73/0Ot956Kx5++GGcdNJJqToPVpcvfelLuP3227H99tsDiO9vU6ZMwQYbbIBCoTBkXTjnOO6449Dd3Y1Fixbhtddeg+M4Zp/29nbz25G04Xlewxl7GGPo6OjAoYceinvuucdc6+HayNZbb42bb74Z3/ve9+C6LjbaaCMA6vsXhiGy2Sy22mqrhjai63vRRRfhvPPOw9Zbb42XX34ZX/3qV3HrrbcCUPeWzs7OAfV977338Nvf/hb33HMPnnjiCQDq/rrPPvvge9/7XlP316SN5CxaRGTO0XD3V4vFYmlp1oHIY6lj4cKFtMMOO9Auu+xCjDETJHPlypV000030bbbbktnn3126jMnn3wynX322WY2i0Y2km8IoryUkh5++GHaf//9yXVdamtrM29TG9lo9Gblpz/9Ke21115ERHTZZZdRoVAwY3IHszGUZ8Fpp51GF1xwQVPHEgQBHXroobTtttvS5MmTjQfO//zP/9DkyZNp8eLFQ57X5Ewx9eOZgyCgj3/84+bN0GB1EUJQrVajX/ziF7TVVlvRbrvtRs8++6yxfeGFF9KsWbOMC3mz5zUIApo1axYdeuihA7YNdyy33347TZ8+PfWZOXPm0AEHHGBcd+ttRDE5KpUKvfvuu/Tggw+m3m729fXRoYceSj/96U/N+SBSwVwPPfRQOuigg2jbbbel73znO/TOO+9QGIb0jW98g6ZOnTpse623ceutt9KiRYvM/tFbyKHa63A2ovoO1V6Hs9GI+vY6lI0wDOnggw8etr02svHyyy+bv1k/40Wjtjrc8dx999205ZZbDttemz2vQ7XXRm3klVdeMdtvu+22YdtrvY1bbrnFvN1/77336Pe///2w7TWavWefffahbbbZhtrb2+n00083b13POuss2nnnnWnOnDn06quv0gcffECXXHIJbbvttiYAbyMb//Iv/0Lvvfee+dvJt+bf//73yfM86urqMm/Nm7FBpO75G2ywAT366KP0la98hXK5HD3++ONm+0jrQqQC8c6cOdMEeh3MRuR58pWvfIUYY7TVVluZ9rpy5Ur6zne+Y4YMNrJx5plnpu6/9Vx00UV02GGHGY+oRjbOOOMM481200030UYbbUTTp0+nv/71r/TMM8/QlVdeSVtuuaV5Oz6S8/H222/TbrvtRldffXXq/jvYsSRtHHvssTR37lx6//33qVKp0JVXXkmbb755aphWIzunnXZayiOg/m3/mWeeSbNnzzbfxeeff5622mor44lDlPaEuPLKK2nvvfemo48+mhYsWECvvPIKXXrppbTFFluYIUWNbNT/3iR/j3/zm99QT08PdXd3m2FHzdggUr8dW2+9Nf3yl7+kr3/965TL5YyX4UjrQaTi5Oy6665NH8v8+fOJMUbTpk0zbbVardK9996but80sjPcMMjPf/7ztN9++5n22MhG0vvvxz/+MW233XbU2dlJv/rVr+gPf/gDXXHFFbTpppuadjKScyKlpP32248+/elPp9pAM8dy1lln0cc+9jFatGgRLVu2jK666iraZJNNzDlpZKN+Fr16D5xzzz2XDj/88NRv0cKFC2nrrbemvfbaiyZNmkR77rmnuf8SEZ1++um0yy67DHt/rbdRP0QteY4a3V8tFoul1bGCyzrm1VdfpcmTJ9MXv/hFeuONN+iWW24hxpiJ77Bs2TK69dZbaeONN6YZM2bQeeedR6eccgoVCgUzjr2RDc75gKCc0Y9ypVKhj33sYzRhwoQR2yBSnftDDjmErrzySspkMuZBZyQ2iNTDyhVXXEEbbrihGdc9nI1isUinnnoq7bnnnqnhTkTpWTRGWpcwDOmKK66gKVOmmE7FYNcmetgvl8t0//3309SpU2mzzTajQw89lI477jjq7u42bq7N1iN6cPvHP/5BnPPUQ0szNt5++22aMGECHXnkkXTzzTfTOeecQxMmTBiyHsljqadSqdBll11GU6ZMoTfeeMOUv/zyy7TBBhvQnDlz6Oc//zldffXVxBijY489lp5++mnyfZ9uvfVWmjJlyqDtdTAbs2fPTo3bjh6yGrXXZm0QDd5eR2Ijukb17XUoG9G4/VNPPZVmzpw5aHttxkaSRm11KDvHHXec6QTdf//9NG3atEHba7PnJLqXNGqvQ9mIYt+8/fbbNHHixEHb61DH0ujaNGqv/f39tO+++5qhbO+//z7dd999NGHCBDrkkEOMeHPNNdfQgQceaGbH2mijjegf//jHsDaOOOIIevXVV00dhBAUhiFdeOGF1NPTY9rqSGz09/fTjBkz6KCDDkp1Xkdqh0jN6PRv//Zv1NPTY87rUDYOP/xweu+99ygIAjrvvPNMLJSoAxh9H4eyMWvWrFSbjOrxhS98gSZMmGCGZwxl49BDDzVix09+8hM64ogjiDFGO+20E02dOnVU1yaq/+GHH04HHXSQ6Vw2a+O6666jmTNn0oYbbkgHH3wwTZkyxdRjODuHHXbYgLosWLCALrroIurq6jLDI9566y3abbfdaNq0abTzzjvTNddcY/ZPdoZ/+MMf0pFHHkmMMdp5551piy22MHUZykajjr0QgubMmUMdHR1N1aPehhCCDjjgANppp52oUCgYcXAkNojUlNUXX3wx9fT0GNFnKBtJgeGLX/xi6ntST7N2Il544QWaM2dO6nvT7LX585//TKeddhq1t7fTjjvuSNOnTx/VtYk4++yzae+99zYiZbM2fvKTn9BHPvIRymQytM8++9Dmm2/eVD0aDR999NFH6XOf+xx1dnamhu+8+uqrtOmmm9Ill1xCq1atoieeeIJOO+00OvPMM1Mvs4a6vw5loz6ukZSy4f3VYrFY1ges4LKOueKKK+if//mfU2VHHnkkPfLII/TII4+YN4avv/46nXbaaXTCCSfQZz7zmVS09sFsPProo/TYY4+l3k77vk9f//rXKZPJpN4OjMRGFN2/q6sr9aAzEht/+tOf6FOf+hRtvPHGqQfXoWw88sgjtHLlSurv7x824OhI6vLQQw/R8ccfTxtuuGFTdYmuTfRGuFar0dVXX00XXXQRXXrppfTCCy+Mqh5SSnr77bfpxBNPTL05bdbGgw8+SDNmzKAZM2bQP//zP4+ojST/3t///nc65ZRTUg9GERdddBGdfPLJqbLTTz+dcrkcHXfccSZuw2uvvUann356w/Y6mI18Pk/HH398qk2FYdiwvY7Exne/+92G7XUkNv7v//6vYXsdysZxxx1Hr776Ki1dujQlWtUzXD2SQs0f//jHhm11KDvRtYkelqvVKl177bUN2+tIzgkRNWyvzdp44IEHaI899mjYXoezkfT6eOKJJxq210qlQrvvvvuA6YBfeuklmjRpUur7sGTJErrvvvvokUceSQmZw9k45phjUp22v//978QYS9VvJDZWrFhBW2yxBU2YMCEV5HSkdv7617/Sv/7rv9Kuu+6asjOSczIYI6nHY489RmeeeSZtv/32qe/vcDaOPvpoUyalpCeffJJeeeWVVEDSkdQj6ki+9dZbqfgiw9n4+Mc/bsruvfdeuv7662nevHkDAhAPZ+fYY481HeJVq1bRj3/8Y5oxY4Y5J1JKuv766+moo46iBx54gK666irafvvtB+3YE6m4Ls8995zxBmnGRr3AsHDhQtpkk03Md3KkNoIgoP322y8lTozUxrPPPmu8sEZio5mp00dal4ULF9LFF19Mu+yyi/nejObavPLKK7R48WIT92s014ZIzZYVCZjN2Eh6pTzzzDP0/e9/n+6++27zvDTSeggh6Ne//jXtu+++qftIrVajuXPn0oknnpg69u9///s0ceJE470SsWzZsgH315HaIGp8f7VYLJb1ASu4rGMuuugiOvLII02gyMide+bMmTR58uQBswgQDfxhHsrGRhttRLNmzUrZ+OEPfzggoGEzNqIZHv72t7/RvvvuO2CKvpHY+Otf/0qXXXZZqrPXzPk47LDDhoz4P5q6PProozRnzhx67rnnRlSXww8/nB566KHVrkf99a0fPtJMPZKz5vT19Y3IxmBtJOmSHXH88cebgI+Re/x1111Hhx9+OG277bZ0+eWXD/hMfXsdysZ2221nhjpFb7catddmbRAN3l6btVGpVAZtr8Odj8suuyx1LI0YST0Ga6sjPSerW5fk29T6tjacjWQbGay9jvRYGrXXYrFIm2yyScMOydNPP01tbW2paVQb0YyNr3zlK6nPREMQRmvj3//93we0s9HYefTRRwcMWWrGxrXXXjvEGRl5Pf70pz8NCJS7Lq5No+9gMzaaCYw70rqUy+UB7eT999+n2267jYiUABh1hpPnYbBAqyOxUe9NUT9bzEht/OAHPxjw3RupjWeffXbAbEDN2GhmdrSR1uWpp54aMONTMzYGCy4+2no0CuK+rtpI/VC4SqVC3/zmN+l73/te6nijIPzR+RsqaHOzNuqp/95YLBbL+oAVXNYxt956K7W1tdHxxx9Pp5xyCnmeR/fccw8Vi0X6y1/+QgceeCBdeumlqTgo9T/mzdoYqtPXrA0i9ePb6EdvJDaEEA0fKEZiYyzOK5F6aGv0kDKS8xo9WIz22kTnZDTHcsABB5g2srrnY7jZOy6++GLaeOONjYvz+++/Tz09PfTggw/SrbfeSvl8fsBwqfpzMpyNQqEw6NCv0dgoFosN22szNpJDrhq117V1LFE96qe2Xt26rItrk8/nh52hYizqQaSm+N50003pN7/5jSmLzt91111He++9Ny1fvnzIdt+sjah9NLrPNmMjOQvV6tQlitWyuscz1O/FWBzP2qrHWNhYtmzZoPf4kdppdja99957r2Fn+Fe/+lVTQsNwNqK6DVefwWzcfffdTdVhTdv41a9+1dSsU61WlzVp45e//OVqt5HhbCS9vKI29P7779PUqVNT9/d6T8zVtWGngrZYLOsjVnBpAf7rv/6Lvv71r9Pxxx8/YNq+008/nQ488MBhf4CHs3HAAQeMiY1Gnc6R2hjuQWAsjqWV6jKebLz55pu03377UTabpSOOOIIKhYIJkLts2TLaZJNNhvVAsjbG3kYr1WVd2Xjvvffob3/7G91///3me71o0SI64YQT6MADD6Tf//73qf3nzZtHO+ywA5VKpZaz0Up1sTbW3rUhotTLlXfffdd0hq+66iqaM2cOMcbo3XfftTYa2GiluownG0k79913X+o5IWnzxRdfpIkTJxqx5Mtf/jL19PQYoXEsbFgsFsv6iJ1PbS3y0ksv4bbbbsM777yDXXfdFQcddBD23HNPnH/++QCAOXPmIJ/PA1DTJianPpRSgnM+ahs777zzmNhY3WPZeeedzfSGY3EsrVSX8WSj0Tk5/PDDMX36dPz+97/HLbfcAiklTj31VJxyyikAgLfeeguFQgFdXV2DthNrY/VttFJdWsXGwoUL8fGPfxzZbBZLlizBRhtthKuvvhqzZ8/GJZdcgmuuuQZXXHEFVqxYgZNPPhlBEOD111/HhhtuaKZVbRUbrVQXa2PtXJuNN94YV155JWbNmoUJEyakpiaOpgW/9tpr0d3djccffxxTpkyxNups2PO67s5r9BzBGAPnHO3t7bjuuutw00034c9//jMmTpw4JjYsFotlvWXtaTsfbp577jnq7u6mE044gc4991zabLPNaPfdd6dbbrnF7HPttddSW1sbPfzww/TYY4/RVVddRRMmTDDxGqyNtI1Wqst4sjGYnd12243mzZtn9qn3hrnkkktot912M0MarI2xt9FKdWkVG0uXLqXtt9+eLr/8cnrttdfo3XffpZNOOom23XZbuuaaa6hardKCBQvo3HPPJdd1adddd6V99tmHenp6TNDSVrHRSnWxNtbutdlhhx3oqquuMkOxkm/zP/3pT1NnZ6e5R1sbaRutVJfxZGMkdohUTJgZM2bQSSedRJlMxgRjHgsbFovFsj5jBZe1QH9/P82aNYsuueQSU/bOO+/QxIkTafLkySaYnhCCTjrpJOKc07bbbku77babiQxvbaRttFJdxpONkdiJePjhh+mCCy6gjo4O06mwNsbeRivVpVVsECnRZssttxzwYP7FL36RdtppJ7rppptISmniFX3lK1+hefPmpQJ9toqNVqqLtbH2r80uu+xCN9xwQ2ro0fz586m7uzsVx8La6B4QG6RV6jKebIzUzvPPP0+MMcrn803fo5u1YbFYLOszVnBZC5RKJZo5cybdeeedZp2I6IQTTqBDDjmE9t13X/rd735n9n/44YfpmWeeSUXttzaeGTCLQavUZTzZaMbOfvvtl7LzyCOP0HnnnUfPPvustbEGbbRSXVrFBhHRggULaNNNN6WHH36YiNKzJl144YW0xRZbmOlmB6NVbLRSXayNdVOXrbbaKmVj8eLFA6ahtjbSNlqpLuPJxkjtvP/++/S5z31uwCxrY2HDYrFY1mes4LKGkVLSkiVLaMqUKXTjjTea8rfffpt23HFH+tGPfkTTp0+ns846y9po0kYr1WU82RiJnX/5l39Jfa5SqVgba9BGK9WlVWwkmTlzJn30ox8169Vq1eT33HNPOvnkkxt+rhVttFJdrI11W5ehgrpbG61bl/FkYyR2iMbmHj2YDYvFYllfsYLLGqL+B+zmm28mxhideeaZdMUVV1B7e7uZdePnP/85bbnllqmpJ62NgTZaqS7jycbq2EnOWmVtjL2NVqpLq9goFovU19dHvb29puwf//gHbbjhhvTJT37SlEWfmTt3Lh199NGpv9sqNlqpLtaGvTbri41Wqst4stFqdbFYLJbxghVc1gAvvfQS3XTTTfTee++ZMiEE3XbbbTRz5kw64ogj6Prrrzfb/uu//otmzJiRCl5mbaRttFJdxpONVqqLtWGvzXA2nnvuOTr88MNpxowZNGXKFPrJT35CROqN6E9/+lOaNGkSHX/88eT7vhEVTz31VDr55JMpCAKSUraMjfF2POPJhr02rWvDXpvxf14tFotlvGEFlzHmlVdeoQkTJhBjjC677LLU7CJE6kcn6UpJRHT++efT8ccfT5VKhaSU1kadDXte7Xn9sNkgstem3sZzzz1HEydOpIsvvpjuuOMOmjt3LnmeZ4I8lkol+t///V/adNNNafvtt6djjjmGTjzxRGpra6NnnnmGiKhlbLRSXawNe23WFxutVJfxZKPV6mKxWCzjDSu4jCHFYpHOPPNMOv300+mWW24hxhj927/9W6pzkVTvX3jhBZozZw51dHTQwoULrY0GNlqpLuPJRivVxdqw12Y4G8uXL6fDDz+cLrzwQkpy0EEH0QUXXJAq6+vro0suuYT+5V/+hc4//3wzxWmr2Gilulgb9tqsLzZaqS7jyUar1cVisVjGIy4sYwbnHHvssQcmTpyIk046CZMmTcLJJ58MALjkkkswadIkMMYAAP39/XjwwQfx1FNP4eGHH8Yuu+xibTSw0Up1GU82Wqku1oa9NsPZCIIAq1atwvHHHw8AkFKCc46tttoKK1asAACQeoGAjo4OXH/99an9WslGK9XF2rDXZn2x0Up1GU82Wq0uFovFMi5ZMzrOh5disZha/9nPfkaMMfrCF75Ay5YtIyIVOHLJkiUUBAGtWLHC2hjGRivVZTzZaKW6WBsDaZW6tIqNl19+2eR93ycioiuuuII+/elPp/ZLBmqsjwfQKjZaqS7Whr0264uNVqrLeLLRanWxWCyW8Yb1cBlj2traAABCCHDOcdJJJ4GI8KlPfQqMMcyZMwc33XQTFi1ahDvvvBM9PT3WxjA2Wqku48lGK9XF2rDXZjgb06ZNA6DeiHqeB0C9MV26dKnZ59///d+RzWZx4YUXwnVd4znTajZaqS7Whr0264uNVqrLeLLRanWxWCyWcceaUnIsSrmPorD/7Gc/I8/zaLvttiPXdU0QMWtjZDZaqS7jyUYr1cXaaN26tJINIqIvfelLdOSRRxIR0Ze//GVijNGCBQvWKxutVBdro3XrYm20bl3Gk41Wq4vFYrGMB6zgsoaRUpofnoMPPpgmTJiQCo5pbYzcRivVZTzZaKW6WButW5dWsBEJNldddRV99rOfpRtvvJGy2Sw9+eST652NVqqLtdG6dbE2Wrcu48lGq9XFYrFYxgNWcFkLhGFIF198MTHG6Omnn7Y2xsBGK9VlPNlopbpYG61bl1axcd111xFjjLq6uujxxx9fr220Ul2sjdati7XRunUZTzZarS4Wi8WyPmMFl7VAGIY0f/58euqpp6yNMbLRSnUZTzZaqS7WRuvWpVVsPP7448QYW61pRVvFRivVxdpo3bpYG61bl/Fko9XqYrFYLOszjIhoXceR+TBARKsdHMzaaN26jCcbrVQXa6N169IqNkqlkgnKu77baKW6WButWxdro3XrMp5stFpdLBaLZX3FCi4Wi8VisVgsFovFYrFYLGMMX9cVsFgsFovFYrFYLBaLxWIZb1jBxWKxWCwWi8VisVgsFotljLGCi8VisVgsFovFYrFYLBbLGGMFF4vFYrFYLBaLxWKxWCyWMcYKLhaLxWKxWCwWi8VisVgsY4wVXCwWi8VisVgsFovFYrFYxhgruFgsFovFYrFYLBaLxWKxjDFWcLFYLBaLxWKxWCwWi8ViGWOs4GKxWCwWi8VisVgsFovFMsZYwcVisVgsFovFYrFYLBaLZYz5//0lepQ6hgGcAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(df_grouped)" + ], + "metadata": { + "id": "6wZ4FIMSDhZH", + "outputId": "5151ec5a-f644-4ac4-e19f-4c5e5d3dcb35", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 36, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " 1980 1981 \\\n", + "Region Features \n", + "Africa distribution losses 1.838808e+01 2.008996e+01 \n", + " exports 3.830000e+00 4.222000e+00 \n", + " imports 3.830000e+00 4.222000e+00 \n", + " installed capacity 4.751185e+01 5.235385e+01 \n", + " net consumption 1.703969e+02 1.800037e+02 \n", + " net generation 1.887850e+02 2.000937e+02 \n", + " net imports 0.000000e+00 0.000000e+00 \n", + "Asia & Oceania distribution losses 1.030888e+02 1.101940e+02 \n", + " exports 1.190000e+00 1.158000e+00 \n", + " imports 1.507000e+00 1.585000e+00 \n", + " installed capacity 3.298037e+02 3.501267e+02 \n", + " net consumption 1.162783e+03 1.192011e+03 \n", + " net generation 1.265555e+03 1.301778e+03 \n", + " net imports 3.170000e-01 4.270000e-01 \n", + "Central & South America distribution losses 3.848911e+01 3.597511e+01 \n", + " exports 4.380000e-01 5.900000e-01 \n", + " imports 4.380000e-01 4.490000e-01 \n", + " installed capacity 8.209500e+01 8.901000e+01 \n", + " net consumption 2.699461e+02 2.799115e+02 \n", + " net generation 3.084352e+02 3.160276e+02 \n", + " net imports 6.938894e-18 -1.410000e-01 \n", + "Eurasia distribution losses 1.069000e+02 1.078000e+02 \n", + " exports 1.879900e+01 2.080800e+01 \n", + " imports 3.000000e-01 3.000000e-01 \n", + " installed capacity 2.685490e+02 2.784620e+02 \n", + " net consumption 1.168605e+03 1.123888e+03 \n", + " net generation 1.294004e+03 1.252196e+03 \n", + " net imports -1.849900e+01 -2.050800e+01 \n", + "Europe distribution losses 1.600011e+02 1.571558e+02 \n", + " exports 9.097800e+01 9.972200e+01 \n", + " imports 1.091910e+02 1.198030e+02 \n", + " installed capacity 5.452230e+02 5.606910e+02 \n", + " net consumption 2.006055e+03 2.011306e+03 \n", + " net generation 2.147843e+03 2.148381e+03 \n", + " net imports 1.821300e+01 2.008100e+01 \n", + "Middle East distribution losses 6.936780e+00 1.063793e+01 \n", + " exports 2.320000e-01 2.270000e-01 \n", + " imports 2.320000e-01 2.270000e-01 \n", + " installed capacity 3.216100e+01 3.815000e+01 \n", + " net consumption 8.450322e+01 9.227907e+01 \n", + " net generation 9.144000e+01 1.029170e+02 \n", + " net imports 0.000000e+00 1.387779e-17 \n", + "North America distribution losses 2.558195e+02 2.213935e+02 \n", + " exports 3.466465e+01 3.948212e+01 \n", + " imports 3.003898e+01 3.991357e+01 \n", + " installed capacity 6.737250e+02 6.987240e+02 \n", + " net consumption 2.461083e+03 2.531029e+03 \n", + " net generation 2.721528e+03 2.751991e+03 \n", + " net imports -4.625664e+00 4.314493e-01 \n", + "\n", + " 1982 1983 \\\n", + "Region Features \n", + "Africa distribution losses 20.151580 2.243898e+01 \n", + " exports 4.884000 4.146000e+00 \n", + " imports 4.893000 4.424000e+00 \n", + " installed capacity 53.269850 5.567965e+01 \n", + " net consumption 186.624820 1.932142e+02 \n", + " net generation 206.767400 2.153752e+02 \n", + " net imports 0.009000 2.780000e-01 \n", + "Asia & Oceania distribution losses 112.823400 1.210988e+02 \n", + " exports 1.179000 1.265000e+00 \n", + " imports 2.009000 2.005000e+00 \n", + " installed capacity 368.754730 3.923887e+02 \n", + " net consumption 1246.403292 1.324822e+03 \n", + " net generation 1358.396692 1.445181e+03 \n", + " net imports 0.830000 7.400000e-01 \n", + "Central & South America distribution losses 42.491350 4.555598e+01 \n", + " exports 0.475000 4.261000e+00 \n", + " imports 0.601000 4.033000e+00 \n", + " installed capacity 94.405000 9.988300e+01 \n", + " net consumption 292.554170 3.101096e+02 \n", + " net generation 334.919520 3.558935e+02 \n", + " net imports 0.126000 -2.280000e-01 \n", + "Eurasia distribution losses 112.600000 1.153000e+02 \n", + " exports 21.419000 2.320500e+01 \n", + " imports 0.300000 3.000000e-01 \n", + " installed capacity 286.588000 2.958390e+02 \n", + " net consumption 1234.063245 1.278407e+03 \n", + " net generation 1367.782245 1.416612e+03 \n", + " net imports -21.119000 -2.290500e+01 \n", + "Europe distribution losses 158.361830 1.687843e+02 \n", + " exports 95.810000 1.185060e+02 \n", + " imports 116.099000 1.406710e+02 \n", + " installed capacity 578.861000 5.915180e+02 \n", + " net consumption 2023.318170 2.084953e+03 \n", + " net generation 2161.391000 2.231572e+03 \n", + " net imports 20.289000 2.216500e+01 \n", + "Middle East distribution losses 12.137670 1.180281e+01 \n", + " exports 0.330000 2.910000e-01 \n", + " imports 0.330000 2.910000e-01 \n", + " installed capacity 42.966000 4.862400e+01 \n", + " net consumption 110.408330 1.249712e+02 \n", + " net generation 122.546000 1.367740e+02 \n", + " net imports 0.000000 -2.775558e-17 \n", + "North America distribution losses 227.643996 2.374148e+02 \n", + " exports 40.319463 4.231429e+01 \n", + " imports 40.319634 4.231404e+01 \n", + " installed capacity 717.576000 7.281270e+02 \n", + " net consumption 2476.041662 2.555950e+03 \n", + " net generation 2703.685487 2.793365e+03 \n", + " net imports 0.000171 -2.548900e-04 \n", + "\n", + " 1984 1985 \\\n", + "Region Features \n", + "Africa distribution losses 23.957380 2.958630e+01 \n", + " exports 4.489000 4.132000e+00 \n", + " imports 4.540000 4.132000e+00 \n", + " installed capacity 60.078650 6.260565e+01 \n", + " net consumption 210.770520 2.222653e+02 \n", + " net generation 234.676900 2.518516e+02 \n", + " net imports 0.051000 0.000000e+00 \n", + "Asia & Oceania distribution losses 126.458560 1.480621e+02 \n", + " exports 1.696000 1.903000e+00 \n", + " imports 2.134000 2.228000e+00 \n", + " installed capacity 416.095730 4.400762e+02 \n", + " net consumption 1422.014351 1.498336e+03 \n", + " net generation 1548.034911 1.646073e+03 \n", + " net imports 0.438000 3.250000e-01 \n", + "Central & South America distribution losses 46.015120 5.088227e+01 \n", + " exports 3.760000 5.323000e+00 \n", + " imports 3.665000 2.648000e+00 \n", + " installed capacity 106.750000 1.130040e+02 \n", + " net consumption 337.124620 3.499402e+02 \n", + " net generation 383.234740 4.034975e+02 \n", + " net imports -0.095000 -2.675000e+00 \n", + "Eurasia distribution losses 126.100000 1.337000e+02 \n", + " exports 24.101000 3.069900e+01 \n", + " imports 0.300000 1.900000e+00 \n", + " installed capacity 306.178000 3.153050e+02 \n", + " net consumption 1342.196622 1.382510e+03 \n", + " net generation 1492.097622 1.545009e+03 \n", + " net imports -23.801000 -2.879900e+01 \n", + "Europe distribution losses 175.176830 1.872757e+02 \n", + " exports 124.350000 1.262160e+02 \n", + " imports 147.713000 1.547800e+02 \n", + " installed capacity 617.038000 6.372170e+02 \n", + " net consumption 2189.324170 2.280073e+03 \n", + " net generation 2341.138000 2.438785e+03 \n", + " net imports 23.363000 2.856400e+01 \n", + "Middle East distribution losses 11.956000 1.393700e+01 \n", + " exports 0.199000 3.280000e-01 \n", + " imports 0.199000 3.280000e-01 \n", + " installed capacity 53.144000 5.473500e+01 \n", + " net consumption 140.277000 1.500800e+02 \n", + " net generation 152.233000 1.640170e+02 \n", + " net imports 0.000000 1.387779e-17 \n", + "North America distribution losses 213.703069 2.357352e+02 \n", + " exports 43.476293 4.751992e+01 \n", + " imports 43.476432 4.745818e+01 \n", + " installed capacity 748.786000 7.705210e+02 \n", + " net consumption 2720.030437 2.778895e+03 \n", + " net generation 2933.733367 3.014692e+03 \n", + " net imports 0.000139 -6.173721e-02 \n", + "\n", + " 1986 1987 \\\n", + "Region Features \n", + "Africa distribution losses 22.709740 26.115020 \n", + " exports 4.066000 2.425000 \n", + " imports 4.181000 2.625000 \n", + " installed capacity 69.132650 71.003650 \n", + " net consumption 242.265560 250.967980 \n", + " net generation 264.860300 276.883000 \n", + " net imports 0.115000 0.200000 \n", + "Asia & Oceania distribution losses 153.562950 168.923720 \n", + " exports 2.265198 2.838005 \n", + " imports 2.184701 2.737251 \n", + " installed capacity 462.726550 486.466270 \n", + " net consumption 1583.715823 1715.791977 \n", + " net generation 1737.359271 1884.816452 \n", + " net imports -0.080498 -0.100755 \n", + "Central & South America distribution losses 59.351220 65.950150 \n", + " exports 13.315000 18.816000 \n", + " imports 13.188000 18.337600 \n", + " installed capacity 117.481000 122.055000 \n", + " net consumption 375.881060 385.142790 \n", + " net generation 435.359280 451.571340 \n", + " net imports -0.127000 -0.478400 \n", + "Eurasia distribution losses 137.300000 142.600000 \n", + " exports 30.434000 35.067000 \n", + " imports 1.600000 1.200000 \n", + " installed capacity 321.930000 325.500000 \n", + " net consumption 1343.502799 1395.350431 \n", + " net generation 1509.636799 1571.817431 \n", + " net imports -28.834000 -33.867000 \n", + "Europe distribution losses 184.552600 191.379880 \n", + " exports 121.201000 134.754000 \n", + " imports 150.107000 168.887000 \n", + " installed capacity 653.169000 672.573000 \n", + " net consumption 2339.218400 2411.183120 \n", + " net generation 2494.865000 2568.430000 \n", + " net imports 28.906000 34.133000 \n", + "Middle East distribution losses 12.132000 15.661000 \n", + " exports 0.573000 0.478000 \n", + " imports 0.373000 0.312000 \n", + " installed capacity 57.955000 62.594000 \n", + " net consumption 160.281000 166.039000 \n", + " net generation 172.613000 181.866000 \n", + " net imports -0.200000 -0.166000 \n", + "North America distribution losses 201.979128 210.630140 \n", + " exports 44.521565 54.824235 \n", + " imports 44.511861 54.829032 \n", + " installed capacity 783.141000 796.349000 \n", + " net consumption 2843.497120 2954.184324 \n", + " net generation 3045.485952 3164.809667 \n", + " net imports -0.009704 0.004797 \n", + "\n", + " 1988 1989 ... \\\n", + "Region Features ... \n", + "Africa distribution losses 26.872360 28.062860 ... \n", + " exports 2.322000 2.604000 ... \n", + " imports 2.590000 2.702000 ... \n", + " installed capacity 75.348650 79.142250 ... \n", + " net consumption 259.195340 268.564490 ... \n", + " net generation 285.799700 296.529350 ... \n", + " net imports 0.268000 0.098000 ... \n", + "Asia & Oceania distribution losses 178.754571 200.739418 ... \n", + " exports 3.310800 3.860101 ... \n", + " imports 3.174608 3.324543 ... \n", + " installed capacity 513.120740 536.289660 ... \n", + " net consumption 1855.985223 1977.108392 ... \n", + " net generation 2034.875986 2178.383369 ... \n", + " net imports -0.136193 -0.535558 ... \n", + "Central & South America distribution losses 67.784620 72.544900 ... \n", + " exports 19.189000 21.934000 ... \n", + " imports 19.033500 23.353000 ... \n", + " installed capacity 127.767000 130.554000 ... \n", + " net consumption 405.170040 413.088700 ... \n", + " net generation 473.110160 484.214600 ... \n", + " net imports -0.155500 1.419000 ... \n", + "Eurasia distribution losses 139.900000 141.600000 ... \n", + " exports 38.579000 37.902000 ... \n", + " imports 1.000000 1.000000 ... \n", + " installed capacity 338.905000 341.934000 ... \n", + " net consumption 1432.730352 1464.423789 ... \n", + " net generation 1610.209352 1642.925789 ... \n", + " net imports -37.579000 -36.902000 ... \n", + "Europe distribution losses 189.916350 191.373420 ... \n", + " exports 151.552000 172.630000 ... \n", + " imports 189.467000 210.226000 ... \n", + " installed capacity 682.639000 691.235000 ... \n", + " net consumption 2465.011650 2519.269380 ... \n", + " net generation 2617.013000 2673.046800 ... \n", + " net imports 37.915000 37.596000 ... \n", + "Middle East distribution losses 18.846000 19.072000 ... \n", + " exports 0.375000 0.380000 ... \n", + " imports 0.355000 0.380000 ... \n", + " installed capacity 69.257000 72.626000 ... \n", + " net consumption 185.468000 197.012000 ... \n", + " net generation 204.334000 216.084000 ... \n", + " net imports -0.020000 0.000000 ... \n", + "North America distribution losses 213.193537 278.523167 ... \n", + " exports 42.929646 39.016589 ... \n", + " imports 42.936199 39.084799 ... \n", + " installed capacity 798.026000 834.564000 ... \n", + " net consumption 3095.903194 3292.470057 ... \n", + " net generation 3309.090178 3570.925014 ... \n", + " net imports 0.006553 0.068210 ... \n", + "\n", + " 2013 2014 \\\n", + "Region Features \n", + "Africa distribution losses 100.549725 100.760334 \n", + " exports 29.270320 31.922840 \n", + " imports 38.460900 40.958282 \n", + " installed capacity 165.827981 169.258705 \n", + " net consumption 620.559458 646.013219 \n", + " net generation 711.918603 737.738111 \n", + " net imports 9.190580 9.035442 \n", + "Asia & Oceania distribution losses 718.717462 726.043045 \n", + " exports 43.201222 43.899299 \n", + " imports 53.728922 53.420703 \n", + " installed capacity 2330.909732 2463.426712 \n", + " net consumption 8719.145784 9121.177292 \n", + " net generation 9427.335547 9837.698933 \n", + " net imports 10.527699 9.521404 \n", + "Central & South America distribution losses 183.019056 194.920475 \n", + " exports 50.482230 46.755000 \n", + " imports 51.705970 48.488000 \n", + " installed capacity 316.300156 326.536095 \n", + " net consumption 1046.180499 1029.599917 \n", + " net generation 1227.975815 1222.787392 \n", + " net imports 1.223740 1.733000 \n", + "Eurasia distribution losses 164.613000 159.825000 \n", + " exports 48.972000 44.829000 \n", + " imports 26.061000 24.936000 \n", + " installed capacity 367.155616 392.647600 \n", + " net consumption 1269.197756 1270.205466 \n", + " net generation 1456.721756 1449.923466 \n", + " net imports -22.911000 -19.893000 \n", + "Europe distribution losses 273.489100 262.532159 \n", + " exports 402.786526 442.938699 \n", + " imports 412.030073 448.122056 \n", + " installed capacity 1125.927900 1150.325030 \n", + " net consumption 3380.342006 3274.468710 \n", + " net generation 3644.587559 3531.817512 \n", + " net imports 9.243547 5.183357 \n", + "Middle East distribution losses 115.606100 121.753000 \n", + " exports 17.626000 15.734300 \n", + " imports 22.276000 22.482000 \n", + " installed capacity 253.873369 267.802900 \n", + " net consumption 859.965481 921.739356 \n", + " net generation 970.921581 1036.744656 \n", + " net imports 4.650000 6.747700 \n", + "North America distribution losses 324.129033 314.189122 \n", + " exports 74.859494 75.406872 \n", + " imports 81.829801 80.754999 \n", + " installed capacity 1260.288100 1281.423800 \n", + " net consumption 4683.045310 4723.259542 \n", + " net generation 5000.204037 5032.100536 \n", + " net imports 6.970307 5.348127 \n", + "\n", + " 2015 2016 \\\n", + "Region Features \n", + "Africa distribution losses 107.520123 120.165602 \n", + " exports 34.030950 34.692430 \n", + " imports 40.208600 41.309200 \n", + " installed capacity 178.945704 191.943910 \n", + " net consumption 658.567024 653.876644 \n", + " net generation 759.909497 767.425476 \n", + " net imports 6.177650 6.616770 \n", + "Asia & Oceania distribution losses 728.905453 762.739982 \n", + " exports 46.000806 58.194332 \n", + " imports 58.622526 65.819156 \n", + " installed capacity 2668.076439 2887.051792 \n", + " net consumption 9385.732178 9870.251320 \n", + " net generation 10102.015911 10625.366477 \n", + " net imports 12.621720 7.624824 \n", + "Central & South America distribution losses 194.874124 196.131251 \n", + " exports 46.214375 54.136813 \n", + " imports 46.891300 55.026600 \n", + " installed capacity 340.873054 361.963465 \n", + " net consumption 1064.668354 1071.664743 \n", + " net generation 1258.865554 1266.906206 \n", + " net imports 0.676925 0.889787 \n", + "Eurasia distribution losses 154.118000 153.754000 \n", + " exports 40.875000 42.730000 \n", + " imports 23.860000 18.342000 \n", + " installed capacity 390.910550 401.994603 \n", + " net consumption 1262.879156 1284.746703 \n", + " net generation 1434.012156 1462.888703 \n", + " net imports -17.015000 -24.388000 \n", + "Europe distribution losses 267.504430 266.921146 \n", + " exports 471.845064 433.930077 \n", + " imports 476.049516 442.645825 \n", + " installed capacity 1165.088052 1180.001400 \n", + " net consumption 3357.337241 3423.034178 \n", + " net generation 3620.637219 3681.239576 \n", + " net imports 4.204452 8.715748 \n", + "Middle East distribution losses 136.956300 141.557300 \n", + " exports 13.304700 14.215200 \n", + " imports 24.437000 23.822000 \n", + " installed capacity 281.223764 290.084263 \n", + " net consumption 960.867656 989.887694 \n", + " net generation 1086.691656 1121.838194 \n", + " net imports 11.132300 9.606800 \n", + "North America distribution losses 319.202703 314.334447 \n", + " exports 84.372314 81.285189 \n", + " imports 88.191435 84.250796 \n", + " installed capacity 1288.473000 1309.804900 \n", + " net consumption 4715.376861 4733.993558 \n", + " net generation 5030.760443 5045.362399 \n", + " net imports 3.819121 2.965607 \n", + "\n", + " 2017 2018 \\\n", + "Region Features \n", + "Africa distribution losses 117.344523 120.247995 \n", + " exports 33.327730 31.730300 \n", + " imports 39.782764 37.158895 \n", + " installed capacity 210.544541 230.740190 \n", + " net consumption 686.573884 698.793253 \n", + " net generation 797.463373 813.612653 \n", + " net imports 6.455034 5.428595 \n", + "Asia & Oceania distribution losses 777.224502 810.210076 \n", + " exports 63.917965 67.358170 \n", + " imports 71.950994 75.641028 \n", + " installed capacity 3072.989237 3265.095200 \n", + " net consumption 10499.360390 11070.559832 \n", + " net generation 11268.551864 11872.487050 \n", + " net imports 8.033029 8.282858 \n", + "Central & South America distribution losses 196.470099 199.148747 \n", + " exports 49.679473 48.688924 \n", + " imports 51.657462 49.430425 \n", + " installed capacity 375.156142 387.182029 \n", + " net consumption 1078.315722 1096.508255 \n", + " net generation 1272.807831 1294.915501 \n", + " net imports 1.977989 0.741501 \n", + "Eurasia distribution losses 154.034000 146.006600 \n", + " exports 48.415700 46.370000 \n", + " imports 24.147000 15.632200 \n", + " installed capacity 401.103061 401.195110 \n", + " net consumption 1292.720112 1322.708035 \n", + " net generation 1471.022812 1499.452435 \n", + " net imports -24.268700 -30.737800 \n", + "Europe distribution losses 264.115635 263.468029 \n", + " exports 442.581514 437.706193 \n", + " imports 447.939055 449.761945 \n", + " installed capacity 1206.333686 1240.420809 \n", + " net consumption 3435.042074 3416.313346 \n", + " net generation 3693.800168 3667.725623 \n", + " net imports 5.357541 12.055752 \n", + "Middle East distribution losses 152.387842 155.221385 \n", + " exports 15.588800 14.144000 \n", + " imports 22.874000 31.987000 \n", + " installed capacity 296.263143 298.368401 \n", + " net consumption 1027.643852 1052.527842 \n", + " net generation 1172.746494 1189.906227 \n", + " net imports 7.285200 17.843000 \n", + "North America distribution losses 306.825106 298.010523 \n", + " exports 83.214566 77.631527 \n", + " imports 77.729212 75.128295 \n", + " installed capacity 1326.263400 1351.724789 \n", + " net consumption 4702.000202 4878.979091 \n", + " net generation 5014.310663 5179.492847 \n", + " net imports -5.485354 -2.503232 \n", + "\n", + " 2019 2020 \\\n", + "Region Features \n", + "Africa distribution losses 123.032665 124.207980 \n", + " exports 36.012330 37.082820 \n", + " imports 36.120142 36.093690 \n", + " installed capacity 238.990867 243.156035 \n", + " net consumption 702.889739 680.388746 \n", + " net generation 825.814592 805.585856 \n", + " net imports 0.107812 -0.989130 \n", + "Asia & Oceania distribution losses 811.441910 786.911065 \n", + " exports 69.461613 75.376583 \n", + " imports 79.321945 88.089951 \n", + " installed capacity 3429.788250 3680.474175 \n", + " net consumption 11474.482488 11742.523702 \n", + " net generation 12276.064067 12516.721399 \n", + " net imports 9.860332 12.713368 \n", + "Central & South America distribution losses 198.640076 195.687615 \n", + " exports 41.949039 38.434271 \n", + " imports 42.838501 39.625489 \n", + " installed capacity 401.392885 414.096179 \n", + " net consumption 1099.521880 1100.092492 \n", + " net generation 1297.272494 1294.588889 \n", + " net imports 0.889462 1.191218 \n", + "Eurasia distribution losses 143.721300 136.490350 \n", + " exports 45.985000 35.312600 \n", + " imports 15.616000 20.448700 \n", + " installed capacity 410.445709 419.407026 \n", + " net consumption 1338.698063 1333.828760 \n", + " net generation 1512.788363 1485.183010 \n", + " net imports -30.369000 -14.863900 \n", + "Europe distribution losses 257.921395 252.991350 \n", + " exports 436.443023 452.330652 \n", + " imports 454.698469 457.617789 \n", + " installed capacity 1257.748504 1283.759234 \n", + " net consumption 3403.237107 3338.056574 \n", + " net generation 3642.903055 3585.760786 \n", + " net imports 18.255446 5.287137 \n", + "Middle East distribution losses 165.089182 163.117147 \n", + " exports 13.858000 14.629100 \n", + " imports 44.946100 29.050000 \n", + " installed capacity 303.954947 306.974447 \n", + " net consumption 1086.018911 1045.687765 \n", + " net generation 1220.019993 1194.384012 \n", + " net imports 31.088100 14.420900 \n", + "North America distribution losses 288.822191 270.644224 \n", + " exports 83.441019 87.486172 \n", + " imports 76.293597 81.225548 \n", + " installed capacity 1364.576789 1387.359489 \n", + " net consumption 4816.574574 4725.063247 \n", + " net generation 5112.544188 5001.968095 \n", + " net imports -7.147422 -6.260624 \n", + "\n", + " 2021 Total \n", + "Region Features \n", + "Africa distribution losses 124.886039 2568.481088 \n", + " exports 37.662881 799.901810 \n", + " imports 37.648292 885.281165 \n", + " installed capacity 244.816109 5039.211281 \n", + " net consumption 712.584720 17688.275806 \n", + " net generation 837.485348 20171.377539 \n", + " net imports -0.014589 85.379355 \n", + "Asia & Oceania distribution losses 792.500149 18061.488126 \n", + " exports 77.030618 995.385028 \n", + " imports 87.463914 1127.443838 \n", + " installed capacity 3853.457685 58430.486611 \n", + " net consumption 12665.270200 210515.726463 \n", + " net generation 13447.337052 228445.155779 \n", + " net imports 10.433296 132.058810 \n", + "Central & South America distribution losses 199.510111 5260.416309 \n", + " exports 38.794599 1545.928032 \n", + " imports 35.477785 1567.537745 \n", + " installed capacity 428.081519 9064.027072 \n", + " net consumption 1167.026170 28803.915497 \n", + " net generation 1369.853096 34042.722093 \n", + " net imports -3.316815 21.609713 \n", + "Eurasia distribution losses 134.429541 6191.071191 \n", + " exports 44.499960 2153.621160 \n", + " imports 25.573638 1343.105638 \n", + " installed capacity 429.383027 14376.875595 \n", + " net consumption 1422.436233 51310.508061 \n", + " net generation 1575.792096 58312.094775 \n", + " net imports -18.926323 -810.515523 \n", + "Europe distribution losses 255.209830 9826.080002 \n", + " exports 479.489800 11959.443446 \n", + " imports 492.571541 12537.719876 \n", + " installed capacity 1322.463584 36286.698399 \n", + " net consumption 3429.832614 121615.173318 \n", + " net generation 3671.960704 130862.976889 \n", + " net imports 13.081741 578.276431 \n", + "Middle East distribution losses 169.089625 2883.897371 \n", + " exports 14.358920 240.231720 \n", + " imports 28.806431 398.757531 \n", + " installed capacity 309.632447 6093.119501 \n", + " net consumption 1109.498530 20762.916897 \n", + " net generation 1264.140644 23488.288457 \n", + " net imports 14.447511 158.525811 \n", + "North America distribution losses 296.127051 12078.603582 \n", + " exports 68.009584 2418.193730 \n", + " imports 71.680961 2409.412651 \n", + " installed capacity 1425.152689 43408.867056 \n", + " net consumption 4836.156431 166173.929209 \n", + " net generation 5128.612105 178261.313869 \n", + " net imports 3.671377 -8.781079 \n", + "\n", + "[49 rows x 43 columns]\n" + ] + } + ] + }, { "cell_type": "code", "source": [ @@ -165,25 +772,86 @@ "metadata": { "id": "3HyCu76yuvpS" }, - "execution_count": 34, + "execution_count": 19, "outputs": [] }, { "cell_type": "code", "source": [ - "train, test = train_test_split(df_grouped['Total'], test_size=0.2, random_state=42)\n", - "\n", - "# Escalar los datos entre 0 y 1\n", - "scaler = MinMaxScaler(feature_range=(0, 1))\n", - "train_scaled = scaler.fit_transform(train.values.reshape(-1, 1))\n", - "test_scaled = scaler.transform(test.values.reshape(-1, 1))" + "train, test =" ], "metadata": { "id": "nfJrQD1i4qys" }, - "execution_count": 38, + "execution_count": 22, "outputs": [] }, + { + "cell_type": "code", + "source": [ + "print(df_grouped.columns)\n", + "\n" + ], + "metadata": { + "id": "My8by2_2DI_X", + "outputId": "94cc29e0-5c25-473e-a1a5-9ccfbb4293c6", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Index(['Total'], dtype='object')\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Escalar los datos entre 0 y 1scaler_X = MinMaxScaler(feature_range=(0, 1))\n", + "scaler_X = MinMaxScaler(feature_range=(0, 1))\n", + "scaler_y = MinMaxScaler(feature_range=(0, 1))\n", + "train_X_scaled = scaler_X.fit_transform(train_X)\n", + "test_X_scaled = scaler_X.transform(test_X)\n", + "train_y_scaled = scaler_y.fit_transform(train_y.values.reshape(-1, 1))\n", + "test_y_scaled = scaler_y.transform(test_y.values.reshape(-1, 1))" + ], + "metadata": { + "id": "ji9qjt_SCrvY", + "outputId": "7610dff1-9cc5-4bba-92ea-a0b93fdf3a09", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 314 + } + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mscaler_X\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mMinMaxScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_range\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mscaler_y\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mMinMaxScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_range\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mtrain_X_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_X\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_X\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mtest_X_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_X\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_X\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mtrain_y_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_y\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_y\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/utils/_set_output.py\u001b[0m in \u001b[0;36mwrapped\u001b[0;34m(self, X, *args, **kwargs)\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mwraps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mwrapped\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 140\u001b[0;31m \u001b[0mdata_to_wrap\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 141\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_to_wrap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 142\u001b[0m \u001b[0;31m# only wrap the first output for cross decomposition\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/base.py\u001b[0m in \u001b[0;36mfit_transform\u001b[0;34m(self, X, y, **fit_params)\u001b[0m\n\u001b[1;32m 876\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0my\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 877\u001b[0m \u001b[0;31m# fit method of arity 1 (unsupervised transformation)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 878\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mfit_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 879\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 880\u001b[0m \u001b[0;31m# fit method of arity 2 (supervised transformation)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_data.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 425\u001b[0m \u001b[0;31m# Reset internal state before fitting\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 426\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 427\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpartial_fit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 428\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 429\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mpartial_fit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_data.py\u001b[0m in \u001b[0;36mpartial_fit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 464\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 465\u001b[0m \u001b[0mfirst_pass\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"n_samples_seen_\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 466\u001b[0;31m X = self._validate_data(\n\u001b[0m\u001b[1;32m 467\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 468\u001b[0m \u001b[0mreset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfirst_pass\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/base.py\u001b[0m in \u001b[0;36m_validate_data\u001b[0;34m(self, X, y, reset, validate_separately, **check_params)\u001b[0m\n\u001b[1;32m 563\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Validation should be done on X, y or both.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 564\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mno_val_X\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mno_val_y\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 565\u001b[0;31m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcheck_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_name\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"X\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mcheck_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 566\u001b[0m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 567\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mno_val_X\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mno_val_y\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py\u001b[0m in \u001b[0;36mcheck_array\u001b[0;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)\u001b[0m\n\u001b[1;32m 776\u001b[0m )\n\u001b[1;32m 777\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype_iter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdtype_iter\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdtypes_orig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 778\u001b[0;31m \u001b[0mdtype_orig\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mdtypes_orig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 779\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 780\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"iloc\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"dtype\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/overrides.py\u001b[0m in \u001b[0;36mresult_type\u001b[0;34m(*args, **kwargs)\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: at least one array or dtype is required" + ] + } + ] + }, { "cell_type": "code", "source": [ @@ -203,43 +871,41 @@ "metadata": { "id": "CaTJQmj33IvW" }, - "execution_count": 47, + "execution_count": 16, "outputs": [] }, { "cell_type": "code", "source": [ - "model_lstm.fit(train_scaled, epochs=10, verbose=0)\n", - "#model_gru.fit(train_scaled, epochs=10, verbose=0)\n", + "model_lstm.fit(train_X, train_y, epochs=10, verbose=0)\n", + "#model_gru.fit(train_X, train_y, epochs=10, verbose=0)\n", "\n", "# Evaluar los modelos\n", - "mse_lstm = model_lstm.evaluate(test_scaled)\n", - "#mse_gru = model_gru.evaluate(test_scaled)\n", + "mse_lstm = model_lstm.evaluate(test_X, test_y)\n", + "#mse_gru = model_gru.evaluate(test_X, test_y)\n", "\n", "print(f'Test MSE LSTM: {mse_lstm}')\n", "#print(f'Test MSE GRU: {mse_gru}')" ], "metadata": { - "id": "3wBcalVC41ED", - "outputId": "da1a2eea-ed50-419b-ce48-0f9c5dcd58d9", "colab": { "base_uri": "https://localhost:8080/", - "height": 616 - } + "height": 254 + }, + "id": "3wBcalVC41ED", + "outputId": "671dcbb9-7d07-4da9-b9e3-1c52a5f16ef9" }, - "execution_count": 46, + "execution_count": 9, "outputs": [ { "output_type": "error", - "ename": "ValueError", + "ename": "NameError", "evalue": "ignored", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_scaled\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m#model_gru.fit(train_scaled, epochs=10, verbose=0)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Evaluar los modelos\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mmse_lstm\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_scaled\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/keras/src/utils/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;31m# To get the full stack trace, call:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;31m# `tf.debugging.disable_traceback_filtering()`\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 70\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwith_traceback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfiltered_tb\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 71\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;32mdel\u001b[0m \u001b[0mfiltered_tb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\u001b[0m in \u001b[0;36mtf__train_function\u001b[0;34m(iterator)\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0mdo_return\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0mretval_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mag__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconverted_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mag__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mld\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstep_function\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mag__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mld\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mag__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mld\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfscope\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 16\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0mdo_return\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: in user code:\n\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 1377, in train_function *\n return step_function(self, iterator)\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 1360, in step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 1349, in run_step **\n outputs = model.train_step(data)\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 1128, in train_step\n self._validate_target_and_loss(y, loss)\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 1082, in _validate_target_and_loss\n raise ValueError(\n\n ValueError: Target data is missing. Your model was compiled with loss=mse, and therefore expects target data to be provided in `fit()`.\n" + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_X\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_y\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m#model_gru.fit(train_X, train_y, epochs=10, verbose=0)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Evaluar los modelos\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mmse_lstm\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_X\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_y\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'train_X' is not defined" ] } ] From 79ca681c6f5966cf56a968609ef869a75c050490 Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Fri, 27 Oct 2023 15:42:49 -0300 Subject: [PATCH 06/16] Creado mediante Colaboratory --- proyectoIAPrediccion1.ipynb | 840 +++++++++++++++++++----------------- 1 file changed, 447 insertions(+), 393 deletions(-) diff --git a/proyectoIAPrediccion1.ipynb b/proyectoIAPrediccion1.ipynb index 9e6caa5..d71bc19 100644 --- a/proyectoIAPrediccion1.ipynb +++ b/proyectoIAPrediccion1.ipynb @@ -4,7 +4,7 @@ "metadata": { "colab": { "provenance": [], - "authorship_tag": "ABX9TyMCZ7tRpRFKQ5GHpB0oeBuP", + "authorship_tag": "ABX9TyNB0n9KhkV/vpS9ImuNK5TE", "include_colab_link": true }, "kernelspec": { @@ -41,17 +41,19 @@ "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import MinMaxScaler\n", "from keras.models import Sequential\n", - "from keras.layers import LSTM, GRU, Conv1D, MaxPooling1D, Flatten, Dense\n" + "from keras.layers import LSTM, GRU, Conv1D, MaxPooling1D, Flatten, Dense\n", + "from keras.losses import MeanSquaredError\n", + "\n" ], "metadata": { "id": "H7kZjC_GUZZd" }, - "execution_count": 78, + "execution_count": 28, "outputs": [] }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 29, "metadata": { "id": "9_FId2wvQAgd" }, @@ -74,9 +76,9 @@ "base_uri": "https://localhost:8080/" }, "id": "lWY6qwmkQ2PL", - "outputId": "c78edeb7-a5ea-4070-97f7-f12c402ed54d" + "outputId": "bcd190f6-969d-4153-e746-2ff8a4d81db5" }, - "execution_count": 80, + "execution_count": 30, "outputs": [ { "output_type": "stream", @@ -89,21 +91,21 @@ "3 Botswana net generation Africa 0.443 0.502 0.489 0.434 \n", "4 Burkina Faso net generation Africa 0.098 0.108 0.115 0.117 \n", "\n", - " 1984 1985 1986 ... 2013 2014 2015 2016 \\\n", - "0 10.537 11.569 12.214 ... 56.3134 60.39972 64.68244 66.75504 \n", - "1 1.028 1.028 1.088 ... 7.97606 9.21666 9.30914 10.203511 \n", - "2 0.005 0.005 0.005 ... 0.08848 0.22666 0.31056 0.26004 \n", - "3 0.445 0.456 0.538 ... 0.86868 2.17628 2.79104 2.52984 \n", - "4 0.113 0.115 0.122 ... 0.98268 1.11808 1.43986 1.5509 \n", + " 1984 1985 1986 ... 2012 2013 2014 2015 \\\n", + "0 10.537 11.569 12.214 ... 53.9845 56.3134 60.39972 64.68244 \n", + "1 1.028 1.028 1.088 ... 6.03408 7.97606 9.21666 9.30914 \n", + "2 0.005 0.005 0.005 ... 0.04612 0.08848 0.22666 0.31056 \n", + "3 0.445 0.456 0.538 ... 0.33 0.86868 2.17628 2.79104 \n", + "4 0.113 0.115 0.122 ... 0.86834 0.98268 1.11808 1.43986 \n", "\n", - " 2017 2018 2019 2020 2021 Total \n", - "0 71.49546 72.10903 76.685 72.73591277 77.53072719 0.0 \n", - "1 10.67604 12.83194 15.4 16.6 16.429392 0.0 \n", - "2 0.3115 0.19028 0.2017 0.22608 0.24109728 0.0 \n", - "3 2.8438 2.97076 3.0469 2.05144 2.18234816 0.0 \n", - "4 1.64602 1.6464 1.72552 1.647133174 1.761209666 0.0 \n", + " 2016 2017 2018 2019 2020 2021 \n", + "0 66.75504 71.49546 72.10903 76.685 72.73591277 77.53072719 \n", + "1 10.203511 10.67604 12.83194 15.4 16.6 16.429392 \n", + "2 0.26004 0.3115 0.19028 0.2017 0.22608 0.24109728 \n", + "3 2.52984 2.8438 2.97076 3.0469 2.05144 2.18234816 \n", + "4 1.5509 1.64602 1.6464 1.72552 1.647133174 1.761209666 \n", "\n", - "[5 rows x 46 columns]\n" + "[5 rows x 45 columns]\n" ] }, { @@ -121,27 +123,34 @@ ] }, "metadata": {}, - "execution_count": 80 + "execution_count": 30 } ] }, { "cell_type": "code", "source": [ - "for country in df['Country'].unique():\n", - " df.loc[df['Country'] == country] = df.loc[df['Country'] == country].replace(np.nan, df.loc[df['Country'] == country].select_dtypes(include=[np.number]).mean(numeric_only=True))\n", - "df['Total'] = df.loc[:, '1980':'2021'].select_dtypes(include=[np.number]).sum(axis=1)\n", "# Convertir las columnas de los años a numéricas\n", "cols = [str(year) for year in range(1980, 2022)]\n", "df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')\n", "\n", + "# Calcular el promedio de cada fila (ignorando los valores NaN)\n", + "df['avg'] = df.loc[:, '1980':'2021'].mean(axis=1)\n", + "\n", + "# Rellenar los valores NaN con el promedio de la fila correspondiente\n", + "for col in cols:\n", + " df[col].fillna(df['avg'], inplace=True)\n", + "\n", + "# Eliminar la columna 'avg' ya que ya no es necesaria\n", + "df.drop('avg', axis=1, inplace=True)\n", + "\n", "# Agrupar por 'Region' y 'Features', y obtener la suma\n", - "df_grouped = df.groupby(['Region', 'Features']).sum(numeric_only=True)\n" + "df_grouped = df.groupby(['Region', 'Features']).sum(numeric_only=True)" ], "metadata": { "id": "9MZcbtw9t95l" }, - "execution_count": 81, + "execution_count": 31, "outputs": [] }, { @@ -157,255 +166,195 @@ "id": "_28HoIcVTX5H" } }, - { - "cell_type": "code", - "source": [ - "# Transponer el DataFrame para que los años sean las columnas y las regiones y características sean las filas\n", - "df_transposed = df_grouped.drop(columns=['Total']).transpose()\n", - "\n", - "# Crear una figura más grande\n", - "fig, ax = plt.subplots(figsize=(10, 6))\n", - "\n", - "# Crear un mapa de colores\n", - "cmap = cm.get_cmap('tab10')\n", - "\n", - "# Crear un diccionario para asignar un color único a cada región\n", - "region_colors = {region: cmap(i) for i, region in enumerate(df_grouped.index.get_level_values('Region').unique())}\n", - "\n", - "# Para cada región y característica, trazar los valores a lo largo de los años\n", - "for region_feature, values in df_transposed.items():\n", - " region = region_feature[0] # Obtener la región de region_feature\n", - " ax.plot(df_transposed.index, values, color=region_colors[region])\n", - "\n", - "# Rotar las etiquetas del eje x\n", - "plt.xticks(rotation=45)\n", - "\n", - "# Añadir una leyenda fuera del gráfico con solo las regiones\n", - "handles = [plt.Line2D([0], [0], color=region_colors[region], lw=2) for region in df_grouped.index.get_level_values('Region').unique()]\n", - "ax.legend(handles, df_grouped.index.get_level_values('Region').unique(), bbox_to_anchor=(1.05, 1), loc='upper left')\n", - "\n", - "# Mostrar el gráfico\n", - "plt.show()" - ], - "metadata": { - "id": "UAOFyFDLLMo-", - "outputId": "491b5bb5-30ac-40d5-da10-237fd7ad0426", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 601 - } - }, - "execution_count": 84, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - ":8: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.\n", - " cmap = cm.get_cmap('tab10')\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFwAAAIQCAYAAAC8M3rkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZyNZePH8c+ZfcZsxjYm29j3LZI1ajJjK1t2EaWFpEjK8iOPSFSkKA0jS7aQVCL7lizZlxBGZUyMmTFmP+f8/rg5mWwz5szG9/16nZd7ue7rus55Go/znWsxWa1WKyIiIiIiIiIiYjcOOd0BEREREREREZH7jQIXERERERERERE7U+AiIiIiIiIiImJnClxEREREREREROxMgYuIiIiIiIiIiJ0pcBERERERERERsTMFLiIiIiIiIiIidqbARURERERERETEzhS4iIiIiIiIiIjYmVNOdyAnWSwW/v77b7y8vDCZTDndHRERERERySFWq5UrV64QEBCAg4N+Ly0idmDNoE2bNllbt25tLVq0qBWwLl++/LZlX3zxRStg/eijj9Jcv3TpkrVbt25WLy8vq4+Pj7VPnz7WK1eupCmzf/9+a6NGjayurq7WYsWKWd9///2b6l+8eLG1QoUKVldXV2vVqlWt33//fYbey7lz56yAXnrppZdeeumll1566aWXFbCeO3cuQ98pRERuJ8MjXK5evUqNGjXo06cP7du3v2255cuX88svvxAQEHDTve7du3P+/HnWrl1LSkoKzz33HP369WPBggUAxMbG0rx5c4KCgpgxYwYHDx6kT58++Pr60q9fPwC2b99O165dGT9+PK1bt2bBggW0bduWvXv3UrVq1XS9Fy8vLwDOnTuHt7d3Rj8KERERERG5T8TGxlK8eHHbdwQRkcwyWa1W6z0/bDKxfPly2rZtm+b6X3/9Rb169fjpp59o1aoVgwYNYtCgQQAcPXqUypUrs2vXLurUqQPA6tWradmyJX/++ScBAQFMnz6d4cOHExERgYuLCwDDhg1jxYoVHDt2DIDOnTtz9epVVq1aZWv30UcfpWbNmsyYMSNd/Y+NjcXHx4eYmBgFLiIiIiIiDzB9NxARe7P75ESLxULPnj158803qVKlyk33d+zYga+vry1sAQgKCsLBwYGdO3fayjRp0sQWtgAEBwdz/PhxLl++bCsTFBSUpu7g4GB27Nhx274lJSURGxub5iUiIiIiIiIiYm92D1zef/99nJycGDhw4C3vR0REULhw4TTXnJyc8PPzIyIiwlamSJEiacpcP79bmev3b2X8+PH4+PjYXsWLF8/YmxMRERERERERSQe7Bi579uxhypQphIWF5cpdf95++21iYmJsr3PnzuV0l0RERERERETkPmTXbaG3bNlCZGQkJUqUsF0zm80MHjyYjz/+mDNnzuDv709kZGSa51JTU4mKisLf3x8Af39/Lly4kKbM9fO7lbl+/1ZcXV1xdXW99zcoIiIiIiKSC5nNZlJSUnK6GyL3PWdnZxwdHdNV1q6BS8+ePW+5rkrPnj157rnnAKhfvz7R0dHs2bOHhx9+GID169djsVioV6+erczw4cNJSUnB2dkZgLVr11KhQgXy589vK7Nu3TrbYrzXy9SvX9+eb0lERERERCTXslqtREREEB0dndNdEXlg+Pr64u/vf9eZPRkOXOLi4jh58qTt/PTp0+zbtw8/Pz9KlChBgQIF0pR3dnbG39+fChUqAFCpUiVCQkJ44YUXmDFjBikpKQwYMIAuXbrYtpDu1q0bY8aMoW/fvrz11lscOnSIKVOm8NFHH9nqfe2113jssceYPHkyrVq1YuHChezevZsvvvgio29JREREREQkT7oethQuXBgPD49cubSDyP3CarUSHx9vm7VTtGjRO5bPcOCye/dumjVrZjt/4403AOjVqxdhYWHpqmP+/PkMGDCAJ554AgcHBzp06MDUqVNt9318fFizZg39+/fn4YcfpmDBgowaNYp+/frZyjRo0IAFCxYwYsQI3nnnHcqVK8eKFSuoWrVqRt+SiIiIiIhInmM2m21hy39/8S0iWcPd3R2AyMhIChcufMfpRSar1WrNro7lNrGxsfj4+BATE4O3t3dOd0dERERERHJIXvxukJiYyOnTpylVqpTtS6CIZL2EhATOnDlDYGAgbm5uty1n922hRUREREREJPtoGpFI9krvz5wCFxERERERERERO1PgIiIiIiIiIrmK1WqlX79++Pn5YTKZ2Ldv323LmkwmVqxYkW19E0kvBS4iIiIiIiKSI3bs2IGjoyOtWrVKc3316tWEhYWxatUqzp8/f8fNUc6fP0+LFi2yuqsiGabARURERERERHJEaGgor776Kps3b+bvv/+2XT916hRFixalQYMG+Pv74+R08wa7ycnJAPj7++Pq6pptfRZJLwUuIiIiIiIiku3i4uJYtGgRL7/8Mq1atSIsLAyA3r178+qrrxIeHo7JZKJUqVIANG3alAEDBjBo0CAKFixIcHAwcPOUoj///JOuXbvi5+dHvnz5qFOnDjt37gSMIOfpp5+mSJEieHp6UrduXX7++efsfNvyAFHgIiIiIiIiItlu8eLFVKxYkQoVKtCjRw9mzZqF1WplypQpvPvuuxQrVozz58+za9cu2zNz5szBxcWFbdu2MWPGjJvqjIuL47HHHuOvv/5i5cqV7N+/n6FDh2KxWGz3W7Zsybp16/jtt98ICQmhTZs2hIeHZ9v7lgfHzeOyREREREREJM9q88lW/rmSlO3tFvJy5btXG6W7fGhoKD169AAgJCSEmJgYNm3aRNOmTfHy8sLR0RF/f/80z5QrV46JEyfets4FCxbwzz//sGvXLvz8/AAoW7as7X6NGjWoUaOG7Xzs2LEsX76clStXMmDAgHT3XSQ9FLiIiIiIiEj2s1jAkgpOLjndk/vOP1eSiIhNzOlu3NHx48f59ddfWb58OQBOTk507tyZ0NBQmjZtetvnHn744TvWu2/fPmrVqmULW/4rLi6O0aNH8/3333P+/HlSU1NJSEjQCBfJEgpcREREREQk++2bB9s/gZaToPRjOd2b+0ohr5xZQDYj7YaGhpKamkpAQIDtmtVqxdXVlWnTpt32uXz58t2xXnd39zveHzJkCGvXrmXSpEmULVsWd3d3OnbsaFuAV8SeFLiIiIiIiEj2SrgMP4+B+IsQcVCBi51lZFpPTkhNTeWrr75i8uTJNG/ePM29tm3b8vXXX99z3dWrV+fLL78kKirqlqNctm3bRu/evWnXrh1gjHg5c+bMPbcncidaNFdERERERLLXhvFG2FKwAtR7Mad7I9ls1apVXL58mb59+1K1atU0rw4dOhAaGnrPdXft2hV/f3/atm3Ltm3b+OOPP/jmm2/YsWMHYKwBs2zZMvbt28f+/fvp1q2bbUFdEXtT4CIiIiIiItkn4hDsmmkct5wIjs452x/JdqGhoQQFBeHj43PTvQ4dOrB7925iY2PvqW4XFxfWrFlD4cKFadmyJdWqVWPChAk4OjoC8OGHH5I/f34aNGhAmzZtCA4Opnbt2pl6PyK3Y7Jardac7kROiY2NxcfHh5iYGLy9vXO6OyIiIiIi9zerFWa3hPDtUPlp6PRVTvfIJi9+N0hMTOT06dMEBgbi5uaW090ReWCk92dPI1xERERERCR7HPrGCFuc3KH5uJzujYhIllLgIiIiIiIiWS/pCqwZYRw3GQy+xXO2PyIiWUyBi4iIiIiIZL3NH8CV85C/FNR/Nad7IyKS5RS4iIiIiIhI1rp4AnZ8ZhyHvA/OWm9ERO5/ClxERERERCTrWK3w41CwpEC5YKgQktM9EhHJFgpcREREREQk6xz7Hk6tB0cXCBmf070REck2ClxERERERCRrpCTA6reN4wavQoEyOdsfEZFspMBFRERERESyxtaPISYcvB+CxoNzujciItlKgYuIiIiIiNjf5TOw7WPjOHgcuOTLyd6IiGQ7BS4iIiIiImJ/Pw2H1EQIbAKV2+Z0b+Q+c+bMGUwmE/v27cvpruQZTZs2ZdCgQTndjQeKAhcREREREbGvEz/DsVXg4AQtPgCTKad7JLnUjh07cHR0pFWrVhl6rnjx4pw/f56qVatmqn2LxcJbb71FQEAA7u7uVK9enW+//Tbdz69atYrHHnsMLy8vPDw8qFu3LmFhYZnqU1ZZtmwZY8eOzeluPFAUuIiIiIiIiP2kJsPqt4zjR16EwhVztj+Sq4WGhvLqq6+yefNm/v7773Q/5+joiL+/P05OTplqf968eXz00Ud8+OGHHD16lA8//JB8+dI3/e2TTz7h6aefpmHDhuzcuZMDBw7QpUsXXnrpJYYMGZKpfmUFPz8/vLy8crobDxQFLiIiIiIiYj+/fAaXTkK+wtD0rZzujeRicXFxLFq0iJdffplWrVrdNDLk8uXLdO/enUKFCuHu7k65cuWYPXs2cPOUIrPZTN++fQkMDMTd3Z0KFSowZcqUu/bBwcGBQoUK0aVLF0qVKkVQUBBBQUF3fe7cuXMMHjyYQYMG8d5771G5cmXKli3L4MGD+eCDD5g8eTI7d+60lT98+DCtW7fG29sbLy8vGjduzKlTp2z3v/zySypVqoSbmxsVK1bks88+S9PeW2+9Rfny5fHw8KB06dKMHDmSlJQU2/3Ro0dTs2ZN5s6dS6lSpfDx8aFLly5cuXLFVua/U4rmzp1LnTp18PLywt/fn27duhEZGXnX9y7pp8BFRERERETsI/Zv2DTROH7yXXDzydn+SK62ePFiKlasSIUKFejRowezZs3CarXa7o8cOZIjR47w448/cvToUaZPn07BggVvWZfFYqFYsWIsWbKEI0eOMGrUKN555x0WL158xz488cQTxMTEMHLkyAz1fenSpaSkpNxyJMuLL76Ip6cnX3/9NQB//fUXTZo0wdXVlfXr17Nnzx769OlDamoqAPPnz2fUqFGMGzeOo0eP8t577zFy5EjmzJljq9PLy4uwsDCOHDnClClTmDlzJh999FGadk+dOsWKFStYtWoVq1atYtOmTUyYMOG27yElJYWxY8eyf/9+VqxYwZkzZ+jdu3eGPge5s8yNvxIREREREbluzUhIuQrF60H1zjndmwfX549BXA6MVPAsDC9uSnfx0NBQevToAUBISAgxMTFs2rSJpk2bAhAeHk6tWrWoU6cOAKVKlbptXc7OzowZM8Z2HhgYyI4dO1i8eDGdOnW65TPx8fE8+eSTdOvWjbVr15KQkMAHH3yA6dqaQ97e3syaNYuOHTve9Ozvv/+Oj48PRYsWvemei4sLpUuX5vfffwfg008/xcfHh4ULF+Ls7AxA+fLlbeX/7//+j8mTJ9O+fXtb348cOcLnn39Or169ABgxYoStfKlSpRgyZAgLFy5k6NChtusWi4WwsDDbtKGePXuybt06xo0bd8v336dPH9tx6dKlmTp1KnXr1iUuLg5PT89bPiMZo8BFREREREQy78xWOLQUMEGLieCgwfQ5Ji4SrqR/PZSccPz4cX799VeWL18OgJOTE507dyY0NNQWuLz88st06NCBvXv30rx5c9q2bUuDBg1uW+enn37KrFmzCA8PJyEhgeTkZGrWrHnb8mFhYURHR/Ppp58SFxdH06ZNee655/jyyy/5888/iYuLo2HDhpl+r/v27aNx48a2sOVGV69e5dSpU/Tt25cXXnjBdj01NRUfn39HiC1atIipU6dy6tQp4uLiSE1NxdvbO01dpUqVSrNGS9GiRe84RWjPnj2MHj2a/fv3c/nyZSwWC2AEXZUrV77n9yv/UuAiIiIiIiKZY06FH679pr3OcxBQM0e788DzLJzr2w0NDSU1NZWAgADbNavViqurK9OmTcPHx4cWLVpw9uxZfvjhB9auXcsTTzxB//79mTRp0k31LVy4kCFDhjB58mTq16+Pl5cXH3zwQZp1VP7rwIEDVKlSBWdnZ/Lnz8/atWtp3Lgx7dq1o1y5coSEhNxyBAsYI1RiYmL4+++/07wHgOTkZE6dOkWzZs0AcHd3v20f4uLiAJg5cyb16tVLc8/R0REwdnLq3r07Y8aMITg42DZaZvLkyWnK/zfQMZlMthDlv65evUpwcDDBwcHMnz+fQoUKER4eTnBwMMnJybftr2SMAhcREREREcmc3aEQeRjc88PjGVsLQ7JABqb15ITU1FS++uorJk+eTPPmzdPca9u2LV9//TUvvfQSAIUKFaJXr1706tWLxo0b8+abb94ycNm2bRsNGjTglVdesV27cVHaW3nooYdYvnw5V65cwcvLi8KFC/Pzzz/TuHFjVq1axZ49e277bIcOHXjrrbeYPHnyTcHHjBkzuHr1Kl27dgWgevXqzJkzh5SUlJtCkSJFihAQEMAff/xB9+7db9nW9u3bKVmyJMOHD7ddO3v27B3f290cO3aMS5cuMWHCBIoXLw7A7t27M1Wn3Ezj/ERERERE5N7F/QPrr60R8cQo8PDL2f5Irrdq1SouX75M3759qVq1appXhw4dCA0NBWDUqFF8++23nDx5ksOHD7Nq1SoqVap0yzrLlSvH7t27+emnn/j9998ZOXIku3btumM/+vbti9ls5qmnnmL79u0cP36cn376ibi4ODw8PGz9uJUSJUowceJEPv74Y4YPH86xY8c4deoUH374IUOHDmXw4MG2ESsDBgwgNjaWLl26sHv3bk6cOMHcuXM5fvw4AGPGjGH8+PFMnTqV33//nYMHDzJ79mw+/PBD23sLDw9n4cKFnDp1iqlTp9qmYt2rEiVK4OLiwieffMIff/zBypUrGTt2bKbqlJspcBERERERkXu3bjQkxUDRGlC7V/qfizgIG96DlIQs65rkTqGhoQQFBaVZo+S6Dh06sHv3bg4cOICLiwtvv/021atXp0mTJjg6OrJw4cJb1vniiy/Svn17OnfuTL169bh06VKa0S63EhAQwK+//krBggVp3749tWrV4quvvuKrr77i+++/54svvrCFHrcyaNAgli9fzpYtW6hTpw5Vq1ZlwYIFTJ8+Pc0onAIFCrB+/Xri4uJ47LHHePjhh5k5c6ZttMvzzz/Pl19+yezZs6lWrRqPPfYYYWFhBAYGAvDUU0/x+uuvM2DAAGrWrMn27dszvKvSfxUqVIiwsDCWLFlC5cqVmTBhwi1HDknmmKw37rv1gImNjcXHx4eYmJibFhwSEREREZG7+HMPfPm4cdxnDZSod+fy11mtMLsFhO+Aui9Aq5z/opcXvxskJiZy+vRpAgMDcXNzy+nuiDww0vuzpxEuIiIiIiKScRYL/DDYOK7RLf1hC8CBRUbY4pwPGr2eNf0TEclhClxERERERCTjfpsLf/8Grt4QNDr9zyXGwJpr0yEeexN8HsqS7omI5DQFLiIiIiIikjHxUfDzaOO46TDwKpL+ZzdOgKuRUKAcPNo/S7onIpIbKHAREREREZH0u3gSVrwCCVFQqCI80i/9z144DDs/N45bTgQnl6zpo4hILuCU0x0QEREREZFczmqFPzbAL9PhxJprF03Q8gNwdE5/HT+8CVYzVHoKyjyeZd0VEckNFLiIiIiIiMitJccbC9zunAH/HLt20QTlQ6Dha1CyfvrrOrgUzm4DZw8Ifi9LuisikpsocBERERERkbRi/oJdM2FPGCRcNq65eEKtHsYUogJlMlZfYiysGWEcNx4MvsXt2l0RkdxIgYuIiIiIiBjO7YKd0+HwCmPqD4BvSaj3EtTqDm4+91bvpvchLgL8ykCDV+3WXRGR3EyBi4iIiIjIg8ycAke+NdZn+Wv3v9dLNYZHXzamDzk43nv9kceMKUkALSaCk2vm+isikkdolyIRERERkQdRfBRsmQwfV4dv+hphi6ML1OwBL26B3qugYqvMhS1WK/wwBCypULE1lAuyX/9FckipUqX4+OOPc7obWcJkMrFixYqc7kam9e7dm7Zt2+Z0NxS4iIiIiIg8UP75HVYOhA8rwbp34crfkK8wNH0HXj8MbT+FotXt09ahb+DMFnBy00K5cpOIiAheffVVSpcujaurK8WLF6dNmzasW7fOru00bdqUQYMG2bXOuzl58iTBwcF4e3vj5+dHixYt+Oeff+76nNlsZsKECVSsWBF3d3f8/PyoV68eX375pV37N3r0aGrWrGnXOr/++mscHR3p37+/Xeu9F1OmTCEsLCynu6EpRSIiIiIiDwSLBX75DH4eDZYU41rRGvDoK1Clnf2n+iRdSbtQbv6S9q1f8rQzZ87QsGFDfH19+eCDD6hWrRopKSn89NNP9O/fn2PHjt29EjuyWq2YzWacnOzzFblfv37ExMSwadMmPDw82LFjB1ar9a7PjRkzhs8//5xp06ZRp04dYmNj2b17N5cvX7ZLv7JSaGgoQ4cO5fPPP2fy5Mm4ubllex/MZjMmkwkfn3tcb8rONMJFREREROR+d/UifN0Z1gw3wpayQfDcaui3CWp0yZp1VTZNhCvnIX8gNBho//olT3vllVcwmUz8+uuvdOjQgfLly1OlShXeeOMNfvnlF1u56Ohonn/+eQoVKoS3tzePP/44+/fvt92/PlJj7ty5lCpVCh8fH7p06cKVK1cAY2rJpk2bmDJlCiaTCZPJxJkzZ9i4cSMmk4kff/yRhx9+GFdXV7Zu3cqpU6d4+umnKVKkCJ6entStW5eff/45w+/PwcGB4OBgatWqRYUKFejduzeFCxe+63MrV67klVde4ZlnniEwMJAaNWrQt29fhgwZYiuTlJTEwIEDKVy4MG5ubjRq1Ihdu3bZ7oeFheHr65um3hUrVmAymWz3x4wZw/79+22fyY2jQS5evEi7du3w8PCgXLlyrFy58q79Pn36NNu3b2fYsGGUL1+eZcuWpbl/vU+rVq2iQoUKeHh40LFjR+Lj45kzZw6lSpUif/78DBw4ELPZnOa9DhkyhIceeoh8+fJRr149Nm7ceFO9K1eupHLlyri6uhIeHn7TlCKLxcLEiRMpW7Ysrq6ulChRgnHjxtnuv/XWW5QvXx4PDw9Kly7NyJEjSUlJuev7vhsFLiIiIiIi97PTm2F6QzixBhxdodVk6L4UStaHa1/A7O6f48ZoGoAW74Nz9v+mW3KvqKgoVq9eTf/+/cmXL99N928MC5555hkiIyP58ccf2bNnD7Vr1+aJJ54gKirKVubUqVOsWLGCVatWsWrVKjZt2sSECRMAY2pJ/fr1eeGFFzh//jznz5+nePF/tyUfNmwYEyZM4OjRo1SvXp24uDhatmzJunXr+O233wgJCaFNmzaEh4dn6D0+/fTTfPbZZ+zduzdDz/n7+7N+/fo7Tj8aOnQo33zzDXPmzGHv3r2ULVuW4ODgNJ/JnXTu3JnBgwdTpUoV22fSuXNn2/0xY8bQqVMnDhw4QMuWLenevftd6549ezatWrXCx8eHHj16EBoaelOZ+Ph4pk6dysKFC1m9ejUbN26kXbt2/PDDD/zwww/MnTuXzz//nKVLl9qeGTBgADt27GDhwoUcOHCAZ555hpCQEE6cOJGm3vfff58vv/ySw4cP3zLYevvtt5kwYQIjR47kyJEjLFiwgCJFitjue3l5ERYWxpEjR5gyZQozZ87ko48+StfneSeaUiQiIiIicj8yp8LG8cbCuFihYAXoOAv8q2Ztu1Yr/PCmsVBuhZZQPjhr25ObdF7VmYsJF7O93YLuBVnUetFdy508eRKr1UrFihXvWG7r1q38+uuvREZG4upqjMKaNGkSK1asYOnSpfTr1w8wRi+EhYXh5eUFQM+ePVm3bh3jxo3Dx8cHFxcXPDw88Pf3v6mNd999lyeffNJ27ufnR40aNWznY8eOZfny5axcuZIBAwbc/UMA1q9fz7BhwxgzZgytW7dm0aJFNG7cGIBvvvmG3r1720bg/NeHH35Ix44d8ff3p0qVKjRo0ICnn36aFi1aAHD16lWmT59OWFiY7drMmTNZu3YtoaGhvPnmm3ftn7u7O56enjg5Od3yM+nduzddu3YF4L333mPq1Kn8+uuvhISE3LK+65//J598AkCXLl0YPHgwp0+fJjAw0FYuJSWF6dOnU6ZMGQA6duzI3LlzuXDhAp6enlSuXJlmzZqxYcMGOnfuTHh4OLNnzyY8PJyAgAAAhgwZwurVq5k9ezbvvfeerd7PPvsszf9uN7py5QpTpkxh2rRp9OrVC4AyZcrQqFEjW5kRI0bYjkuVKsWQIUNYuHAhQ4cOvevneScKXERERERE7jfR4fDN83Bup3Fe+1kImQAuN48msLsjK+D0JmOh3JDxWd+e3ORiwkUi4yNzuhu3lZ61TAD2799PXFwcBQoUSHM9ISGBU6dO2c5LlSplC1sAihYtSmRk+t5/nTp10pzHxcUxevRovv/+e86fP09qaioJCQkZGuEybNgw+vfvz5AhQ6hSpQpt2rRh7ty5tGnThoMHD6b5ov9flStX5tChQ+zZs4dt27axefNm2rRpQ+/evfnyyy85deoUKSkpNGzY0PaMs7MzjzzyCEePHk13H++kevV/F83Oly8f3t7ed/w8165dy9WrV2nZsiUABQsW5Mknn2TWrFmMHTvWVs7Dw8MWtgAUKVKEUqVK4enpmeba9bYOHjyI2WymfPnyadpLSkpK89+Ei4tLmj7/19GjR0lKSuKJJ564bZlFixYxdepUTp06RVxcHKmpqXh7e9+2fHplOHDZvHkzH3zwAXv27OH8+fMsX77cNjcqJSWFESNG8MMPP/DHH3/g4+NDUFAQEyZMsCVSYAwhe/XVV/nuu+9wcHCgQ4cOTJkyJc0HfeDAAfr378+uXbsoVKgQr7766k3p0pIlSxg5ciRnzpyhXLlyvP/++7b/kUVEREREHkhHVsLKAZAYA67e0OZjqNohe9pOioOfhhvHjV6H/KWyp11Jo6B7wVzdbrly5TCZTHddGDcuLo6iRYumWbPjuhunHTk7O6e5ZzKZsFgs6erLf6c0DRkyhLVr1zJp0iTKli2Lu7s7HTt2JDk5OV31gfFd9vXXXwegRYsWhIaG8swzzzBt2jTCwsKYOHHiHZ93cHCgbt261K1bl0GDBjFv3jx69uzJ8OHD09W+g4PDTaFWRtYjyejnGRoaSlRUFO7u7rZrFouFAwcOMGbMGBwcHG5b753aiouLw9HRkT179uDomHZ7+huzA3d3d9v6NLdyY79uZceOHXTv3p0xY8YQHByMj48PCxcuZPLkyXd8Lj0yHLhcvXqVGjVq0KdPH9q3b5/mXnx8PHv37mXkyJHUqFGDy5cv89prr/HUU0+xe/duW7nu3btz/vx51q5dS0pKCs899xz9+vVjwYIFAMTGxtK8eXOCgoKYMWMGBw8epE+fPvj6+tqGjW3fvp2uXbsyfvx4WrduzYIFC2jbti179+6latUsHiYpIiIiIpLbpCTAT+/A7lnG+UN1oGNo9oYeWyZB7F/gWxIavpZ97Uoa6ZnWk5P8/PwIDg7m008/ZeDAgTeFHtHR0fj6+lK7dm0iIiJwcnKiVKlS99yei4tLmoVY72Tbtm307t2bdu3aAcaX/jNnzmSovYceeojNmzfbpuV06NCBuLg4nnvuOapXr84zzzyTofoqV64MGN/Fy5Qpg4uLC9u2baNkSWPnr5SUFHbt2mXb+rpQoUJcuXKFq1ev2j7bffv2pakzI5/JnVy6dIlvv/2WhQsXUqVKFdt1s9lMo0aNWLNmzW2nIt1NrVq1MJvNREZG2qZk3Yty5crh7u7OunXreP7552+6v337dkqWLJkm0Dp79uw9t3ejDAcuLVq0sM0V+y8fHx/Wrl2b5tq0adN45JFHCA8Pp0SJEhw9epTVq1eza9cu2/CtTz75hJYtWzJp0iQCAgKYP38+ycnJzJo1CxcXF6pUqcK+ffv48MMPbYHLlClTCAkJsc1RGzt2LGvXrmXatGnMmDEjo29LRERERCTvijwKS/tA5BHjvOEgeHwEODrf8TG7ungCtk8zjlu8D853/q2yPNg+/fRTGjZsyCOPPMK7775L9erVSU1NZe3atUyfPp2jR48SFBRE/fr1adu2LRMnTqR8+fL8/ffffP/997Rr1+6m6UC3U6pUKXbu3MmZM2fw9PTEz8/vtmXLlSvHsmXLaNOmDSaTiZEjR6Z7tMx1Q4cO5ZVXXsHf35/OnTsTExPDjh078PDw4NixY2zbtu2204o6duxIw4YNadCgAf7+/pw+fZq3336b8uXLU7FiRZycnHj55Zd588038fPzo0SJEkycOJH4+Hj69u0LQL169fDw8OCdd95h4MCB7Ny5M80uRNc/k9OnT7Nv3z6KFSuGl5eXbZ2cjJg7dy4FChSgU6dON40yadmyJaGhofccuJQvX57u3bvz7LPPMnnyZGrVqsU///zDunXrqF69Oq1atUpXPW5ubrz11lsMHToUFxcXGjZsyD///MPhw4fp27cv5cqVIzw8nIULF1K3bl2+//57li9ffk99/q8s36UoJiYGk8lkG/K1Y8cOfH190/xwBAUF4eDgwM6dO21lmjRpgouLi61McHAwx48ft+0/vmPHDoKCgtK0FRwczI4dO27bl6SkJGJjY9O8RERERETyLKsV9oTBF82MsCVfYei5HJ4ck71hi9UKPw41tpwuFwwVbv0LWpHrSpcuzd69e2nWrBmDBw+matWqPPnkk6xbt47p06cDxvSSH374gSZNmvDcc89Rvnx5unTpwtmzZ9PsMHM3Q4YMwdHRkcqVK1OoUKE7rsfy4Ycfkj9/fho0aECbNm0IDg6mdu3aGXpvL774IosWLeK7777j4Ycf5qmnniI5OZljx47Rs2dP2rZtm2aXnRsFBwfz3Xff0aZNG8qXL0+vXr2oWLEia9aswcnJGC8xYcIEOnToQM+ePalduzYnT57kp59+In/+/IAxgmjevHn88MMPVKtWja+//prRo0enaadDhw6EhITQrFkzChUqxNdff52h93jdrFmzaNeu3S2n9HTo0IGVK1dy8eK9L+A8e/Zsnn32WQYPHkyFChVo27Ytu3btokSJEhmqZ+TIkQwePJhRo0ZRqVIlOnfubFsr5qmnnuL1119nwIAB1KxZk+3btzNy5Mh77vONTNb0rlh0q4dNpjRruPxXYmIiDRs2pGLFisyfPx8wVjmeM2cOx48fT1O2cOHCjBkzhpdffpnmzZsTGBjI559/brt/5MgRqlSpwpEjR6hUqRIuLi7MmTPHNkwL4LPPPmPMmDFcuHDhlv0ZPXo0Y8aMuel6TEyMXRbEERERERHJNgnR8N1rxiK1AGUeh3afg+fNW6JmuSMrYXFPY9vp/r+AX+ns70MmxcbG4uPjk6e+GyQmJtp2gnFz09bbItklvT97WTbCJSUlhU6dOmG1Wm0JZU57++23iYmJsb3OnTuX010SEREREcm4c7vg88ZG2OLgBE++C92/yZmwJTneWDsGjHVb8mDYIiKSFbJkW+jrYcvZs2dZv359moTY39//pi2lUlNTiYqKsu0B7u/vf9Molevndytzq33Er3N1db2neWkiIiIiIrmCxQLbPob1/wOr2VgQt8MsKPZwzvVpy2SIOQc+JYydiUREBMiCES7Xw5YTJ07w888/37Rnev369YmOjmbPnj22a+vXr8disVCvXj1bmc2bN6fZumrt2rVUqFDBNi+tfv36rFu3Lk3da9eupX79+vZ+SyIiIiIiOS/pCsxrD+vGGGFL1Q7w4uacDVsunYLtU43jkPHg4pFzfRERyWUyHLjExcWxb98+27ZS11c2Dg8PJyUlhY4dO7J7927mz5+P2WwmIiKCiIgI277llSpVIiQkhBdeeIFff/2Vbdu2MWDAALp06UJAQAAA3bp1w8XFhb59+3L48GEWLVrElClTeOONN2z9eO2111i9ejWTJ0/m2LFjjB49mt27dzNgwAA7fCwiIiIiIrlIahIs7A5/bABnD3hqGnQIBTefnOuT1Qo/vgXmZCgbBBXTt2OIiMiDIsOL5m7cuJFmzZrddL1Xr16MHj2awMDAWz63YcMGmjZtCkBUVBQDBgzgu+++w8HBgQ4dOjB16lQ8PT1t5Q8cOED//v3ZtWsXBQsW5NVXX+Wtt95KU+eSJUsYMWIEZ86coVy5ckycOJGWLVum+73kxYWxREREROQBYzEbWz4fWQEuntBrJTyUg6Narjv2PSzsBo4u8MovUKBMTvcoU/LidwMtmiuSM9L7s5epXYryurz4l6qIiIiIPECsVvhhCOz6EhycofsSKHPzLz+zXXI8fFoPYsKh8WB4YlRO9yjT8uJ3AwUuIjkjx3cpEhERERGRTNr0vhG2YIL2X+SOsCUpztiVKCYcvIsZgYuIiNwkS3YpEhERERGRTNr1JWwcbxy3/ACqts/Z/iTGwK9fwI7PICHKuBbyHrjky9l+iYjkUgpcRERERERym8PL4fshxvFjw+CRF3KuL/FR8Mt02Pk5JMUY1/xKQ9N3oPLTOdcvEZFcToGLiIiIiEhucmoDfPMCYIU6faHpsJzpR1wkbP8EdoVCylXjWqGK0HgIVGkHjvoqIfefpk2bUrNmTT7++OOc7orcB/S3pIiIiIhIbvHXXljUAywpULmtMZXIZMrePsT8Bdunwp4wSE00rvlXhyZvQsXW4KBlICXzevfuzZw5c266HhwczOrVq3OgR4Zly5bh7OycY+3L/UWBi4iIiIhIbnDxJMzvCMlxEPiYsUiug2P2tX/5DGz9GPbNB3Oyce2hOvDYUCjXPPuDH7nvhYSEMHv27DTXXF1d76kuq9WK2WzGySlzX3H9/Pwy9bzIjRRPi4iIiIjktNi/YW47iL8ERWtCl/ngdG9fPDPs4klY/jJMrQ17ZhthS8lG0HMFPP8zlA9W2CJZwtXVFX9//zSv/Pnzc+bMGUwmE/v27bOVjY6OxmQysXHjRgA2btyIyWTixx9/5OGHH8bV1ZWtW7dy6tQpnn76aYoUKYKnpyd169bl559/TtPuZ599Rrly5XBzc6NIkSJ07NjRdq9p06YMGjTIdj537lzq1KmDl5cX/v7+dOvWjcjIyKz8WOQ+ohEuIiIiIiI5KeEyzOtgbLPsVwa6LwVXr6xv98Jh2DIZDi0DrMa1Mo8bU4dKNsj69kXsYNiwYUyaNInSpUuTP39+zp07R8uWLRk3bhyurq589dVXtGnThuPHj1OiRAl2797NwIEDmTt3Lg0aNCAqKootW7bctv6UlBTGjh1LhQoViIyM5I033qB379788MMP2fguJa9S4CIiIiIiklOS42FBF4g8Ap7+0HM5eBbK2jbPH4BN78OxVf9eq9DSWAy32MNZ27Zki9MdOpJ68WK2t+tUsCCB3yxNd/lVq1bh6emZ5to777xDt27d0l3Hu+++y5NPPmk79/Pzo0aNGrbzsWPHsnz5clauXMmAAQMIDw8nX758tG7dGi8vL0qWLEmtWrVuW3+fPn1sx6VLl2bq1KnUrVuXuLi4m/ou8l8KXEREREREcoI5BZb0hnO/gJsP9FwG+UtmXXsWC2z7CNaPA6sZMBnbOjceDEWrZ127ku1SL14k9cKFnO7GXTVr1ozp06enuebn50dsbGy666hTp06a87i4OEaPHs3333/P+fPnSU1NJSEhgfDwcACefPJJSpYsSenSpQkJCSEkJIR27drh4eFxy/r37NnD6NGj2b9/P5cvX8ZisQAQHh5O5cqVM/J25QGkwEVEREREJLtZLLDyVTjxEzi5QbfFUKRK1rV3JQKW9YPTm4zzSm2g2QgoXDHr2pQc41SwYJ5oN1++fJQtW/am63FxcYCxEO51KSkpt63jRkOGDGHt2rVMmjSJsmXL4u7uTseOHUlONhaC9vLyYu/evWzcuJE1a9YwatQoRo8eza5du/D19U1T19WrVwkODiY4OJj58+dTqFAhwsPDCQ4OttUncicKXEREREREstvPo2D/12ByhGfmQIlHs66tEz/D8hch/iI4exhbTdfsroVw72MZmdaTGxUqZEyrO3/+vG26z40L6N7Jtm3b6N27N+3atQOM8ObMmTNpyjg5OREUFERQUBD/93//h6+vL+vXr6d9+/Zpyh07doxLly4xYcIEihcvDsDu3bsz8c7kQaPARUREREQkO22bAts/MY6fngYVQrKmndRkWP/uv20VqQodZ0Oh8lnTnkgGJSUlERERkeaak5MTBQsW5NFHH2XChAkEBgYSGRnJiBEj0lVnuXLlWLZsGW3atMFkMjFy5EjbNCAw1o35448/aNKkCfnz5+eHH37AYrFQoUKFm+oqUaIELi4ufPLJJ7z00kscOnSIsWPHZu5NywNF20KLiIiIiGSX3+bB2lHG8ZNjoWb6FwfNkKg/YFbwv2HLI/3g+XUKWyRXWb16NUWLFk3zatSoEQCzZs0iNTWVhx9+mEGDBvG///0vXXV++OGH5M+fnwYNGtCmTRuCg4OpXbu27b6vry/Lli3j8ccfp1KlSsyYMYOvv/6aKlVuntJXqFAhwsLCWLJkCZUrV2bChAlMmjTJPm9eHggm640T4x4wsbGx+Pj4EBMTg7e3d053R0RERETuZ8d/hIXdjQVrGwyE5ln0m/KDS+G7QZB8Bdx8oe1nULFV1rR1H8mL3w0SExM5ffo0gYGBuLm55XR3RB4Y6f3Z05QiEREREZGsFr7T2JHIajbWT3nyXfu3kXwVfhgK++YZ5yUaQIeZ4FPM/m2JiMhdKXAREREREclKUX/Awq6QmgjlQ6DNVPsvWBtxEJY8B5dOgMkBmrwJTYaCo/65LyKSU/Q3sIiIiIhIVomPgvmdIP4SFK0JHWfZNwSxWuHXmbBmBJiTwKsotJ8JgY3t14aIiNwTBS4iIiIiIlkhNRkWP2uMOvEuBt0WgUs++9UfHwXfDoDj3xvn5UPg6c8gXwH7tSEiIvdMgYuIiIiIiL1ZrfDda3BmC7h4GWGLl7/96j+7Hb55HmL/AkcXY8ejei/af6qSiIjcMwUuIiIiIiL2tnkS7F8AJkfoFAb+Ve1Tr8Vs1L1pAlgt4FcGnpkNRWvYp34REbEbBS4iIiIiIvZ0cCls+J9x3PIDKBtkn3oTomFRD2PUDECNbkb9rp72qV9EROxKgYuIiIiIiL2c3QErXjaO6w+Aun3tU2/SFZjfEf7cBS6e0OpDqNHZPnWLiEiWUOAiIiIiImIPl07Bwm5gToaKreHJd+1Tb3I8LOhshC1uvtB7FfhXs0/dIiKSZRxyugMiIiIiInlefBQs6AQJURBQC9p/AQ6Oma83JdEIcc5uA1dv6LlcYYuISB6hwEVEREREJDNSk2FRT7h0EnyKQ1c7bf98fVvpPzaAcz7ovhQeqp35ekVygd69e2MymW56hYSE5HTXROxGU4pERERERO6V1QrfDYSzW69t/7wYvIpkvl5zKnzTF078BE5uxrbSJeplvl6RXCQkJITZs2enuebq6npPdVmtVsxmM05O+ooruYdGuIiIiIiI3KvNH8D+r//d/rlI5czXaTHDipfg6EpwdIEuCyCwcebrFcllXF1d8ff3T/PKnz8/Z86cwWQysW/fPlvZ6OhoTCYTGzduBGDjxo2YTCZ+/PFHHn74YVxdXdm6dStJSUkMHDiQwoUL4+bmRqNGjdi1a5etnuvPff/991SvXh03NzceffRRDh06lKZvW7dupXHjxri7u1O8eHEGDhzI1atXs+NjkfuIAhcRERERkXtxYAlsGGcct5pkn+2fLRZYORAOLgEHJ+j0FZR9IvP1itynhg0bxoQJEzh69CjVq1dn6NChfPPNN8yZM4e9e/dStmxZgoODiYqKSvPcm2++yeTJk9m1axeFChWiTZs2pKSkAHDq1ClCQkLo0KEDBw4cYNGiRWzdupUBAwbkxFuUPEzjrUREREREMursDvj2FeO4watQp0/m67Ra4YchsG8emBygQyhUaJH5euWBs/i9XcTHJmd7ux7eLnR6p266y69atQpPT88019555x26deuW7jreffddnnzySQCuXr3K9OnTCQsLo0UL42dn5syZrF27ltDQUN58803bc//3f/9ne27OnDkUK1aM5cuX06lTJ8aPH0/37t0ZNGgQAOXKlWPq1Kk89thjTJ8+HTc3t3T3Tx5sClxERERERDLiv9s/B9lh+2erFdaMgN2hgAnafQ5V2ma+XnkgxccmczU6Kae7cVfNmjVj+vTpaa75+fkRGxub7jrq1KljOz516hQpKSk0bNjQds3Z2ZlHHnmEo0ePpnmufv36adqsUKGCrcz+/fs5cOAA8+fPt5WxWq1YLBZOnz5NpUqV0t0/ebApcBERERERSa/4KJj/zLXtn2tD+5ngYIdZ+uv/BzumGcdPTYXqnTJfpzywPLxd8kS7+fLlo2zZsjddj4uLA4yQ47rr031uVYe9xcXF8eKLLzJw4MCb7pUoUcLu7cn9S4GLiIiIiEh6pCbBoh4Qdera9s8LwcUj8/Vu+gC2TDKOW06C2s9mvk55oGVkWk9uVKhQIQDOnz9PrVq1ANIsoHs7ZcqUwcXFhW3btlGyZEnACGp27dplmx503S+//GILTy5fvszvv/9uG7lSu3Ztjhw5csswSCQjFLiIiIiIiNyN1QorX4Wz28DV237bP2//BDb8zzh+ciw88kLm6xTJI5KSkoiIiEhzzcnJiYIFC/Loo48yYcIEAgMDiYyMZMSIEXetL1++fLz88su8+eab+Pn5UaJECSZOnEh8fDx9+/ZNU/bdd9+lQIECFClShOHDh1OwYEHatm0LwFtvvcWjjz7KgAEDeP7558mXLx9Hjhxh7dq1TJs2zW7vX+5/ClxERERERO5m00Q4sMjY/vmZMPts//zrTGPdFoBmI6DhzdMXRO5nq1evpmjRommuVahQgWPHjjFr1iz69u3Lww8/TIUKFZg4cSLNmze/a50TJkzAYrHQs2dPrly5Qp06dfjpp5/Inz//TeVee+01Tpw4Qc2aNfnuu+9wcTGmRFWvXp1NmzYxfPhwGjdujNVqpUyZMnTu3Nl+b14eCCbrjRPjHjCxsbH4+PgQExODt7d3TndHRERERHKjvV8Zo1sAWn8MdZ7LfJ175sB31wKWxoPhiVGZr1MyJS9+N0hMTOT06dMEBgZq55x02rhxI82aNePy5cv4+vrmdHckj0rvz54dVvgSEREREblP7fzi37ClwUD7hC37F8F3rxnHj/aHx0dmvk4REcl1FLiIiIiIiNzKlsnw45vG8aOvwJN22P758HJY8RJghTp9IXgcmEyZr1dERHIdreEiIiIiInIjqxXWjYGtHxnnTYZCs3cyH4wc+wG+eR6sFqjZw9iRSGGLSLZq2rQpD/CqGpLNFLiIiIiIiFxnscDqt+DXL4zzJ9+Fhq9lvt4/NsGSXmBJhaod4amp4KDB5iIi9zMFLiIiIiIiAOZUYyHbffMBE7SaDHX73vWxu7pwGBb1AHMyVGwN7T4HB8fM1ysiIrmaAhcRERERkdRkWPYCHFlhbP3cdjrUsMMWsLF/w/xnICkWSjSADqHgqH+Ci4g8CPS3vYiIiIg82FISYPGzcGINODjDM7OhUpvM15sYa4QtsX9BgXLQZT44a+teEZEHhQIXEREREXlwJV2Br7vCmS3g5A5d5kHZoMzXa04xQpwLhyBfYeixFDz8Ml+viIjkGQpcREREROTBFB8F8zvCX3vAxQu6L4aSDTJfr9UK370Gf2wAZw/otgjyl8p8vSIikqdoaXQRERERefDERcKcNkbY4p4fen1rn7AFYNP7xsK7JgfoOBseqm2fekUeYE2bNmXQoEF3LFOqVCk+/vjjO5YxmUysWLECgDNnzmAymdi3b59d+ijyXwpcREREROTBEvMnzG7x73Sf3j/AQw/bp+7f5sHG8cZxq8lQIcQ+9YrcZ3r37o3JZOKll1666V7//v0xmUz07t3bdm3ZsmWMHTs2G3uYPhs3bsRkMt3yFRERYZc20hMkSe6kwEVEREREHhyXTsGsFnDpJPgUhz6roUhl+9R9cp0xlQig0etQp4996hW5TxUvXpyFCxeSkJBgu5aYmMiCBQsoUaJEmrJ+fn54eXlldxfT7fjx45w/fz7Nq3DhwjndLclhClxERERE5MEQedQY2RITDn5l4LkfoUAZ+9QdcRAW9wJLKlR7Bh4fZZ96Re5jtWvXpnjx4ixbtsx2bdmyZZQoUYJatWqlKfvfKUWRkZG0adMGd3d3AgMDmT9//k31nzhxgiZNmuDm5kblypVZu3btXft06NAhWrRogaenJ0WKFKFnz55cvHjxrs8VLlwYf3//NC8HB+Pr9q5du3jyyScpWLAgPj4+PPbYY+zdu9f2rNVqZfTo0ZQoUQJXV1cCAgIYOHCg7X2fPXuW119/3TZyRvIOBS4iIiIicv/7+zeY3RLiLkDhKkbY4lvcPnXH/Gls/5x8BUo1hqc/BQf9M1skPfr06cPs2bNt57NmzeK5556763O9e/fm3LlzbNiwgaVLl/LZZ58RGRlpu2+xWGjfvj0uLi7s3LmTGTNm8NZbb92xzujoaB5//HFq1arF7t27Wb16NRcuXKBTp073/gaBK1eu0KtXL7Zu3covv/xCuXLlaNmyJVeuXAHgm2++4aOPPuLzzz/nxIkTrFixgmrVqgFGAFWsWDHeffdd28gZyTu0S5GIiIiI3N/O7oAFnSAp1lirpbsdt2hOiDbClivnoVBF6DwPnFztU7fIPZr39iCuRl/O9nbz+eanx/iPM/RMjx49ePvttzl79iwA27ZtY+HChWzcuPG2z/z+++/8+OOP/Prrr9StWxeA0NBQKlWqZCvz888/c+zYMX766ScCAgIAeO+992jRosVt6502bRq1atXivffes12bNWsWxYsX5/fff6d8+fK3fbZYsWJpzkuWLMnhw4cBePzxx9Pc++KLL/D19WXTpk20bt2a8PBw/P39CQoKwtnZmRIlSvDII48AxlQqR0dHvLy88Pf3v237kjspcBERERGR+5PFAoeXwbcDIDUBSjY0tmh2tdM6EKnJsLgnRB4BT38jyHH3tU/dIplwNfoycVGXcrob6VKoUCFatWpFWFgYVquVVq1aUbBgwTs+c/ToUZycnHj44X8Xu65YsSK+vr5pyhQvXtwWtgDUr1//jvXu37+fDRs24OnpedO9U6dO3TFw2bJlS5o1ZpydnW3HFy5cYMSIEWzcuJHIyEjMZjPx8fGEh4cD8Mwzz/Dxxx9TunRpQkJCaNmyJW3atMHJSV/X87oMj3XcvHkzbdq0ISAgIM2WWtdZrVZGjRpF0aJFcXd3JygoiBMnTqQpExUVRffu3fH29sbX15e+ffsSFxeXpsyBAwdo3Lgxbm5uFC9enIkTJ97UlyVLllCxYkXc3NyoVq0aP/zwQ0bfjoiIiIjcb8wpsH8hfPYofNPXCFvKBhmBiL3CFqsVVr4KpzeDiyd0X2y/KUoimZTPNz+efgWy/ZXPN/899bdPnz6EhYUxZ84c+vTJucWm4+LiaNOmDfv27Uvzur4WzJ0EBgZStmxZ26tkyZK2e7169WLfvn1MmTKF7du3s2/fPgoUKEBycjJgLB58/PhxPvvsM9zd3XnllVdo0qQJKSkpWfp+JetlODK7evUqNWrUoE+fPrRv3/6m+xMnTmTq1KnMmTOHwMBARo4cSXBwMEeOHMHNzQ2A7t27c/78edauXUtKSgrPPfcc/fr1Y8GCBQDExsbSvHlzgoKCmDFjBgcPHqRPnz74+vrSr18/ALZv307Xrl0ZP348rVu3ZsGCBbRt25a9e/dStWrVzHwmIiIiIpIXpSTCvvmw7WOINn5zjKsPPPoSNB5s36k+G8bBgYVgcoRn5kDRGvarWySTMjqtJ6eFhISQnJyMyWQiODj4ruUrVqxIamoqe/bssU0pOn78ONHR0bYylSpV4ty5c5w/f56iRYsC8Msvv9yx3tq1a/PNN99QqlQpu44u2bZtG5999hktW7YE4Ny5czctxOvu7k6bNm1o06YN/fv3p2LFihw8eJDatWvj4uKC2Wy2W38k+2T4v6IWLVrcdt6b1Wrl448/ZsSIETz99NMAfPXVVxQpUoQVK1bQpUsXjh49yurVq9m1axd16tQB4JNPPqFly5ZMmjSJgIAA5s+fT3JyMrNmzcLFxYUqVaqwb98+PvzwQ1vgMmXKFEJCQnjzzTcBGDt2LGvXrmXatGnMmDHjnj4MEREREcmDkuJgz2zYPg3iIoxrHgWhfn+o+zy4edu3vT1hsPkD47jNx1AuyL71izxgHB0dOXr0qO34bipUqEBISAgvvvgi06dPx8nJiUGDBuHu7m4rExQURPny5enVqxcffPABsbGxDB8+/I719u/fn5kzZ9K1a1eGDh2Kn58fJ0+eZOHChXz55Zd37FtkZCSJiYlprhUoUABnZ2fKlSvH3LlzqVOnDrGxsbz55ptp+hoWFobZbKZevXp4eHgwb9483N3dbaNkSpUqxebNm+nSpQuurq53nXIluYddl08/ffo0ERERBAX9+386Pj4+1KtXjx07dgCwY8cOfH19bWELGD8MDg4O7Ny501amSZMmuLi42MoEBwdz/PhxLl++bCtzYzvXy1xv51aSkpKIjY1N8xIRERGRPCrhMmx8Hz6uCmtGGGGL90PQYiIMOgiN37B/2HJiLax6wzhuMhRqP2vf+kUeUN7e3nh7p//ndfbs2QQEBPDYY4/Rvn17+vXrR+HChW33HRwcWL58OQkJCTzyyCM8//zzjBs37o51BgQEsG3bNsxmM82bN6datWoMGjQIX19f2xbPt1OhQgWKFi2a5rVnzx7AWND38uXL1K5dm549ezJw4MA0ffX19WXmzJk0bNiQ6tWr8/PPP/Pdd99RoEABAN59913OnDlDmTJlKFSoULo/I8l5dl2FJyLC+I1CkSJF0lwvUqSI7V5ERESa/7gAnJyc8PPzS1MmMDDwpjqu38ufPz8RERF3bOdWxo8fz5gxY+7hnYmIiIhIrhEXCTs+hV2hxlbMAH6lodHrUL0LOLnc+fl79fc+WNwLrGao0RWavZM17Yg8AMLCwu54/79rhf531yJ/f39WrVqV5lrPnj3TnJcvX54tW7akuWa1Wm3HpUqVSnMOUK5cOZYtW3bHvt2oadOmN9XxX7Vq1WLXrl1prnXs2NF23LZtW9q2bXvb5x999FH279+f7j5J7vFALXv89ttv88Ybb9jOY2NjKV5ci5uJiIiI5AnR52D7VNj7FaReG7pfuIoxkqVKO3C4+1SEe2873NhaOuUqBD4GbaaCyZR17YmISJ5n18Dl+r7gFy5csC1MdP28Zs2atjKRkZFpnktNTSUqKsr2vL+/PxcuXEhT5vr53crcaW9yV1dXXF3tuFiaiIiIiGS9iydh60fGIrWWVOPaQ3WgyRAoH5L1wUfCZZjXEeIuGAFP57lZN4pGRETuG3ZdwyUwMBB/f3/WrVtnuxYbG8vOnTtte57Xr1+f6Oho23w2gPXr12OxWKhXr56tzObNm9Nsg7V27VoqVKhA/vz5bWVubOd6mbvtrS4iIiIieUTkUVjyHHxaF/bNM8KWwCbw7Ep4/meo0CLrw5bYvyGsNVw8Dl4B0H0JuPlkbZsiInJfyPAIl7i4OE6ePGk7P336NPv27cPPz48SJUowaNAg/ve//1GuXDnbttABAQG2OWmVKlUiJCSEF154gRkzZpCSksKAAQPo0qULAQEBAHTr1o0xY8bQt29f3nrrLQ4dOsSUKVP46KOPbO2+9tprPPbYY0yePJlWrVqxcOFCdu/ezRdffJHJj0REREREcpTVCr/OhDXDwZxsXCvfwtjauXjd7OvHhcMw/xmI/QvyFYYeS8HnoexrX0RE8rQMBy67d++mWbNmtvPra6L06tWLsLAwhg4dytWrV+nXrx/R0dE0atSI1atX4+bmZntm/vz5DBgwgCeeeAIHBwc6dOjA1KlTbfd9fHxYs2YN/fv35+GHH6ZgwYKMGjXKtiU0QIMGDViwYAEjRozgnXfeoVy5cqxYsYKqVave0wchIiIiIrlAQjSsHABHvzPOyzWHJ/4P/LP533h/bIJFPSApFgqWh+5LIX/J7O2DiIjkaSbr3ZZUvo/Fxsbi4+NDTExMhrYgExEREZEs8OduWPqcsUCtgzM0/x/UezH7F6fdvxC+HQCWFCjZELrMB/f82dsHyXZ58btBYmIip0+fJjAwMM0vuEUka6X3Z++B2qVIRERERHIhqxV2TIOfRxvrtOQvBR1nw0O1s78fWybB+v8Z51XaQ9vp4KwvsiIiknEKXEREREQk58RHwYqX4ffVxnnltvDU1OxfmNacCt+/AXvnGOcNBkLQGHCw6x4TIiLyAFHgIiIiIiI5I/wXWNrHWJTW0RVaTICHn8v+KURJccZUphNrwOQALSbCIy9kbx9EROS+o8heRERERLKXxQJbJsPslkbYUqAsvLAO6vTJ/rDlygUIa2WELU7u0HmewhaR+1jv3r1tO+jmZRs3bsRkMhEdHZ3TXZE7UOAiIiIiItkn7h+Y3wHWvQtWM1TvDP02gX+17O/LP79DaBCc3wceBaD3KqjYKvv7IfIA6t27NyaTiQkTJqS5vmLFCkx2CF7PnDmDyWRi3759ma7ruoSEBPz8/ChYsCBJSUl2q/deNGjQgPPnz+Pjk83TLyVDFLiIiIiISPY4vRlmNIRT643RJE9/Cu0+B1fP7O/L2e0Q+qSxI5Jfaei7ForVyf5+iDzA3NzceP/997l8+bJd601OTrZrfdd98803VKlShYoVK7JixYosaSM9UlJScHFxwd/f3y7hlGQdBS4iIiIikrUsZtg4Ab56GuIuQKGK0G8D1OqR/VOIAA4tM/qSGA3F6hphS4Ey2d8PkQdcUFAQ/v7+jB8//o7lrgcdrq6ulCpVismTJ6e5X6pUKcaOHcuzzz6Lt7c3/fr1IzAwEIBatWphMplo2rRpmmcmTZpE0aJFKVCgAP379yclJeWu/Q0NDaVHjx706NGD0NDQm+6bTCY+//xzWrdujYeHB5UqVWLHjh2cPHmSpk2bki9fPho0aMCpU6fSPPftt99Su3Zt3NzcKF26NGPGjCE1NTVNvdOnT+epp54iX758jBs37pZTirZt20bTpk3x8PAgf/78BAcH28Ks1atX06hRI3x9fSlQoACtW7e+qR9ifwpcRERERCTrXIkwwo2N48FqgVo94YUNULhS9vfFaoVtU40Fcs3JULE1PLsS8hXM/r6ICI6Ojrz33nt88skn/Pnnn7css2fPHjp16kSXLl04ePAgo0ePZuTIkYSFhaUpN2nSJGrUqMFvv/3GyJEj+fXXXwH4+eefOX/+PMuWLbOV3bBhA6dOnWLDhg3MmTOHsLCwm+r7r1OnTrFjxw46depEp06d2LJlC2fPnr2p3PXgZ9++fVSsWJFu3brx4osv8vbbb7N7926sVisDBgywld+yZQvPPvssr732GkeOHOHzzz8nLCyMcePGpal39OjRtGvXjoMHD9KnT5+b2t23bx9PPPEElStXZseOHWzdupU2bdpgNpsBuHr1Km+88Qa7d+9m3bp1ODg40K5dOywWyx3ft2SOyWq1WnO6EzklNjYWHx8fYmJi8Pb2zunuiIiIiNxfTq6DZf0g/iI454M2H0P1TjnTF4sZVg+DX78wzuu9BMHvgYNjzvRHcp28+N0gMTGR06dPExgYiJubm+36hU9+w3Ila6bV3ImDlwtFXq2VrrK9e/cmOjqaFStWUL9+fSpXrkxoaCgrVqygXbt2XP+a2r17d/755x/WrFlje3bo0KF8//33HD58GDBGuNSqVYvly5fbypw5c4bAwEB+++03atasmabdjRs3curUKRwdjZ//Tp064eDgwMKFC2/b3+HDh3PkyBFbG23btqVmzZqMHj3aVsZkMjFixAjGjh0LwC+//EL9+vUJDQ21hSQLFy7kueeeIyEhATBG+TzxxBO8/fbbtnrmzZvH0KFD+fvvv231Dho0iI8++shWZuPGjTRr1ozLly/j6+tLt27dCA8PZ+vWren6/C9evEihQoU4ePAgVatWTdcz8q/b/ez9l0a4iIiIiIh9WSywbizM62CELUWqwYubcy5sSY6Hxc/+G7Y0HwchExS2yH3LciUZc2z2v+415Hn//feZM2cOR48evene0aNHadiwYZprDRs25MSJE7bRGwB16qR/DaYqVarYwhaAokWLEhkZedvyZrOZOXPm0KNHD9u1Hj16EBYWdtMIkerVq9uOixQpAkC1atXSXEtMTCQ2NhaA/fv38+677+Lp6Wl7vfDCC5w/f574+Ph0v7/rI1xu58SJE3Tt2pXSpUvj7e1NqVKlAAgPD79jvZI5TjndARERERG5j1jMsHIg7JtnnNfpa4wkcb79bwCzVNw/8HUX+Gs3OLpC+8+hSruc6YtINnHwcslT7TZp0oTg4GDefvttevfufU915MuXL91lnZ2d05ybTKY7Tq356aef+Ouvv+jcuXOa62azmXXr1vHkk0/esu7rC9re6tr19uLi4hgzZgzt27e/qd0bR07c7f25u7vf8X6bNm0oWbIkM2fOJCAgAIvFQtWqVbNsgWExKHAREREREfswp8DyF+HQN2ByhKenQc1uOdOXuEjYMQ12hUJyHLjnhy5fQ8n6OdMfkWyU3mk9ucmECROoWbMmFSpUSHO9UqVKbNu2Lc21bdu2Ub58+TSjVP7LxcUIf24cBXOvQkND6dKlC8OHD09zfdy4cYSGhqYJXDKqdu3aHD9+nLJly2aqj9WrV2fdunWMGTPmpnuXLl3i+PHjzJw5k8aNGwOke+qRZI4CFxERERHJvNQkWNoHjq0CByfoOAsqP539/Yg+B9unwt6vIDXRuFakmtGfQuWzvz8iki7VqlWje/fuTJ06Nc31wYMHU7duXcaOHUvnzp3ZsWMH06ZN47PPPrtjfYULF8bd3Z3Vq1dTrFgx3Nzc8PHxyXC//vnnH7777jtWrlx501onzz77LO3atSMqKgo/P78M1w0watQoWrduTYkSJejYsSMODg7s37+fQ4cO8b///S/d9bz99ttUq1aNV155hZdeegkXFxc2bNjAM888g5+fHwUKFOCLL76gaNGihIeHM2zYsHvqr2SM1nARERERkcxJSYCF3YywxdEVuizI/rDl4klY0R+m1jTWaklNhIfqQNeF8NIWhS0iecC7775709Se2rVrs3jxYhYuXEjVqlUZNWoU77777l2nHjk5OTF16lQ+//xzAgICePrpe/s76auvviJfvny3XB/liSeewN3dnXnz5t1T3QDBwcGsWrWKNWvWULduXR599FE++ugjSpYsmaF6ypcvz5o1a9i/fz+PPPII9evX59tvv8XJycm2IPCePXuoWrUqr7/+Oh988ME991nST7sU5bGVyEVERERylaQ4Y42UM1vAyR26fg1lmmVf+xGHYMtkOLLC2HYaILAJNB4MgY/BtfUSRO4mL343SO9OKSJiX+n92dOUIhERERG5N4kxMP8ZOLcTXDyh+xIo2SB72j63C7ZMgt9X/3utfAg0HgLF62ZPH0RERO5AgYuIiIiIZFx8FMxtB+f3gZsP9FgGxdK/Les9sVrh9CZjRMvpzdcumoxdhxq/Af7V7vi4iIhIdlLgIiIiIiIZE/cPfPU0RB4GjwLQcwUUrZ517VmtxkiWzZOM7Z3BWJi3ehdo9DoUzNzuHiIiIllBgYuIiIiIpF/s30bYcvF38CwCz34LhStlTVsWMxxeDls/gguHjGtOblD7WWgwEHyLZ027IiIidqDARURERETS5/JZ+OopuHwGvItBr5VQoEzWtBV5DL55Hi4cNM5dPKFuX6g/ADwLZ02bInnUA7wPikiOSO/PnAIXEREREbm7S6dgzlMQ+yf4loRe30H+jG1bmi5WK+ydAz8Og9QEcPOFR1+GR/qBh5/92xPJw5ydnQGIj4/H3d09h3sj8uCIj48H/v0ZvB0FLiIiIiJyZ5HHjJEtcRegQDljZIt3gP3bSYiG714ztngGKN0M2n0OXkXs35bIfcDR0RFfX18iIyMB8PDwwKSt0EWyjNVqJT4+nsjISHx9fXF0dLxjeQUuIiIiInJ75w/A3LYQfwkKV4FnV2TNlJ7wncYUophwY0HcJ0ZB/VfBwcH+bYncR/z9/QFsoYuIZD1fX1/bz96dKHARERERkVv7cw/MaweJMVC0JvRcbv9pPRYzbP0QNowHqxnyl4IOs6DYw/ZtR+Q+ZTKZKFq0KIULFyYlJSWnuyNy33N2dr7ryJbrFLiIiIiIyM3Obof5nSD5ChSvB92XgJuPfduIPQ/LXoAzW4zzqh2h9Ufg5m3fdkQeAI6Ojun+Eigi2UOBi4iIiIikdWoDLOwGKfFQqjF0XQiunvZt4/hqWPEyJESBcz5oNQlqdAWtPyEiIvcJBS4iIiIiYrBaYc9sY4cgcxKUDYLO88DZjrufpCbB2lGwc4Zx7l8dOs6CguXs14aIiEguoMBFRERERCA+Cla+CsdWGecVWxtBiJOr/dq4eAKWPgcRB43zR1+BoNH2bUNERCSXUOAiIiIi8qA7vRmWvQhX/gYHZyMEefQV++0QZLXCvgXww5uQchU8CkDb6VA+2D71i4iI5EIKXEREREQeVOYU2PAebP0IsEKBstAhFAJq2q+NxFhY9TocWmqcBzaBdl+Ad1H7tSEiIpILKXAREREReRBF/QHfPA9/7THOa/WEFu+DSz77tfHnHmMKUfRZMDnC48Oh4SBw0E4qIiJy/1PgIiIiIvKg2b8Qvh8MyXHGVs9tpkCVdvar32qF7VNh3btgSQXfEtBhFhSva782REREcjkFLiIiIiIPisQY+H4IHFxsnJdoAO2/AN/i9mvDnAKrBsFv84zzKu2g9cfg7mu/NkRERPIABS4iIiIiD4JzvxpTiK5P72k6DBoPtu/0nqQ4WNIbTq4FkwO0mAh1nweTyX5tiIiI5BEKXERERETuZxYzbPkQNo4Hq9mY3tP+SyhRz77txP0DC56Bv38DJ3d4ZjZUaGHfNkRERPIQBS4iIiIi96uYP2FZPzi7zTiv2hFaf2is22JPl07BvA5w+TS4+0G3xVqvRUREHngKXERERETuR4dXwHcDjXVbXDyh5SSo0cX+03v+2gPzO0H8RfAtCT2WQcGy9m1DREQkD1LgIiIiInI/Sb4Kq4fB3q+M84Da0OFLKFDG/m39vgaW9IKUeChaA7otAa8i9m9HREQkD1LgIiIiInK/uHgSvu4Cl04AJmg0CJoNB0dn+7e1dy5895qxLkyZx6HTV+DqZf92RERE8igFLiIiIiL3g7h/YF57Yxcir6LQ7nMo/Zj927FaYfMHsGGccV6jK7SZCk4u9m9LREQkD1PgIiIiIpLXpSTCwm5G2JK/FPRdC56F7d+OORV+GAx7wozzxoPh8ZHa9llEROQWFLiIiIiI5GUWC6x4Gf781dh9qNuSrAlbkuNhaR/4/UfABC0/gEdesH87IiIi9wkFLiIiIiJ52YZxcHgZODhB53lQqLz927h6Cb7uDH/uAkdX6BgKldrYvx0REZH7iAIXERERkbzqt/mwZZJx3GYqBDaxfxuXz8C8DnDpJLj5QteFULK+/dsRERG5zyhwEREREcmLTm8xdgkCYy2VWt3t38bf+2D+M3A1EnyKQ49voFAF+7cjIiJyH1LgIiIiIpLX/PM7LOoOlhSo0h6ajbB/GyfXweJnITkOilSF7kvBu6j92xEREblPKXARERERyUuuXoQFz0BiDBR7BNp+Bg4O9m1j/0L4tj9YUo1pSp3nGQvyioiISLopcBERERHJK65v/3z5DPiWhK5fg7O7/epPjoe1o2DXTOO8akdoOx2cXOzXhoiIyANCgYuIiIhIXmC1GqNOzu0EVx/ovgTyFbRf/X/tgWX9jMVxARq+Bk+Mtv/oGRERkQeEAhcRERGRvGDDe3Bo6bXtn+fab/FacypsmQyb3gerGbyKwtOfQtkn7FO/iIjIA0qBi4iIiEhut+9r2DzROG79MZR+zD71XjwJy/sZo1sAqrSDVh+Ch5996hcREXmA2X2MqNlsZuTIkQQGBuLu7k6ZMmUYO3YsVqvVVsZqtTJq1CiKFi2Ku7s7QUFBnDhxIk09UVFRdO/eHW9vb3x9fenbty9xcXFpyhw4cIDGjRvj5uZG8eLFmThxor3fjoiIiEjOOrMVVr5qHDd6A2r3zHydVivsCoXPGxthi6sPtP8SOs5W2CIiImIndg9c3n//faZPn860adM4evQo77//PhMnTuSTTz6xlZk4cSJTp05lxowZ7Ny5k3z58hEcHExiYqKtTPfu3Tl8+DBr165l1apVbN68mX79+tnux8bG0rx5c0qWLMmePXv44IMPGD16NF988YW935KIiIhIzrh4EhZe2/65clt4fGTm67wSAfOfge/fgJR4YxeiV7ZD9WfAZMp8/SIiIgKAyXrj0BM7aN26NUWKFCE0NNR2rUOHDri7uzNv3jysVisBAQEMHjyYIUOGABATE0ORIkUICwujS5cuHD16lMqVK7Nr1y7q1KkDwOrVq2nZsiV//vknAQEBTJ8+neHDhxMREYGLi7Fy/rBhw1ixYgXHjh1LV19jY2Px8fEhJiYGb29ve34MIiIiIplz9RKEBkHUH1CsLvT6LvM7Eh35Fr4bBAlR4OgKQaOh3ktaGFcEfTcQEfuz+/+7NmjQgHXr1vH7778DsH//frZu3UqLFi0AOH36NBEREQQFBdme8fHxoV69euzYsQOAHTt24OvrawtbAIKCgnBwcGDnzp22Mk2aNLGFLQDBwcEcP36cy5cv37JvSUlJxMbGpnmJiIiI5DqpSbCouxG2+JaALpnc/jkxBpa/BIufNcIW/2rw4iao/4rCFhERkSxi90Vzhw0bRmxsLBUrVsTR0RGz2cy4cePo3r07ABEREQAUKVIkzXNFihSx3YuIiKBw4cJpO+rkhJ+fX5oygYGBN9Vx/V7+/Plv6tv48eMZM2aMHd6liIiISBa5vv1z+A5jbZVuS8Cz0L3Xd2YrLH8ZYsLB5AANB0HTt8HJ5a6PioiIyL2ze+CyePFi5s+fz4IFC6hSpQr79u1j0KBBBAQE0KtXL3s3lyFvv/02b7zxhu08NjaW4sWL52CPRERERP5j4wQ4uMTY/rnTHChc8d7qSU2C9WNh+zTACvlLQbvPocSj9uytiIiI3IbdA5c333yTYcOG0aVLFwCqVavG2bNnGT9+PL169cLf3x+ACxcuULRoUdtzFy5coGbNmgD4+/sTGRmZpt7U1FSioqJsz/v7+3PhwoU0Za6fXy/zX66urri6umb+TYqIiIhkhf2LYNME47j1R1Cm2b3VE3EIlvWDyMPGee1nIfg9cPWyTz9FRETkruw+aTc+Ph6H/8wFdnR0xGKxABAYGIi/vz/r1q2z3Y+NjWXnzp3Ur18fgPr16xMdHc2ePXtsZdavX4/FYqFevXq2Mps3byYlJcVWZu3atVSoUOGW04lEREREcrWz22HlAOO44SAjJMkoiwW2TYGZzYywxaOgsf7LU58obBEREclmdg9c2rRpw7hx4/j+++85c+YMy5cv58MPP6Rdu3YAmEwmBg0axP/+9z9WrlzJwYMHefbZZwkICKBt27YAVKpUiZCQEF544QV+/fVXtm3bxoABA+jSpQsBAQEAdOvWDRcXF/r27cvhw4dZtGgRU6ZMSTNlSERERCRPiPsHlvQGczJUfhqe+L+M12G1wqpBsHaUUU+FlvDKL1Cxpb17KyIiIulg922hr1y5wsiRI1m+fDmRkZEEBATQtWtXRo0aZdtRyGq18n//93988cUXREdH06hRIz777DPKly9vqycqKooBAwbw3Xff4eDgQIcOHZg6dSqenp62MgcOHKB///7s2rWLggUL8uqrr/LWW2+lu6/a+k1ERERynMUC8zvCqXVQqBK8sB5cPDJez/pxsHmisTBuqw/h4d5gMtm9uyL3K303EBF7s3vgkpfoL1URERHJcVs/hp//D5zcod8GKFwp43Xs+hK+H2wct5lihC0ikiH6biAi9mb3KUUiIiIikk7ndhk7CQG0eP/ewpYjK+H7IcZx03cUtoiIiOQSClxEREREckLCZVjaByypULXDvS2Se2YrfPM8YIWHn4PHhtq9myIiInJvFLiIiIiIZDerFVa+CjHhkD8QWn+c8fVWLhyGr7uBOQkqtoZWk7Vmi4iISC6iwEVEREQku+36Eo5+Bw7O0HEWuGVwvYjocJjXAZJioEQD6BAKDo5Z01cRERG5JwpcRERERLLT+QPw0zvG8ZPvwkO1M/b81Uswtz1cOQ+FK0PXr8HZzf79FBERkUxR4CIiIiKSXZLiYOlzYE6G8i3g0Zcz9nzyVVjQCS6dAO9i0OMbcPfNkq6KiIhI5ihwEREREcku3w+GSyfB+yFo+1nG1lwxp8CS3vDXbnDPDz2XgXdAlnVVREREMkeBi4iIiEh22LcADiwEkwN0+BI8/NL/rNUK370GJ9aAkzt0WwyFKmRdX0VERCTTFLiIiIiIZLV/fjdGtwA0fQdKNsjY8+vehX3zweQIz4RB8Ufs3kURERGxLwUuIiIiIlkpJcFYtyUlHgKbQOM3Mvb8zs9h64fGcZspUCHE/n0UERERu1PgIiIiIpKVfhoOFw6BR0FoPzNj2zcfWgY/vmUcPz4CavfMmj6KiIiI3SlwEREREckqR76F3aHGcfvPwcs//c/+sQmWvwhYoe4L0HhIlnRRREREsoYCFxEREZGscPkMfPuqcdxwEJQNSv+z5/fDwu7G9tGVn4YW72dsRyMRERHJcQpcREREROzNnAJL+0JSDBR7xJgOlF5Rp2FeR0i+AqUaQ7svMjYNSURERHIFBS4iIiIi9rbuXfhrN7j5QMdQcHRO33Nx/8C89nA1EopUhS7zwdkta/sqIiIiWUKBi4iIiIg9nVgL26cax09NA98S6XsuKQ4WdIKoP8CnBHRfagQ2IiIikicpcBERERGxl9jz1xa6xVjotvJT6XvOYoFlL8Dfe8HdD3ouA++iWddPERERyXIKXERERETswWI2QpP4S+BfDZr/L/3Pbv0Qjv8Ajq7QfQkULJd1/RQREZFsocBFRERExB42T4IzW8A5H3QMS//aK6fWw4ZxxnGrSVCsTpZ1UURERLKPAhcRERGRzDqzFTZNMI5bfwgFy6bvuehzxm5GVgvU6gm1n826PoqIiEi2csrpDoiIiIjkWYkxsGUy/DLdCE1qdIMaXdL3bGoSLH4WEqKgaA1oOSlr+yoiIiLZSoGLiIiISEaZU2FvGGx4z1izBaDME9Dyg/TXsXqYsUiumy90+krbP4uIiNxnFLiIiIiIpJfVamz7vGYEXDxuXCtY3lggt1xzMJnSV8++r2H3LMAEHb6E/KWyqsciIiKSQxS4iIiIiKTHhcPw03D4Y4Nx7u4Hzd6Bh3uDo3P664k4CKsGGcdNh0G5J+3dUxEREckFFLiIiIiI3MmVC8YuQr/NNdZpcXSBei9B48Hg7puxuhIuw6IekJoIZZ+EJkOzpMsiIiKS8xS4iIiIiNxKSgLs+BS2fgTJcca1yk9D0GjwK53x+iwWWP4SXD4DviWg/RfgoA0jRURE7lcKXERERERuZLHAoW/g59EQ+6dxLaA2BL8HJevfe71bJ8Pvq8HRFTrNBQ8/u3RXREREcicFLiIiIiLXhf8CP70Df+0xzr2LGSNaqnbI3GiUU+th/TjjuNVkCKiZ2Z6KiIhILqfARURERCTqtDGi5cgK49zFExq9DvX7g7N75uqOPgdL+wJWqP0s1O6Zyc6KiIhIXqDARURERB5MVitEHIDf5sOe2WBOBpMD1OoJzYaDV5HMt5GaBIufhYQoKFoTWnyQ+TpFREQkT1DgIiIiIg+W6HA4uAQOLIZ/jv17vXRTaD4O/Kvar63Vw+DvveCeHzp9Bc5u9qtbREREcjUFLiIiInL/S7gMR741Qpaz2/697ugKFVoYU33KPA4mk/3a3LcAds8CTND+S8hf0n51i4iISK6nwEVERETuT6lJcGINHFgEv/9kTBkCwASBjaFaJ6j8FLj52L/t8wdg1evGcdNhUC7I/m2IiIhIrqbARURERO4fFguc+8UIWQ4vh8SYf+8VrgI1OkPVjuDzUNb1IeEyLO4JqYlQrjk0GZp1bYmIiEiupcBFRERE8r5/jhshy4ElEBP+73WvAKj+jDGaxZ5rs9yOxQLLX4LLZ8C3BLT7PHPbSYuIiEiepcBFRERE8iaLBXaHwm9z4fz+f6+7ehtThap3hpINwcEx+/q0dTL8vtpYG6bTXPDwy762RUREJFdR4CIiIiJ5j8UM3/aH/V8b5w5OUPZJY8pQ+RBwds/+Pp1cB+vHGcetJkNAzezvg4iIiOQaClxEREQkbzGnwPIX4dA3YHKEoP+Dmj0gX4Gc61N0OHzzPGA1djyq3TPn+iIiIiK5ggIXERERyTtSk2Hpc3BsFTg4wzOzoVKbnOuPxQKHlsK6sZAQBUVrQosPcq4/IiIikmsocBEREZG8ISURlvS6tkaKi7FGSoWQnOmL1Qon1sK6MXDhkHHN+yHo9BU4u+VMn0RERCRXUeAiIiIiuV9yPCzqDqfWg5MbdFkAZZ/Imb6E74SfR0P4duPc1RsavgaPvgwu+XKmTyIiIpLrKHARERGR3C35KizoDGe2gLMHdFsEgU2yvx8XjsD6sXD8B+PcyQ0e6QeNXtduRCIiInITBS4iIiKSeyXGwoJOEL4DXLyg+xIoWT97+3D5LGwcD/sXAlYwOUCtHvDYMPB5KHv7IiIiInmGAhcRERHJnRKiYV4H+Gs3uPpAz2VQrE72tX/1ImyeBLtDwZxsXKv8NDQbAYXKZ18/REREJE9S4CIiIiK5T3wUzG0L5/eDe37ouQICamZP20lXYMensP0TSI4zrgU2gaDR8NDD2dMHERERyfMUuIiIiEjuEvePEbZcOAQeBeHZb8G/ata3m5oEu2fB5g8g/pJxrWhNI2gp0yzr2xcREZH7igIXERERyT2uRMCcp+DicfAsAs+uhMIVs7ZNixkOLIYN70FMuHHNrww8MRIqPQ0ODlnbvoiIiNyXFLiIiIhI7hDzF8xpA1GnwCsAen0HBctmXXuXTsHBJXBgEUT9YVzzKgpNh0HN7uDonHVti4iIyH1PgYuIiIjkvMtnjbAl+iz4lIBeK8Ev0P7txJ6Hw8uMoOXv3/697uYDjd4wtnl28bB/uyIiIvLAUeAiIiIiOSvqD2MaUcw5yB9ohC2+JexXf8JlOLISDi2F01sAq3Hd5AhlHodqHaFiK3D1sl+bIiIi8sBT4CIiIiI55+IJY2TLlfNQoJwRtngHZL7e5Hj4fTUcXAon1oAl5d97xR81QpYq7SBfwcy3JSIiInILWbIK3F9//UWPHj0oUKAA7u7uVKtWjd27d9vuW61WRo0aRdGiRXF3dycoKIgTJ06kqSMqKoru3bvj7e2Nr68vffv2JS4uLk2ZAwcO0LhxY9zc3ChevDgTJ07MircjIiIiWSHyKMxuaYQthSpB7+8zF7aYU+DEWlj2IkwqB0ufg+PfG2FL4SrwxP/Baweg70/wyAsKW0RERCRL2X2Ey+XLl2nYsCHNmjXjxx9/pFChQpw4cYL8+fPbykycOJGpU6cyZ84cAgMDGTlyJMHBwRw5cgQ3NzcAunfvzvnz51m7di0pKSk899xz9OvXjwULFgAQGxtL8+bNCQoKYsaMGRw8eJA+ffrg6+tLv3797P22RERExJ7+/g3mdTC2Xy5SDZ5dcW8BiMUCf/5qrMlyePm/2zmDMS2p2jNQtSMUqWy3rouIiIikh8lqtVrtWeGwYcPYtm0bW7ZsueV9q9VKQEAAgwcPZsiQIQDExMRQpEgRwsLC6NKlC0ePHqVy5crs2rWLOnXqALB69WpatmzJn3/+SUBAANOnT2f48OFERETg4uJia3vFihUcO3YsXX2NjY3Fx8eHmJgYvL297fDuRURE5K6O/whL+0BKPATUgh7LwMMv4/VcOAKLe8Klk/9e8ygIVdsbQUuxumAy2a/fInJf03cDEbE3u08pWrlyJXXq1OGZZ56hcOHC1KpVi5kzZ9runz59moiICIKCgmzXfHx8qFevHjt27ABgx44d+Pr62sIWgKCgIBwcHNi5c6etTJMmTWxhC0BwcDDHjx/n8uXLt+xbUlISsbGxaV4iIiKSjX6dCQu7GWFLmcfh2ZX3Frac2wWzWxhhi4sX1OhmBDeDj0PLD6D4IwpbREREJEfZPXD5448/mD59OuXKleOnn37i5ZdfZuDAgcyZMweAiIgIAIoUKZLmuSJFitjuRUREULhw4TT3nZyc8PPzS1PmVnXc2MZ/jR8/Hh8fH9urePHimXy3IiIiki4WC/w0HH4YAlYL1H4Wui0Gt3v4LfKp9fDV05AYDcUegUEHoN10KPsEOGo/ABEREckd7P6vEovFQp06dXjvvfcAqFWrFocOHWLGjBn06tXL3s1lyNtvv80bb7xhO4+NjVXoIiIiktVSEmBZPzi60jh/YhQ0euPeRqAc+RaW9jUWwi3zOHSeBy757NtfERERETuw+wiXokWLUrly2oXpKlWqRHh4OAD+/v4AXLhwIU2ZCxcu2O75+/sTGRmZ5n5qaipRUVFpytyqjhvb+C9XV1e8vb3TvERERCQLxf1jbPt8dCU4ukD7L6Hx4HsLW/Z+BUt6G2FL5bbQdaHCFhEREcm17B64NGzYkOPHj6e59vvvv1OyZEkAAgMD8ff3Z926dbb7sbGx7Ny5k/r16wNQv359oqOj2bNnj63M+vXrsVgs1KtXz1Zm8+bNpKSk2MqsXbuWChUqpNkRSURERHLIxRMQGgR/7gI3X+i5Aqo/c291bZsCK1+9Nh2pF3ScBU6u9uytiIiIiF3ZPXB5/fXX+eWXX3jvvfc4efIkCxYs4IsvvqB///4AmEwmBg0axP/+9z9WrlzJwYMHefbZZwkICKBt27aAMSImJCSEF154gV9//ZVt27YxYMAAunTpQkBAAADdunXDxcWFvn37cvjwYRYtWsSUKVPSTBkSERGRHHJ2O4Q+CZfPgG9JeP5nKNUw4/VYrfDzaFg7yjhvOAjaTAEHRzt2VkRERMT+7L4tNMCqVat4++23OXHiBIGBgbzxxhu88MILtvtWq5X/+7//44svviA6OppGjRrx2WefUb58eVuZqKgoBgwYwHfffYeDgwMdOnRg6tSpeHp62socOHCA/v37s2vXLgoWLMirr77KW2+9le5+aus3ERGRLHBwKax4GczJ8NDD0HUReBbKeD0WM3z/BuwJM86DxkCjQfbsqYiIjb4biIi9ZUngklfoL1URERE7slph60ewboxxXrE1tJ8JLh4Zrys1GZb3g8PLweQArT+Gh3N28X0Rub/pu4GI2Jv2ThQREZHMM6fA94Nh7xzj/NH+0HzsvU39Sb4Ki3rCqXXg4AwdvoQqbe3aXREREZGspsBFREREMifpCizuZQQkJgcImQD1Xry3uhIuw/xO8Oev4OwBXeYb2z+LiIiI5DEKXEREROTexfwFCzrDhYPg5G7sHlSx5b3VdSUC5raHyMPGrkbdl0DxR+zaXREREZHsosBFRERE7k3EQWM0ypW/IV9h6LbQWCT3XkSdhrltjV2NPP2h53IoUtmevRURERHJVgpcREREJONO/mxMI0qOg4IVjNEo+UveW10XjsDcdhAXAflLQc8V4Bdoz96KiIiIZDsFLiIiIpJ+FjPs+BR+Hg1WM5RqDJ3ngnv+e6vv3C6Y3xESo6FwZWNki5e/PXssIiIikiMUuIiIiEj6/PM7fPsK/LnLOK/eBZ76BJxc7q2+U+thYXdIiYdij0D3xfce3IiIiIjkMgpcRERE5M6uj2pZ/z8wJ4GrNwSPg1o9wWS6tzoPLIYVr4AlxdiFqPM8cMln336LiIiI5CAFLiIiInJ7/x3VUuYJeGoq+BS7t/osFtjwP9gy2Tiv3BbafwFOrnbproiIiEhuocBFREREbmZOhR3TYMN7N4xqeQ9q9bj3US3JV2FZPzi2yjhv9Do8PgocHOzXbxEREZFcQoGLiIiIpBV5zBjV8tce47xsELSZCj4P3XudMX/C112MraQdXYy1X2p0sU9/RURERHIhBS4iIiJiMKfC9qmwcTyYk8HVB0Leg5rd731UC8Cfu2FhN4i7AB4FocsCKFHPfv0WERERyYUUuIiIiAhEHjUWsf17r3Ferjm0/jhzo1oADi416jUnQeEq0G0h+JbIdHdFREREcjsFLiIiIg8ycypsnwIbJ/w7qqXFBKjRNXOjWiwW2DQBNr1vnJdvAR1mgquXffotIiIiksspcBEREXlQXThirNXy92/GeblgaPMxeAdkrt7keFjxEhz51jhvMBCCRoODY+bqFREREclDFLiIiIg8aMypsO1jY/SJORncfCDkfWMR28yMagGI/Ru+7grn94GDM7SZArW626PXIiIiInmKAhcREZEHSeRRWP6SEYgAlA8x1mrxLpr5uv/aa4QtcRHgUQA6z4eS9TNfr4iIiEgepMBFRETkQXFgCax8FVITjFEtLSZC9c6ZH9UCcGgZrHgZUhOhUCVjcdz8pTJfr4jYWC1WUiKuAuCU3w0Hd/1TXkQkN9Pf0iIiIvc7cwqsGQE7ZxjnpZtCu8/Byz/zdVutsGkibHzPOC/XHDqEgpt35usWESzJZpJOXCbhaBSJx6OwXEmx3TO5OuKU3xVHXzcc87vidO1PR19XI5DxdMZkj0BVRETuiQIXERGR+9mVCFjSG8J3GOeNB0Oz4fZZwDYlAb7tD4e+Mc7rD4An39XiuCKZlBqdSOLRKBKPRZF4KhpSrbZ7JhdHTM4mLFdTsSaZSYmIJyUi/tYVOZmMEMb33xDG+NMVp0IeOHq5ZM8b+g9LYirJ4VdIOhtL8tlYvJ8siWtJhbQicv9R4CIiInK/Cv8FFj8LcRfA1RvazYCKrexT95UIY72Wv/eCgxO0/ghqP2ufukUeMFaLleQ/rxghy9Eo27Sh6xz93HCv6IdbJT9cA30wOTlgSTZjjk7CfDmR1OgkzJeTSI1OxHzZuGa+kgypVlIvJpB6MeGW7Tp4u+DykCcuD3niXMwLl4c87R7CWK1WzJeTSD4bawtYUiKuwr8ZEkllfRW4iMh9SYGLiIjI/cZqhV+/gJ/eAUsqFKpoLGBbsKx96j+7HZb2hSt/g3t+6DwPSjWyT90iuYjVYgWzFavZAharMbrEycEudVuS/jNVKO7fqUKYwKWEN26V/HCv5IdTYY+bpgY5uDjiUNgD58Iet+57qgVzTJItjDFHJ5J6/c/oJMxRiVhik0mMNUIeW72ZDGGsZgspf1+1hStJZ2OxxCbfVM7Rzw3Xkt64lPTGrZxvuusXEclLFLiIiIjcT5Lj4bvX4OBi47xKe3jqE3D1zHzdsedh7ah/6y5YwVgc16905uu+R+YryVgtVhxcHY0vww5aryK3s1qsWJPNWBJTsSYaf1oSzVgTU7EkXfsz8d/71lSL8eB//6e9MYAw/afIf+9ZjSDAmmo16rt+bLZAqgWr2bhuTbWmvWe+YRjGdU4OOLg5Gv/NuTn9+6ebIyZXRxxsx9f+vKGMyQGSTsWQcCyKpFPRaeo3uTriVj4/bpX8cKvgh2M+50x9ziYnB5wKuONUwP2W9y3JZlL+jiP5zzhS/ooj+a84Uv+Jv2UI4+jtgvNDnrgU8zL+vCGEscSnkBR+heRrAUvyuStYUyxpG3Mw4fyQpy1gcS3pjaN3zkxnEhHJTgpcRERE7heXThlTiC4cApMjNB8Lj76S+V2IUpPhl89g8weQHAeYjOlDzccaux1lE0uy2fhiGH6F5HDji535xt+cm7j9F94b/nRwc7J9Cb5+3cnPDQe33PXPIqvZijXFjDXFgjXZ+NNy7U/btWTLTWWsqRZMbk445nPG4drL0dMZBw9nHPI5YXK0zwgNAGuKGXNcCpa4FMxxycafV41zS1wyloS04YklMRVrsjnNdJI8J9WCJc6SdkTKPXL0c8O90rWpQqV87DZ6Jj0cXBxxLeWDa6l/f4YtSWZSzt8Ywlwh9Z8EzLHJmP8bwvi4YHJ1JDXy5ulKJnenNOGKczFPHFy0tpOIPHhy178sRERE5N4cXw3L+kFSDOQrBM+E2Weaz8mf4ce34NJJ47xYXWM76YdqZ77uO7BajLUnks/9G66kRFyF//ziHBNGoGSxGqMYEs2YE82YM9qgowm38vnxqFEIt0oFcHDNvi+HliQzicejSDh4keTwWCxJRohyy9EVdmByc7oWwDjdIpBxxsHTGUcPZyzJ5jRBiuVqyrVwJdkWsliTM/xJ/8vRdC38uhaSuf43FLv2540hhNX6b1Zz48dz48VbXgecTJicHDA5OmC6doyTAyZHkxFCXb9/7Zrt3rVrmEzGyJyk/4zMSbo+Quc295LMN4RNFpwD8l0LWQrgVMg9V+0i5OB6mxDmb2METMpfcST/eYXUiwmYY/4NO50KutvCFZdS3jgVdNdoMxERFLiIiIjkbRYLbJoAm943zovVhU5fgXdA5uqNOg0/DYfj3xvn+QrDk2OgehdwsP9v4c1XU0j+84oxeuWc8ac1MfWmcg7eLrgW98KlhBcuxY3fnJucHYyRHde/1CZd/8J7iykrN0xdsd1PSMVyNcW2YKnJ2QG3Sn5G+FLeD5Oz/d+vJTGVxGNRxB+8SOLxy5D63yTpBiYwOTtgcnbE5HLjnw44uDjefM/JZHtP5qtGUGK5moolPuVaKJVK6i0+23vmaMLR08UIajydcbh+nO9aqHM9PHG9IVxxc8qSzzWrmdydcHB/sP757ODqiGugD66BN4YwqaT8fRVLkhmXYp44emp6kIjIrTxY/48hIiJyP4mPMka1nFxrnNd9AYLfA6dMfPlJjoetH8G2KWBOMnYgeuRFaPoWuPlgTbWQ8tcVUi7EG4vzXhtBYP334Gb/HZJw/Y9UY3HN5HNXbr2LipMDLsU8r4UrXriU8MbJx/WW3Ta5OIKL4z2vC5EScZX4/f8Qf+AfzJcSSThwkYQDFzG5OuJepQAeNQrhWtY3U9NxLAmpJBy9RMLBiySeuJxmq19HPzc8qhXEraIfDvmcr23964CDy7VRGHYYBWG1WG1BzPWXbfpP/I3hjBHQmFwdcMjnci1Ecf43VLk2CsbB07hncnXMVaM0JOs5uDqlCWBEROTWTFarNS/Pos2U2NhYfHx8iImJwdtbW9GJiEgecv4ALOoB0WfByQ1afww1u957fVYrHPkW1oyAmHPGpVKPYW40nuSrhW3TepL/jksTFNiTU0H3NOGKs7+HXdcbSQ+r1UrKX3HE7/+HhAP/pJk24eDhhHu1gnjUKIRLKZ90TZmwxKeQcORayHIyOs00IaeC7rhXK4h7tYI4F82n0EJuy2q1kvJnHAmHL5J4LAqrBRx9XXHyccXRxwVHX1ccfVxtf2q9lHuj7wYiYm8KXPSXqoiI5DX7voZVgyA1EXxLGtsyF61+7/VFHoMfh2L541eSLWVJdn2E5PytSL6c75YLgzp4OOEc4Pnv2hp32j3m2n3TDce2MiZwKuSB67WQxcEjc7uy2JvVYiU5PNYIXw5eTPNZOHi74FGtIO41CuFS3CtNWGK+mkLi4UvEH7pI0sloY32Za5wKexihTbWCOBW5eatfkeusFivJZ2JIOHSJhMMX04R/d+Pg4WQEMDeEMEZA42K7np0L9P6XNcVCSsRVkv+6QvKfcXjWD8DlITvspJZJ+m4gIvamwEV/qYqISF6Rmgw/vQ27vjTOyz4J7b8AD78MV2W1WEn9M5Lkdd+QfPI8yZZypFhLAP/5zbiDCeei+YyRJyW8cSnuhVMBtwcuKLCarST9EW2EL4cupVlfxtHPDY/qhXD0cSHh8CWS/ohOs7ivs38+YyRL1QI4F8mX/Z2XPMOaaiHxVDSJhy6RcOQSlqv/hnwmFwfcKvrhXqUADu7OmGOSSI1Owhxzwys6Od0LGTv6uOJUxAPnwh44F/HA6dqf9t6ty5p6LVz5899Fd1MuxKcJIn1al8ar0UN2bfde6LuBiNibAhf9pSoiInlB+C/GbkHn9xnnj70Fjw1L9wK25tgkks8ZX3aSz8WSfPYy1pSbn3X0df1/9v48TLLsrM9F3z3HHJFzZlVlzT1Vz4NaPWloJNSAwAZJtmVsDWDhIyFkkHSPdfHF51x8AGHusY3P4erAMTbYGCEDZrJaQjSSWj1K6lHqubvmMefImPe8zh9rx5RDVVZVZmVW9XqfZz9r7bV2RuyIzIzY67e/7/clKT1Jas/2HJql0hN6EWGM+3qZ5vdncV+eR/jLDW+t7TnSNyQiy0hmE85ScbkQ+xHe62VaL87RemUB4XUFEy1tkj4wRPr6IVJXlc75vyiEkJW6esWYJW1Y8c9q0mwU7I4QY45lsMayWKOZNZkFizAmmG5KUeVUUtloqrFixS09a2Jtz2PvyJE+MIS9I3/Ox99o1NpAoVCsN8o0V6FQKBSKrczCYfjb/6/0VwFwijKq5ZofWvVHYjdMhJW6LKd8skZUXZqOoKPRwrJP4Vy7G/vmG7EnCxdsOvtmQjN1uQg+METsR7ivLki/l0ZI+tpB0jcMYQ6lN/s0rwhEJBBRLP1yNA101jW6SkQCEcoy3LJNtrDb0t6PBJptLCtbraeM8zY2jlshrVcXaL04h/d6GRF0BRA9b5G+fpj09UM4e4vn5WOkaVqnkpI1vnI0lRCCuBEQzruE002C6QbBTJNwuklU9Tub98Zi38/peRurT4jJoFlGIqzUpLhyZhVxJWNibc9h75AirrUjJ9Oa3mSRcgqF4s2HinBRKrZCoVAotiKtMjzyv8N3fgfiADQdbv0Q3P//gfxY5zARxPhn6gQnpBeCf7JGOLtCxR8NrLyH1XwUm1exneNY7/wg2t2fuLiqRgrFGmhHXsTNgLgZ9rVRe78VLpsT7grpMTqgaVKESTat09K33+nDMiFFBHFfWstFYWjoKQPNMXsEmZ6+I1t0cN9YXObtYwymSF8/RPqGYekJtAZD5o0gdkOC6SbhTJNgutkVYiremh9DS5vY23PYO3IygmV7DmPg8hBX1NpAoVCsNyrCRaFQKBSKrUQUwNP/CR7+vBRdALHnfnj3ryCGryMqu/ivTcmKQSeTO8orLBqNwZQsqTyZxx4zsJ77X9Ff+W/ym/+aH4H3/hkUJi7xi1OsFyIWCD8idiOEFyZtROyGiCBGT5t9pZw3qmpNO1oiqvjd1JWKR5iksMSNoCOmsHoWy/kRAwhETyTFusgmpoZm6miWjmYZaKaWtHIMXeu+x25E7IUy/UcAkSBuhNAIWZuDCphjmY7IslWqVOkpE2dXAWdXv9gQu2FHfAlmuoKM8COsbTkZvZJsxuCbz+NJoVAoVkNFuCgVW6FQKBQbhBCCcLaFd6SCd6QiDTAj0UmTIBKIWCRjMXgthFuHGAQmQrMAE8TZFy961pLCyo4c1mQee0ceI5tU/Jl6Ef7kIzB/EHQT3v3LcPcnl1cSugyIGgHhbLN7B36mSTjbQkQC3dbRbEMulm0j2XR0S7b9c0vGbQNzMIWR37xIn3ZFJP94rWdBHyHckNjr7ws3WrMxahvNNtDzXQHGyFnoOXtJa2HkbTTHQNM0GZXSCgkrfr8XyHn4gSw7D0tHz1joGTPZrP42vXxOswxZtjxO/l9igYiRQmPfmGwRdP+vRHdMs/QeQaXbx0z6FxBV0id8uSGxG3b77d+Z2yPS+BH2jrzy9tmiqLWBQqFYb1SEi0KhUCgU64QQgnCmKQWWw3Jbqazy6uhAz0X+CrdENFuXd5MTYcXekV85XF8IeO4P4Cv/sywfXdgOf+/3YfLOC3hllw4hBHE96BdVkvZs7+V6BE9YO3KkrxsidWAIa3zjSzaLKMY7VKH10pysSFM7n7+VBD1JZUmZ6I4hxRJLl+k59YCo7kMoRYFoPiKad8/9mKaGkbWIW+GKhsArnkbO6pQfNntLEeetPjFFszavFPFGoOlakjpkAs5mn45CoVAothhKcFEoFArFFUfsRfhHK7iHKgSn6xg5C2MwhTmUxhxKYQ6m0PP2RS+oOwJLIq54R1YQWEwNZ2cBZ29RhtobOpqReEt4Zfj+H6Id+hsgRNN1uPn9aHd8GC2dB0PrHmvocn8td+L9Bjz4WfjeH8n9/T8IP/E7kB26qNfbed2xIK75XHSQbCQI590+cSWYbvaVXF6KUXK6JWxHZauZujQ99WOEHyGCmNhP9nvG42RO9La+PDYquwQn6wQn61QfOoYx4CTiyyDOnvMzLj0bsR/hvVGm9eK8rEjT81o1xyB1VQk9b6M7iSmr0y+m6O1+ykB3TJkGc5a/YyEEwouI6gFx3SeqJW29t+32hRdBKIgqXZNlPWNK8aQtopQSUaU9VrDRzCtLSFEoFAqFYj1QgotCoVAoLntEGOMfr+IequAdXMQ/UTunGaZm6RgDqY4AYw6mMIbSsj+QWvFOvIgTgeXQYk+a0BJxwNRxduVx9pZw9hSlAebSx/Ib8Pj/AU/8HxA0ZWDLDR+Ad/0vMLDr4t6MmVdlCtHsq6AZ8AO/BPf+wprLR6+ECGP8U3X8oxW8o1X8Y1Xi5uqiyEWjIX8Po5l+cWUkg+5sjBdJVPNltaGX53HfWCQqe9SfOE39idNoKYPUNYOkrxskdc3gmsrj9hK3QvnYL87hLq1Ik7M6ZX+dfaV1Fy40rScCY/jclZNEkIgzjQDNMTCKzob5vygUCoVCcaWjPFxUnqZCoVBcdohIEJyu4x6S1T78Y9W+RSzISAhnfwl7Z564GRItuITJFpXds7tsamAUbIxBKcAYRZtguol/pLJMaNAsHXtXAWdPEWdfEXtHfvVFcxzJqJOv/29Qn5JjO+6EB34NJt9yEe9Iwve+BF/+tBRxcuPwgf8Eu+8974eJWyHesSr+0Sre0Qr+yRqES94wnYsScUDayBgDKazRdI+4ksUaTm9q6knsR3gHF6X48upCf9SSruHsKZA6MET6uiHMwdSKjxHVfFovz9N6aR7v0GJfqVyj5JC+QZb9tXcVNq0ijUKh6EetDRQKxXqjBBf1oapQKBRbnnZkiXtwUUaXHK7I1Ice9JyFs69Eal8JZ1/xrJUyRBQTLXqE8y7hQksKMfOuFGXm3bMakmqWjr1bpgg5e0vY23PnjkoQAo58C/7ml2DqBTlW2gU/+Mtw4Mcv3sA2aMFX/zk8+1/k/t53wvt+F3Ija/rxcNFNxJUq/tEKwXRzmSClZy2c3QXs3UWc3QWsbdl1S7PZyohY4J+s4b48T+vlBcKZZt+8NZ4hdd0Q6QND6FmL1kvztF6awz9W7XsPzdEM6RuGSF8/LN+7y9C0WKG40lFrA4VCsd4owUV9qCoUCsWWQ4QxwUwT/0RNCiyHkgo/PWgpE2dvkdS+Is7+kvTyWIdFbLvMbbjQFWCiRQ9jKCVThHbk1i40CAEHvw6P/P/gxLflmFOAt//P8Nb/Ccx1MNmcOyhTiKZfBDR45y/C2/9foK+cBiKiWFZOaqcHHakSVbxlx5nDaRm5s7uAvbuAOZxWIgEQzrVovbKA+8o83tHKWd16rR25TiSLqkijUGx91NpAoVCsN8rDRaFQKBSbSlT3Cc40+reZ5jIPFs3SsfckAsu+Eta23IakYmiahpGzMXI27LzAC+44htcehEf+dzjzvBwzbLj9o/COz0F2eH1O9sX/Dn/1z8CvQ3YE3v+7iD3vIK4HhAuNbhpVORGPyq4UV5aKBDpY23I4SfSKvauwqSWStzLmcJr827aTf9t24mZA67Uy7svz0pvFj3D2FElfP0Tq+mHMkqpao1AoFArFmxkluCgUCoXikiBiQTjXIjhT7wgr/pkGcdVf8XgtZWJvy8rUnf2ls3ujbBWiEF76c3j038DsK3LMysDtPwX3fAoKE+vyNHGtTvjgvyF66UlC8W7C3K1EpbcR/oUgKj+xzM9mKZptYO/K4+ySKUL2zrwyRr0A9IxF9tZRsreOIsIYEYkNM/VVKBQKhUJx+aEEF4VCoVCsO7EXEpxu9AgrdYKpJoQrCwHmUAprIos1kUvaLEbJuXxSWEIfvv/f4LF/CwuH5ZhTgDt/Bu762XNGtIgwJm4GsjpMMyBuhMSNgKjR3u9u0aJL7MbADyQbsAgs9niLaMiSvQM9FZgGU5gDjiyJnbOVUes6o5k6mrqqUigUCoVC0YO6NFAoFArFRSGEjFzxj9fwj1fxj9UIphsrVgHSLL0jqHQElvEMunOZfh0FLjz3B/D4v4fKCTmWHoC7Pgl3/gzCLhKVXYITC4SzTaKq3xVOmmGnv9QAeC3oWhVjOIc5MSoFlV5xpehs/WgghUKhUCgUiiucy/QKV6FQKBSbReyG+CdqXYHlRG1ZqWSQZZWtbbk+gcUcSl8ZkRVeHZ75PXji/4T6NLHIEqTuItz7IcLcnYTHQ4JnDhHOt/rKAZ8VXaao6FkLPWNh5Cz0jCn33WMYB/8Mvfw8hlbGmNyJ/vd/B4rbN/Z1KhQKhUKhUCguGCW4KBQKhWJV2r4r/vFqR2BZqWQwpoa9PS99QXYWsHfmMQqbZxga1Xy8oxX8I1X803U0U0d3DLSUmbQGumMmbc+4Y6CnzKQ1+qoRiVgQTc0SPP6XhC8/Q+gPEsS/QKjtJI6L4AHPAUz3n4ypYw2nMUfSGAOOFFOyibCSbEbGREuZy8WoU8/C1/8VHP6m3E9l4J5/JqsQGdZGvoUKhUKhUCgUiotECS4KhUKh6JRCjio+UcUjOF2XJZmP1xCtFaJXSg72LimsODsLWBPZTU1hCRddvCNV/CMVvCMVwtnW+jywqUvhxYSo6kJsANcmW0IiPukFWworoxnM4TRW0hol5/yjemZfh2/8b/DKXyUPbsEdPy2FltzoerwyhUKhUCgUCsUGowQXhUKhuMIRsSCu+YQVTwoqVa8jrEQVj6gq+6umvpg69o4c9s4Czs489s4CRmHzSgZ3PGOOVPESgSVa9PoP0sAay2LvKWDvLKAhjXxjN0J4EbEbJm2E8EJiL0K43fFOlZ8wJq63jX4NwMey5jEnBjD37sMcy2GNpDGH0+ipdfhKXTwB3/p1eP6LIGL5Qm7+ILzz/w0Duy/+8RUKhUKhUCgUlwwluCgUCsUVQOxFMirlVJ2o7CZiSiKu1Hw4e5XgDnrOwig6mMNpKa7sSqJXjM2LXhGxIJhudqJXvCMV4nrQf5AO1vY8zp4Czu4izu4CeuYCU24ac4jnvoR49k+I504Tk0GQwhidwLj/Y2jXfQD0dX4/GnPw6L+Fp34XokQ8uua98AO/BGMH1ve5FAqFQqFQKBSXBCW4KBQKxWVG7Eey3PLJGv6pOv7JOuHsCr4qvehg5B2Moi3LBReStpiMFeTYZqYFCSGIawHhQotwziWcbxFMNfCOVBHukrQmU8OezOPsKeLsKWLvLKA7xoU/eRzDkYfh2f8Cr3wZLQ7QAN3JwPXvgds/AjveAutdptqrwZP/f2m+69fl2O63wbv+V5h8y/o+l0KhUCgUCoXikrLhgsuv//qv84u/+Iv8/M//PL/5m78JgOu6fPazn+VLX/oSnufxwAMP8IUvfIGxsbHOzx0/fpxPfOITfPOb3ySXy/GRj3yEz3/+85hm95QffvhhPvOZz/DSSy8xOTnJL/3SL/HRj350o1+SQqFQXDJEGBOcaeCfquGfrBOcrBPMNFaMWDGKNtb2POZIGnOJoKLn7C1RHUjEgqjqEc5LQSWcd4nmZBsutBD+yqE4mq1j7yp0BZYdeTRrHcSh6ml47g/huf8Ci8e749tuhds+Aje8H1KFi3+epQQuPP0f4dF/A815OTZxsxRa9v3A+gs7CoVCoVAoFIpLzoYKLk899RS/8zu/w0033dQ3/ulPf5oHH3yQP/mTP6FYLPJzP/dzvO997+Pxxx8HIIoi3vve9zI+Ps4TTzzBmTNn+PCHP4xlWfzar/0aAEeOHOG9730vH//4x/nDP/xDvv71r/Oxj32MiYkJHnjggY18WQqFQrEhiCgmmG4SnKx3BZapxoreKnrOwt6Rx96Rw9qRx96ew8hvnq/KUqKqTzDV6Igqsm0RLrgQniUURwNjIIU5lMIckt4ozq4C1rYcmrFOIkQUwhtfk9Esb/xN4pUCpIpw0z+AWz8EEzed/TEu5rm/90fw8K9D9aQcG9ovU4eu+7vrn6qkUCgUCoVCodg0NCHE2YLQL5h6vc5tt93GF77wBX7lV36FW265hd/8zd+kUqkwMjLCF7/4RT7wgQ8A8Oqrr3Ldddfx5JNPctddd/HVr36VH/3RH+X06dOdqJff/u3f5nOf+xyzs7PYts3nPvc5HnzwQV588cXOc37wgx9kcXGRv/7rv17TOVarVYrFIpVKhUJhA+5gKhQKxSoIIQjnXYITNfwTNfyTNfzTDQiXR3joGbMjqrQFFqNgo22RKAgRCYKpBv7xKt6xKv6xKlHZW/0HDA2zV1QZSmEkrTmQ2ri0poXD8OwfSEPa+lR3fNe9MprlwN8BK70xzx1HsuLQN38N5l6XY4Xt8I7PwS3/CAyV4atQKBSbjVobKBSK9WbDrvA++clP8t73vpd3v/vd/Mqv/Epn/JlnniEIAt797nd3xq699lp27tzZEVyefPJJbrzxxr4UowceeIBPfOITvPTSS9x66608+eSTfY/RPuYXfuEXNuolKRQKxQUT1fyusHJCRq+sVG5ZSxnY25OolR057O15jAFny4grAHEzwDtew0/EFf9kbXkqkIZMbRrOJMJKW1xJYxSd9YtWORehB6/8D3j2P8ORR7rj2RG45Sfh1g/D8P6Ne36vDs//IXz7C1A+KsfSg/C2z8BbPrZxAo9CoVAoFAqFYtPZEMHlS1/6Es8++yxPPfXUsrmpqSls26ZUKvWNj42NMTU11TmmV2xpz7fnznZMtVql1WqRTi+/iPU8D8/r3nWtVqvn/+IUCoXiHMRemPitJOLKibosu7wUU8PelpOpQZN5rB05zKH0lvBaaSPipATzsW70SjjbWnacljK6ZaN3FbAn8+tTJvlCqZyCZ34Pnvl9aMy2zxL2vxtu+zBc/UNgbmAKVuUUfPd35PO7FTmWHoA7/ync/XMb4wujUCgUCoVCodhSrPvV8IkTJ/j5n/95HnroIVKp1Ho//EXx+c9/nl/+5V/e7NNQKBRXCEII4npAONsimG7gn6zjn6itXDFIA3M00xFX7Mk81lhmU6sCLSX2I6JFj3DBJThVlylCx2srRuKYw2kprOzK4+wqYI5kNl8oEgKOPQHf/b9lVIuI5Hh+m6wydMs/gtLkxp7D6edl1aGX/gzi5H0b3Ad3/yzc/A/Bzm7s8ysUCoVCoVAotgzrLrg888wzzMzMcNttt3XGoijikUce4bd+67f42te+hu/7LC4u9kW5TE9PMz4+DsD4+Djf/e53+x53enq6M9du22O9xxQKhRWjWwB+8Rd/kc985jOd/Wq1yuTkBl98KxSKy57YDQnnWp0tmO32hRet+DNGyZHCyo489mQOa3sO3dlcn47Yi4gWXcKyR1TubV2iRY+4Hqz4c5qlY+2Qwoq9K4+9s4CRtS7x2Z8FvwEv/Al89z/AdNfXi133wVv/KVzz3o31SIljeP2vpdBy7LHu+O63wd2fhKseUGa4CoVCoVAoFG9C1v0K9F3vehcvvPBC39hP/dRPce211/K5z32OyclJLMvi61//Ou9///sBeO211zh+/Dh33303AHfffTe/+qu/yszMDKOjowA89NBDFAoFDhw40DnmK1/5St/zPPTQQ53HWAnHcXAcZ91eq0KhuHIQYUxYdglnlwsrcc1f/QeTqjrWSBprezc9aDMqBolIdKoBRWWvI6SEZZeo7BI3lkeqLEVzDMzBFOZIOhFYClgTWTRjCwoGC0fgqd+F5/6gm7ZjZeCmvy9Td8au39jn9xuy4tCTX4CFQ3JMN+H698mIlm23buzzKxQKxZVAqwx2DowtJOQrFArFOrHugks+n+eGG27oG8tmswwNDXXG/8k/+Sd85jOfYXBwkEKhwKc+9Snuvvtu7rrrLgDe8573cODAAT70oQ/xG7/xG0xNTfFLv/RLfPKTn+wIJh//+Mf5rd/6Lf75P//n/PRP/zTf+MY3+OM//mMefPDB9X5JCoXiCkPESVWdo1W8oxWCU3XCsgvLCwR10HMW5rAsU2yNyNYcyWAObmBVnbMQ+xHBVIPgdJ3gdAP/dJ1gqrlilaNetJSJOeDI0sudNoUx4GAOpNDTW7xaThzD4W/IaJbXv0Ynd2tgN7zlZ+DWfyS9UjaS6hl46j/A0/9JLhRAlpS+/aek0FPcvrHPr1AoFJc7lZPw6lfg1S/D0cfgH/2x9NhSKBSKK4xNubL+d//u36HrOu9///vxPI8HHniAL3zhC515wzD48pe/zCc+8QnuvvtustksH/nIR/hX/+pfdY7Zs2cPDz74IJ/+9Kf59//+37Njxw5+93d/lwceeGAzXpJCodjCiDDGP1nDO1rFP1LBO1ZFuMtTgTRb7wopw2msRGAxh9ObKkREdb8rqpyRIks411ruE0PyGkYyGCWnT0hpCyybamR7MbgVeP6PpNAxf7A7vv/dUuTY/4Mbn7Zz5vuy2tALfwpxkn41sBvu+qSseOTkNvb5FQqF4nJFCJh9VQosr3wZzjzfP3/iKSW4KBSKKxJNCLHCJfubg2q1SrFYpFKpUCioihEKxZVC7IX4x2p4Ryt4R6r4J2rLIj8025CGr7uL2LvyWKMZ9Ly9qeWXRSyIFlz8MzJqJThdxz/dWDWlSc/b2NuyWNtyWBOyNQdTm29eu57MvCpNcL/3JQgacswpSAPct3xsY0s6g4xgefVB+fxHH+2O77xb+rNc8yOgGxt7DgqFQnE5Esdw8ikpsrz6ZVg43DOpwc674Nr3ys/RoX2bdpq9qLWBQqFYby7TW50KhULRJar7Mj3oSAXvaJXgTH1ZepCetXB2F7D3FHF2F7AmcmjG5ggT7epGwXSDYKpJON3s9IW/ggmvJqsCtUUVOxFYNsMnZsOpz8jw8mNPwLHHYebl7tzItXDnz8BN/wCc/Madg1uF174qKw0d/Ho3mkUz4PoflxEtO27fuOdXKBSKy5XQgyOPyEpxr30VGjPdOcOGvfcnIssPQ250885ToVAoLhFKcFEoFJuKEAJCQexHCC9CBBGxFyH8COHFS/YjYj+W/WQ/mGkSzraWPa4x4MjolT0FnN1FzJH0pkSvxM2AYKZJMNXsEVgaxM1VDGxNHWs8I0WVbVmsCSmu6PYVGkVROSWFlWOPw9HHYf6N/nlNl3c/7/ynsOftsFG/Q68uKw299OfwxkMQed250QPSCPfmD258WWmFQqG43HAr8nPz1S/L1q9355wiXP0eKbLsf/fGiuUKhUKxBVGCi0Kh2DBEEBNWZOnhqOwRLva0ix5xK5QRHWf3eV0T5lgGZ3cBZ08Re08Rs3hpK5LFfpREqiTCynSTcKpBVF2lwpEG5lAaayyDOZ7FGsvI/nBm0yJvNhwhYPGYFFbaIkv56JKDNBi7AXbfC7vugV33QnZ4Y87Hb8IbfyNFlte/BmGPcDd0FdzwPim0jF67Mc+vUCyhXnaZO1knlbXIFG0yBRvTukLF1i2O3wqplz3qZZf6oke97NGs+kRhTBzGRKEgjrptHAk519P2zkehIE7GDVvHcowlm4mdWjKW6p+3ls4nm2kb6Jc6lTQK4MU/g+//NxnR0o4EBMhPSKH8uh+FXfeBuXI0ZuhHLM60KE81GNtToDCUvkQnr1AoFJcOJbgoFIoLJnbDbtnhRY+w7BH1iCpxLTj3g/Ri6uiOjmYbaLaBbhtoTrvfHdec9pyOUXCwdxUwspemnKQIYoJZKayEibASTDeJyu6KJrYARsnBGs9iJqKKNZbFGk2jXekLKSFg/hAceywRWZ6A6sn+YzQdJm6Wwsque2HX3RtbZShw4dDX5ULhta92fWEABvZ0RZax6zcumkZxyQiDCK8Z4rdCvGaytQK8RojXCvGbIV4zwGuFZPI2O28YYsc1A5iXMKKsXnY59OwsB5+ZYepwZdm8kzHJFB0yBZtsIsL07Sd9J2NedBSfiIUUDKKYOJRtRzwIBXHcFhC64kEUrSYyyH6mYDO6q0BxJL0l/KWEEHjNrpjSSMSU+qJHo+x2+sEKxurrRexG6/74pqVjriDE9IkzthRxTFvHckxSWZNs0SFbkpvlrOHv3q3CM78P3/ltqJ7qjg9fDdf+qNy23doxMRdC0Kr6LE43KE81O9vidIPqfPd78/4PXcuBe5XgolAorjyU4KJQKJYR+xFxzSdKtrjqE9UDomqyX/MJFz1Ea5W0mB40S8cYcDBKSRniTuugZy30RFDRLGNLRXaIMCaca3WiVaTA0iScX7k6EMjS0VYnWiWLOZ6RZryXa2Wg80EIqJ6Gqe/Laj5T35dmifXp/uN0E7bdlkSw3AeTd0Jqg40JQx8OfzMRWb4CXrU7V9wpfVlueB9M3KJEli2KEILAjWhWfVo1n1YtoFlL+lUfNxFT/FbQI6yERMH5hc+98K1TmJbOjusG2XXDELtvHCI3kFr311NbcDn07AyHnp1h6nC1b25wW5bAjWhUPeJQdF5P+UxjlUeTGKaeiDE26cTfKQ7jrnjSF5WxQkRGKIjjjaujYKdNRnbmGdudZ2RngdFdefJDqQ1J9RRCUC97lM/IRf7CVIPKTCsRV1xCf21/F07GJDfgkC2lyA04ZIo2pqVjmDq6oWOYGrqhoxtaMpa0poax0rihoRsaYRATeFF3cyMCL1yyv/rmuyFh0m+XvgiDmDCIcevneaOjBzttki3aHQEmW3LIFh1yJYeMuUju0JdIv/wfMfyy/IHcmDQvP/DjxIP7qc65lKcalF86QXm6yeKUfP+91VJok/d4YDy7NrFHoVAoLkNUlSLlRK54EyGEIJxrES16RPVACim1rogS1Xyiqo/w1n7nTc+YGKWVBRVjIIW+DnddNxIRi46w0psSFM65sMriQ8+YSbRKTyrQWPaSRdlsOnEkI1emvg9nvifbqRegOb/8WMOBHW+R6UG775V9O7vx5ygEnH4Onvuv8OJ/B3exO5ffBtf/hBRZtt+uRJZNIo4FrZrfJ6Ksvh8QhReYe6iBkzZxMiZ22sTJWDgZszPWHi+faXL0hTnqZa/vx4d25Nh94xC7bxxmdHfhglM32iLLwWdmmD7SI7JoMLGvyL7bRtl36yi5AZkO2Y7EaFZ8GlWPZsXv73da/6wL2otB00BvCwaJgNArJuimjmH0ig7dfrutzrWYO1lfUfxK5SxGd+UZ3VXotNnS2tNB4yimOueycKYhF/pnmrKdahKc43sslbPIDUgxITuQIldypLjSHis52FtcLBdCimW9YkzoxVK88ZPWjQjbfS851peijtvwaSz61Bc9wjV/78dkzDrZUors+BiaYbA43aQy2yKOVllSaFAYSjEwnqU0nmFgLMPAeJaB8QypnLWlrhHU2kChUKw3SnBRH6qKNwEiFrRemqP2zRMEp89+l7SDqWMUbIy8jZG30PO23M/Z6AUbs5REqThb+4J0KWHFwz9ewz9Rwz9RJThVR6xyt1NzDCmojGcxRzNY41Jk0bfYBeKGEriyUlAncuUFmH4RgubyYzUDRq6B8Ztg4iYZVr7tNrDWP0JgVRrz0lPguf8KMy91x3NjcODHpdAy+dZOuLti/YmjmFYtoFHxaFR8GosezaTfbhsVj1bV53yvQCzHIJ23SOdlak06b5POWaRybRFFtnZbUMla2I6x5lQWIQTzpxoce3GOo9+fZ+pIpS+iLZWzksiXYSYPDOKkz/75V51vcejZWQ49u7LIsv92KbKcj8iwEqEvo3+a1eS9rQXoelcc6Yu6MJdHXRjm8mN0Q183X5Aoilk43WD2WI2ZY1VmjtWYP1lfMaImU7T7BJjRXXmslMHidIvymQYLPcLK4kyTOFxFGNc1iqNpBibkwr40liE/kOoIKpcybexywG+FNCoynaq56FE/9DKNN75Ho9yiEQ/SiAZpikFisfr7Ztq6FFXGMgyMd0WV4mj6svEiUmsDhUKx3ijBRX2oKq5gRBjTfG6G2rdOEs4lhqCmhjmYSoQUKZ50+klrFGzpnXKZiwqxF+KfrEtx5XgN/2SNeAUTW83WpaDSG7EynpXvw2X+Hpw39RlZaeLEd6XAMvcaxCvcPTfTMH5DV1wZvwlGrwNrE3Lw4wgOfQOe+wN49Std80bDget+DG79R7DnHaBfHhf8Ww0hBIEnvVDcRoDXCHAbst8roDQTcaVVW7uQommQyttkEhElnbfJ5G3SBavbz9tSZCnYWJd4kdyq+xx/aYGjL8xx/KUF/J40Sl3XmLiqyO4bh9l1wxClsQyapkmR5ZlZDj47w8zRfpFl2/5SEskyctEiy+VOGETMn2owc7TKzPEas8eqLJxurPy3o7FqKqdp6TJqYjzL4ESWgQnZL46mMQwlrJ4XoQ8v/Rk88X9KYR2kz9b1PwF3/xxi4lZa9YDGoie3ikcUCgbGMpTGM+RKzpbw6bkY1NpAoVCsN0pwUR+qiiuQ2I9oPDVF/ZGTRBUpMGhpk9w928jds+2KTH0RkSCYbiSRK3ILZ5rLL9J1sMay2Dvz2Dvy2DvzmCOZy/4i8aKoz8ArfwUv/YWsHCSWRPykB3qElZtlO7R/8wWM+UPw/B/C838EtdPd8Ylb4NZ/DDd+YGMNeC9DhBC49YDagpuIJ4mI0pQiitcIpB9KI8Dt6a+aKrAKmkbH3FX6QCT9ot0x6Wx7jVzy6ioXSBTFTB2qcPSFeY69MEd5qj/KqziSxsmYzByrdQd7RZbbRshe4upplxuBFzF3osZMTyTM4rR8n9teH21BZTCJXMkPpt7cn9/rgVuBZ/4zfPv/6n6WWlm47cNw1ydgYNfmnt8lRK0NFArFeqMEF/WhqriCiJsB9SfPUH/iFHFD3onV8zb5t20n+9bxyyL9R8QCEcSIIEKEcdLv2cJkLtkP512ZGnSyjljBI8AoOdiT+c5mbc+hq1ByqM8mIsufLxdZtt0GV71HVg+auAkK27eOz4nfgJf/UqYMHXu8O54ehJv+gYxmGb9x885vixAFMZXZFovTTcrTDRanmtLEcvrsBpZnQzc0nKxFKmOSylo4WeuKEFIulMpssyO+nHpjsZvakogs+28fZe+tSmS5WPxWSBjEpPNvolTOS0XlpKw29PTvg58IhbkxeOv/BLf/FGQGN/X0NgO1NlAoFOvN1l99KRSKcxLVfGqPnaLx7TMdw1tjMEX+HTvI3jaGZm1OWLUIYqKqR1TxkzbpVzyiqk/shj0iimw5zzvpvWiO0Seu2JN5jKRahwJozHVFlqOPLRdZrv9xOPB3YWD3Zp3hygghKx499wey0pBfl+OaDvveJaNZrvlhMN9cC1shBM2qz2IipMiqILKtzbVWT+vRIFuwSeVsUlmzI6I4WUsKKT2CSiorTWZTWQvT1tWCt4fiSIabfyDDzT8wie+GnHyljNcK2Xn94AWLLK2az/ypOk7G6qRSGeabOy3GTpvYm5CpKISgVQuozbvUFuTWrHhEQUwU95TFTio/LS2N3TsX9ZTRjiOBbmqy2pFlyHLOtvTQMW0jGdfluGVg2HrPWHde+u60qyIl5sVmt3JSt+2vnqS7ZbSDfwuvPQivPthNGR25Fu75FNz49zb0s1TEgup8i4UzTRZO1ymfabJwpsFdf3cvO68f2rDnVSgUis1CCS4KxWVMuOBSe+QkjaenILm7ao1nyL9zkvSNIxtWZlkIgfCifgElEVF62/hiK2eYGpppoFl6/2a2+wZG3sKeLGBP5lRq0Ep0RJa/gKOPLhFZbpW5+VtRZAl96R9z6BsymmXu9e7cwB4pstz8D6G4ffPO8RIghMBtBFRmW1RnW1RmW1RmWp2Sq767emURK2VIb4WeTRpYZi65F8pmEscCvxXiNXtKRjd792XqVCZvM3lgkPE9BfTz9P6wUyZ7bx25oPOrlz0OPz/L4edmOP3G4jKhzMmYXR+bxCQ43eNt0/G5KVikMtaGfwYKIRCx6IgHcSRk6ekeoaF3PJO3N6z888UQBTH1RTcRVDxqCy71ha64Ul/wLrwy1hZHp4Sh/QMc7b3ksz65bRPkJ3aRr6bJvVIjPxiQG0yd0xT6bMSxoDbfYuF0g4UzyXZaRtuFK0Sjzp2sK8FFoVBckaiUIhU2qLgMCaYb1B4+SfN7M5Bct9g78+TvnyR17eC6XNgKIYgbAeFci3DOJZxvJf0W4YK75tLRmpVUOyo6y1otbS4TUPpEFSWeXBiNOXjlfySRLCuILAd+XEazbBWRpTYtDRqnX4Tpl2DqxeVmvVZGnvet/1iWmN5ii7eLIY4F9bLbEVSqc4mwkogsZxNV2uVWS2PZjnFlaUyWXc0UryzT5yiKceuJt8yS1mt0BRS32S+u+G64quHqSjgZkx3XDrLrhkF2Xj+0ISlBldkWh5+b5dBzS6oXAYWRNKEf0aoFiFVK06+GpmukchbpnIWm0RFvhIBeJac7LkAkb08yKI8FgUBEgjhuiyfdKI3zxcmYDO/IMbwzz8hknuHJHANjmfMWts4HIQSNRZ/FmWanbHFt3qVeliJLcwUD9WVokC065AdT5AdlypxpG30VnlYqiW0sK6XdPUbTNfl+BjGhHxEGsewn+1EYE/pxz3jPMX5M1N4P+6NqojAmDhPxK4yJgpA4jIjiCxdX7bRJftAhN5giP5AiP5QiN+iQH0iRG0x1jJ+rc0kFqURUkWW6myuWAgcwTGl0PDghvXgGt2UZ3VXolETfTNTaQKFQrDdKcFEfqorLCO94ldrDJ3Ffnu+MOVeVKNw/ib2neN6LKyEEcTPsCiltUWXeJZxrnVNU0dImZtFGLziYRUeWiy466EXZGgVbiipX0KJvSxJHcOZ7cORbMiLk6OMgen53E7d0I1kG92zaaXaiVqZe7BdYGrMrH+8UpYfMjR+A698Hqcvrc1oIQRjEBG5E4IX4bkSj7EkxZa4bsVKdb61a2rZNtmhTGElTHElTHMl0ytxeTuVWe2lH7siqRiuLKJ22EdCqBwRnE57WgGnrOJmkfHTG7O+nTRanmxx/ZQGv0R+ZNzyZY+eBIXbdMMjY3uIFV75ZONPg8HMzHHpulrkT9b658b1F9t02wt5bRigMy/wZEQu8Vkir5tOq+TSrQaffqgW06klb82nW/GXnfUnR6IgPhqHJvq6hGRrNir+iSGNYOkPbc4xM5hiezDOyM8/Q9ux5/z37rbAjqpSnm1Ta6XUzLcJzfIeZli7FhKEU+QEnERRSicAiS0hfNpWO6rPwxt/A61+FQ9/spF4KAbGRId71DqK9P0i8+36i7DaiMMZtBNST6J7eCJ/6gofbCM75lJouf8+rRQKtJKwMTmQpDKc2VGy7GNTaQKFQrDdKcFEfqootTNwK8Q5X8A4t4h5clFV3ADRIXz9E/p2T2Dvya3osIQTBqTruqwsEbYFlzkW4Z7lI18AoOpjDacyhVNKmMYfTGCVHmc9uFkLICj2HvylFliOPgrvYf8zELYkny49fepFFCKiehtlXpagylQgrq5WYRoOhfTB2g9zGb4Cx66E4uamRLFEU0yh71MuyBKrXCgncCN8LCbwoEVIiAlfu+0v2Ay9ac3lk3dDID6WkoDKc7ogrhZE0heH0ZZUC1Pa+aCx61Msu9eQ9rC+6NMoetbJHo3yB6RoapDIWqZz0l1nmQ5OxsNNm14emLaykTYw1eFnFsWDmaJVjL85z/KV5Zo7X+qJj7JTB5HWD7LxhiJ0Hhs56R14IwdyJOoeem+Hwc7N9VY00XWPbVSX23SpFlvUoEd2OAGrVfFr1QJ63Jisqo2lJ2/svpfXPa73DckLXE/GkJ5KjP7ojGT9LNGIUxiycbjB7osbciTpzJ2rMnqyvKIZousbAeKYTBdNuTcegOtticabF4lSzI7AsTjfPGqmi6VoSASbFycJQWkZoJIJKKncZG/EKIT9fX/9reO2v4dQz9P2x5sbg6gfg6h+CPe8AJ3deD++7ofy/XZJmVVuQUUL1BY84icAyTL1bPSoRVQYnshRG0pedebZaGygUivVGCS7qQ1WxhRBBhHesinewgntokeBk/8U+ukbm1lHy79iBNZpZ02OG8y2az8/SfH6GcLa14jFG0e4IKV1RJYU5mN40w13FEmpTcPhbcPhhKbJUT/XPOwXY/TbY+w646gdhcO/Gn1NzQQo/8wd7tkOwcAiC5so/kyomwsr1XYFl9Dqw1/b3vF7EsaBZkUKAXEBIcaAtCNTLScrBOn1Dmo6B5Rhki/YyQaU4nCY3mNryC5N2xIVblxEnrZqfiFE9okrZpb7onTNip03blySVGPZKIaWnn+ynk9bOmJf0fWpWfU68ssCxF+c58fLCsrv+Q9uz7Lx+iF3XDzG+r4iua0wfrXLo2RkOPz9Ldc7tHKsbGpPXDbL31hH23DxMOvfmNfQWsaAy22L2eC0RYmrMnqjj1leOqtB07azpVemCTWk0zcBYhmKSUlcay1AYTl9ZpsNxDCe+Lc3DX/sqVE/2z0/cLAWWq39Iiu76xr12+RnqE4UR+aHLT1hZDbU2UCgU640SXNSHqmITEZHAP1XDO7got+PVjvltG3M4jbO/hLOvRGpfET1jnfNxo7pP64U5ms/N4B+v9TyYTvq6QaztOaxEXDEGUypSZSviVmQlobbIMvda/7xhw+RbpcCy9355cW1sgA+634CFw/2CSrvfKq/+c7opzW3b0SpjNyZRKzsuWdSK2wiYO1ln4XSd2oLXuStbL7s0Kv6a/DF0UyNXcsgNpHAyJnbKxHIMrJQUUDr7K40l+5ZtbDk/IiEEgRvRqgeJgOJ30njaY53xnhSf87liyBRscgPS9yI3kCI34HS2bClFtmRfVulQcSyYOVbl+IvzHH95gemj1T5Brv37bla6ERempbPzhiH23jLC7puGL8qE9EpHeq54zLajYI7LiJjaghStTFvvGkCP9ptBX9HvqxAyZfTFP4UX/7xfZDHTsPedSSTLA1DYtmmneaWg1gYKhWK9UYKL+lBVXEKEEITTTdyDi3iHFvEOV5b5pOgFm9S+khRZ9pcw12jYGPsR7svzNJ+bwX2j3DHTRQNnf4nMLaOkbxhCd67gC9PLmSiE409IceXwt+D0s/1mt2iw7RYZGr73HTB51/pHhbTP4fWvwdT3pbiyNJJmKYUdMh1oaB8M7e9upZ1gnFscXA+EENTLHnMnasydrC9bqK2GpmtkS7Y0gBxIRIHBXnEgJc1Ht5hYslbCIKI661KZbXZMeNtbfcG9IPNTkGk1MvpECiq5kkN2QBppZtv7JefKiixYgVbd58TLCxx7SUa/tGoyOsNKGey+cZh9t46w8/ohLOfyEZW2Im4jIPRjsqUrywT6nMwdlCLLC38K8290x50CXPuj0pNr7zvA2oSa2Vcwam2gUCjWG7XyUig2EBEJgukG/olax4slXhIyraVNUnuLXYFlOL3mi0oRCbyDZZrPzdB6eR7hdxfo1o4cmVtGydw0glF484aub2niSEaxvPTnsnRzc75/fmh/IrC8E3bfB5nB9T8HrwYH/1aGp7/+teVeMADpwR4xpUdYGdx76VOBopjydLPjBTF3ss7cifqqBo/5oRTDO3Id74ZeMSVTtC/7MHjfDTuloqtzLSozXXGlvuidMyXKtHRSeYt0zu5P38m1W7unL+evdCFlraRzNlffOc7Vd44jYsHsiRpeK2TbvtKa/GIUayOVtSC72WdxiaiclOlCL/6pjGppY6ZkBMsNH4Cr3gNWavPOUaFQKBTnhRJcFIp1JKp4Ulw5XsM/USU4WUcsKYuoWTr27gKpJE3I2pY7rzvoQgj8EzVaz8/S/P5sn4BjDKbI3DJC5tZRrJFLuxBWrJHeHPyX/xIaM925zBDsf3c3iqW4Y2POoXoaXvsKvPoVWTY66jGdzAzJ/P/d98HQVVJg2Qih5yyIWBB4EV4rpLHoyaiVEzXmjteYP91YsdSopmsMTmQYnswzvEOabQ7tyMnF2mVMFMXdKiLzLrX5FtV5l8pMi8pssxNVsRpWyuhUNiqOtqscpckPpUjn7cvKjHcro+kao7vU3XDFBdCYh5f/Al7873Ds8e64ZsC+H5BV2q75kcuuSptCoVAoJEpwUSgukNiPCE7W8U9IccU/XiNaoVqC5hjYk3nsnXlS+0vYOwto53mHWMSC4EyD1svztJ6fIZzvMWLMWqRvGiZz6yj2ZP7NFXJ9uSAEnHwqEVn+AmpnunOpElz3Y3DD+2D32zfGh6VdzeK1r8KrD8KZ5/vnB/fBtT8iL+on3wr6xS/CAz+iWfHwmiF+K8RrhX19f+m42z9/tsgMyzEY3pGT204psAxuO/9ysluB0I86FUCkoNLTX3BpLHrn9E1J5ayOkFIcSVMczXT6l3UVFoXiSsWryc/iF/5UVpvrrd628x648f2ywlx2eNNOUaFQKBTrgxJcFIo1IGJBONfCP94VV4LpRtcnpY0G1ni2I7DYk3nMkcx5e0AIIQhnmniHZLUi73AF0epekGmWTvr6IdK3jpLaX0IzVPj6lkMI6cPSjmSpnOjOOUW49r1SZNn7zo3xOokCebf0ta/KaJbF4z2TGkzeCdf8MFzzXhi+6ryNbNulf6tzMn2l0ybpLGcr1bpWdFMjnbUY2pHri1wpjqS3rK+KiAW+F+E1AykeNXuEpKaM2KnOd8usttbwPhmmTn4oRX7QIT+U7pSPLo1mKIykr2zDUIXiSsFvwsGH5HfC638NYY/H1MTNMl3ohvdtXGSjQqFQKDYFdZWmeNMghEAEMcINid0I4UXEnX7SuiGxFyHciLhnLJhpItxo2WPqBRt7Mo+TiCvW9jz6BRgkCiGI5l3cw4t4h1bxerENnH1FMjeNkDowdEHPo9hghJBmsy/+mfRlWTzWnbNzMoLkhvfJMHFzbWbI50XlFBx/UoosbzwEXqU7Z6Zh3/3yHK5+AHKj53w4mc7iJoKK2yeoVOdaBN7y/4leTFvHyVg4GRMnbWInm5NJ2iV9u+c4J2NuesRKFMTUF91OhSOvEeI1g06ETjs6p3ffd88enbMSlmMkgkqqv036mby9ZQUmhUJxFgJXemS99Gfw2l9D0OjODe2HG/8e3PB+KXorFAqF4opECS6KKwIhBHEzJJxr9W8LLnEj6Igq57sQ6kWzdKztuU7kir2zsOYKQisRLnqyUtEhKbJEFa//AFPH2V3A2VfC2VfE3p5TkSxblYUj8PwfSqFl4VB33MpIP5TrfwKu+sH1rSYRhTJN6MR35Hb8O/3lQgGRHia66kfwd/8w/thd+KGJ70b4B0N89wx+K8J3QwI3xGtF+K12X0Zi1Ba8s5dO1iBXciiOpCkMpyn0pLUUhtNb2j9FxIJmze/4o7RLRtfKLvUFl1rZW1P0yWoYlt4nKrWFpEzRJj+YopBEquQHUzhZU6X9KBRXCqEHB78uRffXvgp+rTtX2ilThW54v4xqUf/3CoVCccWjBBfFZUXshYRzLuFck3C2RTjvEiTiSm/KzVnRQXNMdMdATxloKdlf3hrojomeMjAGUljjmYsSPKKa36lU5B1a7PNhAcDQZLTMvhKpfSXsnfnz9npRXEKEkCk73/6/ZC5+W80zU1Jcuf59MpLEXqfyGq1FOPm0NNw98R04+QzCb1KLRlgIJ1kI76AcvY8F7SpcbQg/TuPPasRH2oLJ8xf0tIapUxiWKSyFHjGlbby62VEoZ8NtBCycblCeaiSiiifFlAWX+qJHHJ5bgTUtndygrGyUztsrRuL0jjkZCzttbOn3RaFQrDOhL71YXvpz+X3gVbtzhR1w/Y/L74TttymRRaFQKN5kKMFFsSWJ6j7+sRrBbLMbrTLfIj5HRQ6j6GCOpDGHUpjDGczhFEbO7ognWspAs/QNv5scuyHB6Tr+yTr+qTrBqTrhXKv/IA2sHXlS+4o4+0rYuwroqmLI1if0ZCTLt78g04fa7PsBuPkn4ZofAid/cc8hBJSPyKiVE99GHH+K6pl5FsIdLIQ7KYe3sBD+GOVoklCcLcqqKyhYKQM7laT1pIwl7ZJ+2iRTsCgMZ8gWt346i9sIWDjTYOF0g4UzDcpJ/1w+MpoGmaJDftAhN5giP5DqlI7OD6roE4VCcRaiAA5/KxFZ/ge4PSmc+W2JyPITsP0O0NXNE4VCoXizogQXxZYgbgZ4Ryodk9hwurnqsXrOwhxKYw6nE3EljTWSxhhMbYpg0RFXTiXiyskVxJUEayLbSRFy9hTRU+pf8LKhPgtP/yd46ne7pZzNNNz8QXjrx2H02gt/bCFg+iXig9+k+vpLLByfo1zPsxDuZCG8gcXwhwhZWVjRTY2BsSyDExkGt2UZGM+SLTlYKUNGXqRMLMfY8qLJWvCaAQtnmiycrvcJLM3K6sJKbtBhcCJLYSjdJ6bkBh2yJQdDpekpFIq1EoVw9BEpur/6ZWiVu3O5MZkudP1PJNXe1GeLQqFQKJTgotgkYjfsCCze4UWCM41l/irmWAZrIos1nIgrybaZIkXshQSnGom4UutGrqyQmWCUHOn5siOHvT2PtT2HsYU9LRSrMPUCfPu34YU/hihZ2Oe3wZ0/A7d/FDKD5/2QvhuyeGyK8ovPsXj4OOWpJoveEIvhVURcv+LPGKbGwIQUVAa3ZRmckFthOIV+mYoGQggCL+qWim61+0Gn36z4LJyps3C6QeNswsqA03lfBia675GtRE2FQnGxzLwCz/xn+T3QnO+OZ0fgwN+V6UI77wJdRakqFAqFoh91Jaq4JMRehH+sKkscH1okOFVfLrCMpPuiP4ycvSnnKmJBVPOJFj2iRZew7BFOSZFlVXGl2Cuu5KS4sknnr1gH4ghe/5pMGzr6aHd8++1w18/KC+xzlHIWsaC24LI43ZSCylSD8vFpFmdaNFrtv40scF3fz5lGzMCIwcDkMIPb8x0BoTCcRt/CUSoiFrTqgTSfLXvUyx6tmp8IKd3SyL7bs+9GZzflXYHcgIxYGegRnQYnstiqNLJCoVhP/Ca8/BfwzO9L36w2mSG47u/IinO77lUii0KhUCjOirpCVWwIIojwjlWTCJYK/okaLFlYmUMpKbDsLeLsLWEULo1AEbsh0aJHuOglokoirLT7VX/ZufZiFG2s7XkprCQCixJXrhC8Gjz/RWmEWz4ixzQDDvwdKbRM3gnIyIzQi3AbQWdrVnwWp5sdgaUy0yQM4hWeRP6tZPQFSulFBkYdSrt3MHDtdZS2FckPpbacsCKEoFXrF1MaSbnkxqIsmbxWE9qV0HQNO210jWh7WidnMZhE9QxMZHGUsKJQKDaSqRelyPL9PwYv8WXRDLjmh+G2j0i/LkN9DikUCoVibahvDMVFIcKYcL5FMNMinGkSzDQ7LVH/4ssoOV2BZV8Js3ThJZVXI/YjoopHVPGJqlI8WSqqCDc69wPpGkbRxig5mKUU5nBaiStXCEII4lggYoGIIY4F0ewx3O/8N9wXv47r6bjxXlzjrXgjd+OWbsBdcHD/OMBtfAevEeA2QqJwJTGlH52AonmGAeMUJfMUA+kFSru2M3DDrTgH7ofi9kvwipfTTuVxGwFeI8RtJm0jwGvK19eseIm4ch5iigaZgk2uJE1oM3kbJ5MY9ab7q/nYKbMzZ9obb2StUCgUq+LV4aU/k2lDp57ujpd2wW0fhlv/MeTHN+/8FAqFQnHZogSXLY6IYmI3QngRsRvK1osQbpiMh33z6BpGzkbPWRg5K2nlvp6xLtg4UwQRwWyPqDLdTCoIuatGgxgFu19gGUxd+PsQC+Jm0C+k9AorSbsmMQXQMyZG0cEoOR1Rpdt30PNbvzLLlUroR7iNMFn4dwWBfnEg6BwTeFFHPBFCEEeiK6pEgljIvx/ZFyumhEnuSrYeygDVFY6V6LqGkzVJWS7paJpS+Bol/SgDxmlK5kkKxiz6jltg/7th/0dh220bdmc08CIqs00Wp1sylScRTrxGgNtM2p5+HJ1nNEqvmDIgyyRnBxzyAymyA47cLzoYqpS5QqG4XDj9vIxmeeFPwa/JMd2Ea38Ubv8I7HmnMr9VKBQKxUWhBJctQDDdoPK1Y1JE8frFFbFiSsIFooGetdCzbTHG7m+zFkbelukSMy0pqExLgSUqu6suVDXbwBxNY41mMEczWKMZrLEMxmDqgu5aRzUf99UF3EOLRGWvI7AsjZhZ9WXahoxOKToYBXu5qFJ00B2Vc72eCCEIg5jAjQi8UBqhuhGBF511zGvKTYopUgyI1vNvfs3EOKZPKueQKhVI5WwppGSt5VvOwsmYpOJ5rBf/AO3Z34P6dPehsqOJwPIJ2Hs/ZIfW7SyjMKY616Iy02JxRqYvybZFY9E778fTTa3zupyMfL1Osp/OW0pMUSgUVx5uFV78UxnNcub57vjgXpkydMtPQm50005PoVAoFFcWSnDZAgg/xn15/qzHaJaOljLQHTNpDTTHRE8ZaI6BnjLRHANiQVwPiOp+0gbEDZ+4GYKAuB4Q1wPC6bM+3crnkDY7YkpbWDFHMxhF+6LSAYQQBKcbuK/M03p1geBkfdVj9ZzVFVIKbVHF6RNYVKnllYljQavm06z6hF5EGMRy8yOinn7ox4SBnI96+qHff6wUTqSQEngR4sLsO1akEzmStXAyFqmsiZOxlo9lLSzbQDc0NE2TrQ6apqEh0OdfRTvxBNqxx9CnnkMTAboWoxGhmzbarrei778f/ep3o43sP/eJCQHHn4Rv/t/wyv+AOJTjuTF5oX7dj8HYDRd1R1TEgvqi1/GDWZxpSoFlukl13j2ryayTNSmNZsiWHFIZsyOe9Isp3b5pqVQehULxJkAIOPUsPPv78MJ/h6Ahxw1bGuDe/hHY/TZQn4cKhUKhWGfUynQLYAymKP3E/kQ8MbutY3QEFe0iy76KKEnJqQfEvWJM3U9Ema5II2KBNZLuE1Ws0Qx6zlq3xVnsR3gHF3FfXaD16gJxtb/cq7UjR+qaQRkp0xZY8jaausO+DBEL3EZAo+LRWPST1qNR8WksejST/WbVX1dRZDUsx5BbSrZ2ylx1zE63F/8mqR5BxXKMC/tbq8/CoW/Awb+VbXOuO6cDw1cn0SfvktUlrPTaHtdvSAPF7/4HmHmpO77zblke+tofA3Nt3j4iFjRrPrV5l9qC222TfmW2ddYoH9PWKY1lKI5kKI2lKY1lKI3KLZVTZccVCoWiQ21KfnZ/749g5uXu+PDVUiS/+R+uaxSiQqFQKBRLUYLLFsDIWuTeOrGhz6EZGkZeihayFO2lJyy7MlUoSReix4RTs3WcqwZIXztI6trB5Dzf3IRBRKsW0Kz6nciUZtWnWekVVTyaFX/NfhyaBum8jeUYmLaOYRmYlo5p65iWgdHTl62OaSfjSd+0dAxLx04ZWI7ZJ6RYtnFpvW+iEE4+JQWWg3/bHx4OYOdg7zulwLLvXTCw6/wef/4QPPUf4bn/2q1WYabhpr8vhZbxG5efUhTTKHt9IkpvW1/wzmm4qxsaheG2mCLbYiKqZEsXF1GmUCgUVzSBC689CM//ERz6Oojk89ZMwYEfl9EsO+9W0SwKhUKhuCQowUWxYYhY4J+oSYHllXmCqWbfvDHgkL5uiNS1gzh7i1d89IoQAr8VLhNRWjWfZi2gtWTMX6MBcJt03iJbkl4b2aJNpt0vyf1sySGdt7dcyeHzwqtJgeX4d2Rqz8mnu6HhbcZvTKJY3g077lxz5EmHOEK8/hDhd34P/+B38EQWPx7Dz96Nt/e9+GN344cO/ndDvNbr+M0QryUNfGvzLo1F75yRRJoG2ZJDfjBFbjBFfihFPmlLo2nygyn0i4xqUygUijcNQsCJ78L3vggv/nlXIAeYfKuMZLn+JyBd2rRTVCgUCsWbE02IS5FksDWpVqsUi0UqlQqFQmGzT+eyRkQxYdkjnGsRzrUITtVxX18gboTdgzSwdxVIXTtI+rpBzNHMFXen3msGVOdkWkh1rrtV5lzqZXdtpXV70A2NTMEmnZdbpmD1iCgOmZIt26KNsYUW6EII4lAQRTFRGBMFQrZhTBx198MgIvRiAl/6wIR9bUxQrxEuzhLUFgkbDWm+KxxC4RCKFIFwiIWBrmvopo5mWuiGjqZrcqzP20W2uq515ttjIhZ4DQ+/UsFv+fhRivgi9Gjd1MgP9Asp+cFuPzvgbKnfl0KhUFyWLB6H731JpgwtHO6OFyfh5g9KoWVo3+adn+KyQ60NFArFeqMiXC5DhBDEzZBowSUsu0Rll7DsEZWloaaRtzueJ3rBlqaySTqRZl2cmWe0mIgq862OuBLOu4QLK5eH1lIGqWsGSV87iHP1AEb28vaYiKOYetmjMteiOtuiOuf2iCotvF6BaRWslEEmb3eFlIJNOm+R6YgqyX7Bxk6bFy1KRWFMs+p30o9aNT8RPwRxFBNHUvxoCyRxMh5FgjjstnHUne/9eSmoyP22wHK+wtLZsYGzV4yIY8AH/Ag4v8ig5c/VjYjRNLDTZmdzOn0DJ2ViZ7rjTsYiN+CQH0qRUWXFFQqFYmPw6vDyX0qR5eij3XErCwf+LtzyD2HXfaqcs0KhUCi2BEpw2aLEzaAjooRlKWhEZS8RWDyEf2GLSi1tdsSYPlGmZx9DI5xzpagy2yOuLLhnLc2sWTrmUApzSBruOvtLOLsLF234e6loV/HpNZxtVDyai9KPozLnUp93ic9SJQYgXbApDqcoDKcpDKcpjsg2N+iQyduY9vqUpA79iEbFl6a4la6g0qx4NKrdcbcerMvzXQy6rqFbOoahYZg6hqmjG2BqHlZcwwrLmP4MVlzH1FwszZNzuodZGMAa3ok1tgdz4hqsgRHMxC/GcqRnjIgFcSxkG/X0YyENo9t93yOeeQ0x9Qrx9KvEc4eTqj8CW2/iDE1g3/JjODf+EHYxf+HmvQqFQqFYP+IYjj4ifVle+SsI2inKGux5G9z8k7JKnJPb1NNUKBQKhWIpSnDZAgSzTRrfPtMnsIg1+HfoBRtzIIUx4GAOpDAHUmBoRDWfuOoT1XyiTutBKBCtkLAVEk43z/n4K2JoXVFluH8ztuhd/fWu4mOYOoW2oDKSpjic7u4Pp7GcCxdUhBD4btQRS5a1VS8xzfXxW+eOpmmjGxqZokw/SudtaZhr6DLFxpRCSKft9HV0U+ufM7s/Z5jJfCKgLNu3uj+j6xrEEZz5Hhx+WG7Hvw2RJ6sHmUAKsDKw4w6YvAt23gU73gKpiwjpDVw49TQceRSOPib9XyKvO+8A+QnYez/c/lGYvFMZKSoUCsVWoDEvvbqOPQ4v/xVUT3bnBvfJSJabPgilyc07R4VCoVAozoESXLYAcTOk/vjpZeN6zuoTVIzBVHe/lDqv9CAhpNjSEWESIWa5MONDLDAHU1JY6RVVhtIYJWdLiiog030Wp1vMn64zf7LO/OkGC6fr1MveeVXxyRSkwWymx3A2N5DqRKpki+cvLAkhcOvBMvGkvd/siVAJz1ISeCmGpUtD3MTHJZMY5rb3220qu34lvdeMEFA+0hVYjjwCrXL/MdlRKay0t/GbwLiItLPQk0a6RxOB5cR3+wUWgNy4vCO6+z7Y/TYY3KtEFoVCodhsKifh2BPdbe61/vlUEa5/H9zyk1KMV5/bCoVCobgMUILLFsAcTpN7+/ZETElhDjgYAyn0dUo9AdA0DS1joWcsrLHVy0ILIUCwZUUVkOfYrPjMn6ozd6rOwqkG86frLJxpnNU7ZKOr+PitkOp8r69L19+lNu+el5Bip4yOeJJpiyeFtojSFVbWw+NlXWnMwZFvdUWWxeP983Zeih173ymjSoavuriL5tCDU89IceXIIzKCJXT7j8mNSWGlLbAM7VMX6gqFQrGZCAHzB2X0yrEnpcBSOb78uJFrYdc9sOcdcPUPgZW69OeqUCgUCsVFoASXLYCRtSj9yN7NPg1ACjNsobWo74YsnG4wf0pGrMjIlfqq5rSmYzC0LcvQ9hxD27MMbctRGEmTKdgYF1l2OgpjagsutTmXylyL2hJxxW2c2ysllbO6gkmhR0wp9ogpBeei0pIuKX5ThnwffhgOfxOmXuif1y2ZprP3nXLbdhsYF/ix046YOfmMTBM6+TRMfR8iv/+47Gh/BMvQfiWwKBQKxWYSRzD9Yjd65fiT0JjtP0YzYOIm2HUv7LxbbtmhzTlfhUKhUCjWCSW4KLYMbj1g9niNmeNVZo/XmD1RpzrbWvFYTYPSWIbBbTmGd2QZ3JZjaHuOwlDqgqJz4ijueLrUy9LTpb6YeL0selTnWzTK3jk9XlI5i8JQ18+lMJyiMJSmMJIiN5C6aNFn02n7sBz6hhRZTnxnueAxej3su18KLDvvvnATw9aijF459YwUV049Dc355cdlR7riyu63XXzUjEKhUCguDiFg5mV446EkvfM74FX7jzEc6dm16x75XTF5Jzj5zTlfhUKhUCg2CCW4KDaFVt1n9liNmeM15o7LtjbvrnhspmAztCPXE7mSY2A8s+ZqP4EXdQWUspu0XUGlvujRWqNhrmnp5IfTFIdT5IfTy8QVO3UF/ktVTsKhb3ZFltZC/3xhu0wP2vtO2PN2yI+d/3NEAUy/lESuPCNTg+bfWH6cYUuflx13yBz+7bfDwG4lsCgUCsVm4zdlaucbX5NCS+VE/7ydh51vTQSWe2D7bWA6m3OuCoVCoVBcIq7A1aFiq9Gq+cwcrzF7rNaJYKkveCseWxxJM7Irz8hknpFdeYZ35Ejn7HM+hxCCxqJP+UyDhTMNFqYalM80KJ9prinVB2Tp4mxJerrkBvrb/KAUVtL5TTCfvdT4DTj6uBRYDn1juXGhnZfCyr77pdByIZ4otSlZpejkUzJ65cz3IFwhmmlgjxRXtt8h2/Eb1QW6QqFQbBXKR+H1v5Eiy5FH+03KzZT8rth7P+y+F8ZuAP0ySZdVKBQKhWKdUIKLYl0QQtCqBdTmXarzLRanmzIt6HiNenllcaU0lmFkMsfIzkIisuRwMmevUCOEoF72WDjT6Iorp2XfP0spbdMxyPUKKcuElRTpnLWlzYI3jDiGqe91o1iOfxviHpFK02Ukyb4fkNv228+vklAcw9zrcOLb8rGPPykv0pfiFOUdzx1vSUSW2yE7fNEvT6FQKBTrRBTIz/DXvwZv/I38bO+luBOufg9c9R6Z4mlnNuc8FQqFQqHYIijBRbEmhBB4zVAKKnMtqvMutbkW1QWX6pxLbb5F6K9ShUeD0miGkZ15RnflGdkpI1js9Op/fkIIavMuC6cbfeJKeapJ4K0srGi6RnEkzeBEloGJjGzHsxRG0tgp48qPTDkfKqekyW07TWipN0pxJ+xPBJY9b4f0wNofO/Tg9HOJuPJtKbQsLQeNJu92Tr4lSQ26Q5rb6pe5x41CoVBcadSm4eBDUmQ5/HC/F4tmSP+Vq34Qrn5AVhVS37UKhUKhUHRQgsubBBEL4kgQRTFxKNsoTPphLOfCmDiK8ZphIqLIaJW2uHK2CBIANMiVHPKJr8nIpBRXhidzZ/U2icKYhTMN5k7UmDtRZ/ZEjfmT9VWfTzc0SmMZBsazDE5kGJjIMjiRpTSawbDUgn1FWouy/OaRR+QF8+yr/fN2LkkTSkSWwb1rv2huleHEd+Vdz+PfhlPP9oeVA5hpGbWy8y6YvEsKLanierwyhUKhUKwnoS/9tA4/LKNYTj/XP58ZlhEsV/2g/L5IlzbjLBUKhUKhuCxQgssWYO5kjb/53ZfOesxaDF2FEF1hpVdECQVxvIYHWAPpgi2NYod6TGOH0uSHU+QHUucUPLxWyPzJGrPH68ydlJWIymcaxNHy89NNjYGxHlFlmxRWCiNpDEMJK2fFb8qqEEe+BYe/BWeeB9EbgaTJ9J22wLLjLWtPE6rPyAvxY09IgWX2leXHZIaluLLzbtmO3wTmub14FAqFQnGJaVefO/ItKcof/zYEzf5jtt2aiCwPyL6KRlQoFAqFYk0owWULEPox5anmuQ9cRzRdwzA0dFPHMDV0o9vaKYP8UIr8kBRU2hEr+aEU1horA0kTW68TsTJ3ss7ciRrVuZUrETkZk+HJHMM7pJfL8GSe0nhGCStrJQpkZEn7gnmlcs2D+2DvO2Qky553QGZwjY8dSnPbgw/Bwb+VF+ZLGdrfFVgm77owI12FQqFQbDxCyCjHI49IQf7oY+BV+o/JjkgPlv3vgv0/eGHV5xQKhUKhUKy/4PL5z3+eP/uzP+PVV18lnU5zzz338K//9b/mmmuu6Rzjui6f/exn+dKXvoTneTzwwAN84QtfYGys+4V+/PhxPvGJT/DNb36TXC7HRz7yET7/+c9jmt1Tfvjhh/nMZz7DSy+9xOTkJL/0S7/ERz/60fV+SRvO4ESWH//MrcvGl69XV1jALhnSNA3D1DBMHcPU0Q3Z100Nw5CtbujoF2kOG0cxjYpPvexRL7tLWo/qXAu3vnJ1oNygw8ikrEA0PClTjvKDKeWxcj7EMcy8JC+Wj3xLRpv49f5j8tt6BJa3Q3HH2h+/ckqKKwf/Vj7H0ovx8ZvkY+68GybfCrmRi39NCoVCodgYFo5IgaW9NWb6550i7L6v+30xep0SzRUKhUKhWAfWXXD51re+xSc/+Une8pa3EIYh/+Jf/Ave85738PLLL5PNZgH49Kc/zYMPPsif/MmfUCwW+bmf+zne97738fjjjwMQRRHvfe97GR8f54knnuDMmTN8+MMfxrIsfu3Xfg2AI0eO8N73vpePf/zj/OEf/iFf//rX+djHPsbExAQPPPDAer+sDcVOm2y/+jxMSTeYOIppVv2OeFIvu9QXPOqLXUGlWfHOmeak6RoD4xmGJ3N9Aksqex4VbhRdFg7LVJ7D34Kjjy43uk0PyDuSe98Be955flEmoSfDyA8+BAe/DjMvL3/sfe+C/e+WKUjqbqdCoVBsXWpTskzzkYelwLJ4vH/eTMuoxLYoP34zGCroWaFQKBSK9UYTYi3uIBfO7Owso6OjfOtb3+Ltb387lUqFkZERvvjFL/KBD3wAgFdffZXrrruOJ598krvuuouvfvWr/OiP/iinT5/uRL389m//Np/73OeYnZ3Ftm0+97nP8eCDD/Liiy92nuuDH/wgi4uL/PVf//Wazq1arVIsFqlUKhQKhfV/8WukUfE4/Nxs4sFCf9s3JhCCJW3/fNxrjhuJjkGu7Hd9XaJI9I8lZrpxFBP4MWINni+6oXVKK+cGUkkr+/nBFAPjGcw1piApVqBVlhfK7XLNi8f6560s7Lqne8E8duP55dWXj8oIljf+Vj5P0OiZ1KTJ7f53y23braCr36VCoVBsSRpzUog/8qhsl5Zr1k3p1dVOKd1xB5jO5pyrQrGF2SprA4VCceWw4bczKhWZijA4KP0innnmGYIg4N3vfnfnmGuvvZadO3d2BJcnn3ySG2+8sS/F6IEHHuATn/gEL730ErfeeitPPvlk32O0j/mFX/iFVc/F8zw8r1s9pVqtrnrspaQ27/LIl14/94GXEF3vFVOkiJIdcMgnbW7AIZO30S4yNUnRQxTAyaeTUs3fhFPP9Bvd6hZM3ikvlve+A7bfvnajW5BpQiefktWEDv4tzB/sn8+OJgLLu2QUy1o9XhQKhUJxaWmV4ejjXZFlZqnxvgYTN8nviz3vkNEsTm5TTlWhUCgUijczGyq4xHHML/zCL3Dvvfdyww03ADA1NYVt25RKpb5jx8bGmJqa6hzTK7a059tzZzumWq3SarVIp9PLzufzn/88v/zLv7wur209SWUt9t02gqZpaLqGptFtl41paHoyvtKYri0zwdWNHoPcZL/t5dIel8fI1koZpPP2Rfu8KM6BEDB/SIorh74hL5r9Wv8xw1d3KwntunftF8xBS5rbnnwq2Z6G6qn+YzRD+q9clUSxnG+EjEKhUCguDW5ViuVtD5apF4Alkaij18Oet8nU0l33KNFcoVAoFIotwIYKLp/85Cd58cUXeeyxxzbyadbML/7iL/KZz3yms1+tVpmcnNzEM5KUxjL80D+9cbNPQ3EpaC5Ik9tD34BDD0NlSV59ehD23Q9775ftWoxuhZDpQSef7gosUy9AvMS0WNNh7HoZVr73fhklkyqu1ytTKBQKxXrhNxKBJUkROv08iKj/mOGrpbjSFlmyw5tyqgqFQqFQKFZnwwSXn/u5n+PLX/4yjzzyCDt2dBeN4+Pj+L7P4uJiX5TL9PQ04+PjnWO++93v9j3e9PR0Z67dtsd6jykUCitGtwA4joPjqJxlxSUk9ODEd5Molm/C6efouytp2DLKZN8PSIFl/OZzR5l4dTj9bDdy5eRT0Jhdflx2VIork2+R7cQtKqRcoVAotiJeTX5XHHtcpgqdehrisP+YgT2JuPJ22ebHN+dcFQqFQqFQrJl1F1yEEHzqU5/iz//8z3n44YfZs2dP3/ztt9+OZVl8/etf5/3vfz8Ar732GsePH+fuu+8G4O677+ZXf/VXmZmZYXR0FICHHnqIQqHAgQMHOsd85Stf6Xvshx56qPMYCsWm0CnX/LDcjj0BQbP/mJHrpLiy7wdk2LedPftjNhe6efrHvy0fv9fbBaS/y8TNUljZcYdsSztVWU+FQqHYirTK8vP86GPye+LM95ZHsBQnkwiWRGBZS8SjQqFQKBSKLcW6Vyn62Z/9Wb74xS/yl3/5l1xzzTWd8WKx2Ik8+cQnPsFXvvIVfv/3f59CocCnPvUpAJ544glAloW+5ZZb2LZtG7/xG7/B1NQUH/rQh/jYxz7WVxb6hhtu4JOf/CQ//dM/zTe+8Q3+2T/7Zzz44INrLgutnMgV60LlpBRXDn1TpgstjTbJjsLed8pt3/1Q2Hb2x2styruc7VDy6ReXH1Oc7AorO94C4zeBlVqf16NQKBSK9aU+Kz/Xjz0ht+kXWebBUtopvbp23SOFloHdSjRXKC4xam2gUCjWm3UXXLRVLg5+7/d+j49+9KMAuK7LZz/7Wf7oj/4Iz/N44IEH+MIXvtBJFwI4duwYn/jEJ3j44YfJZrN85CMf4dd//dcxzW5QzsMPP8ynP/1pXn75ZXbs2MG//Jf/svMca0F9qCouCLcixZDDD8tUoaXVfqyMvGjed78UWUYPnP2iudcM8eijcOb7LLsQH7kuCSW/D3bcCYWJdX5RCoVCoVg3KqcScSWJYFlaphlg6CoprrRFltLme8opFG921NpAoVCsN+suuFxOqA9VxZoIfemT0hZYlpZr1nTYdltXYNlxJ5j26o+3FjPEoau6Roi73wa5kQ14YQqFQqG4aKIQZl+V3w0nviPThBaPLT9u9HrYnYgrO++B/NjyYxQKxaai1gYKhWK92dAqRQrFZUXow8IhmHkFZl+TF9Czr8oIlqXmhUP7kzSh+2XUSbq0+uP6ja4Z4pFHVzFD3J3k6r9DPp6KYFEoFIqthxCweFyKK6eegVPPwpnnl3t1abr01dp1r9x23qXKNCsUCoVC8SZECS6KNx+hJ0WU2VdhJhFVZl+TYstSIaRNZliWUd6bRLGcLfS7uSDNEI89LiNZznxv+eN2zBCTCBYVSq5QKBRbj+aCFFU6Assz0Jxbfpydh+23wvY7pMAyeSek1N1xhUKhUCje7CjBRXHlEnow90YirLzSI6wcXp7C08bOw8g1MHKtbEevk21hx+rlmiunpLDSNkOcfWX5MYUdMoy8LbBsghmiEIK40SRuNEADzTDQDAMMA03X+1p0fVU/JoVCobgiCVrSQ6tXXCkfWX6cbsH4DbD99u42dNXq3xEKhUKhUCjetCjBRXH5IwRUT8H0S/3b/BurR6w4heWiysi1UNh+diFECJg/1I1eOfbEyrn6w1d38/R33S2rT1zUSxQI1yWqVolrNaJajbheT/brxPUaUa0u5+o14mrSdsbqxPW6LFu9VlYQYjqtYaBl0ujZLEY2h57NoufabTYZ7xnLdueMbDYZy6JZ1kW9LwqFQnFBNOZg6gVZLWj6JZh6UYrlK31nDO3vF1fGblBV4RQKhUKhUKwJJbgoLi/cqoxWmWkLKy/L1qusfLxT7AoqvcJKfmJtESZuRUbJnHy6K7IsLfus6bIs8657EpHlbsgOr/hwIo6lUFKpEC1WiKoV4kpF7rfHKhWiapWosijnkjHh++f5Zq1C+y7sucSXKEJEEQTB0ppJ64a1aye5e+8le999ZO58K0Yuu0HPpFAo3pREgfwMn35RblNJW59e+fjsKOy4A7bfJsWVbbdCeuDSnrNC8SYjqtXQTBM9nd7sU1EoFIp1R1UpUk7kW5M4kpEk0y/CTCKqTL8ozQpXQjdlVMnoARi7vrPF9hCaZaGZZ9EW4wgqJ2DuoCzdOfe69HiZe33li3LDkRfkO++WAsvkneDkiZtNgqkpgjNnCKemCKamZHtmimDqDNHcPFG1en5RJsue28DI5dALBfR8DiOXR8/n5Vg+j1HIo+fyci4v+0Y+h54vJG0ezXHQNA0hBMSxFFWiCBHFECciy7nGw5DYdYnrdeJGQ0bQNBrE9YZsG43uXKMuU5k6x9RXFo9Mk8wtt5C9716y995H6voDMqJGoVAo1kJjHqZf6EasTL8g00ijlcRqDQb3yu+K8RuT9iYo7rjk6Z4KxZuFaHER79AhvIOH8A4dxD94CO/QIcLpabb/239D4Ud+ZLNPUa0NFArFuqMEF/Whuvl4NRmpMvX9nhDvlyFsrXi4yG0jyl9N6Owi1McI4yKhZxLOLxDNzRHOzBLOzRHOzkq/EkDPZNALeYyMje7oGFaEobfQqWNEiximj27HGHaMYQnZt2J0W6CXxhAj1xPmbyCw9hAEecLZOYIzUx1hJZiaIq6sEmWzAlo6jVEs9m16sZD0S93xUhGjUEjmS+jZzBXhrSKCgKhapfX88zQef5z6Y48THO8X04xSiew995C97z6y996DNaZKqCoUioRWWXqsnHxGVn6begFqZ1Y+1s4ngsoNMh1o7AYZ8ejkLu05KxRbACEEhCEiCKRfW3ITZj0J5+eXiSreoUNEcysYTieMfPYzDP/Mz6zreVwIam2gUCjWGyW4qA/VS4cQUD0tL4ynXpB3H6dekCa27UNiCBoGft0kcDOE2ihhXCD0bcJGTFhpEi6UIVzFm2UjMAyIVjHZXYKey2GOj2GNT2BNjGOOj3f7IyMYpRJ6sYhu2xt80pcf/vHjUnx5/HGaT367I5a1ca66imw7/eiO29FTykNBoXhTEAUyauXkU4nI8rT06FqJgT39wsr4DVDcqQxtFVsaEUXd6NCeLVoaOdqzCd9DBAGx78vUXz9ABO3NX7IfIHy/0+/DMDq+ano2g55J2myP51om03NM/5jwPLxDh/vElahcXvW1mtsmcPbtx9m3D2f/Pux9+3D27cPYItfham2gUCjWGyW4qA/VjSEKZCj39IuJwJJEr7TKxIGGX09ElXbrZvEbFkE1hHhtf5JGIYOZdzAzYDoBpl7HNCoYqQgzHWOmIsxUjBAasa8R+TqRMUDsbCMyh4n1IpHIEkU2sSeIqjWiWlUazlarMv2n58JES6exxscTIWUCa3xMCioTE1jj45gTExi5zbtjKoRAeF5iqlsnbtS7/XqPsW6zKV+PrsnQeU2HpK9puhzTNZnO0zOvtfvtecuSm233tfqS/bO2hrHyawkCWt//PvXHHqPx+BO4L7wgBbsEzXHI3HEH2XvvJfOWO3D27kXPKv8XheKyRwionJRRKyeT7czzELrLjx3cK8sw77hDeq2MXgdO/pKf8uWIEALh+3Lx3mz2LOR7+s2m/H3oevc7gd7vB11GSOhaImgtnUv6ydapjKcbaEavEbu5ZH+FCnqmKb8zHEd+f6xzREbn+3Npmmyf4FEnbrYQYSjTbMMIEYUQtlNu1zAWx4gw6HnPZStaK0f0XrZoGtaOHT2iyn7Z7tm75b3a1NpAoVCsN0pwUR+qF4ffkIaEbe+TudcRs68TnT6MX4kJ6qYUV2pmpx95Ky+y22ipFPb2bVgjBcycgZkKMI06plbGjM5gaouYqRhttRuWThEGd8uL8YE9ssLE8NUwvP+8zA/bF2BRpYru2OjF4oan88Su2zHQjTvmudXESLdCXKkSN+o9FYkSMSXpX9LIn3XA2raNzFvuIH3HHWTuuAN79+4V3+OwXKb57W93BJhwamrZMea2CZy9+3D27cVut/v2YQ4ow0uFYsvi1eH0c/0CS335/zepYldc2X6HNLTNDl36891ERBh2fLCiXoGkVxxo1LuREX1iSpO42SOoNJuX3fdFL5plSfGlLcLYidhvJ2O2jebItj2Opi2JEqn3RZCsNZJ1QzHNvkp+na1T8a8bfaI7qZ4bGNbymyBLtxXGRRwvj57pE+B6/2b696NkX9MN7H17ZdTKfhmtYu/Zs6oBrogFwouImwFRKyQ4OY1/7AzpW/aQvmbHJX7Dl6PWBgqFYr1Rgov6UD03QiAWTxMeepboyPcJTx4kPH2MaGaKsFIjcnVCVyd0Ddn3dBBnFyaMUglr507sHduxhjLY+QjbqmBppzEbr6PVTp39nLKjUlAZ3CNFlXZ/cK8UVTbZ50QIQVyrJV4yc4Rzs0QLZaJqW0ypdqsR9YytSyUiTZMXZ7lcx0y3Y7CbXLShISOJ4hgQiFjIO5lxjBBx0hcg4sRcNzlWCDkfC0QYdkOUz6M9G8bwMJlEfMnccTvO1VcvM84VQuAfOtTxfnFfeoloYWH1xxwYkBeDS8QYc2LiivDDUSguKxrzcPwJOPakrPw29X2ZS9qLZshUoLbAsuMtMLhvzWlBbbFcuC5xu3U9hOcSu66MZHBdRGdMtloqhbV9O9a2bVjbtl+SO/FRvUFw8gT+8eMEJ07inzhOODW9RFRJzMY9b0POQUunuykjndSRDHo6g2bo8vshjpd9H7S/CzpzS79HYiGN10XSxnHSRp1oj/7xuFsdb+n4JRSH9EymK3B0Wpleo2UyaKYlo3XMJFrHNPqjcgxzhbl2FI+c09PpFYSUrBRFtvj3khACEcQIP5KtFxE3Q+JWSNwKZNvZT7aGT1zziFsBIgB5EdKPs7vGyMeVaa5CobjyUIKL+lAFIPY8vO89ReuZb+MffI1w+jTRwgLhYp2oERB553kBoGmY42PYkzuxdk5iT05iD2WwMi62PoNRPySNceffgHiVC6nCdhmdkggpcXYHkTFMRIGo4SdllBfl1tvv3a9W0W1bms6WistNadvGtMUiRqmUmNPK/ko+K7HnEc7OEc0lxrwdQaW9zRIl+xcsnhiGNMotFOS5FNvGuQX0QqFTfUjPZfsrEbXFlUxmy1b36Zj1+b78m3v1VZpPP03zu0/R+v73l71neqFA5rbbyLxFijCpAwfQLGvZ44blMv7hw3iHDuEfOox3+DD+oUMEp0+vei56JoO9dy/Ovr04V19D9u67cK69dsu+dwrFZUnlZFdcOf4kzL7aNy0EiMx2ouGbiAeuJy7sJ05vJ/aic9x1b3TusotGk7jV6ogr6yVM6MWiFF+2b0tEmG0dMcbavg2jVDrn4ljEMeHsLMHx4/iJoBL0tGcTi1dDs+3+hXou2++3kc0t89lYJqa0x9LpVVM7txJykR9IIc33O23s+wjPTzxL5HhnzG9vyc/Eou+1G0tFlWwOPZO+LL4DRBjLLRIQxYhQyIqCkUBEST8Z6xyTzBHGPcfExH6MCCKE3yOi+NGq4yK4iEqLfa/BQwRNRNAgwCO4Xue6T354XR77YlBrA4VCsd4oweXN8KHq1aA2JQ1ra1OIymn8wwdpvXYE9+gsrZN1vHmBiM8hqmhgZE3MYhZzcABjdAJz227MsW0YQ8OYQ4MYg0PSUyWaQyu/Lo0OZ16GmVfAq674sJFeJEztJ9C3E8QDBK5DWIsJ5haIyl0RRbgr5PBvIL2VhEQQyKpHtdp5PYZeKGAOD2MOD2MMDvaLJ8UiRqGI0a5OlAgseja75e9wbQSx5+G+8IIUYJ56muZzzyESv5k2WjpN5tZbOilI6ZtvRnec1R+z2cQ7cmS5GHPs2Ip3TI2hIVkZ6d57yN5zD9bo6Lq/ToXiikUImD+EOPoY8euPEr72HcKZ6W70o6sTtgxphB6mCZuCqNpMIu02CMNAdxy0VAot5cg0jFSqM9ZpU46MNjl9muD06TVVndMyGaxtE10hZvt2dNvGP3lKCiwnTxKcPHlOAcgYGJA3JnZMYu2cxJqYkN8H2f7oByMRVlYSnRVbBxH3iCBtYSSMpVARyeiQOIgQXiQFDC8RN3y5H7fH/bbw0T22PccG/sucF1oMRIiwhWhViRtlhN+QQsqSNhQt5nIBx/I1DhVrHB8KOTWks5hPY8ZZPv7Wn+FDt/7kZr+iN8/aQKFQXDKU4LIFPlSjeoPW957HKJUwSyWMgQG0dHrlRXccg1+D1iK4i+BWuv3WIjRmpbhSOwO1M4jqFOFik9aCjbtg0ZqXbRwuv4Nj2BGpUY3UeBZzbBxjYifmjv2Yu2/A2HszxvCYvPMjBNRnZHWhhUOynU/ahSPy/BJEDEHTIGwaBC2bgFGCqETYsghqEcF8lbhWX/ubZRidSBSjVFre790fKGEUCgjf7/iiSPGm0t2vyGiYeLHSFxVztgWAZttSQBkZxhwe6Qgq5shwT38EY3j4rGKA4uyIMMR95RUpvjz9NM1nnlm2CNIsC+fAdaSuvhrnqqs6mzk8fPbHDgL848elCHP4MK3vfZ/md77TMRRu41x9tayMdO+9qjKS4opHxLGMHPC8bipOsi/7fk9ajk/cqBMef5Xo+OuEUycJ58uEzYjINc4t4C9F11euhNIbkZFZUjmlJ3JDS6fRUyk0R4onHTHlAsWJqF4nOHWa4PSpjggTnD6djJ0+a3nbZRgG1rZt2JOTWJOT2DuTNtnfTLP1KxWZBiVTnESMbNvChy/Fj070RpBEb7QjO4Kl8z39RDjpFVLoHYsERJf2slrE0pwXESJiaehLHCbjYbJFCNE71+4HiNCDyEdEPoQ+IvIQkZf0fTnXOaZ/HORrjTWd0MwQWFlquRxTpQxzxQyVXJZGOoPrZBF6BifMkgozOGGGdJTDClNoSXrRtT9R4F0P3HFJ37uV2CprA4VCceWgBJct8KHaeuoxjn7oZ/rGNFPHyBgYKQ3DERh2hGH6GKaLaUcYToxhx7JN+roliH2tT1xpLVhE7vJwYc02SO0eJ33NHtI33UTq9rdiXXUTmpUsKIWA+nSPkCLFFTF/CDFzlLDWIvJ0Ik96tvT3DcIgRdgyCeth+/v4rOiFQlIBaAJzYhxrYhvW+BjG4FAipCRpPrnchkd/iDiW+fOVihRnFhfRLAtzVIorej7/poxA2WxEHOO9cZDm009JAebpp4lmV170GIODfQKM3PZj5FevYCJ8n9b3vkf9scdpPC69YVarjJS9916cq69SfweKTUUEQbeaSmKgLY20k/3Gkv3OmDTAFK5H7LW9TLz18ZDqQc+mMUfHMEdGpUg9PNQVqUeGMYeGMIaGMQp5GYFyGf0/xa5LcObMMlFGeD725A6sHV1hxZqYQDPNzT5lQJYfjmp14kqNqNYgqtaJa02iRou40UQ0XaKmS9z0EK4nv781OpXs0LSeCnf9fXTQdAO0dhW8pAKe0BBCl1EZQodYQ8SJ15vQpDgndITQINaX9RFJBSQ0Od7x/0j6gm7b7m8RhIghCqWwEcuWKJSiRuhB6CFCNxE13ETYkHO9/fZxUvDw8PHxdJ9AiwhMQWBAYNLTaoQm+CaERv94YJqEhkVoWghsDBx0YWMIB004GDhoyZhGCj3Z793QHDRs0BzQUmjayga5Z39vBIgWIq6i6zXu/Dt38ZYfvXkDfgvnx1ZZGygUiisHJbhsgQ/V1t98kTP/8n+RooWvn/+dwTa6tnJJZcPAufpq0jfeSPqmG0kduA5nvIDWSqJh6lNQmyaaPYH7xjH8U9NE8/OErbBfSHENeX7R+Z2fZlmYExPd8snbkn6ymeMTW75MoGLrIYQgOHYM9+WXcd94Ay/ZguMn+oSSXsyJCZyr9vdFxNh7964YuRKWyzSffJL644/TeOxxwunp/scaGZHpR/fdR/aeuzGH3lwVUxTrg4hjWWWsE4XXE23XjsBbOl6rbaiJKgA66AZoRoymx+iGQDNIWrnppsDMGBjj2zF3XoO571bMa+5M0kyH3vQRfmtJLRFR3G1DAUFMHEYILyB2Ey8SLyT2AoQfJB4aoYy4CGNEGMnHCmMZyREJECQiBl2xQjPkpptoq5b4u/IRUdCN5uiL6vCXj6/YBhAFiEQ4IQ7kWBzKsTiEKCAUAbEIibSIWIco0Y8iXbauBU0HWrZGy4GWA00bXBuato7npPCtNIGVJjQzCCONYRQwzQKWlscRWczYxhAGemSixwZ6bGJEstVjAz3pa5GRzMttw95bBHpKYKcNMjmHbC6F5URookIcVQn9RQK3jNdYoFWdp7E4S+h3P8N+8J9+ipve9cCGnd9a2SprA4VCceWgBJet8KE6fwj+6lOQKiFSRWItSxSmiEKbyDOIfI2oGRO1AqK6R1RvEVVrhG1/k3K5z9/E2jZGev8E6R0lUhM2qZKH7s11hBUas0Q+uGULd0FGwbhli6C+9jtwmuNIT5KBEubAIMbAAMbgAObgIEZpAGNoEGt8AmtiHGNw8LIwoVNcGcStFt7BQx0Bpr0tFUw66DrOvr1k77mX7NveRuYtdyxbKPZVRnr8cZrffWqZp5C9fx9GodhTinSF8qSOg2bZPeVM2yVLk3Kmjo2eXiGt4jIxcrycEFHUNdlsp814nkyb8XvSanr2RRgmC1zZymoq7X4oK6q0+8l8Xz8MpNFrbxrjOVIY14KWTidVVHKdCmXL9rMZDN1HFzX0sIwezKG3ptEap9FaZ9Dxu0KKIehfk2tQnITB3bIS3MCexMx8H4xcC8ali94QQsiytLWqFJ5qNaJqNTFODeTvKPARYQhB0B3zA2I/kL+fdgpJj2BBKMDOYA4MohcG0XNF9GwBPZ1Ds9MQ00kviVdJRen026kmlzi15EKQUQYREAECTYuTiBbQDE32RWJaKwRxUqlICIFA9PTpRJiITlirhoZGLCIi4RPFvmxFkLQ+YdK250KxUhsgRIgWRxALtDhGSyojaSJGj+LOmBa3x6LOvh4L9DhGAwILAksnsHUCSye0dULbkJtjEFoGkW0SOSaRbRI7FpFjEDsWwrGJbRNMs6cikaxAhGGgaSZ67GAIGz2yMEILPTR7NgMtaY3ARg8sdN9E80yEryM8iDyNyBPnjAyWl+4hCB8hfBBe0vrJmAciQOD1HNN/nBC+DE7SLXTdQTctdNPBMB1MO4VpO1hOSm6pNHY6hZ1O42TSOJkM6XyGVC6Lbgj8ZplmZZbq3AzV2RkqM9NUZ6fxW62zvxBNIzcwSGFkjNt++Me45u63Xcyf87qwZdYGCoXiikEJLlvgQzVamKX21b/AzFoYGQsjpWGmQddcaXjr1WXr1/r3vRr4dfCqMkzcFeiWwLD7f6WRr+EuWLjlc4sr1kgRZ/cOjLFtmGOTMty7LaQMDGAMDGIOlGRpxMso/FuhiCoVvIMH8V5/XYowr7+B+8Yby31hUikyb72T3H1vI/e2+7B37172WLHn0XruORqPPUb98SfwXnllY09e07plRM+6JWJNOoOeScsKJKl0Tz8lfTDafhcrVOK6HJCL7kbXk6kdDbJS1bKk5HqfqOL7EASb/TL60DKZvmpp/ZXUSt1qasWirFbWEVKy3XSVOJb+XQuHYP6gFPPnD8n98tHEc2EVdAsGdkshZUBWhmtXiKO0E8yzR6vI0r9iSUWUpFJKLDoChIzkiIkbLcKFMlG5KgWUpkxtipteUqY5SDxjgm5ERxLVgabL1BXdTCI2kr5hoemWLL2rW2BYoFtyQaxbaMYmms0KIT00onZERCDFuHaKSU90hOj4boSgCdDpCCCaoYOpoxk6mi3LDmu2iWYb6LaF5ljojiVF3kwKI5tGz6bR8xmMXAa9kCPO2FQNl8VgkUpQYdGvsOgtdjdXthWvwoK7QNkr0wgaF/Sy81Ye27ARCCIREYu4swkhxzrtOVQGS7co2AUKToGCXSBv5+V+suXNAnmjQF4vkDVzZPQsGS1LWsti4xBHgiiMiYKYOBREUdzZj8JkLtniMCYK+sfkJgi8kMCNCLyezY2IV4gwFiJO0maaCNGAuIkQzUQMkb4rJK3o6UsBLELTk5YIQQgiQsQBcRyuGsm51ciWBiiMjFIcHZftyBiF0TEKw6NQcJj2ZjndOM2BwQNM5CY2+3S3zNpAoVBcOSjBZQt8qLa+9l85+vO/umxcM6Q/i+l0vVrMVOLdkuodjzCdGN0WxJGN2xrFrWZpLRi4Uz7BfHOFZwVrxw5S11+fbAdIHTiAOTCw0S9XodgyCCEIZ2ZpPfcc9ccepfHIo4QzM33HWDt3krvvPrJvu4/sW9+Knskse5xwbg73pZfkQrFdgjQpfS38nlKmvk/cnl9StrRdynRp+dsNreBiml3xJZOWQk0qJSNqnBSa46A77eibJALHceR+O0LHSeZsp3/fstEMXUYYBIF8ne3+eezHrreiiLJSlamLeh/sJPKo/TrbrznldKOVLAtMeUdbM4xu3zTkIt8w+vr98waabkjT1xVK0a9Uhn5FhIDG3BJR5SBi/jDMH5PRFVgIYSPo2YSF0LOQm0TktiPS44j0KMIZRtiDCCPXTX1JojQIYpaZhPb1u+LKiumsWxohxQxNoOmJqCGiJMXEI/aaiFaduFlHBO7Z00zCxEBUi0AXxI0a9KaZRGESRdJFz+U6lY26VY5ka46NSeE0lTqr94sQglbYWiaULNt6BJSyV6YVniPqYBUMzaDklBhIDTCYGlzWH0wNMpAa6PRLTglTN4mCmMCXokTgR4ReLEULPyb0ou6cFxL4Eb4r266gERIFAhHREUbiHgGkLYasxS9uPZBRQS5CNBBxE5JWxA2EaKLRBCH346jJhp6YpmGn0tiZDE46g51OY6eTfiaDnc4k++nOvpOM2ZmMjPrxPHy3ReC6BG4Lv7f1esfk/tJjNU2jMDJKYWSM4sgoxdExCiNj5IdHCHIGM8EcZ+pnON04zem63M40znC6fppm2L0+/eV7fpn3XfW+jXuv1shWWRsoFIorByW4bIEPVffRv2Lmf/ksoS9LZ0auWHpttjYMA6KVf9CanOwIK+nrryd14ABGqXRR561QXGkIIfBef4PGY49Sf+RRms8+2xcJoVkWmbfcQfa+t5F7+9uw9+3b0EgvIYSsDtMjwMSNBlHffnPZfNxqEbeaiJab9FuIpI1brVU/Jy43NMfpr0zWV7GsP1pES6X7BSHHScQje2sYmoY+NGYRlTNEs3PEC2Wicp2o2iKuB0Qtjci1iIM0sUh3RRQcBBawtfxShIiXV0tJqqR09jWBZupg6En0hgamgW4ZYJnotomWRGvoKSupPuSgZ1Jy3NDRTE2m21lJ39DRLB3NTDYriQgxk/mkj6Gt6X9XxDHR4iLh9DTB9DThzAzh9AzhzDRBuz89TVQu9/2cMTjYFVLawsr27r6xwjVHGIfMteaYa81RdssriiZLx/z4woyODc2g6BQpOSVKdolBY5gSwxTiAfJRkXSYxw4ypEQaSzjYwsaILaIwJgy6kSFhECVtO1Kk22+3m4GmgWHqGJaObuoYpoZhyH3D1NEN0LUA8BC0U21cRCyNaeOoRRy5RKFLFDQJA5fIbxF4DfxWTf4Nn8fJpPMFssUSmdIAmUIRO53GtGwM28a0LAzLxrRsTLvdt5K5nnnbRjMMIkMQ6QLdNjFsW3oP003zikUso4UExMhIohgpSLXnYiF/L0ujipYuCZbNryAeNYOmFFIapzvCypn6Gc40zhDEK0cSWoFG1jXJtgxGwyIjYZ577/9x3nffR9b+vm4QW2VtoFAorhyU4LIFP1TbOepReYFoYYFwYYGovEhUTvoLZaJymbCc9BcW5J3wBCWuKBTrQ1Rv0Pzud6g/8giNRx4lOH26b96cmOhGv9x1F3o2C7q+pdPthBAQBB3xpSPGuC5xsy3UtLr+JZ6M2unbD/wV5v2elB05RxR1IkM0y1q9f7Z9x+lPq+kp/66nz78yxiXFb0JzDprzxOV5ovmKTKGpNIlqAVEjJnYNIt8hinLEokRMcZ2evKdMbDuNJfQQgScjMuLe1BZpJEocLhlrm4OuPNZJg1kirOi5DOboMObICNboKObICObSdmRk6//+zoPY9wlnZhG+jzUxvuy1NYMm081pZpozzDRnmG5OM92Y7vRnmjPMu/OdhfD5YOkWA84AxVSRkl1iwBhigGEKYoBcIp44QQbTd9A9C1oGQVPgNQJa9QC3HhBfAr8Zw9KxbAPLMTAdA8vWsVIGlt3e752TfbmvY1qGFEsMrSOkGGYinpgami4I3AZeo4pbr9CqVWgulmlUFmlWFqmW52lWF/GbTfxGQ3qLXOTlr552MHNp9FwaI5dCy6XQsw5kHbSsg5a1EVkLkbGIE5EjFCGxiPEjHy/y5BYmbSz7fuTjRm5f2z4uFKtH9mkCrFDHDjTsUMcO9GRfX2Ffww6kUZNnx7hWjG9HeFaMa8f4VoxnRbh2jGfJ/bUWf9JjyCRiSs61GIuKDAVZcq6F0wCt7iHc5ULMu/7Jz3LLe37kgn4X68lWXRsoFIrLFyW4XCEfqrHvE5XL6KkURnG9LtgVCkUbIQT+kaM0Hn2E+qOP0fzud1cvo6vrSQrJGlpTpprIu/wmei6Hkc+jF/IY+UKnNYoF9Hweo9BtjXxelik3Nq7yhCIhjqBVhua8TOlpznfEFFErEy26hLWQqA5Ryyb00kThABEjRGIYoeXW/lwiQgRVCOoIv0bsVolbi8T1MsKtIPyGTGfplJj1+z1B4jWmW1kWelvc6hg8t82eLXTLXmHOSkyhbTQnJUs8jy4RUlao+rWV8SOfelDHj3zCOOwsjKM4IhIRURz17ydjkYgI47BvrBE0OgJKW1CZac5QC2prOhdTMxlKDzFkDzOojTCgDVMQJfKiRCbKk4oy2EEaI7DRPAtcncCN8RohXjPAa4Qreoms6bltnVTOIp2zSeUsUllLCh5WInBYuuybemfMtAx0E3zNwxUtmqJBU9SpxzXqcY1aVEWYEZZt4lg2juHgGA6WYXX7urXiuG3Y4EX4i1Wq87MsLExTWZihWp6jUSnTqlTxa3WiegvR9C4ocyfSBZ4V4ZsCPxEWfDPu9L0l+74Z03IiXDviogr+CDBiMCMdM9IwQx0rac1Ik/1Ixwq1zrwcbx+fiCqhgR1oUkgJN85YXSAIbAhsgZ+0gSNbQzcp+ikyLQOrHiIaa/tdpLI58sMj5IeGyQ+Pcs3d9zF54MYNew1r5UpaGygUiq2BElzUh6pCobgA4laL5lNPUX/0MRqPPop/9OimnYuey3WFmXweLZtBTyXeLOkUeirdafV0Sprntk10O2OylT+TRs9k5AJ7K0frRBFxvS6r1VSrRNUaUa1KXKvLKjbt/XrihSOSMirIVBECF0IPQlf2Iz/pexB5iCAATMACLYWwBhDmMFiDYA+BM4jmDKLZaxO5RdAkbi0ivArCrSK8CrHb7lelmOJVEX6Ds65YNE3+zvM5jJwU3YxcDj2f7x/L59BzyVg+j55LxvJ5+fu9zIW6KI466TU1v0YjaFAP6jSDJvWgTj2o0/AbNMIGDV/ONYLGsuNWS3tYVwQMaENsN3Yxpm9nSIxRiobIhkUcP4vhOoiWQVCPcesBgXdxaX+6oSXiiUUqZyet1TNmkc7anbFUziI2Qmp+jZpfo+7Xqfk1Kn6FilfpeMBUvAqVxGS36lVl61cvKDIHAWlfJ9syybXMpDW6+66BE6z9b1Qg8OyYlh3RciJaToyb9F0nwnMEoQ2RpRE6GpGtoZkGuqZjaia6rmNoct/QDNnXu/32nK7pGLqBjhRC7EDD8sDwwfQFhi8wvBjDE+hehO7FSRuBG6F5IZofX3SEzWqYtoOTzeKkM7LN9Gx9+xkE4NaqtOo13HqNVk223X713JWGVsCwLAptMWVolPzwMPmhkWRshPzwMHZqa0a4qbWBQqFYb5Tgoj5UFQrFOhDV63KBHielZuNIVmmJk/LBcbysJWqXDk7Gg1B6tNSqxG2xoCrL3i4bq9UQF3AhfF7ouqxq1Ltls0mbQVs6lsmgZ7p9zbYRYQBhKF9nEMr9Tj9MyiaHK+9HkUxRqte64km1RlSvEVdrxPX62l+LmUazsz1brttamf799jHWcoPk1RChj2gtELfKS9oFhF+FqCHLLmfSGNmsfJ+SKkOdLdftG9kV5rO5K7ZMuBCCZtjseJcsuAsseouU3fLKY16Zqlc9Z2Wb88HUTSzdkotrXS6wexfipm52Ft5OlMaOUthhGifMYEUprNAhFWQpxINkgwK2l0F3LeKmjt+QlXHOCw2ctImTMXEyFqmsbJ2shZMxSWUsnGzSZky0VIxntGiZNeqiRi3oCie9/XpQ7worPf2LFZ7SZpqSU6LoFCnaBUoiTzFKYzYiokqDuNKEmode9THqAWY9Ql+DTuOZEc1UhOvEBBkdkTbRsg5mLoNdyJEqFsgWSuRKgxTTpb7qRXk739lSRgpN06RZeuDL9CK31W1bTfzW8tZrNQmS1m81cRsN3HoNr1EnXgc/LMOyZNnlVLsEc7e1U2ksx8FKpZfMOasIKRkMc32rcUVhgFuvJyJMFbdep1Wv4ibiTBzHibAyTGF4lPzQMOlCcUuL9WdDrQ0UCsV6owQX9aGqUCguU4TvE9WkIBPXpCgR16rSi8VtScPdlotwW8QtV461XGK3d8zteLh0Ws/b7Jd2bnRTiiNOAT1bwMjk0dM5dCeHliqg2XmwimAVwMiDdhHGuHqIZkRoNugp0DMaelbHyJnoeQuz5KDnnb4KTbrTk55zmUeSXAjtCjrz7rwsLeyWWXAX+reWLDm84C5clAFse3Gds3NkzAw5O0fWypKzZJu1smTNHFktS5osaZHFIYUdp7BFCiu2MSKL0IvxW5FMzWmF+M1Qti3Zes1u/0J1Hjttks5bZAo2mbxNumCTKdik8919K6vhmU1aep1qUO2LLln0FjtRJ+39drSJG7kXdlI9aGjkrBw5W24lp0TRlgJKIc5QCFOkA4uUr2O5AsONEM2AuOHi1Ws0q1Va1QrNakVGkZ3r+TSd7OAghaERCiOj5IdHKAyPUhgZITc0THqgBI78381aWXStKzSGvi8X/okYILf+ft98o94RTtZybmvFME1SuTxONkcqlyeVzSZtrjOezuVwcjlS2RxONoeTznTEE/1N+PmwlVFrA4VCsd5sgdIMCoVC8eZGCAExIAQiliV226V2u23cv985zoC4BHYRY1BglERfpPqKNxm1ZZ2+rojjpDSzK8tcJ8a4wvOkaON5iTDT6oo3rotoNYndVqdKEmGAZjqyTLJpg2mhmRaaYYImq8Romiar1XSfHa2T+iP+n/bOPE6Pos7/n6rufq65k0Ag3JBwEwgQblbkCuCiQLgUlGsRWDlCdBEQuURXDl3dBYlrVERBWQV1FUEQ3R8CHoCEcJ/hJgm5ZuY5u7vq+/ujqqu7n3lm5pnJJHky1DuvTlVX9/Od6u56+un69Le+BYCB8QzAC4DTCXK6QLxrZDFRokN0CDzHwAsuTxyQ7wAAfIhJREFUeFsGvD0P3uaBFzzwvKvSgqvLXFWW99TsOR9iJEmUgpLxhIiWXr/XeKA0ElZqYnjhjhGDIz240kO7VILIBHciup0edLnd6GBd6OCdKLB2FFg78qyALCWEEulB1ghBv0DoSwQ1gdAXasphP873+QJ95ntR00vvap0Xx+PI5N3YC0WnjUQUte4hYL6J77K4vAhvl5aYALpL3lH5FdUVo6+Tnn2oK9ulPDs85d3Rnmk368l8m1tApgqw/gBUrCLsLaK4cgWKi5ejuGI5yr2rUO5bimr/ayCS6B3hWcvk82jrmYjOSRvoZcOUsNI+YSKcxCxhgV9DccVy9C9bhg8WvY7ik8vRv/wDlFatQrWUFFSKCP3VFIYZQyaXU1Mk66mVM7m8nkp5YJrNF+Dl88i3dRjxJNfeDjfT2kMvLRaLxbJusYKLxWJZLzGCQ51AkSqrFy9kYp9kmSBQKEFhlKoFg5Y1KictnGi7hEReCSrm7xOBtMCi1tf12WwWBqCglwbktAdI98gt0yD5oasjwTMCTgHg7Rk4nXnw7k6Vtnvg7R6c9gx4mwenzQXzPrxvkoUUKvZGVQ3N6a31os/vSw0ridb7/X4Uq0WUazWUqxXUqgEc6cLVwkgkkKgloxcPrmhDu+xBt9wO24osXOkhSznk0YYs5eBRDp5Qn2ehA4QcEM11VCWAol4AXy+jw/E43IyaMceNZsbJcHjZWDjJFFxk8w68aMk5cPMMmZwDN8fh5hm4yyBIqKl2Sc1CUwpLWFJagrcjEaW0BIuXLlaiSnkJemvNyxWdmU4zdXMkosRDduJ8cnu71246/6HvK/FixTIUVyxH8d0ovwh9y5fj3ZXLUVq5YkTeHtm2NhQ6u5Dv6EK+swuFri6zXujsRL5Tl+vU9eLhLWEQqPos/wDF5cvw3ssvon/5Mr2uyiv9fc1fSACMc+VN0t6BfHsHcu3tZj2Zz7cpD5NMvoCsFlC8bG7cDc2zWCwWS+thBReL5UMKESmRIBINgro0EhIGKxeRgKFtiaS4kBYYSIsMELEQEYshUu0rkjYbeXiQinOiBZL1R6RYDRgAzpSHRTLlHHAYGGcDtzM2cPrORueq0WhSijZJQKjphBGGerpgAQihpwAm1UmLAtESA4FHFU7kAQYBIFQpUylDCECAMQIcgDlcz9LkAK4L5rnKG0ZPC8272uD09ID3dMPpzChxpd0Dy7nqHHzIEEKiVK5gef8KLO9fiVXFPqwq9aG/VER/pYRypYJypYZq1YdfUwFYhS+VMCKUQOJpkUSJJ91w5QbolhlM0mUOrX1xKpoFx/U4nIyaNtjx1Cw5bobDzTjxdo9DugKCBwi5j5AHanF8BLwGn1fhsypqvIoqlVFmJVSgZtCpyArKQRmVsIJKWEE5VPlABJBQYqrslaDeNXOTybt5TC5MxuS2yZhcmIyN2jYy6QbZSegQOeSEB+H7CCoV+LUK/EoFQbWKoF/l/VoVfuVN9FUrWF6tqhgk1Yrav1qFXy6hWmouxhFjHG09PeiYMAntEyaifeJEtPdMRMeEiSh09xjxJN/RmfJGAZRHSqWvF5W+PpT7elHuXYVlb79phhWV+3pRWrkC/cuXody7qqn6uNmsCqw6YaIJsNrW1YNcRwfy7Z0pISWTz1vvknFANRBgDMi6H15R3GKxjF+s4GKxrKeQIMhqCFkJQRWVykqg0xCyInR5siyErApQoDw1xiWRCGHECDQQKWC2q304mMvAXA64HMwszOTRoCwuVzbiv6v/JtN/g9X9PZaoJ2tQn2Q6FvglPZXxMqCkpzMeat0fZgpbrpckXgFomwS0baCXSUBhIpCfABQmAPkeIL+RSqN1Nzs2xzcGkCTIaBFK4IvyUgt9IiCIUKolkAh1mixTKUGEAiIkhEF6mwwlhNB2hSoLQoEgCBCEIcJQIAwFpJB6HwIJAJKBSQYmOdiAkw8AOQA5OJiEDgAdY3huHI/B1cKHkxA93MhDJBJDIk+RjEpdL/IccfS+XO+v8o7HUKYyyiiiJFVg1z6/zywf+H3oq/UZz5u+xHrRL0LWWuce5jAHjDHknFxKTJncNhkbFTbC5LbJ2DC3ATqCLGRfBaUVy5V3x+sfoH/5cvQv/xteWLEcT6xYoQTPMcLNZNGhBRQlpkxSYspEtd4xYRIK3d3gXHV0iQiV/j4UVyw3QsnSRa+hrEWVSn+vzvei3NuLoDayuDGul0H7RC2k6ECralHr7RMnIdfW/qEWUYQk+KGEH0rUQoFaKFELJfxAwK+VIMu9EJVeiNBHKCRCSRBCQAhCICWELguEgJCAECLeT0qdlwgFgbgLllFBw3m2HTxXQC6TRc5zkPO4Th3kdZrzuMlndZ4xhmI1RH81QJ9O+6shirU4318N0VcN9H4h+mtxebEawhcSN8yejhNnbrauT7/FYrGMOVZwsXxoiLwwSBAgJKg+H3lt6PUob8pCSuVT2wSpoSYiuc9AO6oeQOxKgLo08UY1cuJIlgkywgmt5rShKRjSooJXl0Yig5cQGRyWFhX4IGIGV14XTIsQqTKHDe6p4fBBypP7c/33lJgChvH/oE4E1Pq0QLI8To1osnygmBKUR/53uKcFlKSIsoESUZLr0T6ZtrE/1mEIA4FKf4BKv49KUaf9Pvp7K+jvK6PUW0WlGMAvCyNagACSySUa3rXWqz8EsaI11IAHCQHhBJCuAFwJ5hG4x+LhMTkXuWwWhXwObYU82vIF5HKZ2FskEkU8DichkMQph+PypoQ/IkIxKGJVdRVW1laa2YRMWl6FlSv0em0lVlVV8NdRTSecIMMz6Mx2os1rQ8EtIO/mzVLw6taj7V7dul4yTsZM+2sWcDDGzFTBUZ4j3gcAwloNlWIfSqtWKiFl2TL0L16G/uXLUFz+Vzy/fBn+vnJ504FkM/m8Cqqay6u4Ijk9a40OtqrWCzrNm/0z2byOO5JHW/cEZNva4iFGQYDSyuXoX6His7z74vNqqNGK5SiujNIVEMHIZivijttgOFEnCnrYUVvPBCOs5Ds6x809WkhCsaaEhWI1RFGLCKWaiPPVKirlKmq1CqrVCmpV5bHkBEVkwyIyYRE5UUROFpGXJRRkEe1URgeroANldLISOlBBDyujE2V4bAx/9wehRh7KyKKEHCqURRlZlCmHfmSxROfLiMt9uOAgOJBgOuVMgkPCgUQBhHZIbBJtg0zsL+EwAnclCu+dCuCkNX58FovFsraxgotlnaKGtajhKjKQIF95X6glkY/KfVU+YN+GeREPg9HCx3iEZRwd3NMFy7smb5ZC3bacO0BQgcPGzUPwekdQASorgcoqlSaFk0biSXk5IEYRv8LJAIVJsUAS5QsT0+uRqJLrGiTi7uAQ6SFjOpWSIEPlqSHC2KNDrcuEl0fsOeIHAWpBDVXfR82voVKrodRXRbnPR60UIigSRAVAxQELRvoTNvJ7gGAhiBHAJAQXECxAwAIIHkLwAIKFkDxEyMKBZTxM5ANIFkJwAcnUIlgIySQkD+E4HLlMDoVsHm3ZAtqyBbRn29Gea0NHrh2d+Q505TvRle9Ed6ELkzomoCvfCT5GMSgCGaDkl1AMimrpL6IUqPUoYG5yvegX0R/0q1lytMgSynBUf7vgFtCZ7UxN5xtN6duZjdejQLBmn2wnss7Ye0mpYTJ9qPSvVNPg9vehklz6+lDRU+RW+vtQ7etDGDT3nWScK8+SaMjMJO3pMUF7ekzaAIXOrlRsESKCFCGCWg1hrYbA12mthtCP01qphNKKFQj8GvxKBaVVK2JBZcXyEcVHyXd2ob1nAtq6e7SI0hnHbTHCSicKXd3I5Atr7fcjFBKVQKDiC5VG+cR62ReoJvfRaS2IvTyEvj+FUgIiQDbsQ06UkBX9yIVF5KUSQvKyhLwsoiCLKMgSCrIELn1wGcAlHxmE8BAigwAbsRCbI0AGoV4COGwE9xwGoIkRNRIMZRQQMk+P3NTnnjGoeaYQ37sZM4M7B5Qxpo5DVOCJKjiUmJNlAbII0IPiwOGpaxC58SfW3h+zWCyWtYgVXD5kGC+PZFyOpDCh0wGxM4SK2RDn61MZe4/IurggA4SUtJiyTtFDQYznhMnrVL/dZW5cZgSKButwWDy8JNrHjT0x1ENP4u/rhyXWoAyJxKw6HCznpAQV5tigf6sDEaW8iYwDEgGE5Da9b5SP9ieoeCeVVZCVXlB5FajSB6r2gSq9kJV+tV4rgqr9aqmVIKtFUK0EEiEIHERcv/tzIclpkG4ESZtCwoGAC8nzkF4HpNsO6bRDum2QTh6CF0BODpLnIHkWkmUgWUa9TxQEWSXIUjykxQyhkQQhCCSWQIr3IRPCiTlHMl4nHfg3FlnW9JXiADIA0l8hwUJU3SIqXhEVrx8Vr4SK14+aVwbyIVhews0DIQ8QkA+ffPhUQ4AAgfRRoypqsgrBBIhJLYZISCaBJjpLSQ+Jei+KTrPeYTwuOrwOdOVUoNNo6cp2Ie/mR31mhBQm8G0yAG7RV/n+IJ5ZKFmWFFKamVGoGfJuHj3ZHnTnutNpths9uYFpV6YLnuMNb3iUiDBApb8/FkqMcNKbLovSYh/CUU6L7rgu8l3daQFl4gboSAyhKXR3gzGOarFfeb/oILJLFr2G1578m4l1EtSqKUFlrKYxdjxPDS2KhhhNULFakmVtPRNSwW5HhAghyysRlJYj6F+u0moZNT9AEPg6DeAHAcIgQBDqoXRBgDAMIcIAoVCpFCGECCHDEEIKSCHMPZhDQskLBBVBSt2EoihSORDyIB3SSu2bQYgOlNGhvUU6WRmdKCHHRubRAwD6j4/89PAMJM9AZNrV/TvbCcp2AtlOINcFlusEz3fBKXTDyXfByXeB5bv1drUfz7SjfayD/RIBYU15Q/oltQQlwC8n8npd58kvQdRKQOjDcR0wxgHmAIwD3KnLs4bbQjDUBFATgLfBjDEdCmmxWCytghVcWgyKxIqaAPkC0tdihVkXysvDF5A1oYSLmiqT9Z4dOk7HADGlVR09HKY8LjwO5jkqzTjgUVnGSW/PJPfj4InPpLa5aUHFpLw1hp+ot5eJeBGJ2A2NOsUyJMheH7SiZmJOJONNkBwiL3RQWz30hnM11IcxNUyH6VgjcZrYrvcHg0qRaEqJYU8DYrEajSI9jCrquJuYFiYliOgcmHgXMi6PPCVE7D0Rn7v4fFGqLBmfQwmHyc+NPS6ACXpZl4R6GcWQojFGeXNozw4ulLcHE5BceXmY7VyVE5dqGJorQTktnLQBmTYHuXYXbZ1ZtHfm0dnRgc5sFzozm6U8HwruyN66CykQyAC+9BGIAIEM4lQvHvfMMJWCW0DOzZkhJasDEaEclOP4JfVxS6J8ojwpopSC0mrXISLv5tHutaPNa1NpRqXtXjvaM4lyrw0dmY6UgNKd7UbOzY1ZXeoJg0B5mxT7E6kWU6KyfhW8NRJR/Mro2j53XOQ7O5HvSC4dqfVccltnJ7xsDtAxUPqXL1NDd5Yvw5LXX8WrT/wNxeXL1CxBy5c37RFTD2McXi4LN5OFl02k2Sy8TJx6uRwKXT0pQaXQPQGULaASSJR9NfSl7Ico+gIf+CFKJYHyijIqtZWoVcvwqxVwvxdOdRU8vxdZfxUyQS9yYR/yYS8Koh/tshftsogO6kMnFdHJyuAAsnoZU9ZwPNXAbUfgdSDwOiEyHQi9DohMp1ko2wmZ6UAml0cuV0A2l0Mul4OXyat4VI4HOFmdzwBOBj489IcM/YGDfh/or4Xo0zFLQiERCAlfkMkHglTaJxGs1HkhEYoQvliGQHxg9hWS9ER42qOwQaoW/VtryqJ1gsM5ChkVoyUfpVE+04aC16nzurwtzhcyLvIZNeSuPxm7RcdriWK0mDgutXRZXzWEn4gld33PBjhpqzV7jS0Wi2VdYAWXFqD2Vh+W3/68Elb8tejxoeN2pIaXeNx4dcTChIqd0agsHVcjEZTUYVooicSPhAAyQFThYK6j7KxlpKS6YJfJAJg68GVACEOJ0BcqUGag8qEvEQZCBcVM5ENfQiTyYaDWRSDrhAEywoBlPKHGpzMWLZFoBS1wqe8Kc7hOHXCuPak4A3cYuMPhOFFerUd5YhKCCQiECFmAECEC+GapUQ01WUGVqqjKCiqyjIoooyxLKIUlhAghuYCEhOQCBAHJJSQGengQIwBSvTtm6g0yMQkCgRgh62aRc7PIuTnkvBzybg45N4d8Jq/yXg75TA65TBZtXh45N2eEipzTibyXR87JpTxEctqGx0fv9UBEqIoqykFZzUYjKmBQsTcYY3CYo2Jw8DhGRxSfw2EOXO7Cczw4GQcMDA5XaSADVMMqaqKGPr8PvvDNek3UUvnB1ktBaUAQ2H6/HyGNbjhOkpyTQ0emAx2ZDrRn2tXwG6/T5DsyHejw4u2RiBIJKG1eG1y+5h8LiAh+pRIP10kIKMr7pE5QKfah2t8/4gCtEYxxNcONFkcKesadekEl19Fhtnk5NfuNlALVYlF5wGghp9zXi94PlmLxa6/EAo/2kCn3roQIm7uWha5utE+YiExXDyjfhVq2E31OG/pYHoJ7ENxFyD1I7iHkLgR3IYiByRpyYb+J/5EVReRECXnRj6xYhkKlCCqVEC71URQ1LJU+HFmDIwMzXCRaOpkaApOFj6weDsNHMgwmdaLjbB8VsJLa0Yt21FgWjDsqQCt3wEzqgDkuHMc1qeO4cFy1uI4Lx/XAHAeMOWCcgzP9rMEYJKklGjEsorwkhMQhtLgQEoOQQAgHgdeOwO1EmOlE6LUj8FReem1gjgvOmA41pl48OJyZskjANQFilw8MCttXrSbKAlTXtRfvekJ71kVon4UsFss4xQouLQDjDLI40KWVZbS3RtZR3htZx5TxyIsjG+WdOg+QpIjiqGEtScGjReN2SCER1IRZIsEi9EVK6BCBQBAJG75MiR/xvlokGSCoKAFFagGkJWFQHWye6GzzuAPOeLw+IO9Enis8kU98lgGI3oJFQ0KioSKpNPKQAUBKHIIe906SzHjwRk0oLqvbp25f7jA40fG5kcjAwV1d7jJwJuGQD041cFmFIyvgsgxHVMBFETwsggf9eukD93vB/D6VZxIcoQrSx0JwCDBTJsCZMGWxzw6BOR6Q6wYr9AD5biDfDZbvAQo9JkV+gt4+AWibAJbrBvPcYb9TvvDR5/eht9ZrFrPu98bDPgKVJoeKlPzSmHTMXe6iK9M1ID5G5B3SmelEu9eOgldAwS00THNODg4f+StnIkIoQyNC+MJHTdRQCSvorfWmymqyhlpYQzksoxSUzFS+yfVyWDblpaBk1qllXfkGx2Vu6pqYeCV18U0i8aQzkxBTvI41OjRnMEhK1MplVIrKo6SaiG2iBJV+M1Qn3t4PKUbXjhnjalrgjk7k2zvMVMEp8SQSVLSoks0XVIyTchm1UlGllRJq5TL8cgn9K5Zj+TtvoVosJrxjeo3nTMMp1IeuJNr00KK2CZPgtHfDz3Wi7LZhJQpYHGaxrBagv3clqn3L0N7fh+7+Zehmb6AbRWzESuhEaUDg1CgdVeDUJuOD1FNz2lBzO1HLdMH3uhBkuhFkuhFmuxFmuxBmeyCy3RDZbsiczue64WjxAgCqoTDeNKWaiqdSqoUo+3Fa9kOUfIFyLUS5T6DkhyjXBMqBgFhjv9MCwEq9rFnaMg46ch46ci7acy5yrgPP5fA4g+fwujyDyzkyLofnxHm3bl8jBnGYc63EoVggisQjzqP1hKAEIJQUx7xJxL8p+yEqvkQlCE0MnHhbOjaOkIROfWxq8dCejfMdORediXxHg32dsZqRz2KxWFoQRjTSJ4nxQ19fH7q6utDb24vOzs51Vg/pC4TLq+AJgYU1OTPEmoJ0B1uGVBfkUurgl3GwSzXsIz3kQ4Rp4WToJURYU/uLdTlVMQNcl8PRM3M4Js/g6Jk8ohk8nEQ+nuGjbnaPRN7NOHBcnvBYUCJIJDZEgoij48Lw8fLwIULAL+qx38U4X9NpdZUKFhullZU6vzIuH80MOwamgr+aaYmjKYqTUxX31JVNUDPuNBBOQhmiElZUp1938qMl8lyIhJO+WpxPiiqVsLIax6PgjKPdUx3tyEuhw4u9FpKd9s5s5wBxJe/mBxWGQhmiFJSMsFEJK6gEFVRFNT7eoJI6drNf3RJ5eEQCSpSuTTEk8qgBAEkSkiSICIIECKRiQ0Cabc2Q4Rlk3SyyjlpyTk55+zg5UxZtT27LOBlz3ZLiVrQ+1HVZW4gwQKUv9too98fTAVf6etPeHH29qBb7Rx1fxM1ktWDSEQ/Rae9AvqMDufZO5Nrb4WaycDMeuOOCOxxEhKBWQ1CpwK9UUC2XUCqVUC2VUSuX4JdL8Ctl+OUy/EoJQaWMsFoZuWhSB8vmwfPt4Pk2ONk8uB7G42YzcD01NXbG4wATELV+iMpKoLICbq0XXehHNyuiB0V0sSK6UVrt2WYkOHy3HTW3A77Thpqj8iptR9Vpg+BZhDwDwTIIWAYBc1FDBjVyUZEeSsJBUbgohRz9wkVfwNEfOugLGHoDB30Bx1hOhjcWZBwlQnguh+dwZBwO19FChMORSeRdh+n9lUjhqEnK1NAaSYMOuRFy8CE5RIT2ehEh66IzP1BM6Mx56Mx5aM9ZQWF9olX6BhaLZfxgPVxaAJ5xkNk4nlI1iukhBnhnUGK4S2LoS5guD30JEWovj0CaYTAiSHt8pLeL1H5rJq5F83DO4GbVQ6yTcYxoYUSPQcqcpOiRFEQGCCkMjuvoVG3jvPU8ftY6UgC1fiWM1Pq1MNIf52v9er2YFlIiAcUvqe1RPhzdEICBaOEkH3mc9AC57sR6IyFlAijXhbKsGa+R+sCiKv8uih+8NKSAEIkrgRxFcMWGR8OMENKV7YpFkYT3Qr2IEokrHZmOVMdckkQlrKDox7PKFIOi8f5YWl6KRb2LzHopKKW8Q+rXxyp4arNkeAZZJ4uMk04jwSLjZFBwC2ba36G8bur3GU2MlXpRJlqXkPC4h6yTHZO4LWsSkhJ+tWoECOPRUdL5cgm1Up03hxZZRhvzxMvlU3FOcu0dyruk0A7X8yAZRygBPwzh+wFqtRqqpTKqxX5Uy2X091UQLl0JWatA+lUgqALh2HzfknBO4A7gcJV3OMAdgssJniOQd0IUXB9tjo8Op4YOt4Iup4IC85GHnx5uE+hlKIbwKgl5DlW3ExW3C32sHSuoHR8EBSwN81hFBfTKPFbKPFbJPPqpgD60oZ/y6EMbyshirU4hUwdngMs5HM7gcgZHe2K42vPCdZjZlvMcFDIO2jIuClkXBc9BIRutqzSfSa8XMvozWZXPeQ5c+xttsVgslvUQK7i0AEsW9eHe7zythBMtpLQiyWEe6ZRr7wwlXkTlXtaJl5wDN5Ne97KuymeSZWpx3Nbu0KxzRKhmCggqegaBcjrvl3VZNMNAJZEvx4JJrS8hpBRX05tkCLgLZNqBTDso24Zapg3VTB7VbDuCTAeCbDv8bBt8rwA/U0CQySNwc/DdDHw3C5878GUcyNSXPnzhw5c+KkFFiSbLX0oNw+nz+1AKSk17LYzocBiPZ6OJZqfxCsaTpCvbZcSUZD45PAQAykFZCSS6ztESTc/7QfmDgdPxJrZHYsma8BhxuTtw5p3BFq9xeeTdkRJSEnmPey0nXnDGTZ08rN0hOkSEUE/pWyuXEVRV6lcrymujEqVlVEuRmBIPjalVykpUqZRXz6ODc3iFdjj5drBCO1i2HdLLQrpZSM5BUoLJGpioAaEPGVYha1UU/SqKy5cAi98BhYGZ8W51YSBkeIgMF8g4QqWJxeMCWR4i64TIcqHTEBlHl/MQWUfAZXKkM50PigSHz7IIeNakAcsicPKoZbrhe12ouJ0o8Q6skB14P8jjrUoWi4oZvFPLYxXaUdOzbo2GaKiJ18CjI/L4SAZCLejAp5H4oba5ZlsusU/yc9FQFiWexALLuPHCtFgsFotlDWMFlxah0j/4azLOWcI7I85zl8feG27sqRENeVH5ODVDYQZsS5cbLxA3jqvB7Jul0RP66ekVIw+QWqOhNgnvkKg85T2iRRExuhkuCHreGsYQMCAEQ8AYQgYEYAg9T5VzD0GmgDBTQOAVEHo5BF4WoZtD4GYRuhlUuIsqd1DhDFXGUWGECggVkqhCoCJDVGWAivRR1TE6omEmBD2spqaX/jE614PgMjftKVLnNdLmtaVmn8l7sciQc3LIuBm4zAVnHA5zIEka0ccERQ1rsWiiY7AsKS9JCSpGPNHrYymURMcYBT81XiHa8yPp/dFw3W1LeYmsi3gg6ytEhLBWM+JHTQ9rMflyCbVKxYgiafFEDY3xq2X45QpoDAVCYhzSzUDqAKwBHBU4FAwhMTBIOEzCIwGXhfBIwKMADoUQtX41zfkyQNLq3vsJeSdE3gnixQ2Qd0LknABZI56ERlBxOIEcFWjV51nUWBZVZFFGFhXKoERtKMoMVsgMqsgigAOpJwmWpCYJ1uGrVZlgZjshzkswSCiBzYeLKmVQhV4ogwqyet1DlbJmWwAHq+Nh0pFzsUVXDht35bFxVw4bdeWwsV6f1J5F1qsbLsNVbA/P4dbTw7JeQ6ReLtYqIWqlUKXlABM3aUfHhDU3y5nFYrGsK2wMlxYYpxn4An0fVIx3iOs5sYCyjmO5fCiQMvYGMd4hlYEeJH45Fk6S3iKDbtfrUgWHDABUGUPVCBRRXi1qncfrZhtHlavtNcYQMpYQTRhC7iBgHCHnCBlX2yMxBUAISi2thMvUbDAZJ4MMzyDjZOBxT5Xp9QzPwHXc1HrGycDlrvKU4Fkzq43neHCYY2aVYWAgUDr2ih4ulAzAWg2rKfFkbcYcSQolJiZLYjre+ml466frjdazTtZ2wkaAFAJ+tYKgWjVpUK3AN2l6m1+tGo8S5YGS9iwZbRyTRhAAcA6KpreCmlZdjWbRgZ2JVHc/+glfC19tDmk8SlxHDcfxXILrKA9I5nDAcSAdF6HjwuceqsxDCVlUmRIrKsiiRhlUEqJGGVlUkEWFsibvw8W6HDKzOnTlvYSIMlBQ2agrh/asfd81GoSQCKoCflV10su9ASr9PqqlANVigGo5gF9WnfigKuDXhA62LyAlVKydnItM3kW2zUW+zUO+M4NCZwZtXVm0dWeRa/PU9rwLx2stD7zhIFLB7YnqAuFTfUB8mBSI94nuI9H+kS1V1mAfQfBrAqVVNZT7fVT7A3UtSgFq5RB+JYRfjSZBUEPdZSgbOuDtsP/GOPjTO6yN0zQkrdI3sFgs4wf7i98CeBkHEzdpX9fVaF2IlEdHUtiIPD2GEkHMUJtGIkossIRhFUXO0c8ZSpyjn3MUOUeRMxSZylc4g88YfDD4XKU1BlWWXDhDLc/gFxh81gaftZttYq10hkfe6YtEj2QaTYvrMhce9+BwNVVuNGWuwxwjinjcg8tdszjMMVPsRtPwMuhohdEMSZAQJCCkUMOEEkOF6vN9fh8CGcAXvtnX5EUwJrP2jIRBY4442YbCSf30u5FoEqU5J2eFklEQzY5TLfarmW90Gs2CUy31o1osmnVfiyl+pYKwVoVcA/FBAAAMYIzAoVLlR6GGxQDQwTgZBDEQGnfmGABI5XsxOggek3C5gMclXCaVSBKlXMJjSjwhziCYg5C7qPEsajyDMsuhyAsosjb0sXas5B1YgU6sYh1YiU70oYCwmccH3WFLkhyukvO4id2xQSYZy0MNd4nieBQyLtqy6jNtWbVPIbF/IePA5cN3jJv5mqn+JKU6hMkyMmVKhjWdUr0l43IUMuvno5WUhNBPzBDoC3UfT7wA4omhw6OJeyaFhF8RqJZVp7zS56O4soZSbw3lPl+JJlFnvRoirEWddBqTWQVHHLKcAY7DTaB8L+Oo654QLkB1ooYRPdICCKL2E/83gIalQxw26UY4hMn1huKKZeu6ChaLxbJGWD+fCiytB9HAOCEpMaSRKDKCchLGQ6RmvD248RipsdhTJPYiUfsUOdMCis57HP1ZjhJXnYpKEw/qYwln3MxmknESXh1auHC4E4sWGPqBlkCph33VCVD/osCfyXwUAFRAQEoteugllCGEFKjICkQgjCCytgWN0eIwxwwDioYHRfFFTHndcCETXLVBrJH1JeZIqxIGAYJqBSIIIMIAoa9SEQQIAx+1mo9qrQa/5qNaraFW8+HXfAR+AN+vwfd9hH6AoFZDrVxEUC5ClIsQ1TKoWgL8CtiYOGgSGIMafMIGiiNqiIoaetKUxwUBRAxqcpfmOqMeE8g4ITwu4XEJh0sT1JVxBuYwEGMg7kByDsEdBMxDyJQXScA8+CyDGsugyrOowVOz0SRTUvmqLqtQBr1oSwknDmcoeA5ymTjORxTXo8dzsUkivkchGesjsZ7zos+5yGe4jg2iYoVkXb5GYn8Q0YdWtBSBNB4FlaLy8qgUfVT6fTNcI/IICWoCYU0gCKS6xwfx7INSUEOvg2HR0w8zPTUx43rWPd1uOWeQQgXzDwMJWkNTPHMOPfMfg+MyuB6D6yqRJJPl8LKq7dW0x4VfFQh8QhgQhCCIwWZjIphJCfzVn2Bu/EJqEB+TApwEuAzgCB9c+HBFFW5YhSMq8IIyvLCITK0INyzBFVU4ogZXVLFy6h4ADlzXR2KxWCxjjhVcxjtEQFhTs8WEVSWKhDUgrOhZIJLliXy9WDKgrF4gKSN6vUIAfAaUGEeZM5OWOUeJKS+SMmcoM46S9iopM7092i/PUClwVHgHqqwTtbXgIRLNQBINV4lidkQd7AEP9NFbz4ToEU01G4kbgpSwISERiAA1UYMkiXKoZoRZn2k0HKh+aFBUFokVqe2JYUOR4JQcUlRfltwv2h55mxS8AjzujYtOF+lpSQNB8IVEKCQCQQiERCAkQknwQ5VGZYEgvZ/K10KJWihQC2ScDyWqgUpVuc6HErVAoBoIBLUahF+DCHzwsAZP+sjIAK7wkSEfnvDhSbW4Qq270ocnanBEAFfU4AofrqiBr4FgxREslSc9c4xyoSKCicnRrDUiQEReWE3AGWkxRHXyiHEQ55CcQ2pvkZC7SgjhHnyWRZVnUGNZlHkOZZ5HmedRRAElnkeVKZGk3uPF5QxZV4kWUZrRac7jyLoqzXkOcjrf5jmY4HJktfiR87jeFtuIPhMJJQXPRS6jYobIkFDu91Hu87FqSRl9yysorqjFQwaKFeN5IAShBnW/7wNLdb7BGNggnXHGVWyyKDaY8hRQ3gJSUsJ7QJdFwxuicu09wIjgQD/IRHoYU+JUJFSpFGBOHPssnrWOwdEz2bkeN8HbM3nXDDsxQd2zela8jJoFLwr47nh8RPcdIuWpIUW0yERerYtQauEkQHFVDSXtAVLRwzX8cmCGaazrGQXN8BUJyNG6WBCBQ4DLEI6swQmqcIMSvKAELyjCC/qR9fvg+UVkgn54QT+8oAJXVOCM4b1GMgehm0fgtSFwC6hlulHLdsPPdMLPdCDw2hC6eTWcjyQYCZ1KABJcCgBqnUtRt4+oyzOo0EhRqr/7TMcZYkzvk9wvWabcRRlpt1F1IsEIev/kEESY/cw2fRdlROAyUAuFYDLU62G8UH1ZoPZLlDvCN0K1OpdAyAHJgdABBFeL5AzCYSCHQXKGWoarvMOR36h7TK6jxWKxtBpWcGkFakVg+StKAAnKsegRLZE4YraV69brPpcSVqoACBJAjcWeID6LPEBiD5HkUtGeJCq2CE95lpjP5RkqBUcLIl0mzkjVPAysOSIPkEgQ4YynvEGi2B2R+BHKEIEMIGiw11gww1WGneYzwsRQADgBLFqgUk7pbR4BeQF4AnAF4AmGAssgTx4K5CFPHvLkIgcPOekgRw6y0kWWHGQEQ0ZyeJKBg4GDq5TUsXKm8xRtV49TnOpSMF3HaJ94Xwb1MMdZVB6VwcRDMftFw4RYUohi0D0svUB3uuq3C4BVAFYFc1ww1wXzXDDPA1wXzPXAPC9VzlxXbfO8eLunPgvuqJg2Q10qqLeYIem3mVKafChJxQUQAqEWLkQolLgRSoRSqu2hEj+EkAil6mwGoYSQqoMUSomAVHydgBgCAnypUrVO8ImpMknw9fYaAb5MLqQDe6pHZQdCBTcltXCoN4guCXCSKgwqCXBIOLrcoRAuhXX5EK5UZR4FyOl1T2/z1qgn02AdsdW/TxDU8JxGcEbGW0Q1aCWKCOaoILJaEKmxDCo8hyrLosTyKLE8iqyAIsujxnMI4UAwFyFzIcHhEMGDRLvL0OYxlbpAm8tRcIA2ztDGGDo4Q5aALDiyRMgHHEzqYK1mqJ1aSCrBR/XduBKOpBpNKatqsh8pBaQUIAqUV44evhR93ZLrnJEZ2pQF4DL1/VeBsxlKAFaFDKFkCCRDKAEhGaQe9iD1VYvWozKP1IODNJ23xDWOxtg06v82uERRq3DA4DFVR48xuCYPuHo9znOzrzuS3xkpIWsCVEscT+LYonUBQBBBEFAEIEgvIJ02KCOCBClhSA8hI8T3PaY7zPGvU6wPgSXyifLofCNxSqNRmRmo60AAyGGp4U7JRQkZBIdCOJDg+rvORQiXAjgyMN4FTugrL4SwAlf6cGQIh0LtJakGt0kwSMYh4EBwB5K5EIzr1IHgHBIuQu6A9D6COWAigOf3IeP3IlvrRa62EpmgqESVsARH1Aa/EzAGVsgDrmuOiRgBGaUsEGUh43Fd5gWIUeVSbjukvv8ug3QYBGcQjhIGQk4IORDwKgJeQcCkKncA4QCCAaFUIdmIAcnZwRGtc7OqpgOnxDrqPjMGSB6LGoIzwOEgxwFznUTeBXMc/dsaL9xxwT0PzHHBvQy464K7Hhw3B+Z2wHE9OF4GjuuBexk4Xgauq1MvG+czObhuBplMHl4mBy+bh+flkPVyamhy4mWJy22Xw2KxfDixd78W4L03/g8/u/9zCJl6oFEpIJhySzcpAKkDpkpdFjKm9wWEwxC40KJKATXWZgQUfyzduIngSIBLwJUAF4Aj1dImgU4JOFLt40kGT3K4ejsXBC4JTEi40eeEtqPtOQl7TsKW+XsScKRI7cMlBlkncKlED5MS4EgGFwwOcTjE1L7EzPZoXyZJLfpplpmHOIzRcIbWGq5DAAaXpMY3HKoj08xErQT1gCs4RxilDodg6q2d4FxtZ0wPAVEP95INvk0wrj+rthF3AMfVAldCHmNKbFNl9esqBREkJIhkXUogqGFlVLc91Zqjtj1mwqmqvcM8uNyDyzy4PAOXeXC4B5epWaA85sFjarunyx3mgoPBiUTGWG5U/7NoXZdE64wD3IFyb+AQoQ8R1iDCGsKwCuH7EKGPUAQIhI9QhAjCAKGoQKIGYn0g7oCYo2b7YS6Ek0Xo5iGcLISTg3BUJ8R1s8g4LrKOiwznyHGGLGfIMiDHGXJcCQnpU0xanFNLSNQwrxZCmBDuGIAMY8hwlWYZkGFAhjNkGNS6zhtRotHtKhKi1nOkFNrlRX8PBmm3vL588F7+mNZv3ZNd1xUAAH2/EVB3HQEJAcHUENeACYRmkQi4QMDjdWKkXxxwcGLxN55Y/P1P5XWO4hcUIICYEsUEk7GHKpNwoMQplxGySk6EZPp+yfSQtegFAtd2WOThpm+VPFbPmFZEGdQ+YAxcrSjPuCjlDIxz7e3FtedXMo0X5nA4jIM7ji5j4MyB46hjVnWKhxKb+7s6GlNGUkJKlZJ+piGQHu6l1xMLiEA+gWrxNpAEoQIpy/BBqEX7aa8akjIWyBJ2EImDUoJJFi8hw9b7zcSmM6avq+ZpsVgsawwruLQAi1a8j6c/aE8JBq5QHX5XxEKDJ2OBIhIhHDlQtFCCQiQ8EHhCIDEihBYZuFlPixb1AkZK8FjHHsxjQ/Kd7dpDOC6k40I4LoTrQnBXz+jhQDgeQh4NR1BvBwMnGprgIOAOQnCEYIk3sdGb1riM9CtTCQ7OHTMFcLtXQLvXhrybgyABXwr4FCKQavGlQEAhalKoMgrhk0RNhggTHXLSLs8MiZlSIrdlxEIU0y7NkZux2lflHVKdH4egp6IluCThkYRLEi4BLgie9upwicziIJ13GANjDsBdcN3BZtwF4w4YV+VGvOAu4KiyaBvjukOthYi4SyAgQVG3QJeRyrF4XxUXR515h7laVFCpwzxkmatFBU9t5zowMcvA0fu5+nMO97RYsG46fNGxEOKHZSCKERQ/MOuNcVl0zSPXfr0fAwN3smBOBtxpRspac4xkkuuASHkbESkPJC16uFDiSZapNMMadOKHQOjz5OiOmwfluaFYc9dcEsGPFn1cYeT9wKLvkep0OpBwmNrGAdXJjHzbmPFxg3YZQvI1PksdQ3THGF7kIOg2x9Q3jFiUV2nU8SUuIYkgOcXlTPuUMBY7M8jEHYkIBK7vS9qjSJdDl5PumCunPG68/CKZT+2X9gsEMT1Mg2shILLBYGJqNUyTa6bLn16nyGtJf48iz01K+8jEVyOZi/+R+YsDut2QUZ4ly6DPNelfR/W3I/EiJXwmyjhxOFEeHM5gwaCZ2uY02mjccizNET27NPOKhAH6rJMR44X2yhIQFJpUyFCvh+nyBovU+xMwQEhPp5mG5fXx0PoXLAFmjOU5slgsltbACi4tAH8ni+vKN4GCCigo60XlYfIVU476fcIaRv6k0mh/Bv3KRb8Z5qpTyhzA0+vMid8acyf1FplcB8TV0A/iHMrhOlQpJzAmwRwV+4C7DhwvA+5mQK7qEAvuQOpFcEd7AiiRQXBHTXkMhpBxBOBqKmRw+MSgBlR4COFCUvSuygERR5UIJZIokkS/FChGwzkI8IkhkEDIOCTjxmVaeSI42pOImzHTEswIDlEqzTridcbV86P+DBLpWNINhslgmAyOyeDYqC7fM0avr9W7LKAC0ouCQz3GqYXBaaKMj7u3x2sXaeIE6U4UxW9qo5lT4mFf6eF25v3voB4AfI0HBY48O6LhGaEekhGSzkN5eAiC2S8aIaCGVcSzw0SS6VDr0Z3Oq/MCUZ4gsZdIVMYZg8cYPAdoa6KtkhZlagTUJKE6RBrqynAgNYQmztev6zzifCTQ+ATUKBqalhSHIlFFb5dD+dElB7M07AY3wWDnaCTf8/HwKNKMYpA832uDgddWTfGrYo3oKXYA7eUGPXAIJi9AJAAEAIUAheo3ndQgTqLA5EEhKJEHVMwS/asKQMVaUncjqYbBgiU80hwtdDn6nsXrUlZ3n4vEq+geCLVedz9EKg8tDHItriWFKp5Yj+6hPN7OElIWi70No8/G99lkGh8DY07deuNjTHroReUDt7EB+zCwhG0GhzX+PjPG4EA/w7UIggRCEvig18W6nxTaYrFYxp7x8JSz3rNhx2ZgGRcsM7qpoYkkBAsg4ENCmh98pKJzpCJ1ADoHikvXJgKEKlQHvgqgqjvyybIaCB6ALBjyYMgCyIEhB6ALDHm9LYeRdeIFCCUARdAgy8BtIWLBwNUiQnpppiw9dj85Zj/q4jKCHnMvwaG8PVScDlWWAzCRe5jEMpjAMsg00TkOKERRlFGSZZRFEVVZgQOmhnDA1d4WLjzm6jdPOmUuPK68EjgY2tBcB3R1kfqBGZR0g67P63UzREbNqiSjBXHelOv9kovQ+4JIv9l24mEpOs+10GjycBIPwQ44c8H1w7TQ012HJCH0EpKK7RBCBcONhgdGnklCC4ZRqv0NlGhHrhbvXBBzAWiRE0DcipoVSNIDxpKfNjFAonKWbp/JNJVP7ccGbCfEYkokrqxdnzLAcRm4y2OtM3L3jzCuWyrjMkKGlPjiIU49qPrXSIknVSlRlUBNj2YxfdcmkIARaQZ8iEuYYFBcx6tQrmMAi9dJB4oiEOCQGSoBxHmTRt+dunUYZyVKngJTpfr1ASnUMA1W1zoYABhvjKiM6c/Vlyd8OxL1jo9DDnFs6lwZvxGW9hVJrqsqxXai9Xg7qc4rcXBy1CKdOK8Xhxy1j3R1mdqfSQ6HHAACIAHBfBACqG9+oH9FQoCJVB7xHQEMQjck7asYBWSNGpgWQhgpDwVTFgkkusxsQ7SeFFLWrhvJiIaoMke91NGCADPCAI/LWJyqvPZmNKnazhNejow5Kl6YvrcT48auuhdw87KJJfOkXraoe268nXRbJnDt4MfMIsFMGSIHQJDxukpOD03J713dfuY7mPyeJk8VEreFxLMFN+1b3Wl5Yt/EiCc9M5s+s4zpFCZ19P4OmE71drONmX0YIuEc6ndOi8vqvp8Q0/V2k6ekGMzgbN+OfxpJe7FYLJb1BCu4tAArttkZ33zqWWQFkBOEnCTkJVCQQIGAAjG0kersdoChHUC7znv6rYeLLNxonPYYP0+FUJ3E6G1ztK6WZN68NwNAyGgxRIkiSjCJ4hg4a6gDH+q35yEBAQiCCC6iOAcMDmNwwNAJoHMti0xN0ah3OwyVsB+lsA9lvZTCPpRFvO7L6mpVaTD34OhtYjI2SDpGSFRWv088llyPlIcZQz4mjTchczEXgKcfyj0wuLrMBWNxXj3cuwDT++rPgHlgzNP7eOoz0Ta4qzf0Z4TXelA/Av30zDnMNKzqbTCQfFKPdYW4oN5bJB5CNPjfpSFW0vpB4o2ycpADOGnnOdKXiMAcAlwlGsCVgEtgrgTpcZTSFZBZH6ETIICPkPkImA+f1eCjBh9V+FRDFVXUUEGNqqhQGVWqoEoV+NKHL3wVMJvU8MmBcaISwzUH3U6pwNigeHilKQNUPIIobgSpLg2XWvQmDu0HB4o6ztBCGKkgt5G95Llnib+TPOdR0Fpi6Uth1qPtdfuaq5PMA6A67Y7qticrFdmULJp9RMU1klzFFCOHgRyuh/DpVK8zxwE5HMxxQY6KSaHiVTg6joVaV3muh6xwOHBUrC3oISzE4ZCS2z3pgAlSw2sFAxMELhAvoQQLCSwk8JDAQqkXAoQEQgkmVYfXnGdJgCQwCUDqKY1V9GJAEEhKQAfVhqSmI3I1e9eou9xrDs4AHUdEzUce9ayZum4eB1wOclUKV80sQy4HOQA5KpUOA3FA6llpJCMd2JUQMImAS4QsRM2RCJiAzwVqLFDxWkggRBWhDCAoRCgDhDJEqIevWEZAYoibugfplBgcyfWQcg5HqnsSI6WaML2vWtfliD2A4hd08X5MD7dTMZSg7mNaaVLtXP24MDPMFIC5jyaVXcIBGx0DYOZaPlkWi8Wy5rGCSwvw4isrscdbcsDDFUFNmNMLwqpEVzT5EMyh38DqwInJN8vR82Jy3Sy6YyXr9idTCWVJ95HMm5DIk0R9PnqDpqUXSsgu9WXaxRgUqhgcTCTiBSj3eQcMLmfa+0IFh5MUIqQAofQRUgBBPoRU64J8hGa9BkGB6rwP8ZjqMBcez8LjWWR4LpHP6nyuQT6nO7DJYKMDg5KmhIYG5aZ7G73JMueezP8g8y62wTZAIkQ57NfCSi8qYVF5aIyaep+bxPsw7U4dgiOUTD0hyQBKekuKOPWttkFKSfuJbcwBkAHjGYBlwCOBQy9K+PDqxI5IBEmWR+LJYPFPEj3iuvqy9F5NEH0i4asRfSlNjzzxhp2rOBSqXGrPBB2jgqsFTEIyoWJUcB/SqYF4DcIpQ7AKJC9BsBIkq0KiBkkVSFkDkxIkBCCE7gRKQAjV/vQSTVGenq1j4NFE1Y9IChMmqHV9/Ki6gNdunVCRdNaon8UrFi3I/D3U76vXeXwqTWBrRkOUS/25RHlUx/GIuX8zAIiHN8bCCzPbk8MfI6eTaOpZ00Viukxvw4DPxjaTwaClCRodlekhmiZIdH2qP6O/HxICYAxSH4eMXsWvxfOYTFfPmIpxxaMUOpXJMiTKpG6rOjZW4jNMC4VRHCxVFu8LaJvaXvR3k/bUdyCOu2XqAf290Qceff+ABt/dxPdxLJFQgp2esAtyiDTaTyYXns4n25+oa2vpmbWSExnHD1AUrScvZ2q7+j2LvzOJqZvNd4jF9qNhx9HfTH2n4u9a8vsY5+O6xKJpI7U+qbIyfS3TKuvYeTKP1Y00fRyTJi8eI7sWi8XSWljBpQXYOKyib5BpTWPi7SqSfDQGO/IpkQhS4oYeT03ROGsfgA8iHyBflwVgehw2QwBGIUDaZyVhVyYEAwwjaDRDs7MurwkEhRAiRFWU1sFfjwSHyE3a1a/+I48KJSIowSEDxjJqW0JQYGgDWI95U+zk1Ftf4wYdRUzR7tJcSrWQgCPV8CQmBbgUaiphCtU6heBSLUyGZt3kRZDYJwCTqmNEzIVkHMQdSOaodR2ElribmOHF0escxNS+kjtgUsARPlxRgyN9cFGDK/rBRc2Uc1GFI324YU1NH0qh7qTrx1cS4DIAlyL1+GxZ/4mupjQCADNiQLLM5HUa6JlDyGW6cxZ3glLCBGC2Ky8NpjttTC8wIoJM2I/Fi1iIMB2k5N9RfybubDE1Ex1SnzOhUfVtPtE5Y3EnLap/3EmMRL61J0i0HBQH5uaS4CQEDV6frxMuuIwEDZhyGEEjfgMfbY/FjER5o+2JdGCnXdPgkqWvaV07SrUxlhDIeNxOmP515izV7lbr9A62YYRmo+8tkBbyBoqEddtTn4m8p1jqO1mfH3ffh8RFqPd8Wy8Y8J3RZUh/xwBCx0vr8unQYrFY1hzrveByyy234MYbb8TixYux66674r/+67+w1157retqjYjKgt+juupxmMd1SooayQUY4hFoPUW/jYk8K1jsS6OECT2mOlqS23XcjGi/WMhIjP9OloGrWWqgAvOlbSV9eOrFi+TcqXFgvVS9ET3oDSxX7rVKBGMUgkViF+l1GYldASADtS59cAoBKsefkSE4BYD01TqC2JbU61D7AQGIQrDkW+rE27vo4XYo3xhC4rCdgS2PmZ3iozbvq6LOi2m2LN0Rodh7ikE5Z0hSVzOkaPpPNRzMIzVDlwT01JnRNyLu5AIuiHkDOhrJt4Zx5zXxRjGxv3k5aM5RvY0G6yz5zUyvo85GUlNNdUBSf3eIN5+JekZvgs2xsPTfkNF154ljYQmPtrpOTtTRT9K4M1T3+eT5NceSOE/mFKcOPl2SivUB01YGfM4yagYKROnvQDwkKW5/8WcHuQYUfVbZiTq7Un9GMpZov/H9VbXdaE6baOgV9JAhrjwfJYPDOBxSs5A5ekYg5RUZzZaDSGpWAViZAwceOHfgMAccLhyurbJo4XD0b4MTxWYy8ZkcAJSYfawu3lMUF0rGMaLUbC3CzOgS5ZMxo4jilxZxfKnYvomnM0LiWGxxoFQTzDU6s/qaRDMtmenjWTxMRH0W8TTzSNvhA2JbJeJYITqH9QFe64PDxm2IQAPWhyLyxo0DxUZ/j6X+Bk/8LQ4eH3ddMFvjQ5rwJk2llPIrhfJYNbn0/X2ADdTZ0v+x6Diivx99efSzXhQEOLEO7R2rxAkdh4dIx/RRS/SEEc+qBfO/KkOiPDpnMKXJWciSn00GCFZEMbASFnUsMRXfhkAiVM8eMlSesCIASfVMQyIAhK/WhQ8SPij0AanTsAoSPkrb9g3ZFiwWi2V9Zb0WXO666y7MnTsX8+bNw957741vfetbmDVrFl566SVsuOGG67p6TbOytgqMKuahAMkfO/Pgox8UmQMHjhrXjsTDInfMQxAw2BsQ/YBmhIFYREj2rKMAcclI/OazyR9hxhB1AdW+6lGi3stAjSZR+8YdS20y+TYq1flL1BccYDAPjYwlwv4mZglguk7pmQSU0dRjUd0MB8qbJ4RMRqszn1FBWqMHO0c/UDpwoqtiHjxNmsirBxzHnDVJSkYgYpDkmQdzMg/2iYdyqR/kzcN9YOJQqJrFw5dSwWST8VP08UZDnSTih7c4EK2aahXRkKjE582wlGg/SJCM8+s7UZtyuAsXLlyeNdNbOjwDj7twEE3znIHDXJ1PL1GHDoAOUFn/GB8/tKfKdD3IDDlrTJ0kMegeUS7+7ppH8nRHqtH3pK48tsca/Zkh61Bf7/r7RuIbrP5PfOdT29jAsnjIWNqK+fssWed4S3TmgbgTZ+4BAOpnPknFFaqPMTTgWqIuH3fektuowVlKn2ug/loOXEfivll/T0+eh/TZMXmWyKd+Z5J711+v+toML4Stq6nN11eIBvv2p7Hn1TJeyWdfXtdVsFgsljXCei24fPOb38TZZ5+NM844AwAwb9483HvvvfjBD36ASy+9dB3XrnnavE1x8FZHrOtqWCwjZmAnodHbwlhcSE7ZGftA1HWo6zqAUflgHWnU5ZrBdlo+fLBBVyzrA8MLEglxKzHkMDk1cOxJEIvTqXwk6LHYSyK+HzVIB7kvJWn2XrO270nNCjxpqVLnjMdHVJLw76DE2oBprpr9a/E7mvQ2mXixoAOum7+ZDNoevXioD9YevRCKhMf4RU3qdyi1Tg1+kxK/PAzKK894gACmRdQJxin5MyWIsrrrH7Wz2GZKOE3sa64OxSWNJOD0i6T09ug7kX4VQInvTrqs/sVV9NIr8iJTHkc6ADb0i7HEy7HoeOMXZyr3zrIqtoDFYrGMP9ZbwcX3fTz55JO47LLLTBnnHIceeij+8pe/NPxMrVZDrVYz6319reG+mF+8Euge+eeaf2CyrFmoQa7xdgVrem1dMJIH/4H7svQRrPvDGTHj93vVXOscjY3Rf7qBvSH+xEAfoAadwWSu/lqyVLcl8X/9OkN6I1vNpjzUp8emvTV1bhtsHtyvqn5Lg78wqOCa/szAzvpQf7c5mrtPsYarcefYMcX11tJSQVIgTmdHdhiN69ys1xAaiBDG24nInJOBnlSDrdV5P5mi9HdBeXgOau5DS+QR2kzg/PR6fBHTLxPqPMxY3TqS7V41BjO1dPQvEaCfEiJLUqyKX4CkX3wo+8kjbCAgNsypNiIhwUkPOYOEGVpGkccvB2cEDkd9iqWnRVtW+6Dpc2+xWCzrE+ut4LJs2TIIITB58uRU+eTJk/Hiiy82/My///u/45prrlkb1RsRq2rvjOpz9i19qzBaPwtLKzJ+v1dDdfZaiJar0DjFnmfLGCNTXiVpT4j0UORhhE7EQsRQ29f1vZozFSPGWae1GD94rreuq2CxWCxrhPVWcBkNl112GebOnWvW+/r6sNlmm63DGimmf/yf8Mr//Ni4xRrXTorcPGX8JsKkcRA1QOqZiyL3ziTDPZA0emWmoYEW2CC7JssH22fIPzLIi24WBcyLYiYQ6cif0Xmo+0ADO+OpX1H/vnjdMUS7iTYzB3AYwBnAOcA5iDOAcYA7IA7A9UCu2gZHufCTw9P7c0dvT9rkAGcg7qggunVvykaMaV9SRxKWgCQwEX8fIaRqh1IHLdRTrELqzxEZ13R1/BzQQWuhYzOB67eW0WwaDDqgbbQNiAMuJ05n1PGIvpN1MTziGEzRWt30p0wHHWaRmehvq0PTXvFpTwQev1XlOlixicbi6JTr97IMOqCm/mMpd/HYE8I4REQv5RuEAYrKorf0lMhpi/ocNP42cK5KieIOmwrirK8tI0BKMHPdAIjENZS6jKTKA/oaaw+CqK2CAa5j1olzFSTWYYDjgPG4HZu2HbV/EcZ/L/rbQv09RgQSEpBC/V2p6ySF2idqeybeV/Kcp9fNxTFvzOPzz6L2JPV9luK/r4J2Ij5vpM+B/l5E50MF7mSIpipW+0DPgB7foyM7TN+7WVQefYeiNpH4XtRVFrpxxR32xP5qWAepWFQy7uRDH4v5faTot1K3SZKIf2b1kCLOVKz06Pwyda8xscw419sZGHPUNp7YFwCkAEkCST1Nu0z8ZuvrTFKadkhSTetOggASuk0k8lLothK1CwkWtdP6b0BDD73kb2UiFlH9/pzF14CzAbc0Yvo8Mm3TjPshdV5YfN6MreicsniJzpe5T0b7RyKK2T+5nzq/xADG49mZos+pNsLNTF5xuf4NgR5MJIU6dyK6Nup8qnUJEvp7Z861UNdFCL2u6hzFugNLL0z/vqXWTVw8PYMgY6pNRH9byrgeus3Ez0Ym1Hni+S9x3RnT9dDnC4lzDabrULcNLL1/sj04DuA4IFenDgdcF6TL4bjqfheVufp4SM9uSRJS6tkySYJkqM4h6XNNIi7TKaSaVXPqySc3aLsWi8Wy/rPeCi6TJk2C4zhYsmRJqnzJkiXYaKONGn4mm80im82ujeqNiJ2PPRk41v7QjAUUdZiiB1ox1Dw8TRvVzzn6AU3/DRLCdNDIdITq8jKdmv2jp3xdFj2Qm22JTjxFn9P51Fu9+jd8dePA09sS2agjyPRDcpTn0QOvfliMHnwbrDPPi5dMJk5dF8yx7/wsFotlTUJEWjTQv01aJFCigVT36ej+PUTeiMCWliEW6wZJxRBB6we5lA2vseOAZbLgGQ/wPNsOLBaLZQ2w3goumUwGe+yxBx566CEcc8wxAAApJR566CGcf/7567ZylnUGY8y8obGPDRaLxWIZrzDGANe1v3XjkOiliL22FovFsv6z3gouADB37lycdtpp2HPPPbHXXnvhW9/6Fkqlkpm1yGKxWCwWi8VisVgsFotlXbBeCy4nnXQSPvjgA1x55ZVYvHgxdtttN9x///0DAulaLBaLxWKxWCwWi8VisaxNGI3fOVCHpa+vD11dXejt7UVnZ+e6ro7FYrFYLBaLxWJZR9i+gcViGWtWc2oPi8VisVgsFovFYrFYLBZLPVZwsVgsFovFYrFYLBaLxWIZY6zgYrFYLBaLxWKxWCwWi8UyxljBxWKxWCwWi8VisVgsFotljLGCi8VisVgsFovFYrFYLBbLGGMFF4vFYrFYLBaLxWKxWCyWMcYKLhaLxWKxWCwWi8VisVgsY4wVXCwWi8VisVgsFovFYrFYxhgruFgsFovFYrFYLBaLxWKxjDFWcLFYLBaLxWKxWCwWi8ViGWOs4GKxWCwWi8VisVgsFovFMsZYwcVisVgsFovFYrFYLBaLZYyxgovFYrFYLBaLxWKxWCwWyxhjBReLxWKxWCwWi8VisVgsljHGXdcVWJcQEQCgr69vHdfEYrFYLBaLxWKxrEuiPkHUR7BYLJbV5UMtuPT39wMANttss3VcE4vFYrFYLBaLxdIK9Pf3o6ura11Xw2KxjAMYfYglXCkl3nvvPXR0dIAxtk7r0tfXh8022wxvv/02Ojs7P/Q2Wqku1kbr1mU82WiluownG61UF2ujdesynmy0Ul2sjdaty3iyMZYQEfr7+zFlyhRwbiMvWCyW1edD7eHCOcemm266rquRorOzc7V/cMaTjVaqi7XRunUZTzZaqS7jyUYr1cXaaN26jCcbrVQXa6N16zKebIwV1rPFYrGMJVa6tVgsFovFYrFYLBaLxWIZY6zgYrFYLBaLxWKxWCwWi8UyxljBpUXIZrO46qqrkM1mrY0Wq4u10bp1GU82Wqku48lGK9XF2mjduownG61UF2ujdesynmxYLBZLK/OhDpprsVgsFovFYrFYLBaLxbImsB4uFovFYrFYLBaLxWKxWCxjjBVcLBaLxWKxWCwWi8VisVjGGCu4WCwWi8VisVgsFovFYrGMMVZwsVgsFovFYrFYLBaLxWIZY6zgYrFYLBaLxWKxWCwWi8UyxljBxfKhZywm6pJSjkFNLJahGatJ5Wx7Hd+0yj1tdesxFsdRq9VW20arMZ4mlxyLYxFCjEFNVp+x+M5Uq9Uxs9UK3z+LxWKxWMFlvaNVfgBb5YF+dSgWiwAAxtiobaxYsQIAwPnov0pvvfUWFi5cCGDdn5OIsWpntr2ODWPRVgHbXof7XKu019ESdTxX5ziWLVsGQLWR0XZkX3vtNaxcuXK12uuiRYvw85//HL29vaO28dJLL+Gwww7Dq6++OmobpVIJvu9j5cqVAMauzY/mGtVfj9Wpy7pu677vA4gFsdHUZ/HixQAAx3FWS3R55ZVXsGDBglF/HlBt/uabb8YHH3wwahvPP/88tt9+ezz99NOjvkf39fVh5cqVWLx4MRhjo2ojYRgCiK/JaNvZeLu/WiwWy2ixgkuLs3TpUjzzzDP4+9//DmB0Ha7oRy76ER0Nq1atwptvvokXX3zR1GOkP8KLFy/GY489hv/93/8FoB7oR2rjxRdfxI033ohSqTSiz9WzYMECfPrTn8Zrr702ahvPPvssDjvsMMyfP3/UNp577jlsueWWOPfccwGMriP8xhtv4Ac/+AGuvfZavPbaa6N6qFm6dCmeffZZPProoyCiUXeUbHtNMxbtdSzaKmDbaz0vvfQSrrrqKpx++umYP38+XnzxxRG3kyVLluDll18e8d9OsmjRIsybNw9z587Fgw8+aASPkfLyyy/jC1/4AmbPno3rrrsOixYtGpWNrbfeGp/97GcBjK4j+/TTT2PatGn45S9/OeK/H7Fw4ULstddeeOqpp0wHdqTfvQULFmCfffbBI488MmqB8Pnnn8eJJ56Igw46CLNmzcJf//rXUbX5ZFu7+eab8cwzz4AxNqK2/8ILL+CCCy7AMcccg8svvxxPPvnkiOvyzjvv4MknnwQwevH21Vdfxde+9jWcdtppmD9/Pt54440R23jxxRdxzjnnYNasWTjnnHPw7LPPjrg+r732GqZMmYKjjjoKwOhFl6effhrbbbcd/vKXv4z4sxELFy7E3nvvjTfffNN8f0fTXg888EC89dZbePDBB0dl47nnnsM///M/45BDDsH06dPxwAMPjLiNvPDCC7jwwgtxwgkn4OKLL8Zf/vKX1W7z6/L+arFYLC0BWVqWBQsW0LRp02irrbaiyZMn0+67705//vOfqVQqNW3j2WefpaOOOopWrlxJRERBEIy4Hs888wwdcMABNG3aNJo6dSqdcsopI7axcOFC2mmnnWiXXXah7u5u2n///Uf0eSklFYtF2mqrrYgxRpdddhnVarUR14NInVfXdekLX/hCw7/TDM899xx1d3fT3Llz6fXXXx9VPZ566ilqa2ujAw44gHbYYQd68MEHR1QHInVeN9lkE/qnf/onmjx5Mm2yySb0zjvvjKgeTz/9NG233Xa066670hZbbEE77rgj3XvvvdTb2zsiO7a9xoxVex2Ltkpk22s9zz33HHV1ddHs2bNpv/32o7333ps23XRT+sMf/tD0MT3//PO0+eab04knnkjPPvvsiI4hYuHChTRlyhQ68sgjadq0abTddtvR9ddfT0KIEZ/XiRMn0mmnnUbHHHMM7bPPPvTVr36VpJQjsvPLX/6SNtxwQ9pnn33os5/9rCkXQjT1+QULFlBbWxt98YtfbPpv1vPWW2/R5ptvTp///OdT5dH3p5m6LFiwgPL5PF133XV04okn0h577DHiejz33HPU09NDc+bMoRtvvJFOOOEEOvzww6lSqYzonD7zzDPU09NDZ555Jn3iE5+gI444gnp6euj+++9v2sYLL7xAnZ2ddNppp9Hs2bPpsMMOo2w2S7fffnvTNl588UWaPHkyzZw5k/785z83/bkkzzzzDG2wwQZ04okn0r777kszZ86kc889l4rFYtM2Fi5cSD09PXTOOefQeeedR7NmzaIzzjiDfN8f0Xl97LHHaLPNNqNp06bRrFmzTHmzbZVItZNCobBa7fW9996jbbbZhubOnZsqL5fLI6pHLpeja6+9lubMmUPbbLON+e1r9py88MILNHHiRPq3f/s3uvPOO+mzn/0sTZs2zdwXm7Hz7LPPUk9PD5177rl03nnn0UknnUSu69L3vve9EV3jVrm/WiwWS6tgBZcW5f3336ett96aLr/8cnr66afp8ccfp0MPPZQ23nhjmj9/PvX19Q1r4/XXXzcdvj322MN0YsMwbLoe0Y/4JZdcQg8++CDNnz+fdtllF/rP//zPpm08//zzNHHiRLr88svphRdeoD//+c80efJkeuSRR5q2EXHeeefR2WefTYVCgS644IIBnfnhfsifeeYZKhQKdMUVV5iyvr4+Wrp0adN18H2fTjnlFDrnnHPM33ziiSfo7rvvpqVLl1KlUhnWRvSgd9VVV1GpVKItt9ySLrrooqbrQET0zjvv0NSpU+krX/mKOQ/bbLMN3XHHHU3bePPNN2nzzTenq6++ml555RV699136bDDDqMNN9yQbrrpJlq2bFlTdmx7bczqtNexaKtEtr3WE4YhnXrqqSkh7qmnnqKzzjqLHMeh3/72t0Q0dMft3Xffpf3224923XVX2muvveiss86iZ555punjICJ64403aNq0aXT55ZeT7/tERHTppZfS1KlTm7omEa+99hptscUW9KUvfcmUnXXWWXThhRcS0chEy9/97ne07bbb0te//nXaZZddTJshIurv7x/ysy+88AK5rkvXXnstEanz99BDD9F3v/tdevTRR5sW1n72s5/RQQcdZGx86UtfopNPPpmOO+44euihh4b9/FNPPUWZTIYuvfRSIiL64x//SFtssQX97Gc/a+rvExFVKhU69thj6bzzzjNl3//+9+mUU04h3/fpgw8+aMpOsVikWbNmpQTTJ598knp6eiibzdL//M//mOMcin/913+lY445xqwvWbKErrjiCnIch77zne8Q0dD3kvfff58OOugg2n///enII4+kww8/nB5++OGmjiHirbfeoh133NGcVyKiW265hbbeemt69913m7Lx+uuv0zbbbJNqq1dffTWdeeaZRESmUz/c+ZBS0l/+8hfaYYcd6M4776Rtt92WjjrqKLO9mfpE7TU6Hikl3X333fS1r32NfvrTn9JLL73U1DHdf//9tN9++5l6X3DBBfSxj32MZs6cSbfffvuw3+WnnnqKXNelyy67jIiIFi1aRJttthndcMMNTf19IvUd/8xnPkOf+cxnTNmDDz5Ixx13HK1YsYLefvvtYW1Uq1WaPXs2XXDBBabsvffeo+23354ymQx94xvfIKLhn7Fa5f5qsVgsrYQVXFqUJ554gqZOnUovvvhiqvyMM86gzTffnO68884hf/hKpRJdeOGFNHv2bLrrrrton332oenTp4+oE9vb20uf+MQn6HOf+5wpi36UP/3pTzd1HMuXL6d99tkn9bYyCAI6+OCD6a677qIf/vCH9P777w9rJ/pxPvXUU+mb3/wm/eEPfyDP84zd+fPnD/tQsWTJEurq6qKPfvSjpuzcc8+lfffdl7bffnv62Mc+ZjqzQ53bSqVCM2fOpLvvvpuIiA455BCaPn06tbe30+abb05f/epXacmSJYN+/uWXXybGWOqhc968eTRp0iT629/+NsyZiPn9739Pu+++e6ojc/TRR9N1111H559/Pv3ud78bsh5ERHfffTcddNBB1N/fb9rEr371K8rlcrTddtvR/PnziWj4hyzbXtOsbnsdq7ZKZNtrPb7v00c+8pFUx5GIaOnSpXTeeedRLpejv/zlL0PW46GHHqJZs2bRggUL6LbbbqPdd999RJ2CMAzp29/+Np144on0/vvvm2NZvHgxbb755rRw4cKm7cybN4/OPPNMWrFihTnu888/nw4++GD6yEc+Qqeeeio9+uijTdl7++236ZOf/CQtW7aMvvnNb9L06dNp7ty5dMYZZ9C8efOMMFSPEIKuueYaYozR888/T0REBx98MO26667U1dVF22yzDR1yyCH09NNPD1uHG2+8kT7xiU8QEdG+++5rPCBmz55NjDH6/ve/T0SNr/Hy5ctpzz33TF3bDz74gGbMmNH0PYBI3UumT59ON998sym7/PLLafPNN6ddd92VttxyS/rhD384aD0ili1bRjvuuCP94he/SO07e/ZsOuiggyiTydBf//rXYetz3HHH0VlnnTWg/Gtf+xoxxujee+8dsi6PP/44HXLIIfToo4/SfffdN2LRRUpJP/rRj+iYY46hN954w9zfqtUqbb311sbbbTjuuusu+sxnPpP6ns+dO5emT59Oe+21Fx1wwAHG82e4+1qpVKLZs2fTu+++S7/85S9p6tSpdOyxx9IZZ5xhhOGhmDdvHjHG6Le//S0JIegjH/kIzZw5kzbffHPaZZddaJtttqHHHnts2GO644476J/+6Z+IiOjAAw+kI444gi6//HI6//zziTFGV1111aDH09fXRx/72MdS7bWvr4+OPvpoOvLII4f92xGVSoUOPPBAuvrqq03ZVVddRT09PbTzzjtTV1cXXX311VStVge10d/fT9OnT6d58+YRUSzUnnXWWXTUUUeZczUcrXB/tVgsllbDCi4tyh//+EeaNGkSvfbaa0REqYeHT37yk7TxxhsP2+H67ne/S3feeScRET3yyCMj7sQuWbKEzjjjDGMjesj63ve+Rx/5yEdISpl6AB+sHjfddFPqwe4rX/kKZTIZmjlzJk2bNo0mT55sOgSD2Yj+9p133ml+yH/7299SJpMxrvhvvvnmkMdDRHT88cfT7rvvTvPnz6e9996bDj30UPrmN79Jt9xyC+2yyy60ww47mLdsg9WlUqnQYYcdRvfccw996UtfolmzZtFzzz1HpVKJLrvsMtp5553pBz/4QareSf7617+at5IRTz/9NO2444500003EVFzAsOPfvQj6ujoMJ2zm266iTzPo1NPPZX2339/mjp1Kt1www1D2rr++utpypQpqbIHHniAzjzzTPr4xz9OG220UVOuxH/6059Wu73+93//d0u012984xur3V6j8tVpryeccMJqt1Ui1SlqhfZ6++23r3Z7veGGG8akvX7uc5+jfffdl1asWJEqf+utt2j27Nl01FFHDTlEqVKppDpjP/jBD0ynICmWDHVdbrvtNvr2t7+dKluyZAl1d3fTn/70p2GPIeK1115Ludxfc801lMvl6Gtf+xpdeeWVdNJJJ9HWW2/d1FCyUqlE06dPp6eeeopKpRL993//N02cOJEYY+a4Brs+ixcvps9+9rOUzWZp5513puOOO44WLFhAvu/TPffcQ4cffjidcMIJw3rK3HHHHTR58mSaP38+HXXUUbR8+XKz7atf/Sq5rjvkEIO///3vJh/V9Z577qFcLkf/93//N+w5IFLX7ZOf/CTtsssu9Itf/IK+8IUvUKFQoNtuu43uvfde+trXvkac82EFi6VLl9K+++5L1113nfF0eP3112nKlCl099130xFHHEGnnHIKhWE4ZFu5+uqrabPNNjOeG9G+vu/TueeeSzvssMOwQvCCBQtM/t577zWiy//7f//PlEff/0b3gXvvvdd0xqM69Pf30yabbEI///nPh/zbEStXrkyJ8jfccAPlcjn61re+RfPmzaPzzjuPMplMU4JjtVqlGTNmGBHgj3/8I3V3d6fa6nDeXVdffTU5jkPbbLMNzZ49m1566SUKw5D+/ve/0wknnEB77rnnsCLwfffdR7lcjn70ox/Rcccdl9r/9ttvJ8bYkN6RSU+a6Lw/8sgjxBgzQl0zXHjhhdTR0UG33HILfe5zn6N8Pk8//elP6amnnqI77riDGGN0zz33DPp53/fp6KOPprPOOsvc+9544w2aNGkSPfDAA3T66afT/vvv39QQ4Va4v1osFksrYQWXFkVKSTvssEPKjTj5dmKHHXZIuX4OZYdIPXg+/PDDAzqx5XKZXn/99YYPWNVqlZ588skBtr773e/SPvvskyprlnvvvZe22GIL+vWvf20epA866KDUm/yh+PWvf00zZsww9f3oRz9KjuPQySef3HRdPvWpT5HjOPSJT3wiNTzj3XffpS222GJA7IBGHHfccbT77rvTGWecQT/5yU9S28444wyaMWPGoJ9NnutknS+88MKmO4wRe+yxB02YMIFmzZpFmUyGHnjgAbPt4osvpq222mrAQ0+SF154gbbYYgu6+OKLacmSJfT4449TW1ubcR/eeuut6bvf/e6w9RBC0I477jiq9tqoAzea9loul+mJJ54w6yNtr40ezkfTXpN/YzTtNSkKrW5bjf7G6rTX5HkZTXtNfmbPPfccVXuNbDz//PNj0l7vuusu2m233egb3/jGgOFut912G02ZMoXeeuutpo8r+lz9m9hrrrmmKa+OyFalUqHtt98+5Tn061//uum6VKtVOuqoo1Jvov/85z/ThhtumDrXjfB9n4IgoMMPP9zE+DjppJOos7OTpk2bZoYoDUX0FnvPPfc0ni4R//Ef/0EbbbTRsEOL3njjDTr66KNpjz32SA0tIlKC1LRp0+iuu+4a0kb9tVm0aBHtscce9OUvfzllbygeeughOvHEE+mYY46hqVOnptpVrVajnXbayXgvDMWcOXNo+vTp9KlPfYpuuOEGam9vN154N954I+20004N74HJOv7tb3+j/fffn84//3zToY+2/+EPf6ApU6bQU089NaSNen73u9/REUccQbNmzTLC0UUXXTTA46ZR3ZLnd4899qBf//rXZv1HP/rRgOE4jWzUajU6++yzU+0yEqMaxaZp9Lt52mmn0S9/+UsiUsL+hAkTaPPNN0/9DtVTX5frrruOdtlllwHn7+c//zlNnDixofiTrIsQgk4++WTaaqutjAgehqHZZ8aMGfTNb35zgI3BvMWklNTX10cf//jH6dOf/jSVy+VBr2Oy/LXXXqPPfe5zdOqpp9Luu+9ON954Y2rf/fffn84999whbXzrW9+iffbZhw488EC67LLLqK2tzXzmpz/9KW255Za0atWqhnVJctddd9GMGTNa5v5qsVgs6xo7S1GL8MEHH+DJJ5/EwoUL0d/fD8YYbrjhBixYsAAXXXQRACCbzZqpFHfdddcB02UmbSSnkRVCwHEcHHDAAbj++utRKBTwkY98BEuXLsUll1yCz3zmM6hWq8bGE088YaYl3H333QGoaPnJWQSi2QAYY7j44otx3HHHNaxH/ewsU6dOxe9+9zt8/OMfR09PDwBg7733HvJ8lMtlAGr2mm222QaTJ08G5xxnnXUWXn75Zdx44434zW9+g7PPPtucn0Z2+vr6AAB33HEHLr/8cnzyk5/EBhtsYPadPHkyttxyS/T39w95bQDgP/7jP1CtVnHbbbeZqXZJzzgxa9YsZLNZM91l/XmNznV0/qKo/eeccw7a29vxwx/+MGVvqGN54okn8OMf/xinnnoq9ttvP+y3336oVCoAgMMOOwzZbDZ1DZI2KpUKttlmG3z+85/HPffcg+nTp+OQQw7B2Wefjblz50IIgWw2a44vSblchpTSHAvnHDfccAP+8Y9/NN1eIxtBEKTKwzBsur1GNiqVCvL5PPbYYw9jo9n2GtloNCtSs+01eT6iv0tE2GqrrZpur5GN5Ewbd9xxBy699NKm2+pgdfmP//gPlMvlpttr8ry6rpuy32x7jWwk7T7++OO4/fbbm26v9Ta23HJLfOELX8AvfvGLptvrG2+8ge9973v4/ve/j9///vcAgBNPPBEHHHAAvvvd7+InP/lJ6jMzZ85EoVBIndtGNqJzG12v0047DRdeeCGeeuopfPvb38ZJJ52Ea665xpy/pI37779/wHUD1PeIc25sX3755TjnnHNS53aoumSzWfzmN7/Bxz72MXOdJkyYgMmTJ2PChAkNbTzwwAMAAM/z4LouZsyYgVdffRWf+cxn8PDDD+M3v/kNLrroItxzzz34/Oc/P2Q9NthgA1xzzTX49re/jW222SZ1fqZOnYqenh5kMpkhbWyxxRY45JBD8Oabb2LBggVYtGiRmSWlvb0d3d3dyGazQx5L8jsIqHZzxBFH4Dvf+Q6WLl06YNaVRtfm4IMPxl133YX58+fDdV1ssskmxmYYhujs7MTGG288qJ377rsPgPrunXTSSVi1ahXuu+8+fPnLX8bNN98MAOjq6kI+n09d31WrVpm2EJ27vfbaC0cffTQee+wx3HTTTXj33XfNMWy//fZoa2tLfW+SNupnhYn+1pFHHomLLroInHN87Wtfw7HHHov//M//NNcnsuE4zoB7Y/Leyjk3Nr/0pS/h/PPPN9uTNpL3NSJCJpPBvHnzcNhhh5k6Msaw8cYbY7PNNhvyWCL7O+20ExYsWIBTTz0Vf/rTn/C73/0Ot956Kx5++GGcdNJJqToPVpcvfelLuP3227H99tsDiO9vU6ZMwQYbbIBCoTBkXTjnOO6449Dd3Y1Fixbhtddeg+M4Zp/29nbz25G04Xlewxl7GGPo6OjAoYceinvuucdc6+HayNZbb42bb74Z3/ve9+C6LjbaaCMA6vsXhiGy2Sy22mqrhjai63vRRRfhvPPOw9Zbb42XX34ZX/3qV3HrrbcCUPeWzs7OAfV977338Nvf/hb33HMPnnjiCQDq/rrPPvvge9/7XlP316SN5CxaRGTO0XD3V4vFYmlp1oHIY6lj4cKFtMMOO9Auu+xCjDETJHPlypV000030bbbbktnn3126jMnn3wynX322WY2i0Y2km8IoryUkh5++GHaf//9yXVdamtrM29TG9lo9Gblpz/9Ke21115ERHTZZZdRoVAwY3IHszGUZ8Fpp51GF1xwQVPHEgQBHXroobTtttvS5MmTjQfO//zP/9DkyZNp8eLFQ57X5Ewx9eOZgyCgj3/84+bN0GB1EUJQrVajX/ziF7TVVlvRbrvtRs8++6yxfeGFF9KsWbOMC3mz5zUIApo1axYdeuihA7YNdyy33347TZ8+PfWZOXPm0AEHHGBcd+ttRDE5KpUKvfvuu/Tggw+m3m729fXRoYceSj/96U/N+SBSwVwPPfRQOuigg2jbbbel73znO/TOO+9QGIb0jW98g6ZOnTpse623ceutt9KiRYvM/tFbyKHa63A2ovoO1V6Hs9GI+vY6lI0wDOnggw8etr02svHyyy+bv1k/40Wjtjrc8dx999205ZZbDttemz2vQ7XXRm3klVdeMdtvu+22YdtrvY1bbrnFvN1/77336Pe///2w7TWavWefffahbbbZhtrb2+n00083b13POuss2nnnnWnOnDn06quv0gcffECXXHIJbbvttiYAbyMb//Iv/0Lvvfee+dvJt+bf//73yfM86urqMm/Nm7FBpO75G2ywAT366KP0la98hXK5HD3++ONm+0jrQqQC8c6cOdMEeh3MRuR58pWvfIUYY7TVVluZ9rpy5Ur6zne+Y4YMNrJx5plnpu6/9Vx00UV02GGHGY+oRjbOOOMM481200030UYbbUTTp0+nv/71r/TMM8/QlVdeSVtuuaV5Oz6S8/H222/TbrvtRldffXXq/jvYsSRtHHvssTR37lx6//33qVKp0JVXXkmbb755aphWIzunnXZayiOg/m3/mWeeSbNnzzbfxeeff5622mor44lDlPaEuPLKK2nvvfemo48+mhYsWECvvPIKXXrppbTFFluYIUWNbNT/3iR/j3/zm99QT08PdXd3m2FHzdggUr8dW2+9Nf3yl7+kr3/965TL5YyX4UjrQaTi5Oy6665NH8v8+fOJMUbTpk0zbbVardK9996but80sjPcMMjPf/7ztN9++5n22MhG0vvvxz/+MW233XbU2dlJv/rVr+gPf/gDXXHFFbTpppuadjKScyKlpP32248+/elPp9pAM8dy1lln0cc+9jFatGgRLVu2jK666iraZJNNzDlpZKN+Fr16D5xzzz2XDj/88NRv0cKFC2nrrbemvfbaiyZNmkR77rmnuf8SEZ1++um0yy67DHt/rbdRP0QteY4a3V8tFoul1bGCyzrm1VdfpcmTJ9MXv/hFeuONN+iWW24hxpiJ77Bs2TK69dZbaeONN6YZM2bQeeedR6eccgoVCgUzjr2RDc75gKCc0Y9ypVKhj33sYzRhwoQR2yBSnftDDjmErrzySspkMuZBZyQ2iNTDyhVXXEEbbrihGdc9nI1isUinnnoq7bnnnqnhTkTpWTRGWpcwDOmKK66gKVOmmE7FYNcmetgvl8t0//3309SpU2mzzTajQw89lI477jjq7u42bq7N1iN6cPvHP/5BnPPUQ0szNt5++22aMGECHXnkkXTzzTfTOeecQxMmTBiyHsljqadSqdBll11GU6ZMoTfeeMOUv/zyy7TBBhvQnDlz6Oc//zldffXVxBijY489lp5++mnyfZ9uvfVWmjJlyqDtdTAbs2fPTo3bjh6yGrXXZm0QDd5eR2Ijukb17XUoG9G4/VNPPZVmzpw5aHttxkaSRm11KDvHHXec6QTdf//9NG3atEHba7PnJLqXNGqvQ9mIYt+8/fbbNHHixEHb61DH0ujaNGqv/f39tO+++5qhbO+//z7dd999NGHCBDrkkEOMeHPNNdfQgQceaGbH2mijjegf//jHsDaOOOIIevXVV00dhBAUhiFdeOGF1NPTY9rqSGz09/fTjBkz6KCDDkp1Xkdqh0jN6PRv//Zv1NPTY87rUDYOP/xweu+99ygIAjrvvPNMLJSoAxh9H4eyMWvWrFSbjOrxhS98gSZMmGCGZwxl49BDDzVix09+8hM64ogjiDFGO+20E02dOnVU1yaq/+GHH04HHXSQ6Vw2a+O6666jmTNn0oYbbkgHH3wwTZkyxdRjODuHHXbYgLosWLCALrroIurq6jLDI9566y3abbfdaNq0abTzzjvTNddcY/ZPdoZ/+MMf0pFHHkmMMdp5551piy22MHUZykajjr0QgubMmUMdHR1N1aPehhCCDjjgANppp52oUCgYcXAkNojUlNUXX3wx9fT0GNFnKBtJgeGLX/xi6ntST7N2Il544QWaM2dO6nvT7LX585//TKeddhq1t7fTjjvuSNOnTx/VtYk4++yzae+99zYiZbM2fvKTn9BHPvIRymQytM8++9Dmm2/eVD0aDR999NFH6XOf+xx1dnamhu+8+uqrtOmmm9Ill1xCq1atoieeeIJOO+00OvPMM1Mvs4a6vw5loz6ukZSy4f3VYrFY1ges4LKOueKKK+if//mfU2VHHnkkPfLII/TII4+YN4avv/46nXbaaXTCCSfQZz7zmVS09sFsPProo/TYY4+l3k77vk9f//rXKZPJpN4OjMRGFN2/q6sr9aAzEht/+tOf6FOf+hRtvPHGqQfXoWw88sgjtHLlSurv7x824OhI6vLQQw/R8ccfTxtuuGFTdYmuTfRGuFar0dVXX00XXXQRXXrppfTCCy+Mqh5SSnr77bfpxBNPTL05bdbGgw8+SDNmzKAZM2bQP//zP4+ojST/3t///nc65ZRTUg9GERdddBGdfPLJqbLTTz+dcrkcHXfccSZuw2uvvUann356w/Y6mI18Pk/HH398qk2FYdiwvY7Exne/+92G7XUkNv7v//6vYXsdysZxxx1Hr776Ki1dujQlWtUzXD2SQs0f//jHhm11KDvRtYkelqvVKl177bUN2+tIzgkRNWyvzdp44IEHaI899mjYXoezkfT6eOKJJxq210qlQrvvvvuA6YBfeuklmjRpUur7sGTJErrvvvvokUceSQmZw9k45phjUp22v//978QYS9VvJDZWrFhBW2yxBU2YMCEV5HSkdv7617/Sv/7rv9Kuu+6asjOSczIYI6nHY489RmeeeSZtv/32qe/vcDaOPvpoUyalpCeffJJeeeWVVEDSkdQj6ki+9dZbqfgiw9n4+Mc/bsruvfdeuv7662nevHkDAhAPZ+fYY481HeJVq1bRj3/8Y5oxY4Y5J1JKuv766+moo46iBx54gK666irafvvtB+3YE6m4Ls8995zxBmnGRr3AsHDhQtpkk03Md3KkNoIgoP322y8lTozUxrPPPmu8sEZio5mp00dal4ULF9LFF19Mu+yyi/nejObavPLKK7R48WIT92s014ZIzZYVCZjN2Eh6pTzzzDP0/e9/n+6++27zvDTSeggh6Ne//jXtu+++qftIrVajuXPn0oknnpg69u9///s0ceJE470SsWzZsgH315HaIGp8f7VYLJb1ASu4rGMuuugiOvLII02gyMide+bMmTR58uQBswgQDfxhHsrGRhttRLNmzUrZ+OEPfzggoGEzNqIZHv72t7/RvvvuO2CKvpHY+Otf/0qXXXZZqrPXzPk47LDDhoz4P5q6PProozRnzhx67rnnRlSXww8/nB566KHVrkf99a0fPtJMPZKz5vT19Y3IxmBtJOmSHXH88cebgI+Re/x1111Hhx9+OG277bZ0+eWXD/hMfXsdysZ2221nhjpFb7catddmbRAN3l6btVGpVAZtr8Odj8suuyx1LI0YST0Ga6sjPSerW5fk29T6tjacjWQbGay9jvRYGrXXYrFIm2yyScMOydNPP01tbW2paVQb0YyNr3zlK6nPREMQRmvj3//93we0s9HYefTRRwcMWWrGxrXXXjvEGRl5Pf70pz8NCJS7Lq5No+9gMzaaCYw70rqUy+UB7eT999+n2267jYiUABh1hpPnYbBAqyOxUe9NUT9bzEht/OAHPxjw3RupjWeffXbAbEDN2GhmdrSR1uWpp54aMONTMzYGCy4+2no0CuK+rtpI/VC4SqVC3/zmN+l73/te6nijIPzR+RsqaHOzNuqp/95YLBbL+oAVXNYxt956K7W1tdHxxx9Pp5xyCnmeR/fccw8Vi0X6y1/+QgceeCBdeumlqTgo9T/mzdoYqtPXrA0i9ePb6EdvJDaEEA0fKEZiYyzOK5F6aGv0kDKS8xo9WIz22kTnZDTHcsABB5g2srrnY7jZOy6++GLaeOONjYvz+++/Tz09PfTggw/SrbfeSvl8fsBwqfpzMpyNQqEw6NCv0dgoFosN22szNpJDrhq117V1LFE96qe2Xt26rItrk8/nh52hYizqQaSm+N50003pN7/5jSmLzt91111He++9Ny1fvnzIdt+sjah9NLrPNmMjOQvV6tQlitWyuscz1O/FWBzP2qrHWNhYtmzZoPf4kdppdja99957r2Fn+Fe/+lVTQsNwNqK6DVefwWzcfffdTdVhTdv41a9+1dSsU61WlzVp45e//OVqt5HhbCS9vKI29P7779PUqVNT9/d6T8zVtWGngrZYLOsjVnBpAf7rv/6Lvv71r9Pxxx8/YNq+008/nQ488MBhf4CHs3HAAQeMiY1Gnc6R2hjuQWAsjqWV6jKebLz55pu03377UTabpSOOOIIKhYIJkLts2TLaZJNNhvVAsjbG3kYr1WVd2Xjvvffob3/7G91///3me71o0SI64YQT6MADD6Tf//73qf3nzZtHO+ywA5VKpZaz0Up1sTbW3rUhotTLlXfffdd0hq+66iqaM2cOMcbo3XfftTYa2GiluownG0k79913X+o5IWnzxRdfpIkTJxqx5Mtf/jL19PQYoXEsbFgsFsv6iJ1PbS3y0ksv4bbbbsM777yDXXfdFQcddBD23HNPnH/++QCAOXPmIJ/PA1DTJianPpRSgnM+ahs777zzmNhY3WPZeeedzfSGY3EsrVSX8WSj0Tk5/PDDMX36dPz+97/HLbfcAiklTj31VJxyyikAgLfeeguFQgFdXV2DthNrY/VttFJdWsXGwoUL8fGPfxzZbBZLlizBRhtthKuvvhqzZ8/GJZdcgmuuuQZXXHEFVqxYgZNPPhlBEOD111/HhhtuaKZVbRUbrVQXa2PtXJuNN94YV155JWbNmoUJEyakpiaOpgW/9tpr0d3djccffxxTpkyxNups2PO67s5r9BzBGAPnHO3t7bjuuutw00034c9//jMmTpw4JjYsFotlvWXtaTsfbp577jnq7u6mE044gc4991zabLPNaPfdd6dbbrnF7HPttddSW1sbPfzww/TYY4/RVVddRRMmTDDxGqyNtI1Wqst4sjGYnd12243mzZtn9qn3hrnkkktot912M0MarI2xt9FKdWkVG0uXLqXtt9+eLr/8cnrttdfo3XffpZNOOom23XZbuuaaa6hardKCBQvo3HPPJdd1adddd6V99tmHenp6TNDSVrHRSnWxNtbutdlhhx3oqquuMkOxkm/zP/3pT1NnZ6e5R1sbaRutVJfxZGMkdohUTJgZM2bQSSedRJlMxgRjHgsbFovFsj5jBZe1QH9/P82aNYsuueQSU/bOO+/QxIkTafLkySaYnhCCTjrpJOKc07bbbku77babiQxvbaRttFJdxpONkdiJePjhh+mCCy6gjo4O06mwNsbeRivVpVVsECnRZssttxzwYP7FL36RdtppJ7rppptISmniFX3lK1+hefPmpQJ9toqNVqqLtbH2r80uu+xCN9xwQ2ro0fz586m7uzsVx8La6B4QG6RV6jKebIzUzvPPP0+MMcrn803fo5u1YbFYLOszVnBZC5RKJZo5cybdeeedZp2I6IQTTqBDDjmE9t13X/rd735n9n/44YfpmWeeSUXttzaeGTCLQavUZTzZaMbOfvvtl7LzyCOP0HnnnUfPPvustbEGbbRSXVrFBhHRggULaNNNN6WHH36YiNKzJl144YW0xRZbmOlmB6NVbLRSXayNdVOXrbbaKmVj8eLFA6ahtjbSNlqpLuPJxkjtvP/++/S5z31uwCxrY2HDYrFY1mes4LKGkVLSkiVLaMqUKXTjjTea8rfffpt23HFH+tGPfkTTp0+ns846y9po0kYr1WU82RiJnX/5l39Jfa5SqVgba9BGK9WlVWwkmTlzJn30ox8169Vq1eT33HNPOvnkkxt+rhVttFJdrI11W5ehgrpbG61bl/FkYyR2iMbmHj2YDYvFYllfsYLLGqL+B+zmm28mxhideeaZdMUVV1B7e7uZdePnP/85bbnllqmpJ62NgTZaqS7jycbq2EnOWmVtjL2NVqpLq9goFovU19dHvb29puwf//gHbbjhhvTJT37SlEWfmTt3Lh199NGpv9sqNlqpLtaGvTbri41Wqst4stFqdbFYLJbxghVc1gAvvfQS3XTTTfTee++ZMiEE3XbbbTRz5kw64ogj6Prrrzfb/uu//otmzJiRCl5mbaRttFJdxpONVqqLtWGvzXA2nnvuOTr88MNpxowZNGXKFPrJT35CROqN6E9/+lOaNGkSHX/88eT7vhEVTz31VDr55JMpCAKSUraMjfF2POPJhr02rWvDXpvxf14tFotlvGEFlzHmlVdeoQkTJhBjjC677LLU7CJE6kcn6UpJRHT++efT8ccfT5VKhaSU1kadDXte7Xn9sNkgstem3sZzzz1HEydOpIsvvpjuuOMOmjt3LnmeZ4I8lkol+t///V/adNNNafvtt6djjjmGTjzxRGpra6NnnnmGiKhlbLRSXawNe23WFxutVJfxZKPV6mKxWCzjDSu4jCHFYpHOPPNMOv300+mWW24hxhj927/9W6pzkVTvX3jhBZozZw51dHTQwoULrY0GNlqpLuPJRivVxdqw12Y4G8uXL6fDDz+cLrzwQkpy0EEH0QUXXJAq6+vro0suuYT+5V/+hc4//3wzxWmr2Gilulgb9tqsLzZaqS7jyUar1cVisVjGIy4sYwbnHHvssQcmTpyIk046CZMmTcLJJ58MALjkkkswadIkMMYAAP39/XjwwQfx1FNP4eGHH8Yuu+xibTSw0Up1GU82Wqku1oa9NsPZCIIAq1atwvHHHw8AkFKCc46tttoKK1asAACQeoGAjo4OXH/99an9WslGK9XF2rDXZn2x0Up1GU82Wq0uFovFMi5ZMzrOh5disZha/9nPfkaMMfrCF75Ay5YtIyIVOHLJkiUUBAGtWLHC2hjGRivVZTzZaKW6WBsDaZW6tIqNl19+2eR93ycioiuuuII+/elPp/ZLBmqsjwfQKjZaqS7Whr0264uNVqrLeLLRanWxWCyW8Yb1cBlj2traAABCCHDOcdJJJ4GI8KlPfQqMMcyZMwc33XQTFi1ahDvvvBM9PT3WxjA2Wqku48lGK9XF2rDXZjgb06ZNA6DeiHqeB0C9MV26dKnZ59///d+RzWZx4YUXwnVd4znTajZaqS7Whr0264uNVqrLeLLRanWxWCyWcceaUnIsSrmPorD/7Gc/I8/zaLvttiPXdU0QMWtjZDZaqS7jyUYr1cXaaN26tJINIqIvfelLdOSRRxIR0Ze//GVijNGCBQvWKxutVBdro3XrYm20bl3Gk41Wq4vFYrGMB6zgsoaRUpofnoMPPpgmTJiQCo5pbYzcRivVZTzZaKW6WButW5dWsBEJNldddRV99rOfpRtvvJGy2Sw9+eST652NVqqLtdG6dbE2Wrcu48lGq9XFYrFYxgNWcFkLhGFIF198MTHG6Omnn7Y2xsBGK9VlPNlopbpYG61bl1axcd111xFjjLq6uujxxx9fr220Ul2sjdati7XRunUZTzZarS4Wi8WyPmMFl7VAGIY0f/58euqpp6yNMbLRSnUZTzZaqS7WRuvWpVVsPP7448QYW61pRVvFRivVxdpo3bpYG61bl/Fko9XqYrFYLOszjIhoXceR+TBARKsdHMzaaN26jCcbrVQXa6N169IqNkqlkgnKu77baKW6WButWxdro3XrMp5stFpdLBaLZX3FCi4Wi8VisVgsFovFYrFYLGMMX9cVsFgsFovFYrFYLBaLxWIZb1jBxWKxWCwWi8VisVgsFotljLGCi8VisVgsFovFYrFYLBbLGGMFF4vFYrFYLBaLxWKxWCyWMcYKLhaLxWKxWCwWi8VisVgsY4wVXCwWi8VisVgsFovFYrFYxhgruFgsFovFYrFYLBaLxWKxjDFWcLFYLBaLxWKxWCwWi8ViGWOs4GKxWCwWi8VisVgsFovFMsZYwcVisVgsFovFYrFYLBaLZYz5//0lepQ6hgGcAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - } - ] - }, { "cell_type": "code", "source": [ "print(df_grouped)" ], "metadata": { - "id": "6wZ4FIMSDhZH", - "outputId": "5151ec5a-f644-4ac4-e19f-4c5e5d3dcb35", "colab": { "base_uri": "https://localhost:8080/" - } + }, + "id": "6wZ4FIMSDhZH", + "outputId": "07d533bc-d311-4622-e661-a1580eaeeb32" }, - "execution_count": 36, + "execution_count": 26, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - " 1980 1981 \\\n", - "Region Features \n", - "Africa distribution losses 1.838808e+01 2.008996e+01 \n", - " exports 3.830000e+00 4.222000e+00 \n", - " imports 3.830000e+00 4.222000e+00 \n", - " installed capacity 4.751185e+01 5.235385e+01 \n", - " net consumption 1.703969e+02 1.800037e+02 \n", - " net generation 1.887850e+02 2.000937e+02 \n", - " net imports 0.000000e+00 0.000000e+00 \n", - "Asia & Oceania distribution losses 1.030888e+02 1.101940e+02 \n", - " exports 1.190000e+00 1.158000e+00 \n", - " imports 1.507000e+00 1.585000e+00 \n", - " installed capacity 3.298037e+02 3.501267e+02 \n", - " net consumption 1.162783e+03 1.192011e+03 \n", - " net generation 1.265555e+03 1.301778e+03 \n", - " net imports 3.170000e-01 4.270000e-01 \n", - "Central & South America distribution losses 3.848911e+01 3.597511e+01 \n", - " exports 4.380000e-01 5.900000e-01 \n", - " imports 4.380000e-01 4.490000e-01 \n", - " installed capacity 8.209500e+01 8.901000e+01 \n", - " net consumption 2.699461e+02 2.799115e+02 \n", - " net generation 3.084352e+02 3.160276e+02 \n", - " net imports 6.938894e-18 -1.410000e-01 \n", - "Eurasia distribution losses 1.069000e+02 1.078000e+02 \n", - " exports 1.879900e+01 2.080800e+01 \n", - " imports 3.000000e-01 3.000000e-01 \n", - " installed capacity 2.685490e+02 2.784620e+02 \n", - " net consumption 1.168605e+03 1.123888e+03 \n", - " net generation 1.294004e+03 1.252196e+03 \n", - " net imports -1.849900e+01 -2.050800e+01 \n", - "Europe distribution losses 1.600011e+02 1.571558e+02 \n", - " exports 9.097800e+01 9.972200e+01 \n", - " imports 1.091910e+02 1.198030e+02 \n", - " installed capacity 5.452230e+02 5.606910e+02 \n", - " net consumption 2.006055e+03 2.011306e+03 \n", - " net generation 2.147843e+03 2.148381e+03 \n", - " net imports 1.821300e+01 2.008100e+01 \n", - "Middle East distribution losses 6.936780e+00 1.063793e+01 \n", - " exports 2.320000e-01 2.270000e-01 \n", - " imports 2.320000e-01 2.270000e-01 \n", - " installed capacity 3.216100e+01 3.815000e+01 \n", - " net consumption 8.450322e+01 9.227907e+01 \n", - " net generation 9.144000e+01 1.029170e+02 \n", - " net imports 0.000000e+00 1.387779e-17 \n", - "North America distribution losses 2.558195e+02 2.213935e+02 \n", - " exports 3.466465e+01 3.948212e+01 \n", - " imports 3.003898e+01 3.991357e+01 \n", - " installed capacity 6.737250e+02 6.987240e+02 \n", - " net consumption 2.461083e+03 2.531029e+03 \n", - " net generation 2.721528e+03 2.751991e+03 \n", - " net imports -4.625664e+00 4.314493e-01 \n", - "\n", - " 1982 1983 \\\n", + " 1980 1981 \\\n", "Region Features \n", - "Africa distribution losses 20.151580 2.243898e+01 \n", - " exports 4.884000 4.146000e+00 \n", - " imports 4.893000 4.424000e+00 \n", - " installed capacity 53.269850 5.567965e+01 \n", - " net consumption 186.624820 1.932142e+02 \n", - " net generation 206.767400 2.153752e+02 \n", - " net imports 0.009000 2.780000e-01 \n", - "Asia & Oceania distribution losses 112.823400 1.210988e+02 \n", - " exports 1.179000 1.265000e+00 \n", - " imports 2.009000 2.005000e+00 \n", - " installed capacity 368.754730 3.923887e+02 \n", - " net consumption 1246.403292 1.324822e+03 \n", - " net generation 1358.396692 1.445181e+03 \n", - " net imports 0.830000 7.400000e-01 \n", - "Central & South America distribution losses 42.491350 4.555598e+01 \n", - " exports 0.475000 4.261000e+00 \n", - " imports 0.601000 4.033000e+00 \n", - " installed capacity 94.405000 9.988300e+01 \n", - " net consumption 292.554170 3.101096e+02 \n", - " net generation 334.919520 3.558935e+02 \n", - " net imports 0.126000 -2.280000e-01 \n", - "Eurasia distribution losses 112.600000 1.153000e+02 \n", - " exports 21.419000 2.320500e+01 \n", - " imports 0.300000 3.000000e-01 \n", - " installed capacity 286.588000 2.958390e+02 \n", - " net consumption 1234.063245 1.278407e+03 \n", - " net generation 1367.782245 1.416612e+03 \n", - " net imports -21.119000 -2.290500e+01 \n", - "Europe distribution losses 158.361830 1.687843e+02 \n", - " exports 95.810000 1.185060e+02 \n", - " imports 116.099000 1.406710e+02 \n", - " installed capacity 578.861000 5.915180e+02 \n", - " net consumption 2023.318170 2.084953e+03 \n", - " net generation 2161.391000 2.231572e+03 \n", - " net imports 20.289000 2.216500e+01 \n", - "Middle East distribution losses 12.137670 1.180281e+01 \n", - " exports 0.330000 2.910000e-01 \n", - " imports 0.330000 2.910000e-01 \n", - " installed capacity 42.966000 4.862400e+01 \n", - " net consumption 110.408330 1.249712e+02 \n", - " net generation 122.546000 1.367740e+02 \n", - " net imports 0.000000 -2.775558e-17 \n", - "North America distribution losses 227.643996 2.374148e+02 \n", - " exports 40.319463 4.231429e+01 \n", - " imports 40.319634 4.231404e+01 \n", - " installed capacity 717.576000 7.281270e+02 \n", - " net consumption 2476.041662 2.555950e+03 \n", - " net generation 2703.685487 2.793365e+03 \n", - " net imports 0.000171 -2.548900e-04 \n", + "Africa distribution losses 1.874121e+01 20.443093 \n", + " exports 3.935375e+00 4.327375 \n", + " imports 5.659906e+00 6.051906 \n", + " installed capacity 4.814117e+01 52.983167 \n", + " net consumption 1.737664e+02 183.373190 \n", + " net generation 1.907831e+02 202.091751 \n", + " net imports 1.724531e+00 1.724531 \n", + "Asia & Oceania distribution losses 1.031399e+02 110.245063 \n", + " exports 1.190000e+00 1.158000 \n", + " imports 1.507000e+00 1.585000 \n", + " installed capacity 3.299673e+02 350.290346 \n", + " net consumption 1.162988e+03 1192.215726 \n", + " net generation 1.265811e+03 1302.033789 \n", + " net imports 3.170000e-01 0.427000 \n", + "Central & South America distribution losses 3.859152e+01 36.077525 \n", + " exports 4.380000e-01 0.590000 \n", + " imports 4.380000e-01 0.449000 \n", + " installed capacity 8.227979e+01 89.194786 \n", + " net consumption 2.705502e+02 280.515562 \n", + " net generation 3.091417e+02 316.734087 \n", + " net imports 6.938894e-18 -0.141000 \n", + "Eurasia distribution losses 2.617115e+02 262.611506 \n", + " exports 7.943247e+01 81.441472 \n", + " imports 4.476119e+01 44.761188 \n", + " installed capacity 6.222894e+02 632.202353 \n", + " net consumption 2.343170e+03 2298.454189 \n", + " net generation 2.639553e+03 2597.745980 \n", + " net imports -3.467128e+01 -36.680284 \n", + "Europe distribution losses 2.120365e+02 209.191182 \n", + " exports 2.115657e+02 220.309746 \n", + " imports 2.116504e+02 222.262370 \n", + " installed capacity 7.708206e+02 786.288617 \n", + " net consumption 2.740265e+03 2745.516068 \n", + " net generation 2.952217e+03 2952.754626 \n", + " net imports 8.462388e-02 1.952624 \n", + "Middle East distribution losses 7.515476e+00 11.216626 \n", + " exports 2.320000e-01 0.227000 \n", + " imports 4.111621e+00 4.106621 \n", + " installed capacity 3.230383e+01 38.292828 \n", + " net consumption 8.818376e+01 95.959605 \n", + " net generation 9.181961e+01 103.296610 \n", + " net imports 3.879621e+00 3.879621 \n", + "North America distribution losses 2.558195e+02 221.393494 \n", + " exports 3.466465e+01 39.482123 \n", + " imports 3.003898e+01 39.913572 \n", + " installed capacity 6.737250e+02 698.724000 \n", + " net consumption 2.461083e+03 2531.029293 \n", + " net generation 2.721528e+03 2751.991338 \n", + " net imports -4.625664e+00 0.431449 \n", "\n", - " 1984 1985 \\\n", - "Region Features \n", - "Africa distribution losses 23.957380 2.958630e+01 \n", - " exports 4.489000 4.132000e+00 \n", - " imports 4.540000 4.132000e+00 \n", - " installed capacity 60.078650 6.260565e+01 \n", - " net consumption 210.770520 2.222653e+02 \n", - " net generation 234.676900 2.518516e+02 \n", - " net imports 0.051000 0.000000e+00 \n", - "Asia & Oceania distribution losses 126.458560 1.480621e+02 \n", - " exports 1.696000 1.903000e+00 \n", - " imports 2.134000 2.228000e+00 \n", - " installed capacity 416.095730 4.400762e+02 \n", - " net consumption 1422.014351 1.498336e+03 \n", - " net generation 1548.034911 1.646073e+03 \n", - " net imports 0.438000 3.250000e-01 \n", - "Central & South America distribution losses 46.015120 5.088227e+01 \n", - " exports 3.760000 5.323000e+00 \n", - " imports 3.665000 2.648000e+00 \n", - " installed capacity 106.750000 1.130040e+02 \n", - " net consumption 337.124620 3.499402e+02 \n", - " net generation 383.234740 4.034975e+02 \n", - " net imports -0.095000 -2.675000e+00 \n", - "Eurasia distribution losses 126.100000 1.337000e+02 \n", - " exports 24.101000 3.069900e+01 \n", - " imports 0.300000 1.900000e+00 \n", - " installed capacity 306.178000 3.153050e+02 \n", - " net consumption 1342.196622 1.382510e+03 \n", - " net generation 1492.097622 1.545009e+03 \n", - " net imports -23.801000 -2.879900e+01 \n", - "Europe distribution losses 175.176830 1.872757e+02 \n", - " exports 124.350000 1.262160e+02 \n", - " imports 147.713000 1.547800e+02 \n", - " installed capacity 617.038000 6.372170e+02 \n", - " net consumption 2189.324170 2.280073e+03 \n", - " net generation 2341.138000 2.438785e+03 \n", - " net imports 23.363000 2.856400e+01 \n", - "Middle East distribution losses 11.956000 1.393700e+01 \n", - " exports 0.199000 3.280000e-01 \n", - " imports 0.199000 3.280000e-01 \n", - " installed capacity 53.144000 5.473500e+01 \n", - " net consumption 140.277000 1.500800e+02 \n", - " net generation 152.233000 1.640170e+02 \n", - " net imports 0.000000 1.387779e-17 \n", - "North America distribution losses 213.703069 2.357352e+02 \n", - " exports 43.476293 4.751992e+01 \n", - " imports 43.476432 4.745818e+01 \n", - " installed capacity 748.786000 7.705210e+02 \n", - " net consumption 2720.030437 2.778895e+03 \n", - " net generation 2933.733367 3.014692e+03 \n", - " net imports 0.000139 -6.173721e-02 \n", + " 1982 1983 \\\n", + "Region Features \n", + "Africa distribution losses 20.504713 22.792113 \n", + " exports 4.989375 4.251375 \n", + " imports 6.722906 6.253906 \n", + " installed capacity 53.899167 56.308967 \n", + " net consumption 189.994270 196.583670 \n", + " net generation 208.765451 217.373251 \n", + " net imports 1.733531 2.002531 \n", + "Asia & Oceania distribution losses 112.874513 121.149903 \n", + " exports 1.179000 1.265000 \n", + " imports 2.009000 2.005000 \n", + " installed capacity 368.918346 392.552346 \n", + " net consumption 1246.608115 1325.026719 \n", + " net generation 1358.652628 1445.436622 \n", + " net imports 0.830000 0.740000 \n", + "Central & South America distribution losses 42.593765 45.658395 \n", + " exports 0.475000 4.261000 \n", + " imports 0.601000 4.033000 \n", + " installed capacity 94.589786 100.067786 \n", + " net consumption 293.158242 310.713632 \n", + " net generation 335.626007 356.600027 \n", + " net imports 0.126000 -0.228000 \n", + "Eurasia distribution losses 267.411506 270.111506 \n", + " exports 82.052472 83.838472 \n", + " imports 44.761188 44.761188 \n", + " installed capacity 640.328353 649.579353 \n", + " net consumption 2408.629042 2452.972540 \n", + " net generation 2713.331833 2762.161331 \n", + " net imports -37.291284 -39.077284 \n", + "Europe distribution losses 210.397242 220.819682 \n", + " exports 216.397746 239.093746 \n", + " imports 218.558370 243.130370 \n", + " installed capacity 804.458617 817.115617 \n", + " net consumption 2757.528008 2819.162568 \n", + " net generation 2965.764626 3035.945626 \n", + " net imports 2.160624 4.036624 \n", + "Middle East distribution losses 12.716366 12.381506 \n", + " exports 0.330000 0.291000 \n", + " imports 4.209621 4.170621 \n", + " installed capacity 43.108828 48.766828 \n", + " net consumption 114.088865 128.651725 \n", + " net generation 122.925610 137.153610 \n", + " net imports 3.879621 3.879621 \n", + "North America distribution losses 227.643996 237.414793 \n", + " exports 40.319463 42.314293 \n", + " imports 40.319634 42.314038 \n", + " installed capacity 717.576000 728.127000 \n", + " net consumption 2476.041662 2555.949638 \n", + " net generation 2703.685487 2793.364686 \n", + " net imports 0.000171 -0.000255 \n", + "\n", + " 1984 1985 \\\n", + "Region Features \n", + "Africa distribution losses 24.310513 29.939433 \n", + " exports 4.594375 4.237375 \n", + " imports 6.369906 5.961906 \n", + " installed capacity 60.707967 63.234967 \n", + " net consumption 214.139970 225.634750 \n", + " net generation 236.674951 253.849651 \n", + " net imports 1.775531 1.724531 \n", + "Asia & Oceania distribution losses 126.509673 148.113229 \n", + " exports 1.696000 1.903000 \n", + " imports 2.134000 2.228000 \n", + " installed capacity 416.259346 440.239786 \n", + " net consumption 1422.219174 1498.540497 \n", + " net generation 1548.290847 1646.328726 \n", + " net imports 0.438000 0.325000 \n", + "Central & South America distribution losses 46.117535 50.984685 \n", + " exports 3.760000 5.323000 \n", + " imports 3.665000 2.648000 \n", + " installed capacity 106.934786 113.188786 \n", + " net consumption 337.728692 350.544262 \n", + " net generation 383.941227 404.203947 \n", + " net imports -0.095000 -2.675000 \n", + "Eurasia distribution losses 280.911506 288.511506 \n", + " exports 84.734472 91.332472 \n", + " imports 44.761188 46.361188 \n", + " installed capacity 659.918353 669.045353 \n", + " net consumption 2516.762419 2557.075511 \n", + " net generation 2837.647210 2890.558302 \n", + " net imports -39.973284 -44.971284 \n", + "Europe distribution losses 227.212242 239.311152 \n", + " exports 244.937746 246.803746 \n", + " imports 250.172370 257.239370 \n", + " installed capacity 842.635617 862.814617 \n", + " net consumption 2923.534008 3014.283098 \n", + " net generation 3145.511626 3243.158626 \n", + " net imports 5.234624 10.435624 \n", + "Middle East distribution losses 12.534696 14.515696 \n", + " exports 0.199000 0.328000 \n", + " imports 4.078621 4.207621 \n", + " installed capacity 53.286828 54.877828 \n", + " net consumption 143.957535 153.760535 \n", + " net generation 152.612610 164.396610 \n", + " net imports 3.879621 3.879621 \n", + "North America distribution losses 213.703069 235.735172 \n", + " exports 43.476293 47.519917 \n", + " imports 43.476432 47.458180 \n", + " installed capacity 748.786000 770.521000 \n", + " net consumption 2720.030437 2778.895211 \n", + " net generation 2933.733367 3014.692120 \n", + " net imports 0.000139 -0.061737 \n", "\n", " 1986 1987 \\\n", "Region Features \n", - "Africa distribution losses 22.709740 26.115020 \n", - " exports 4.066000 2.425000 \n", - " imports 4.181000 2.625000 \n", - " installed capacity 69.132650 71.003650 \n", - " net consumption 242.265560 250.967980 \n", - " net generation 264.860300 276.883000 \n", - " net imports 0.115000 0.200000 \n", - "Asia & Oceania distribution losses 153.562950 168.923720 \n", + "Africa distribution losses 23.062873 26.468153 \n", + " exports 4.171375 2.530375 \n", + " imports 6.010906 4.454906 \n", + " installed capacity 69.761967 71.632967 \n", + " net consumption 245.635010 254.337430 \n", + " net generation 266.858351 278.881051 \n", + " net imports 1.839531 1.924531 \n", + "Asia & Oceania distribution losses 153.614063 168.974833 \n", " exports 2.265198 2.838005 \n", " imports 2.184701 2.737251 \n", - " installed capacity 462.726550 486.466270 \n", - " net consumption 1583.715823 1715.791977 \n", - " net generation 1737.359271 1884.816452 \n", + " installed capacity 462.890166 486.629886 \n", + " net consumption 1583.920647 1715.996800 \n", + " net generation 1737.615207 1885.072388 \n", " net imports -0.080498 -0.100755 \n", "Central & South America distribution losses 59.351220 65.950150 \n", " exports 13.315000 18.816000 \n", @@ -414,27 +363,27 @@ " net consumption 375.881060 385.142790 \n", " net generation 435.359280 451.571340 \n", " net imports -0.127000 -0.478400 \n", - "Eurasia distribution losses 137.300000 142.600000 \n", - " exports 30.434000 35.067000 \n", - " imports 1.600000 1.200000 \n", - " installed capacity 321.930000 325.500000 \n", - " net consumption 1343.502799 1395.350431 \n", - " net generation 1509.636799 1571.817431 \n", - " net imports -28.834000 -33.867000 \n", - "Europe distribution losses 184.552600 191.379880 \n", - " exports 121.201000 134.754000 \n", - " imports 150.107000 168.887000 \n", - " installed capacity 653.169000 672.573000 \n", - " net consumption 2339.218400 2411.183120 \n", - " net generation 2494.865000 2568.430000 \n", - " net imports 28.906000 34.133000 \n", - "Middle East distribution losses 12.132000 15.661000 \n", + "Eurasia distribution losses 292.111506 297.411506 \n", + " exports 91.067472 95.700472 \n", + " imports 46.061188 45.661188 \n", + " installed capacity 675.670353 679.240353 \n", + " net consumption 2518.068596 2569.916228 \n", + " net generation 2855.186387 2917.367019 \n", + " net imports -45.006284 -50.039284 \n", + "Europe distribution losses 236.588012 243.415292 \n", + " exports 241.788746 255.341746 \n", + " imports 252.566370 271.346370 \n", + " installed capacity 878.766617 898.170617 \n", + " net consumption 3073.428238 3145.392958 \n", + " net generation 3299.238626 3372.803626 \n", + " net imports 10.777624 16.004624 \n", + "Middle East distribution losses 12.710696 16.239696 \n", " exports 0.573000 0.478000 \n", - " imports 0.373000 0.312000 \n", - " installed capacity 57.955000 62.594000 \n", - " net consumption 160.281000 166.039000 \n", - " net generation 172.613000 181.866000 \n", - " net imports -0.200000 -0.166000 \n", + " imports 4.252621 4.191621 \n", + " installed capacity 58.097828 62.736828 \n", + " net consumption 163.961535 169.719535 \n", + " net generation 172.992610 182.245610 \n", + " net imports 3.679621 3.713621 \n", "North America distribution losses 201.979128 210.630140 \n", " exports 44.521565 54.824235 \n", " imports 44.511861 54.829032 \n", @@ -445,19 +394,19 @@ "\n", " 1988 1989 ... \\\n", "Region Features ... \n", - "Africa distribution losses 26.872360 28.062860 ... \n", - " exports 2.322000 2.604000 ... \n", - " imports 2.590000 2.702000 ... \n", - " installed capacity 75.348650 79.142250 ... \n", - " net consumption 259.195340 268.564490 ... \n", - " net generation 285.799700 296.529350 ... \n", - " net imports 0.268000 0.098000 ... \n", - "Asia & Oceania distribution losses 178.754571 200.739418 ... \n", + "Africa distribution losses 27.225493 28.415993 ... \n", + " exports 2.427375 2.709375 ... \n", + " imports 4.419906 4.531906 ... \n", + " installed capacity 75.977967 79.771567 ... \n", + " net consumption 262.564790 271.933940 ... \n", + " net generation 287.797751 298.527401 ... \n", + " net imports 1.992531 1.822531 ... \n", + "Asia & Oceania distribution losses 178.805683 200.790531 ... \n", " exports 3.310800 3.860101 ... \n", " imports 3.174608 3.324543 ... \n", - " installed capacity 513.120740 536.289660 ... \n", - " net consumption 1855.985223 1977.108392 ... \n", - " net generation 2034.875986 2178.383369 ... \n", + " installed capacity 513.284356 536.453276 ... \n", + " net consumption 1856.190046 1977.313215 ... \n", + " net generation 2035.131922 2178.639305 ... \n", " net imports -0.136193 -0.535558 ... \n", "Central & South America distribution losses 67.784620 72.544900 ... \n", " exports 19.189000 21.934000 ... \n", @@ -466,27 +415,27 @@ " net consumption 405.170040 413.088700 ... \n", " net generation 473.110160 484.214600 ... \n", " net imports -0.155500 1.419000 ... \n", - "Eurasia distribution losses 139.900000 141.600000 ... \n", - " exports 38.579000 37.902000 ... \n", - " imports 1.000000 1.000000 ... \n", - " installed capacity 338.905000 341.934000 ... \n", - " net consumption 1432.730352 1464.423789 ... \n", - " net generation 1610.209352 1642.925789 ... \n", - " net imports -37.579000 -36.902000 ... \n", - "Europe distribution losses 189.916350 191.373420 ... \n", - " exports 151.552000 172.630000 ... \n", - " imports 189.467000 210.226000 ... \n", - " installed capacity 682.639000 691.235000 ... \n", - " net consumption 2465.011650 2519.269380 ... \n", - " net generation 2617.013000 2673.046800 ... \n", - " net imports 37.915000 37.596000 ... \n", - "Middle East distribution losses 18.846000 19.072000 ... \n", + "Eurasia distribution losses 294.711506 296.411506 ... \n", + " exports 99.212472 98.535472 ... \n", + " imports 45.461188 45.461188 ... \n", + " installed capacity 692.645353 695.674353 ... \n", + " net consumption 2607.296149 2638.989586 ... \n", + " net generation 2955.758940 2988.475377 ... \n", + " net imports -53.751284 -53.074284 ... \n", + "Europe distribution losses 241.951762 243.408832 ... \n", + " exports 272.139746 293.217746 ... \n", + " imports 291.926370 312.685370 ... \n", + " installed capacity 908.236617 916.832617 ... \n", + " net consumption 3199.221488 3253.479218 ... \n", + " net generation 3421.386626 3477.420426 ... \n", + " net imports 19.786624 19.467624 ... \n", + "Middle East distribution losses 19.424696 19.650696 ... \n", " exports 0.375000 0.380000 ... \n", - " imports 0.355000 0.380000 ... \n", - " installed capacity 69.257000 72.626000 ... \n", - " net consumption 185.468000 197.012000 ... \n", - " net generation 204.334000 216.084000 ... \n", - " net imports -0.020000 0.000000 ... \n", + " imports 4.234621 4.259621 ... \n", + " installed capacity 69.399828 72.768828 ... \n", + " net consumption 189.148535 200.692535 ... \n", + " net generation 204.713610 216.463610 ... \n", + " net imports 3.859621 3.879621 ... \n", "North America distribution losses 213.193537 278.523167 ... \n", " exports 42.929646 39.016589 ... \n", " imports 42.936199 39.084799 ... \n", @@ -518,20 +467,20 @@ " net consumption 1046.180499 1029.599917 \n", " net generation 1227.975815 1222.787392 \n", " net imports 1.223740 1.733000 \n", - "Eurasia distribution losses 164.613000 159.825000 \n", - " exports 48.972000 44.829000 \n", - " imports 26.061000 24.936000 \n", - " installed capacity 367.155616 392.647600 \n", - " net consumption 1269.197756 1270.205466 \n", - " net generation 1456.721756 1449.923466 \n", - " net imports -22.911000 -19.893000 \n", - "Europe distribution losses 273.489100 262.532159 \n", - " exports 402.786526 442.938699 \n", - " imports 412.030073 448.122056 \n", - " installed capacity 1125.927900 1150.325030 \n", - " net consumption 3380.342006 3274.468710 \n", - " net generation 3644.587559 3531.817512 \n", - " net imports 9.243547 5.183357 \n", + "Eurasia distribution losses 293.506833 288.718833 \n", + " exports 76.856750 72.713750 \n", + " imports 26.833500 25.708500 \n", + " installed capacity 680.877699 706.369683 \n", + " net consumption 2608.658934 2609.666644 \n", + " net generation 2952.189018 2945.390728 \n", + " net imports -50.023250 -47.005250 \n", + "Europe distribution losses 313.103557 302.146616 \n", + " exports 430.539587 470.691760 \n", + " imports 448.473861 484.565844 \n", + " installed capacity 1286.459488 1310.856618 \n", + " net consumption 4033.031850 3927.158554 \n", + " net generation 4328.201133 4215.431086 \n", + " net imports 17.934274 13.874084 \n", "Middle East distribution losses 115.606100 121.753000 \n", " exports 17.626000 15.734300 \n", " imports 22.276000 22.482000 \n", @@ -570,20 +519,20 @@ " net consumption 1064.668354 1071.664743 \n", " net generation 1258.865554 1266.906206 \n", " net imports 0.676925 0.889787 \n", - "Eurasia distribution losses 154.118000 153.754000 \n", - " exports 40.875000 42.730000 \n", - " imports 23.860000 18.342000 \n", - " installed capacity 390.910550 401.994603 \n", - " net consumption 1262.879156 1284.746703 \n", - " net generation 1434.012156 1462.888703 \n", - " net imports -17.015000 -24.388000 \n", - "Europe distribution losses 267.504430 266.921146 \n", - " exports 471.845064 433.930077 \n", - " imports 476.049516 442.645825 \n", - " installed capacity 1165.088052 1180.001400 \n", - " net consumption 3357.337241 3423.034178 \n", - " net generation 3620.637219 3681.239576 \n", - " net imports 4.204452 8.715748 \n", + "Eurasia distribution losses 283.011833 282.647833 \n", + " exports 68.759750 70.614750 \n", + " imports 24.632500 19.114500 \n", + " installed capacity 704.632633 715.716686 \n", + " net consumption 2602.340334 2624.207881 \n", + " net generation 2929.479418 2958.355965 \n", + " net imports -44.127250 -51.500250 \n", + "Europe distribution losses 307.118887 306.535603 \n", + " exports 499.598125 461.683138 \n", + " imports 512.493304 479.089613 \n", + " installed capacity 1325.619640 1340.532988 \n", + " net consumption 4010.027085 4075.724022 \n", + " net generation 4304.250793 4364.853150 \n", + " net imports 12.895179 17.406475 \n", "Middle East distribution losses 136.956300 141.557300 \n", " exports 13.304700 14.215200 \n", " imports 24.437000 23.822000 \n", @@ -622,20 +571,20 @@ " net consumption 1078.315722 1096.508255 \n", " net generation 1272.807831 1294.915501 \n", " net imports 1.977989 0.741501 \n", - "Eurasia distribution losses 154.034000 146.006600 \n", - " exports 48.415700 46.370000 \n", - " imports 24.147000 15.632200 \n", - " installed capacity 401.103061 401.195110 \n", - " net consumption 1292.720112 1322.708035 \n", - " net generation 1471.022812 1499.452435 \n", - " net imports -24.268700 -30.737800 \n", - "Europe distribution losses 264.115635 263.468029 \n", - " exports 442.581514 437.706193 \n", - " imports 447.939055 449.761945 \n", - " installed capacity 1206.333686 1240.420809 \n", - " net consumption 3435.042074 3416.313346 \n", - " net generation 3693.800168 3667.725623 \n", - " net imports 5.357541 12.055752 \n", + "Eurasia distribution losses 282.927833 274.900433 \n", + " exports 76.300450 74.254750 \n", + " imports 24.919500 16.404700 \n", + " installed capacity 714.825145 714.917193 \n", + " net consumption 2632.181290 2662.169213 \n", + " net generation 2966.490074 2994.919697 \n", + " net imports -51.380950 -57.850050 \n", + "Europe distribution losses 303.730092 303.082485 \n", + " exports 470.334575 465.459254 \n", + " imports 484.382843 486.205733 \n", + " installed capacity 1366.865274 1400.952397 \n", + " net consumption 4087.731918 4069.003190 \n", + " net generation 4377.413742 4351.339196 \n", + " net imports 14.048268 20.746479 \n", "Middle East distribution losses 152.387842 155.221385 \n", " exports 15.588800 14.144000 \n", " imports 22.874000 31.987000 \n", @@ -674,20 +623,20 @@ " net consumption 1099.521880 1100.092492 \n", " net generation 1297.272494 1294.588889 \n", " net imports 0.889462 1.191218 \n", - "Eurasia distribution losses 143.721300 136.490350 \n", - " exports 45.985000 35.312600 \n", - " imports 15.616000 20.448700 \n", - " installed capacity 410.445709 419.407026 \n", - " net consumption 1338.698063 1333.828760 \n", - " net generation 1512.788363 1485.183010 \n", - " net imports -30.369000 -14.863900 \n", - "Europe distribution losses 257.921395 252.991350 \n", - " exports 436.443023 452.330652 \n", - " imports 454.698469 457.617789 \n", - " installed capacity 1257.748504 1283.759234 \n", - " net consumption 3403.237107 3338.056574 \n", - " net generation 3642.903055 3585.760786 \n", - " net imports 18.255446 5.287137 \n", + "Eurasia distribution losses 272.615133 265.384183 \n", + " exports 73.869750 63.197350 \n", + " imports 16.388500 21.221200 \n", + " installed capacity 724.167792 733.129110 \n", + " net consumption 2678.159241 2673.289939 \n", + " net generation 3008.255625 2980.650272 \n", + " net imports -57.481250 -41.976150 \n", + "Europe distribution losses 297.535852 292.605807 \n", + " exports 464.196084 480.083713 \n", + " imports 491.142257 494.061577 \n", + " installed capacity 1418.280092 1444.290822 \n", + " net consumption 4055.926950 3990.746417 \n", + " net generation 4326.516629 4269.374360 \n", + " net imports 26.946173 13.977864 \n", "Middle East distribution losses 165.089182 163.117147 \n", " exports 13.858000 14.629100 \n", " imports 44.946100 29.050000 \n", @@ -726,20 +675,20 @@ " net consumption 1167.026170 28803.915497 \n", " net generation 1369.853096 34042.722093 \n", " net imports -3.316815 21.609713 \n", - "Eurasia distribution losses 134.429541 6191.071191 \n", - " exports 44.499960 2153.621160 \n", - " imports 25.573638 1343.105638 \n", - " installed capacity 429.383027 14376.875595 \n", - " net consumption 1422.436233 51310.508061 \n", - " net generation 1575.792096 58312.094775 \n", - " net imports -18.926323 -810.515523 \n", - "Europe distribution losses 255.209830 9826.080002 \n", - " exports 479.489800 11959.443446 \n", - " imports 492.571541 12537.719876 \n", - " installed capacity 1322.463584 36286.698399 \n", - " net consumption 3429.832614 121615.173318 \n", - " net generation 3671.960704 130862.976889 \n", - " net imports 13.081741 578.276431 \n", + "Eurasia distribution losses 263.323374 6191.071191 \n", + " exports 72.384710 2153.621160 \n", + " imports 26.346138 1343.105638 \n", + " installed capacity 743.105110 14376.875595 \n", + " net consumption 2761.897411 51310.508061 \n", + " net generation 3071.259358 58312.094775 \n", + " net imports -46.038573 -810.515523 \n", + "Europe distribution losses 294.824287 9826.080002 \n", + " exports 507.242862 11959.443446 \n", + " imports 529.015329 12537.719876 \n", + " installed capacity 1482.995172 36286.698399 \n", + " net consumption 4082.522458 121615.173318 \n", + " net generation 4355.574277 130862.976889 \n", + " net imports 21.772468 578.276431 \n", "Middle East distribution losses 169.089625 2883.897371 \n", " exports 14.358920 240.231720 \n", " imports 28.806431 398.757531 \n", @@ -763,8 +712,73 @@ { "cell_type": "code", "source": [ - "# Agrupar por región y sumar los valores\n", - "df_grouped = df.drop(columns=['Country']).groupby('Region').sum(numeric_only=True)\n", + "\n", + "# Agrupar por 'Region' y obtener la suma de los valores\n", + "df_grouped = df.groupby('Region').sum(numeric_only=True)\n", + "\n", + "# Eliminar la columna 'Total'\n", + "df_groupedeT = df_grouped.drop(columns=['Total'])\n", + "\n", + "# Transponer el DataFrame para que los años sean las columnas y las regiones sean las filas\n", + "df_transposed = df_groupedeT.transpose()\n", + "\n", + "# Crear una figura más grande\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "\n", + "# Crear un mapa de colores\n", + "cmap = cm.get_cmap('tab10')\n", + "\n", + "# Crear un diccionario para asignar un color único a cada región\n", + "region_colors = {region: cmap(i) for i, region in enumerate(df_grouped.index.unique())}\n", + "\n", + "# Para cada región, trazar los valores a lo largo de los años\n", + "for i, (region, values) in enumerate(df_transposed.iteritems()):\n", + " ax.plot(df_transposed.index, values, label=region, color=region_colors[region])\n", + "\n", + "# Rotar las etiquetas del eje x\n", + "plt.xticks(rotation=45)\n", + "\n", + "# Añadir una leyenda fuera del gráfico\n", + "ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')\n", + "\n", + "# Mostrar el gráfico\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 632 + }, + "id": "UAOFyFDLLMo-", + "outputId": "d11301af-6e62-44f7-9308-cbe16b68955d" + }, + "execution_count": 27, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":14: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.\n", + " cmap = cm.get_cmap('tab10')\n", + ":20: FutureWarning: iteritems is deprecated and will be removed in a future version. Use .items instead.\n", + " for i, (region, values) in enumerate(df_transposed.iteritems()):\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFwAAAIOCAYAAACF7xkPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5e0lEQVR4nOzdeZiN9f/H8ec5Z+ac2TeGMVnGvmRfkqT4JiNSRBGKaBP1k0QqlXwrX6VFSpsaJWlDRZEUFZMs2bKUCUOMscy+nTPnnN8fZ+ZwjGWG4cyY1+O6znXu5XPu+31ODXNePovB6XQ6ERERERERERGRUmP0dgEiIiIiIiIiIpcaBS4iIiIiIiIiIqVMgYuIiIiIiIiISClT4CIiIiIiIiIiUsoUuIiIiIiIiIiIlDIFLiIiIiIiIiIipUyBi4iIiIiIiIhIKfPxdgHe5HA4OHDgAMHBwRgMBm+XIyIiIiIiXuJ0OsnIyCA6OhqjUf8uLSLnr0IHLgcOHKBGjRreLkNERERERMqIffv2Ub16dW+XISKXgAoduAQHBwOuP1RDQkK8XI2IiIiIiHhLeno6NWrUcH9HEBE5XxU6cCkcRhQSEqLARURERERENNWAiJQaDU4UERERERERESllClxEREREREREREqZAhcRERERERERkVJWoedwERERERERuRTY7XZsNpu3yxC55Pn6+mIymYrVVoGLiIiIiIhIOeV0OklKSiI1NdXbpYhUGGFhYURFRZ11km0FLiIiIiIiIuVUYdhSpUoVAgICtMqSyAXkdDrJzs4mOTkZgGrVqp2xvQIXERERERGRcshut7vDlkqVKnm7HJEKwd/fH4Dk5GSqVKlyxuFFmjRXRERERESkHCqcsyUgIMDLlYhULIU/c2ebN0mBi4iIiIiISDmmYUQiF1dxf+YUuIiIiIiIiIiIlDIFLiIiIiIiIiIipUyBi4iIiIiIiJQpTqeTe++9l4iICAwGAxs3bjxtW4PBwMKFCy9abSLFpcBFREREREREvCI+Ph6TyUTPnj09ji9ZsoS4uDgWLVrEwYMHadq06WmvcfDgQW644YYLXapIiSlwEREREREREa+YNWsWDz74ID///DMHDhxwH09ISKBatWpcddVVREVF4ePjU+S1VqsVgKioKCwWy0WrWaS4FLiIiIiIiIhcIpxOJ9nWfK88nE5niWrNzMzk008/ZcSIEfTs2ZO4uDgAhg4dyoMPPkhiYiIGg4GYmBgAOnfuzKhRoxg9ejSVK1cmNjYWKDqkaP/+/dx+++1EREQQGBhI27ZtWbNmDeAKcm6++WaqVq1KUFAQ7dq144cffjjvz13kVIrGhCIiIiIiIlIu5djsNHlqqVfuve3ZWALMxf+K+dlnn9GoUSMaNmzI4MGDGT16NBMmTOC1116jbt26vPPOO6xduxaTyeR+zezZsxkxYgSrVq065TUzMzO59tprueyyy/j666+Jiopiw4YNOBwO9/kePXrw3HPPYbFY+PDDD+nVqxc7d+6kZs2a5/cBiJxEgYuIiIiIiFx8TifYreCjoSAV1axZsxg8eDAA3bt3Jy0tjZUrV9K5c2eCg4MxmUxERUV5vKZ+/fpMnTr1tNecO3cuhw8fZu3atURERABQr1499/kWLVrQokUL9/7kyZNZsGABX3/9NaNGjSrNtyeiwEVERERERLxg48fw66tw4ytQu5O3q7lk+Pua2PZsrNfuXVw7d+7k999/Z8GCBQD4+PjQv39/Zs2aRefOnU/7ujZt2pzxuhs3bqRVq1busOVkmZmZPPPMMyxevJiDBw+Sn59PTk4OiYmJxa5dpLgUuIiIiIiIyMWVdRS+nwg5x+DABgUupchgMJRoWI+3zJo1i/z8fKKjo93HnE4nFouFGTNmnPZ1gYGBZ7yuv7//Gc+PHTuWZcuW8dJLL1GvXj38/f3p16+fewJekdJU9n8SRURERETk0vLDU66wpcrlcOUD3q5GLrL8/Hw+/PBDpk2bRrdu3TzO9e7dm08++eScr928eXPee+89jh07dspeLqtWrWLo0KH06dMHcPV42bNnzznfT+RMtEqRiIiIiIhcPHtXwx9zXNs3vgImX+/WIxfdokWLSElJYfjw4TRt2tTj0bdvX2bNmnXO17799tuJioqid+/erFq1in/++Ycvv/yS+Ph4wDUHzPz589m4cSObNm1i4MCB7gl1RUqbAhcREREREbk48q2w6GHXdpuhULO9V8sR75g1axZdu3YlNDS0yLm+ffuybt060tPTz+naZrOZ77//nipVqtCjRw+aNWvGlClT3Csdvfzyy4SHh3PVVVfRq1cvYmNjad269Xm9H5HTMThLulj6JSQ9PZ3Q0FDS0tIICQnxdjkiIiIiIpe2X16G5ZMgoDKMWgsBp57Y1BvK43eD3Nxcdu/eTe3atfHz8/N2OSIVRnF/9tTDRURERERELryUPbCyYDnf2OfKVNgiInIhKHAREREREZELy+mExWMhPwdiOkHz/t6uSETkglPgIiIiIiIiF9a2r2DXMjCZXRPlGgzerkhE5IJT4CIiIiIiIhdObjosecy13XE0VK7v1XJERC6WEgUuM2fOpHnz5oSEhBASEkKHDh347rvv3Odzc3MZOXIklSpVIigoiL59+3Lo0CGPayQmJtKzZ08CAgKoUqUKjz76KPn5+R5tVqxYQevWrbFYLNSrV4+4uLgitbzxxhvExMTg5+dH+/bt+f3330vyVkRERERE5GL46XnIOAjhtaHTI96uRkTkoilR4FK9enWmTJnC+vXrWbduHf/5z3+4+eab+fPPPwF4+OGH+eabb/j8889ZuXIlBw4c4JZbbnG/3m6307NnT6xWK6tXr2b27NnExcXx1FNPudvs3r2bnj170qVLFzZu3Mjo0aO5++67Wbp0qbvNp59+ypgxY3j66afZsGEDLVq0IDY2luTk5PP9PEREREREpLQc2Ai/v+3avvFl8NVKOiJScZz3stARERG8+OKL9OvXj8jISObOnUu/fv0A2LFjB40bNyY+Pp4rr7yS7777jhtvvJEDBw5QtWpVAN566y3Gjx/P4cOHMZvNjB8/nsWLF7N161b3PQYMGEBqaipLliwBoH379rRr144ZM2YA4HA4qFGjBg8++CCPPfZYsWsvj0u/iYiIiIiUCw47vHcdHPgDmvaDfrO8XdEZlcfvBloWWsQ7Lviy0Ha7nXnz5pGVlUWHDh1Yv349NpuNrl27uts0atSImjVrEh8fD0B8fDzNmjVzhy0AsbGxpKenu3vJxMfHe1yjsE3hNaxWK+vXr/doYzQa6dq1q7vN6eTl5ZGenu7xEBERERGRC2Dd+66wxRIKsc97uxoRkYuuxIHLli1bCAoKwmKxcP/997NgwQKaNGlCUlISZrOZsLAwj/ZVq1YlKSkJgKSkJI+wpfB84bkztUlPTycnJ4cjR45gt9tP2abwGqfzwgsvEBoa6n7UqFGjpG9fRERERETOJv0gLH/WtX3dRAiueub2IiW0Z88eDAYDGzdu9HYp5Ubnzp0ZPXq0t8uoUEocuDRs2JCNGzeyZs0aRowYwZAhQ9i2bduFqK3UTZgwgbS0NPdj37593i5JREREROTSs/RxyEuHy9pA22HerkbKsPj4eEwmEz179izR62rUqMHBgwdp2rTped3f4XAwfvx4oqOj8ff3p3nz5nz11VfFfv2iRYu49tprCQ4OJiAggHbt2p1y0ZeyYP78+UyePNnbZVQoJQ5czGYz9erVo02bNrzwwgu0aNGC1157jaioKKxWK6mpqR7tDx06RFRUFABRUVFFVi0q3D9bm5CQEPz9/alcuTImk+mUbQqvcToWi8W9wlLhQ0REREREStGuH+DP+WAwwo2vgNHk7YqkDJs1axYPPvggP//8MwcOHCj260wmE1FRUfj4+JzX/efMmcMrr7zCyy+/zPbt23n55ZcJDAws1mtff/11br75Zjp27MiaNWvYvHkzAwYM4P7772fs2LHnVdeFEBERQXBwsLfLqFDOeQ6XQg6Hg7y8PNq0aYOvry/Lly93n9u5cyeJiYl06NABgA4dOrBlyxaP1YSWLVtGSEgITZo0cbc58RqFbQqvYTabadOmjUcbh8PB8uXL3W1ERERERMQLbDmwuGDp5/YjoFoL79YjZVpmZiaffvopI0aMoGfPnkV6hqSkpDBo0CAiIyPx9/enfv36fPDBB0DRIUV2u53hw4dTu3Zt/P39adiwIa+99tpZazAajURGRjJgwABiYmLo2rVrkTlFT2Xfvn088sgjjB49mueff54mTZpQr149HnnkEV588UWmTZvGmjVr3O3//PNPbrzxRkJCQggODqZTp04kJCS4z7/33ns0btwYPz8/GjVqxJtvvulxv/Hjx9OgQQMCAgKoU6cOEydOxGazuc8/88wztGzZko8++oiYmBhCQ0MZMGAAGRkZ7jYnDyn66KOPaNu2LcHBwURFRTFw4ECt/FvKShQHTpgwgRtuuIGaNWuSkZHB3LlzWbFiBUuXLiU0NJThw4czZswYIiIiCAkJ4cEHH6RDhw5ceeWVAHTr1o0mTZpwxx13MHXqVJKSknjyyScZOXIkFosFgPvvv58ZM2Ywbtw4hg0bxo8//shnn33G4sWL3XWMGTOGIUOG0LZtW6644gpeffVVsrKyuOuuu0rxoxERERERkRL5ZRqk7IHgaOgywdvVVExOJ9iyvXNv3wAwGIrd/LPPPqNRo0Y0bNiQwYMHM3r0aCZMmICh4BoTJ05k27ZtfPfdd1SuXJldu3aRk5Nzyms5HA6qV6/O559/TqVKlVi9ejX33nsv1apV47bbbjttDddddx1paWlMnDixRMNtvvjiC2w22yl7stx33308/vjjfPLJJ7Rv355///2Xa665hs6dO/Pjjz8SEhLCqlWryM/PB+Djjz/mqaeeYsaMGbRq1Yo//viDe+65h8DAQIYMGQJAcHAwcXFxREdHs2XLFu655x6Cg4MZN26c+74JCQksXLiQRYsWkZKSwm233caUKVN47rnnTvkebDYbkydPpmHDhiQnJzNmzBiGDh3Kt99+W+zPQc6sRIFLcnIyd955JwcPHiQ0NJTmzZuzdOlSrr/+egBeeeUVjEYjffv2JS8vj9jYWI9kzmQysWjRIkaMGEGHDh3c/wM9++yz7ja1a9dm8eLFPPzww7z22mtUr16d9957j9jYWHeb/v37c/jwYZ566imSkpJo2bIlS5YsKTKRroiIiIiIXCSHd8Kvr7q2b/gfWDR0wSts2fB8tHfu/fgBMBdvOA64hhMNHjwYgO7du5OWlsbKlSvp3LkzAImJibRq1Yq2bdsCEBMTc9pr+fr6MmnSJPd+7dq1iY+P57PPPjtt4JKdnc3111/PwIEDWbZsGTk5Obz44ovuwCckJIT333+ffv36FXntX3/9RWhoKNWqVStyzmw2U6dOHf766y8A3njjDUJDQ5k3bx6+vr4ANGjQwN3+6aefZtq0adxyyy3u2rdt28bbb7/tDlyefPJJd/uYmBjGjh3LvHnzPAIXh8NBXFyce9jQHXfcwfLly08buAwbdnx+pTp16jB9+nTatWtHZmYmQUFBp3yNlEyJApdZs2ad8byfnx9vvPEGb7zxxmnb1KpV66yJWefOnfnjjz/O2GbUqFGMGjXqjG1EREREROQicDph0Rhw2KBBd2jcy9sVSRm3c+dOfv/9dxYsWACAj48P/fv3Z9asWe7AZcSIEfTt25cNGzbQrVs3evfuzVVXXXXaa77xxhu8//77JCYmkpOTg9VqpWXLlqdtHxcXR2pqKm+88QaZmZl07tyZu+66i/fee4/9+/eTmZlJx44dz/u9bty4kU6dOrnDlhNlZWWRkJDA8OHDueeee9zH8/PzCQ0Nde9/+umnTJ8+nYSEBDIzM8nPzy8yJ2lMTIzHHC3VqlU74xCh9evX88wzz7Bp0yZSUlJwOByAK+gqnPJDzs/5zTAkIiIiIiKyaR7s/RV8/OGGqSUaViKlzDfA1dPEW/cuplmzZpGfn0909PHeOE6nE4vFwowZMwgNDeWGG25g7969fPvttyxbtozrrruOkSNH8tJLLxW53rx58xg7dizTpk2jQ4cOBAcH8+KLL3rMo3KyzZs3c/nll+Pr60t4eDjLli2jU6dO9OnTh/r169O9e/dT9mABVw+VtLQ0Dhw44PEeAKxWKwkJCXTp0gUAf3//09aQmZkJwLvvvkv79u09zplMrgmn4+PjGTRoEJMmTSI2NtbdW2batGke7U8OdAwGgztEOVlWVhaxsbHExsby8ccfExkZSWJiIrGxsVit1tPWKyWjwEVERERERM5d9jH4/gnXdufHILyWd+up6AyGEg3r8Yb8/Hw+/PBDpk2bRrdu3TzO9e7dm08++YT7778fgMjISIYMGcKQIUPo1KkTjz766CkDl1WrVnHVVVfxwAMPuI+dOCntqVx22WUsWLCAjIwMgoODqVKlCj/88AOdOnVi0aJFrF+//rSv7du3L+PHj2fatGlFgo+33nqLrKwsbr/9dgCaN2/O7NmzsdlsRUKRqlWrEh0dzT///MOgQYNOea/Vq1dTq1YtnnjiCfexvXv3nvG9nc2OHTs4evQoU6ZMoUaNGgCsW7fuvK4pRZ33KkUiIiIiIlKB/fA0ZB+FyMbQYaS3q5FyoHBS1+HDh9O0aVOPR9++fd1TWTz11FN89dVX7Nq1iz///JNFixbRuHHjU16zfv36rFu3jqVLl/LXX38xceJE1q5de8Y6hg8fjt1u56abbmL16tXs3LmTpUuXkpmZSUBAwBmn1KhZsyZTp07l1Vdf5YknnmDHjh0kJCTw8ssvM27cOB555BF3j5VRo0aRnp7OgAEDWLduHX///TcfffQRO3fuBGDSpEm88MILTJ8+nb/++ostW7bwwQcf8PLLL7vfW2JiIvPmzSMhIYHp06e7h2Kdq5o1a2I2m3n99df5559/+Prrr0s0abAUjwIXERERERE5N3vjYcOHru1er4Kp6BwVIiebNWsWXbt29ZijpFDfvn1Zt24dmzdvxmw2M2HCBJo3b84111yDyWRi3rx5p7zmfffdxy233EL//v1p3749R48e9ejtcirR0dH8/vvvVK5cmVtuuYVWrVrx4Ycf8uGHH7J48WLeeecdd+hxKqNHj2bBggX88ssvtG3blqZNmzJ37lxmzpzp0QunUqVK/Pjjj2RmZnLttdfSpk0b3n33XXdvl7vvvpv33nuPDz74gGbNmnHttdcSFxdH7dq1Abjpppt4+OGHGTVqFC1btmT16tVMnDjxrJ/zmURGRhIXF8fnn39OkyZNmDJlyil7Dsn5MTidTqe3i/CW9PR0QkNDSUtLKzLhkIiIiIiInIHdBm91gsPbofWdcNPr3q7ovJTH7wa5ubns3r2b2rVr4+fn5+1yRCqM4v7sqYeLiIiIiIiUXPwbrrAloBJ0nXT29iIiFYwCFxERERERKZmUvbBiimu7238hIMK79YiIlEEKXEREREREpPgObYPP7oT8HKh1NbS43dsViYiUSVoWWkREREREzi43zdWrZc3b4LSDORhufMW1DLGIiBShwEVERERERE7P6YTNn8H3T0JWsutY414Q+zyE1fRubSIiZZgCFxERERERObWkrfDto5C42rUfURd6TIV6Xb1bl4hIOaDARUREREREPOWmwU8vwO/vuIYP+QbANWOhwyjwsXi7OhGRckGBi4iIiIiIuDidsGkeLHvqhOFDNxUMH6rh3dpERMoZBS4iIiIiIgJJW2DxWNj3m2u/Uj3o8SLU/Y936xIRKae0LLSIiIiISEWWkwrfjoO3r3GFLb4BcN3TMGK1whaRU4iJieHVV1/1dhkXhMFgYOHChd4u47wNHTqU3r17e7sMBS4iIiIiIhWSwwEb58KMtvD72+B0QJPeMGotdBqjuVrkgktKSuLBBx+kTp06WCwWatSoQa9evVi+fHmp3qdz586MHj26VK95Nrt27SI2NpaQkBAiIiK44YYbOHz48FlfZ7fbmTJlCo0aNcLf35+IiAjat2/Pe++9V6r1PfPMM7Rs2bJUr/nJJ59gMpkYOXJkqV73XLz22mvExcV5uwwNKRIRERERqXAOboZvx8K+Na79SvULhg918W5dUmHs2bOHjh07EhYWxosvvkizZs2w2WwsXbqUkSNHsmPHjotaj9PpxG634+NTOl+R7733XtLS0li5ciUBAQHEx8fjdDrP+rpJkybx9ttvM2PGDNq2bUt6ejrr1q0jJSWlVOq6kGbNmsW4ceN4++23mTZtGn5+fhe9BrvdjsFgIDQ09KLf+1TUw0VEREREpKLIz4MlE+Cda11hi28gdJ1UMHxIYYtcPA888AAGg4Hff/+dvn370qBBAy6//HLGjBnDb7/95m6XmprK3XffTWRkJCEhIfznP/9h06ZN7vOFPTU++ugjYmJiCA0NZcCAAWRkZACuoSUrV67ktddew2AwYDAY2LNnDytWrMBgMPDdd9/Rpk0bLBYLv/76KwkJCdx8881UrVqVoKAg2rVrxw8//FDi92c0GomNjaVVq1Y0bNiQoUOHUqVKlbO+7uuvv+aBBx7g1ltvpXbt2rRo0YLhw4czduxYd5u8vDweeughqlSpgp+fH1dffTVr1651n4+LiyMsLMzjugsXLsRgMLjPT5o0iU2bNrk/kxN7gxw5coQ+ffoQEBBA/fr1+frrr89a9+7du1m9ejWPPfYYDRo0YP78+R7nC2tatGgRDRs2JCAggH79+pGdnc3s2bOJiYkhPDychx56CLvd7vFex44dy2WXXUZgYCDt27dnxYoVRa779ddf06RJEywWC4mJiUWGFDkcDqZOnUq9evWwWCzUrFmT5557zn1+/PjxNGjQgICAAOrUqcPEiROx2Wxnfd9no8BFRERERKQiSNsPH9wAv73pGj50eR/X8KGrR4OP2dvVSSlxOp1k27K98ihODw6AY8eOsWTJEkaOHElgYGCR8yeGBbfeeivJycl89913rF+/ntatW3Pddddx7Ngxd5uEhAQWLlzIokWLWLRoEStXrmTKlCmAa2hJhw4duOeeezh48CAHDx6kRo3jK2499thjTJkyhe3bt9O8eXMyMzPp0aMHy5cv548//qB79+706tWLxMTEEv13uPnmm3nzzTfZsGFDiV4XFRXFjz/+eMbhR+PGjePLL79k9uzZbNiwgXr16hEbG+vxmZxJ//79eeSRR7j88svdn0n//v3d5ydNmsRtt93G5s2b6dGjB4MGDTrrtT/44AN69uxJaGgogwcPZtasWUXaZGdnM336dObNm8eSJUtYsWIFffr04dtvv+Xbb7/lo48+4u233+aLL75wv2bUqFHEx8czb948Nm/ezK233kr37t35+++/Pa77v//9j/fee48///zzlMHWhAkTmDJlChMnTmTbtm3MnTuXqlWrus8HBwcTFxfHtm3beO2113j33Xd55ZVXivV5nomGFImIiIiIXOr+WQFfDIPso+AXBre8Aw1ivV2VXAA5+Tm0n9veK/deM3ANAb4BZ223a9cunE4njRo1OmO7X3/9ld9//53k5GQsFtecQi+99BILFy7kiy++4N577wVcvRfi4uIIDg4G4I477mD58uU899xzhIaGYjabCQgIICoqqsg9nn32Wa6//nr3fkREBC1atHDvT548mQULFvD1118zatSos38IwI8//shjjz3GpEmTuPHGG/n000/p1KkTAF9++SVDhw5198A52csvv0y/fv2Iiori8ssv56qrruLmm2/mhhtuACArK4uZM2cSFxfnPvbuu++ybNkyZs2axaOPPnrW+vz9/QkKCsLHx+eUn8nQoUO5/fbbAXj++eeZPn06v//+O927dz/l9Qo//9dffx2AAQMG8Mgjj7B7925q167tbmez2Zg5cyZ169YFoF+/fnz00UccOnSIoKAgmjRpQpcuXfjpp5/o378/iYmJfPDBByQmJhIdHQ3A2LFjWbJkCR988AHPP/+8+7pvvvmmx3+3E2VkZPDaa68xY8YMhgwZAkDdunW5+uqr3W2efPJJ93ZMTAxjx45l3rx5jBs37qyf55moh4uIiIiIyKXK6YRfXoaP+rjClqjmcN9KhS3iVcXtCbNp0yYyMzOpVKkSQUFB7sfu3btJSEhwt4uJiXGHLQDVqlUjOTm5WPdo27atx35mZiZjx46lcePGhIWFERQUxPbt20vUw+Wxxx5j5MiRjB07llmzZtGrVy+++eYbALZs2eLxRf9kTZo0YevWrfz2228MGzaM5ORkevXqxd133w24evPYbDY6duzofo2vry9XXHEF27dvL3aNZ9K8eXP3dmBgICEhIWf8PJctW0ZWVhY9evQAoHLlylx//fW8//77Hu0CAgLcYQtA1apViYmJISgoyONY4b22bNmC3W6nQYMGHv/9V65c6fHf32w2e9R8su3bt5OXl8d111132jaffvopHTt2JCoqiqCgIJ588skS92o6FfVwERERERG5FOWmwcIHYMci137LwdDzJfD1925dckH5+/izZuAar927OOrXr4/BYDjrxLiZmZlUq1bNY86OQicOO/L19fU4ZzAYcDgcxarl5CFNY8eOZdmyZbz00kvUq1cPf39/+vXrh9VqLdb1ADZv3szDDz8MwA033MCsWbO49dZbmTFjBnFxcUydOvWMrzcajbRr14527doxevRo5syZwx133METTzxRrPsbjcYioVZJ5iMp6ec5a9Ysjh07hr//8f/+DoeDzZs3M2nSJIxG42mve6Z7ZWZmYjKZWL9+PSaTyaPdiSGNv7+/e36aUzmxrlOJj49n0KBBTJo0idjYWEJDQ5k3bx7Tpk074+uKQ4GLiIiIiMil5tA2+HQwHEsAk9m1AlHrIXCGLyVyaTAYDMUa1uNNERERxMbG8sYbb/DQQw8VCT1SU1MJCwujdevWJCUl4ePjQ0xMzDnfz2w2e0zEeiarVq1i6NCh9OnTB3B96d+zZ0+J7nfZZZfx888/u4fl9O3bl8zMTO666y6aN2/OrbfeWqLrNWnSBHANJ6pbty5ms5lVq1ZRq1YtwBWmrF271r30dWRkJBkZGWRlZbk/240bN3pcsySfyZkcPXqUr776innz5nH55Ze7j9vtdq6++mq+//770w5FOptWrVpht9tJTk52D8k6F/Xr18ff35/ly5e7ewqdaPXq1dSqVcsj0Nq7d+853+9EClxERERERC4lW76Arx8EWzaEVIf+H8JlbbxdlYiHN954g44dO3LFFVfw7LPP0rx5c/Lz81m2bBkzZ85k+/btdO3alQ4dOtC7d2+mTp1KgwYNOHDgAIsXL6ZPnz5FhgOdTkxMDGvWrGHPnj0EBQURERFx2rb169dn/vz59OrVC4PBwMSJE4vdW6bQuHHjeOCBB4iKiqJ///6kpaURHx9PQEAAO3bsYNWqVacdVtSvXz86duzIVVddRVRUFLt372bChAk0aNCARo0a4ePjw4gRI3j00UeJiIigZs2aTJ06lezsbIYPHw5A+/btCQgI4PHHH+ehhx5izZo1HqsQFX4mu3fvZuPGjVSvXp3g4GD3PDkl8dFHH1GpUiVuu+22Ir1MevTowaxZs845cGnQoAGDBg3izjvvZNq0abRq1YrDhw+zfPlymjdvTs+ePYt1HT8/P8aPH8+4ceMwm8107NiRw4cP8+effzJ8+HDq169PYmIi8+bNo127dixevJgFCxacU80n0xwuIiIiIiKXArsNvnsMvhzuClvqdIb7flbYImVSnTp12LBhA126dOGRRx6hadOmXH/99SxfvpyZM2cCrt463377Lddccw133XUXDRo0YMCAAezdu9djhZmzGTt2LCaTiSZNmhAZGXnGuTlefvllwsPDueqqq+jVqxexsbG0bt26RO/tvvvu49NPP+Wbb76hTZs23HTTTVitVnbs2MEdd9xB7969PVbZOVFsbCzffPMNvXr1okGDBgwZMoRGjRrx/fff4+Pj6i8xZcoU+vbtyx133EHr1q3ZtWsXS5cuJTw8HHD1IJozZw7ffvstzZo145NPPuGZZ57xuE/fvn3p3r07Xbp0ITIykk8++aRE77HQ+++/T58+fU45pKdv3758/fXXHDly5JyuDa7Vj+68804eeeQRGjZsSO/evVm7di01a9Ys0XUmTpzII488wlNPPUXjxo3p37+/e66Ym266iYcffphRo0bRsmVLVq9ezcSJE8+55hMZnMWdsegSlJ6eTmhoKGlpaYSEhHi7HBERERGRc5ORBJ8NgX2/ufY7PQJdngCj6cyvE7fy+N0gNzfXvRKMn5+ft8sRqTCK+7OnIUUiIiIiIuXZnlXw+VDISgZLCPR5CxoVr6u9iIhcOApcRERERETKI6cTfnsTvp8ITjtUaQL950Clumd/rYiIXHAKXEREREREypu8TPh6FPxZMLFjs1uh12tgDjzz60RE5KJR4CIiIiIiUp4c/su15PORnWD0gdgX4Ip7tOSziEgZo8BFRERERKS82PY1LHwArBkQXA1unQ0123u7KhEROQUFLiIiIiIi5cHmz2D+Pa7tWldDv/chuPhL44qIyMWlwEVEREREpKxL+BEWjnBttx0GN7wIJv0qLyJSlulPaRERERGRsuzgJvj0DnDkQ9O+0GMaGI3erkpERM5Cf1KLiIiIiJRVKXvg41vBmgkxnaD3TIUtIiLlhP60FhEREREpi7KOwpy+kHkIqjaFAR+Dj8XbVYlc0jp37szo0aO9XYZcIhS4iIiIiIiUNdZs+KQ/HN0FoTVg0BfgF+rtqkRKzdChQzEYDEUe3bt392pd8+fPZ/LkyV6tQS4dmsNFRERERKQssefDF8Ng/1rwC4PBX0JINW9XJVLqunfvzgcffOBxzGI5t15cTqcTu92Oj8/5fcWNiIg4r9eLnEg9XEREREREygqnExaPgb++Ax8/GPgpRDb0dlUiF4TFYiEqKsrjER4ezp49ezAYDGzcuNHdNjU1FYPBwIoVKwBYsWIFBoOB7777jjZt2mCxWPj1119JSEjg5ptvpmrVqgQFBdGuXTt++OEHj/u++eab1K9fHz8/P6pWrUq/fv3c504eUvTRRx/Rtm1bgoODiYqKYuDAgSQnJ1/Ij0UuIerhIiIiIiJSVqycChtmg8EIfd+Dmld6uyIpZ5xOJ86cHK/c2+Dvj8FguKj3fOyxx3jppZeoU6cO4eHh7Nu3jx49evDcc89hsVj48MMP6dWrFzt37qRmzZqsW7eOhx56iI8++oirrrqKY8eO8csvv5z2+jabjcmTJ9OwYUOSk5MZM2YMQ4cO5dtvv72I71LKKwUuIiIiIiJlwYYPYcXzru0eL0LjXt6tR8olZ04OO1u38cq9G25YjyEgoNjtFy1aRFBQkMexxx9/nIEDBxb7Gs8++yzXX3+9ez8iIoIWLVq49ydPnsyCBQv4+uuvGTVqFImJiQQGBnLjjTcSHBxMrVq1aNWq1WmvP2zYMPd2nTp1mD59Ou3atSMzM7NI7SInU+AiIiIiIuJtfy2Fb0a7tjs9Au3u9mo5IhdDly5dmDlzpsexiIgI0tPTi32Ntm3beuxnZmbyzDPPsHjxYg4ePEh+fj45OTkkJiYCcP3111OrVi3q1KlD9+7d6d69O3369CHgNEHR+vXreeaZZ9i0aRMpKSk4HA4AEhMTadKkSUnerlRAClxERERERLxp/zr4bAg47dBiIPxnorcrknLM4O9Pww3rvXbvkggMDKRevXpFjmdmZgKu4VGFbDbbaa9xorFjx7Js2TJeeukl6tWrh7+/P/369cNqtQIQHBzMhg0bWLFiBd9//z1PPfUUzzzzDGvXriUsLMzjWllZWcTGxhIbG8vHH39MZGQkiYmJxMbGuq8nciYKXEREREREvOXILph7G+TnQN3r4KbpcJHnwJBLi8FgKNGwnrIoMjISgIMHD7qH+5w4ge6ZrFq1iqFDh9KnTx/AFd7s2bPHo42Pjw9du3ala9euPP3004SFhfHjjz9yyy23eLTbsWMHR48eZcqUKdSoUQOAdevWncc7k4pGgYuIiIiIiDdkJsOcWyD7KFRrCbd9CCZfb1clctHk5eWRlJTkcczHx4fKlStz5ZVXMmXKFGrXrk1ycjJPPvlksa5Zv3595s+fT69evTAYDEycONE9DAhc88b8888/XHPNNYSHh/Ptt9/icDho2LDoamA1a9bEbDbz+uuvc//997N161YmT558fm9aKhQtCy0iIiIicrHlZcDH/SB1L4THwKDPwaIJOKViWbJkCdWqVfN4XH311QC8//775Ofn06ZNG0aPHs1///vfYl3z5ZdfJjw8nKuuuopevXoRGxtL69at3efDwsKYP38+//nPf2jcuDFvvfUWn3zyCZdffnmRa0VGRhIXF8fnn39OkyZNmDJlCi+99FLpvHmpEAzOEwfGVTDp6emEhoaSlpZGSEiIt8sRERERkYrAbnMNI0r4EQIqwfBlUKmut6uq8Mrjd4Pc3Fx2795N7dq18fPz83Y5IhVGcX/21MNFRERERORicTrh6wddYYtvAAz8XGGLiMglSoGLiIiIiMjFsvxZ2PQJGExw62yo3sbbFYmIyAWiwEVERERE5GJY8w78+rJru9dr0KCbd+sREZELSoGLiIiIiMiFtmMxfDfOtd3lCWh9h3frERGRC06Bi4iIiIjIhXRgI3x5N+CENkPhmke9XJCIiFwMClxERERERC6U9APwyQCwZUOdLtDjJTAYvF2ViIhcBApcREREREQuBGuWK2zJOAiVG8KtcWDy9XZVIiJykShwEREREREpbQ4HzL8XDm6CgEow8FPwD/N2VSIichEpcBERERERKW3LJ8GORWAyw4C5EFHb2xWJiMhFpsBFRERERKQ0/TEHVr3q2r75Dah5pVfLERER71DgIiIiIiJSWvb8Ct+Mdm1fMw6a3+bVckTKqqFDh2IwGIo8unfv7u3SREpNiQKXF154gXbt2hEcHEyVKlXo3bs3O3fu9GjTuXPnIj80999/v0ebxMREevbsSUBAAFWqVOHRRx8lPz/fo82KFSto3bo1FouFevXqERcXV6SeN954g5iYGPz8/Gjfvj2///57Sd6OiIiIiEjpOZoAnw4Ghw0u7wOdJ3i7IpEyrXv37hw8eNDj8cknn5zTtZxOZ5HvlCLeVqLAZeXKlYwcOZLffvuNZcuWYbPZ6NatG1lZWR7t7rnnHo8fmqlTp7rP2e12evbsidVqZfXq1cyePZu4uDieeuopd5vdu3fTs2dPunTpwsaNGxk9ejR33303S5cudbf59NNPGTNmDE8//TQbNmygRYsWxMbGkpycfK6fhYiIiIjIuck+BnNvg5wUuKwN9J4JRnUmFzkTi8VCVFSUxyM8PJw9e/ZgMBjYuHGju21qaioGg4EVK1YArn+gNxgMfPfdd7Rp0waLxcKvv/5KXl4eDz30EFWqVMHPz4+rr76atWvXuq9T+LrFixfTvHlz/Pz8uPLKK9m6datHbb/++iudOnXC39+fGjVq8NBDDxX53ityNiX6W2DJkiUMHTqUyy+/nBYtWhAXF0diYiLr16/3aBcQEODxQxMSEuI+9/3337Nt2zbmzJlDy5YtueGGG5g8eTJvvPEGVqsVgLfeeovatWszbdo0GjduzKhRo+jXrx+vvPKK+zovv/wy99xzD3fddRdNmjThrbfeIiAggPfff/+09efl5ZGenu7xEBERERE5L/lW+OxOOLoLQmvAgE/A19/bVUkF5XQ6seXZvfJwOp0X/f0+9thjTJkyhe3bt9O8eXPGjRvHl19+yezZs9mwYQP16tUjNjaWY8eOebzu0UcfZdq0aaxdu5bIyEh69eqFzWYDICEhge7du9O3b182b97Mp59+yq+//sqoUaMu+vuT8s3nfF6clpYGQEREhMfxjz/+mDlz5hAVFUWvXr2YOHEiAQEBAMTHx9OsWTOqVq3qbh8bG8uIESP4888/adWqFfHx8XTt2tXjmrGxsYwePRoAq9XK+vXrmTDheDdNo9FI165diY+PP229L7zwApMmTTqftywiIiIicpzTCYvHwJ5fwBwEt8+D4Kpnf53IBZJvdfDO/630yr3vfe1afC2mYrdftGgRQUFBHscef/xxBg4cWOxrPPvss1x//fUAZGVlMXPmTOLi4rjhhhsAePfdd1m2bBmzZs3i0Ucfdb/u6aefdr9u9uzZVK9enQULFnDbbbfxwgsvMGjQIPf3z/r16zN9+nSuvfZaZs6ciZ+fX7Hrk4rtnAMXh8PB6NGj6dixI02bNnUfHzhwILVq1SI6OprNmzczfvx4du7cyfz58wFISkryCFsA935SUtIZ26Snp5OTk0NKSgp2u/2UbXbs2HHamidMmMCYMWPc++np6dSoUeMc3r2IiIiICLD6dfjjIzAYod/7ENX07K8REQC6dOnCzJkzPY5FRESUaCRC27Zt3dsJCQnYbDY6duzoPubr68sVV1zB9u3bPV7XoUMHj3s2bNjQ3WbTpk1s3ryZjz/+2N3G6XTicDjYvXs3jRs3LnZ9UrGdc+AycuRItm7dyq+//upx/N5773VvN2vWjGrVqnHdddeRkJBA3bp1z73SUmCxWLBYLF6tQUREREQuEdsXwbKCeQhjn4cGsd6tRwTwMRu597VrvXbvkggMDKRevXpFjmdmZgJ4DFEqHO5zqmuUtszMTO677z4eeuihIudq1qxZ6veTS9c5BS6jRo1i0aJF/Pzzz1SvXv2Mbdu3bw/Arl27qFu3LlFRUUVWEzp06BAAUVFR7ufCYye2CQkJwd/fH5PJhMlkOmWbwmuIiIiIiFwwBzfB/HsAJ7QdDu3vP+tLRC4Gg8FQomE9ZVFkZCQABw8epFWrVgAeE+ieTt26dTGbzaxatYpatWoBrqBm7dq17uFBhX777Td3eJKSksJff/3l7rnSunVrtm3bdsowSKQkShRBOp1ORo0axYIFC/jxxx+pXbv2WV9T+INRrVo1wNV1a8uWLR6rCS1btoyQkBCaNGnibrN8+XKP6yxbtszd7ctsNtOmTRuPNg6Hg+XLl3t0DRMRERERKXXpB2DuALBlQ50ucMP/wGDwdlUi5U5eXh5JSUkejyNHjuDv78+VV17pngx35cqVPPnkk2e9XmBgICNGjODRRx9lyZIlbNu2jXvuuYfs7GyGDx/u0fbZZ59l+fLlbN26laFDh1K5cmV69+4NwPjx41m9ejWjRo1i48aN/P3333z11VeaNFdKrEQ9XEaOHMncuXP56quvCA4Ods+5Ehoair+/PwkJCcydO5cePXpQqVIlNm/ezMMPP8w111xD8+bNAejWrRtNmjThjjvuYOrUqSQlJfHkk08ycuRI93Cf+++/nxkzZjBu3DiGDRvGjz/+yGeffcbixYvdtYwZM4YhQ4bQtm1brrjiCl599VWysrK46667SuuzERERERHxZM2CTwZAxgGo3BBujQOTr7erEimXlixZ4v6H+UINGzZkx44dvP/++wwfPpw2bdrQsGFDpk6dSrdu3c56zSlTpuBwOLjjjjvIyMigbdu2LF26lPDw8CLt/u///o+///6bli1b8s0332A2mwFo3rw5K1eu5IknnqBTp044nU7q1q1L//79S+/NS4VgcJZg7S7DaZL7Dz74gKFDh7Jv3z4GDx7M1q1bycrKokaNGvTp04cnn3zSY2novXv3MmLECFasWEFgYCBDhgxhypQp+Pgcz39WrFjBww8/zLZt26hevToTJ05k6NChHvedMWMGL774IklJSbRs2ZLp06e7hzAVR3p6OqGhoaSlpXnUJyIiIiJShMMBn98J27+BgEpw93KIOHuPbykfyuN3g9zcXHbv3k3t2rW1ck4xrVixgi5dupCSkkJYWJi3y5Fyqrg/eyUKXC415fEPVRERERHxkh+egV9fAZMZhnwDNa/0dkVSisrjdwMFLiWnwEVKQ3F/9ko2jbSIiIiISEX0xxxX2AJw0wyFLSIiclbnvCy0iIiIiEiFsPtn+Ga0a/uaR6GF5nEQKa86d+5MBR7kIReZeriIiIiIiJzO3tWuFYkcNri8D3R+3NsViYhIOaHARURERETkVBJ/g49vBVsW1P0P9H4LjPr1WUREikd/Y4iIiIiInGzfWpjTD6yZUPtaGDAXfDUpqYiIFJ8CFxERERGRE/27HubcAtYMiOkEt88DX39vVyUiIuWMAhcRERERkUIH/oCP+kBeOtS8CgZ+CuYAb1clIiLlkAIXERERERGAg5vgw96QmwY1roRBn4M50NtViYhIOaXARUREREQkaQt8eDPkpkL1K2DwF2AJ8nZVIlKgc+fOjB49+oxtYmJiePXVV8/YxmAwsHDhQgD27NmDwWBg48aNpVKjyMkUuIiIiIhIxXZomytsyUmBy9oUhC3B3q5K5JI2dOhQDAYD999/f5FzI0eOxGAwMHToUPex+fPnM3ny5ItYYfGsWLECg8FwykdSUlKp3KM4QZKUTQpcRERERKTiSt4Bs3tB9lGo1hIGzwe/UG9XJVIh1KhRg3nz5pGTk+M+lpuby9y5c6lZs6ZH24iICIKDy24QunPnTg4ePOjxqFKlirfLEi9T4CIiIiIiFdPhvwrCliMQ1RzuWAD+Yd6uSqTCaN26NTVq1GD+/PnuY/Pnz6dmzZq0atXKo+3JQ4qSk5Pp1asX/v7+1K5dm48//rjI9f/++2+uueYa/Pz8aNKkCcuWLTtrTVu3buWGG24gKCiIqlWrcscdd3DkyJGzvq5KlSpERUV5PIxG19fttWvXcv3111O5cmVCQ0O59tpr2bBhg/u1TqeTZ555hpo1a2KxWIiOjuahhx5yv++9e/fy8MMPu3vOSPmhwEVEREREKp4ju1xhS1YyVG0Gd34FARHerkrkvDmdTmy5uV55OJ3OEtc7bNgwPvjgA/f++++/z1133XXW1w0dOpR9+/bx008/8cUXX/Dmm2+SnJzsPu9wOLjlllswm82sWbOGt956i/Hjx5/xmqmpqfznP/+hVatWrFu3jiVLlnDo0CFuu+22Er+vE2VkZDBkyBB+/fVXfvvtN+rXr0+PHj3IyMgA4Msvv+SVV17h7bff5u+//2bhwoU0a9YMcAVQ1atX59lnn3X3nJHyw8fbBYiIiIiIXFRHE2D2jZCZBFUuV9gil5T8vDymD+nnlXs/NPsLfP38SvSawYMHM2HCBPbu3QvAqlWrmDdvHitWrDjta/766y++++47fv/9d9q1awfArFmzaNy4sbvNDz/8wI4dO1i6dCnR0dEAPP/889xwww2nve6MGTNo1aoVzz//vPvY+++/T40aNfjrr79o0KDBaV9bvXp1j/1atWrx559/AvCf//zH49w777xDWFgYK1eu5MYbbyQxMZGoqCi6du2Kr68vNWvW5IorrgBcQ6lMJhPBwcFERUWd9v5SNilwEREREZGK49huV8+WjIMQ2cgVtgRW8nZVIhVWZGQkPXv2JC4uDqfTSc+ePalcufIZX7N9+3Z8fHxo06aN+1ijRo0ICwvzaFOjRg132ALQoUOHM15306ZN/PTTTwQFFV2hLCEh4YyByy+//OIxx4yvr697+9ChQzz55JOsWLGC5ORk7HY72dnZJCYmAnDrrbfy6quvUqdOHbp3706PHj3o1asXPj76ul7e6b+giIiIiFQMKXtdYUv6v1C5AQz5BoIivV2VSKnysVh4aPYXXrv3uRg2bBijRo0C4I033ijNkkokMzOTXr168b///a/IuWrVqp3xtbVr1/YIfE40ZMgQjh49ymuvvUatWrWwWCx06NABq9UKuCYP3rlzJz/88APLli3jgQce4MUXX2TlypUewY2UPwpcREREROTSl7rPNYwobR9UqlcQtmgFEbn0GAyGEg/r8bbu3btjtVoxGAzExsaetX2jRo3Iz89n/fr17iFFO3fuJDU11d2mcePG7Nu3j4MHD7rDkt9+++2M123dujVffvklMTExpdq7ZNWqVbz55pv06NEDgH379hWZiNff359evXrRq1cvRo4cSaNGjdiyZQutW7fGbDZjt9tLrR65eDRproiIiIhc2tL+dYUtqYkQUccVtgRrLgSRssJkMrF9+3a2bduGyWQ6a/uGDRvSvXt37rvvPtasWcP69eu5++678ff3d7fp2rUrDRo0YMiQIWzatIlffvmFJ5544ozXHTlyJMeOHeP2229n7dq1JCQksHTpUu66666zBh7JyckkJSV5PGw2GwD169fno48+Yvv27axZs4ZBgwZ51BoXF8esWbPYunUr//zzD3PmzMHf359atWoBEBMTw88//8y///5brBWTpOxQ4CIiIiIil670A66wJWUPhMfAkEUQEn22V4nIRRYSEkJISEix23/wwQdER0dz7bXXcsstt3DvvfdSpcrxXmtGo5EFCxaQk5PDFVdcwd13381zzz13xmtGR0ezatUq7HY73bp1o1mzZowePZqwsDD3Es+n07BhQ6pVq+bxWL9+PeCa0DclJYXWrVtzxx138NBDD3nUGhYWxrvvvkvHjh1p3rw5P/zwA9988w2VKrnml3r22WfZs2cPdevWJTJSwyDLE4PzXNbuukSkp6cTGhpKWlpaiX64RURERKSMc9hhw2xY/izkpEBYTRj6LYTV8HZlUkaVx+8Gubm57N69m9q1a+NXzoYRiZRnxf3Z0xwuIiIiInJp2bcWvh0LBze69qtcDrfPVdgiIiIXlQIXEREREbk0ZB6GH56BjXNc+5YQ6PIEtLsbTPq1V0RELi79zSMiIiIi5Zs9H9a+Bz89D3lprmMtB0PXp7USkYiIeI0CFxEREREpv/asgm8fheQ/XfvVWkCPaVCjnXfrEhGRCk+Bi4iIiIiUP+kHYdlE2PK5a98/HK57CloPAePZl5UVERG50BS4iIiIiEj5kW+FNW/Byv+BNRMwQJuhrrAlIMLb1YmIiLgpcBERERGR8iHhJ/huHBz5y7VfvR30eBGiW3m3LhERkVNQ4CIiIiIiZVvqPlj6OGz/2rUfGAldJ0GL28Fo9G5tIiIip6HARURERETKJlsuxL8OP0+D/BwwmOCKe6HzY+Af5u3qREREzkj/JCAiIiIiZc+hbfB2J/jxv66wpVZHuO9nuGGKwhYROWdDhw6ld+/e3i7jvK1YsQKDwUBqaqq3S5EzUOAiIiIiImXLxrnw7n9cc7UEVYW+s2DoYohq6u3KRKSUDB06FIPBwJQpUzyOL1y4EIPBcN7X37NnDwaDgY0bN573tQrl5OQQERFB5cqVycvLK7XrnourrrqKgwcPEhoa6tU65MwUuIiIiIhI2WDNhq9GwsIRrl4tdf8DI1ZDs35QCl/ARKRs8fPz43//+x8pKSmlel2r1Vqq1yv05Zdfcvnll9OoUSMWLlx4Qe5RHDabDbPZTFRUVKmEU3LhKHAREREREe878je81xX+mAMGI3R5EgZ9CYGVvV2ZiFwgXbt2JSoqihdeeOGM7QqDDovFQkxMDNOmTfM4HxMTw+TJk7nzzjsJCQnh3nvvpXbt2gC0atUKg8FA586dPV7z0ksvUa1aNSpVqsTIkSOx2WxnrXfWrFkMHjyYwYMHM2vWrCLnDQYDb7/9NjfeeCMBAQE0btyY+Ph4du3aRefOnQkMDOSqq64iISHB43VfffUVrVu3xs/Pjzp16jBp0iTy8/M9rjtz5kxuuukmAgMDee655045pGjVqlV07tyZgIAAwsPDiY2NdYdZS5Ys4eqrryYsLIxKlSpx4403FqlDSp8CFxERERHxri1fwDudIflPCKwCdyyEax/VCkQi58DpdOKw2r3ycDqdJarVZDLx/PPP8/rrr7N///5Ttlm/fj233XYbAwYMYMuWLTzzzDNMnDiRuLg4j3YvvfQSLVq04I8//mDixIn8/vvvAPzwww8cPHiQ+fPnu9v+9NNPJCQk8NNPPzF79mzi4uKKXO9kCQkJxMfHc9ttt3Hbbbfxyy+/sHfv3iLtCoOfjRs30qhRIwYOHMh9993HhAkTWLduHU6nk1GjRrnb//LLL9x555383//9H9u2bePtt98mLi6O5557zuO6zzzzDH369GHLli0MGzasyH03btzIddddR5MmTYiPj+fXX3+lV69e2O12ALKyshgzZgzr1q1j+fLlGI1G+vTpg8PhOOP7lvNjcJb0p+ISkp6eTmhoKGlpaYSEhHi7HBEREZGKxZbrWu55XcG/FMd0cs3XElzVu3VJhVQevxvk5uaye/duateujZ+fHwAOq50DT632Sj3Rz16F0WwqVtuhQ4eSmprKwoUL6dChA02aNGHWrFksXLiQPn36uMObQYMGcfjwYb7//nv3a8eNG8fixYv5888/AVcPl1atWrFgwQJ3mz179lC7dm3++OMPWrZs6XHfFStWkJCQgMnkqvW2227DaDQyb96809b7xBNPsG3bNvc9evfuTcuWLXnmmWfcbQwGA08++SSTJ08G4LfffqNDhw7MmjXLHZLMmzePu+66i5ycHMDVy+e6665jwoQJ7uvMmTOHcePGceDAAfd1R48ezSuvvOJus2LFCrp06UJKSgphYWEMHDiQxMREfv3112J9/keOHCEyMpItW7bQtKnmxyqpU/3snYr+2UBERERELr5ju+H9bsfDlmsedfVsUdgiUuH873//Y/bs2Wzfvr3Iue3bt9OxY0ePYx07duTvv/92994AaNu2bbHvd/nll7vDFoBq1aqRnJx82vZ2u53Zs2czePBg97HBgwcTFxdXpIdI8+bN3dtVq7r+PGvWrJnHsdzcXNLT0wHYtGkTzz77LEFBQe7HPffcw8GDB8nOzi72+yvs4XI6f//9N7fffjt16tQhJCSEmJgYABITE894XTk/Pt4uQEREREQqmO3fwMKRkJcG/hFwy7tQv6u3qxK5JBh8jUQ/e5XX7n0urrnmGmJjY5kwYQJDhw49p2sEBgYWu62vr6/HvsFgOOPQmqVLl/Lvv//Sv39/j+N2u53ly5dz/fXXn/LahRPanupY4f0yMzOZNGkSt9xyS5H7nthz4mzvz9/f/4zne/XqRa1atXj33XeJjo7G4XDQtGnTCzbBsLgocBERERGRiyPfCj88A7+94dqv0R76vQ+h1b1alsilxGAwYCjmsJ6yZMqUKbRs2ZKGDRt6HG/cuDGrVq3yOLZq1SoaNGjg0UvlZGazGcCjF8y5mjVrFgMGDOCJJ57wOP7cc88xa9Ysj8ClpFq3bs3OnTupV6/eedXYvHlzli9fzqRJk4qcO3r0KDt37uTdd9+lU6dOAMUeeiTnR4GLiIiIiFx4qfvgi7tg/1rX/lUPwnVPg8n3zK8TkQqhWbNmDBo0iOnTp3scf+SRR2jXrh2TJ0+mf//+xMfHM2PGDN58880zXq9KlSr4+/uzZMkSqlevjp+fH6GhoSWu6/Dhw3zzzTd8/fXXReY6ufPOO+nTpw/Hjh0jIiKixNcGeOqpp7jxxhupWbMm/fr1w2g0smnTJrZu3cp///vfYl9nwoQJNGvWjAceeID7778fs9nMTz/9xK233kpERASVKlXinXfeoVq1aiQmJvLYY4+dU71SMprDRUREREQurL++h7c7ucIWv1AYMBe6/Vdhi4h4ePbZZ4sM7WndujWfffYZ8+bNo2nTpjz11FM8++yzZx165OPjw/Tp03n77beJjo7m5ptvPqeaPvzwQwIDA085P8p1112Hv78/c+bMOadrA8TGxrJo0SK+//572rVrx5VXXskrr7xCrVq1SnSdBg0a8P3337Np0yauuOIKOnTowFdffYWPj497QuD169fTtGlTHn74YV588cVzrlmKT6sUlbOZyEVERETKDXs+/PRf+LVgZY3oVnBrHITHeLMqkVMqj98NirtSioiUruL+7GlIkYiIiIiUvvSD8OVw2Fsw98IV90G3yeBj8W5dIiIiF4kCFxEREREpXYf+hA97Q1YymIPh5tfh8j7erkpEROSiUuAiIiIiIqUnaQvMvglyjkGVy6H/R1CprrerEhERuegUuIiIiIhI6TiwET7qDTkpEN0a7pgP/uHerkpERMQrFLiIiIiIyPn7dz181Ady06B6Oxj8pWtFIhG54CrwOigiXlHcnzktCy0iIiIi52ffWtecLblpUONKGDxfYYvIReDr61paPTs728uViFQshT9zhT+Dp6MeLiIiIiJy7hJ/gzn9wJoBtTrCwM/AEuTtqkQqBJPJRFhYGMnJyQAEBARgMBi8XJXIpcvpdJKdnU1ycjJhYWGYTKYztlfgIiIiIiLnZs8q+PhWsGVBTCcY+CmYA71dlUiFEhUVBeAOXUTkwgsLC3P/7J2JAhcRERERKbndP8Pc/mDLhjpdYMBcMAd4uyqRCsdgMFCtWjWqVKmCzWbzdjkilzxfX9+z9mwppMBFREREREom4Sf45HbIz4F6XaH/HPD193ZVIhWayWQq9pdAEbk4FLiIiIiISPH9/QPMGwj2PKgfC7d9CL5+3q5KRESkzNEqRSIiIiJSPH8thXm3u8KWhj2h/0cKW0RERE5DPVxERERE5Ox2LIbPhoDDBo17Qd/3wcfs7apERETKLPVwEREREZEz2/Y1fHanK2y5vA/0+0Bhi4iIyFkocBERERGR09s6Hz4fCo58aHYr3PIemHy9XZWIiEiZp8BFRERERE5t8+fw5XBw2qH5AOjzNpg0Il1ERKQ4ShS4vPDCC7Rr147g4GCqVKlC79692blzp0eb3NxcRo4cSaVKlQgKCqJv374cOnTIo01iYiI9e/YkICCAKlWq8Oijj5Kfn+/RZsWKFbRu3RqLxUK9evWIi4srUs8bb7xBTEwMfn5+tG/fnt9//70kb0dERERETmfTPFhwLzgd0HIw9H4TjFpyVkREpLhKFLisXLmSkSNH8ttvv7Fs2TJsNhvdunUjKyvL3ebhhx/mm2++4fPPP2flypUcOHCAW265xX3ebrfTs2dPrFYrq1evZvbs2cTFxfHUU0+52+zevZuePXvSpUsXNm7cyOjRo7n77rtZunSpu82nn37KmDFjePrpp9mwYQMtWrQgNjaW5OTk8/k8REREROSPObDgflfY0noI3PS6whYREZESMjidTue5vvjw4cNUqVKFlStXcs0115CWlkZkZCRz586lX79+AOzYsYPGjRsTHx/PlVdeyXfffceNN97IgQMHqFq1KgBvvfUW48eP5/Dhw5jNZsaPH8/ixYvZunWr+14DBgwgNTWVJUuWANC+fXvatWvHjBkzAHA4HNSoUYMHH3yQxx57rFj1p6enExoaSlpaGiEhIef6MYiIiIhcGuz5sOIF+OUl137b4dDjJTBqFLpc+vTdQERK23n97ZmWlgZAREQEAOvXr8dms9G1a1d3m0aNGlGzZk3i4+MBiI+Pp1mzZu6wBSA2Npb09HT+/PNPd5sTr1HYpvAaVquV9evXe7QxGo107drV3eZU8vLySE9P93iIiIiICJB+ED686XjY0mEU9JymsEVEROQcnfPfoA6Hg9GjR9OxY0eaNm0KQFJSEmazmbCwMI+2VatWJSkpyd3mxLCl8HzhuTO1SU9PJycnhyNHjmC320/ZpvAap/LCCy8QGhrqftSoUaPkb1xERETkUrPrB3jrati7CszB0O99iH0ODAZvVyYiIlJunXPgMnLkSLZu3cq8efNKs54LasKECaSlpbkf+/bt83ZJIiIiIt5jz4cfJsGcvpB9BKKawX0roWlfb1cmIiJS7p3Tun6jRo1i0aJF/Pzzz1SvXt19PCoqCqvVSmpqqkcvl0OHDhEVFeVuc/JqQoWrGJ3Y5uSVjQ4dOkRISAj+/v6YTCZMJtMp2xRe41QsFgsWi6Xkb1hERETkUpP2r2vJ58SC4djt7oZuz4Gvn3frEhERuUSUqIeL0+lk1KhRLFiwgB9//JHatWt7nG/Tpg2+vr4sX77cfWznzp0kJibSoUMHADp06MCWLVs8VhNatmwZISEhNGnSxN3mxGsUtim8htlspk2bNh5tHA4Hy5cvd7cRERERkdP4e5lrCFFivGsI0a1xrvlaFLaIiIiUmhL1cBk5ciRz587lq6++Ijg42D1fSmhoKP7+/oSGhjJ8+HDGjBlDREQEISEhPPjgg3To0IErr7wSgG7dutGkSRPuuOMOpk6dSlJSEk8++SQjR4509z65//77mTFjBuPGjWPYsGH8+OOPfPbZZyxevNhdy5gxYxgyZAht27bliiuu4NVXXyUrK4u77rqrtD4bERERkUuLPR9++i/8+oprv1oL6PcBVKrr3bpEREQuQSVaFtpwmonTPvjgA4YOHQpAbm4ujzzyCJ988gl5eXnExsby5ptvegz12bt3LyNGjGDFihUEBgYyZMgQpkyZgo/P8fxnxYoVPPzww2zbto3q1aszceJE9z0KzZgxgxdffJGkpCRatmzJ9OnTad++fbHfvJZ+ExERkQojbT98MRz2/ebav+Je6PZf8NFwaxHQdwMRKX0lClwuNfpDVURERCqEv5bCgvsgJwUsIXDT63B5b29XJVKm6LuBiJS2c5o0V0RERETKAbsNlj8Lq6e79qu1hFs/gIg6Xi1LRESkIlDgIiIiInIpSt0HXwyD/QWrQ15xH3SbrCFEIiIiF4kCFxEREZFLzc7vYOGIgiFEoXDzDGhyk7erEhERqVAUuIiIiIhcKuw2WD4JVr/u2o9u7RpCFB7j1bJEREQqIgUuIiIiIpcCh8PVq2XL5679Kx+ArpPAx+zdukRERCooBS4iIiIil4Kf/usKW4w+0HeWViESERHxMqO3CxARERGR87TuA/hlmmu713SFLSIiImWAAhcRERGR8uzvZbD4Edf2tY9Bq0HerUdEREQABS4iIiIi5dfBTfD5UHDaocVA6PyYtysSERGRAgpcRERERMqj1H3w8W1gzYTa10Cv18Bg8HZVIiIiUkCBi4iIiEh5k5sGc2+DzCSo0gT6z9FqRCIiImWMAhcRERGR8iTfCp/eAcnbICgKBn0OfqHerkpEREROosBFREREpLxwOuGbh2D3SjAHwaDPILS6t6sSERGRU1DgIiIiIlJerJgCmz4BgwlujYNqLbxdkYiIiJyGAhcRERGR8uCPj2HlFNf2jS9D/eu9W4+IiIickQIXERERkbIu4SfXUCKAq8dAm6FeLUdERETOToGLiIiISFl26E/47E5w5EPTfvCfid6uSERERIpBgYuIiIhIWZV+AD6+FfLSodbV0PtNMOrXNxERkfJAf2OLiIiIlEV5GfDxbZD+L1RuAAPmgI/F21WJiIhIMSlwERERESlr7Db4bAgc2gKBkTDoc/AP93ZVIiIiUgIKXERERETKEqcTFo+BhOXgGwADP4PwGG9XJSIiIiWkwEVERESkLPllGmz4EAxG6Pc+XNba2xWJiIjIOVDgIiIiIlJWbP4Mfpzs2r5hKjS8wbv1iIiIyDlT4CIiIiJSFuz5FRY+4NruMAquuMe79YiIiMh5UeAiIiIi4m3pB1yT5Dps0ORmuH6ytysSERGR86TARURERMSb7Db4YhhkH4GqzaDP22DUr2giIiLlnf42FxEREfGm5ZMgMR4sIXDbbPD193ZFIiIiUgoUuIiIiIh4y47FsPp11/bNb0Clut6tR0REREqNAhcRERERbzi2GxaMcG1fORKa3OTdekRERKRUKXARERERudhsufDZnZCXBtWvgOsnebsiERERKWUKXEREREQutiWPQdJmCKgEt34AJl9vVyQiIiKlTIGLiIiIyMW06VNY/wFggFvehdDq3q5IRERELgAFLiIiIiIXS/J2WDTatX3teKh3nVfLERERkQtHgYuIiIjIxZCX6Zq3xZYNdTrDteO8XZGIiIhcQApcRERERC40pxO++T848hcEV4Nb3gOjydtViYiIyAWkwEVERETkQls3C7Z+AQYT3BoHQZHerkhEREQuMAUuIiIiIhfSvxtgyQTX9vWToOaV3q1HRERELgoFLiIiIiIXSk4KfD4E7FZodCN0GOXtikREROQiUeAiIiIiciE4HLDgfkhNhPAYuPkNMBi8XZWIiIhcJApcRERERC6E1a/BX0vAZIHbPgT/MG9XJCIiIheRAhcRERGR0rZnFSyf7NruMRWqtfBuPSIiInLRKXARERERKU0Zh+CLu8Bph+YDoPUQb1ckIiIiXqDARURERKS0OOzw5XDIPASRjeHGlzVvi4iISAWlwEVERESktPz0POz5BXwDXfO2mAO9XZGIiIh4iQIXERERkdLw9zL45SXX9k3TIbKBd+sRERERr1LgIiIiInK+UvfB/Htc2+3ugWb9vFuPiIiIeJ0CFxEREZHzsWs5zO4FOSkQ3Rpin/N2RSIiIlIG+Hi7ABEREZFyKWUvLH0cdixy7QdXg1vjwMfi1bJERESkbFDgIiIiIlIStlxYPR1+mQb5uWAwQfv7oPNj4Bfq7epERESkjFDgIiIiIlJcO5fAkvGQsse1X+tq6PEiVG3i1bJERESk7FHgIiIiInI2x/6B7x6Dv5e69oOrQbf/QtO+YDB4tzYREREpkxS4iIiIiJyONRt+fRlWvQZ2Kxh9ocMDcM04sAR5uzoREREpwxS4iIiIiJzM6YTtX8PSJyBtn+tYnS5ww1SIbODd2kRERKRcUOAiIiIicqLDf8F34+Cfn1z7oTUg9nlo3EvDh0RERKTYFLiIiIiIAORlwMqp8Nub4MgHkxk6/h9cPQbMAd6uTkRERMoZBS4iIiJSsTmdsPVL+P5JyDjoOlY/Frq/AJXqerc2ERERKbcUuIiIiEjFZMuBbV/D2ndh/1rXsfAY6P4/aNjdq6WJiIhI+Wcs6Qt+/vlnevXqRXR0NAaDgYULF3qcHzp0KAaDwePRvbvnLy3Hjh1j0KBBhISEEBYWxvDhw8nMzPRos3nzZjp16oSfnx81atRg6tSpRWr5/PPPadSoEX5+fjRr1oxvv/22pG9HREREKppDf8K342BaQ1hwryts8fGDLk/AA2sUtoiIiEipKHEPl6ysLFq0aMGwYcO45ZZbTtmme/fufPDBB+59i8XicX7QoEEcPHiQZcuWYbPZuOuuu7j33nuZO3cuAOnp6XTr1o2uXbvy1ltvsWXLFoYNG0ZYWBj33nsvAKtXr+b222/nhRde4MYbb2Tu3Ln07t2bDRs20LRp05K+LREREbmU5WXCn/Nh/Wz4d93x46E1ofUd0OoOCKnmvfpERETkkmNwOp3Oc36xwcCCBQvo3bu3+9jQoUNJTU0t0vOl0Pbt22nSpAlr166lbdu2ACxZsoQePXqwf/9+oqOjmTlzJk888QRJSUmYzWYAHnvsMRYuXMiOHTsA6N+/P1lZWSxatMh97SuvvJKWLVvy1ltvFav+9PR0QkNDSUtLIyQk5Bw+ARERESnTDvwB6+Ngy5dgzXAdM/pAwx7QZohrqWejyaslikjZoO8GIlLaSjykqDhWrFhBlSpVaNiwISNGjODo0aPuc/Hx8YSFhbnDFoCuXbtiNBpZs2aNu80111zjDlsAYmNj2blzJykpKe42Xbt29bhvbGws8fHxp60rLy+P9PR0j4eIiIhcYnLTYO178FYneKezK3CxZkBEHeg6CcZsh/4fQb2uCltERETkgin1SXO7d+/OLbfcQu3atUlISODxxx/nhhtuID4+HpPJRFJSElWqVPEswseHiIgIkpKSAEhKSqJ27doebapWreo+Fx4eTlJSkvvYiW0Kr3EqL7zwApMmTSqNtykiIiJlidMJ+36HDbPhzwVgy3YdN5mh8U2u3iwxncBg8G6dIiIiUmGUeuAyYMAA93azZs1o3rw5devWZcWKFVx33XWlfbsSmTBhAmPGjHHvp6enU6NGDS9WJCIiIucl+xhs/tQ1N8vh7cePRzaC1kOgxQAIiPBefSIiIlJhXfBloevUqUPlypXZtWsX1113HVFRUSQnJ3u0yc/P59ixY0RFRQEQFRXFoUOHPNoU7p+tTeH5U7FYLEUm8BUREZFyKuFH+PQOsBasdOjjD5f3gTZDocYV6s0iIiIiXnVB5nA50f79+zl69CjVqrlm/u/QoQOpqamsX7/e3ebHH3/E4XDQvn17d5uff/4Zm83mbrNs2TIaNmxIeHi4u83y5cs97rVs2TI6dOhwod+SiIiIeNuOxTC3vytsqdIEerwEj+yAPjOhZnuFLSIiIuJ1JQ5cMjMz2bhxIxs3bgRg9+7dbNy4kcTERDIzM3n00Uf57bff2LNnD8uXL+fmm2+mXr16xMbGAtC4cWO6d+/OPffcw++//86qVasYNWoUAwYMIDo6GoCBAwdiNpsZPnw4f/75J59++imvvfaax3Cg//u//2PJkiVMmzaNHTt28Mwzz7Bu3TpGjRpVCh+LiIiIlFlbvnD1bLFbXfOz3LsSrrgH/MO8XZmIiIiIW4mXhV6xYgVdunQpcnzIkCHMnDmT3r1788cff5Camkp0dDTdunVj8uTJHhPcHjt2jFGjRvHNN99gNBrp27cv06dPJygoyN1m8+bNjBw5krVr11K5cmUefPBBxo8f73HPzz//nCeffJI9e/ZQv359pk6dSo8ePYr9XrT0m4iISDmz4UP4+iHACc0HwM1vgOmCj5AWkQpA3w1EpLSVOHC5lOgPVRERkXLkt7dgScE/vrQdBj2mgfGCj44WkQpC3w1EpLTptxQREREp+35+6XjY0mEU9HxZYYuIiIiUaeqDKyIiImWX0wnLn4VfX3btd54A147XpLgiIiJS5ilwERERkbLJ4YClE2DNW679bv+Fqx70bk0iIiIixaTARURERMoehx2+eQj+mOPa7/kytBvu3ZpERERESkCBi4iIiJQtdhssuA+2fgkGI9z8JrS83dtViYiIiJSIAhcREREpO2y58MVdsPNbMPpCv1nQ5GZvVyUiIiJSYgpcREREpGywZsG8QfDPT+DjB7d9BA26ebsqERERkXOiwEVERES8LzcN5vaHxHjwDYSB86D2Nd6uSkREROScKXARERER78o+BnNugQN/gCUUBn8BNa7wdlUiIiIi50WBi4iIiHhPxiH4qDckb4OASnDHAqjWwttViYiIiJw3BS4iIiLiHWn7YfZNcCwBgqLgzq+gSiNvVyUiIiJSKhS4iIiIyMV3NAE+7A1piRBaE4Z8BRF1vF2ViIiISKlR4CIiIiIXV+Ia+GQA5ByDSvVcPVtCq3u7KhEREZFSpcBFRERELp5tX8H8eyE/F6Jbw8BPIaiKt6sSERERKXUKXEREROTiiH8Tlj4OOKHBDdBvFpgDvV2ViIiIyAWhwEVEREQuLIcdlj4Ba2a69tvdDTdMBaPJu3WJiIiIXEAKXEREROTCseXA/Htg+zeu/eufhaseAoPBu3WJiIiIXGAKXEREROTCyDoK826HfWvAZIbeM6FZP29XJSIiInJRKHARERGR0nfsH5jTD44lgF8oDPgEYjp6uyoRERGRi0aBi4iIiJSu/etgbn/IPgKhNWHwFxDZ0NtViYiIiFxUClxERESk9OxYDF8Mh/wcqNYCBn4GwVHerkpERETkolPgIiIiIqVjzTvw3TjACfW7Qb8PwBLk7apEREREvEKBi4iIiJwfhwN+eApWv+7abz0Eer4MJv2aISIiIhWXfhMSERGRc2fLhYX3w58LXPv/mQidHtGyzyIiIlLhKXARERGRc5N9DOYNhMR4MPrCzW9Ai/7erkpERESkTFDgIiIiIiWXsse17PPRv8ESAv3nQJ1rvV2ViIiISJmhwEVERERKZu9q+OxOyDoMIZfBoC+gahNvVyUiIiJSpihwERERkeLJy4AfJsHad137VZvBoM8gJNq7dYmIiIiUQQpcRERE5Ox2/QDfjIa0fa79VoMh9gXwC/FqWSIiIiJllQIXEREROb3sY7D0Cdg017UfVhN6TYe6Xbxbl4iIiEgZp8BFRERETm3bV7B4LGQlAwZofz/850mwBHm7MhEREZEyT4GLiIiIeMo4BN+Ohe1fu/YrN4CbZkDN9t6tS0RERKQcUeAiIiIiLk4nbPoElkyA3FQwmODqh+GaR8HXz9vViYiIiJQrClxEREQEUhNdk+ImLHftRzWHm9+Aas29WpaIiIhIeaXARUREpCJzOGDdLPjhGbBmgskCnR+Dqx4Ck35NEBERETlX+k1KRESkojqyC74eBYnxrv2aHeCm16Fyfe/WJSIenHYH1r0Z5P6VQl5CKk6nE1OwGVOIGVOwGWOw2XM/yIzBZPB22WfkyLaRty8D6950AlpVwTcywNsliYiUOgUuIiIiFY09H+Jfh59eAHse+AbC9ZOg7XAwGr1dnYgA+am55O5McYUsu1Jx5tk9ztvO9GIDGAN93SFMkUAm2IxPuAVjsBmD4cIHM06Hk/zD2Vj3ZpCXmI51bzr5h3Pc503BZgUuInJJUuAiIiJSkRz6ExaOgIObXPt1r4Ner0JYTa+WJVLROW0O8nankftXCrl/HSM/OcfjvDHQB7/64VgahGP088GeYcWebsWRYXVv2zOsODKt4ABHpg1Hpg3bwazT3tNgNuJT2d/1iAzA173tj9Hv3L8mOHLzsRb0XslLzMCamIEzN79IO5/K/phrBuOjsEVELlEKXERERCoCpxM2zIbvxkN+LviFQfcXoMXtcBH+hVtEPDmdTvKP5Lh6sPyVQt4/aThtjuMNDGCuGYJfg3D8GobjGx2EwXj2n1Wnw4kjy+YZyBSEMfaME/bT83BaHdgOZGE7UDSUMQb5usMY30h/fCoH4BPpj0+EHwaf4z3hnE4n+Udzse5Nx5qYjnVvBrZDWeD0vJ7B14i5RjDmmiGYa7meTYG+5/z5iYiUBwpcRERELnV5mbB4DGz+1LVfvxvcNAOCq3q3LpEzcOY7cOTm47Q6wOHE6XCC04nT7nR9mS88dsLz8W3c7XG4XuO0OXDmOzye8di348x3nvRccN7mqsFgNmGwmDBaTBj8fFzPhfsWE0Y/H8/zZhMGv+PnDUYDeXvSC3qxpGA/luvxno0hZlfA0iAcv3phGANKHkgYjAbX8KFgM0Sf+fPNP5ZL/pEc1+NwDrYj2eQfycGR4eodY820Yd2TftINwBTuh2+kPxgMWPel48gq2nvFFOGHuWYwllohmGuG4BsVWObnlRERKW0KXERERC5lydvhsyFwZCcYTHDdU64ViDRXi1xgTqcTp9WOIycfR44dZ44NR07Bfm4+jpx8nDn5BeeLHvPo7VFWZBcNFs6LyYAlJgS/BhH4NQzHp2rARZlTBcDgY8S3SgC+VYoO53Hk5ruDGNvhHI9Qxmm1Yz+W6xkW+RgwXxaMuVYwlpohmGuFuAIfEZEKToGLiIjIpWrjJ66eLbZsCK4G/d6HWld5uyopRc58B448O848e8Gzq0eIwdfo2fPCYgIfY6l8mXdY7cfnDcmw4cgsnDvEdsKwFRv2TCvYnWe/4FkYfI1gNIDR4BpSY3T14sBgAJPBvV147ni7488YDa7PxMdYomdO3DcZcFodOPLyXZ93rufn7rGfm4/DaseZa3e3d1pdAZIpws/di8VSN8z136aMMfr5YK4ejLl6sMdxp9OJI8NG/pFsbEdywObAt0Yw5uggj2FGIiLiosBFRETkUmPLgW8fhT8+cu3X6QK3vAtBkd6tqxQ4sm1Y/83Euj8D675MbP9m4sy3g9H1hdhgKvgSbjIe/zJuOvGcaxujoeCYq51PuB9+jSPwifS/aD0MTuR0OrEdzMK2P9PV06MgRHF9gc8/4Yu83fVFvuALfokCDaOhSAhjsJhcw17cxwqGxJiNOHLt2DMLJ2UtDFZsOK32s9/rRCYDRn8f98Pg5+OxbyzYN/ibPPYL2xZn3pLywGl34sy3u4YlldN5kwwGg2uloxAzljphpXJNp9M1ROxS+e8sInIiBS4iIiKXkiN/u4YQJf8JGKDL49DpETCWvX9FPxuH1Y7tQCbWfa6AxbY/g/yjuWd/4TlK+243pkp++DeKwK9JJSwxIa5A5gJx5OWTtyuV3B0p5Ow8hiPdes7X8ujR4msq6Pni2bMChxNnTj72nPMfFmPwNWIMMWMKMmMK8nUvO2wM9nUdK9wO9C21njXlnSvg06/edpuD5MQMDiakkpSQRtI/aVw3tAm1Lq/k7dJEREqd/tQXERG5VGz5Ar75P7BmQmAk9H0P6nT2dlXF4rQ7sCVlF/RcycC2PxNbchacYhoPUyW/guEOQZirB2MM8HFNpGp34rQ7jm87nHDifsH5wklUC8858x1Y92eSl5CK/WgumasOkLnqAAY/E34NI/BvHIFfg/BzmsD0ZLbD2eTuSCF35zHydqd59FAx+Boxx7hWbjGcOPmq+7lgkla/E4/7uHpMnGEyUqfDNZfK8eEvJ/WaOeHZvW21Y7CY3JOvGoN9XdtBZozB5jI5DEbKppwMKwcT0tzhSvLeDOz5nj/YSQlpClxE5JKkwEVERKS8s+XC0sdh3SzXfq2rod8sCI66ILdzOp04svNdK7yctEqM037q/VOtKOO0OrAdzHKFLAcyIb/o8BhjsNm1lGxBuGKuHlQqwcepOPLyyfs7lZztx8jdcQxHlo2cTYfJ2XQYjGCJCcWvcQR+jSvhW9m/WNd02hzk7U4jd8cxcnceK9JDx1TJD/+GEfg1isBSO9Q1b0gpMxgNGPx8wM8HxSSlz57vwJZnP80jH1vu8f18qx2ns2AldoMBA4Xz0XB8G9fQHQqmqTm+bfDYNxbMUXP8ueC/9QnHjm9zUlsDPmYT/kG++AX6Yiql/++cTieph7I5mJDmDllSD2UXaecf7EtUnVCq1Q0jqm4oVWoGn+JqIiLln8HpdJ7/bGblVHp6OqGhoaSlpRESEuLtckREREru2D/w+VA4uMm132ksdJ4ApTh0wZGbj3Wfq+eJNdH17Miyldr1Cxn8fDDXCPLovWIKtZT6fYrD6XBi3ZdB7vaj5Gw/Rv5JXxp9Iv3xa1wJ/8YRmGuGePQwyU/NI3enK7TJ25XqudqOyYCldih+DSPwaxSOT2XvzBlT0TmdTvJtDqw5+Vhz8skreLbm2E/aP+F8rmd4UvhwlMLEwN7mYzHhH+iLX1DBI/D4s/9J+4VtfM0m8q12kvceHx508J808k6xRHR4tUCq1Qkhqm4Y1eqGElqlbP5/r+8GIlLaFLjoD1URESmvtn0NX42EvHTwj3BNjFu/63ld0ml3YjuU5RGu5B/OhlP9tlAw8SwnrQjjmqi26L5Hm4J930j/gh4swZgq+ZXJL2EA+UdzyNlxjNztx8j7J83Va6eAMcAHv4YRGIPN5P11DFuSZzhjDDEX9GIJx1IvDKNFHYwvtHybnWMHskjem8HhfRmkJWeTl+0ZqjgcpfsrsNHHgK/FVPDwOWG74OFnwtfX5FpJyQFOnDidgPP4xLFOZ+Ex17MTXL3BnAXtHSecczhxFPQYczgKep4VDKXz3Mbd7sTX2PLs5Gblu3qcnQOTr9F1vZMCJ5OvkaoxIUTVDaVa3VCi6oTiF3hheqWVNn03EJHSpr/xRUREypt8Kyx7CtbMdO3XaO9a8jm0eokvZU/Lw7ovg7zEDKz70rHtz/TskVHAFOHnCkZqBGOuGYy5WtAFGf5SVvlU8ie442UEd7wMR24+uX+lkLv9GDk7juHIzif7j+TjjQ1grhmCX6Nw/BpG4FstsMwGScXldBZ+YQeH0zVUzFHwxd7p8Pzyf/zLPpj9TQSEmDFewMmHbVY7R/dncjgxg8OJGSQnZpByIKtYgYrBAGZ/H8x+Pq5nfxMW/8Jt18O972fC1+8UQUrBw1QOl0V2OpxYc/PJybSRm2Uj98TnTBs5WTbyMm1FzjvsTuwFf04EhJhdwUrBI7JGcLn8LERELgQFLiIiIuVJaqJrCNG/6137Vz0I1z0NprP/C7IjN//4qj/70rEmZmA/xco4BovpeLhSELCYgsyl/EbKL6OfDwHNIwloHonT7sS6N52cHUdxZOfjVy8MS/1w1+o8ZYzT6SQvO5+cDCs5GVay022u5wwrOelWcjIK9tOt5GTasNtcc/Q43F0tzo3B4PpSHhhmITDMQlCYhcBwi+d+mAWz39l/LbXm5nNkX0G4ss8VsKQczOJU/bX9An2JrBVMZI1gIqID8Qv0LRKq+FrK7xLNpcFgNGAJ8MVSgnmRnE4ntlw7uVk2MEBwRNntmSYi4m0KXERERMoDpxN2LIKvRkFuKviFQu+3oFGPUzZ35BUsqbw/E9u/GVj/zST/cE7RhgbwjQo83nOlRjA+kQHuyTvlzAwmA5Y6oVjqhJ73tew2B8eSsnDkF/YWceAo6EniHh7icA0PcTgc7l4mhecKtx12Z0GoUjRQKe1hNIUMBtdnYTQcn6zVYABrrh2nw0lWmpWsNCvszTjtNXz9TO7w5cQwJt/mcPdeSU0+9fA2/xAzVWoGE1nTFbBE1gomKNyiIOACMBgM7t4/IiJyZvqTUkREpKzbtxZ+eBr2rnLtR7eGW+MgvBYADqvdvdqPbX9mQbhy6i+mpjAL5suC3OGK72XBWuLXixwOJ//+lcLfvx8i4Y/DWHOKTjha2sz+PgSEmPEP9sU/2ExA8AnbIWb8C/ZNvsYiK+EUBikn758u2HA4XOFPVmoemSl5ZKUef2Se8GzLtWPLtZOSlE1KUtFVbU4UGGZxBSsFjyo1gwkINStcERGRMkeBi4iISFl1eCcsf9bVswXAZMF5xSisDUZi25GHdf9fWPdnkH+af/U3hZrxvSzYFbBUD8L3sqBLamhQvs1OdpqVvJx88vPs2Kx28vMcrmdr4TK8BfuF560O9/K8J54PCDZTo3E4NZpUompM8AWdc8TpdHJoTzp/rz3ErnXJZJ8wrMsS4Oo5YDQaMBZMPGw0GYouAVx4rOD5xADEZDLgF1Q0QAkIMeMfZC61JYCLw2g0EBhqITDUQpVap29nzc33CGGyUvPISnHtG40GKtc4HrAEhFw6/w+LiMilTasUaSZyERG5yJx2B45cO87cfBw5+UW2HanHcCaswXF4Pw5nAA6CcPpVx+EbiT0jH4rOaYsx2Ne1nPJlQfgWPJuCy+cXU6fDSU6mrUhPiKw0z94Rp1p+tjSY/UxUbxRREMBEEBoZUCrXPXYgi7/WJvH32kOkH8l1H7cE+lCvdRXqt6tKdL0wDecS8RJ9NxCR0qYeLiIiIheI0+Ygb28aebtSyUtIw56WhyM3H6f1FIlJEQ0LHgWyAVwBgzHI1yNYMVcPwhRiuQDvoHTZbQ5yMo/PLXJiqFIYqGSm5pGdZi2y1OzpmHyNWAJ88DWb8DGb8LUY8XFvm/A1G/GxFOwXHPMxG084b8JkNpJ6KJt9246xb8cx8rLy+WfjYf7ZeBiAkMp+1GhSiZqNI7isYViJJhhNP5rDrnXJ/PX7IY7+m+k+7mMxUbt5ZRpcUZUajSO0qouIiMglSD1clGKLiEgpcTqc2A5kkrsr1RWy7EmD/NP/NWswmzD6mzBYjBhthzFm7MLgSMNoyMQYGoGxYScMUbUx+vlg9PfB4GfCFGrBFFI25qvIt9rJybQdn6C1IEzJPSlUKXy25dqLf3EDBASbT5pA1UxAqMVjYlVLgE+pfhYOh5PDiRmu8GX7MZIS0jwmmjUYDVSNCaFGkwhqNI445fCj7HQrCRuS+XvtIQ4mpLmPG00Gal5eiQbtqhLTvDK+mjtHpEzRdwMRKW0KXPSHqoiInCOn00n+kRzyElLJ+zuV3IQ0nLmew1yMIWbXUsH1wvCtGojRz+QKTyw+GMiHPz6CFf+DzCTXC6o2dS3zXP9619IvXpZvtZOanO2ezDQ1KYuUQ9mkJedgyytBgFLAaDw+v4h/sC8BoWbPlWlCXc8BoWZMF3AeleKy5uZz4K9UErcfY9+2Y6Qe8pzQ1ezvQ/WGrqFHJh8ju9YdYt+OFJyFIY0BLmsQRoN2UdRpFYlfGVwuWkRc9N1AREqbAhf9oSoicklxOpzYDmaR+3cKeX+lYN2f6eoZEmx2PULMGAu3T9wP8sVQjGEd9gwrebtS3b1Y7Gl5HucNFhOWumHukMUn0r9oDwynE7Z9BT9OhqO7XMfCakKXJ6HZrWC8uEGD0+kkJ8NGSlJWQaiSTcoh13bGsdxTTshbyGgyuMMT/yBf/IIKt4+vfONfELD4BfmWeo+Uiy39aA77t6ewb/vx4UenUqVWMPXbVaVem6oEhZf94V4iou8GIlL6SjyHy88//8yLL77I+vXrOXjwIAsWLKB3797u806nk6effpp3332X1NRUOnbsyMyZM6lfv767zbFjx3jwwQf55ptvMBqN9O3bl9dee42goCB3m82bNzNy5EjWrl1LZGQkDz74IOPGjfOo5fPPP2fixIns2bOH+vXr87///Y8ePXqcw8cgIiLlmT0tj9y/U10hy64UHCd9CXZa7TjSrdjOch1joA+m4BMCmRAzxiAzxgAfbP+6hgrln9TDAZMBS60QLAUBi/myYAymMwQK/6yAH56BA3+49gMqwzWPQtu7wOfCfjHPt9pJP5pLWmGPlUMFPVaSssnLPv0EtJYAH8KjAgmPCiAsKoDwqEDCqvgTEGrB7Gcq1wFKSYVU8qfJ1f40uTq6yPAjW56d2i0qU79tVcKqls5EuyIiIlJ+lThwycrKokWLFgwbNoxbbrmlyPmpU6cyffp0Zs+eTe3atZk4cSKxsbFs27YNPz8/AAYNGsTBgwdZtmwZNpuNu+66i3vvvZe5c+cCrnS5W7dudO3albfeeostW7YwbNgwwsLCuPfeewFYvXo1t99+Oy+88AI33ngjc+fOpXfv3mzYsIGmTZuez2ciIiJlnMNqx7o7zR2ynByCuHuZ1A/DUjsUp82BPcOKPcOKo+DZnn7ivg0cThxZ+a6wJin7NHcGDOBbLRBLvXD86oVhjgnBaC7GXBwHNsLySZDwo2vfHAQdRsFVo8ASfO4fxgmcTifZ6VbSD+eQfiSHtCO5pB9xbacfziErzXr6FxsgpJKfK0yJCiC8aoA7ZPEL8q1QoUpxGQvmc6kaE0LbHjHeLkdERETKmPMaUmQwGDx6uDidTqKjo3nkkUcYO3YsAGlpaVStWpW4uDgGDBjA9u3badKkCWvXrqVt27YALFmyhB49erB//36io6OZOXMmTzzxBElJSZjNriUtH3vsMRYuXMiOHTsA6N+/P1lZWSxatMhdz5VXXknLli156623ilW/ug2KiJQPTocTW1KWa56Uv1PI250GJ65iYwDf6sH41Q/Dr3445prBGEow/4fT4cSRbcORaXMHMfYMK47CUCbLhk9lf1cvlrphmIo7D4fTCbtXwqrXjgctRl9oO8zVqyUosgSfgku+1U56QZCSVhimFAYrh3PIt515BSSzn4nQKgGEVQ0gPOp4qBJaxR8fX03iKiIVl74biEhpK9VloXfv3k1SUhJdu3Z1HwsNDaV9+/bEx8czYMAA4uPjCQsLc4ctAF27dsVoNLJmzRr69OlDfHw811xzjTtsAYiNjeV///sfKSkphIeHEx8fz5gxYzzuHxsby8KFC09bX15eHnl5x8fap6enl8K7FhGR0uZ0OMk/moN1X4Y7ZHFkeg4IMoVa8GsQjqW+a74UYwmW6j2ZwWjAFGTGFGTGNyrwfMsHez5sW+gKWpI2F94EmvaDLo9DRO0zvtzhcJJxNJfUQ9nuR0rBc1Zq3hlfazBAUIQfIZX9Ca3sR0ikv2u74Lm8z6EiIiIiUl6UauCSlORaYaFq1aoex6tWreo+l5SURJUqVTyL8PEhIiLCo03t2rWLXKPwXHh4OElJSWe8z6m88MILTJo06RzemYiIXCj2TCu2pCxsSdnYDmZhO5RF/qFsnCf11DD4GrHUDXMFLPXDTz0ZrbdZs+CPORA/A1ITXcd8/KH1ndDhAQiP8Wiem2VzhSlJx4OV1GTXCkD2/NP3VDH7mQiJ9Ce0sitEcW9H+hEU4VcmVvcRERERqehKNXAp6yZMmODRKyY9PZ0aNWp4sSIRkYrDabNjO5TtClaSstyPk3uuFDL4GvGJCsSvIGSx1Aop1ipCXpF5GH5/B9a+CzkprmMBlchvcz/ZDe4gyxpA1j95pB/ZWzBRrStcyc06/TS+Jh8joVX8CataMPyn4DmsSgCWQPVSERERESnrSjVwiYqKAuDQoUNUq1bNffzQoUO0bNnS3SY5Odnjdfn5+Rw7dsz9+qioKA4dOuTRpnD/bG0Kz5+KxWLBYtHSjCIiF5LT6cSekoftYKZHuJJ/JOfUywsbwCfCD5+oQHzdjwB8KvljMJbNUCHfZic7zUpW4j9krVtM9j9bybIFk2W/g2xTNFm+tclKDyDv83xg+xmvFRRuIbTKCYFKwYS1QRF+GMvo+xcRERGRsyvVwKV27dpERUWxfPlyd8CSnp7OmjVrGDFiBAAdOnQgNTWV9evX06ZNGwB+/PFHHA4H7du3d7d54oknsNls+Pq6xuQvW7aMhg0bEh4e7m6zfPlyRo8e7b7/smXL6NChQ2m+JREROQOn3Un+4Wys/2a6hgMdyMR6IAtn7qmXGDYG+uBbNRDfasfDFZ+qAcVb5ecisdscZKTkknEsl4yjrufMo7lkpeWRlWYlKzXvpCWU2xY8TuZqY/QxEBhqITDUTHAlf4/eKqFV/DH7VajOpiIiIiIVRol/y8vMzGTXrl3u/d27d7Nx40YiIiKoWbMmo0eP5r///S/169d3LwsdHR3tXsmocePGdO/enXvuuYe33noLm83GqFGjGDBgANHR0QAMHDiQSZMmMXz4cMaPH8/WrVt57bXXeOWVV9z3/b//+z+uvfZapk2bRs+ePZk3bx7r1q3jnXfeOc+PRERETsVhtbt6qxzIxHYgC+uBTGxJWZB/im4rJgO+VQNO6LHiClmMZWB5YVue3R2kuEKVnOP7R3PJSreeuifOSUxYCTQdIyDQSWC1aAKqRRMYZikIVywEhJoJDLNokloRERGRCqrEy0KvWLGCLl26FDk+ZMgQ4uLicDqdPP3007zzzjukpqZy9dVX8+abb9KgQQN322PHjjFq1Ci++eYbjEYjffv2Zfr06QQFBbnbbN68mZEjR7J27VoqV67Mgw8+yPjx4z3u+fnnn/Pkk0+yZ88e6tevz9SpU+nRo0ex34uWfhMROTV7ls0zWDmQedohQQaLCd9qgZijg/CNDsI3OhDfKgFen28lL9vGv3+lcnBXKulHj/dWyT3NnDEn8vE1ElzJj+AIP4LCfQi27iLo4FICs7YSYEwh0DcdS/OeGDo+CFWbXIR3IyIiF5q+G4hIaStx4HIp0R+qIlLROB1OHNk27OnWgkceDve2a9+ebj3tRLbGYF+PYMUcHYQp3K9MzLVitzk4+E8a+3ccY/+OFJL3pHO6v+HM/j4ER/i5QpWCYKVwP6SSH36BPhgO/AF/fARb50NeWsELg6HtUGg/AkIvu2jvTURELjx9NxCR0qaB4yIilwinw4n9WC75qXnYM6zY0wrDlLzjgUqGFezFy9lNlfwKwpVAfKODXOFKsPkCv4viczqcHPk3k/3bU9i/4xgH/k4l/6SlpMOjArisQTjh1QIKAhV/giv5YfE/zV9/mcmwebZraefDO44fD60J7YZBm7vAP+zCvSkRERERuWQocBERKYccVjv5h7Jdw30OZhU8MnFaHWd/MWAM8sUUYsYUYil4NmM8Yd8nwg9jGZzMNf1IDvt3pLCvoBfLycODAkLMVG8cTo1GEVRvFE5QuN/ZL2q3wd/LXCHL30vBUTAhro8fNL4JWg2GmE5gLKNLUouIiIhImVT2fpsWEREP9gwrtoNZJ4QrmeQfPs0Syz5GfCIsruAk2Iwp1FzwbDkeqAT7YjCVj/AgN9PG/p2uHiz7dqSQfjjH47yvxcRlDcKo3iiC6o3DiagWWPwJapN3wMY5sGkeZB0+fvyyttBqEDTtC36hpfhuRERERKQiUeAiIlJGOB1O8o/kYDtYMFltwTLLp51PJcjXtbxydBDmgmefSv4YTN6fT+Vs7PkOstNdSyxnp1nJSstz7aflkZVqJTvdtQRzTobnikFGo4GqdUKo3iiCGo3CqVI7BFNJwqPcNNecLH/MgX/XHT8eGAnN+7t6s1RpXHpvVEREREQqLAUuIiJe4Mg7YYnlg65wJT8pC6ftFEOCDOBT2b9IuFKW5lMp5LA7yEqzkpmSR1ZqnitISbOSnebazkqzkp1mJTfr7CsFFYqIDnQNEWocTnT9MMwlHerkcMCeX2Djx7Dta8gv6CVjMEGD7q7eLPW7gcm3ZNcVERERETkDBS4iIheQ0+nEkW5191YpnG8l/+hpllj2NbqClYJQxbdaIL5RgRjNpotf/EmcDifZGVYyj+WRmZJLZkoeGSm5ZKUc389KzTvtykAnM5oMBISYCQyzuJ5DLQSEej4HRVjwDzrHYCnrKGyYDes/gNTE48cjG7l6sjTvD0FVzu3aIiIiIiJnocBFRKSUOO0O8g/neIYrBzJxZOefsr0x2Pz/7d13nFxl2Tfw3ynTy/ZseiMJSSCBAIFUQFooopDQFJBmgYcWeJEmEhBEpT36CBo0KjYQFUQlgCIWSOiYhHQgvWzJ1ulz2vX+ccrM2Tq72WRnN9c3n/mcM2fOXHvPzMnuzG/uc9/wDg/BMyzshCxyZeCgTbFMBkFVdChpHUpag5KxLmkdqZjihCiJ5gwSTWaYYhjdpymiKCBU6rMuXgRLfAiVeBGMmtftQMUf9ByYx7p3NfDeT4C1fwT0rLnNFzXHZJlxOTDiGKDQcV4YY4wxxhjrJQ5cGGOsh8gg6C1ZqHVJqHUpaPUpqHUpqLXJjqdcFgG5MgjP8BC8w6xploeFIPW250YHDN1Ac10KjbsTSMdVKzixLhk9dz2ju7Z1OPBuFwQBCJX6EC7zIVTqR7jch0iZ37xeZq4Hol6IByk0cmgKsPEvZtCy693c9mFHAcd/DTjifMAbPLhtYowxxhhjhzQOXBhjrBNkEPTmDFQrUNHqUlDrzYClw7FWAAg+yemt4oQr1UEInr47JUhXDTTuTWDfzjgadiWwb1ccjbsT0DppU3dEUYA3IMMbkODxy/AFZPjDHoTLfAhbYYq9DJV4IRbTDEfxWuDDp4EPfg4k6sxtogc44jzg+K8CI2dybxbGGGOMMdYvOHBhjB3ynGDFDlQKCFYgCfBUBSBXh+AZEoSnOmj2Winz9+lpMkpGQ8PuBBp2xbFvZxz7diXQvDfZ4ak9sk9C1cgwwmU+eAIyfH53iOL1y/AEpNy631yXPGLhUykXAyJg13tmb5YNfwYMawDecDVw3NXAsVcCkaH92kTGGGOMMcY4cGGMHXL0WBbZHXEoO2NQdsah7k10E6wEIVcHnWBFrg5CLu/76ZczCRX7dsWxb1ccDVa40lKf6vC0H19IRtWoiHkZbV5Kqg7e+C/9Qs0A654H3nsKqFmT2z5qFnD8V4ApnwPk4pu5iTHGGGOMHZo4cGHsEKKpOpItWSgZHZpiQMvqUBUdmqJDzZrbVEXP225Y292366qBYNSL0uogSoYEUDrEXJZUBSD34akzfYE0A2pNEtkdMSdg0Vuy7XeUOwhWhvR9sKKpOlr3pdFSlzIv9Wm01KbQUp9CJtHxVMmhUh+qRoVROToXsITLfAOrV8r+aNkFfPAz4MNfAukmc5vkA6ZdaAYtw4/u1+YxxhhjjDHWEQ5cGBtEDN1AojmLWGMGsYY04tYy1pBBrDGNVKvSZz+rpS6FvZ+0uDcKQLjMZwUwQZQOCTjLaGUAknzgx/7QYwqUnTFkd8ag7IhD2ZMAtDa9VwTAMzQE75govKMj8I6KQK7ou94hZBDizRm01qXRXGeGKa11KTTXpRBvynQ5UG20KoCqUWGz18qoCCpHRRCMHoK9NhL1wPYVZo+WzS8DZL2GJaOAmdcAM74EhCr6t42MMcYYY4x1gQMXxgYQIkIqprQLUmINGcQb00g0dT9tr+wR4Q3IkH0SPF4RsleCxyeZS69obbeu+8zb7X3M7SIkWUSiJWsGCfVptNabPTWUtIZEUxaJpix2b2p2/VxBACIVfjOAqTKDmEDEA0kWIXlE11Juc91cCpDk3FgjRARSDGj1KTNc2RmHsiPWYe8VMSjDOzoK75iIuRwZgejrWU8cIoKa0ZFNa8imVGRTWt5FRTquWs+D+VzoXQxg6/VLKK0Oui9WLyGv/xD9tZzYB+xYAWx70wxaGja7bx93ojnb0KQzAekQfY4YY4wxxtiAwu9aGSsihkFItmQRb8og3pgxl00ZJOz1xky3M9GIsoBIuR/RygCiFeYyYi2jlX74Q54DcioKESGTUNHiBDBmGGMv1axuBkQNGewCIALwCPZFgCzkrsuC0OFtMgR4xNx6Rx1SCEBGFpHyy0gHZGTDXhgBCZJHgtiYhdzaCGlTsxnkyGaQA8AMUpJa+0DFuq6kNFAPplAWJQElVYF2oUpptRk0HTKnA3XGDli2W5d9m9rsIABDjwTGnQTMuAwYMqVfmskYY4wxxlhvceDC2EGkq4YTorhCFWuZbO6+hwoEIFzqcwKViBWkRCvMZajE1y8DpwqCAH/Yg2pJQGXEA70qAGO0Aj1uXpTGDJTmDPS4AiGtQdR7kF50QTEITTqhWTOXLRpBAwB0ME5LHxBlAb6gB/6gDG9Ahi/ogS8owx/yuAKWSLmvuKZP7m/Jhly4sn0FsG9j+32qpwFj55mXMXOAYPnBbydjjDHGGGN9hAMXxvqYfdpPc00STTVJNNWk0LQ3gdb6NFKx7sdQEUUBoTIfIuV+RCr87qV1kTwH94M8aQb0hAIjrkKPKzASqhOk6HEFRt46tK6DFNeJPAIg+GSIfgmiX4YQMJeiX4Zgb/NJgFcEeSSQLJoXSYAhidBEQCCgWidUagZ0+6JSbl0zYGgGdI2gqXnbnHWzvd6gDF/QnD7ZDlHMi8fcFjJvk73FNShw0UrUAzvfzgUs9Rva71N9ZF7AMpcDFsYYY4wxNqhw4MJYL7ULVvbaAUsS2aTW6f1kj+gEKOH8IMVaD5X6IB6EHiqkG7ngJKGaoYmzVKDHVRjWkjKdP56OCH4ZUtQDKeyFGPVCCnshRb2QIl6IEQ+kiLkuBGQ+tWYwSDcDe1cBe/5rLveuAmJ72u835Ah3wMKD3jLGGGOMsUGMAxfGumEHK001STNcKSRYEYCSygDKh4dQNiyE8mEhlA0NIlLuhz/cP+N36AkFyXdrkV7bAD2WhZHqWYgCSYAU9kCMmAGKGPY4IYoZpNjrHghFNjU060PZBFCzBtj731zI0rytgx0Fc9wVJ2CZxwELY4wxxhg7pHDgwg5ZhkFIxxWkYgpSrQpSsayznmxzXc3qHRfJC1bKh1nhyvAQyqqDRXPqiVqbRHzFHqRW17c/3UcExLAXUtjsdSKGzcDEvTRv594ohyA1A9Sty+u58l9g32Z0OK912ThgxDHA8BnA8GOAYUcBvvBBbzJjjDHGGGPFggMXNiiRQYg1ptG4O4l4c8YdqMTMQCUTVwqedUYQgGiRByv5yCBkPm5GYsUeZD9tcbZ7RoYRnjMc3uFhiGEPxKCnXwbYZUXK0M1xVzb+FdjxljnuitFBT6joCCtYmWGGLMOO5vFXGGOMMcYYa4MDFzbgaaqOpr1JNOxKoGFXHA17EmjYnYCa6aRXSj4BCES8CJV4EYxalxKfs25u9yFc5ivKYKUtQ9GR+m8dEiv3QtuXNjcKQODISoTnDod3TJR7qTA3XQN2rAQ2/NkMWpL17tuDle6eK8NnAJHq/mkrY4wxxhhjAwgHLmxASccVM1jZnUDD7jgadifQXJsCdTCVsiSLKB8eQrQygGBJfqjiQ9BaD4Q9g2LqXq0li+Tbe5F4rxaUNnskCD4JoZlDEZ4zHHK5v59byIqKrgLb37RClpeAVEPuNn8JMPmzwMTTgRHHAiWjzC5ejDHGGGOMsR7hwIUVJTIIrfvSZrCyK+4sk60dT6vsD3tQOTKMylERaxlGWXVwUIQpXVF2xRFfsQfptfsAw9wmlfsRnjscoeOqIfr4vzizaAqw7Q1gw4vApuVAuil3W6DMDFmOOA8YeyIge/urlYwxxhhjjA0a/GmM9TsiQqI5i/rtMdTviKFuexz7dsahpDsYO0IASqoCqBwZQeWoMCpHhlE1KoJgifeQOVWGdEJ6fQMSK/ZA2Rl3tnvHlSAybwT8U8p5XBZm0rLA1n8D618ENi8HMq2524KVwJTPAlPPM2cRkjz91EjGGGOMMcYGJw5c2EGXjiuo2x5D/Y446nfEUL89hnRcbbef5BFRMcLsrVI1MoyKkRFUjAjB6z/0Dlsigt6SRXptAxJv7YXekjVvkAQEj6pCeO4IeEfwjDAM5sxCW/5p9mTZ/AqQjeVuCw0Bppxr9mQZPQeQDr3/S4wxxhhjjB0s/G6bHVDZtIZ9O+NO75X67XHEmzLt9hNEARUjQhgyJoohYyIYMjaK8uEhSIP8lKDOGCkVyu4ElF1xKLvjUHbFYSRyoZQYkhE6YRjCs4dDivDpH4c0IqB+o9mTZeu/gO0rATWZuz08FJj6ObMny+hZgFj8gz8zxhhjjDE2GHDgwvqEOQ1zBs01STTVJtG4J4H67XG01KU63L+0OoghYyMYMiaK6rFRVI4MD4hZgA4E0gyoNUkzXLEuWkO6/Y6iAM+IMMLHD0Xw6CoInkPz+WIA4rVmwLLlX+YyUeu+PTIcmPp5syfLyOMB8dAMLhljjDHGGOtPHLiwHtF1A631aTTXJs1wpSaF5tokWmpT0FSjw/uEy32oHhPFkLFm75WqMVH4AofmoUcGQWtM58KV3QmoexOA3sEsSxV+eEdF4B0ZMZfDwxA8/MH5kJRNADveMnuwbPkXsG+j+3bZD4yZA4z/DDD+ZKD6SA5ZGGOMMcYY62eH5qde1i1N1dFSl0JzTQpNNVa4UptCa10KRgdTMAOAKAsoqw6ibFgI5cNCqBpt9mAJRg/dU170pGoGKztjVsiSAGXaDwYshuRcsDIqAs/ICKQQD2J6yDJ0YO8qqwfLv4Bd7wFG/jhHAjDsKOAwK2AZNQvw8NTfjDHGGGOMFRMOXAYIIoJhEHTVgK4a0NosdU3PWyfoqg5dI3ObZm+37qO135a/TMVVxBvSoI5zFcg+CeVDzWClbGgQ5cNCKBsaQrTSP+inYe6Kc2rQzhiyVg8WvbH9eDWQRXhHhK1wJQzvyAikcv8hM8sS60SsBtj8sjng7fY33TMKAUDpaLMHy2GfMaduDlX0TzsZY4wxxhhjBeHApQg07kngzd9/4gQeZnCi58IRK0jpLAA5UHxB2QpTcr1WyoaFEC71HfLTDhMR9OYslF0xKDut04P2JgCt/YskDwnAOyqa670yNAjhEA6mWJ7WPcDGv5ozCu18B0De8eMvAcadmDtNqHw8wKEcY4wxxhhjAwYHLkVAVXTs2dzco/tIsgjJY17kvHVJFiHnrTvXZQGSR7KWonN/OW/d3t8XkFE2LIRAxMO9LixGVoOyK+E6PSh/1iCbGJThHW2FK6PN8VfEQ3S8GtaJ1t3Ahj+bl13vum8bOROYtMAMWYbP4BmFGGOMMcYYG8D4k2ARKB0SxOnXTIUsS7kQpW0okreUJPGQ72HSE2QQSNFhZHVQRjOXWR1GRgdlNWupw8hqoEyb/TI6jIwGvTXr6nwAAJAEeIaF4B0Vgc8KWaQKPjWIdaB5B7DxL8D6F4E9H7hvGzXLnE1oyrlAycj+aB1jjDHWb4gI0HUIMn8sYYwNPvybrQj4Qx5Mmjm0v5sxoJFqQGtMQ92XhtaQgrbPXk+D0u0Hqe0NqdRn9loZFTWXPGsQ60rTtlxPlr3/zbtBMGcUmvp5M2SJDu+3JjLGGGMHi6EoULZvh7J1G5RtW5HdshXK1q3Ibt+O4Q89hOiZC/q7iYwx1uc4cGEDBhHBiCkdhip6c6Z9D5S2RAGiX4LgkyD6ZAh+CaJPguCXraW13SdZ+8nO/nKZH1Lk0J1tiRWocYsVsrwI1KzJbRdEYMzcXMgS4YCVMcbY4KS3tCC71QpTtm4zl9u2Qt21GzCMDu+T3brlILeSMcYODg5cWFHSWrJQdsag1aecUEXblwYpeqf3EXwS5KoAPFVByJUByFUByFVBSBEPRJ8EyOIhcboPGQaMVApGIuFc9ETSXE8mYCRT5o6iCAiAIIpmICAIgCiYz5Egdni7IArmfoIIweeFGAhA9PshBAIQfT5z6fdD8PsheL09fr5JVaG3tpqXlpa8S971Vve64PHAO3YsvOPHwTduHLzWRR4y5OC83plWYPUzwOrfArVrc9sFERg7PxeyhIcc+LYwxhgb9MgwQIoCymbNpaLAyCogNbfNcG5TQUqbbVnzPiACZAmCJEOQJfOUnk7XzaWzLskQPDKMRALZbdugbDFDFWXrNuhNTZ22XQyH4T1sPHzjxsM7fjx8h42Hd9x4eEfxKbWMscGJAxfW74gIWmMGyrZWZLe1Irs9Br2pg+mUAUAE5DI/5LxQxWMFK2J4cAzya2Sz0FtbYbS2Qo/FrAAiBr21BUYsDiOZgJ5IwLBCFD0Rd9bNUCXZ3w/BJAh5AYwPor9NOOP3g7JZV3hiJBK9+lHq7t1Irljh2iYGg1YQMx7ecWNzYczYsRADgf1/fHXrgfd+Cnz0e0C1nnNBMmcWskOWUOX+/xzGGGMHHRGBVBWUSsHIZGCk06BMxtymaWaQoWlmyKFpgL1dVUGqvexgH9W8blhBCamqFYoouYvqvm6oVnBibYfWN6dKH0jy8GG5UGX8OHjHmeGKVFk5KN6rMcZYoThwYQcdGQStPmWGK9bFiLeZ8UcAPMPD8AwNuUIVudwPQR4Y46aYp0DFoO3bZ16amsxQIRYze2xYYYph9+iwrlOmk7Cpp2QZUjgM0bmEIIXCEENBAAKIDMAg8xsuMsxB6wwyu/sStb/dXjcMEBnmN2SZNIx0BkY2A0qbb0ih6/YTAEqloKdSPWu3IECMRiGVlkAqKTWXpaXuded6KSidMr9d27YdyrZtZrfl3XtgpFLIbNiAzIYN7Z+aYcNcvWF8kyYicPTREL3dnDamq+Y0zu/9FNj5Vm571RRg5jXAEQuBUEXPHi9jjB0EZBgwkkkY8Tj0eNxcxuIwEtYyHoMeT+Qt4yBdN3/vA9bfgrx1AGSfy0tod5u9P4EA3TD/dhgGoOvm35f8ba6l3u42CILZa9LjMZdeDwSPuRQ9+de9bfbLrUMUQJksjHTK/HuVycDIpEGpNIxMJvf3LJ0Gpc1tnZ3+UlTs58bnc54b0esraJsgiiBNB+kaoGnWug7SVKDDdWs/3bqPqkHw+Vyhit3bVAwG+/uZYYyxosCBCzvgSCeoexO5gGV7rP1AtpJgzvYzrgS+cSXwjolA9BV+eBIRjHgcWkMj9MYGaI2N5npTIyBKEMMhiKEQpJC5FEMhM4TIu17oKTCk69CbmnJBSrtLg7NOitLTp8skipAiEYilJZCiJZBKSiBFoxBLopDCkVyAYocpIXMpha3HFYn06pSevkCqar15zbi+FXS2pXNvbAW/zwpP8oKUaBSC1LPpkIMzZ7rboChQdu2yAhgrjNm6Fcq2bdBbW6HV1ECrqUHyrVxoIgQCCJ1wAkLz5iE8fx68Y8bkCsZqgA+fNi+JWusOEjDls8DMrwBj55mnWjHGihrZobGum70NdOuDpKpCDAYhhcP93UQHEZkf/FMp85JOw0ha66mks51SKRipvP1SqVywkkiYIX/CDFCcMIT1jMeT663p8QIe2QxyZI+59HjM023spdcDyG32sa975Fw4lB8MOUGSuU10be9gX48XotcDeAZH717GGBusBKJD969vLBZDSUkJWltbEY1G+7s5g4aR1qDWJK1wpRXKjhhIcX9LJHhFeMdE4RtrBSyjIu1m/CEiGK2tufCksQFaQwO0hkZojQ3QGxrN2xoboTc29j7csHk8kIJBVwhjhzJGJg1t3z7o+8wwpyffeonRKOSqKsjl5ZBKSyCW5IUoJVFIJSVmj46S0tz1cNgcO4X1Oa25Gcq2bc4lu3Ub0h99BL2hwbWfZ9QohI+agFB0D4LqSkiS1QsrNAQ47irg2Ct5hiHG9hMpijtQSKXMUCGdcgcKrrDB3jcXOpinc3Tzjby13hUxFII8bCg81UMhD62GZ+gwZ+kZWg152LD9CmWMbNYM5OvzQvr6endo39QISpqP8UAEJILHY/7NiUQgRiK5ZTQCMRKFFAk7S1jT9Dof6Nsu0XY7nOvOfURrDDBJAkTJHAtMlMwxwyQJEEXz750oQZCs8cPabCPDaH/qjaqap+p0cBqO4bpunYZjGBACfvP01mAAgt9aD1inujpjkgXNbX5/bpvH0+evAytO/NmAMdbXOHDhX6q9QgZBb86YA9ruS0PbZw1uuy8FI6G2218IyPCNjTo9WDzDQ4AoQG9shLp7N5Q9e6Du3gN1926oe/ZA2bMb2t4akNq+VlfEcBhyRQWkykpzWVEO6FY36ryLbg0eaySToHS650+AIECqqDCDlKpKa2ldKq3lkCrIlZUQ/f6e12cHFRkGsps3I7FiBZL/+Q9Sq1aZXdptIiE40o/Q/BMRPv8r8B1xJH+jyFgeuzeG3twMzR6XqbnFPfh1c3O760ZPTzk8UESx4CBdDIUgDx0Kz9C2ocxQiH5/u16PqhOoNMBobe1d84JBCMEgxLaXQMBchoLufQJBM0AJ20GKFaxEoxB9vl61gbFDAX82YIz1NQ5cBuAvVdIM6EkVRkKFnlBgJFQYCQV6QgUMMqc5DphTGot+GUJAhui3rgdkCH7Z/IapAEZGs6ZfTrmDlcY0oHV+6EglXnhHR+EZ6oXgS8BI1EHbkwtT1N17oO7ZU9B4JWI0CrmiwhWkyJX2eiXkSuu2iopehRuk67lZffJDmUQulBF8XneYUlFujtTPBo+GT4D3lwGrn4GeiCNV70WyLoxEQynUJncoJ1VVIjx3HkLz5iE0dw7ksrJ+ajRjHTNnK0u3C5uNlLVMp81AW9OsQT2tpWZtswf91DrYbm/LH/S6pWW/ehkKHk/XoUJ+oBBou0/APMWio5lUrHVBksxTPDpalyQIoggjmYRaVw+ttgZqbR20ulqoNbVQ62qh1dRCravrdWDieqxe6+/JkCHusN6+XlFu9q60Hp/g93OPR8YOkoH62YAxVrw4cCmCX6pEBFJ0GHHVDFLiinuZF6zocRWU2f/R6QWfBNEv5YUzZiAjBGTAICdkaTeYbT4REIME0ZMFUQJQmqAnamE074FWvxfqnj3dzzojCJCrq+EZOQLeESPhGTECnpEjresjIFVVdT+QKWO9ldgHbPknsOZZYOu/ctvLDwNmfhk4+otAoBTKjh1IvLkCyRUrkHz3XXevKEGA/8gjEZp1AqSycohB8xtnwf7mORB0ttnfRguBAH+AYh0iXTdnH4snrMFMY2YYnD/AqT1LWdswJf9ygE5H6Y7g8eTGYyory627rptjNsllZeYpltYYWgOBkUq5whitrhZqbR3U2hpotXWgTAZSVSU8bcOUvEBFjEa5hxxjRapYPhswxgYPDlyK4Jdq5tNmNCxb17M7iYAY8kIKeyCGPZDCXnNaZFGAkdFgZHQYaQ2U0czraR2U0UBqz0fcJyMFyjTCiNdCb9oJvXk3jEQtKNUEoPvDR6qshGfEcDNQscIUz4gR8I4cCc+wYQPmjTYbBHQV2PUe8Ok/gC2vAzVr8m4UgElnAsd/GRh/inmKQQcMRUH6v/9F4s03kVyxEtnNm3vVFGfMADuEsUOZkD2bVCg3w1Qo6B4gORTKDZocCpkBDn+AO2ic6WLtwaCzWVA2CyOTBWXtbYq1bm6zbzeSSejxGAxrFhhnthhrcNM+n9ZdFN3jUoVCZm+RQDDX+8PjMQcBlWVzgE9ZhuCRc71AXIN+2ts9ELweZ7YwM0AphRAM8rHIGBuwiuWzAWNs8OBzIoqAFDYDB8ErQgxbIUrIAylihihSyAMx4s1tC3nMU4MKPC0oH2kGjIwGZU89spu2ILt1F9SdNVDrGqDH0hA85jR+RqIORrwWRqIO0NqPcSL4/fAMHwapvBxSRTnksnJI5eWQK8ohlZlLzwgzWBEDgf17ghjbH83bgU9fN3uybP0PoMTdtw+dDkw8AzjmcqBsbLflRK8XoVmzEJo1C/j616HW1SO5ciXSH61xBvt0Zg2xBwG1lpQ3XgWl09DTaeh98RhF0Rng2ZypKmLOamUPjFkShRSJQiqJWoNjRt23RyIDuseNoSjmTCyxOIxYK/S41TPE7hUSj1sDbFqnyKgqSFNzp9Qo+dtzS2iq+7ZsFoYVrhzo3iOCzwcxGjFnJbOX9jgcrhnWcgN9S+2ClZB5OgoHIIwxxhhj/YJ7uBRBiq2nM9B274VUUQopHO7THh9kGFB27EB240ZkNm5CZuNGZDZtajcji00eNgy+ww5zxkSRy8sglVmhSnk5pHJzmxgM9lkbGetTShLYvjLXi6XxU/ftwQrgsFOBCacCh50ChIcctKaRYVhTY6edWVco3XaGlrwxhOzTRhIJZ4whPene3icf/AXBnFY8EjFP8YhEzF437aYstaYtzZ+y1NP57RAlwNBBulHgUs9N2asbIMOcrteIJ8xeITErSInFzFDF2kbZ7P4/B/vx3Al+P0Sfzww3fF6IPn9um89nTiXr85shSiiUNztMuN2sMKJ1G59KyRhjB1+xfDZgjA0e3MOlCChbt2D7oguc64LfDzESdn+zmf8NZ/7MA/kzEITD0JpbkNm4AVk7XNm82fWtukMU4R03Dv4pU6zLZPimTOHBP9nAQwTUb8wFLDveAvS8wTsFCRh1AjDhFGDCacDQozo9XehAE0TRGRS0Lzgzw7jCmbzTVFpj7YOKmHsbZTIAEQzrPti7t0/adtAJgmsmFnMZgRQtgRgOmQGGc1qM1zmVRvDIeafLeMzTZTye3Gk0+bf7fBB8fog+rxOowOPhHiSMMcYYY6xDHLgUAcpmIQaDzvSYlMlAz2Sg7+u4F0pPCT4ffIcf7gQr/ilT4Js0iU/1YQMTkdlrZefbwI63ga3/BuJtQoKS0WYPlgmnAuNOBPwl/dLUA00QhFyA08uOOoaiOOGMEbcCmdYYKJOGoSggRTFPq3HWFfP0Gmdd6Xw/Q4cg5maBKWgpiYBoLQXRnL0mGjFPiYpGzJ4g9rIkmpvqNhQa0KdFMcYYY4yxwYcDlyIQPOYYHP7fD0GaZs5O0XZGCmsMAnugRT0Rh9HuNnMpBoPw2b1WpppL79ixPIUxG7h0Dahba4YrO98Cdr4DJPe595EDwNh5VshyGlAxAeBeBwURvV6I1rTrjDHGGGOMsb7Dn8KLiCDLzmwPjB2y1DSw+wOrB8tbwO73AaXN9OKSDxh5HDB6NjB2LjB6DuDx9097GWOMMcYYY6wDHLgwxvpXqgnY9W7uFKG9qwBDde/jKwFGn2AGLGPmAMNnALKvf9rLGGOMMcYYYwXgwIUxdnClmoDtbwLb3jB7sNRvaL9PZFguXBk9Gxgytd8GumWMMcYYY4yx3uDAhTF2YGViZrCy7Q3zUre2/T4VE4HRs3IBS9lYHoOFMcYYY4wxNqBx4MIY61tKyjxFyA5Y9q4CSHfvUzXFnD3IHn8lXNU/bWWMMcYYY4yxA4QDF8bY/tEUYM8HuYBl9/uArrj3KR9vBizjTgTGzgfCvZzDmDHGGGOMMcYGCA5cGGM9Y+hAzepcwLLzHUBNufeJjnAHLKWj+qWpjDHGGGOMMdZf+nwUyvvuuw+CILgukydPdm7PZDK4/vrrUVFRgXA4jEWLFqGurs5VY+fOnTjnnHMQDAYxZMgQfP3rX4emaa59/v3vf+OYY46Bz+fDhAkT8PTTT/f1Q2GMAQAR0PAJ8N5Pgd9dCjw8DvjpKcA/7gO2/NMMW4KVwBELgc9+H7jxv8At64HzlwJHf5HDFsYYY4wxxtgh6YD0cDniiCPwj3/8I/dD5NyPueWWW7B8+XL84Q9/QElJCW644QYsXLgQK1euBADouo5zzjkHQ4cOxVtvvYWamhp86UtfgsfjwUMPPQQA2LZtG8455xxce+21+O1vf4vXX38dX/7ylzFs2DAsWLDgQDwkxg4t8Vpg63+Abf8Btv4biO1x3+4rAcbOy/ViGTKFB7lljDHGGGOMsTwCEVFfFrzvvvvw4osvYvXq1e1ua21tRVVVFZ555hlccMEFAIBNmzZhypQpePvttzFr1iy88sor+OxnP4u9e/eiuroaALB06VLccccd2LdvH7xeL+644w4sX74c69atc2pfcsklaGlpwauvvlpwW2OxGEpKStDa2opoNLp/D5yxgSwTA3asNMOVrf8B9m103y55gVEnAONPBsZ/Bhh2FCDxGYmMMcYYGzz4swFjrK8dkE9Mn3zyCYYPHw6/34/Zs2fjO9/5DkaPHo0PP/wQqqritNNOc/adPHkyRo8e7QQub7/9NqZNm+aELQCwYMECXHfddVi/fj1mzJiBt99+21XD3mfx4sVdtiubzSKbzTrXY7FY3zxgxgYaTTEHt936b7MXy+4P2swkJADDplsBy8nAqFmAN9g/bWWMMcYYY4yxAajPA5cTTjgBTz/9NA4//HDU1NTg/vvvx/z587Fu3TrU1tbC6/WitLTUdZ/q6mrU1tYCAGpra11hi327fVtX+8RiMaTTaQQCgQ7b9p3vfAf3339/XzxMxgYWXQVq1gDbVwDb3wR2vNV+oNvy8cC4k8yAZdyJQLC8X5rKGGOMMcYYY4NBnwcuZ511lrM+ffp0nHDCCRgzZgx+//vfdxqEHCx33XUXbr31Vud6LBbDqFE8oCcbhDQF2LvKCldWAjvfBdSke59gJTDeDlhOAsrG9EtTGWOMMcYYY2wwOuCDMJSWlmLSpEn49NNPcfrpp0NRFLS0tLh6udTV1WHo0KEAgKFDh+K9995z1bBnMcrfp+3MRnV1dYhGo12GOj6fDz6fry8eFmPFRcuapwXtWGn2Ytn1HqCl3fv4S4Exc4Gxc82AZchUQOzzicoYY4wxxhhjjOEgBC6JRAJbtmzB5ZdfjmOPPRYejwevv/46Fi1aBADYvHkzdu7cidmzZwMAZs+ejW9/+9uor6/HkCFDAACvvfYaotEopk6d6uzz8ssvu37Oa6+95tRgbNBT0+YYLNtXmiHL7vcBLePeJ1gBjJkDjJlnzijEAQtjjDHGGGOMHTR9HrjcdtttOPfcczFmzBjs3bsXS5YsgSRJ+MIXvoCSkhJcc801uPXWW1FeXo5oNIobb7wRs2fPxqxZswAAZ5xxBqZOnYrLL78cDz/8MGpra3HPPffg+uuvd3qnXHvttXjiiSdw++234+qrr8Y///lP/P73v8fy5cv7+uEwVhzUDLDrXfMUoe0rgT0fALri3idUZfVgsQKWysM5YGGMMcYYY4yxftLngcvu3bvxhS98AY2NjaiqqsK8efPwzjvvoKqqCgDwv//7vxBFEYsWLUI2m8WCBQvwox/9yLm/JEl46aWXcN1112H27NkIhUK44oor8K1vfcvZZ9y4cVi+fDluueUW/OAHP8DIkSOxbNkyLFiwoK8fDmP9Q9eAmtW5WYR2vgvoWfc+4aHm6UFj55m9WConAoLQH61ljDHGGGOMMdaGQETU343oL7FYDCUlJWhtbUU0Gu3v5rBDGRFQv9EMV7b+xzxNKNtm2vLwUHP2ILsHS/l4DlgYY4wxxvoIfzZgjPW1Az6GC2OsE83bzXBl23+AbW8AyX3u2/0lwNj51lTNJwGVkzhgYYwxxhhjjLEBggMXxg6WRL0ZrGz9t7ls2eG+XQ4AY2abvVjGnQQMOwoQpX5pKmOMMcYYY4yx/cOBC2MHSqrJnKJ5+5vAtjeBfRvdt4syMOI4M2AZfxIwciYg87TljDHGGGOMMTYYcODCWF/JtAI73jLDle1vALXrALQZImnoNLP3yriTzN4svki/NJUxxhhjjDHG2IHFgQtjvZVNADvfMcOVbW8ANWsAMtz7VB4OjJtvjsUydj4QquiftjLGGGOMMcYYO6g4cGGsUEoK2PVu7hShvf8FDM29T/l4ayYhK2CJVPdPWxljjDHGGGOM9SsOXBjriJICGj8B9m02p2ve9S6w+31AV9z7lY4Gxp6Y68VSMqJ/2ssYY4wxxhhjrKhw4MIObZkY0PAxsG+TdbHWW3ai3fgrABAZngtXxs0HysYe7BYzxhhjjDHGGBsAOHBhh4ZUU/tQZd9mIL638/sEyoGqyUDV4eYUzeNONE8ZEoSD127GGGOMMcYYYwMSBy5scMnGzVOA6tYD9RvM9X2bgOS+zu8THmqGKlWTgapJ1nIyEKo8eO1mjDHGGGOMMTaocODCBiZdBRo+MUMVO1yp2wC07uz8PiWjrWDl8FzAUjkJCJQetGYzxhhjjDHGGDs0cODCihsR0LrLDFPq11vLjea4K4ba8X0iw4AhU4HqqeZyyBSgYiLgCx/ctjPGGGOMMcYYO2Rx4MKKh306UO1aoG6d1XNlI5CNdby/N5IXquQFLMHyg9tuxhhjjDHGGGOsDQ5c2MFHBLTsAGqtUKVurbnevK3j/UWPeepPtdVbZcgR5nrJKB7AljHGGGOMMcZYUeLAhR1YSrJ9r5W69Z33WokMA6qPAKqPtC5HABUTANl7cNvNGGOMMcYYY4ztBw5cWN9QUkDjp+bYKg2fAPs2mr1WmrYCoPb7S15z4Fo7WBlqLXlmIMYYY4yxQwoRQeBey4yxQYgDF1Y4InN65YaPc8FKw8fAvo+7nh0oNCQXqNjhSuUkQPIcvLYzxhhjjLGDjojQlGlCTbIGexN7UZOsca3vTezFN2d9E2eOO7O/m8oYY32OAxfWnq4BzdvbBysNHwOZls7vFygDKg8HKieagYodsoSHHKyWM8YYY4yxg0gzNNSn6tuFKPayNlmLjJ7pssbe5N6D1FrGGDu4OHA51GgKkKgFYjVAfG/eMm+9dU/nUy5DAMrGmIFK5SQrXDncXA9VHNSHwhhjjDE2EBhkQDd0qIaKrJ5FRssgraeR1tLIaBnzumZd1zNIq+ay7XZ7X83QQPY/6mQJAsj82fn7AnCt29c7Wgfg2q+tpJpEfaoeOundPgdVgSoMCw/D8NBwDAsPw7BQbn1keGRPn1LGGBsQOHAZLAwdyLQCiTozPInXuEOV2B5zW3JfYfXkQK6nihOsTAIqDgM8gQP7WBhjjDHG+ohBBlJqygku7EtKc2/LDzeci5q3rqehGzp00qEZGnTS2103yHDdppEG3dDbhRiDjSzKGBocmgtSwsOdMGV4aDiGhobCK/EECIyxQw8HLsVISQHpJiDV1GbZbC7Tze1vS7egw8FpOyJ5gchQIDIciA7LLaPDzfWSkUB0BCCKB/JRMsYYY4wVRDM0xJU4YkoMsWwst25fsrF21+19EmoCBhn9/RBcPKIHATkAv+w3l5LfuW5va7vd3uaTfJBFGQIECIJ1sf8JbZbWuiiY7+na3oY249QKbTa0Hci27e0+yYdhoWGoDFRCEqWCHrumqkg0NiDe1IB4YwPiDfsw/tjjUTV6bM+eRMYYGwA4cCkGez4E/nJTLjzRuj7PtUv+Uis4GdYmTBlhbRsOBCsAHgmeMcYYYz2kGipaMi1oyjShMdOIxnQjmjJN5vW8dfuS1bO5D/0QYX7G7zwIcO1jBQOqoSKpJve77QIEJ7QIyAEEPAH3dTmAoBxsF3A44Yfsh0f0QBIkSKIESZAgi7JzXRZk122d7eOVvJDFA/MWnIigZjNIx1qRam1FKtaKVKwF6VgMqdYWc3vcXAeAQCTquvgjkXbbApEoZG9hvVN0TUOyuQmxxn2INzaYwUpjA+LW9Xhjg/Oz8/lCYQ5cGGODEgcuRUEA6ta5N4kyECgHguV5y7I21zu4nWf+YYwxxlgBiAhxNY7WbCti2Rhas61oybagVTGXzZnmdkFKS7al5z/HGi/EgFFwZ9zOhDwhRL1RRLwRRL1R8+JzX494Iyjxlbiuh71h+CX/gJl6WNdUKOm0dUmZy0zuejoeQzqeF6JYl3RrKzRV6fP2eHz+DsMYQRRdoUqipdmc1bIbsseLSGUlIhWViFRUoXTosD5vM2OMFQMOXIpB5UTgsufdAYovwr1QGGOMMVYQRVecUKQ504zWbCtalVZzaV+sIMUOV2JKrKDBTtsSBRGlvlJUBCpQ7i9Hub8cFf4K53qF39oeKIdP8gFAlwO7GmQGMfkDu9rhDIEgi7ITnByoniF9zdB1MxSJtSIViyEdbzXDkXgMSjqFbMoMUNR0ygxSUqlcoJJJQ1c7m7ygMLLHi0BJCYJR8xKwLvnXBUFwgpt0PIZMPO66bl/IMKBmM1CzGcQbuh8LUJRkRCoqEKmosgIVM1QJO+uVZljD73MZY4eAgfFXa7DzRYAJp/V3KxhjjDFWJFRddQUojZlGNGea0Zxtdp2y05xpRnOmGQk10eufFZADiHqjKPGVoNRX6vQOccKU/GAlUIESb0nB43UMBkQETVWQTSTMXiSxGFLxVqRjrU7vknQshlSsxQxXYq3IJBMF9fTojuz1wRsIwOsPwBMIwBcIwhsIwB8KI1BSaoUnUQSj5nqwxAxTPL6+6c1DRMimkp2GMYau50KV8kpEKqsQjJZA4HEAGWMMAAcujDHGGGMHhWqoaM40Y196HxrTjWhIN7gu9rbmTDPiarzH9WVBRpm/zLz4yhD1mSFKibfECVOivmi763YvlMGKiMxeJckkMskElFQKmVQS2WQC2VQK2ZS1TCZd60o6iUwyiWwyCUPXev6DBQH+cATBSBTBklIEouZpOL5QGF5/wAxSrACl/XVzKUr9G2wJggB/KAx/KMyn/TDGWC9w4MIYY4wx1g3d0KEaau6iq1AMxVnXDA1JNdkuRGlIN6AhY4YpzZnmHk0PLAmSE6CU+8tR7jNP0ynzlaE8YF63byvzlyHqPbRO0zB0HcnWZiSbm5FsaUaypclab0KiuRmplmYkWpqQammGrvUiMGlDEEQnNHGfphO1lqV56yXwRyIQD6GeQIwxxtrjwIUxxhhjA55BBlJqCkk1mbtoSSQVa5m3PaEkkNLMfRNqAik1hYyegarnAhXN0KDoinO9r6YVFgURFf4KVAYqURGoQFWgylmvDFSa458EzHFQIt6IM4vPoYSIkI7HEG/Yh1hDPeKNja4wxQxXmpGKtfbotB3J44EvGDIvoVDP1oMheP1+PlWGMcZYj3DgwhhjjLGioRqqM8hrS7al3bqzTcmt2wHKwSSLMjyiJ3eRPAjIAVQGKlHpt8KUYJXremWgEqW+0kNq/JOOaIqCeFODFajsc4IVez3esK/gmXYEUUSopBShsnKESsvMS1k5QqXlCJWVIVRShnBZOQIlJfB4B/epU4wxxooPBy6MMcYYOyCICAk14RrktSnThKZ0kzn4a9qcZrgl24KYEkNLtgVJNblfP1MWZAQ9QYQ9YQQ9QYQ8oe7X5RD8sh9eydsuROns+qF06k6hiAhqJo1ka4vZA6W1BYnGhnahSqq1paB6obJyRCurECmv7CBQMdcD0SiftsMYY6xoceDCGGOMsYIouoKYEkNCSSCmxFwz6NjrbbdpRs/HzhAgIOKNoNRX6syakz+DTtv1qCfqhCg+ycdhSB9TMmkzQGlpQcoKU5KtLUi1NiPZYi7N7S3QlGxBNWWfD9GKKkQqqxCtGpJbr6xCpHIIwuUVkD2eA/zIGGOMsQOLAxfGGGPsEGHPktOSbUFCSSCuxM0ARTXX7SAlrsSdbfkXxSjsNI+2gnLQHPQ1kBv4tdxvDv5a6s8LVbxmkBLxRg75024OBjWTQaK5EYkm8xJvakSyuclcb25EygpWtGxhIYrN4w8gVFKKYEkpwmXliFQNQbRyiBWmmKGKPxzhYIwxxtigx4ELY4wxNkCphoqWTIvZq8Q6Rac522zOiJN33e5xEld6PtVwRyKeCCLeiGuGnAp/hbNe7i93LmX+Mvhlf5/8XFYYw9CRamlxgpNkU5MTrOSHKtlU4advyT4fQqVlCJaUIlRShlCpGajY24Il1uk+JaXw+Pn1ZowxxgAOXBhjjLF+Z491Yg8G25ptRUyJIZaNOYPGxpSYM2isPRZKTIn1+GeJgogSbwmivijCnjAi3kju4okg7DW3Rb0d3O6NIOQJHZIz5xwsRAQ1m0E2lYSSSiGbSiKbTJpL67qSbr9dSSWRTafMbelUwbP3eHx+hMsrzEtZuWs9VGqOlRIsLYXXHzjAj5x1hoiQ1QxkVB1pVUdGNaBoBlTdgGYQNN2AqhM0w4Cmk7NdtbfrBlRrP00nqNZ+AgCfR4RXEuHzSPDJIryyCJ+cv+7e5rPXrfsRgKSiIZ7RkMhoSGRVcz2b2xbPdnKbtT2eUXHf547AhceN6u+nmjHG+hwHLowxxgYle7abWDYGURCdAU+9otdZl0V5v8IDVVeR0lJIa2lzqabbXXfWtTTiStwdpljhSlyJQye9V20QBRGlvlJXj5IyX5lz+k5+j5MyfxlKfCUcmPQTMgykYq3mTDyNDYg37kOsscFZjzc2INXSDEPv3bGQTxBEhMrK2oQobZblFfAGAnxqTx+xg5FYWkXMChKcZdpcxjMa0k5wYl8MpBUdGc1ct7en824f7OKZno/1xBhjAwEHLowxxoqeQQbiShwt2RY0Z5qdcUias83OKTX515szzYirhZ0+IwsyPJKnw2l+7XVZlKHoiis8SatpaNS3HxL8kh9RX9QZz8QZFNYbdZalvlLnFB4OUIoHESGTiOfCk4ZciGJvSzQ1QtcKO2YEUYQvGIIvGITXWprXQx1sDzu3e4NB+ENhnr3HYhi53iGKnusZolo9QbLOdfOiaAYUnaBa23P3IWQ1HfH8AMXqsRFLW8uMClUvrGdRb0migIBHgkcS4JFEeCQRsiRAFt3XPaK1XRLhlQTI1nWPJEIWze2A+dxkNQNZ1XysWVVHVjMfc1bLX89d76jzlEcSEPF7EPbJiPhl1zLslxH2eRDx522ztket+1RGeMpuxtjgxIELY4yxPmOQgYyWQUpLIaWawURGz5hLLYOMZq7b2+1tKS1lruu5fTJaBkk1ieZsM1qzrb3qASJAQNgbBsjs8aIYCgxyf1uskQatwA/BnZFFGQE5gKAcREAOmOueYLttEW/EFaDkBytRXxQ+iT90FAsiQjaZRCrWinSsFal4K9Ktrbnrsdy6eT0GQy/gOBIEhEvLEKmoQqSiEpHKytx6RRVCZeXwh8Pw+PyHRM8Tu1dIStGRzGrmUtGQzGpIZnWkFHNbRtWRUsxeH2kl1wMkreR6gqStfTL2fv3UO0QQgIhPRsTvQTRgBg1RvwdRK3AIeGX4PSICHgl+jwS/R7SWkmubve7LW/dI/RuuEhE0K8RSNANEhLBfhk/mcI8xxjrCgQtjjB3isnoWsWzMmbHGnvbXDk1SWsoVoDjb2iztIOVACnlCZg8Pa3abcn+50+PDXtq3lfnKEPVG2812oxs6VEPNXXTVfb3NNs3QoOoqPJLHDE88AVeQEpSD8Eg8fW2xI8NAJpnIC0linYcn8RjSsdZendoTiJY44Ym5rESk0lyPWoGKJA+Mt1+GQa7TXOyeIvZpLlktf+ne5pwqo9pBSi5ASdjBirXUjAPbK8QmiYLTM8Qni06PkA63yeYYJV4513PEK4ttwhMrTMkLVSJ+GSGvDFEcnGGZIOSeQ3A+zBhj3RoYf/EZY4x1SdEVZ3DVVqU1F55kY06I0tl6Vu/ZlK+FEAXR6dXhl/zwy/7cddnv2uaX/Ah4Au22+WU/gp6gGaD4SlHqL+2THiCSKEESJfjBM6kMZLqmIpNIIJOI5wUnsU56n7QiHY+BjJ73dvAGAghESxCMlCAQjSJYUmpdj5rLklIEo9Zt0VLIXu8BeLQ5ROQMkGqfFtN2oFTFCkaSio5UVjOXVuCRVtzX7R4k9r52D5NU1jwF52Dye0SEvDKCPslceiWEfDICHglBr4SAV0LAIyPgzfX4MLdZF6976W+zLg3SEIQxxljx4sCFMcaKBBEhraVdM9W4Zq3JG2Q1f9aamBLb754lAgRnZpqI15ypJiSHEPAEEPKEEJSDCHqC5jJvPeAJuG+zlj7Jd0icDsH2n6YoyCTi1iWBdCLmBCn2tkwijkwyjrSzPQE107tj3hsImgFJSYm5jJQgGM0LT6wgJRA1b+/rAIWI0JpWsbclg5rWNGparWVLBntb02hIKE6IouhGu5llDlZvkLY8kgC/LDmz2eSfBuP3mDPX+D1im33MoCTolRD2yQj6ZIS8EoJe2bouOQFL0CNZ44owxhhjgwcHLowx1scMMpwpfp1pfQsIUFqVVmhG78cSEQXRHCPEa44REvVFzWXeuh2qtL0t7AnzwKusTxi6jnQ8hlRrC5KtLUi3tpg9TvKXznorNGU/elgJAvzBEALRKALR0lxwkh+k5PVACURKIHsO7OlfsYyK2tYM9rZYYUpLGntbM+Y2K1hJq/s/C1E+cxBUc6BUj2wOihq0go2Qz710tnslJwAJeCVXz5KQT0LAa/YssYMT7h3CGGOM9RwHLowxBkAzNKS1NJJq0pnO1163xyjJv825nndbfo+TtgOz9oRH9LQbTDV/xhrX9rzrIU+IQxPW5zRFQToRQzoWQyYRRzoeQzoeRzpuBiZmcNLsrGfisR7/DEEQ4Q+H4Q9H4I9EEAhH4A9Z18MR+EJhyMEQBF8Q5AtC9wSgeQJQRC/Sau50Gs0w0KoTGg2zJ4iuG9BaCVozQdOboRlNTi8R3TolR7fup1nrqnWbvV/7fd2369ZpPLpBiGfM8UkKUR7yYliJH8NKAhhemltWhX3weURnVhmvJEK2ZpaxxxuR7aVoLrk3GWOMMVacOHBhjA14qq4irsaRUBK5pRJHXIkjoSZc2xNqwhkUNqGa+yXV5AEZxyQgBzqdjabUV9rhtL8lvhL4pUNjdhJ2cBmGDiWVRjaVRCaZQDoeQyYeywtQ8gOVmHV7HGo20+OfJQgifOEIvOEo5FAUYjAMBMIgfxi6NwzVG0JWDiAtBZAS/UiRhJRqzlSTyupIqRpSGR3JmDmmSErRoRtpAGkAjX3+3PS1qF/G8NKAGaiUBjDcClaGlfoxvCSAoSV++D08qwtjjDE22HHgwhjrM7qhOzPV5F/yZ7BJa2mkVXNK4KyedWaDUXTFmbZX1a1l3mwxzu16brtiKEhr6T4NSyRBQtATzI1bYo9L0maMEte4JtY2nuKXHShkGFCzGWRTKWRTSWRTKSipJDKpJBTrejaZyLs9b1va3FdJ936cHxJEkC8Iwxs0e5bI5iUtBZAUAogJPsTgR7PhRSt8yIh+kN3bSgcQty4uinVp7VFbvLLojANijw/ilXM9QmRRgCSKzmk25jL/uggp/zZnX9G6b26/ttftWW4k+37OzzOvB7wShpX4EfLx2yvGGGOMceDC2IBnkAFFV6AYihlGWEFE/jbnYoUZruDC6OC67p4e13U/az2tmaFJfoiiGEq/PhdBOYiwN4yIxxz01V63B4F1tnvC5jZrGfKEnItH9HDvEtZniAhaNmsGIOkUlHTKDEvSKSip3LodimTTaWufJJRUCkra7JGiZNIA9c1gqaogIyt6kRH9yEh+ZEQ/0tay7XV7qYheoJD/F3mdNiRRQMiaZSaYv/TKCPmscUI8bccWsdbzZqnJ38YDqzLGGGNsIOHAhbEDgIigGAoyWsbpgWGvp7U0MlrGFVY419V0l9szWsYdpBjKfg2yeqAIEJwpgANyAAFPwH1dNme28UpeeEUvPJLHWXpE8+KVvO2Wsii79xc98Mt+JzyRRO6iz/qGrmlQsxmomYyzzKZSyKbtICQXlqSTSedi9yxR02lo2TT0TBrYj/F82rULIhTRC0X0ImtdFNFnLb3Iij7ntrbb7XVDMP+feCVzppm2U+iWyRKGu7blpuD1502/a0/h21GgEvRJ8Eoih5eMMcYYO6Rx4MIYzF4icSXuzBrTkm3JzRyTbUVSTTqBR0bPIKtlkdbTyGpZ1/aMlnHCFUL/TN3pFb1mkJEXVPgkn7PuhByiBx7J4woxPGLHwYcsyq7www467ODEDlHsbTwlMOsPZBjIplOIt7aitbkVsZZWxFtbkYjFkc2koabTUKzwRMtmoGWz0JUMdCUDQ8mCVAWkZgE1C8Ho21lkDAhQRA8UKxBRBE9eMJJ3Ebx5+7XZR/BC8ngQ9MmI+GWEvOYy7JMR9nswxCcj7JMQ9nkQ9suI+GSE/WYgEvbl7ytzTxHGGGOMsYOAAxc2oGmGBkVXkNHNnh924GFfMloGcSXunno3awUqijktb0u2Zb9nlemKLMjwy374JF+ut4dkhhN2QOGXzPWgHGy3vW2QYQcoTk8PK0CxwxAOOlixIiIouoGMaiCr6sioBjKajoyqI5NVkcpkkc5kkUlnkclkkVEUKOkMUvE4lFQcajIBLZ2Enk6AMikgm4KopCGpKXjUDDx6BuJ+Bp1t//foEKGKMrSOAhIhF4xkRS80yQfB44fo90PyBSH7A/AEgvAGgggE/AhYPUDCVi8Rv9WLxO4x4pMlp7dJwOpZ4m9zO0/NyxhjjDE2cHDgwg4o+9Qae/rcpJo0B1FVU0hquW3tpt611rN6Flkt6wpR7CBF0RVo1Len0zgDn7aZVSbsCTuhiV/2OwGJa91a5u/jk82eJYz1JcMwgwtVN6emVXXDuk7QdANZzUBG1ZHVDGQ1M9hwlqqOjGYgq3ZwW95S0wkEgkEADAJ0FaKuQNCyELUsJC0LUVesdQWipkDSs5B0BbJuX1cAQwN0DYKhQzA0SKQ7FzlvvbugREbhf7AUQUbWGo9Elf3QPQEYshck+wDZC8HjheDxQfTaFz9krx+y3weP3w+Pzw+vPwBfIAC/zwufLMIriwh4ZYS8ZvgRzFsPeWUrEOFTaBhjjDHGWA4HLgyaoTkhRv5YI21nlskfg6TDWWjU9ttSago69W3X/M54RbPnh0/2mUvrEvFGXAFKqa+0XahS6i9F1BuFV/IelLay/kVE0A2CqhNUIxda2AGGZpjhhZoXYmgGuQIO1bC2WzVUzd7H3s+AYt3X3t/eR7Fuz+1Lrn1U6+cp1rq9j6Ib0DQzvJBJc0KL3LoGyb4NBiRDM0MNWMGGYa7b+7cNPSTSEbVu8xgqPIYKL6nwGsp+9xzp0esDASRKIEkGSR7AF4TgD0HyhyAFw/AGQ/CGIvCHwwhFowhGo4hEo4iWliBaWopoyI+Al8cQYYwxxhhj/YsDlyKQUBLY3LwZmqFBN3RopEEzzItOurOukXW7tV01VGd/e7tiKE6vEHva3fz1/FNu7PWDFYjY433kT6sb8AQQkkPuqXatdXtcECc8yQtS/JIfXskLv+x3TrERBR6PoDNEBM0gJxzQ7aW1TTMIumE4+9jXVd0OJqx9ndtz1/W8S34dXSfoRK79NN283d6uGwQiswMFwV7PW1ptt68bZE7UQtZtBuXaZz42O9ToIMzIC01UvY/CAyKIMMxwgjTIpEE2rCVZYYezTc/bbu+rw0MaAuS+3QlCjLwadiiCA3PqW6FEjw+izw/J57eWAUg+PySvH7I/AMkXgGxt9/h98Pl8Zi8Rnw/+gBcBvw9+nw9+vw+yxxyTRPZ4IFkX2eOFKPHgx4wxxhhjbODjwKUIfNryKa589cr+bgYAs5eIPV5I21lm8kOQbi9tgpSAHBhQM8jkn7Jh9jIwQwY7bHDCCyuIcIIJax87rMjdJ9dLot31vHr54YH7ttzP6ShMsPdR86637a1xyCJyen94SEMoLxxxghJDhQ8avNDghwavta+P7H1VeAxzP8lQzVNmDBWSrkI4QGP/FEKUZMheL2SvFVx4fZBlGbLXlwswvF5IshVq2Oter3ldNreZgUduKXk88Ph88AYC8PqD8Aatpd8PQeRgkzHGGGOMsUJw4FIEAnIAY6NjIYsyJEEyl6IEWZDbbfOIntx1a5m/7hE98MlmDxB7LBG7R4jdQ8Reb7uPV/L2ay+R/LEnzDEmzDEoFM1wloquI6ua41Vk87dbY1Uo7fbPXbfDE8UJUdrclrf9UAkoPJIASRQgiyJkSYBsrUui0PFtkmhts9YFQBJFyKIAydpHEgVIggA57/72faT8iyBAFAWIggCQYY0PooBUcwkttzQvWZCqAmoWsPYjNQtoqrOPvc3QFBiKAkPNQleyZreYA0yUZHh8PicAkb1t19vf5un0NisA8XohW0GI7PVB8po9QOyARRxAISZjjDHGGGOHGoHoIHwSKVKxWAwlJSVobW1FNBrt7+b0GOWdrqHouTEk7FM17NMtzCWgGQYMA87pHM7t9ikfZK67Tw/p5HSRTk4TsU8l0QwygxMrNMnkzUiSzVvag3RmVB2aUbyHoh0WeCR3MJEfRJhLc7sdVnis7XYoIUu5bfa+TrghAB7SIOqqeVqJrkA0NHNAUkMzAwlDg0g6RMOAQDpEMiCSDljXBUMHjNzSvpChA7oGMgwYmgaQATJ0kGGY23TzumEYMAxrXTes2/O267p1u9WrQwAECIAgwBwqQzDHzMjbDkEwZ34RBGc8DcHarqsq1GwGuqoelNdRkmV4fH7IPh88Pn/eunXd74fX74fsswdO9TvbPT4fPP5A3r7mKTN2HUnm/JoxxhgbyAb6ZwPGWPHhTwhF4JO6OL77yiZrIM3ceBOuATd190Cb9ukugzUu88oifLIInyw5M4TYS68kwucxl15rH2/+PpIArwj4RIJXIHhEwCMSZAHwCARZIHMJc10WCKJA8IAggSAKhrkkA6K1hBU66JoGQ7cvunnRNBiGuW7ebm3XNRiq7ly3wwU1m4WazUDLZs11JQstk4GmKgAAA4DSv09//xGEXMjhM0MOuc313CwydjDiy+3b5ro7XPHx2CCMMcYYY4yxg4YDlyIQz2p4fVN9n9QSBLM3hijkTtuQpNzpG5LgPq1DFGAtrVNArP3sHh1tTwex95EFAzIZkMiAJORmOjGXBiTS4RV0yCB4oEGGYV7sGVMMHaKhQyDNXOqaM30sdA26pkHXVBiaCj2tOwGHrmlmwKHr0DvYZu8HAFnrMhDJPh88XjNckL12j4rcIKOiJEGS7aUMUZIhyu23uZZ5t4uSBEEUIYr2UoQgSRDzt1n72OuiKEIQ7aV96pk5oC3InEIY1gC35nYCXOtkXSVrIFyC7PHkQhG/H7LHy7PKMMYYY4wxxgYFDlyKwJjyIL63aBo8kmhdhLx193VZBGQBkAQz1BANAxLM00oEQ4ehqdAUxbyo2dy6UsB62lpXFeiqGXjoqgrNWuqqam7TtILGxFCtS/qAP4PdEwQRomSHCpITOoiiCFGWzZDBvu7cZm2TRDPQsLZLeet20CGKkrmUZEj5t+Wt2wORdtTzIv/UFtnj5YFJGWOMMcYYY2yA48ClCBhNNaCXfoS0piHh9Nawe3loVg8O1VkvtvOIBFE0Z0ORc1O7SrJ7KXvaXvdC8sjOtvzZUXLXPRBlO8CwemhIHnewIcvte3lIuV4dgiRBsnpqMMYYY4wxxhhjB8uAD1yefPJJPPLII6itrcVRRx2FH/7whzj++OP7u1k9omWz2LNpQ6/vnzudRLamfO18phSPs27d5ul4v3ZhiSxDlNsGJzLPlMIYY4wxxhhjjHVgQAcuzz33HG699VYsXboUJ5xwAr7//e9jwYIF2Lx5M4YMGdLfzStY2bAROPfWu8zARDKDDTM8kc0eHrLHFaiI1m12rw4e84IxxhhjjDHGGCsuA3pa6BNOOAEzZ87EE088AQAwDAOjRo3CjTfeiDvvvLPd/tlsFtlsbhjVWCyGUaNG8dRvjDHGGGOMHeJ4WmjGWF8bsANbKIqCDz/8EKeddpqzTRRFnHbaaXj77bc7vM93vvMdlJSUOJdRo0YdrOYyxhhjjDHGGGPsEDJgA5eGhgbouo7q6mrX9urqatTW1nZ4n7vuugutra3OZdeuXQejqYwxxhhjjDHGGDvEDOgxXHrK5/PB5/P1dzMYY4wxxhhjjDE2yA3YHi6VlZWQJAl1dXWu7XV1dRg6dGg/tYoxxhhjjDHGGGNsAAcuXq8Xxx57LF5//XVnm2EYeP311zF79ux+bBljjDHGGGOMMcYOdQP6lKJbb70VV1xxBY477jgcf/zx+P73v49kMomrrrqqv5vGGGOMMcYYY4yxQ9iADlwuvvhi7Nu3D/feey9qa2tx9NFH49VXX203kC5jjDHGGGOMMcbYwSQQEfV3I/pLLBZDSUkJWltbEY1G+7s5jDHGGGOMsX7Cnw0YY31twI7hwhhjjDHGGGOMMVasOHBhjDHGGGOMMcYY62McuDDGGGOMMcYYY4z1MQ5cGGOMMcYYY4wxxvoYBy6MMcYYY4wxxhhjfYwDF8YYY4wxxhhjjLE+xoELY4wxxhhjjDHGWB/jwIUxxhhjjDHGGGOsj3HgwhhjjDHGGGOMMdbH5P5uQH8iIgBALBbr55YwxhhjjDHG+pP9mcD+jMAYY/vrkA5c4vE4AGDUqFH93BLGGGOMMcZYMYjH4ygpKenvZjDGBgGBDuEI1zAM7N27F5FIBIIg9GtbYrEYRo0ahV27diEajR7yNYqpLVyjeNsymGoUU1sGU41iagvXKN62DKYaxdQWrlG8bRlMNfoSESEej2P48OEQRR55gTG2/w7pHi6iKGLkyJH93QyXaDS6339wBlONYmoL1yjetgymGsXUlsFUo5jawjWKty2DqUYxtYVrFG9bBlONvsI9WxhjfYmjW8YYY4wxxhhjjLE+xoELY4wxxhhjjDHGWB/jwKVI+Hw+LFmyBD6fj2sUWVu4RvG2ZTDVKKa2DKYaxdQWrlG8bRlMNYqpLVyjeNsymGowxlgxO6QHzWWMMcYYY4wxxhg7ELiHC2OMMcYYY4wxxlgf48CFMcYYY4wxxhhjrI9x4MIYY4wxxhhjjDHWxzhwYYwxxhhjjDHGGOtjHLgwxhhjjDHGGGOM9TEOXBhjjLFBpC8mHzQMo9/b0RePI5vN7neNYjOYJpfsi8ei63oftGT/9cX/mUwm02e1iuH/H2OMMQ5cGCuaDyeMdaev3gDz8Wpq+3wO9A8Y9gfP/XkcDQ0NAABRFHv9QXbLli1obm6GIAi9bse2bdvwhz/8Aa2trb2usXnzZpx++un49NNPe10jmUxCURQ0NzcD6Lv/O715jdq+HvvTlv4+1hVFAZALxHrTntraWgCAJEn7Fbp88sknWL16da/vD5jH/BNPPIF9+/b1usaGDRswefJkrFmzBqLYu7fnsVgMzc3NqK2thSAIvTpGNE0DkHtNenucDbbfr4wx1lscuAwwxfIHazCEFIlEAgD260NBU1MTAPT6zREA7Ny5Ex999BGA/n9ObH11nPHx2jf64lgF+HjNt3nzZixZsgRXXnklli1bhk2bNvX4A0pdXR0+/vjjHv/sfNu2bcPSpUtx66234rXXXnMCj576+OOPcdttt2HRokV48MEHsW3btl7VGD9+PL761a8C6N0H2TVr1mDixIn405/+1OOfb/voo49w/PHHY9WqVc4H2J4ea6tXr8asWbOwYsWKXh+vGzZswEUXXYSTTz4ZCxYswDvvvNOr/zv5x9oTTzyBtWvXQhCEHh23GzduxI033ojzzjsPd999Nz788MMet2X37t348MMPAfT+d8mnn36Khx56CFdccQWWLVuG7du397jGpk2b8LWvfQ0LFizA1772Naxbt67H7dmyZQuGDx+Os88+G0DvQ5c1a9bg8MMPx9tvv93j+9o++ugjnHDCCdixY4fz/7c3x+v8+fOxc+dOvPbaa72qsX79enz2s5/FqaeeiunTp+Pvf/97j4+RjRs34qabbsKFF16IW265BW+//fZ+H/P9+fuVMcaKAQcuRa6+vh5r167Fe++9B6B3b5LsN3X2txa90dLSgh07dmDTpk1OO3r6ZqC2thZvvfUW/vKXvwAwP/T1tMamTZvwyCOPIJlM9uh+ba1evRqXX345tmzZ0usa69atw+mnn45ly5b1usb69esxduxYXHvttQB690F4+/bt+PnPf45vfetb2LJlS68+fNbX12PdunVYuXIliKjXb8b5eHXri+O1L45VgI/XfBs2bMAJJ5yADRs24JNPPsGyZctw+umn4/XXX4coigW1aePGjTj++OPxzW9+E+vXr+/xYwCAtWvXYt68efjLX/6Cl156CTfeeCN+/vOfwzCMHj0va9euxZw5c9Dc3AzDMPDKK6/g2WefBRH1qM6GDRsQCASwdu1afO1rXwNgfpAt9Lhfs2YN5s6di9tvvx1XX311wT83365du3DuuefiiiuuwHe+8x1MmDABQO73QSFtWbNmDebMmYPbbrsNF154IR566CEAPTteN2zYgHnz5mHSpElYuHAhxo4diyVLliCTyfToOV23bh1mz56N3bt3o6WlBcuXL8dJJ52Ev/3tbwUft5s2bcKsWbOQSqUgyzI+/PBDzJ07F7/+9a8LbsfmzZtx3HHH4brrrsOKFSsKvl/bxzJnzhysWbMGn3zyCX7yk5/ge9/7Xo9+v9nHqs/nw2GHHYa6ujo8/vjjUFW1R89rfX09Ro4ciU8//RRnnnkmgJ4dq0DuOLn99ttx3XXXFXy/fDU1NVi4cCGuuOIKPPbYY5gyZQqAnp3KtmbNGsyePRuLFy/GzTffjKVLl0LTtIJ/FwHmMXLSSSdh1qxZ+PrXv47zzz8fN9xwA2KxGIDCQun169dj7ty5ICJUVVWhrq4OJ554IpYtW9aj17hYfr8yxljRIFa0Vq9eTRMnTqRx48ZRdXU1HXPMMfTmm29SMpksuMa6devo7LPPpubmZiIiUlW1x+1Yu3YtzZs3jyZOnEgTJkygSy+9tMc1PvroIzriiCNo2rRpVFpaSnPnzu3R/Q3DoEQiQePGjSNBEOiuu+6ibDbb43YQmc+rLMt02223dfhzCrF+/XoqLS2lW2+9lbZu3dqrdqxatYpCoRDNmzePpkyZQq+99lqP2kBkPq8jRoygE088kaqrq2nEiBG0e/fuHrVjzZo1dPjhh9NRRx1FY8aMoalTp9Ly5cuptbW1R3X4eM3pq+O1L45VIj5e82maRpdddpnruFi1ahVdc801JEkSvfTSS0REpOt6pzX27NlDc+bMoaOOOoqOP/54uuaaa2jt2rU9ehzbt2+niRMn0t13302KohAR0Z133kkTJkygdDpdcJ0tW7bQmDFj6Bvf+Iaz7ZprrqGbbrqJiHr2f+jll1+mSZMm0Xe/+12aNm0afe1rX3Nui8fjXd5348aNJMsyfetb3yIi8/l7/fXX6amnnqKVK1cW/Dr/7ne/o5NPPtmp8Y1vfIMuueQSWrhwIb3++uvd3n/VqlXk9XrpzjvvJCKif/7znzRmzBj63e9+V9DPJyJKp9N0/vnn03XXXeds+9nPfkaXXnopKYpC+/btK6hOIpGgBQsWuP7/fvjhh1RWVkY+n49+//vfO4+zK//zP/9D5513nnO9rq6O7rnnHpIkiX70ox8RUdf/D2tqaujkk0+muXPn0llnnUVnnHEGvfHGGwU9BtvOnTtp6tSpzvNKRPTkk0/S+PHjac+ePQXV2Lp1Kx122GGuY/W+++6jq6++mojM54uo++fDMAx6++23acqUKfTMM8/QpEmT6Oyzz3ZuL6Q99vFqPx7DMOj555+nhx56iJ599lnavHlzQY/p1VdfpTlz5jjtvvHGG+mcc86hmTNn0q9+9atu/y+vWrWKZFmmu+66i4iItm3bRqNGjaKHH364oJ9PZP4f/9KXvkRf+tKXnG2vvfYaLVy4kJqammjXrl3d1shkMrRo0SK68cYbnW179+6lyZMnk9frpccee4yIuv99Xyy/XxljrJhw4FKkampqaPz48XT33XfTmjVr6P3336fTTjuNhg0bRsuWLaNYLNZtja1btzof+I499ljnQ6ymaQW3Y+PGjVRRUUG33347vfbaa7Rs2TKaNm0a/d///V/BNTZs2EAVFRV0991308aNG+nNN9+k6upqWrFiRcE1bNdddx195StfoWAwSDfeeGO7D/PdvRlYu3YtBYNBuueee5xtsViM6uvrC26Doih06aWXOh9GDMOgDz74gJ5//nmqr68v6MPS6tWrKRgM0pIlSyiZTNLYsWPp5ptvLrgNRES7d++mCRMm0AMPPOA8D4cddhj99re/LbjGjh07aPTo0XTffffRJ598Qnv27KHTTz+dhgwZQo8++ig1NDQUVIeP147tz/HaF8cqER+vbSmKQieddJLrgyMRUX19PV133XXk9/vp7bff7rLG66+/TgsWLKDVq1fT008/Tcccc0yPPhRomkY/+MEP6KKLLqKamhrnGK+traXRo0fTRx99VHCdpUuX0tVXX01NTU3O8XTDDTfQKaecQieddBJddtlltHLlyoLq7dq1i77whS9QQ0MDPf744zR9+nS69dZb6aqrrqKlS5c6wVBbuq7T/fffT4Ig0IYNG4iI6JRTTqGjjjqKSkpK6LDDDqNTTz2V1qxZ020bHnnkEfr85z9PRESzZ8+mBQsW0FVXXUWLFi0iQRDoZz/7GRF1/H+nsbGRjjvuONdru2/fPpoxYwZdfvnlBT0HREStra00ffp0euKJJ5xtd999N40ePZqOOuooGjt2LP3iF7/otB22hoYGmjp1Kv3xj3907bto0SI6+eSTyev10jvvvNNtexYuXEjXXHNNu+0PPfQQCYJAy5cv77It77//Pp166qm0cuVKeuWVV3ocuhiGQb/85S/pvPPOo+3btzsfljOZDI0fP94JX7vz3HPP0Ze+9CWqq6tztt166600ffp0Ov7442nevHn06quvdvlYbMlkkhYtWkR79uyhP/3pTzRhwgQ6//zz6aqrrnJ+T3Vl6dKlJAgCvfTSS6TrOp100kk0c+ZMGj16NE2bNo0OO+wweuutt7p9TL/97W/pxBNPJCKi+fPn05lnnkl333033XDDDSQIAi1ZsqTTxxOLxeicc85xHa+xWIzOPfdcOuuss7r92bZ0Ok3z58+n++67z9m2ZMkSKisroyOPPJJKSkrovvvuo0wm02mNeDxO06dPp6VLlxJRLqi95ppr6Oyzz3aeq+4Uw+9XxhgrNhy4FKkPPviAJkyYQJs2bXJtv+qqq2j06NH0zDPPdPmGJJlM0k033USLFi2i5557jmbNmkXTp0/v0YfY1tZW+vznP0/XX3+9s83+FqTQN6+NjY00a9Ys+n//7/8521RVpVNOOYWee+45+sUvfkE1NTXd1rHf4F122WX0+OOP0z/+8Q/yeDxO3WXLlnX7LU5dXR2VlJTQZz7zGWfbtddeS7Nnz6bJkyfTOeec43yY7eq5TafTNHPmTHr++eeJiOjUU0+l6dOnUzgcptGjR9O3v/1t1xvKtj7++GMSBMH1Ld/SpUupsrKS3n333W6eiZy//e1vdMwxx7i+OT733HPpwQcfpBtuuIFefvnlLttBRPT888/TySefTPF43DkmXnzxRfL7/XT44YfTsmXLiKj7N798vLrt7/HaV8cqER+vHbn++utp9uzZ1NTU5Nq+c+dOWrRoEZ199tld9phJp9OuD2M///nPnQ8F+WFJV+14+umn6Qc/+IFrW11dHZWWltK//vWvLtufb8uWLbRu3Trn+v33309+v58eeughuvfee+niiy+m8ePHF9SzKZlM0vTp02nVqlWUTCbpJz/5CVVUVJAgCM7j6uz/Ym1tLX31q18ln89HRx55JC1cuJBWr15NiqLQCy+8QGeccQZdeOGF3faU+e1vf0vV1dW0bNkyOvvss6mxsdG57dvf/jbJsux6vG299957zrrd1hdeeIH8fj/9+9//7vY5IDJfty984Qs0bdo0+uMf/0i33XYbBYNBevrpp2n58uX00EMPkSiK3QYW9fX1NHv2bHrwwQedYHPr1q00fPhwev755+nMM8+kSy+9lDRN6/JYue+++2jUqFFOzw17X0VR6Nprr6UpU6Z0+3tp9erVzvry5cud0OU///mPs93+vdVR74Ply5c7H8btNsTjcRoxYgT94Q9/6PJn25qbm11/Ix5++GHy+/30/e9/n5YuXUrXXXcdeb3eggLHTCZDM2bMcEKAf/7zn1RaWuo6Vrvr3XXfffeRJEl02GGH0aJFi2jz5s2kaRq99957dOGFF9Jxxx3X7e+kV155hfx+P/3yl7+khQsXuvb/1a9+RYIgdBnW5/eksZ/3FStWkCAITlBXiJtuuokikQg9+eSTdP3111MgEKBnn32WVq1aRb/97W9JEAR64YUXOr2/oih07rnn0jXXXOP87tu+fTtVVlbS3//+d7ryyitp7ty5BfVYLYbfr4wxVkw4cClS//znP6myspK2bNlCROT6I/eFL3yBhg0b1u0HrqeeeoqeeeYZIjL/gPf0Q2xdXR1dddVVTg37zcBPf/pTOumkk8gwDNc3np2149FHH3W9MX3ggQfI6/XSzJkzaeLEiVRdXe18A9tZDftnP/PMM843Jy+99BJ5vV6aOHEiHX744bRjx44uHw8R0QUXXEDHHHMMLVu2jE444QQ67bTT6PHHH6cnn3ySpk2bRlOmTHG6NXfWlnQ6Taeffjq98MIL9I1vfIMWLFhA69evp2QySXfddRcdeeSR9POf/9zV7nzvvPOO0w3ctmbNGpo6dSo9+uijRFRYwPDLX/6SIpGI8wbk0UcfJY/HQ5dddhnNnTuXJkyYQA8//HCXtb73ve/R8OHDXdv+/ve/09VXX02f+9znaOjQoc7z0ZV//etf+328/uQnPymK4/Wxxx7b7+PV3r4/x+uFF16438cqkfnBpBiO11/96lf7fbw+/PDDfXK8Pvfcc3T00UfTY4891q731dNPP03Dhw+nnTt3dlmj7XPe0Tex999/f0G9Ouxa6XSaJk+e7Aqy/vznPxfclkwmQ2effbbrm+g333yThgwZQn//+9+7rKEoCqmqSmeccQa9+eabRER08cUXUzQapYkTJzqnKHXF/hb7uOOOc3q62P73f/+Xhg4d2u2pRdu3b6dzzz2Xjj32WNepRUTm//GJEyfSc88912WNtq/Ntm3b6Nhjj6VvfvObrnpdef311+miiy6i8847jyZMmEBPPfWUc1s2m6UjjjjC6b3QlcWLF9P06dPpi1/8Ij388MMUDoedUPiRRx6hI444osNjPr+N7777Ls2dO5duuOEG5wO9ffs//vEPGj58OK1atarLGm29/PLLdOaZZ9KCBQuc33c333xzux43HbUt//k99thj6c9//rNz/Ze//GW703E6qpHNZukrX/mK67i0w6hf/epXXT4W++dfccUV9Kc//YmIzL8z5eXlNHr0aNfpV221bcuDDz5I06ZNa/f8/eEPf6CKiooOw5/8tui6TpdccgmNGzfO+Z2saZqzz4wZM+jxxx9vV6Oz3mKGYVAsFqPPfe5zdPnll1Mqler0dczfvmXLFrr++uvpsssuo2OOOYYeeeQR175z586la6+9tssa3//+92nWrFk0f/58uuuuuygUCjn3efbZZ2ns2LHU0tLSYVvyPffcczRjxoyi+f3KGGP9jQOXImUYBk2ZMsX1xiG/O+iUKVNc59p2VYfIfJPxxhtvtPsQm0qlaOvWrR3+Qc9kMvThhx+2q/XUU0/RrFmzXNsKtXz5chozZgz9+c9/dr65PPnkk13f5Hflz3/+M82YMcNp72c+8xmSJIkuueSSgtvyxS9+kSRJos9//vOu0zP27NlDY8aMcfVu6MzChQvpmGOOoauuuop+85vfuG676qqraMaMGZ3et6M3jkTmN1SFfmC0HXvssVReXk4LFiwgr9frevN6yy230Lhx49p9y5Rv48aNNGbMGLrllluorq6O3n//fQqFQs752uPHj3d90OjqMU2dOrVXx2tHb8Z7c7ymUin64IMPnOs9PV47+ja0N8dr/s/ozfGa/0Z8f49V+2fsz/Ga/7z05njNv89xxx3Xq+PVrrFhw4YeH6/btm2jn/zkJ7Rs2TLndAUi87SbSZMm0Y9+9CNXL4r169fThAkTaP369d3WIHIfv/aHgi9/+ct00UUXkSiKTp38Gq+88kqHjy+bzdLUqVOdXhp33XUXDR061BXOddUWova9FNavX0/Tpk1z/d/Ir/G3v/3Ndf877riDfvGLX9Dll19Ow4YNo//85z/0xBNP0MiRI+nWW2/tth319fW0cuVKZ8wi+/n561//SlOmTHEdx53V+P73v0+VlZVUWlrq6pmTTCZp5syZ9OKLLxb0WPKPvW984xtUUVHRYY+Frl6bhoYGmjx5shNiGYZByWSSZs+e7erx0bbOyy+/7Gz/9re/TWeffTZ95jOfoe9973vO9p/85Cd03HHHuf6P2b/r8p87IqLvfve7dMwxx9DXv/51V2i1e/dumjhxoqsXRX6Ntr8r858T+/SiM888k8477zwSBIH++9//tqvRVU+R/Nfj7rvvpkgkQh9//HGXj8VuQ9tj1Q7G8nt4dfVYHn74YVqyZAldeumlNHToUHrnnXdo+fLlVF5eThdddJFr387aQmSOMWL3QLJ/xsqVK2ny5Mn06aefdtuW3//+9zRjxgzy+/2uAEDXdZo/f75z+ll3jyff//3f/1EoFKJPPvmEiNyvW1ePJZ1O0/HHH0+//vWvndvtXpr5x15nr+8vf/lLuuKKK2jRokX0/e9/39n+wgsv0PTp09sFLnv27KG//vWv9Pzzz9P777/vbL/uuuto8uTJBf1+za/R9m94/nPU1e9XxhgrZhy4FIn6+nr64IMPaM2aNc43An/9619p7Nixrm8W7Texl1xyiWuAtLY18rtt23+QDcOg//znP86H2Lq6Orrhhhto3rx5To+E+vp6ev/9952u4Lb8P3pPPfUUzZw507m+ePFiOv/88ztsR9sPY5s3b3b+QNpvIO644452H2Dza9htMwyD1q1bR2eeeSYREV199dU0YsQIevzxxykUCtE111zTbmDS/Dr5XVi/+c1vthtEUdM0Oumkk+irX/1qpzXs12bHjh00depUEgTBGR/Efjy/+93vaNasWa7AIf95bdslN/+D0YQJE+iHP/yhq153j2X58uX061//mk4++WRKJBKUSqWIyPwGc/Lkya5TV/JrpFIpUhSF/u///o/GjBlD1dXVFI1GafHixc7zMWXKFPrOd75DbSWTSdJ13TX+x0svvUSjR48u+HjtqAZR7s1fIcerXcN+zG1rEHV/vHbWDqLCj9eOahiGQR999FHBx2tn7fjGN75R8LHaWZ0dO3bQ5MmTCz5eO3te898Ad3e8dvZ4XnrppYKP17Y1UqkU/fCHP6RRo0YVdLx+9NFHVFFRQbNmzaLDDjuMwuEwXXnllc7/42uuuYaOPPJIWrx4MX366ae0b98+uv3222nSpEnOeDAd1fjyl79Me/fudb0etp/97Gfk8XiopKTE+da8kBpE5oegqqoqWrlyJT3wwAPk9/tdH2J62hYicyDemTNnOgO9dlbD/hD/wAMPkCAING7cOCdwb25uph/96EdOD7aOalx99dVUW1tLnbn55pvp9NNPd/4mdFTjqquucj4IPvroozR06FCaPn06vfPOO7R27Vq69957aezYsc634z15Pnbt2kVHH3003Xfffa6/Z509lvwa559/Pt16661UU1ND6XSa7r33Xho9erQrDOqozhVXXOH6gNr22/6rr76aFi1a5Pwe2LBhA40bN87piUPkDmDvvfdeOuGEE+jcc8+l1atX0yeffEJ33nknjRkzxjmlqKMaXYUuf/3rX6msrIxKS0ud044KqUFkfrgfP348/elPf6Lvfve75Pf7nQ/MPW0HkRnYHHXUUQU/lmXLlpEgCDRx4kTnWM1kMrR8+XInqOisTne98v7f//t/NGfOHOd47KhG/t+ZX//613T44YdTNBqlF198kf7xj3/QPffcQyNHjnSOk548J4Zh0Jw5c+jyyy93HQOFPJZrrrmGzjnnHNq2bRs1NDTQkiVLaMSIEc5z0lGNtu+d2vbAufbaa+mMM85w/U346KOPaPz48XT88cdTZWUlHXfccfTss886t1955ZU0bdq0bn+/tq3R9hS1/Oeoo9+vjDFW7DhwKQIfffQRTZkyhaZNm0aCIDiDZDY3N9Ojjz5KkyZNoq985Suu+1xyySX0la98hXRddz7Yta2R/2Ym/4/4G2+8QXPnziVZlikUCjnd1zuq0dGbrGeffZaOP/54IjK/gQ0Gg84gaJ3V6KpnwRVXXEE33nhjQY9FVVU67bTTaNKkSVRdXe28yfr9739P1dXVrjf8HdXJf1PRdgA5VVXpc5/7nNMVt7O26LpO2WyW/vjHP9K4cePo6KOPpnXr1jm1b7rpJlqwYIHzIbHQ51VVVVqwYAGddtpp7W7r7rH86le/ounTp7vus3jxYpo3b54TzrStYY/JkU6nac+ePfTaa6+5upPHYjE67bTTnDdQ9muwdu1aOu200+jkk092egjs3r2bNE2jxx57jCZMmNDt8dq2xo9//GPatm2bs39+SNjZ8dpdDbu9XR2v3dXoSNvjtasamqbRKaec0u3x2lEN+1tiIuowUGp7rHb3eJ5//nkaO3Zst8droc9rV8drR8dI/gegp59+utvjtW2NJ5980umdsHfvXvrb3/7W5fEai8Vo9uzZTs+qmpoaeuWVV6i8vJxOPfVUp9b9999P8+fPdwZrHjp0qPMtfzwe77TGmWee6fr2W9d10jSNbrrpJiorK3PGGelJjXg8TjNmzKCTTz7Z9eG1p3WIzJDt61//OpWVlTnfundV44wzzqC9e/eSqqp03XXXOb1s2vZG6KrGggULnFAmvx233XYblZeXO6dndFXjtNNOc8KO3/zmN3TmmWeSIAh0xBFH0IQJE3r12tjtP+OMM+jkk092jv1Cazz44IM0c+ZMGjJkCJ1yyik0fPhwpx3d1Tn99NPbtWX16tV08803U0lJiXN6xM6dO+noo4+miRMn0pFHHkn333+/s3/+7/pf/OIXdNZZZ5EgCHTkkUfSmDFjnLZ0VaOjD/a6rtPixYspEokU1I62NXRdp3nz5tERRxxBwWDQCQd7UoOIaNOmTXTLLbdQWVmZE/p0VSM/YLjjjjtc/0/aKrSObePGjbR48WLX/5tCX5s333yTrrjiCgqHwzR16lSaPn16r14b21e+8hU64YQTnJCy0Bq/+c1v6KSTTiKv10uzZs2i0aNHF9SOjnozrly5kq6//nqKRqOu3juffvopjRw5km6//XZqaWmhDz74gK644gq6+uqrXe+tuvr92lWNtuMaGYbR4e9XxhgbCDhw6WeffvopVVdX0x133EHbt2+nJ598kgRBcLqQNzQ00I9//GMaNmwYzZgxg6677jq69NJLKRgMOn9wOqohimK7QTntNxfpdJrOOeccKi8v73ENIvPD/amnnkr33nsveb1e50NkT2oQmX/c77nnHhoyZIgzkF53NRKJBF122WV03HHHuU53InJPW9rTtmiaRvfccw8NHz7c+cDQ2Wtjf7uaSqXo1VdfpQkTJtCoUaPotNNOo4ULF1JpaanzxqTQdthvdP773/+SKIqub4kKqbFr1y4qLy+ns846i5544gn62te+RuXl5V22I/+xtJVOp+muu+6i4cOH0/bt253tH3/8MVVVVdHixYvpD3/4A913330kCAKdf/75tGbNGlIUhX784x/T8OHDOz1eO6uxaNEi10B59hvIjo7XQmsQdX689qSG/Rq1PV67qmF38b/sssto5syZnR6vhdTI19Gx2lWdhQsXOh9IXn31VZo4cWKnx2uhz4n9u6Sj47WrGvbYN7t27aKKiopOj9euHktHr01Hx2s6naZjjjmmXe+gzZs3U2VlJX32s591ttXV1dErr7xCK1ascP2/6q7Geeed5/rQ9t5775EgCK5eKT2p0dTURGPGjKHy8nLXIKc9rfPOO+/Q//zP/9BRRx3lqtOT56QzPWnHW2+9RVdffTVNnjzZ9W10dzXOPfdcZ5thGPThhx/SJ5984jodqCftsH+/7ty50zW+SHc1Pve5zznbli9fTt/73vdo6dKl7QYg7q7O+eef7/w+a2lpoV//+tc0Y8YM5zkxDIO+973v0dlnn01///vfacmSJTR58uROP9gTmeO6rF+/3ukNUkiNtgGDPU27/fuhpzVUVaU5c+a4wome1li3bp3TC6snNQqZXa2nbfnoo4/olltuoWnTpjn/b3rz2nzyySdUW1vrnErTm9eGyBwI3v4dX0iN/F4pa9eupZ/97Gf0/PPPO+8ne9oOXdfpz3/+M82ePdv1eySbzdKtt95KF110keux/+xnP6OKiop2s8U1NDS0+/3a0xpEHf9+ZYyxgYADl352zz33tHuTe9ZZZ9GKFStoxYoVzjfgW7dupSuuuIIuvPBC+tKXvuSaHq+zGitXrqS33nrL9e20oij03e9+l7xer+sNcE9q2NMplpSUuL5Z6kmNf/3rX/TFL36Rhg0b5vqmsKsaK1asoObmZorH490OONqTtrz++ut0wQUX0JAhQwpqi/3a2F3ws9ks3XfffXTzzTfTnXfeSRs3buxVOwzDoF27dtFFF13kekNfaI3XXnuNZsyYQTNmzKDPfvazPTpG8n/ee++955wTn/98EJmnBVxyySWubVdeeSX5/X5auHChM1Dmli1b6Morr+zweO2sRiAQoAsuuMB1TGma1uHx2pMaTz31VIfHa09q/Pvf/+7weO2qxsKFC+nTTz+l+vp6V2jVVnftyA9q/vnPf3Z4rHZVx35t7A8zmUyGvvWtb3V4vPbkOSGiDo/XQmv8/e9/p2OPPbbD47W7GvlvuD/44IMOj9dEIkEjRozo8APJmjVrKBQKuaZR7UghNR544AHXffLHRuhNje985zuu16S3dVauXNnulKVCanzrW9/q4hnpeTv+9a9/tRsotz9em456WRZSo5CBcXvallQq1e44qampoaeffpqIzADQ/jCc/zx0NtBqT2q07U3RdraYntb4+c9/7uq91psa69ataze2TiE1Chmsu6dtWbVqVbsZnwqp0dlYV71tR0fj5vTXMdL2VLh0Ok2PP/44/fSnP3U9XntMOPv562qMmkJrtNX2/w1jjA0EHLj0s5tvvpnOOussZ6BI+/z5mTNnUnV1dbtpG4nav8noqsbQoUNpwYIFrhq/+MUv2s0gUUgNe0rNd999l2bPnu36gNTTGu+88w7ddddd7T5YdPd8nH766V1OsdibtqxcuZIWL17cbvC1Ql6b119/fb/b0fb1bXv6SCHtyJ81JxaL9ahGZ8dI2zfRROYsT/YMG/absAcffJDOOOMMmjRpEt19993t7tP2eO2qxuGHH+6c6mS/AevoeC20BlHnx2uhNdLpdKfHa3fPx1133eV6LB3pSTs6O1Z7+pzsb1vy30i3Pda6q5F/jHR2vPb0sXR2vD722GM0cuRI+utf/+pssz+QPPjgg3TCCSdQY2Njlx8MCq2RP/ZQb2rkDya7P22xx2rZ38fT1THbF4/nYLWjL2o0NDQ4x0hXs5sVUqfQwd337t3b4YfhF198saCgobsadtu6a09nNexp5venHX1R48UXXyxo1qlia8uBrPGnP/1pv4+R7mrkh+z2MVRTU0MTJkxw9Zxt+8XA/tbgqaAZYwMRBy797Mc//jGFQiG64IIL6NJLLyWPx0MvvPACJRIJevvtt2n+/Pl05513usZBafsHp9AaXf2hKrQGkfkBqKNvGXpSQ9f1Dr/B6UmNvnheicxAoKNvhXryvHb2Zrynz0lvHsu8efOcY2R/n4/u3ujdcsstNGzYMOec8pqaGiorK6PXXnuNfvzjH1MgEGh3ulTb56S7GsFgsNNTv3pTI5FIdHi8FlIj/01fR8frwXosdjvaTm29v23pj9cmEAh0OyVob9qxd+9eevfdd+nVV191Pihs27aNLrzwQpo/f367GWyWLl1KU6ZMcQ1iXSw1iqktXOPgvTZE5Ppbv2fPHufD8JIlS2jx4sUkCALt2bOHa3RQo5jaMphq5Nd55ZVXXO8T8mtu2rSJKioqnN/v3/zmN6msrMwJGvuiBmOMDUQcuBSBH/7wh/Td736XLrjgArr22mtdt1155ZU0f/78bj8Id1dj3rx5fVKjq+khC63R3TcvffFYiqktg6nGjh07aM6cOeTz+ejMM8+kYDDoDJDb0NBAI0aM6LYHEtfo+xrF1Jb+qLFmzRoaM2YMTZo0iUpKSujwww+nZ599lhRFoffff58++9nP0syZM52xZhRFodtvv51OOukkpwdNsdQoprZwjYPz2kyePJmeeeYZZ8yP/A/De/fupXvvvZcEQaCysjLnlDyu4a5RTG0ZTDUKqWPX2Lx5M1VVVVFTUxM98MADFAgECm5LITUYY2yg4sDlINq0aRPdeeeddNlll9EjjzzSbuAve0wFotwfnyuvvJKuvfZaJ+jgGu4axdSWwVSjozr5M51897vfpYceeoh+85vfOPv/97//pYkTJ7pO3eEafV+jmNpSDDXq6+tp8uTJdPfdd9OWLVtoz549dPHFF9OkSZPo/vvvp0wmQ6tXr6Zrr72WZFmmo446imbNmkVlZWXOuEDFUqOY2sI1Du5rM2XKFFqyZIlzKlb+t/mXX345RaNR51RCruGuUUxtGUw1elKHyBwTZsaMGXTxxReT1+t1gpK+qMEYYwMZBy4Hyfr166m0tJQuvPBCuvbaa2nUqFF0zDHH0JNPPuns861vfYtCoRC98cYb9NZbb9GSJUuovLzc+ePHNdw1iqktg6lGZ3WOPvpoWrp0qbNP294wt99+Ox199NHOGBJco+9rFFNbiqnG2LFj270xv+OOO+iII46gRx99lAzDcE6fe+CBB2jp0qWuMV+KpUYxtYVrHPzXZtq0afTwww+7Tj1atmwZlZaWusax4Bql7cYGKZa2DKYaPa2zYcMGEgSBAoGAK6jsixqMMTaQceByEMTjcVqwYAHdfvvtzrbdu3dTRUUFVVdXO7MX6LpOF198MYmiSJMmTaKjjz7amYqPa7hrFFNbBlONntSxvfHGG3TjjTdSJBJx3iBxjb6vUUxtKZYaRESrV6+mkSNH0htvvEFE7kF8b7rpJhozZozTa6YzxVKjmNrCNfqnLePGjXPVqK2tbTcNNddw1yimtgymGj2tU1NTQ9dff327weX7ogZjjA1kHLgcBMlkkmbOnEnPPPOMc52I6MILL6RTTz2VZs+eTS+//LKz/xtvvEFr1651TZPINda2mzayWNoymGoUUmfOnDmuOitWrKDrrruO1q1bxzUOYI1iakux1LDNnDmTPvOZzzjXM5mMs37ccce1m2K6I8VSo5jawjX6ty1djTHGNYq3LYOpRk/qEJmz6R2oGowxNlCJYAcUESGRSGDPnj3Ys2cPACAYDGL37t1Yv349vvSlLyGZTOL555937jN//nwceeSRGDJkCNfooEYxtWUw1Si0TiKRwAsvvODcZ+7cuXj88cdxxBFHcI0DVKOY2tLfNcaOHYt4PI5YLObc9tRTT2H9+vX44he/CADw+XzQNA0AcOKJJyKZTCJfMpksihrF1BauUXyvjSRJXKODGsXUlsFUY3/rAIDf7++TGowxNqgc3Hzn0NH2G4MnnniCBEGgq6++mu655x4Kh8POrBt/+MMfaOzYsdTQ0NDpVHlco7jaMphq7E+d/EF2uUbf1yimthRDjfXr19MZZ5xBM2bMoOHDhzuD6abTaXr22WepsrKSLrjgAlIUxTnGL7vsMrrkkktIVVUyDKNoagy2xzOYavBrU7w1+LUZ/M8rY4wNNhy4HACbN2+mRx99lPbu3ets03Wdnn76aZo5cyadeeaZ9L3vfc+57Yc//CHNmDHD9YeGa8xo94e3WNoymGoUU1u4Br82XdVYv349VVRU0C233EK//e1v6dZbbyWPx+MM8phMJukvf/kLjRw5kiZPnkznnXceXXTRRRQKhZwZjYqlRjG1hWvwazNQahRTWwZTjWJrC2OMDTYcuPSxTz75hMrLy0kQBLrrrrtcs4sQmSl//rmrREQ33HADXXDBBZROp8kwDK7RpgY/r/y8Hmo1iPi1ya/R0NBAZ5xxBt10002ufU4++WS68cYbXdtisRjdfvvt9OUvf5luuOEGZ/atxsbGoqhRTG3hGvzaDJQaxdSWwVSj2NrCGGODEQcufSiRSNDVV19NV155JT355JMkCAJ9/etfd324yP/Gd+PGjbR48WKKRCL00UcfcY0OahRTWwZTjWJqC9fg16a7GrW1tXT88cc7s1zYXdGvuuoquvTSS50abU+Vy79eLDWKqS1cg1+bgVKjmNoymGoUW1sYY2wwkvt7DJnBRBRFHHvssaioqMDFF1+MyspKXHLJJQCA22+/HZWVlRAEAQAQj8fx2muvYdWqVXjjjTcwbdo0rtFBjWJqy2CqUUxt4Rr82nRXo7q6Gr/5zW8wceJEAICu6xBFESNGjMCOHTsAAIIgQBAExGIxRKNRZ5utWGoUU1u4Br82A6VGMbVlMNUotrYwxtig1N+Jz2CTSCRc13/3u9+RIAh02223UUNDAxGZA0fW1dWRqqrU1NTENbqpUUxtGUw1iqktXKO9YmlLsdSw5X8j+o1vfIMWLFjgXH/ooYfoscceazfwcLHWKKa2cI3ibQvXKN62DKYaxdYWxhgbLLiHSx8LhUIAcun+xRdfDCLCF7/4RQiCgMWLF+PRRx/Ftm3b8Mwzz6CsrIxrdFOjmNoymGoUU1u4Br82hTwngNljhoicb0ZFUQQA3HvvvXjwwQexatUqyHLXf9qKpUYxtYVrFG9buEbxtmUw1Si2tjDG2KBxoJIc5j5f9Xe/+x15PB46/PDDSZZlZ9R2rtGzGsXUlsFUo5jawjWKty3FUsO+/5IlS+irX/0qPfLII+Tz+ejDDz8s6P7FVKOY2sI1irctXKN42zKYahRbWxhjbDDgwOUAMwzDGRDylFNOofLyctfgmFyj5zWKqS2DqUYxtYVrFG9biqUGEdGDDz5IgiBQSUkJvf/++z2+fzHVKKa2cI3ibQvXKN62DKYaxdYWxhgbyDhwOQg0TaNbbrmFBEGgNWvWcI0+qFFMbRlMNYqpLVyjeNtSLDXef/99EgRhv6YVLZYaxdQWrlG8beEaxduWwVSj2NrCGGMDmUBE1N+nNQ12uq7j6aefxrHHHoujjz6aa/RBjWJqy2CqUUxt4RrF25ZiqQEAyWTSGSNmoNcoprZwjeJtC9co3rYMphrF1hbGGBuoOHA5SChvADGu0Tc1iqktg6lGMbWFaxRvW4qlBmOMMcYYY8WKAxfGGGOMMcYYY4yxPib2dwMYY4wxxhhjjDHGBhsOXBhjjDHGGGOMMcb6GAcujDHGGGOMMcYYY32MAxfGGGOMMcYYY4yxPsaBC2OMMcYYY4wxxlgf48CFMcYYY4wxxhhjrI9x4MIYY4wxxhhjjDHWxzhwYYwxxhhjjDHGGOtjHLgwxhhjjDHGGGOM9bH/Dwh+GzrfM0rkAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ "\n", "# Guardar el dataframe agrupado\n", "df_grouped.to_csv('global_electricity_statistics_by_region.csv')" @@ -772,40 +786,80 @@ "metadata": { "id": "3HyCu76yuvpS" }, - "execution_count": 19, + "execution_count": 32, "outputs": [] }, { "cell_type": "code", "source": [ - "train, test =" + "# Supongamos que 'df_grouped' es tu DataFrame y quieres predecir la columna '2021'\n", + "X = df_grouped.drop('2021', axis=1)\n", + "y = df_grouped['2021']\n", + "\n", + "# Dividir los datos en conjuntos de entrenamiento y prueba\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Puedes cambiar 'test_size' y 'random_state'\n", + "\n", + "# Crear la red LSTM\n", + "model = Sequential()\n", + "model.add(LSTM(100, activation='relu', input_shape=(X_train.shape[1], 1))) # Puedes cambiar el número de neuronas (50 aquí) y la función de activación ('relu' aquí)\n", + "model.add(Dense(1))\n", + "\n", + "# Compilar el modelo\n", + "model.compile(optimizer='adam', loss=MeanSquaredError()) # Puedes cambiar el optimizador ('adam' aquí) y la función de pérdida (MeanSquaredError aquí)\n", + "\n", + "# Ajustar el modelo a los datos de entrenamiento\n", + "history = model.fit(X_train, y_train, epochs=200, verbose=0) # Puedes cambiar el número de épocas (200 aquí)\n", + "\n", + "# Graficar la pérdida durante el entrenamiento\n", + "plt.plot(history.history['loss'])\n", + "plt.title('Model loss')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Epoch')\n", + "plt.legend(['Train'], loc='upper right')\n", + "plt.show()" ], "metadata": { - "id": "nfJrQD1i4qys" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "nfJrQD1i4qys", + "outputId": "4198e573-60a0-4bcb-c1c7-5ea9465d8254" }, - "execution_count": 22, - "outputs": [] + "execution_count": 40, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiVklEQVR4nO3dd3iUVd4+8PuZmcykJ0A6hI5UCYiAsQGKArIIiA3ZV+w/V3BVbMvuq6Kui2UV11VhfRVwbSCoqCgiHREQEEITQhEIkE5IT6ae3x8zzzM1ZVomGe7PdeUimXkyOcMAc/M933OOJIQQICIiIgoTqlAPgIiIiCiQGG6IiIgorDDcEBERUVhhuCEiIqKwwnBDREREYYXhhoiIiMIKww0RERGFFYYbIiIiCisMN0RERBRWGG6IqNWTJAlz5szx+vtOnjwJSZKwePHiRq/buHEjJEnCxo0bfRofEbUuDDdE1CyLFy+GJEmQJAlbtmxxu18IgczMTEiShD/84Q8hGCERkRXDDRF5JTIyEp9++qnb7Zs2bcKZM2eg0+lCMCoiIjuGGyLyyg033IBly5bBZDI53f7pp59iyJAhSEtLC9HIiIisGG6IyCtTp07FuXPnsGbNGuU2g8GA5cuX44477vD4PTU1NXj88ceRmZkJnU6H3r1745///CeEEE7X6fV6PPbYY0hOTkZcXBxuvPFGnDlzxuNjnj17Fvfccw9SU1Oh0+nQv39/LFy4MHBPFMCyZcswZMgQREVFISkpCX/84x9x9uxZp2sKCwtx9913o1OnTtDpdEhPT8fEiRNx8uRJ5Zpdu3ZhzJgxSEpKQlRUFLp164Z77rknoGMlIjtNqAdARG1L165dkZ2djc8++wzjxo0DAKxatQoVFRW4/fbb8dZbbzldL4TAjTfeiA0bNuDee+/FoEGDsHr1ajz55JM4e/Ys5s2bp1x733334eOPP8Ydd9yByy+/HOvXr8f48ePdxlBUVITLLrsMkiRh5syZSE5OxqpVq3DvvfeisrISjz76qN/Pc/Hixbj77rsxdOhQzJ07F0VFRfjXv/6Fn3/+GXv27EFiYiIAYMqUKTh48CAefvhhdO3aFcXFxVizZg3y8vKUr6+//nokJyfjL3/5CxITE3Hy5El8+eWXfo+RiBogiIiaYdGiRQKA2Llzp3j77bdFXFycqK2tFUIIccstt4hRo0YJIYTo0qWLGD9+vPJ9K1asEADE3//+d6fHu/nmm4UkSeLYsWNCCCFycnIEAPHQQw85XXfHHXcIAOK5555Tbrv33ntFenq6KC0tdbr29ttvFwkJCcq4Tpw4IQCIRYsWNfrcNmzYIACIDRs2CCGEMBgMIiUlRQwYMEDU1dUp161cuVIAEM8++6wQQojz588LAOK1115r8LG/+uor5feNiFoGp6WIyGu33nor6urqsHLlSlRVVWHlypUNTkl9//33UKvV+POf/+x0++OPPw4hBFatWqVcB8DtOtcqjBACX3zxBSZMmAAhBEpLS5WPMWPGoKKiArt37/br+e3atQvFxcV46KGHEBkZqdw+fvx49OnTB9999x0AICoqClqtFhs3bsT58+c9PpZc4Vm5ciWMRqNf4yKi5rmgw83mzZsxYcIEZGRkQJIkrFixwuvH+PzzzzFo0CBER0ejS5cueO211wI/UKJWJjk5GaNHj8ann36KL7/8EmazGTfffLPHa0+dOoWMjAzExcU53d63b1/lfvlXlUqFHj16OF3Xu3dvp69LSkpQXl6O9957D8nJyU4fd999NwCguLjYr+cnj8n1ZwNAnz59lPt1Oh1eeeUVrFq1Cqmpqbj66qvx6quvorCwULl+xIgRmDJlCp5//nkkJSVh4sSJWLRoEfR6vV9jJKKGXdA9NzU1NcjKysI999yDm266yevvX7VqFaZNm4Z///vfuP7663Ho0CHcf//9iIqKwsyZM4MwYqLW44477sD999+PwsJCjBs3TqlQBJvFYgEA/PGPf8T06dM9XjNw4MAWGQtgrSxNmDABK1aswOrVq/HMM89g7ty5WL9+PQYPHgxJkrB8+XJs374d3377LVavXo177rkHr7/+OrZv347Y2NgWGyvRheKCrtyMGzcOf//73zF58mSP9+v1ejzxxBPo2LEjYmJiMHz4cKcdTD/66CNMmjQJDz74ILp3747x48dj9uzZeOWVV9xWgRCFm8mTJ0OlUmH79u0NTkkBQJcuXZCfn4+qqiqn2w8fPqzcL/9qsVhw/Phxp+tyc3OdvpZXUpnNZowePdrjR0pKil/PTR6T68+Wb5Pvl/Xo0QOPP/44fvzxRxw4cAAGgwGvv/660zWXXXYZXnrpJezatQuffPIJDh48iCVLlvg1TiLy7IION02ZOXMmtm3bhiVLlmDfvn245ZZbMHbsWBw9ehSANfw4zscD1jn4M2fOKGVronAVGxuL+fPnY86cOZgwYUKD191www0wm814++23nW6fN28eJElSVlzJv7qutnrzzTedvlar1ZgyZQq++OILHDhwwO3nlZSU+PJ0nFx66aVISUnBggULnKaPVq1ahUOHDikruGpra1FfX+/0vT169EBcXJzyfefPn3f7z86gQYMAgFNTREFyQU9LNSYvLw+LFi1CXl4eMjIyAABPPPEEfvjhByxatAj/+Mc/MGbMGDz22GO46667MGrUKBw7dkz531pBQQG6du0awmdAFHwNTQs5mjBhAkaNGoW//e1vOHnyJLKysvDjjz/i66+/xqOPPqr02AwaNAhTp07Fu+++i4qKClx++eVYt24djh075vaYL7/8MjZs2IDhw4fj/vvvR79+/VBWVobdu3dj7dq1KCsr8+t5RURE4JVXXsHdd9+NESNGYOrUqcpS8K5du+Kxxx4DABw5cgTXXnstbr31VvTr1w8ajQZfffUVioqKcPvttwMAPvzwQ7z77ruYPHkyevTogaqqKvzf//0f4uPjccMNN/g1TiLyjOGmAfv374fZbMZFF13kdLter0eHDh0AAPfffz+OHz+OP/zhDzAajYiPj8cjjzyCOXPmQKViUYwIAFQqFb755hs8++yzWLp0KRYtWoSuXbvitddew+OPP+507cKFC5GcnIxPPvkEK1aswDXXXIPvvvsOmZmZTtelpqZix44deOGFF/Dll1/i3XffRYcOHdC/f3+88sorARn3XXfdhejoaLz88st4+umnERMTg8mTJ+OVV15R+osyMzMxdepUrFu3Dh999BE0Gg369OmDzz//HFOmTAFgbSjesWMHlixZgqKiIiQkJGDYsGH45JNP0K1bt4CMlYicSYLNIQCspw5/9dVXmDRpEgBg6dKlmDZtGg4ePAi1Wu10bWxsrNMW82azGYWFhUhOTsa6detwww03oLi4GMnJyS35FIiIiAis3DRo8ODBMJvNKC4uxlVXXdXotWq1Gh07dgQAfPbZZ8jOzmawISIiCpELOtxUV1c7zeefOHECOTk5aN++PS666CJMmzYNd955J15//XUMHjwYJSUlWLduHQYOHIjx48ejtLQUy5cvx8iRI1FfX49FixZh2bJl2LRpUwifFRER0YXtgp6W2rhxI0aNGuV2+/Tp07F48WIYjUb8/e9/x3//+1+cPXsWSUlJuOyyy/D888/j4osvRmlpKSZMmID9+/dDCIHs7Gy89NJLGD58eAieDREREQEXeLghIiKi8MMlPURERBRWGG6IiIgorFxwDcUWiwX5+fmIi4uDJEmhHg4RERE1gxACVVVVyMjIaHIvuQsu3OTn57ttCEZERERtw+nTp9GpU6dGr7ngwk1cXBwA629OfHx8iEdDREREzVFZWYnMzEzlfbwxF1y4kaei4uPjGW6IiIjamOa0lLChmIiIiMIKww0RERGFFYYbIiIiCisXXM8NERFRsJjNZhiNxlAPo83SarVNLvNuDoYbIiIiPwkhUFhYiPLy8lAPpU1TqVTo1q0btFqtX4/DcENEROQnOdikpKQgOjqam8T6QN5kt6CgAJ07d/br95DhhoiIyA9ms1kJNh06dAj1cNq05ORk5Ofnw2QyISIiwufHYUMxERGRH+Qem+jo6BCPpO2Tp6PMZrNfj8NwQ0REFACcivJfoH4PGW6IiIgorDDcEBERUUB07doVb775ZqiHwXBDRER0oZEkqdGPOXPm+PS4O3fuxAMPPBDYwfqAq6WIiIiCzGIRkKTW05dTUFCgfL506VI8++yzyM3NVW6LjY1VPhdCwGw2Q6NpOjIkJycHdqA+YuWGiIgoiExmCw4VVuJ0WW2oh6JIS0tTPhISEiBJkvL14cOHERcXh1WrVmHIkCHQ6XTYsmULjh8/jokTJyI1NRWxsbEYOnQo1q5d6/S4rtNSkiTh/fffx+TJkxEdHY1evXrhm2++CfrzY7ghIiIKICEEag0m5eN8rQE1ehPKag1OtwfjQwgRsOfxl7/8BS+//DIOHTqEgQMHorq6GjfccAPWrVuHPXv2YOzYsZgwYQLy8vIafZznn38et956K/bt24cbbrgB06ZNQ1lZWcDG6QmnpYiIiAKozmhGv2dXh+Rn//bCGERrA/PW/sILL+C6665Tvm7fvj2ysrKUr1988UV89dVX+OabbzBz5swGH+euu+7C1KlTAQD/+Mc/8NZbb2HHjh0YO3ZsQMbpCSs3RERE5ObSSy91+rq6uhpPPPEE+vbti8TERMTGxuLQoUNNVm4GDhyofB4TE4P4+HgUFxcHZcwyVm6IiIgCKCpCjd9eGKN8XVVvxKlztdCoVOiTHhf0nx0oMTExTl8/8cQTWLNmDf75z3+iZ8+eiIqKws033wyDwdDo47geoyBJEiwWS8DG6QnDDRERUQBJkuQ0NWQyC0RGqKFRSQGbMgqFn3/+GXfddRcmT54MwFrJOXnyZGgH1QBOSxEREQWRcPm1rerVqxe+/PJL5OTkYO/evbjjjjuCXoHxFcMNERFRUFljTQAXMoXEG2+8gXbt2uHyyy/HhAkTMGbMGFxyySWhHpZHkgjkurE2oLKyEgkJCaioqEB8fHyoh0NERG1cfX09Tpw4gW7duiEyMtLt/vJaA/LKaqGSJAzomBCCEbYdjf1eevP+zcoNERFRC7igKgkhxnBDREQURMr8yIU1URJSDDdERERB5NhQfIF1goQMww0REVEQCU5ItTiGGyIiogBosCojPH5KHgSqssVwQ0RE5Ad5B97aWs+nfju+XXNWqnHybsdqtX87LbfdrRKJiIhaAbVajcTEROW8pOjoaEiSpNxv0BsgTNY37fr6OqhVrCt4YrFYUFJSgujoaGg0/sUThhsiIiI/paWlAYDHAyGr6o2oqDMBADQ1kVCpJLdryEqlUqFz585O4dAXDDdERER+kiQJ6enpSElJgdFodLrv0x2n8MFP+QCA5Q9ejnYx2lAMsU3QarVQBaCyxXBDREQUIGq12q1fpNakwtkqs/X+CK3HXYwpsDjxR0REFEQmi72L2MyO4hbBcENERBREZodwYzIz3LQEhhsiIqIgcqzcWDxUbqr1ppYczgWB4YaIiCiILI6VG4tzuNl2/Byynv8R72481tLDCmsMN0REREHkVLlxCTe/FVTCbBE4cLaipYcV1hhuiIiIgsjcSEOxHHbYixNYDDdERERB1FhDsRx2PPXikO8YboiIiIKosYZiOfi49uKQfxhuiIiIgshssSifu4YYeVrKzHATUAw3REREQdRYQ7E8LcWem8BiuCEiIgqixpaCK5Ub9twEVEjDzdy5czF06FDExcUhJSUFkyZNQm5ubpPft2zZMvTp0weRkZG4+OKL8f3337fAaImIiLzXnMoNp6UCK6ThZtOmTZgxYwa2b9+ONWvWwGg04vrrr0dNTU2D37N161ZMnToV9957L/bs2YNJkyZh0qRJOHDgQAuOnIiIqHnMjVRuzBbPt5N/Qnoq+A8//OD09eLFi5GSkoJff/0VV199tcfv+de//oWxY8fiySefBAC8+OKLWLNmDd5++20sWLAg6GMmIiLyRmMHZ8rNxq4VHfJPq+q5qaiw7tDYvn37Bq/Ztm0bRo8e7XTbmDFjsG3bNo/X6/V6VFZWOn0QERG1FMfgYnbd54aVm6BoNeHGYrHg0UcfxRVXXIEBAwY0eF1hYSFSU1OdbktNTUVhYaHH6+fOnYuEhATlIzMzM6DjJiIiakxjlRuL0nNjAQVOqwk3M2bMwIEDB7BkyZKAPu7s2bNRUVGhfJw+fTqgj09ERNQYp+MX3HpuuIlfMIS050Y2c+ZMrFy5Eps3b0anTp0avTYtLQ1FRUVOtxUVFSEtLc3j9TqdDjqdLmBjJSIi8obJoSrjFm7k4xcYbgIqpJUbIQRmzpyJr776CuvXr0e3bt2a/J7s7GysW7fO6bY1a9YgOzs7WMMkIiLymeOMk+vxCxZWboIipJWbGTNm4NNPP8XXX3+NuLg4pW8mISEBUVFRAIA777wTHTt2xNy5cwEAjzzyCEaMGIHXX38d48ePx5IlS7Br1y689957IXseREREDXGs3LgdnMnjF4IipJWb+fPno6KiAiNHjkR6errysXTpUuWavLw8FBQUKF9ffvnl+PTTT/Hee+8hKysLy5cvx4oVKxptQiYiIgoVc2NLwQUrN8EQ0sqNaMZ20xs3bnS77ZZbbsEtt9wShBEREREFlqmRhmJ5Woo9N4HValZLERERhaNGV0vZvmTlJrAYboiIiIKosXBjYc9NUDDcEBERBVFz9rlhuAkshhsiIqIgcmwibmifG4abwGK4ISIiCiLH5d/uB2fKq6V4/EIgMdwQEREFUXOmpSyieSuIqXkYboiIiIKo0aXgjUxZke8YboiIiILIMcC4Lvl2DDRcDh44DDdERERBZDLb+2lcN+trbMqKfMdwQ0REFESNHb/QWFWHfMdwQ0REFESN9dw4fs0jGAKH4YaIiCiIGmsadjwknJWbwGG4ISIiCqLmHJzp6T7yHcMNERFRkFgsAo5tNo1NS3Ejv8BhuCEiIgoS16km168dp6yYbQKH4YaIiChILK6ro1i5aREMN0REREHSVOWmsUM1yXcMN0REREFiNjc8DQU0vgcO+Y7hhoiIKEhcA0ujxy+YGW4CheGGiIgoSFz7aFx7brgUPDgYboiIiIKksaXfgHNlh5v4BQ7DDRERUZC4TjW5T0vZP3ftxyHfMdwQEREFidtS8MYOzmTPTcAw3BAREQVJk0vB2XMTFAw3REREQdLYWVKuX3MTv8BhuCEiIgoS954b5wDj2FDMnpvAYbghIiIKEvfjF5zv5z43wcFwQ0REFCTuPTcu+97w+IWgYLghIiIKErPbNJTr/Tx+IRgYboiIiILEdarJMewIIeBYrGHlJnAYboiIiILEtRrjuGmfa5hhz03gMNwQEREFwNKdefho+ymn29yPX7CnG/fgw3ATKJpQD4CIiKitM5gs+NtXB2AWAjdmZSAhKgJA45v2ua2cYs9NwLByQ0RE5Kd6kxkmi4AQQHmtQbnd7DLV5NRjI1xXUjHcBArDDRERkZ8MJnsZpqLOqHwuBxiVZP3acSm425SVmTsUBwrDDRERkZ/0DYUbW4DRaqxvt45TUa5HMbByEzgMN0RERH7SG83K55V1JuVzObDoNGrb1w03FPP4hcBhuCEiIvJTQ5Ubi0vlxszKTYtguCEiIvJTQz03cmDRquVw08hScO5zEzAMN0RERH5yrNxU1jv23Fhv1ymVm4bPkuJS8MBhuCEiIvKT3mTvufFYufEQbho7IZz8w3BDRETkJ73RoXLjoedGqdw4ngLOfW6ChuGGiIjITwZzEz03HqelXE4MZ7gJGIYbIiIiPzlOS1U2ss+Nc7hxfgyGm8BhuCEiIvKT07RUvfs+N/JqKYsAhG06yv1QTYabQGG4ISIi8lNzdyh2vM110z6Ta4cx+YzhhoiIyE+u+9y4Vme0th2KAXsjMSs3wcNwQ0RE5CfHnhuzRaDWYP3a5LJaSr4f8LCJH8NNwDDcEBER+clxWgqwT03JK6I8Tkvx+IWgYbghIiLyk2u4kXcplldEyQ3F1ts4LRVsDDdERER+cjwVHAAqapuu3HBaKngYboiIiPxkMHuelpKnmjQqCWqVBMBxWsr5MRhuAofhhoiIyE+O+9wA9r1uLI7hRrKFG+G5csOem8BhuCEiIvJTQw3FcmBROVRuTGbPDcWs3AQOww0REZGf5KXgEWprgLGvlnKflrJwn5ugY7ghIiLyk1y5SY7VAbCfLyVXbtQqFWzZRrnNdRqK4SZwGG6IiIj8pISbOOdw49hzo5HPl+LxC0HHcENEROQne7iJBGDf58ax50Zlayg2cZ+boGO4ISIi8pO8z41cufHUc6NxXQrOfW6ChuGGiIjIT/I+N67hRp5qUrOhuEUx3BAREflJ3ucmRem5se5zI+/t57haqqFpKe5zEzgMN0RERH5ybSh2PTjTcZ8b14Zi+WgGVm4Ch+GGiIjIT/I+N3Llps5ohsFk8Xj8gr1yY/1enZrhJtAYboiIiPwkV26SbPvcANYVU2Zlnxv78Qty5cbMyk3QMNwQERH5QQgBgy3cRGnViNNpAFinpuyrpVRulRs55Mjhhj03gRPScLN582ZMmDABGRkZkCQJK1asaPT6jRs3QpIkt4/CwsKWGTAREZELxxPBdRoV4qMiAFg38rNXbmA/FdxltVQEp6UCLqThpqamBllZWXjnnXe8+r7c3FwUFBQoHykpKUEaIRERUeMcD83UalRIsIWbijqj8/ELcrgxs6E42DSh/OHjxo3DuHHjvP6+lJQUJCYmBn5AREREXpKXgQOAVq1CXKT1rbWy3uR5Ez+Xyo1WzWmpQGuTPTeDBg1Ceno6rrvuOvz888+NXqvX61FZWen0QUREFCjytJROo4IkSYi19dzUGUweG4rl2+QwE6FUbni2VKC0qXCTnp6OBQsW4IsvvsAXX3yBzMxMjBw5Ert3727we+bOnYuEhATlIzMzswVHTERE4U4+ekFnCynRtnBTozc7hxvX4xdsv+o4LRVwIZ2W8lbv3r3Ru3dv5evLL78cx48fx7x58/DRRx95/J7Zs2dj1qxZyteVlZUMOEREFDByz41WowYAxGitv9boTR6PXzC7LAVnuAm8NhVuPBk2bBi2bNnS4P06nQ46na7B+4mIiPwhhxulcqO1VW4MZsh5RdNI5YY9N4HXpqalPMnJyUF6enqoh0FERBcoeY8bXYT1LTVGZ63c1BoaqNwI58oNl4IHXkgrN9XV1Th27Jjy9YkTJ5CTk4P27dujc+fOmD17Ns6ePYv//ve/AIA333wT3bp1Q//+/VFfX4/3338f69evx48//hiqp0BERBc4+egFnW1aSqnc6M3Ksm+P01K2/mFlKbhguAmUkIabXbt2YdSoUcrXcm/M9OnTsXjxYhQUFCAvL0+532Aw4PHHH8fZs2cRHR2NgQMHYu3atU6PQURE1JLkpeDytFSsU+Wm4dVSrvvcCGGdqpL3wyHfhTTcjBw5EqKRpLp48WKnr5966ik89dRTQR4VERFR89kbij313Dgcv6B2rdw4hxvA2nejZbjxW5vvuSEiIgol+7SUS8+NvvHKjesmfoC9mkP+YbghIiLyg9JQ7NJzU603Ndpz4zotBXDFVKAw3BAREflB3+BqKbMSVjSeVkt5qNzIYYj8w3BDRETkB2VaSu3cc1NrMClBprGG4gi1Y+WGRzAEAsMNERGRH5TVUnLlRut+/IJGJTXYUKxRS7DlHi4HDxCGGyIiIj/YD8609dzYpqXqjPZwo3Ko3JhcDs5UO54Yzp6bgGC4ISIi8oPr8QvyqeCOHHtuLC7HL6glCSo5+LDnJiAYboiIiPwgnwour3rSaVRw3arGcbWUSTk4034fKzeBxXBDRETkB9fKjSRJSt+NTKNSKQFGbiS2WDwsE2fPTUAw3BAREfnBdZ8bwN53I1OpoByr4NpQrFJJ0PDwzIBiuCEiIvKD6z43ADxWbtx2KBbsuQkWhhsiIiI/yPvcOG7G51a5keC+Q7EyLQW3KSvyD8MNERGRHzxVbqIdKjcalQRJ8tRQbJuW8nAf+YfhhoiIyA/KJn4OPTcxWvvncq+N61Jws6eGYu5QHBAMN0RERH7Qm51XSwFAjM65cgPArTpjEe6b+LHnJjAYboiIiPwg73PjXLmxhxs51Lj21SirpSQuBQ80hhsiIiI/yEvBtRrPDcVyqFG5HL8gz0A5T0sx3AQCww0REZEfXDfxAxqo3Khdem7YUBw0DDdERER+8LhayqFyo3ar3Fhsv3o4OJM9NwHBcENEROQHeZ+bhnpuNCqV7Vd56sl6u+M+N+y5CSyGGyIiIj/oPfXcaD1UblyWe9uXgquUAMSem8BguCEiIvKREMLhbCnPS8HlcKMcv2DLLxbH4xds38qem8BguCEiIvKRwWzfdK+pcOPWUKwcnGmfurIw3AQEww0REZGP5CkpoOEdit2XgtumpRwqN1wtFVgMN0RERD6Sj14AgAhbZQZwPlvKbRM/t4ZiHr8QaAw3REREPrKvlFJBkuzhJsbTUnCV58qNSsXKTaAx3BAREfnI0wZ+QOOVG6WhWN6hWJIcqjoMN4HAcENEROQjZaVUhNrp9hhPxy80uBSclZtAY7ghIiLyUUOVm6gINeRZKrfKja1i4+n4Be5zExgMN0RERD6STwTXuoQbSZKUXYrd9rmxVW48NRSzchMYDDdEREQ+sldu1G73ybsUq2172LhWZ5Sl4CrHqg7DTSAw3BAREfnI0+7EMnkjPzm4uIUbs+O0FI9fCCSGGyIiIh811HMDOFZuXBqKhWvlRoKaxy8EFMMNERGRj+R9blx7bgD7yeByr40y9WR2OX5Bknj8QoAx3BAREfmo0Z4b23Jwtdr5+AW5YiMfnKlRs6E40BhuiIiIfGTf56bhyo1csZEPzlSWglvcz5bi8QuBwXBDRETkI8fjF1y59tw4LgUXQkAu0vD4hcBjuCEiIvKRfHBmY6ul5FDjuFrKMcPw+IXAY7ghIiLyUWM9N/IRDPJ0lGO4cVzyzcpN4DHcEBER+chgbrhyMyizHVQScHHHRAAO4UYIpZlYvt0+ZcVwEwiapi9xd/r0aUiShE6dOgEAduzYgU8//RT9+vXDAw88ENABEhERtVby8Quews11/VKxf84Y+/RUA5UbtSQpK6pYuQkMnyo3d9xxBzZs2AAAKCwsxHXXXYcdO3bgb3/7G1544YWADpCIiKi1kqelPO1zA9j7bgCXcCMcp6XAnpsA8yncHDhwAMOGDQMAfP755xgwYAC2bt2KTz75BIsXLw7k+IiIiFqtxnpuXMlTTxZh38hPvl0+foGVm8DwKdwYjUbodDoAwNq1a3HjjTcCAPr06YOCgoLAjY6IiKgVU5aCe9jnxpVcuQEAo9nidLttVoo9NwHiU7jp378/FixYgJ9++glr1qzB2LFjAQD5+fno0KFDQAdIRETUWjV2cKYrx3AjV3wkCZAkCWo1D84MJJ/CzSuvvIL//Oc/GDlyJKZOnYqsrCwAwDfffKNMVxEREYU7r6alHMKNvMrK9dwpTksFhk+rpUaOHInS0lJUVlaiXbt2yu0PPPAAoqOjAzY4IiKi1kzexK+hhmJHnqalVB52Lyb/+VS5qaurg16vV4LNqVOn8OabbyI3NxcpKSkBHSAREVFr1djxC67kAAMARpPt0EyV8wZ/rNwEhk/hZuLEifjvf/8LACgvL8fw4cPx+uuvY9KkSZg/f35AB0hERNRa+T4tZQ1FyrSUWl5JxXATCD6Fm927d+Oqq64CACxfvhypqak4deoU/vvf/+Ktt94K6ACJiIhaq8ZOBXclSRLkfGOwVW5UrpUbM8NNIPgUbmpraxEXFwcA+PHHH3HTTTdBpVLhsssuw6lTpwI6QCIiotZK2cRP3by3U41tPxulodit54bhJhB8Cjc9e/bEihUrcPr0aaxevRrXX389AKC4uBjx8fEBHSAREVFr5c0+N4A9zMjHNqgk9twEg0/h5tlnn8UTTzyBrl27YtiwYcjOzgZgreIMHjw4oAMkIiJqrbzpuQHsJ4VX1ZsAAHLBhz03geXTUvCbb74ZV155JQoKCpQ9bgDg2muvxeTJkwM2OCIiotZM78UmfgAQq9OgtNqAijojAPt0lHL8AntuAsKncAMAaWlpSEtLw5kzZwAAnTp14gZ+RER0wRBCKA3FzdnnBgBiI61vu3K4cd/nhuEmEHyalrJYLHjhhReQkJCALl26oEuXLkhMTMSLL74ICzcgIiKiC4BctQGaX7mJ0TqHG7XLaikzp6UCwqfKzd/+9jd88MEHePnll3HFFVcAALZs2YI5c+agvr4eL730UkAHSURE1No4h5vm9dzE2So3lS7TUnLPDSs3geFTuPnwww/x/vvvK6eBA8DAgQPRsWNHPPTQQww3REQU9gwOh19GqKUmrraK0XmelpJXTZk4+xEQPk1LlZWVoU+fPm639+nTB2VlZX4PioiIqLVzPHpBkpoXbmJt4aay3qVyI09LsaE4IHwKN1lZWXj77bfdbn/77bcxcOBAvwdFRETU2nm7gR/QSEMxe24CyqdpqVdffRXjx4/H2rVrlT1utm3bhtOnT+P7778P6ACJiIhaI/lEcF1E8/ptACDWraHYejt7bgLLp8rNiBEjcOTIEUyePBnl5eUoLy/HTTfdhIMHD+Kjjz4K9BiJiIhaHfkIheaulALslZvKOnkTP+v3ytNSBhN7bgLB531uMjIy3BqH9+7diw8++ADvvfee3wMjIiJqzeQjFLwJN3JDcZ1RPhXcenu01vl28o9PlRsiIqILndJz08xl4AAQp3OuKci9NvL+N0azYPUmAEIabjZv3owJEyYgIyMDkiRhxYoVTX7Pxo0bcckll0Cn06Fnz55YvHhx0MdJRETkytujFwD7tJRMXgIerbMHpBq9KQCju7CFNNzU1NQgKysL77zzTrOuP3HiBMaPH49Ro0YhJycHjz76KO677z6sXr06yCMlIiJyZvAh3MQ0ULmJUKuUIxxqDAw3/vKq5+amm25q9P7y8nKvfvi4ceMwbty4Zl+/YMECdOvWDa+//joAoG/fvtiyZQvmzZuHMWPGePWziYiI/KHsc+PFaqmGpqUAIEarhsFkQa2BfTf+8ircJCQkNHn/nXfe6deAGrNt2zaMHj3a6bYxY8bg0UcfDdrPJCIi8sSXfW5cKzcqh83/YnQanK81oprTUn7zKtwsWrQoWONolsLCQqSmpjrdlpqaisrKStTV1SEqKsrte/R6PfR6vfJ1ZWVl0MdJREThT1ktFeF7z41z5cZ6X62elRt/hf1qqblz5yIhIUH5yMzMDPWQiIgoDPjSUCwHGJlz5cY6vcXKjf/aVLhJS0tDUVGR021FRUWIj4/3WLUBgNmzZ6OiokL5OH36dEsMlYiIwpy9obj5PTdqlYRordrha/t98pRVLRuK/ebzJn6hkJ2d7Xa8w5o1a5QjIDzR6XTQ6XTBHhoREV1gfKncANbDM+WmYcdpKTn01LCh2G8hrdxUV1cjJycHOTk5AKxLvXNycpCXlwfAWnVxbFB+8MEH8fvvv+Opp57C4cOH8e677+Lzzz/HY489ForhExHRBczxVHBvOPbduDYUA9znJhBCGm527dqFwYMHY/DgwQCAWbNmYfDgwXj22WcBAAUFBUrQAYBu3brhu+++w5o1a5CVlYXXX38d77//PpeBExFRi/OnciPz3FDMcOOvkE5LjRw5EqKR49097T48cuRI7NmzJ4ijIiIiaprSc+PFPjdAI+FGrtxwWspvbaqhmIiIqLXwtXLjuNeNWnLexA/gtFQgMNwQERH5QO650XoZbuIaqNxEs3ITMAw3REREPtAbfey5cWwodgg3sTpWbgKF4YaIiMgHBrP3+9wADU9LRWu5WipQGG6IiIh84HPlpoFpqVhlEz9OS/mL4YaIiMgHvvbcOIYbleRhEz9WbvzGcENEROQDvQ/HLwCulRv77fal4Aw3/mK4ISIi8oESbrw4FRxouKHYvkMxp6X8xXBDRETkA0Mgdij2tM+NwdToBrfUNIYbIiIiHwSi58bTDsVCAPW2ZmXyDcMNERGRD+yrpbzsuWng4Mwoh2McqtlU7BeGGyIiIh8E+uBMlUpSpqZq2VTsF4YbIiIiLwkhHDbxC0y4ARyOYGBTsV8YboiIiLwkV20A708Fj9aqIc9GuYYbx6Zi8h3DDRERkZccw41W7d1bqSRJiLUdteC4WgpwXA7OcOMPhhsiIiIvySulJAmIUEtNXO1ObipWuVVuOC0VCAw3REREXnLc40aSvA83coXGNRfF6DgtFQgMN0RERF7y9egFmdxU3FBDcS2npfzCcENEROQleY8bbzfwk8nhxnVaSu7FqeHJ4H5huCEiIvKS3HPj7TJwWZ+0OABA96RYp9ujdTwZPBA0TV9CREREjnzdwE/21xv64t6ruiE9IcrpdntDMcONP1i5ISIi8pLBz54blUpyCzaAw1JwTkv5heGGiIjIS3Llxteem4bIq6V4/IJ/GG6IiIi85G/PTUPkaalq7nPjF4YbIiIiLykngnt59EJTlMoNe278wnBDRETkJV8PzWxKNJeCBwTDDRERkZf0Rmv4CHzPDVdLBQLDDRERkZf8XQreEDYUBwbDDRERkZf8PX6hIfaGYoYbfzDcEBEReckQtMqNNdzUGy0wW0RAH/tCwnBDRETkpaAtBdfZK0GcmvIdww0REZGXjGZrVSVCHdi3Ua1aBY3tMM0a7nXjM4YbIiIiL8lLwQMdbiRJQrTWdngmKzc+Y7ghIiLykskWbjRqKeCPHWvru6muZ7jxFcMNERGRl0zKtFQQwk0k97rxF8MNERGRl4I1LQXYKzdVDDc+Y7ghIiLykly50QQj3ERGAOC0lD8YboiIiLxktFVutEGYlorTcSM/fzHcEBEReclo22BPowretBTDje8YboiIiLwU1NVStobiKk5L+YzhhoiIyEv2aalgVm6MAX/sCwXDDRERkZeMQWwojovkPjf+YrghIiLyklFZCh7ETfzYc+MzhhsiIiIvmYJ0thTAnptAYLghIiLyktFiayhWsXLTGjHcEBEReUmZltIEseeG4cZnDDdEREReUqalgrLPDXco9hfDDRERkZfslZsg7nPDyo3PGG6IiIi8pCwFD+IOxQaTBQaTJeCPfyFguCEiIvKSqQWWggNADas3PmG4ISIi8pIxiEvB1SoJ0Vo1ADYV+4rhhoiIyAtCCPtS8CBUbgB79YZ73fiG4YaIiMgLZouAsBZugnK2FGBvKmblxjcMN0RERF4wWYTyeTDOlgKAOB6e6ReGGyIiIi/Iy8CB4OxQDPAIBn8x3BAREXlBbiYGgtNQDPAIBn8x3BAREXlBXgaukqwrm4KBuxT7h+GGiIjICwZlj5vgvYXyfCn/MNwQERF5wRTEPW5kMTrrPjfsufENww0REZEXTEHe4wZwmJZi5cYnDDdEREReMJiCX7lR9rlh5cYnDDdERERekCs3EUFqJgYc97lhuPEFww0REZEXlHOlNEGs3MjHLzDc+IThhoiIyAvyJn7B2sAPcJyW4g7FvmC4ISIi8kJLrJbiJn7+aRXh5p133kHXrl0RGRmJ4cOHY8eOHQ1eu3jxYkiS5PQRGRnZgqMlIqILmbEl97lhQ7FPQh5uli5dilmzZuG5557D7t27kZWVhTFjxqC4uLjB74mPj0dBQYHycerUqRYcMRERXciUaamgLgW3hpsagxlmh4M6qXlCHm7eeOMN3H///bj77rvRr18/LFiwANHR0Vi4cGGD3yNJEtLS0pSP1NTUFhwxERFdyORTwVtiKTgA1BhYvfFWSMONwWDAr7/+itGjRyu3qVQqjB49Gtu2bWvw+6qrq9GlSxdkZmZi4sSJOHjwYIPX6vV6VFZWOn0QERH5yj4tFbzKjU6jhtYWnjg15b2QhpvS0lKYzWa3yktqaioKCws9fk/v3r2xcOFCfP311/j4449hsVhw+eWX48yZMx6vnzt3LhISEpSPzMzMgD8PIiK6cMhLwTWq4L6FxvJ8KZ+FfFrKW9nZ2bjzzjsxaNAgjBgxAl9++SWSk5Pxn//8x+P1s2fPRkVFhfJx+vTpFh4xERGFk5ZoKAYc9rph5cZrmqYvCZ6kpCSo1WoUFRU53V5UVIS0tLRmPUZERAQGDx6MY8eOebxfp9NBp9P5PVYiIiIAMLXAtBTA5eD+CGnlRqvVYsiQIVi3bp1ym8Viwbp165Cdnd2sxzCbzdi/fz/S09ODNUwiIiKFsQX2uQF4vpQ/Qlq5AYBZs2Zh+vTpuPTSSzFs2DC8+eabqKmpwd133w0AuPPOO9GxY0fMnTsXAPDCCy/gsssuQ8+ePVFeXo7XXnsNp06dwn333RfKp0FERBeIllgKDjieL8Vdir0V8nBz2223oaSkBM8++ywKCwsxaNAg/PDDD0qTcV5eHlQOTVvnz5/H/fffj8LCQrRr1w5DhgzB1q1b0a9fv1A9BSIiuoAoS8FbqKGYPTfeC3m4AYCZM2di5syZHu/buHGj09fz5s3DvHnzWmBURERE7gwmW8+NJriVm4SoCABAZR0rN95qc6uliIiIQslkkQ/ODO5baKIt3JyvZbjxFsMNERGRF+SDM7Wa4L6FJkRrAQDlrNx4jeGGiIjICwa5oVgV3GmpdtHWyk15rSGoPyccMdwQERF5Qa7caIK8FDxRCTes3HiL4YaIiMgL8lJwbZCXgidEydNSrNx4i+GGiIjIC8YWqty0Y+XGZww3REREXrCvlgpu5SbR1lBcVW9Sjnyg5mG4ISIi8oIyLRXk1VLxkfat6Cq4YsorDDdEREReUKalgrzPjUatQpwt4HA5uHcYboiIiLxgbKFTwQGgnbzXDZeDe4XhhoiIyAumFjoVHOBycF8x3BARhZHv9hVg/5mKUA8jrLXUqeCA/XwphhvvMNwQEYWJU+dqMOPT3Zj52e5QD6VNO1tehwWbjjfYxGuflgr+W6g8LXWe01JeaRWnghMRkf9KqvQAgNNltTCZLUHfhyVczd94DB9vz0OEWoV7r+zmdr/JIk9LBb9yI09LcbWUd/gnn4goTNQazAAAiwDO1fB/+r4qrLCGRDksujKYWq5yk8hpKZ8w3BARhQk53ABAUWV9CEfStlXaqiQNVUvkyk2wl4ID9o38OC3lHYYbIqIwUWc0KZ8XVjDc+EoONZX1DYSbFlwKzmkp3zDcEBGFCafKTQNTKtQ0+aDKygYbirkUvLVjuCEiChN1juGGlRuf2Ss3Jo/3t+xScJ4M7guGGyKiMMGeG//VG82oN1rDS8OVG9vZUi2yFNxWualh5cYbDDdERGGC01L+cww0DYUbeYfillhqr5wMrjcpoYqaxnBDRBQm6gz2aRROS/nGsXG3st4IIYTbNUaLbVpKFfxpKceTwRsKW+SO4YaIKEw4V24YbnzhGG6MZqFMUTmSG4q1muC/hWrUKiXgnGdTcbMx3BARhYlaoz3clNcaUe/wNTWP66ok1yXYFouAWdnnJviVG8A+NVXBpuJmY7ghIgoTjqulAKC4kn033nINM6573chTUgAQ0QKVG4DLwX3BcENEFCZqDc5Llzk15T23cOPytdxMDAARLbBDMeC4SzHDTXMx3BARhQnXyg13KfZeeV3j01KO4aYl9rkBHM+X4rRUczHcEBGFCbmhOCnW+j997nXjPddKjeu0lMFhOXbL9dzwCAZvMdwQEYUJOdx0S4oBABRzrxuvuU9LOU/1mSz2c6UkqWUbinl4ZvMx3BARhYk62+qorh2s4YbTUt6Tp37kQzFdKzlGU8udKyWzT0uxctNcDDdERGFCbijuaqvccFrKe3LlpmNilNPXspbcwE/WLsYabs5Vs3LTXAw3RERhwGKxbzjXndNSPpPDTGb7aADuPTemFjwRXNYx0TqWM+W1LfYz2zqGGyKiMFDnsGGfXLkprKj3eHwANcwt3Lj03MjnO7VkuOlsG0t+eT1MPF+qWRhuiIjCgOPRC106WN8M64xmVOlNDX0LuRBC2MNNO+vvodu0lC1ctNQycABIidNBq1HBbBEoYB9VszDcEBGFAXmPm6gINaK1GmX58MnSmlAOq02pM5qVc6M6NzAtpZwr1YKVG5VKQidbD9DpMk5NNQfDDRFRGKg1Wis00Vo1AGBI53YAgC3HSkM2prZGXo2kUUlIS4gE4KnnpuUrNwDQyRa2Tp9nuGkOhhsiojAgT0tF2cLNiN7JAIDNR0pCNqbWaOW+fNz49haPFS15CiohKgIJtuXXbj03yqGZLfv22bm9XLmpa9Gf21Yx3BARhQF5Wkqu3Fzdyxpufj11HtXsu1F8vP0U9p2pwPrDxW73KeEmOgLxURoA1sqNxWJvyjaabA3FLXRopkzuAcrjtFSzMNwQEYUBe+XG+qbcNSkGXTpEw2gW2Hb8XCiH1qqcLLWGA0/nNMnTUglREYiPtFZuhACqHQ4kVXYobsF9bgD76i1OSzUPww0RURiQN/CLjlArt8nVG05NWdUaTCi0bWzo6YTtSodpqcgINXS26ozjLsXGEOxzA9gbnDkt1TwMN0REYcB1WgoArr7IGm42MdwAsFdtAM/nNDn23ABAfJT7gZWhWAoO2KelSqv1SpClhjHcEBGFAdeGYgDI7tEBEWoJeWW1XBIO4OQ5+++BpxO2y+usgUc+yyk+0tZ349BUHIodigFrH1CcbTxnzrN60xSGGyKiMCDvUOxYuYnVaTCki3VJ+E9HWb054RDwvKncOC4HN5jtp4K3NPvUFPtumsJwQ0QUBpSeG1tDsezyHkkAgF9OlLX4mLwlhMCZ87VBOzLCKdzUuFduKmwVGjnU2JeD26+173PT8m+f8tQUw03TGG6IiMKAp2kpABjatT0AYOfJslZ/ztQ7G47hylc2YNWBwqA8vuPUnOfVUrZpqWgtACgrphynsEyWlt+hWJZp2+smj03FTWK4ISIKA0pDcYRzuBncORERaglFlfpWvdJGCIHPdpwGAOw6eT4oP8OxclNjMMNgcj6EstJtWkre68becyNPS2laeCk44DAtxeXgTWK4ISIKAw1VbiIj1BjYKREA8MuJ1rvfzf6zFThbbg1fRVXW5dpCCDy9fB+e//ag349fWW/EuRrnao1r9cat5ybS07SUbYfiEFRuOrHnptkYboiIwkCtshRc43af49RUa+U4FVVkO/m6oKIeS3edxqKfT+J8jfs0kjfkKankOJ1yqGi5y4qpkio9AKBDrHVaKsFDQ7G8FFwbgoZix54bx12TyR3DDRFRGKhzOTjT0bBu1hVTO4M03eMvIQR+cAw3tspNfrl9Gu330mq/foY8JdWtQwza2XpqHANTVb0RNbaAmBZvPTQz3kNDsTGElZsuHaIRGaFCjcHs9+9HuGO4ISIKAw1NSwHAkC7tIUnWN/hiW3BoTXKLqpz6YYoq9RBCKNNUAHC82L99epRwkxSjVG4cdykutFWL4iM1iNFZq1/yyeC/l9h/dqhOBQese+sMykwE0HqDamvBcENEFAY87VAsS4iKQJ+0eADAzhMNvymWVOkxZf5WLN2ZF5xBNmDVfmvVRt5R2WCyoLzWiIIKexA7XuJfpUKeluqaZK/cOPbcyD8rPSFKue2STGvF6/fSGpRWW6es7NNSoXn7bAtTjK0Bww0RURiobSTcAMCwrvLUVMNviusOFeHXU+excMvJgI+vMasPWsPNjVkZaGerqhRV1TtNSx0rDtC0VFJ0o5UbuVoDWHcF7p0aB8C+gsto63XRqELz9nmpLdwEa0VZuGC4ISIKA8q0VIR7QzFgf1P89VTDb4pydeREaY0y/RJsp8tqcbiwCmqVhNF9U5Bq63cprHAON82p3OzOO49XfjiMettuzbKKWiOOFFm/v1tSrL1yU2ev3MgHasr9NrKh3ZxDodG2fDxC0/LTUgBwSedEqCQgr6wWxZWtb4qxtWC4ISIKA3WGhhuKAet+NwBwqKDS7c1fJveWGMyWFju/aN2hIgDApV3aITFaq4Sb4ko98svtb955ZbXQmzyPW/bSd4cwf+NxLN152un2dzcdQ53RjD5pceiVEqucHVXusEtxgYfKDWCfBtplCzfyJn4RIarcxEVGoLdtinFXI0H1QsdwQ0TUxgkhUOvhbClHHROjkByng8kicOBshcdrfndo6vV3Gqi51h4qBgCM7psKwF45KaysR36FPWBZBHDqXMP7uwghcKSoCgCw/nCxcntBRR0W/3wSAPDU2N5QqSQkxthWSzn03BTafla6S7iRK14H8itRazCF7FRwR0ObMcV4oWO4ISJq4/QmC+STFTytlgIASZIw2LbSZk9eudv9BpMFeQ6bw/nbwNsclfVGZWPB0f2s4SY1XgfA2gBcbuuJ6ZEcYx1TI4GrpEqPKttOwtt+P6c0WL+17ij0JguGdW2PUb1TAEDp6ymvbbpy0zExCh0To2C2COTklSvhpqVPBXfEvpumMdwQEbVxcr8N4HkTP9ngztb/8e857f6mmFdWA7PDxnAtUbnZfKQERrNA9+QYdEuyBphUW7jYc7ocABCn0yDLFsoaC1yO4zWYLNh6vBTHS6rx+a4zAICnx/WGJFmrLco+Nw6Vm6JKz+EGAC61VUp2nCxTdigOxangMrlyczC/AtV6UxNXX5gYboiIAii/vA67Tpa16A6y8ongWo0K6kbOPJL7bjxVbo6X1Lh8Hfxws842JXWdbUoKAFLjrOFCXt2UkRiFHsmxHsfoyHW8G3KL8c/VuTBbBEb3TcWQLu2V+1xXS9Ubzcrn6fFRcOVYKTG0gspNeoK1mmQRwM42cNp7KDDcEFFYKqiow63/2YbPXZpLg+lYcRVueOsn3LxgG656dQPeWndUmcZorq9zzmLV/gKvvqexPW4cXdwxASrJOgVTWOG80kZuJu6TZl36fKy4OqiniJvMFmzItYabax3CjWvlJCMx0iHcNF25uSjVeu3XOflYdaAQkmTttXEkV24q6gwQQii/F1ERauWwTEdypWTXqTLl2lDsUOxoVB/rnkDyMnpyxnBDRGFp8daT2HGiDLO/2o/tv9sPjAzWG3ZRZT2mL9yp9HGcLa/DG2uO4O31x5r9GBtyi/HIkhzM+HS3cs5Rc9Q2cCK4qxidRllpk+MyNfW7LThc0ycFkmQ9Cbu02r/znBqz/2wFymuNSIiKwCW2ihIApNh6bmQZiVHomWLvuWno9TtmG/8fL+sCnUal9N/cNLgTLrLtVSOTw43RLFBjMDts4BepTF056p0ah6xOCag3WnDUFqIiQnAquKOx/dMBAD/+VtRiy/bbEoYbIgo7FovAyr3W6ofZIvDwZ3uwYs9ZTHznZwx9aR22HC0N6M87mF+BOz/YgbPldeieFINts69RqgX/3XYSdQYzzBaBt9cfxSe/nPL4GFX1Rvz1y/3W8Qvg52PNH2NjRy+4amhqSq6K9E2PVw5oDGbfzS+26ZRh3do7VUE6xOicptYyEqPQuX0M1CoJNQYziio9hz75eIYBHROQ3aMDAOsuwo9d18vt2iitGjqN9WeerzE02m8DWJuxX7l5oFOfTSinpQBgePf2SIyOQFmNgUcxeMBwQ0RhZ8/p8zhbXodYnQYXpcaipEqPR5fmYO/pcpRW63HXoh1+HTHw6S95uOafG3HXoh2Y8clu/OHfW5BbVIXkOB0+vGcY0hOi8MBV3ZHZPgrna41Y/utpvP/T7/jnj0fwt68OePzZ//j+sNNxA5uPljR7PPZDMxtuJpY1tGJKXgbeIzkWPVOsUzvHgth3s8MWboZ3a+90u1olISXOXr3JSIyEVqNCl/bWwOVacQKswVDehK9HcixuHtIJAPD/RnRHJ1tQc5XosGJKWSkV7zncAECftHjMHGUPSqFcCg5Yw5Xcq/TDAe+mMS8EDDdEFHa+yckHAFzfLxXz/zgECVERiNaq8eCIHpg4KAMmi8DTX+zHR9s9V1EaU1xZjxdX/obfS2uwMbcE3+0vgBDAhKwMfD3jCmTa3oQ1ahXuu7I7AODtDcfwzx9zlcd45uuD2HemHIC1svSvtUfx2Q5r4PnzNT0BAFuOljZ7Cs2bys0lXaz9Izmny5UdgMtqDMp0WrekmGYtvfaH2SKURtjLundwuz/FIWRk2M56uq6/9Y38w63ur5ncaJwcp0NCVAT+MDADO/56LWZdd1GDY3BcMSXvcdNQ5Ub2p5E9cHHHBEgSlNVdoTR2QBoAYPXBohZtYG8Lmo75RBQ2jGYLPt5+CoM7t1NOFw43JrMF39kacicMykCP5FhsfmoUNCoJMToNhBDomBiFdzcex4srf8PQru2UQyWb4811R1FnNGNgpwTcemkmzpbX4do+KcqKGke3XNoJb6w5okylXGfby2XNb0W4e9FOXNUrCWfO1yk7zT44ogdmXNMT7/30O4qr9DhSVI3eaXFuj+uqqXOlHHVPisGwbu2x40QZ3lx7BK/enKVMSXVMjEKUVq1UboK1YupQQSWq9CbE6TTom+7+e58Wr8Ne2+cZidZwMz27K97/6QS2/X4OB/Mr0D8jQbleDmE9bY3HgHNA8sS+Ysrg1HPTGK1GhWUPZqO0Wt9gRaglXdkrCbE6DQor67H3TLmy1J9YuQk4k9mCw4WVbisRiFqDf68/hue//Q3TF+5Q+gxas+2/n2tW38f5GgO+2ZuP/2w6jjfXHkVptQHtoiNwZc8kANZTsWN01v/LSZKEJ8f0xqjeyTCYLPjzZ3saPI7A1fGSamVr//8d3w9/vKwLnh7bx2OwAazTRP9zWRcAQFKsDi/fdDFevzULPZJjcK7GgBU5+dh16jxitGq8cWsW/jKuD3QaNYZ3s1YzfjpaAiEETp2rcVp1JYRwqurUN7E7sSNJkvCXcX0AAMt/PYOjRVVKM3F3W8VGWZ0UpMqN3G9zadd2Hpeuy0cwSJL984zEKNxwsbWJduGWk9h7uhx/fP8XzN94XJk+65HS/GqKfcWU0aHnxn0ZuKvICHWrCDYAoNOocU0f68aE/1p3lNUbB62icvPOO+/gtddeQ2FhIbKysvDvf/8bw4YNa/D6ZcuW4ZlnnsHJkyfRq1cvvPLKK7jhhhtacMTufj11Hi+u/A2HCiqhN1mgVkn4y9g+uO+qbpAkCSazBfvOVmDHiTKoJQkXpcWhd2ocUuN1Sne+EAImi4DZIvB7SQ1+zTuPiloDLunSDpd0bgetWoUqvQlrfivCyn35UEkSbhnSCaP7pUICUKM3IzZSA5VkPUBuyY7TqDGYMKZ/GkZclIzSagOOl1Rj2/Fz+OVEGdpFR+DGrAwM7twO+eV1qKw3IrtHB6TEuf/vxWCy4EB+BQ7mV6KyzoiqehOq9UZU15uQnhiF24dmoksH539YzBYBlWT9x9RiESiu0uN8rQGp8ZFoFx3hcVUCBc++M+V4Z4N15U5FnRGzv9yPD6ZfGtTXQQjh8+Mv+vkEnv/2N0gSMGFgBv40sgd6p8ZBpZJgMFlwML8Cm4+UYuORYuw9XQ7Xf9fHXZzeYNOnJEl47ZYsjH3zJxwpqsYtC7Zh7IA0pMZHIu9cDSBJ+ONlnZ3+LhjNFvx95W+2fVNSMKyb50Dj6qFRPSAgMG5AOjrEWntJvn34Smw+UorfS6tRXW/CLZdmOk1zXNUrCZuOlGDdoWLsP1uBr3PyEaNVY3j3DqgzmHEgvwLtY7RYeNdQpMVH4rMd1sCVHKvzOAZXl3RuhzH9U7H6YBEeWZKDKr28E7A11PRKiYNKAvIr6vF1zllMHNSxWY/bXL/YVq8N9zAlBdgDTUqcDlqN/TW898pu+HZvPr7OOYuvc87CZBHYcqwU8ZHWtzLHyk1TEuVpqZrm9dy0Vg+N6oHVBwuxMbcE8zcdx4xRPRu9vlpvwuYjJVj7WxFKqvXISIhCemIkMhKjkBYfCbNFoMZgQq3ebP3VYEaN3oR6owUqydoTpVJJ0KgkaNUqRGnViNZqEK1V2z63fiRGa5U/T6EQ8nCzdOlSzJo1CwsWLMDw4cPx5ptvYsyYMcjNzUVKSorb9Vu3bsXUqVMxd+5c/OEPf8Cnn36KSZMmYffu3RgwYEAInoFVZIQKObYdNaMi1KgzmvHS94ewIbcYJovAwbMVqDG4/+8wISoCme2jUFZtQFGV3mmH0OZYf7gYWrVK2VhKJQHxURFO24p/v7/hfRC2Hj/n9LVKsh4UFxmhRmFFPWoMJlgsAudqDNCbGl5uuGDTcQzt2h6p8ZGIUEk4UlyFI4XVMFosiNVqoDdbYHD4/mhb6btPWhz6psejT1o89CYz1h0qxrHialzatR2u6pWMw4WV2HC4GBq1Clf06IAreyWjR3KM8oZZUqXH57tOY8nOPMRoNXj15oEY2CkR1XoTcgsr0Tc9vtEmSyEEjpfUYMvREpyrMcBgtiAhKgJX9UxG/4x4qBz+V6k3mVFabUBZtQH7z1Zg9cFCHC2qwuh+qbj/qu5Kr0VuYRW+25ePw4VViNFpEKNTI1YXgbhIDQZ3TsRl3TqgpFqPv393CBtzi9EuWoukWC2q9SaU1RjRMyUGf7ysC0b2TkF1vQml1Xrkl9fhbHkdzp6vQ35FHSRIaBcTgUiNGlX1JliEwLV9U3Ft3xSPb+h1BjNmfb4XZovA5T06YNfJ81h/uBjLdp3BrUMzlevKaw1Y81sRNh4pQVKMFlOGdLL1GEhOQaXeaMbJczWIilAjs1200++TbMeJMjy5fC8kAPdf3R190+OxYONxbP/9HK6+KBmPju6Fnin2KZe8c7U4c74W/TsmYOeJMry48jfbawR8szcf3+zNR1ykBh0To/B7SY3yZ17WOzUOfdLjUFlnhADw4NU9GnzdAWslZd5tWbh38S7sP1uB/S7nLS3acgKPXXcRxg5Ig0YlYeZne6z/OVFJeGpsn0Yf21G0VoMnx/Rxu03ul/Dkql7JAA5hm8MS9hqD2enMpKp6E25dsA190+NxqKASSbFaPDCi8efs6MkxfbDmtyL8VlAJwPpv2PW2vpaE6Ag8OKIH3t14HE8t34ceybEY0NE+DVRVb8T6w8VY81sRIiPUmDGqJ7p2iMa6Q8VYkXMW3ZNicF2/NAzoGO8Wbi0WoZyJ1FBATHOo1jgalJmIIV3aKSebZ2UmYu/pclTaln33SGn+m6l8BMPJczUoqbZOGzbVc9Ma9UmLx4uTBuCp5fvw+o+56JEcgzH905x+341mC34+Voovdp/FjwcLG/23PFCyOiXg65lXBv3nNEQSwdylqRmGDx+OoUOH4u233wYAWCwWZGZm4uGHH8Zf/vIXt+tvu+021NTUYOXKlcptl112GQYNGoQFCxY0+fMqKyuRkJCAiooKxMc3f569KUazBd/vL8DATono0j4an+zIwwvfHoTRbP/tTYiKwGXd20OtkpBbWIWT52obDDNxOg0GdU5EQlQEdp4sc1r+2D05BpMHdUS9yYylO0973ItCp1HhxqwMpMZH4pu9+cgrq0W0Vo3O7aMxpEs7XNEzCSfP1eCbnHycLa9Dx8QoaNQSDpytbPA5touOwODO7ZAUq1XerKO1amz7/Rw25ja9skOtkhAfqVF2AvVVekIkLu6YgN9La3C8pBqOf4I1Kgmj+qRg67FS1BjMSIrV4aGRPTCqTwrUkgSLEKgzmnHmfB02HSnGxtySBk8/ToiKQHKcDjE6DUoq61FQWY+G/raoJOv/BE1mi/IPbUM6t49GWY0hKNumJ8XqkBSrRXmtEdFaNbrb/ue07bj19yM5TocfH70aS3edxsurDgOwnsY8sFMi9pw+j31nKtz+TMbpNNCbLDCYLYjVaRClVaO0Wq/8XsTqNOiTFod+GfHolRILjVqF48XVWPjzCbdqiiNJAi5KiUNqQiTOnq9VmkIlyfo6Gs0CU4d1xrThnfGvdUex+UiJ0z/KidERyO7eASMuSsaI3slIb8aUgidny+uw/nAxfjpSghqDCZ3bR+PA2Uq3sCM/13m3DVJ6Z4JFCIHh/1iH4io94iM1eHfaECRGR2D77+cQF6lBz5RYPPfNQeXvq1atwmcPDHfahbc5Fv98Aj8dLcX1/VMx7uJ0xEdGKPeZLQL3frgTG3NLkBynw6jeyUiM1mL3qfPIOV2unI4NWI8i6JUSpwQlWVKsFsO7d0DftDjlzbay3oj/bPodURFq7JtzvccwXlFrxNNf7MNNl3TE9f2dQ+CBsxV45YfDuOmSjpg0qCNe//EI3rZVJLfPvrbZAeX/Nv+Ol74/5PQccl8c5zGotwVPLtuLZb9aj5rokxaHa/umQAjg9Pk6bMwtVvb9AYAuHaIxpn8aeibHorCyHgUVdThbXo/iynpEqFWI1qoRo7P++x6j1SBap0ZkhBpCAGaLBWaL9Ve9yYJagxm1BjPqjWbU2io9dUYz+qXHY/4fhwT0OXrz/h3ScGMwGBAdHY3ly5dj0qRJyu3Tp09HeXk5vv76a7fv6dy5M2bNmoVHH31Uue25557DihUrsHfvXrfr9Xo99Hp7MKisrERmZmbAw40n+89UYM1vhejcIQYXd0xAr5RYp7849UYzfi+pQX55HZLidEiN1yE6QgOVCojRapRrhbBWTlSShAi1hFidRvmHwmCyIL+8DvFREYjRqVFRa0RxlR6Z7aOREBWhfH9lvQnxkZompwhOl9ViY24xdBo1UhMiER+psYWSCHTpEN3g9586V4NfTpShut6EepMZ3TrEoH9GAqK0alTrTdCoJKQnREKjVqHeaMbZ8jrkFlbhcEElfiuowiHbP4pXX5SMfhnx2Ha8FL/8XoZuSTG4rl8qLALYcqwEO0+ed6oAAdZ9O6YO64yNucVOVarICBXqjU3/D0WrVmF49/bonhSDCLUKp8pqlXDkKkItoX2MFp3aReOaPinomRKLT37Jw+YjJU6Pd/VFybiyZwcYzQJVehNq9NYKzLpDxUqoGZSZiNnj+kClknCuWo+4yAjE6jRYd7gYn+3IQ0mVHmqVhHbRWnRMjETHdlHISIhCx3ZRkGBd4aI3WRAXqUFFnRFf7Tnb6KZrqfE6zLttEC7vkQSzReCxpTn4dl++W2DrkxaHMf3TcKK0Bj8cLHT7/ZbFR2pQb7S4VVAcTbmkE/pnxOP/bA2yE7MyMCErA0t25mH1wSKna9UqCWnxkThrW8FzVa8kLLxrqPLmZzRbcKSoCgXl9eidFodO7aKCNqVmtggs2ZmHhVtO4NS5WpgsAr1SYrHgf4a0WKl9+a9nsHJfPv53fD+lwddRZb0R93+4C7tOnccrUwYqy58DqaLOiMnv/Ox0Wrise3IMxvZPw+HCKqWipNOoMHVYZxRW1GPz0RKnM69cXdUrCR/dO9zvMQohsOjnk7AIgfuu6t7s78strML0hTtQrTchQi3hpks64Zk/9PN7PKFSbzRj7veH8PmuM6jz0EPWIUaL8QPTMeWSThjYKaFNtgW0mXCTn5+Pjh07YuvWrcjOzlZuf+qpp7Bp0yb88ssvbt+j1Wrx4YcfYurUqcpt7777Lp5//nkUFRW5XT9nzhw8//zzbre3RLihwKs3mrHjRBlyC6vQIyUGAzslIsnWZyCEwLf7CrDjxDlMGGjtJVr+6xm8/9PvKKnSw2TrAYrSqpEQFYHLeyRhZO9kZPfo4DZ1ZTBZcLS4ChW1RlTpTUiK1aFLh2h0iNF6/Echv7wO1XoTVJKE1Hgd4hz+B+yo1mDtmdJp1Li+X2qD/0s0WwRqDSanINsUg8mCnSfLYBECCVERqKo34XhJNeoMZlzRMwn90uPdfl5hRT2+21+AE6XVyOqUiOweHZyaJavqjSiq1CNaq0aEWoVqW1BLS4hEhxgtTLb+sN8KKnCooAonSmsghDUETsjKUBpAzRYBk8UCncbe8Hq6rBYnSmtQWFGP2EgNruiZhISoCBRV1iO3sArDu7d3uj5UzBaBc9V6JMXqWt3/6oUQKK81ol2MNmg/o6reiHWHipFXVouSKj36Z8Tjip5JyjQsYD0Ac9ep87h9aKYylaQ3mbH3dAW2HT+Hs+W1To+pUatwZ3YXr1apUfNU1BqxfPcZnDpXo/zH9OqLkjEoM7HRc8faAoYbB6Gs3BAREVFgeBNuQtpQnJSUBLVa7RZKioqKkJbmudkuLS3Nq+t1Oh10uuatICAiIqK2L6T73Gi1WgwZMgTr1q1TbrNYLFi3bp1TJcdRdna20/UAsGbNmgavJyIiogtLyJeCz5o1C9OnT8ell16KYcOG4c0330RNTQ3uvvtuAMCdd96Jjh07Yu7cuQCARx55BCNGjMDrr7+O8ePHY8mSJdi1axfee++9UD4NIiIiaiVCHm5uu+02lJSU4Nlnn0VhYSEGDRqEH374Aamp1qWWeXl5UKnsBabLL78cn376Kf73f/8Xf/3rX9GrVy+sWLEipHvcEBERUesR8n1uWlqw9rkhIiKi4PHm/ZtnSxEREVFYYbghIiKisMJwQ0RERGGF4YaIiIjCCsMNERERhRWGGyIiIgorDDdEREQUVhhuiIiIKKww3BAREVFYCfnxCy1N3pC5srIyxCMhIiKi5pLft5tzsMIFF26qqqoAAJmZmSEeCREREXmrqqoKCQkJjV5zwZ0tZbFYkJ+fj7i4OEiSFNDHrqysRGZmJk6fPh2W51aF+/MD+BzDQbg/P4DPMRyE+/MDAv8chRCoqqpCRkaG04HanlxwlRuVSoVOnToF9WfEx8eH7R9WIPyfH8DnGA7C/fkBfI7hINyfHxDY59hUxUbGhmIiIiIKKww3REREFFYYbgJIp9Phueeeg06nC/VQgiLcnx/A5xgOwv35AXyO4SDcnx8Q2ud4wTUUExERUXhj5YaIiIjCCsMNERERhRWGGyIiIgorDDdEREQUVhhuAuSdd95B165dERkZieHDh2PHjh2hHpLP5s6di6FDhyIuLg4pKSmYNGkScnNzna4ZOXIkJEly+njwwQdDNGLvzJkzx23sffr0Ue6vr6/HjBkz0KFDB8TGxmLKlCkoKioK4Yi917VrV7fnKEkSZsyYAaBtvn6bN2/GhAkTkJGRAUmSsGLFCqf7hRB49tlnkZ6ejqioKIwePRpHjx51uqasrAzTpk1DfHw8EhMTce+996K6uroFn0XDGnt+RqMRTz/9NC6++GLExMQgIyMDd955J/Lz850ew9Pr/vLLL7fwM2lYU6/hXXfd5Tb+sWPHOl3Tml9DoOnn6OnvpSRJeO2115RrWvPr2Jz3h+b8G5qXl4fx48cjOjoaKSkpePLJJ2EymQI2ToabAFi6dClmzZqF5557Drt370ZWVhbGjBmD4uLiUA/NJ5s2bcKMGTOwfft2rFmzBkajEddffz1qamqcrrv//vtRUFCgfLz66qshGrH3+vfv7zT2LVu2KPc99thj+Pbbb7Fs2TJs2rQJ+fn5uOmmm0I4Wu/t3LnT6fmtWbMGAHDLLbco17S116+mpgZZWVl45513PN7/6quv4q233sKCBQvwyy+/ICYmBmPGjEF9fb1yzbRp03Dw4EGsWbMGK1euxObNm/HAAw+01FNoVGPPr7a2Frt378YzzzyD3bt348svv0Rubi5uvPFGt2tfeOEFp9f14YcfbonhN0tTryEAjB071mn8n332mdP9rfk1BJp+jo7PraCgAAsXLoQkSZgyZYrTda31dWzO+0NT/4aazWaMHz8eBoMBW7duxYcffojFixfj2WefDdxABflt2LBhYsaMGcrXZrNZZGRkiLlz54ZwVIFTXFwsAIhNmzYpt40YMUI88sgjoRuUH5577jmRlZXl8b7y8nIREREhli1bptx26NAhAUBs27athUYYeI888ojo0aOHsFgsQoi2/foJIQQA8dVXXylfWywWkZaWJl577TXltvLycqHT6cRnn30mhBDit99+EwDEzp07lWtWrVolJEkSZ8+ebbGxN4fr8/Nkx44dAoA4deqUcluXLl3EvHnzgju4APH0HKdPny4mTpzY4Pe0pddQiOa9jhMnThTXXHON021t6XV0fX9ozr+h33//vVCpVKKwsFC5Zv78+SI+Pl7o9fqAjIuVGz8ZDAb8+uuvGD16tHKbSqXC6NGjsW3bthCOLHAqKioAAO3bt3e6/ZNPPkFSUhIGDBiA2bNno7a2NhTD88nRo0eRkZGB7t27Y9q0acjLywMA/PrrrzAajU6vZ58+fdC5c+c2+3oaDAZ8/PHHuOeee5wOi23Lr5+rEydOoLCw0Ol1S0hIwPDhw5XXbdu2bUhMTMSll16qXDN69GioVCr88ssvLT5mf1VUVECSJCQmJjrd/vLLL6NDhw4YPHgwXnvttYCW+lvCxo0bkZKSgt69e+NPf/oTzp07p9wXbq9hUVERvvvuO9x7771u97WV19H1/aE5/4Zu27YNF198MVJTU5VrxowZg8rKShw8eDAg47rgDs4MtNLSUpjNZqcXCQBSU1Nx+PDhEI0qcCwWCx599FFcccUVGDBggHL7HXfcgS5duiAjIwP79u3D008/jdzcXHz55ZchHG3zDB8+HIsXL0bv3r1RUFCA559/HldddRUOHDiAwsJCaLVatzeM1NRUFBYWhmbAflqxYgXKy8tx1113Kbe15dfPE/m18fT3UL6vsLAQKSkpTvdrNBq0b9++zb229fX1ePrppzF16lSnAwn//Oc/45JLLkH79u2xdetWzJ49GwUFBXjjjTdCONrmGzt2LG666SZ069YNx48fx1//+leMGzcO27Ztg1qtDqvXEAA+/PBDxMXFuU17t5XX0dP7Q3P+DS0sLPT4d1W+LxAYbqhRM2bMwIEDB5x6UgA4zXFffPHFSE9Px7XXXovjx4+jR48eLT1Mr4wbN075fODAgRg+fDi6dOmCzz//HFFRUSEcWXB88MEHGDduHDIyMpTb2vLrd6EzGo249dZbIYTA/Pnzne6bNWuW8vnAgQOh1Wrx//7f/8PcuXPbxDb/t99+u/L5xRdfjIEDB6JHjx7YuHEjrr322hCOLDgWLlyIadOmITIy0un2tvI6NvT+0BpwWspPSUlJUKvVbp3gRUVFSEtLC9GoAmPmzJlYuXIlNmzYgE6dOjV67fDhwwEAx44da4mhBVRiYiIuuugiHDt2DGlpaTAYDCgvL3e6pq2+nqdOncLatWtx3333NXpdW379ACivTWN/D9PS0tya/E0mE8rKytrMaysHm1OnTmHNmjVOVRtPhg8fDpPJhJMnT7bMAAOse/fuSEpKUv5chsNrKPvpp5+Qm5vb5N9NoHW+jg29PzTn39C0tDSPf1fl+wKB4cZPWq0WQ4YMwbp165TbLBYL1q1bh+zs7BCOzHdCCMycORNfffUV1q9fj27dujX5PTk5OQCA9PT0II8u8Kqrq3H8+HGkp6djyJAhiIiIcHo9c3NzkZeX1yZfz0WLFiElJQXjx49v9Lq2/PoBQLdu3ZCWlub0ulVWVuKXX35RXrfs7GyUl5fj119/Va5Zv349LBaLEu5aMznYHD16FGvXrkWHDh2a/J6cnByoVCq3qZy24syZMzh37pzy57Ktv4aOPvjgAwwZMgRZWVlNXtuaXsem3h+a829odnY29u/f7xRU5bDer1+/gA2U/LRkyRKh0+nE4sWLxW+//SYeeOABkZiY6NQJ3pb86U9/EgkJCWLjxo2ioKBA+aitrRVCCHHs2DHxwgsviF27dokTJ06Ir7/+WnTv3l1cffXVIR558zz++ONi48aN4sSJE+Lnn38Wo0ePFklJSaK4uFgIIcSDDz4oOnfuLNavXy927dolsrOzRXZ2dohH7T2z2Sw6d+4snn76aafb2+rrV1VVJfbs2SP27NkjAIg33nhD7NmzR1kt9PLLL4vExETx9ddfi3379omJEyeKbt26ibq6OuUxxo4dKwYPHix++eUXsWXLFtGrVy8xderUUD0lJ409P4PBIG688UbRqVMnkZOT4/T3Ul5dsnXrVjFv3jyRk5Mjjh8/Lj7++GORnJws7rzzzhA/M7vGnmNVVZV44oknxLZt28SJEyfE2rVrxSWXXCJ69eol6uvrlcdoza+hEE3/ORVCiIqKChEdHS3mz5/v9v2t/XVs6v1BiKb/DTWZTGLAgAHi+uuvFzk5OeKHH34QycnJYvbs2QEbJ8NNgPz73/8WnTt3FlqtVgwbNkxs37491EPyGQCPH4sWLRJCCJGXlyeuvvpq0b59e6HT6UTPnj3Fk08+KSoqKkI78Ga67bbbRHp6utBqtaJjx47itttuE8eOHVPur6urEw899JBo166diI6OFpMnTxYFBQUhHLFvVq9eLQCI3Nxcp9vb6uu3YcMGj38up0+fLoSwLgd/5plnRGpqqtDpdOLaa691e+7nzp0TU6dOFbGxsSI+Pl7cfffdoqqqKgTPxl1jz+/EiRMN/r3csGGDEEKIX3/9VQwfPlwkJCSIyMhI0bdvX/GPf/zDKRiEWmPPsba2Vlx//fUiOTlZREREiC5duoj777/f7T+Jrfk1FKLpP6dCCPGf//xHREVFifLycrfvb+2vY1PvD0I079/QkydPinHjxomoqCiRlJQkHn/8cWE0GgM2Tsk2WCIiIqKwwJ4bIiIiCisMN0RERBRWGG6IiIgorDDcEBERUVhhuCEiIqKwwnBDREREYYXhhoiIiMIKww0RXfAkScKKFStCPQwiChCGGyIKqbvuuguSJLl9jB07NtRDI6I2ShPqARARjR07FosWLXK6TafThWg0RNTWsXJDRCGn0+mQlpbm9NGuXTsA1imj+fPnY9y4cYiKikL37t2xfPlyp+/fv38/rrnmGkRFRaFDhw544IEHUF1d7XTNwoUL0b9/f+h0OqSnp2PmzJlO95eWlmLy5MmIjo5Gr1698M033wT3SRNR0DDcEFGr98wzz2DKlCnYu3cvpk2bhttvvx2HDh0CANTU1GDMmDFo164ddu7ciWXLlmHt2rVO4WX+/PmYMWMGHnjgAezfvx/ffPMNevbs6fQznn/+edx6663Yt28fbrjhBkybNg1lZWUt+jyJKEACdgQnEZEPpk+fLtRqtYiJiXH6eOmll4QQ1lOIH3zwQafvGT58uPjTn/4khBDivffeE+3atRPV1dXK/d99951QqVTKidIZGRnib3/7W4NjACD+93//V/m6urpaABCrVq0K2PMkopbDnhsiCrlRo0Zh/vz5Tre1b99e+Tw7O9vpvuzsbOTk5AAADh06hKysLMTExCj3X3HFFbBYLMjNzYUkScjPz8e1117b6BgGDhyofB4TE4P4+HgUFxf7+pSIKIQYbogo5GJiYtymiQIlKiqqWddFREQ4fS1JEiwWSzCGRERBxp4bImr1tm/f7vZ13759AQB9+/bF3r17UVNTo9z/888/Q6VSoXfv3oiLi0PXrl2xbt26Fh0zEYUOKzdEFHJ6vR6FhYVOt2k0GiQlJQEAli1bhksvvRRXXnklPvnkE+zYsQMffPABAGDatGl47rnnMH36dMyZMwclJSV4+OGH8T//8z9ITU0FAMyZMwcPPvggUlJSMG7cOFRVVeHnn3/Gww8/3LJPlIhaBMMNEYXcDz/8gPT0dKfbevfujcOHDwOwrmRasmQJHnroIaSnp+Ozzz5Dv379AADR0dFYvXo1HnnkEQwdOhTR0dGYMmUK3njjDeWxpk+fjvr6esybNw9PPPEEkpKScPPNN7fcEySiFiUJIUSoB0FE1BBJkvDVV19h0qRJoR4KEbUR7LkhIiKisMJwQ0RERGGFPTdE1Kpx5pyIvMXKDREREYUVhhsiIiIKKww3REREFFYYboiIiCisMNwQERFRWGG4ISIiorDCcENERERhheGGiIiIwgrDDREREYWV/w8asosaU+hzbwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] }, { "cell_type": "code", "source": [ - "print(df_grouped.columns)\n", - "\n" + "loss_values = history.history['loss']\n", + "print(loss_values)" ], "metadata": { - "id": "My8by2_2DI_X", - "outputId": "94cc29e0-5c25-473e-a1a5-9ccfbb4293c6", "colab": { "base_uri": "https://localhost:8080/" - } + }, + "id": "My8by2_2DI_X", + "outputId": "f696d0f4-2591-4271-e7ce-719f7e48a721" }, - "execution_count": 24, + "execution_count": 38, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Index(['Total'], dtype='object')\n" + "[13978865.0, 13661791.0, 13745915.0, 14039383.0, 14036662.0, 13992389.0, 14043848.0, 13798370.0, 13376729.0, 13109994.0, 13637852.0, 13281099.0, 12732879.0, 11649245.0, 12006907.0, 10077946.0, 6745423.5, 8057920.0, 7560234.0, 10751578.0, 7243948.5, 7888572.0, 8588810.0, 8419626.0, 9516969.0, 7365000.0, 7175318.0, 9339095.0, 8668128.0, 7203061.5, 8713561.0, 9448430.0, 9513725.0, 6670869.5, 10145086.0, 6996037.5, 8719094.0, 9057428.0, 7909514.0, 10276208.0, 9739874.0, 10149930.0, 8913145.0, 10026408.0, 8749553.0, 9029780.0, 9004435.0, 9100776.0, 10185200.0, 10122906.0, 8880246.0, 8821126.0, 8521718.0, 8372325.5, 8121804.5, 8525467.0, 8518840.0, 8578520.0, 8065098.5, 7953030.5, 7886762.5, 7736829.5, 7885539.5, 8038061.0, 7792236.5, 7960796.0, 7895030.0, 7796317.5, 7477304.0, 8136023.0, 8435440.0, 8509963.0, 9771523.0, 10068050.0, 10016277.0, 10018746.0, 9927969.0, 9876155.0, 9829617.0, 9834552.0, 9743723.0, 9708187.0, 9673909.0, 9640575.0, 9607001.0, 9573277.0, 9538612.0, 9519751.0, 9463637.0, 9405359.0, 9351933.0, 9333471.0, 9251945.0, 9175816.0, 9133273.0, 9092211.0, 9026029.0, 8972206.0, 8917377.0, 8855146.0, 8817475.0, 8767893.0, 8704868.0, 8672368.0, 8623803.0, 8594071.0, 8551559.0, 8497334.0, 8350219.5, 8291855.0, 8181426.0, 8152970.0, 9679971.0, 9600615.0, 9520171.0, 8666106.0, 7868696.0, 8550929.0, 8475719.0, 8423616.0, 7516146.0, 8298322.0, 8117534.5, 8174611.5, 8131674.5, 8084244.5, 8049593.5, 7999823.5, 7967148.5, 7924028.0, 7876899.5, 7842282.0, 7801153.5, 7763562.5, 7723649.0, 7688537.5, 7653228.5, 7620349.5, 7590787.5, 7560942.0, 7530991.0, 7501377.0, 7471123.0, 7446005.5, 7411576.0, 7382610.0, 7355635.5, 7322470.5, 7322630.5, 7260817.0, 7230733.0, 7197820.0, 7166958.0, 7129025.5, 7092078.0, 7065559.0, 7030418.0, 6997822.5, 7857188.0, 6936069.0, 6907201.0, 6877264.5, 6851487.0, 6826318.0, 6801646.5, 6775227.5, 6749586.0, 6723898.5, 6692865.5, 6664151.0, 6631443.0, 6594502.5, 6556715.5, 6509205.5, 6480022.5, 6434694.0, 6394368.0, 6357692.5, 6316935.5, 6289429.5, 6248276.0, 6222152.5, 6186493.0, 6155007.5, 6119027.5, 6094129.0, 6062169.5, 6032828.5, 6004689.5, 5974583.5, 5951585.0, 5917849.5, 5894174.0, 5858341.0, 5828297.0, 5789473.5, 5757150.5, 5716894.5, 5683586.5, 5637409.5]\n" ] } ] @@ -823,12 +877,12 @@ "test_y_scaled = scaler_y.transform(test_y.values.reshape(-1, 1))" ], "metadata": { - "id": "ji9qjt_SCrvY", - "outputId": "7610dff1-9cc5-4bba-92ea-a0b93fdf3a09", "colab": { "base_uri": "https://localhost:8080/", - "height": 314 - } + "height": 303 + }, + "id": "ji9qjt_SCrvY", + "outputId": "7610dff1-9cc5-4bba-92ea-a0b93fdf3a09" }, "execution_count": 23, "outputs": [ @@ -890,7 +944,7 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 254 + "height": 245 }, "id": "3wBcalVC41ED", "outputId": "671dcbb9-7d07-4da9-b9e3-1c52a5f16ef9" From cb3562c6fc504e668c4eef6ceaa52c5ec9eb931a Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Fri, 27 Oct 2023 16:56:15 -0300 Subject: [PATCH 07/16] Creado mediante Colaboratory --- proyectoIAPrediccion1.ipynb | 1565 +++++++++++++++++++++++++++++------ 1 file changed, 1289 insertions(+), 276 deletions(-) diff --git a/proyectoIAPrediccion1.ipynb b/proyectoIAPrediccion1.ipynb index d71bc19..63dfceb 100644 --- a/proyectoIAPrediccion1.ipynb +++ b/proyectoIAPrediccion1.ipynb @@ -4,7 +4,7 @@ "metadata": { "colab": { "provenance": [], - "authorship_tag": "ABX9TyNB0n9KhkV/vpS9ImuNK5TE", + "authorship_tag": "ABX9TyOCDy3tr8QiViPGZS4dV1N6", "include_colab_link": true }, "kernelspec": { @@ -43,17 +43,18 @@ "from keras.models import Sequential\n", "from keras.layers import LSTM, GRU, Conv1D, MaxPooling1D, Flatten, Dense\n", "from keras.losses import MeanSquaredError\n", + "from keras.regularizers import l2\n", "\n" ], "metadata": { "id": "H7kZjC_GUZZd" }, - "execution_count": 28, + "execution_count": 77, "outputs": [] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 78, "metadata": { "id": "9_FId2wvQAgd" }, @@ -76,9 +77,9 @@ "base_uri": "https://localhost:8080/" }, "id": "lWY6qwmkQ2PL", - "outputId": "bcd190f6-969d-4153-e746-2ff8a4d81db5" + "outputId": "e89148ab-3b26-4467-9a79-ac3d32f733d6" }, - "execution_count": 30, + "execution_count": 79, "outputs": [ { "output_type": "stream", @@ -123,7 +124,7 @@ ] }, "metadata": {}, - "execution_count": 30 + "execution_count": 79 } ] }, @@ -144,13 +145,16 @@ "# Eliminar la columna 'avg' ya que ya no es necesaria\n", "df.drop('avg', axis=1, inplace=True)\n", "\n", + "# Agregar la columna 'Total' que es la suma de las columnas desde 1980 hasta 2021\n", + "df['Total'] = df.loc[:, '1980':'2021'].sum(axis=1)\n", + "\n", "# Agrupar por 'Region' y 'Features', y obtener la suma\n", - "df_grouped = df.groupby(['Region', 'Features']).sum(numeric_only=True)" + "df_grouped = df.groupby(['Region', 'Features']).sum(numeric_only=True)\n" ], "metadata": { "id": "9MZcbtw9t95l" }, - "execution_count": 31, + "execution_count": 84, "outputs": [] }, { @@ -176,9 +180,9 @@ "base_uri": "https://localhost:8080/" }, "id": "6wZ4FIMSDhZH", - "outputId": "07d533bc-d311-4622-e661-a1580eaeeb32" + "outputId": "77273682-c22c-41a9-fae1-a801427bd5e7" }, - "execution_count": 26, + "execution_count": 81, "outputs": [ { "output_type": "stream", @@ -444,267 +448,267 @@ " net generation 3309.090178 3570.925014 ... \n", " net imports 0.006553 0.068210 ... \n", "\n", - " 2013 2014 \\\n", + " 2012 2013 \\\n", "Region Features \n", - "Africa distribution losses 100.549725 100.760334 \n", - " exports 29.270320 31.922840 \n", - " imports 38.460900 40.958282 \n", - " installed capacity 165.827981 169.258705 \n", - " net consumption 620.559458 646.013219 \n", - " net generation 711.918603 737.738111 \n", - " net imports 9.190580 9.035442 \n", - "Asia & Oceania distribution losses 718.717462 726.043045 \n", - " exports 43.201222 43.899299 \n", - " imports 53.728922 53.420703 \n", - " installed capacity 2330.909732 2463.426712 \n", - " net consumption 8719.145784 9121.177292 \n", - " net generation 9427.335547 9837.698933 \n", - " net imports 10.527699 9.521404 \n", - "Central & South America distribution losses 183.019056 194.920475 \n", - " exports 50.482230 46.755000 \n", - " imports 51.705970 48.488000 \n", - " installed capacity 316.300156 326.536095 \n", - " net consumption 1046.180499 1029.599917 \n", - " net generation 1227.975815 1222.787392 \n", - " net imports 1.223740 1.733000 \n", - "Eurasia distribution losses 293.506833 288.718833 \n", - " exports 76.856750 72.713750 \n", - " imports 26.833500 25.708500 \n", - " installed capacity 680.877699 706.369683 \n", - " net consumption 2608.658934 2609.666644 \n", - " net generation 2952.189018 2945.390728 \n", - " net imports -50.023250 -47.005250 \n", - "Europe distribution losses 313.103557 302.146616 \n", - " exports 430.539587 470.691760 \n", - " imports 448.473861 484.565844 \n", - " installed capacity 1286.459488 1310.856618 \n", - " net consumption 4033.031850 3927.158554 \n", - " net generation 4328.201133 4215.431086 \n", - " net imports 17.934274 13.874084 \n", - "Middle East distribution losses 115.606100 121.753000 \n", - " exports 17.626000 15.734300 \n", - " imports 22.276000 22.482000 \n", - " installed capacity 253.873369 267.802900 \n", - " net consumption 859.965481 921.739356 \n", - " net generation 970.921581 1036.744656 \n", - " net imports 4.650000 6.747700 \n", - "North America distribution losses 324.129033 314.189122 \n", - " exports 74.859494 75.406872 \n", - " imports 81.829801 80.754999 \n", - " installed capacity 1260.288100 1281.423800 \n", - " net consumption 4683.045310 4723.259542 \n", - " net generation 5000.204037 5032.100536 \n", - " net imports 6.970307 5.348127 \n", + "Africa distribution losses 90.741794 100.652074 \n", + " exports 31.560100 29.270320 \n", + " imports 39.407200 38.460900 \n", + " installed capacity 157.783510 166.204887 \n", + " net consumption 611.512095 620.559458 \n", + " net generation 695.766565 713.380728 \n", + " net imports 7.847100 9.190580 \n", + "Asia & Oceania distribution losses 678.990130 718.717462 \n", + " exports 38.076848 43.201222 \n", + " imports 48.086716 53.728922 \n", + " installed capacity 2169.864984 2330.909732 \n", + " net consumption 8227.563211 8719.145784 \n", + " net generation 8896.543473 9427.335547 \n", + " net imports 10.009868 10.527699 \n", + "Central & South America distribution losses 178.592105 183.188955 \n", + " exports 50.448000 50.482230 \n", + " imports 51.803500 51.705970 \n", + " installed capacity 296.354729 317.115300 \n", + " net consumption 1006.331172 1046.180499 \n", + " net generation 1185.825005 1230.402943 \n", + " net imports 1.355500 1.223740 \n", + "Eurasia distribution losses 290.124833 293.506833 \n", + " exports 81.157750 76.856750 \n", + " imports 28.093500 26.833500 \n", + " installed capacity 670.648753 680.877699 \n", + " net consumption 2613.014998 2608.658934 \n", + " net generation 2956.204082 2952.189018 \n", + " net imports -53.064250 -50.023250 \n", + "Europe distribution losses 312.122568 313.103557 \n", + " exports 443.876981 430.539587 \n", + " imports 461.685229 448.473861 \n", + " installed capacity 1268.886878 1286.459488 \n", + " net consumption 4021.955784 4033.031850 \n", + " net generation 4316.270104 4328.201133 \n", + " net imports 17.808248 17.934274 \n", + "Middle East distribution losses 115.204000 115.606100 \n", + " exports 16.475700 17.626000 \n", + " imports 20.749000 22.276000 \n", + " installed capacity 233.853100 253.873369 \n", + " net consumption 814.418020 859.965481 \n", + " net generation 925.348720 970.921581 \n", + " net imports 4.273300 4.650000 \n", + "North America distribution losses 332.848244 324.129033 \n", + " exports 70.976291 74.859494 \n", + " imports 72.321289 81.829801 \n", + " installed capacity 1263.275800 1260.288100 \n", + " net consumption 4620.822297 4683.045310 \n", + " net generation 4952.325543 5000.204037 \n", + " net imports 1.344998 6.970307 \n", "\n", - " 2015 2016 \\\n", - "Region Features \n", - "Africa distribution losses 107.520123 120.165602 \n", - " exports 34.030950 34.692430 \n", - " imports 40.208600 41.309200 \n", - " installed capacity 178.945704 191.943910 \n", - " net consumption 658.567024 653.876644 \n", - " net generation 759.909497 767.425476 \n", - " net imports 6.177650 6.616770 \n", - "Asia & Oceania distribution losses 728.905453 762.739982 \n", - " exports 46.000806 58.194332 \n", - " imports 58.622526 65.819156 \n", - " installed capacity 2668.076439 2887.051792 \n", - " net consumption 9385.732178 9870.251320 \n", - " net generation 10102.015911 10625.366477 \n", - " net imports 12.621720 7.624824 \n", - "Central & South America distribution losses 194.874124 196.131251 \n", - " exports 46.214375 54.136813 \n", - " imports 46.891300 55.026600 \n", - " installed capacity 340.873054 361.963465 \n", - " net consumption 1064.668354 1071.664743 \n", - " net generation 1258.865554 1266.906206 \n", - " net imports 0.676925 0.889787 \n", - "Eurasia distribution losses 283.011833 282.647833 \n", - " exports 68.759750 70.614750 \n", - " imports 24.632500 19.114500 \n", - " installed capacity 704.632633 715.716686 \n", - " net consumption 2602.340334 2624.207881 \n", - " net generation 2929.479418 2958.355965 \n", - " net imports -44.127250 -51.500250 \n", - "Europe distribution losses 307.118887 306.535603 \n", - " exports 499.598125 461.683138 \n", - " imports 512.493304 479.089613 \n", - " installed capacity 1325.619640 1340.532988 \n", - " net consumption 4010.027085 4075.724022 \n", - " net generation 4304.250793 4364.853150 \n", - " net imports 12.895179 17.406475 \n", - "Middle East distribution losses 136.956300 141.557300 \n", - " exports 13.304700 14.215200 \n", - " imports 24.437000 23.822000 \n", - " installed capacity 281.223764 290.084263 \n", - " net consumption 960.867656 989.887694 \n", - " net generation 1086.691656 1121.838194 \n", - " net imports 11.132300 9.606800 \n", - "North America distribution losses 319.202703 314.334447 \n", - " exports 84.372314 81.285189 \n", - " imports 88.191435 84.250796 \n", - " installed capacity 1288.473000 1309.804900 \n", - " net consumption 4715.376861 4733.993558 \n", - " net generation 5030.760443 5045.362399 \n", - " net imports 3.819121 2.965607 \n", + " 2014 2015 \\\n", + "Region Features \n", + "Africa distribution losses 100.862683 107.622472 \n", + " exports 31.922840 34.030950 \n", + " imports 40.958282 40.208600 \n", + " installed capacity 169.635611 179.322610 \n", + " net consumption 646.013219 658.567024 \n", + " net generation 739.200236 761.371622 \n", + " net imports 9.035442 6.177650 \n", + "Asia & Oceania distribution losses 726.043045 728.905453 \n", + " exports 43.899299 46.000806 \n", + " imports 53.420703 58.622526 \n", + " installed capacity 2463.426712 2668.076439 \n", + " net consumption 9121.177292 9385.732178 \n", + " net generation 9837.698933 10102.015911 \n", + " net imports 9.521404 12.621720 \n", + "Central & South America distribution losses 195.090374 195.044023 \n", + " exports 46.755000 46.214375 \n", + " imports 48.488000 46.891300 \n", + " installed capacity 327.351239 341.688198 \n", + " net consumption 1029.599917 1064.668354 \n", + " net generation 1225.214520 1261.292682 \n", + " net imports 1.733000 0.676925 \n", + "Eurasia distribution losses 288.718833 283.011833 \n", + " exports 72.713750 68.759750 \n", + " imports 25.708500 24.632500 \n", + " installed capacity 706.369683 704.632633 \n", + " net consumption 2609.666644 2602.340334 \n", + " net generation 2945.390728 2929.479418 \n", + " net imports -47.005250 -44.127250 \n", + "Europe distribution losses 302.146616 307.118887 \n", + " exports 470.691760 499.598125 \n", + " imports 484.565844 512.493304 \n", + " installed capacity 1310.856618 1325.619640 \n", + " net consumption 3927.158554 4010.027085 \n", + " net generation 4215.431086 4304.250793 \n", + " net imports 13.874084 12.895179 \n", + "Middle East distribution losses 121.753000 136.956300 \n", + " exports 15.734300 13.304700 \n", + " imports 22.482000 24.437000 \n", + " installed capacity 267.802900 281.223764 \n", + " net consumption 921.739356 960.867656 \n", + " net generation 1036.744656 1086.691656 \n", + " net imports 6.747700 11.132300 \n", + "North America distribution losses 314.189122 319.202703 \n", + " exports 75.406872 84.372314 \n", + " imports 80.754999 88.191435 \n", + " installed capacity 1281.423800 1288.473000 \n", + " net consumption 4723.259542 4715.376861 \n", + " net generation 5032.100536 5030.760443 \n", + " net imports 5.348127 3.819121 \n", "\n", - " 2017 2018 \\\n", + " 2016 2017 \\\n", "Region Features \n", - "Africa distribution losses 117.344523 120.247995 \n", - " exports 33.327730 31.730300 \n", - " imports 39.782764 37.158895 \n", - " installed capacity 210.544541 230.740190 \n", - " net consumption 686.573884 698.793253 \n", - " net generation 797.463373 813.612653 \n", - " net imports 6.455034 5.428595 \n", - "Asia & Oceania distribution losses 777.224502 810.210076 \n", - " exports 63.917965 67.358170 \n", - " imports 71.950994 75.641028 \n", - " installed capacity 3072.989237 3265.095200 \n", - " net consumption 10499.360390 11070.559832 \n", - " net generation 11268.551864 11872.487050 \n", - " net imports 8.033029 8.282858 \n", - "Central & South America distribution losses 196.470099 199.148747 \n", - " exports 49.679473 48.688924 \n", - " imports 51.657462 49.430425 \n", - " installed capacity 375.156142 387.182029 \n", - " net consumption 1078.315722 1096.508255 \n", - " net generation 1272.807831 1294.915501 \n", - " net imports 1.977989 0.741501 \n", - "Eurasia distribution losses 282.927833 274.900433 \n", - " exports 76.300450 74.254750 \n", - " imports 24.919500 16.404700 \n", - " installed capacity 714.825145 714.917193 \n", - " net consumption 2632.181290 2662.169213 \n", - " net generation 2966.490074 2994.919697 \n", - " net imports -51.380950 -57.850050 \n", - "Europe distribution losses 303.730092 303.082485 \n", - " exports 470.334575 465.459254 \n", - " imports 484.382843 486.205733 \n", - " installed capacity 1366.865274 1400.952397 \n", - " net consumption 4087.731918 4069.003190 \n", - " net generation 4377.413742 4351.339196 \n", - " net imports 14.048268 20.746479 \n", - "Middle East distribution losses 152.387842 155.221385 \n", - " exports 15.588800 14.144000 \n", - " imports 22.874000 31.987000 \n", - " installed capacity 296.263143 298.368401 \n", - " net consumption 1027.643852 1052.527842 \n", - " net generation 1172.746494 1189.906227 \n", - " net imports 7.285200 17.843000 \n", - "North America distribution losses 306.825106 298.010523 \n", - " exports 83.214566 77.631527 \n", - " imports 77.729212 75.128295 \n", - " installed capacity 1326.263400 1351.724789 \n", - " net consumption 4702.000202 4878.979091 \n", - " net generation 5014.310663 5179.492847 \n", - " net imports -5.485354 -2.503232 \n", + "Africa distribution losses 120.267951 117.446872 \n", + " exports 34.692430 33.327730 \n", + " imports 41.309200 39.782764 \n", + " installed capacity 192.320816 210.921447 \n", + " net consumption 653.876644 686.573884 \n", + " net generation 768.887601 798.925498 \n", + " net imports 6.616770 6.455034 \n", + "Asia & Oceania distribution losses 762.739982 777.224502 \n", + " exports 58.194332 63.917965 \n", + " imports 65.819156 71.950994 \n", + " installed capacity 2887.051792 3072.989237 \n", + " net consumption 9870.251320 10499.360390 \n", + " net generation 10625.366477 11268.551864 \n", + " net imports 7.624824 8.033029 \n", + "Central & South America distribution losses 196.301150 196.639998 \n", + " exports 54.136813 49.679473 \n", + " imports 55.026600 51.657462 \n", + " installed capacity 362.778609 375.971286 \n", + " net consumption 1071.664743 1078.315722 \n", + " net generation 1269.333335 1275.234959 \n", + " net imports 0.889787 1.977989 \n", + "Eurasia distribution losses 282.647833 282.927833 \n", + " exports 70.614750 76.300450 \n", + " imports 19.114500 24.919500 \n", + " installed capacity 715.716686 714.825145 \n", + " net consumption 2624.207881 2632.181290 \n", + " net generation 2958.355965 2966.490074 \n", + " net imports -51.500250 -51.380950 \n", + "Europe distribution losses 306.535603 303.730092 \n", + " exports 461.683138 470.334575 \n", + " imports 479.089613 484.382843 \n", + " installed capacity 1340.532988 1366.865274 \n", + " net consumption 4075.724022 4087.731918 \n", + " net generation 4364.853150 4377.413742 \n", + " net imports 17.406475 14.048268 \n", + "Middle East distribution losses 141.557300 152.387842 \n", + " exports 14.215200 15.588800 \n", + " imports 23.822000 22.874000 \n", + " installed capacity 290.084263 296.263143 \n", + " net consumption 989.887694 1027.643852 \n", + " net generation 1121.838194 1172.746494 \n", + " net imports 9.606800 7.285200 \n", + "North America distribution losses 314.334447 306.825106 \n", + " exports 81.285189 83.214566 \n", + " imports 84.250796 77.729212 \n", + " installed capacity 1309.804900 1326.263400 \n", + " net consumption 4733.993558 4702.000202 \n", + " net generation 5045.362399 5014.310663 \n", + " net imports 2.965607 -5.485354 \n", "\n", - " 2019 2020 \\\n", + " 2018 2019 \\\n", "Region Features \n", - "Africa distribution losses 123.032665 124.207980 \n", - " exports 36.012330 37.082820 \n", - " imports 36.120142 36.093690 \n", - " installed capacity 238.990867 243.156035 \n", - " net consumption 702.889739 680.388746 \n", - " net generation 825.814592 805.585856 \n", - " net imports 0.107812 -0.989130 \n", - "Asia & Oceania distribution losses 811.441910 786.911065 \n", - " exports 69.461613 75.376583 \n", - " imports 79.321945 88.089951 \n", - " installed capacity 3429.788250 3680.474175 \n", - " net consumption 11474.482488 11742.523702 \n", - " net generation 12276.064067 12516.721399 \n", - " net imports 9.860332 12.713368 \n", - "Central & South America distribution losses 198.640076 195.687615 \n", - " exports 41.949039 38.434271 \n", - " imports 42.838501 39.625489 \n", - " installed capacity 401.392885 414.096179 \n", - " net consumption 1099.521880 1100.092492 \n", - " net generation 1297.272494 1294.588889 \n", - " net imports 0.889462 1.191218 \n", - "Eurasia distribution losses 272.615133 265.384183 \n", - " exports 73.869750 63.197350 \n", - " imports 16.388500 21.221200 \n", - " installed capacity 724.167792 733.129110 \n", - " net consumption 2678.159241 2673.289939 \n", - " net generation 3008.255625 2980.650272 \n", - " net imports -57.481250 -41.976150 \n", - "Europe distribution losses 297.535852 292.605807 \n", - " exports 464.196084 480.083713 \n", - " imports 491.142257 494.061577 \n", - " installed capacity 1418.280092 1444.290822 \n", - " net consumption 4055.926950 3990.746417 \n", - " net generation 4326.516629 4269.374360 \n", - " net imports 26.946173 13.977864 \n", - "Middle East distribution losses 165.089182 163.117147 \n", - " exports 13.858000 14.629100 \n", - " imports 44.946100 29.050000 \n", - " installed capacity 303.954947 306.974447 \n", - " net consumption 1086.018911 1045.687765 \n", - " net generation 1220.019993 1194.384012 \n", - " net imports 31.088100 14.420900 \n", - "North America distribution losses 288.822191 270.644224 \n", - " exports 83.441019 87.486172 \n", - " imports 76.293597 81.225548 \n", - " installed capacity 1364.576789 1387.359489 \n", - " net consumption 4816.574574 4725.063247 \n", - " net generation 5112.544188 5001.968095 \n", - " net imports -7.147422 -6.260624 \n", + "Africa distribution losses 120.350344 123.135014 \n", + " exports 31.730300 36.012330 \n", + " imports 37.158895 36.120142 \n", + " installed capacity 231.117096 239.367773 \n", + " net consumption 698.793253 702.889739 \n", + " net generation 815.074778 827.276717 \n", + " net imports 5.428595 0.107812 \n", + "Asia & Oceania distribution losses 810.210076 811.441910 \n", + " exports 67.358170 69.461613 \n", + " imports 75.641028 79.321945 \n", + " installed capacity 3265.095200 3429.788250 \n", + " net consumption 11070.559832 11474.482488 \n", + " net generation 11872.487050 12276.064067 \n", + " net imports 8.282858 9.860332 \n", + "Central & South America distribution losses 199.318646 198.809974 \n", + " exports 48.688924 41.949039 \n", + " imports 49.430425 42.838501 \n", + " installed capacity 387.997173 402.208029 \n", + " net consumption 1096.508255 1099.521880 \n", + " net generation 1297.342629 1299.699622 \n", + " net imports 0.741501 0.889462 \n", + "Eurasia distribution losses 274.900433 272.615133 \n", + " exports 74.254750 73.869750 \n", + " imports 16.404700 16.388500 \n", + " installed capacity 714.917193 724.167792 \n", + " net consumption 2662.169213 2678.159241 \n", + " net generation 2994.919697 3008.255625 \n", + " net imports -57.850050 -57.481250 \n", + "Europe distribution losses 303.082485 297.535852 \n", + " exports 465.459254 464.196084 \n", + " imports 486.205733 491.142257 \n", + " installed capacity 1400.952397 1418.280092 \n", + " net consumption 4069.003190 4055.926950 \n", + " net generation 4351.339196 4326.516629 \n", + " net imports 20.746479 26.946173 \n", + "Middle East distribution losses 155.221385 165.089182 \n", + " exports 14.144000 13.858000 \n", + " imports 31.987000 44.946100 \n", + " installed capacity 298.368401 303.954947 \n", + " net consumption 1052.527842 1086.018911 \n", + " net generation 1189.906227 1220.019993 \n", + " net imports 17.843000 31.088100 \n", + "North America distribution losses 298.010523 288.822191 \n", + " exports 77.631527 83.441019 \n", + " imports 75.128295 76.293597 \n", + " installed capacity 1351.724789 1364.576789 \n", + " net consumption 4878.979091 4816.574574 \n", + " net generation 5179.492847 5112.544188 \n", + " net imports -2.503232 -7.147422 \n", "\n", - " 2021 Total \n", - "Region Features \n", - "Africa distribution losses 124.886039 2568.481088 \n", - " exports 37.662881 799.901810 \n", - " imports 37.648292 885.281165 \n", - " installed capacity 244.816109 5039.211281 \n", - " net consumption 712.584720 17688.275806 \n", - " net generation 837.485348 20171.377539 \n", - " net imports -0.014589 85.379355 \n", - "Asia & Oceania distribution losses 792.500149 18061.488126 \n", - " exports 77.030618 995.385028 \n", - " imports 87.463914 1127.443838 \n", - " installed capacity 3853.457685 58430.486611 \n", - " net consumption 12665.270200 210515.726463 \n", - " net generation 13447.337052 228445.155779 \n", - " net imports 10.433296 132.058810 \n", - "Central & South America distribution losses 199.510111 5260.416309 \n", - " exports 38.794599 1545.928032 \n", - " imports 35.477785 1567.537745 \n", - " installed capacity 428.081519 9064.027072 \n", - " net consumption 1167.026170 28803.915497 \n", - " net generation 1369.853096 34042.722093 \n", - " net imports -3.316815 21.609713 \n", - "Eurasia distribution losses 263.323374 6191.071191 \n", - " exports 72.384710 2153.621160 \n", - " imports 26.346138 1343.105638 \n", - " installed capacity 743.105110 14376.875595 \n", - " net consumption 2761.897411 51310.508061 \n", - " net generation 3071.259358 58312.094775 \n", - " net imports -46.038573 -810.515523 \n", - "Europe distribution losses 294.824287 9826.080002 \n", - " exports 507.242862 11959.443446 \n", - " imports 529.015329 12537.719876 \n", - " installed capacity 1482.995172 36286.698399 \n", - " net consumption 4082.522458 121615.173318 \n", - " net generation 4355.574277 130862.976889 \n", - " net imports 21.772468 578.276431 \n", - "Middle East distribution losses 169.089625 2883.897371 \n", - " exports 14.358920 240.231720 \n", - " imports 28.806431 398.757531 \n", - " installed capacity 309.632447 6093.119501 \n", - " net consumption 1109.498530 20762.916897 \n", - " net generation 1264.140644 23488.288457 \n", - " net imports 14.447511 158.525811 \n", - "North America distribution losses 296.127051 12078.603582 \n", - " exports 68.009584 2418.193730 \n", - " imports 71.680961 2409.412651 \n", - " installed capacity 1425.152689 43408.867056 \n", - " net consumption 4836.156431 166173.929209 \n", - " net generation 5128.612105 178261.313869 \n", - " net imports 3.671377 -8.781079 \n", + " 2020 2021 \n", + "Region Features \n", + "Africa distribution losses 124.310329 124.988388 \n", + " exports 37.082820 37.662881 \n", + " imports 36.093690 37.648292 \n", + " installed capacity 243.532941 245.193015 \n", + " net consumption 680.388746 712.584720 \n", + " net generation 807.047981 838.947473 \n", + " net imports -0.989130 -0.014589 \n", + "Asia & Oceania distribution losses 786.911065 792.500149 \n", + " exports 75.376583 77.030618 \n", + " imports 88.089951 87.463914 \n", + " installed capacity 3680.474175 3853.457685 \n", + " net consumption 11742.523702 12665.270200 \n", + " net generation 12516.721399 13447.337052 \n", + " net imports 12.713368 10.433296 \n", + "Central & South America distribution losses 195.857514 199.680010 \n", + " exports 38.434271 38.794599 \n", + " imports 39.625489 35.477785 \n", + " installed capacity 414.911323 428.896663 \n", + " net consumption 1100.092492 1167.026170 \n", + " net generation 1297.016017 1372.280224 \n", + " net imports 1.191218 -3.316815 \n", + "Eurasia distribution losses 265.384183 263.323374 \n", + " exports 63.197350 72.384710 \n", + " imports 21.221200 26.346138 \n", + " installed capacity 733.129110 743.105110 \n", + " net consumption 2673.289939 2761.897411 \n", + " net generation 2980.650272 3071.259358 \n", + " net imports -41.976150 -46.038573 \n", + "Europe distribution losses 292.605807 294.824287 \n", + " exports 480.083713 507.242862 \n", + " imports 494.061577 529.015329 \n", + " installed capacity 1444.290822 1482.995172 \n", + " net consumption 3990.746417 4082.522458 \n", + " net generation 4269.374360 4355.574277 \n", + " net imports 13.977864 21.772468 \n", + "Middle East distribution losses 163.117147 169.089625 \n", + " exports 14.629100 14.358920 \n", + " imports 29.050000 28.806431 \n", + " installed capacity 306.974447 309.632447 \n", + " net consumption 1045.687765 1109.498530 \n", + " net generation 1194.384012 1264.140644 \n", + " net imports 14.420900 14.447511 \n", + "North America distribution losses 270.644224 296.127051 \n", + " exports 87.486172 68.009584 \n", + " imports 81.225548 71.680961 \n", + " installed capacity 1387.359489 1425.152689 \n", + " net consumption 4725.063247 4836.156431 \n", + " net generation 5001.968095 5128.612105 \n", + " net imports -6.260624 3.671377 \n", "\n", - "[49 rows x 43 columns]\n" + "[49 rows x 42 columns]\n" ] } ] @@ -750,17 +754,17 @@ "height": 632 }, "id": "UAOFyFDLLMo-", - "outputId": "d11301af-6e62-44f7-9308-cbe16b68955d" + "outputId": "bce87c94-9834-48fc-f7f7-cc2e09897650" }, - "execution_count": 27, + "execution_count": 85, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ - ":14: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.\n", + ":14: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.\n", " cmap = cm.get_cmap('tab10')\n", - ":20: FutureWarning: iteritems is deprecated and will be removed in a future version. Use .items instead.\n", + ":20: FutureWarning: iteritems is deprecated and will be removed in a future version. Use .items instead.\n", " for i, (region, values) in enumerate(df_transposed.iteritems()):\n" ] }, @@ -770,7 +774,7 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFwAAAIOCAYAAACF7xkPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5e0lEQVR4nOzdeZiN9f/H8ec5Z+ac2TeGMVnGvmRfkqT4JiNSRBGKaBP1k0QqlXwrX6VFSpsaJWlDRZEUFZMs2bKUCUOMscy+nTPnnN8fZ+ZwjGWG4cyY1+O6znXu5XPu+31ODXNePovB6XQ6ERERERERERGRUmP0dgEiIiIiIiIiIpcaBS4iIiIiIiIiIqVMgYuIiIiIiIiISClT4CIiIiIiIiIiUsoUuIiIiIiIiIiIlDIFLiIiIiIiIiIipUyBi4iIiIiIiIhIKfPxdgHe5HA4OHDgAMHBwRgMBm+XIyIiIiIiXuJ0OsnIyCA6OhqjUf8uLSLnr0IHLgcOHKBGjRreLkNERERERMqIffv2Ub16dW+XISKXgAoduAQHBwOuP1RDQkK8XI2IiIiIiHhLeno6NWrUcH9HEBE5XxU6cCkcRhQSEqLARURERERENNWAiJQaDU4UERERERERESllClxEREREREREREqZAhcRERERERERkVJWoedwERERERERuRTY7XZsNpu3yxC55Pn6+mIymYrVVoGLiIiIiIhIOeV0OklKSiI1NdXbpYhUGGFhYURFRZ11km0FLiIiIiIiIuVUYdhSpUoVAgICtMqSyAXkdDrJzs4mOTkZgGrVqp2xvQIXERERERGRcshut7vDlkqVKnm7HJEKwd/fH4Dk5GSqVKlyxuFFmjRXRERERESkHCqcsyUgIMDLlYhULIU/c2ebN0mBi4iIiIiISDmmYUQiF1dxf+YUuIiIiIiIiIiIlDIFLiIiIiIiIiIipUyBi4iIiIiIiJQpTqeTe++9l4iICAwGAxs3bjxtW4PBwMKFCy9abSLFpcBFREREREREvCI+Ph6TyUTPnj09ji9ZsoS4uDgWLVrEwYMHadq06WmvcfDgQW644YYLXapIiSlwEREREREREa+YNWsWDz74ID///DMHDhxwH09ISKBatWpcddVVREVF4ePjU+S1VqsVgKioKCwWy0WrWaS4FLiIiIiIiIhcIpxOJ9nWfK88nE5niWrNzMzk008/ZcSIEfTs2ZO4uDgAhg4dyoMPPkhiYiIGg4GYmBgAOnfuzKhRoxg9ejSVK1cmNjYWKDqkaP/+/dx+++1EREQQGBhI27ZtWbNmDeAKcm6++WaqVq1KUFAQ7dq144cffjjvz13kVIrGhCIiIiIiIlIu5djsNHlqqVfuve3ZWALMxf+K+dlnn9GoUSMaNmzI4MGDGT16NBMmTOC1116jbt26vPPOO6xduxaTyeR+zezZsxkxYgSrVq065TUzMzO59tprueyyy/j666+Jiopiw4YNOBwO9/kePXrw3HPPYbFY+PDDD+nVqxc7d+6kZs2a5/cBiJxEgYuIiIiIiFx8TifYreCjoSAV1axZsxg8eDAA3bt3Jy0tjZUrV9K5c2eCg4MxmUxERUV5vKZ+/fpMnTr1tNecO3cuhw8fZu3atURERABQr1499/kWLVrQokUL9/7kyZNZsGABX3/9NaNGjSrNtyeiwEVERERERLxg48fw66tw4ytQu5O3q7lk+Pua2PZsrNfuXVw7d+7k999/Z8GCBQD4+PjQv39/Zs2aRefOnU/7ujZt2pzxuhs3bqRVq1busOVkmZmZPPPMMyxevJiDBw+Sn59PTk4OiYmJxa5dpLgUuIiIiIiIyMWVdRS+nwg5x+DABgUupchgMJRoWI+3zJo1i/z8fKKjo93HnE4nFouFGTNmnPZ1gYGBZ7yuv7//Gc+PHTuWZcuW8dJLL1GvXj38/f3p16+fewJekdJU9n8SRURERETk0vLDU66wpcrlcOUD3q5GLrL8/Hw+/PBDpk2bRrdu3TzO9e7dm08++eScr928eXPee+89jh07dspeLqtWrWLo0KH06dMHcPV42bNnzznfT+RMtEqRiIiIiIhcPHtXwx9zXNs3vgImX+/WIxfdokWLSElJYfjw4TRt2tTj0bdvX2bNmnXO17799tuJioqid+/erFq1in/++Ycvv/yS+Ph4wDUHzPz589m4cSObNm1i4MCB7gl1RUqbAhcREREREbk48q2w6GHXdpuhULO9V8sR75g1axZdu3YlNDS0yLm+ffuybt060tPTz+naZrOZ77//nipVqtCjRw+aNWvGlClT3Csdvfzyy4SHh3PVVVfRq1cvYmNjad269Xm9H5HTMThLulj6JSQ9PZ3Q0FDS0tIICQnxdjkiIiIiIpe2X16G5ZMgoDKMWgsBp57Y1BvK43eD3Nxcdu/eTe3atfHz8/N2OSIVRnF/9tTDRURERERELryUPbCyYDnf2OfKVNgiInIhKHAREREREZELy+mExWMhPwdiOkHz/t6uSETkglPgIiIiIiIiF9a2r2DXMjCZXRPlGgzerkhE5IJT4CIiIiIiIhdObjosecy13XE0VK7v1XJERC6WEgUuM2fOpHnz5oSEhBASEkKHDh347rvv3Odzc3MZOXIklSpVIigoiL59+3Lo0CGPayQmJtKzZ08CAgKoUqUKjz76KPn5+R5tVqxYQevWrbFYLNSrV4+4uLgitbzxxhvExMTg5+dH+/bt+f3330vyVkRERERE5GL46XnIOAjhtaHTI96uRkTkoilR4FK9enWmTJnC+vXrWbduHf/5z3+4+eab+fPPPwF4+OGH+eabb/j8889ZuXIlBw4c4JZbbnG/3m6307NnT6xWK6tXr2b27NnExcXx1FNPudvs3r2bnj170qVLFzZu3Mjo0aO5++67Wbp0qbvNp59+ypgxY3j66afZsGEDLVq0IDY2luTk5PP9PEREREREpLQc2Ai/v+3avvFl8NVKOiJScZz3stARERG8+OKL9OvXj8jISObOnUu/fv0A2LFjB40bNyY+Pp4rr7yS7777jhtvvJEDBw5QtWpVAN566y3Gjx/P4cOHMZvNjB8/nsWLF7N161b3PQYMGEBqaipLliwBoH379rRr144ZM2YA4HA4qFGjBg8++CCPPfZYsWsvj0u/iYiIiIiUCw47vHcdHPgDmvaDfrO8XdEZlcfvBloWWsQ7Lviy0Ha7nXnz5pGVlUWHDh1Yv349NpuNrl27uts0atSImjVrEh8fD0B8fDzNmjVzhy0AsbGxpKenu3vJxMfHe1yjsE3hNaxWK+vXr/doYzQa6dq1q7vN6eTl5ZGenu7xEBERERGRC2Dd+66wxRIKsc97uxoRkYuuxIHLli1bCAoKwmKxcP/997NgwQKaNGlCUlISZrOZsLAwj/ZVq1YlKSkJgKSkJI+wpfB84bkztUlPTycnJ4cjR45gt9tP2abwGqfzwgsvEBoa6n7UqFGjpG9fRERERETOJv0gLH/WtX3dRAiueub2IiW0Z88eDAYDGzdu9HYp5Ubnzp0ZPXq0t8uoUEocuDRs2JCNGzeyZs0aRowYwZAhQ9i2bduFqK3UTZgwgbS0NPdj37593i5JREREROTSs/RxyEuHy9pA22HerkbKsPj4eEwmEz179izR62rUqMHBgwdp2rTped3f4XAwfvx4oqOj8ff3p3nz5nz11VfFfv2iRYu49tprCQ4OJiAggHbt2p1y0ZeyYP78+UyePNnbZVQoJQ5czGYz9erVo02bNrzwwgu0aNGC1157jaioKKxWK6mpqR7tDx06RFRUFABRUVFFVi0q3D9bm5CQEPz9/alcuTImk+mUbQqvcToWi8W9wlLhQ0REREREStGuH+DP+WAwwo2vgNHk7YqkDJs1axYPPvggP//8MwcOHCj260wmE1FRUfj4+JzX/efMmcMrr7zCyy+/zPbt23n55ZcJDAws1mtff/11br75Zjp27MiaNWvYvHkzAwYM4P7772fs2LHnVdeFEBERQXBwsLfLqFDOeQ6XQg6Hg7y8PNq0aYOvry/Lly93n9u5cyeJiYl06NABgA4dOrBlyxaP1YSWLVtGSEgITZo0cbc58RqFbQqvYTabadOmjUcbh8PB8uXL3W1ERERERMQLbDmwuGDp5/YjoFoL79YjZVpmZiaffvopI0aMoGfPnkV6hqSkpDBo0CAiIyPx9/enfv36fPDBB0DRIUV2u53hw4dTu3Zt/P39adiwIa+99tpZazAajURGRjJgwABiYmLo2rVrkTlFT2Xfvn088sgjjB49mueff54mTZpQr149HnnkEV588UWmTZvGmjVr3O3//PNPbrzxRkJCQggODqZTp04kJCS4z7/33ns0btwYPz8/GjVqxJtvvulxv/Hjx9OgQQMCAgKoU6cOEydOxGazuc8/88wztGzZko8++oiYmBhCQ0MZMGAAGRkZ7jYnDyn66KOPaNu2LcHBwURFRTFw4ECt/FvKShQHTpgwgRtuuIGaNWuSkZHB3LlzWbFiBUuXLiU0NJThw4czZswYIiIiCAkJ4cEHH6RDhw5ceeWVAHTr1o0mTZpwxx13MHXqVJKSknjyyScZOXIkFosFgPvvv58ZM2Ywbtw4hg0bxo8//shnn33G4sWL3XWMGTOGIUOG0LZtW6644gpeffVVsrKyuOuuu0rxoxERERERkRL5ZRqk7IHgaOgywdvVVExOJ9iyvXNv3wAwGIrd/LPPPqNRo0Y0bNiQwYMHM3r0aCZMmICh4BoTJ05k27ZtfPfdd1SuXJldu3aRk5Nzyms5HA6qV6/O559/TqVKlVi9ejX33nsv1apV47bbbjttDddddx1paWlMnDixRMNtvvjiC2w22yl7stx33308/vjjfPLJJ7Rv355///2Xa665hs6dO/Pjjz8SEhLCqlWryM/PB+Djjz/mqaeeYsaMGbRq1Yo//viDe+65h8DAQIYMGQJAcHAwcXFxREdHs2XLFu655x6Cg4MZN26c+74JCQksXLiQRYsWkZKSwm233caUKVN47rnnTvkebDYbkydPpmHDhiQnJzNmzBiGDh3Kt99+W+zPQc6sRIFLcnIyd955JwcPHiQ0NJTmzZuzdOlSrr/+egBeeeUVjEYjffv2JS8vj9jYWI9kzmQysWjRIkaMGEGHDh3c/wM9++yz7ja1a9dm8eLFPPzww7z22mtUr16d9957j9jYWHeb/v37c/jwYZ566imSkpJo2bIlS5YsKTKRroiIiIiIXCSHd8Kvr7q2b/gfWDR0wSts2fB8tHfu/fgBMBdvOA64hhMNHjwYgO7du5OWlsbKlSvp3LkzAImJibRq1Yq2bdsCEBMTc9pr+fr6MmnSJPd+7dq1iY+P57PPPjtt4JKdnc3111/PwIEDWbZsGTk5Obz44ovuwCckJIT333+ffv36FXntX3/9RWhoKNWqVStyzmw2U6dOHf766y8A3njjDUJDQ5k3bx6+vr4ANGjQwN3+6aefZtq0adxyyy3u2rdt28bbb7/tDlyefPJJd/uYmBjGjh3LvHnzPAIXh8NBXFyce9jQHXfcwfLly08buAwbdnx+pTp16jB9+nTatWtHZmYmQUFBp3yNlEyJApdZs2ad8byfnx9vvPEGb7zxxmnb1KpV66yJWefOnfnjjz/O2GbUqFGMGjXqjG1EREREROQicDph0Rhw2KBBd2jcy9sVSRm3c+dOfv/9dxYsWACAj48P/fv3Z9asWe7AZcSIEfTt25cNGzbQrVs3evfuzVVXXXXaa77xxhu8//77JCYmkpOTg9VqpWXLlqdtHxcXR2pqKm+88QaZmZl07tyZu+66i/fee4/9+/eTmZlJx44dz/u9bty4kU6dOrnDlhNlZWWRkJDA8OHDueeee9zH8/PzCQ0Nde9/+umnTJ8+nYSEBDIzM8nPzy8yJ2lMTIzHHC3VqlU74xCh9evX88wzz7Bp0yZSUlJwOByAK+gqnPJDzs/5zTAkIiIiIiKyaR7s/RV8/OGGqSUaViKlzDfA1dPEW/cuplmzZpGfn0909PHeOE6nE4vFwowZMwgNDeWGG25g7969fPvttyxbtozrrruOkSNH8tJLLxW53rx58xg7dizTpk2jQ4cOBAcH8+KLL3rMo3KyzZs3c/nll+Pr60t4eDjLli2jU6dO9OnTh/r169O9e/dT9mABVw+VtLQ0Dhw44PEeAKxWKwkJCXTp0gUAf3//09aQmZkJwLvvvkv79u09zplMrgmn4+PjGTRoEJMmTSI2NtbdW2batGke7U8OdAwGgztEOVlWVhaxsbHExsby8ccfExkZSWJiIrGxsVit1tPWKyWjwEVERERERM5d9jH4/gnXdufHILyWd+up6AyGEg3r8Yb8/Hw+/PBDpk2bRrdu3TzO9e7dm08++YT7778fgMjISIYMGcKQIUPo1KkTjz766CkDl1WrVnHVVVfxwAMPuI+dOCntqVx22WUsWLCAjIwMgoODqVKlCj/88AOdOnVi0aJFrF+//rSv7du3L+PHj2fatGlFgo+33nqLrKwsbr/9dgCaN2/O7NmzsdlsRUKRqlWrEh0dzT///MOgQYNOea/Vq1dTq1YtnnjiCfexvXv3nvG9nc2OHTs4evQoU6ZMoUaNGgCsW7fuvK4pRZ33KkUiIiIiIlKB/fA0ZB+FyMbQYaS3q5FyoHBS1+HDh9O0aVOPR9++fd1TWTz11FN89dVX7Nq1iz///JNFixbRuHHjU16zfv36rFu3jqVLl/LXX38xceJE1q5de8Y6hg8fjt1u56abbmL16tXs3LmTpUuXkpmZSUBAwBmn1KhZsyZTp07l1Vdf5YknnmDHjh0kJCTw8ssvM27cOB555BF3j5VRo0aRnp7OgAEDWLduHX///TcfffQRO3fuBGDSpEm88MILTJ8+nb/++ostW7bwwQcf8PLLL7vfW2JiIvPmzSMhIYHp06e7h2Kdq5o1a2I2m3n99df5559/+Prrr0s0abAUjwIXERERERE5N3vjYcOHru1er4Kp6BwVIiebNWsWXbt29ZijpFDfvn1Zt24dmzdvxmw2M2HCBJo3b84111yDyWRi3rx5p7zmfffdxy233EL//v1p3749R48e9ejtcirR0dH8/vvvVK5cmVtuuYVWrVrx4Ycf8uGHH7J48WLeeecdd+hxKqNHj2bBggX88ssvtG3blqZNmzJ37lxmzpzp0QunUqVK/Pjjj2RmZnLttdfSpk0b3n33XXdvl7vvvpv33nuPDz74gGbNmnHttdcSFxdH7dq1Abjpppt4+OGHGTVqFC1btmT16tVMnDjxrJ/zmURGRhIXF8fnn39OkyZNmDJlyil7Dsn5MTidTqe3i/CW9PR0QkNDSUtLKzLhkIiIiIiInIHdBm91gsPbofWdcNPr3q7ovJTH7wa5ubns3r2b2rVr4+fn5+1yRCqM4v7sqYeLiIiIiIiUXPwbrrAloBJ0nXT29iIiFYwCFxERERERKZmUvbBiimu7238hIMK79YiIlEEKXEREREREpPgObYPP7oT8HKh1NbS43dsViYiUSVoWWkREREREzi43zdWrZc3b4LSDORhufMW1DLGIiBShwEVERERERE7P6YTNn8H3T0JWsutY414Q+zyE1fRubSIiZZgCFxERERERObWkrfDto5C42rUfURd6TIV6Xb1bl4hIOaDARUREREREPOWmwU8vwO/vuIYP+QbANWOhwyjwsXi7OhGRckGBi4iIiIiIuDidsGkeLHvqhOFDNxUMH6rh3dpERMoZBS4iIiIiIgJJW2DxWNj3m2u/Uj3o8SLU/Y936xIRKae0LLSIiIiISEWWkwrfjoO3r3GFLb4BcN3TMGK1whaRU4iJieHVV1/1dhkXhMFgYOHChd4u47wNHTqU3r17e7sMBS4iIiIiIhWSwwEb58KMtvD72+B0QJPeMGotdBqjuVrkgktKSuLBBx+kTp06WCwWatSoQa9evVi+fHmp3qdz586MHj26VK95Nrt27SI2NpaQkBAiIiK44YYbOHz48FlfZ7fbmTJlCo0aNcLf35+IiAjat2/Pe++9V6r1PfPMM7Rs2bJUr/nJJ59gMpkYOXJkqV73XLz22mvExcV5uwwNKRIRERERqXAOboZvx8K+Na79SvULhg918W5dUmHs2bOHjh07EhYWxosvvkizZs2w2WwsXbqUkSNHsmPHjotaj9PpxG634+NTOl+R7733XtLS0li5ciUBAQHEx8fjdDrP+rpJkybx9ttvM2PGDNq2bUt6ejrr1q0jJSWlVOq6kGbNmsW4ceN4++23mTZtGn5+fhe9BrvdjsFgIDQ09KLf+1TUw0VEREREpKLIz4MlE+Cda11hi28gdJ1UMHxIYYtcPA888AAGg4Hff/+dvn370qBBAy6//HLGjBnDb7/95m6XmprK3XffTWRkJCEhIfznP/9h06ZN7vOFPTU++ugjYmJiCA0NZcCAAWRkZACuoSUrV67ktddew2AwYDAY2LNnDytWrMBgMPDdd9/Rpk0bLBYLv/76KwkJCdx8881UrVqVoKAg2rVrxw8//FDi92c0GomNjaVVq1Y0bNiQoUOHUqVKlbO+7uuvv+aBBx7g1ltvpXbt2rRo0YLhw4czduxYd5u8vDweeughqlSpgp+fH1dffTVr1651n4+LiyMsLMzjugsXLsRgMLjPT5o0iU2bNrk/kxN7gxw5coQ+ffoQEBBA/fr1+frrr89a9+7du1m9ejWPPfYYDRo0YP78+R7nC2tatGgRDRs2JCAggH79+pGdnc3s2bOJiYkhPDychx56CLvd7vFex44dy2WXXUZgYCDt27dnxYoVRa779ddf06RJEywWC4mJiUWGFDkcDqZOnUq9evWwWCzUrFmT5557zn1+/PjxNGjQgICAAOrUqcPEiROx2Wxnfd9no8BFRERERKQiSNsPH9wAv73pGj50eR/X8KGrR4OP2dvVSSlxOp1k27K98ihODw6AY8eOsWTJEkaOHElgYGCR8yeGBbfeeivJycl89913rF+/ntatW3Pddddx7Ngxd5uEhAQWLlzIokWLWLRoEStXrmTKlCmAa2hJhw4duOeeezh48CAHDx6kRo3jK2499thjTJkyhe3bt9O8eXMyMzPp0aMHy5cv548//qB79+706tWLxMTEEv13uPnmm3nzzTfZsGFDiV4XFRXFjz/+eMbhR+PGjePLL79k9uzZbNiwgXr16hEbG+vxmZxJ//79eeSRR7j88svdn0n//v3d5ydNmsRtt93G5s2b6dGjB4MGDTrrtT/44AN69uxJaGgogwcPZtasWUXaZGdnM336dObNm8eSJUtYsWIFffr04dtvv+Xbb7/lo48+4u233+aLL75wv2bUqFHEx8czb948Nm/ezK233kr37t35+++/Pa77v//9j/fee48///zzlMHWhAkTmDJlChMnTmTbtm3MnTuXqlWrus8HBwcTFxfHtm3beO2113j33Xd55ZVXivV5nomGFImIiIiIXOr+WQFfDIPso+AXBre8Aw1ivV2VXAA5+Tm0n9veK/deM3ANAb4BZ223a9cunE4njRo1OmO7X3/9ld9//53k5GQsFtecQi+99BILFy7kiy++4N577wVcvRfi4uIIDg4G4I477mD58uU899xzhIaGYjabCQgIICoqqsg9nn32Wa6//nr3fkREBC1atHDvT548mQULFvD1118zatSos38IwI8//shjjz3GpEmTuPHGG/n000/p1KkTAF9++SVDhw5198A52csvv0y/fv2Iiori8ssv56qrruLmm2/mhhtuACArK4uZM2cSFxfnPvbuu++ybNkyZs2axaOPPnrW+vz9/QkKCsLHx+eUn8nQoUO5/fbbAXj++eeZPn06v//+O927dz/l9Qo//9dffx2AAQMG8Mgjj7B7925q167tbmez2Zg5cyZ169YFoF+/fnz00UccOnSIoKAgmjRpQpcuXfjpp5/o378/iYmJfPDBByQmJhIdHQ3A2LFjWbJkCR988AHPP/+8+7pvvvmmx3+3E2VkZPDaa68xY8YMhgwZAkDdunW5+uqr3W2efPJJ93ZMTAxjx45l3rx5jBs37qyf55moh4uIiIiIyKXK6YRfXoaP+rjClqjmcN9KhS3iVcXtCbNp0yYyMzOpVKkSQUFB7sfu3btJSEhwt4uJiXGHLQDVqlUjOTm5WPdo27atx35mZiZjx46lcePGhIWFERQUxPbt20vUw+Wxxx5j5MiRjB07llmzZtGrVy+++eYbALZs2eLxRf9kTZo0YevWrfz2228MGzaM5ORkevXqxd133w24evPYbDY6duzofo2vry9XXHEF27dvL3aNZ9K8eXP3dmBgICEhIWf8PJctW0ZWVhY9evQAoHLlylx//fW8//77Hu0CAgLcYQtA1apViYmJISgoyONY4b22bNmC3W6nQYMGHv/9V65c6fHf32w2e9R8su3bt5OXl8d111132jaffvopHTt2JCoqiqCgIJ588skS92o6FfVwERERERG5FOWmwcIHYMci137LwdDzJfD1925dckH5+/izZuAar927OOrXr4/BYDjrxLiZmZlUq1bNY86OQicOO/L19fU4ZzAYcDgcxarl5CFNY8eOZdmyZbz00kvUq1cPf39/+vXrh9VqLdb1ADZv3szDDz8MwA033MCsWbO49dZbmTFjBnFxcUydOvWMrzcajbRr14527doxevRo5syZwx133METTzxRrPsbjcYioVZJ5iMp6ec5a9Ysjh07hr//8f/+DoeDzZs3M2nSJIxG42mve6Z7ZWZmYjKZWL9+PSaTyaPdiSGNv7+/e36aUzmxrlOJj49n0KBBTJo0idjYWEJDQ5k3bx7Tpk074+uKQ4GLiIiIiMil5tA2+HQwHEsAk9m1AlHrIXCGLyVyaTAYDMUa1uNNERERxMbG8sYbb/DQQw8VCT1SU1MJCwujdevWJCUl4ePjQ0xMzDnfz2w2e0zEeiarVq1i6NCh9OnTB3B96d+zZ0+J7nfZZZfx888/u4fl9O3bl8zMTO666y6aN2/OrbfeWqLrNWnSBHANJ6pbty5ms5lVq1ZRq1YtwBWmrF271r30dWRkJBkZGWRlZbk/240bN3pcsySfyZkcPXqUr776innz5nH55Ze7j9vtdq6++mq+//770w5FOptWrVpht9tJTk52D8k6F/Xr18ff35/ly5e7ewqdaPXq1dSqVcsj0Nq7d+853+9EClxERERERC4lW76Arx8EWzaEVIf+H8JlbbxdlYiHN954g44dO3LFFVfw7LPP0rx5c/Lz81m2bBkzZ85k+/btdO3alQ4dOtC7d2+mTp1KgwYNOHDgAIsXL6ZPnz5FhgOdTkxMDGvWrGHPnj0EBQURERFx2rb169dn/vz59OrVC4PBwMSJE4vdW6bQuHHjeOCBB4iKiqJ///6kpaURHx9PQEAAO3bsYNWqVacdVtSvXz86duzIVVddRVRUFLt372bChAk0aNCARo0a4ePjw4gRI3j00UeJiIigZs2aTJ06lezsbIYPHw5A+/btCQgI4PHHH+ehhx5izZo1HqsQFX4mu3fvZuPGjVSvXp3g4GD3PDkl8dFHH1GpUiVuu+22Ir1MevTowaxZs845cGnQoAGDBg3izjvvZNq0abRq1YrDhw+zfPlymjdvTs+ePYt1HT8/P8aPH8+4ceMwm8107NiRw4cP8+effzJ8+HDq169PYmIi8+bNo127dixevJgFCxacU80n0xwuIiIiIiKXArsNvnsMvhzuClvqdIb7flbYImVSnTp12LBhA126dOGRRx6hadOmXH/99SxfvpyZM2cCrt463377Lddccw133XUXDRo0YMCAAezdu9djhZmzGTt2LCaTiSZNmhAZGXnGuTlefvllwsPDueqqq+jVqxexsbG0bt26RO/tvvvu49NPP+Wbb76hTZs23HTTTVitVnbs2MEdd9xB7969PVbZOVFsbCzffPMNvXr1okGDBgwZMoRGjRrx/fff4+Pj6i8xZcoU+vbtyx133EHr1q3ZtWsXS5cuJTw8HHD1IJozZw7ffvstzZo145NPPuGZZ57xuE/fvn3p3r07Xbp0ITIykk8++aRE77HQ+++/T58+fU45pKdv3758/fXXHDly5JyuDa7Vj+68804eeeQRGjZsSO/evVm7di01a9Ys0XUmTpzII488wlNPPUXjxo3p37+/e66Ym266iYcffphRo0bRsmVLVq9ezcSJE8+55hMZnMWdsegSlJ6eTmhoKGlpaYSEhHi7HBERERGRc5ORBJ8NgX2/ufY7PQJdngCj6cyvE7fy+N0gNzfXvRKMn5+ft8sRqTCK+7OnIUUiIiIiIuXZnlXw+VDISgZLCPR5CxoVr6u9iIhcOApcRERERETKI6cTfnsTvp8ITjtUaQL950Clumd/rYiIXHAKXEREREREypu8TPh6FPxZMLFjs1uh12tgDjzz60RE5KJR4CIiIiIiUp4c/su15PORnWD0gdgX4Ip7tOSziEgZo8BFRERERKS82PY1LHwArBkQXA1unQ0123u7KhEROQUFLiIiIiIi5cHmz2D+Pa7tWldDv/chuPhL44qIyMWlwEVEREREpKxL+BEWjnBttx0GN7wIJv0qLyJSlulPaRERERGRsuzgJvj0DnDkQ9O+0GMaGI3erkpERM5Cf1KLiIiIiJRVKXvg41vBmgkxnaD3TIUtIiLlhP60FhEREREpi7KOwpy+kHkIqjaFAR+Dj8XbVYlc0jp37szo0aO9XYZcIhS4iIiIiIiUNdZs+KQ/HN0FoTVg0BfgF+rtqkRKzdChQzEYDEUe3bt392pd8+fPZ/LkyV6tQS4dmsNFRERERKQssefDF8Ng/1rwC4PBX0JINW9XJVLqunfvzgcffOBxzGI5t15cTqcTu92Oj8/5fcWNiIg4r9eLnEg9XEREREREygqnExaPgb++Ax8/GPgpRDb0dlUiF4TFYiEqKsrjER4ezp49ezAYDGzcuNHdNjU1FYPBwIoVKwBYsWIFBoOB7777jjZt2mCxWPj1119JSEjg5ptvpmrVqgQFBdGuXTt++OEHj/u++eab1K9fHz8/P6pWrUq/fv3c504eUvTRRx/Rtm1bgoODiYqKYuDAgSQnJ1/Ij0UuIerhIiIiIiJSVqycChtmg8EIfd+Dmld6uyIpZ5xOJ86cHK/c2+Dvj8FguKj3fOyxx3jppZeoU6cO4eHh7Nu3jx49evDcc89hsVj48MMP6dWrFzt37qRmzZqsW7eOhx56iI8++oirrrqKY8eO8csvv5z2+jabjcmTJ9OwYUOSk5MZM2YMQ4cO5dtvv72I71LKKwUuIiIiIiJlwYYPYcXzru0eL0LjXt6tR8olZ04OO1u38cq9G25YjyEgoNjtFy1aRFBQkMexxx9/nIEDBxb7Gs8++yzXX3+9ez8iIoIWLVq49ydPnsyCBQv4+uuvGTVqFImJiQQGBnLjjTcSHBxMrVq1aNWq1WmvP2zYMPd2nTp1mD59Ou3atSMzM7NI7SInU+AiIiIiIuJtfy2Fb0a7tjs9Au3u9mo5IhdDly5dmDlzpsexiIgI0tPTi32Ntm3beuxnZmbyzDPPsHjxYg4ePEh+fj45OTkkJiYCcP3111OrVi3q1KlD9+7d6d69O3369CHgNEHR+vXreeaZZ9i0aRMpKSk4HA4AEhMTadKkSUnerlRAClxERERERLxp/zr4bAg47dBiIPxnorcrknLM4O9Pww3rvXbvkggMDKRevXpFjmdmZgKu4VGFbDbbaa9xorFjx7Js2TJeeukl6tWrh7+/P/369cNqtQIQHBzMhg0bWLFiBd9//z1PPfUUzzzzDGvXriUsLMzjWllZWcTGxhIbG8vHH39MZGQkiYmJxMbGuq8nciYKXEREREREvOXILph7G+TnQN3r4KbpcJHnwJBLi8FgKNGwnrIoMjISgIMHD7qH+5w4ge6ZrFq1iqFDh9KnTx/AFd7s2bPHo42Pjw9du3ala9euPP3004SFhfHjjz9yyy23eLTbsWMHR48eZcqUKdSoUQOAdevWncc7k4pGgYuIiIiIiDdkJsOcWyD7KFRrCbd9CCZfb1clctHk5eWRlJTkcczHx4fKlStz5ZVXMmXKFGrXrk1ycjJPPvlksa5Zv3595s+fT69evTAYDEycONE9DAhc88b8888/XHPNNYSHh/Ptt9/icDho2LDoamA1a9bEbDbz+uuvc//997N161YmT558fm9aKhQtCy0iIiIicrHlZcDH/SB1L4THwKDPwaIJOKViWbJkCdWqVfN4XH311QC8//775Ofn06ZNG0aPHs1///vfYl3z5ZdfJjw8nKuuuopevXoRGxtL69at3efDwsKYP38+//nPf2jcuDFvvfUWn3zyCZdffnmRa0VGRhIXF8fnn39OkyZNmDJlCi+99FLpvHmpEAzOEwfGVTDp6emEhoaSlpZGSEiIt8sRERERkYrAbnMNI0r4EQIqwfBlUKmut6uq8Mrjd4Pc3Fx2795N7dq18fPz83Y5IhVGcX/21MNFRERERORicTrh6wddYYtvAAz8XGGLiMglSoGLiIiIiMjFsvxZ2PQJGExw62yo3sbbFYmIyAWiwEVERERE5GJY8w78+rJru9dr0KCbd+sREZELSoGLiIiIiMiFtmMxfDfOtd3lCWh9h3frERGRC06Bi4iIiIjIhXRgI3x5N+CENkPhmke9XJCIiFwMClxERERERC6U9APwyQCwZUOdLtDjJTAYvF2ViIhcBApcREREREQuBGuWK2zJOAiVG8KtcWDy9XZVIiJykShwEREREREpbQ4HzL8XDm6CgEow8FPwD/N2VSIichEpcBERERERKW3LJ8GORWAyw4C5EFHb2xWJiMhFpsBFRERERKQ0/TEHVr3q2r75Dah5pVfLERER71DgIiIiIiJSWvb8Ct+Mdm1fMw6a3+bVckTKqqFDh2IwGIo8unfv7u3SREpNiQKXF154gXbt2hEcHEyVKlXo3bs3O3fu9GjTuXPnIj80999/v0ebxMREevbsSUBAAFWqVOHRRx8lPz/fo82KFSto3bo1FouFevXqERcXV6SeN954g5iYGPz8/Gjfvj2///57Sd6OiIiIiEjpOZoAnw4Ghw0u7wOdJ3i7IpEyrXv37hw8eNDj8cknn5zTtZxOZ5HvlCLeVqLAZeXKlYwcOZLffvuNZcuWYbPZ6NatG1lZWR7t7rnnHo8fmqlTp7rP2e12evbsidVqZfXq1cyePZu4uDieeuopd5vdu3fTs2dPunTpwsaNGxk9ejR33303S5cudbf59NNPGTNmDE8//TQbNmygRYsWxMbGkpycfK6fhYiIiIjIuck+BnNvg5wUuKwN9J4JRnUmFzkTi8VCVFSUxyM8PJw9e/ZgMBjYuHGju21qaioGg4EVK1YArn+gNxgMfPfdd7Rp0waLxcKvv/5KXl4eDz30EFWqVMHPz4+rr76atWvXuq9T+LrFixfTvHlz/Pz8uPLKK9m6datHbb/++iudOnXC39+fGjVq8NBDDxX53ityNiX6W2DJkiUMHTqUyy+/nBYtWhAXF0diYiLr16/3aBcQEODxQxMSEuI+9/3337Nt2zbmzJlDy5YtueGGG5g8eTJvvPEGVqsVgLfeeovatWszbdo0GjduzKhRo+jXrx+vvPKK+zovv/wy99xzD3fddRdNmjThrbfeIiAggPfff/+09efl5ZGenu7xEBERERE5L/lW+OxOOLoLQmvAgE/A19/bVUkF5XQ6seXZvfJwOp0X/f0+9thjTJkyhe3bt9O8eXPGjRvHl19+yezZs9mwYQP16tUjNjaWY8eOebzu0UcfZdq0aaxdu5bIyEh69eqFzWYDICEhge7du9O3b182b97Mp59+yq+//sqoUaMu+vuT8s3nfF6clpYGQEREhMfxjz/+mDlz5hAVFUWvXr2YOHEiAQEBAMTHx9OsWTOqVq3qbh8bG8uIESP4888/adWqFfHx8XTt2tXjmrGxsYwePRoAq9XK+vXrmTDheDdNo9FI165diY+PP229L7zwApMmTTqftywiIiIicpzTCYvHwJ5fwBwEt8+D4Kpnf53IBZJvdfDO/630yr3vfe1afC2mYrdftGgRQUFBHscef/xxBg4cWOxrPPvss1x//fUAZGVlMXPmTOLi4rjhhhsAePfdd1m2bBmzZs3i0Ucfdb/u6aefdr9u9uzZVK9enQULFnDbbbfxwgsvMGjQIPf3z/r16zN9+nSuvfZaZs6ciZ+fX7Hrk4rtnAMXh8PB6NGj6dixI02bNnUfHzhwILVq1SI6OprNmzczfvx4du7cyfz58wFISkryCFsA935SUtIZ26Snp5OTk0NKSgp2u/2UbXbs2HHamidMmMCYMWPc++np6dSoUeMc3r2IiIiICLD6dfjjIzAYod/7ENX07K8REQC6dOnCzJkzPY5FRESUaCRC27Zt3dsJCQnYbDY6duzoPubr68sVV1zB9u3bPV7XoUMHj3s2bNjQ3WbTpk1s3ryZjz/+2N3G6XTicDjYvXs3jRs3LnZ9UrGdc+AycuRItm7dyq+//upx/N5773VvN2vWjGrVqnHdddeRkJBA3bp1z73SUmCxWLBYLF6tQUREREQuEdsXwbKCeQhjn4cGsd6tRwTwMRu597VrvXbvkggMDKRevXpFjmdmZgJ4DFEqHO5zqmuUtszMTO677z4eeuihIudq1qxZ6veTS9c5BS6jRo1i0aJF/Pzzz1SvXv2Mbdu3bw/Arl27qFu3LlFRUUVWEzp06BAAUVFR7ufCYye2CQkJwd/fH5PJhMlkOmWbwmuIiIiIiFwwBzfB/HsAJ7QdDu3vP+tLRC4Gg8FQomE9ZVFkZCQABw8epFWrVgAeE+ieTt26dTGbzaxatYpatWoBrqBm7dq17uFBhX777Td3eJKSksJff/3l7rnSunVrtm3bdsowSKQkShRBOp1ORo0axYIFC/jxxx+pXbv2WV9T+INRrVo1wNV1a8uWLR6rCS1btoyQkBCaNGnibrN8+XKP6yxbtszd7ctsNtOmTRuPNg6Hg+XLl3t0DRMRERERKXXpB2DuALBlQ50ucMP/wGDwdlUi5U5eXh5JSUkejyNHjuDv78+VV17pngx35cqVPPnkk2e9XmBgICNGjODRRx9lyZIlbNu2jXvuuYfs7GyGDx/u0fbZZ59l+fLlbN26laFDh1K5cmV69+4NwPjx41m9ejWjRo1i48aN/P3333z11VeaNFdKrEQ9XEaOHMncuXP56quvCA4Ods+5Ehoair+/PwkJCcydO5cePXpQqVIlNm/ezMMPP8w111xD8+bNAejWrRtNmjThjjvuYOrUqSQlJfHkk08ycuRI93Cf+++/nxkzZjBu3DiGDRvGjz/+yGeffcbixYvdtYwZM4YhQ4bQtm1brrjiCl599VWysrK46667SuuzERERERHxZM2CTwZAxgGo3BBujQOTr7erEimXlixZ4v6H+UINGzZkx44dvP/++wwfPpw2bdrQsGFDpk6dSrdu3c56zSlTpuBwOLjjjjvIyMigbdu2LF26lPDw8CLt/u///o+///6bli1b8s0332A2mwFo3rw5K1eu5IknnqBTp044nU7q1q1L//79S+/NS4VgcJZg7S7DaZL7Dz74gKFDh7Jv3z4GDx7M1q1bycrKokaNGvTp04cnn3zSY2novXv3MmLECFasWEFgYCBDhgxhypQp+Pgcz39WrFjBww8/zLZt26hevToTJ05k6NChHvedMWMGL774IklJSbRs2ZLp06e7hzAVR3p6OqGhoaSlpXnUJyIiIiJShMMBn98J27+BgEpw93KIOHuPbykfyuN3g9zcXHbv3k3t2rW1ck4xrVixgi5dupCSkkJYWJi3y5Fyqrg/eyUKXC415fEPVRERERHxkh+egV9fAZMZhnwDNa/0dkVSisrjdwMFLiWnwEVKQ3F/9ko2jbSIiIiISEX0xxxX2AJw0wyFLSIiclbnvCy0iIiIiEiFsPtn+Ga0a/uaR6GF5nEQKa86d+5MBR7kIReZeriIiIiIiJzO3tWuFYkcNri8D3R+3NsViYhIOaHARURERETkVBJ/g49vBVsW1P0P9H4LjPr1WUREikd/Y4iIiIiInGzfWpjTD6yZUPtaGDAXfDUpqYiIFJ8CFxERERGRE/27HubcAtYMiOkEt88DX39vVyUiIuWMAhcRERERkUIH/oCP+kBeOtS8CgZ+CuYAb1clIiLlkAIXERERERGAg5vgw96QmwY1roRBn4M50NtViYhIOaXARUREREQkaQt8eDPkpkL1K2DwF2AJ8nZVIlKgc+fOjB49+oxtYmJiePXVV8/YxmAwsHDhQgD27NmDwWBg48aNpVKjyMkUuIiIiIhIxXZomytsyUmBy9oUhC3B3q5K5JI2dOhQDAYD999/f5FzI0eOxGAwMHToUPex+fPnM3ny5ItYYfGsWLECg8FwykdSUlKp3KM4QZKUTQpcRERERKTiSt4Bs3tB9lGo1hIGzwe/UG9XJVIh1KhRg3nz5pGTk+M+lpuby9y5c6lZs6ZH24iICIKDy24QunPnTg4ePOjxqFKlirfLEi9T4CIiIiIiFdPhvwrCliMQ1RzuWAD+Yd6uSqTCaN26NTVq1GD+/PnuY/Pnz6dmzZq0atXKo+3JQ4qSk5Pp1asX/v7+1K5dm48//rjI9f/++2+uueYa/Pz8aNKkCcuWLTtrTVu3buWGG24gKCiIqlWrcscdd3DkyJGzvq5KlSpERUV5PIxG19fttWvXcv3111O5cmVCQ0O59tpr2bBhg/u1TqeTZ555hpo1a2KxWIiOjuahhx5yv++9e/fy8MMPu3vOSPmhwEVEREREKp4ju1xhS1YyVG0Gd34FARHerkrkvDmdTmy5uV55OJ3OEtc7bNgwPvjgA/f++++/z1133XXW1w0dOpR9+/bx008/8cUXX/Dmm2+SnJzsPu9wOLjlllswm82sWbOGt956i/Hjx5/xmqmpqfznP/+hVatWrFu3jiVLlnDo0CFuu+22Er+vE2VkZDBkyBB+/fVXfvvtN+rXr0+PHj3IyMgA4Msvv+SVV17h7bff5u+//2bhwoU0a9YMcAVQ1atX59lnn3X3nJHyw8fbBYiIiIiIXFRHE2D2jZCZBFUuV9gil5T8vDymD+nnlXs/NPsLfP38SvSawYMHM2HCBPbu3QvAqlWrmDdvHitWrDjta/766y++++47fv/9d9q1awfArFmzaNy4sbvNDz/8wI4dO1i6dCnR0dEAPP/889xwww2nve6MGTNo1aoVzz//vPvY+++/T40aNfjrr79o0KDBaV9bvXp1j/1atWrx559/AvCf//zH49w777xDWFgYK1eu5MYbbyQxMZGoqCi6du2Kr68vNWvW5IorrgBcQ6lMJhPBwcFERUWd9v5SNilwEREREZGK49huV8+WjIMQ2cgVtgRW8nZVIhVWZGQkPXv2JC4uDqfTSc+ePalcufIZX7N9+3Z8fHxo06aN+1ijRo0ICwvzaFOjRg132ALQoUOHM15306ZN/PTTTwQFFV2hLCEh4YyByy+//OIxx4yvr697+9ChQzz55JOsWLGC5ORk7HY72dnZJCYmAnDrrbfy6quvUqdOHbp3706PHj3o1asXPj76ul7e6b+giIiIiFQMKXtdYUv6v1C5AQz5BoIivV2VSKnysVh4aPYXXrv3uRg2bBijRo0C4I033ijNkkokMzOTXr168b///a/IuWrVqp3xtbVr1/YIfE40ZMgQjh49ymuvvUatWrWwWCx06NABq9UKuCYP3rlzJz/88APLli3jgQce4MUXX2TlypUewY2UPwpcREREROTSl7rPNYwobR9UqlcQtmgFEbn0GAyGEg/r8bbu3btjtVoxGAzExsaetX2jRo3Iz89n/fr17iFFO3fuJDU11d2mcePG7Nu3j4MHD7rDkt9+++2M123dujVffvklMTExpdq7ZNWqVbz55pv06NEDgH379hWZiNff359evXrRq1cvRo4cSaNGjdiyZQutW7fGbDZjt9tLrR65eDRproiIiIhc2tL+dYUtqYkQUccVtgRrLgSRssJkMrF9+3a2bduGyWQ6a/uGDRvSvXt37rvvPtasWcP69eu5++678ff3d7fp2rUrDRo0YMiQIWzatIlffvmFJ5544ozXHTlyJMeOHeP2229n7dq1JCQksHTpUu66666zBh7JyckkJSV5PGw2GwD169fno48+Yvv27axZs4ZBgwZ51BoXF8esWbPYunUr//zzD3PmzMHf359atWoBEBMTw88//8y///5brBWTpOxQ4CIiIiIil670A66wJWUPhMfAkEUQEn22V4nIRRYSEkJISEix23/wwQdER0dz7bXXcsstt3DvvfdSpcrxXmtGo5EFCxaQk5PDFVdcwd13381zzz13xmtGR0ezatUq7HY73bp1o1mzZowePZqwsDD3Es+n07BhQ6pVq+bxWL9+PeCa0DclJYXWrVtzxx138NBDD3nUGhYWxrvvvkvHjh1p3rw5P/zwA9988w2VKrnml3r22WfZs2cPdevWJTJSwyDLE4PzXNbuukSkp6cTGhpKWlpaiX64RURERKSMc9hhw2xY/izkpEBYTRj6LYTV8HZlUkaVx+8Gubm57N69m9q1a+NXzoYRiZRnxf3Z0xwuIiIiInJp2bcWvh0LBze69qtcDrfPVdgiIiIXlQIXEREREbk0ZB6GH56BjXNc+5YQ6PIEtLsbTPq1V0RELi79zSMiIiIi5Zs9H9a+Bz89D3lprmMtB0PXp7USkYiIeI0CFxEREREpv/asgm8fheQ/XfvVWkCPaVCjnXfrEhGRCk+Bi4iIiIiUP+kHYdlE2PK5a98/HK57CloPAePZl5UVERG50BS4iIiIiEj5kW+FNW/Byv+BNRMwQJuhrrAlIMLb1YmIiLgpcBERERGR8iHhJ/huHBz5y7VfvR30eBGiW3m3LhERkVNQ4CIiIiIiZVvqPlj6OGz/2rUfGAldJ0GL28Fo9G5tIiIip6HARURERETKJlsuxL8OP0+D/BwwmOCKe6HzY+Af5u3qREREzkj/JCAiIiIiZc+hbfB2J/jxv66wpVZHuO9nuGGKwhYROWdDhw6ld+/e3i7jvK1YsQKDwUBqaqq3S5EzUOAiIiIiImXLxrnw7n9cc7UEVYW+s2DoYohq6u3KRKSUDB06FIPBwJQpUzyOL1y4EIPBcN7X37NnDwaDgY0bN573tQrl5OQQERFB5cqVycvLK7XrnourrrqKgwcPEhoa6tU65MwUuIiIiIhI2WDNhq9GwsIRrl4tdf8DI1ZDs35QCl/ARKRs8fPz43//+x8pKSmlel2r1Vqq1yv05Zdfcvnll9OoUSMWLlx4Qe5RHDabDbPZTFRUVKmEU3LhKHAREREREe878je81xX+mAMGI3R5EgZ9CYGVvV2ZiFwgXbt2JSoqihdeeOGM7QqDDovFQkxMDNOmTfM4HxMTw+TJk7nzzjsJCQnh3nvvpXbt2gC0atUKg8FA586dPV7z0ksvUa1aNSpVqsTIkSOx2WxnrXfWrFkMHjyYwYMHM2vWrCLnDQYDb7/9NjfeeCMBAQE0btyY+Ph4du3aRefOnQkMDOSqq64iISHB43VfffUVrVu3xs/Pjzp16jBp0iTy8/M9rjtz5kxuuukmAgMDee655045pGjVqlV07tyZgIAAwsPDiY2NdYdZS5Ys4eqrryYsLIxKlSpx4403FqlDSp8CFxERERHxri1fwDudIflPCKwCdyyEax/VCkQi58DpdOKw2r3ycDqdJarVZDLx/PPP8/rrr7N///5Ttlm/fj233XYbAwYMYMuWLTzzzDNMnDiRuLg4j3YvvfQSLVq04I8//mDixIn8/vvvAPzwww8cPHiQ+fPnu9v+9NNPJCQk8NNPPzF79mzi4uKKXO9kCQkJxMfHc9ttt3Hbbbfxyy+/sHfv3iLtCoOfjRs30qhRIwYOHMh9993HhAkTWLduHU6nk1GjRrnb//LLL9x555383//9H9u2bePtt98mLi6O5557zuO6zzzzDH369GHLli0MGzasyH03btzIddddR5MmTYiPj+fXX3+lV69e2O12ALKyshgzZgzr1q1j+fLlGI1G+vTpg8PhOOP7lvNjcJb0p+ISkp6eTmhoKGlpaYSEhHi7HBEREZGKxZbrWu55XcG/FMd0cs3XElzVu3VJhVQevxvk5uaye/duateujZ+fHwAOq50DT632Sj3Rz16F0WwqVtuhQ4eSmprKwoUL6dChA02aNGHWrFksXLiQPn36uMObQYMGcfjwYb7//nv3a8eNG8fixYv5888/AVcPl1atWrFgwQJ3mz179lC7dm3++OMPWrZs6XHfFStWkJCQgMnkqvW2227DaDQyb96809b7xBNPsG3bNvc9evfuTcuWLXnmmWfcbQwGA08++SSTJ08G4LfffqNDhw7MmjXLHZLMmzePu+66i5ycHMDVy+e6665jwoQJ7uvMmTOHcePGceDAAfd1R48ezSuvvOJus2LFCrp06UJKSgphYWEMHDiQxMREfv3112J9/keOHCEyMpItW7bQtKnmxyqpU/3snYr+2UBERERELr5ju+H9bsfDlmsedfVsUdgiUuH873//Y/bs2Wzfvr3Iue3bt9OxY0ePYx07duTvv/92994AaNu2bbHvd/nll7vDFoBq1aqRnJx82vZ2u53Zs2czePBg97HBgwcTFxdXpIdI8+bN3dtVq7r+PGvWrJnHsdzcXNLT0wHYtGkTzz77LEFBQe7HPffcw8GDB8nOzi72+yvs4XI6f//9N7fffjt16tQhJCSEmJgYABITE894XTk/Pt4uQEREREQqmO3fwMKRkJcG/hFwy7tQv6u3qxK5JBh8jUQ/e5XX7n0urrnmGmJjY5kwYQJDhw49p2sEBgYWu62vr6/HvsFgOOPQmqVLl/Lvv//Sv39/j+N2u53ly5dz/fXXn/LahRPanupY4f0yMzOZNGkSt9xyS5H7nthz4mzvz9/f/4zne/XqRa1atXj33XeJjo7G4XDQtGnTCzbBsLgocBERERGRiyPfCj88A7+94dqv0R76vQ+h1b1alsilxGAwYCjmsJ6yZMqUKbRs2ZKGDRt6HG/cuDGrVq3yOLZq1SoaNGjg0UvlZGazGcCjF8y5mjVrFgMGDOCJJ57wOP7cc88xa9Ysj8ClpFq3bs3OnTupV6/eedXYvHlzli9fzqRJk4qcO3r0KDt37uTdd9+lU6dOAMUeeiTnR4GLiIiIiFx4qfvgi7tg/1rX/lUPwnVPg8n3zK8TkQqhWbNmDBo0iOnTp3scf+SRR2jXrh2TJ0+mf//+xMfHM2PGDN58880zXq9KlSr4+/uzZMkSqlevjp+fH6GhoSWu6/Dhw3zzzTd8/fXXReY6ufPOO+nTpw/Hjh0jIiKixNcGeOqpp7jxxhupWbMm/fr1w2g0smnTJrZu3cp///vfYl9nwoQJNGvWjAceeID7778fs9nMTz/9xK233kpERASVKlXinXfeoVq1aiQmJvLYY4+dU71SMprDRUREREQurL++h7c7ucIWv1AYMBe6/Vdhi4h4ePbZZ4sM7WndujWfffYZ8+bNo2nTpjz11FM8++yzZx165OPjw/Tp03n77beJjo7m5ptvPqeaPvzwQwIDA085P8p1112Hv78/c+bMOadrA8TGxrJo0SK+//572rVrx5VXXskrr7xCrVq1SnSdBg0a8P3337Np0yauuOIKOnTowFdffYWPj497QuD169fTtGlTHn74YV588cVzrlmKT6sUlbOZyEVERETKDXs+/PRf+LVgZY3oVnBrHITHeLMqkVMqj98NirtSioiUruL+7GlIkYiIiIiUvvSD8OVw2Fsw98IV90G3yeBj8W5dIiIiF4kCFxEREREpXYf+hA97Q1YymIPh5tfh8j7erkpEROSiUuAiIiIiIqUnaQvMvglyjkGVy6H/R1CprrerEhERuegUuIiIiIhI6TiwET7qDTkpEN0a7pgP/uHerkpERMQrFLiIiIiIyPn7dz181Ady06B6Oxj8pWtFIhG54CrwOigiXlHcnzktCy0iIiIi52ffWtecLblpUONKGDxfYYvIReDr61paPTs728uViFQshT9zhT+Dp6MeLiIiIiJy7hJ/gzn9wJoBtTrCwM/AEuTtqkQqBJPJRFhYGMnJyQAEBARgMBi8XJXIpcvpdJKdnU1ycjJhYWGYTKYztlfgIiIiIiLnZs8q+PhWsGVBTCcY+CmYA71dlUiFEhUVBeAOXUTkwgsLC3P/7J2JAhcRERERKbndP8Pc/mDLhjpdYMBcMAd4uyqRCsdgMFCtWjWqVKmCzWbzdjkilzxfX9+z9mwppMBFREREREom4Sf45HbIz4F6XaH/HPD193ZVIhWayWQq9pdAEbk4FLiIiIiISPH9/QPMGwj2PKgfC7d9CL5+3q5KRESkzNEqRSIiIiJSPH8thXm3u8KWhj2h/0cKW0RERE5DPVxERERE5Ox2LIbPhoDDBo17Qd/3wcfs7apERETKLPVwEREREZEz2/Y1fHanK2y5vA/0+0Bhi4iIyFkocBERERGR09s6Hz4fCo58aHYr3PIemHy9XZWIiEiZp8BFRERERE5t8+fw5XBw2qH5AOjzNpg0Il1ERKQ4ShS4vPDCC7Rr147g4GCqVKlC79692blzp0eb3NxcRo4cSaVKlQgKCqJv374cOnTIo01iYiI9e/YkICCAKlWq8Oijj5Kfn+/RZsWKFbRu3RqLxUK9evWIi4srUs8bb7xBTEwMfn5+tG/fnt9//70kb0dERERETmfTPFhwLzgd0HIw9H4TjFpyVkREpLhKFLisXLmSkSNH8ttvv7Fs2TJsNhvdunUjKyvL3ebhhx/mm2++4fPPP2flypUcOHCAW265xX3ebrfTs2dPrFYrq1evZvbs2cTFxfHUU0+52+zevZuePXvSpUsXNm7cyOjRo7n77rtZunSpu82nn37KmDFjePrpp9mwYQMtWrQgNjaW5OTk8/k8REREROSPObDgflfY0noI3PS6whYREZESMjidTue5vvjw4cNUqVKFlStXcs0115CWlkZkZCRz586lX79+AOzYsYPGjRsTHx/PlVdeyXfffceNN97IgQMHqFq1KgBvvfUW48eP5/Dhw5jNZsaPH8/ixYvZunWr+14DBgwgNTWVJUuWANC+fXvatWvHjBkzAHA4HNSoUYMHH3yQxx57rFj1p6enExoaSlpaGiEhIef6MYiIiIhcGuz5sOIF+OUl137b4dDjJTBqFLpc+vTdQERK23n97ZmWlgZAREQEAOvXr8dms9G1a1d3m0aNGlGzZk3i4+MBiI+Pp1mzZu6wBSA2Npb09HT+/PNPd5sTr1HYpvAaVquV9evXe7QxGo107drV3eZU8vLySE9P93iIiIiICJB+ED686XjY0mEU9JymsEVEROQcnfPfoA6Hg9GjR9OxY0eaNm0KQFJSEmazmbCwMI+2VatWJSkpyd3mxLCl8HzhuTO1SU9PJycnhyNHjmC320/ZpvAap/LCCy8QGhrqftSoUaPkb1xERETkUrPrB3jrati7CszB0O99iH0ODAZvVyYiIlJunXPgMnLkSLZu3cq8efNKs54LasKECaSlpbkf+/bt83ZJIiIiIt5jz4cfJsGcvpB9BKKawX0roWlfb1cmIiJS7p3Tun6jRo1i0aJF/Pzzz1SvXt19PCoqCqvVSmpqqkcvl0OHDhEVFeVuc/JqQoWrGJ3Y5uSVjQ4dOkRISAj+/v6YTCZMJtMp2xRe41QsFgsWi6Xkb1hERETkUpP2r2vJ58SC4djt7oZuz4Gvn3frEhERuUSUqIeL0+lk1KhRLFiwgB9//JHatWt7nG/Tpg2+vr4sX77cfWznzp0kJibSoUMHADp06MCWLVs8VhNatmwZISEhNGnSxN3mxGsUtim8htlspk2bNh5tHA4Hy5cvd7cRERERkdP4e5lrCFFivGsI0a1xrvlaFLaIiIiUmhL1cBk5ciRz587lq6++Ijg42D1fSmhoKP7+/oSGhjJ8+HDGjBlDREQEISEhPPjgg3To0IErr7wSgG7dutGkSRPuuOMOpk6dSlJSEk8++SQjR4509z65//77mTFjBuPGjWPYsGH8+OOPfPbZZyxevNhdy5gxYxgyZAht27bliiuu4NVXXyUrK4u77rqrtD4bERERkUuLPR9++i/8+oprv1oL6PcBVKrr3bpEREQuQSVaFtpwmonTPvjgA4YOHQpAbm4ujzzyCJ988gl5eXnExsby5ptvegz12bt3LyNGjGDFihUEBgYyZMgQpkyZgo/P8fxnxYoVPPzww2zbto3q1aszceJE9z0KzZgxgxdffJGkpCRatmzJ9OnTad++fbHfvJZ+ExERkQojbT98MRz2/ebav+Je6PZf8NFwaxHQdwMRKX0lClwuNfpDVURERCqEv5bCgvsgJwUsIXDT63B5b29XJVKm6LuBiJS2c5o0V0RERETKAbsNlj8Lq6e79qu1hFs/gIg6Xi1LRESkIlDgIiIiInIpSt0HXwyD/QWrQ15xH3SbrCFEIiIiF4kCFxEREZFLzc7vYOGIgiFEoXDzDGhyk7erEhERqVAUuIiIiIhcKuw2WD4JVr/u2o9u7RpCFB7j1bJEREQqIgUuIiIiIpcCh8PVq2XL5679Kx+ArpPAx+zdukRERCooBS4iIiIil4Kf/usKW4w+0HeWViESERHxMqO3CxARERGR87TuA/hlmmu713SFLSIiImWAAhcRERGR8uzvZbD4Edf2tY9Bq0HerUdEREQABS4iIiIi5dfBTfD5UHDaocVA6PyYtysSERGRAgpcRERERMqj1H3w8W1gzYTa10Cv18Bg8HZVIiIiUkCBi4iIiEh5k5sGc2+DzCSo0gT6z9FqRCIiImWMAhcRERGR8iTfCp/eAcnbICgKBn0OfqHerkpEREROosBFREREpLxwOuGbh2D3SjAHwaDPILS6t6sSERGRU1DgIiIiIlJerJgCmz4BgwlujYNqLbxdkYiIiJyGAhcRERGR8uCPj2HlFNf2jS9D/eu9W4+IiIickQIXERERkbIu4SfXUCKAq8dAm6FeLUdERETOToGLiIiISFl26E/47E5w5EPTfvCfid6uSERERIpBgYuIiIhIWZV+AD6+FfLSodbV0PtNMOrXNxERkfJAf2OLiIiIlEV5GfDxbZD+L1RuAAPmgI/F21WJiIhIMSlwERERESlr7Db4bAgc2gKBkTDoc/AP93ZVIiIiUgIKXERERETKEqcTFo+BhOXgGwADP4PwGG9XJSIiIiWkwEVERESkLPllGmz4EAxG6Pc+XNba2xWJiIjIOVDgIiIiIlJWbP4Mfpzs2r5hKjS8wbv1iIiIyDlT4CIiIiJSFuz5FRY+4NruMAquuMe79YiIiMh5UeAiIiIi4m3pB1yT5Dps0ORmuH6ytysSERGR86TARURERMSb7Db4YhhkH4GqzaDP22DUr2giIiLlnf42FxEREfGm5ZMgMR4sIXDbbPD193ZFIiIiUgoUuIiIiIh4y47FsPp11/bNb0Clut6tR0REREqNAhcRERERbzi2GxaMcG1fORKa3OTdekRERKRUKXARERERudhsufDZnZCXBtWvgOsnebsiERERKWUKXEREREQutiWPQdJmCKgEt34AJl9vVyQiIiKlTIGLiIiIyMW06VNY/wFggFvehdDq3q5IRERELgAFLiIiIiIXS/J2WDTatX3teKh3nVfLERERkQtHgYuIiIjIxZCX6Zq3xZYNdTrDteO8XZGIiIhcQApcRERERC40pxO++T848hcEV4Nb3gOjydtViYiIyAWkwEVERETkQls3C7Z+AQYT3BoHQZHerkhEREQuMAUuIiIiIhfSvxtgyQTX9vWToOaV3q1HRERELgoFLiIiIiIXSk4KfD4E7FZodCN0GOXtikREROQiUeAiIiIiciE4HLDgfkhNhPAYuPkNMBi8XZWIiIhcJApcRERERC6E1a/BX0vAZIHbPgT/MG9XJCIiIheRAhcRERGR0rZnFSyf7NruMRWqtfBuPSIiInLRKXARERERKU0Zh+CLu8Bph+YDoPUQb1ckIiIiXqDARURERKS0OOzw5XDIPASRjeHGlzVvi4iISAWlwEVERESktPz0POz5BXwDXfO2mAO9XZGIiIh4iQIXERERkdLw9zL45SXX9k3TIbKBd+sRERERr1LgIiIiInK+UvfB/Htc2+3ugWb9vFuPiIiIeJ0CFxEREZHzsWs5zO4FOSkQ3Rpin/N2RSIiIlIG+Hi7ABEREZFyKWUvLH0cdixy7QdXg1vjwMfi1bJERESkbFDgIiIiIlIStlxYPR1+mQb5uWAwQfv7oPNj4Bfq7epERESkjFDgIiIiIlJcO5fAkvGQsse1X+tq6PEiVG3i1bJERESk7FHgIiIiInI2x/6B7x6Dv5e69oOrQbf/QtO+YDB4tzYREREpkxS4iIiIiJyONRt+fRlWvQZ2Kxh9ocMDcM04sAR5uzoREREpwxS4iIiIiJzM6YTtX8PSJyBtn+tYnS5ww1SIbODd2kRERKRcUOAiIiIicqLDf8F34+Cfn1z7oTUg9nlo3EvDh0RERKTYFLiIiIiIAORlwMqp8Nub4MgHkxk6/h9cPQbMAd6uTkRERMoZBS4iIiJSsTmdsPVL+P5JyDjoOlY/Frq/AJXqerc2ERERKbcUuIiIiEjFZMuBbV/D2ndh/1rXsfAY6P4/aNjdq6WJiIhI+Wcs6Qt+/vlnevXqRXR0NAaDgYULF3qcHzp0KAaDwePRvbvnLy3Hjh1j0KBBhISEEBYWxvDhw8nMzPRos3nzZjp16oSfnx81atRg6tSpRWr5/PPPadSoEX5+fjRr1oxvv/22pG9HREREKppDf8K342BaQ1hwryts8fGDLk/AA2sUtoiIiEipKHEPl6ysLFq0aMGwYcO45ZZbTtmme/fufPDBB+59i8XicX7QoEEcPHiQZcuWYbPZuOuuu7j33nuZO3cuAOnp6XTr1o2uXbvy1ltvsWXLFoYNG0ZYWBj33nsvAKtXr+b222/nhRde4MYbb2Tu3Ln07t2bDRs20LRp05K+LREREbmU5WXCn/Nh/Wz4d93x46E1ofUd0OoOCKnmvfpERETkkmNwOp3Oc36xwcCCBQvo3bu3+9jQoUNJTU0t0vOl0Pbt22nSpAlr166lbdu2ACxZsoQePXqwf/9+oqOjmTlzJk888QRJSUmYzWYAHnvsMRYuXMiOHTsA6N+/P1lZWSxatMh97SuvvJKWLVvy1ltvFav+9PR0QkNDSUtLIyQk5Bw+ARERESnTDvwB6+Ngy5dgzXAdM/pAwx7QZohrqWejyaslikjZoO8GIlLaSjykqDhWrFhBlSpVaNiwISNGjODo0aPuc/Hx8YSFhbnDFoCuXbtiNBpZs2aNu80111zjDlsAYmNj2blzJykpKe42Xbt29bhvbGws8fHxp60rLy+P9PR0j4eIiIhcYnLTYO178FYneKezK3CxZkBEHeg6CcZsh/4fQb2uCltERETkgin1SXO7d+/OLbfcQu3atUlISODxxx/nhhtuID4+HpPJRFJSElWqVPEswseHiIgIkpKSAEhKSqJ27doebapWreo+Fx4eTlJSkvvYiW0Kr3EqL7zwApMmTSqNtykiIiJlidMJ+36HDbPhzwVgy3YdN5mh8U2u3iwxncBg8G6dIiIiUmGUeuAyYMAA93azZs1o3rw5devWZcWKFVx33XWlfbsSmTBhAmPGjHHvp6enU6NGDS9WJCIiIucl+xhs/tQ1N8vh7cePRzaC1kOgxQAIiPBefSIiIlJhXfBloevUqUPlypXZtWsX1113HVFRUSQnJ3u0yc/P59ixY0RFRQEQFRXFoUOHPNoU7p+tTeH5U7FYLEUm8BUREZFyKuFH+PQOsBasdOjjD5f3gTZDocYV6s0iIiIiXnVB5nA50f79+zl69CjVqrlm/u/QoQOpqamsX7/e3ebHH3/E4XDQvn17d5uff/4Zm83mbrNs2TIaNmxIeHi4u83y5cs97rVs2TI6dOhwod+SiIiIeNuOxTC3vytsqdIEerwEj+yAPjOhZnuFLSIiIuJ1JQ5cMjMz2bhxIxs3bgRg9+7dbNy4kcTERDIzM3n00Uf57bff2LNnD8uXL+fmm2+mXr16xMbGAtC4cWO6d+/OPffcw++//86qVasYNWoUAwYMIDo6GoCBAwdiNpsZPnw4f/75J59++imvvfaax3Cg//u//2PJkiVMmzaNHTt28Mwzz7Bu3TpGjRpVCh+LiIiIlFlbvnD1bLFbXfOz3LsSrrgH/MO8XZmIiIiIW4mXhV6xYgVdunQpcnzIkCHMnDmT3r1788cff5Camkp0dDTdunVj8uTJHhPcHjt2jFGjRvHNN99gNBrp27cv06dPJygoyN1m8+bNjBw5krVr11K5cmUefPBBxo8f73HPzz//nCeffJI9e/ZQv359pk6dSo8ePYr9XrT0m4iISDmz4UP4+iHACc0HwM1vgOmCj5AWkQpA3w1EpLSVOHC5lOgPVRERkXLkt7dgScE/vrQdBj2mgfGCj44WkQpC3w1EpLTptxQREREp+35+6XjY0mEU9HxZYYuIiIiUaeqDKyIiImWX0wnLn4VfX3btd54A147XpLgiIiJS5ilwERERkbLJ4YClE2DNW679bv+Fqx70bk0iIiIixaTARURERMoehx2+eQj+mOPa7/kytBvu3ZpERERESkCBi4iIiJQtdhssuA+2fgkGI9z8JrS83dtViYiIiJSIAhcREREpO2y58MVdsPNbMPpCv1nQ5GZvVyUiIiJSYgpcREREpGywZsG8QfDPT+DjB7d9BA26ebsqERERkXOiwEVERES8LzcN5vaHxHjwDYSB86D2Nd6uSkREROScKXARERER78o+BnNugQN/gCUUBn8BNa7wdlUiIiIi50WBi4iIiHhPxiH4qDckb4OASnDHAqjWwttViYiIiJw3BS4iIiLiHWn7YfZNcCwBgqLgzq+gSiNvVyUiIiJSKhS4iIiIyMV3NAE+7A1piRBaE4Z8BRF1vF2ViIiISKlR4CIiIiIXV+Ia+GQA5ByDSvVcPVtCq3u7KhEREZFSpcBFRERELp5tX8H8eyE/F6Jbw8BPIaiKt6sSERERKXUKXEREROTiiH8Tlj4OOKHBDdBvFpgDvV2ViIiIyAWhwEVEREQuLIcdlj4Ba2a69tvdDTdMBaPJu3WJiIiIXEAKXEREROTCseXA/Htg+zeu/eufhaseAoPBu3WJiIiIXGAKXEREROTCyDoK826HfWvAZIbeM6FZP29XJSIiInJRKHARERGR0nfsH5jTD44lgF8oDPgEYjp6uyoRERGRi0aBi4iIiJSu/etgbn/IPgKhNWHwFxDZ0NtViYiIiFxUClxERESk9OxYDF8Mh/wcqNYCBn4GwVHerkpERETkolPgIiIiIqVjzTvw3TjACfW7Qb8PwBLk7apEREREvEKBi4iIiJwfhwN+eApWv+7abz0Eer4MJv2aISIiIhWXfhMSERGRc2fLhYX3w58LXPv/mQidHtGyzyIiIlLhKXARERGRc5N9DOYNhMR4MPrCzW9Ai/7erkpERESkTFDgIiIiIiWXsse17PPRv8ESAv3nQJ1rvV2ViIiISJmhwEVERERKZu9q+OxOyDoMIZfBoC+gahNvVyUiIiJSpihwERERkeLJy4AfJsHad137VZvBoM8gJNq7dYmIiIiUQQpcRERE5Ox2/QDfjIa0fa79VoMh9gXwC/FqWSIiIiJllQIXEREROb3sY7D0Cdg017UfVhN6TYe6Xbxbl4iIiEgZp8BFRERETm3bV7B4LGQlAwZofz/850mwBHm7MhEREZEyT4GLiIiIeMo4BN+Ohe1fu/YrN4CbZkDN9t6tS0RERKQcUeAiIiIiLk4nbPoElkyA3FQwmODqh+GaR8HXz9vViYiIiJQrClxEREQEUhNdk+ImLHftRzWHm9+Aas29WpaIiIhIeaXARUREpCJzOGDdLPjhGbBmgskCnR+Dqx4Ck35NEBERETlX+k1KRESkojqyC74eBYnxrv2aHeCm16Fyfe/WJSIenHYH1r0Z5P6VQl5CKk6nE1OwGVOIGVOwGWOw2XM/yIzBZPB22WfkyLaRty8D6950AlpVwTcywNsliYiUOgUuIiIiFY09H+Jfh59eAHse+AbC9ZOg7XAwGr1dnYgA+am55O5McYUsu1Jx5tk9ztvO9GIDGAN93SFMkUAm2IxPuAVjsBmD4cIHM06Hk/zD2Vj3ZpCXmI51bzr5h3Pc503BZgUuInJJUuAiIiJSkRz6ExaOgIObXPt1r4Ner0JYTa+WJVLROW0O8nankftXCrl/HSM/OcfjvDHQB7/64VgahGP088GeYcWebsWRYXVv2zOsODKt4ABHpg1Hpg3bwazT3tNgNuJT2d/1iAzA173tj9Hv3L8mOHLzsRb0XslLzMCamIEzN79IO5/K/phrBuOjsEVELlEKXERERCoCpxM2zIbvxkN+LviFQfcXoMXtcBH+hVtEPDmdTvKP5Lh6sPyVQt4/aThtjuMNDGCuGYJfg3D8GobjGx2EwXj2n1Wnw4kjy+YZyBSEMfaME/bT83BaHdgOZGE7UDSUMQb5usMY30h/fCoH4BPpj0+EHwaf4z3hnE4n+Udzse5Nx5qYjnVvBrZDWeD0vJ7B14i5RjDmmiGYa7meTYG+5/z5iYiUBwpcRERELnV5mbB4DGz+1LVfvxvcNAOCq3q3LpEzcOY7cOTm47Q6wOHE6XCC04nT7nR9mS88dsLz8W3c7XG4XuO0OXDmOzye8di348x3nvRccN7mqsFgNmGwmDBaTBj8fFzPhfsWE0Y/H8/zZhMGv+PnDUYDeXvSC3qxpGA/luvxno0hZlfA0iAcv3phGANKHkgYjAbX8KFgM0Sf+fPNP5ZL/pEc1+NwDrYj2eQfycGR4eodY820Yd2TftINwBTuh2+kPxgMWPel48gq2nvFFOGHuWYwllohmGuG4BsVWObnlRERKW0KXERERC5lydvhsyFwZCcYTHDdU64ViDRXi1xgTqcTp9WOIycfR44dZ44NR07Bfm4+jpx8nDn5BeeLHvPo7VFWZBcNFs6LyYAlJgS/BhH4NQzHp2rARZlTBcDgY8S3SgC+VYoO53Hk5ruDGNvhHI9Qxmm1Yz+W6xkW+RgwXxaMuVYwlpohmGuFuAIfEZEKToGLiIjIpWrjJ66eLbZsCK4G/d6HWld5uyopRc58B448O848e8Gzq0eIwdfo2fPCYgIfY6l8mXdY7cfnDcmw4cgsnDvEdsKwFRv2TCvYnWe/4FkYfI1gNIDR4BpSY3T14sBgAJPBvV147ni7488YDa7PxMdYomdO3DcZcFodOPLyXZ93rufn7rGfm4/DaseZa3e3d1pdAZIpws/di8VSN8z136aMMfr5YK4ejLl6sMdxp9OJI8NG/pFsbEdywObAt0Yw5uggj2FGIiLiosBFRETkUmPLgW8fhT8+cu3X6QK3vAtBkd6tqxQ4sm1Y/83Euj8D675MbP9m4sy3g9H1hdhgKvgSbjIe/zJuOvGcaxujoeCYq51PuB9+jSPwifS/aD0MTuR0OrEdzMK2P9PV06MgRHF9gc8/4Yu83fVFvuALfokCDaOhSAhjsJhcw17cxwqGxJiNOHLt2DMLJ2UtDFZsOK32s9/rRCYDRn8f98Pg5+OxbyzYN/ibPPYL2xZn3pLywGl34sy3u4YlldN5kwwGg2uloxAzljphpXJNp9M1ROxS+e8sInIiBS4iIiKXkiN/u4YQJf8JGKDL49DpETCWvX9FPxuH1Y7tQCbWfa6AxbY/g/yjuWd/4TlK+243pkp++DeKwK9JJSwxIa5A5gJx5OWTtyuV3B0p5Ow8hiPdes7X8ujR4msq6Pni2bMChxNnTj72nPMfFmPwNWIMMWMKMmMK8nUvO2wM9nUdK9wO9C21njXlnSvg06/edpuD5MQMDiakkpSQRtI/aVw3tAm1Lq/k7dJEREqd/tQXERG5VGz5Ar75P7BmQmAk9H0P6nT2dlXF4rQ7sCVlF/RcycC2PxNbchacYhoPUyW/guEOQZirB2MM8HFNpGp34rQ7jm87nHDifsH5wklUC8858x1Y92eSl5CK/WgumasOkLnqAAY/E34NI/BvHIFfg/BzmsD0ZLbD2eTuSCF35zHydqd59FAx+Boxx7hWbjGcOPmq+7lgkla/E4/7uHpMnGEyUqfDNZfK8eEvJ/WaOeHZvW21Y7CY3JOvGoN9XdtBZozB5jI5DEbKppwMKwcT0tzhSvLeDOz5nj/YSQlpClxE5JKkwEVERKS8s+XC0sdh3SzXfq2rod8sCI66ILdzOp04svNdK7yctEqM037q/VOtKOO0OrAdzHKFLAcyIb/o8BhjsNm1lGxBuGKuHlQqwcepOPLyyfs7lZztx8jdcQxHlo2cTYfJ2XQYjGCJCcWvcQR+jSvhW9m/WNd02hzk7U4jd8cxcnceK9JDx1TJD/+GEfg1isBSO9Q1b0gpMxgNGPx8wM8HxSSlz57vwJZnP80jH1vu8f18qx2ns2AldoMBA4Xz0XB8G9fQHQqmqTm+bfDYNxbMUXP8ueC/9QnHjm9zUlsDPmYT/kG++AX6Yiql/++cTieph7I5mJDmDllSD2UXaecf7EtUnVCq1Q0jqm4oVWoGn+JqIiLln8HpdJ7/bGblVHp6OqGhoaSlpRESEuLtckREREru2D/w+VA4uMm132ksdJ4ApTh0wZGbj3Wfq+eJNdH17Miyldr1Cxn8fDDXCPLovWIKtZT6fYrD6XBi3ZdB7vaj5Gw/Rv5JXxp9Iv3xa1wJ/8YRmGuGePQwyU/NI3enK7TJ25XqudqOyYCldih+DSPwaxSOT2XvzBlT0TmdTvJtDqw5+Vhz8skreLbm2E/aP+F8rmd4UvhwlMLEwN7mYzHhH+iLX1DBI/D4s/9J+4VtfM0m8q12kvceHx508J808k6xRHR4tUCq1Qkhqm4Y1eqGElqlbP5/r+8GIlLaFLjoD1URESmvtn0NX42EvHTwj3BNjFu/63ld0ml3YjuU5RGu5B/OhlP9tlAw8SwnrQjjmqi26L5Hm4J930j/gh4swZgq+ZXJL2EA+UdzyNlxjNztx8j7J83Va6eAMcAHv4YRGIPN5P11DFuSZzhjDDEX9GIJx1IvDKNFHYwvtHybnWMHskjem8HhfRmkJWeTl+0ZqjgcpfsrsNHHgK/FVPDwOWG74OFnwtfX5FpJyQFOnDidgPP4xLFOZ+Ex17MTXL3BnAXtHSecczhxFPQYczgKep4VDKXz3Mbd7sTX2PLs5Gblu3qcnQOTr9F1vZMCJ5OvkaoxIUTVDaVa3VCi6oTiF3hheqWVNn03EJHSpr/xRUREypt8Kyx7CtbMdO3XaO9a8jm0eokvZU/Lw7ovg7zEDKz70rHtz/TskVHAFOHnCkZqBGOuGYy5WtAFGf5SVvlU8ie442UEd7wMR24+uX+lkLv9GDk7juHIzif7j+TjjQ1grhmCX6Nw/BpG4FstsMwGScXldBZ+YQeH0zVUzFHwxd7p8Pzyf/zLPpj9TQSEmDFewMmHbVY7R/dncjgxg8OJGSQnZpByIKtYgYrBAGZ/H8x+Pq5nfxMW/8Jt18O972fC1+8UQUrBw1QOl0V2OpxYc/PJybSRm2Uj98TnTBs5WTbyMm1FzjvsTuwFf04EhJhdwUrBI7JGcLn8LERELgQFLiIiIuVJaqJrCNG/6137Vz0I1z0NprP/C7IjN//4qj/70rEmZmA/xco4BovpeLhSELCYgsyl/EbKL6OfDwHNIwloHonT7sS6N52cHUdxZOfjVy8MS/1w1+o8ZYzT6SQvO5+cDCs5GVay022u5wwrOelWcjIK9tOt5GTasNtcc/Q43F0tzo3B4PpSHhhmITDMQlCYhcBwi+d+mAWz39l/LbXm5nNkX0G4ss8VsKQczOJU/bX9An2JrBVMZI1gIqID8Qv0LRKq+FrK7xLNpcFgNGAJ8MVSgnmRnE4ntlw7uVk2MEBwRNntmSYi4m0KXERERMoDpxN2LIKvRkFuKviFQu+3oFGPUzZ35BUsqbw/E9u/GVj/zST/cE7RhgbwjQo83nOlRjA+kQHuyTvlzAwmA5Y6oVjqhJ73tew2B8eSsnDkF/YWceAo6EniHh7icA0PcTgc7l4mhecKtx12Z0GoUjRQKe1hNIUMBtdnYTQcn6zVYABrrh2nw0lWmpWsNCvszTjtNXz9TO7w5cQwJt/mcPdeSU0+9fA2/xAzVWoGE1nTFbBE1gomKNyiIOACMBgM7t4/IiJyZvqTUkREpKzbtxZ+eBr2rnLtR7eGW+MgvBYADqvdvdqPbX9mQbhy6i+mpjAL5suC3OGK72XBWuLXixwOJ//+lcLfvx8i4Y/DWHOKTjha2sz+PgSEmPEP9sU/2ExA8AnbIWb8C/ZNvsYiK+EUBikn758u2HA4XOFPVmoemSl5ZKUef2Se8GzLtWPLtZOSlE1KUtFVbU4UGGZxBSsFjyo1gwkINStcERGRMkeBi4iISFl1eCcsf9bVswXAZMF5xSisDUZi25GHdf9fWPdnkH+af/U3hZrxvSzYFbBUD8L3sqBLamhQvs1OdpqVvJx88vPs2Kx28vMcrmdr4TK8BfuF560O9/K8J54PCDZTo3E4NZpUompM8AWdc8TpdHJoTzp/rz3ErnXJZJ8wrMsS4Oo5YDQaMBZMPGw0GYouAVx4rOD5xADEZDLgF1Q0QAkIMeMfZC61JYCLw2g0EBhqITDUQpVap29nzc33CGGyUvPISnHtG40GKtc4HrAEhFw6/w+LiMilTasUaSZyERG5yJx2B45cO87cfBw5+UW2HanHcCaswXF4Pw5nAA6CcPpVx+EbiT0jH4rOaYsx2Ne1nPJlQfgWPJuCy+cXU6fDSU6mrUhPiKw0z94Rp1p+tjSY/UxUbxRREMBEEBoZUCrXPXYgi7/WJvH32kOkH8l1H7cE+lCvdRXqt6tKdL0wDecS8RJ9NxCR0qYeLiIiIheI0+Ygb28aebtSyUtIw56WhyM3H6f1FIlJEQ0LHgWyAVwBgzHI1yNYMVcPwhRiuQDvoHTZbQ5yMo/PLXJiqFIYqGSm5pGdZi2y1OzpmHyNWAJ88DWb8DGb8LUY8XFvm/A1G/GxFOwXHPMxG084b8JkNpJ6KJt9246xb8cx8rLy+WfjYf7ZeBiAkMp+1GhSiZqNI7isYViJJhhNP5rDrnXJ/PX7IY7+m+k+7mMxUbt5ZRpcUZUajSO0qouIiMglSD1clGKLiEgpcTqc2A5kkrsr1RWy7EmD/NP/NWswmzD6mzBYjBhthzFm7MLgSMNoyMQYGoGxYScMUbUx+vlg9PfB4GfCFGrBFFI25qvIt9rJybQdn6C1IEzJPSlUKXy25dqLf3EDBASbT5pA1UxAqMVjYlVLgE+pfhYOh5PDiRmu8GX7MZIS0jwmmjUYDVSNCaFGkwhqNI445fCj7HQrCRuS+XvtIQ4mpLmPG00Gal5eiQbtqhLTvDK+mjtHpEzRdwMRKW0KXPSHqoiInCOn00n+kRzyElLJ+zuV3IQ0nLmew1yMIWbXUsH1wvCtGojRz+QKTyw+GMiHPz6CFf+DzCTXC6o2dS3zXP9619IvXpZvtZOanO2ezDQ1KYuUQ9mkJedgyytBgFLAaDw+v4h/sC8BoWbPlWlCXc8BoWZMF3AeleKy5uZz4K9UErcfY9+2Y6Qe8pzQ1ezvQ/WGrqFHJh8ju9YdYt+OFJyFIY0BLmsQRoN2UdRpFYlfGVwuWkRc9N1AREqbAhf9oSoicklxOpzYDmaR+3cKeX+lYN2f6eoZEmx2PULMGAu3T9wP8sVQjGEd9gwrebtS3b1Y7Gl5HucNFhOWumHukMUn0r9oDwynE7Z9BT9OhqO7XMfCakKXJ6HZrWC8uEGD0+kkJ8NGSlJWQaiSTcoh13bGsdxTTshbyGgyuMMT/yBf/IIKt4+vfONfELD4BfmWeo+Uiy39aA77t6ewb/vx4UenUqVWMPXbVaVem6oEhZf94V4iou8GIlL6SjyHy88//8yLL77I+vXrOXjwIAsWLKB3797u806nk6effpp3332X1NRUOnbsyMyZM6lfv767zbFjx3jwwQf55ptvMBqN9O3bl9dee42goCB3m82bNzNy5EjWrl1LZGQkDz74IOPGjfOo5fPPP2fixIns2bOH+vXr87///Y8ePXqcw8cgIiLlmT0tj9y/U10hy64UHCd9CXZa7TjSrdjOch1joA+m4BMCmRAzxiAzxgAfbP+6hgrln9TDAZMBS60QLAUBi/myYAymMwQK/6yAH56BA3+49gMqwzWPQtu7wOfCfjHPt9pJP5pLWmGPlUMFPVaSssnLPv0EtJYAH8KjAgmPCiAsKoDwqEDCqvgTEGrB7Gcq1wFKSYVU8qfJ1f40uTq6yPAjW56d2i0qU79tVcKqls5EuyIiIlJ+lThwycrKokWLFgwbNoxbbrmlyPmpU6cyffp0Zs+eTe3atZk4cSKxsbFs27YNPz8/AAYNGsTBgwdZtmwZNpuNu+66i3vvvZe5c+cCrnS5W7dudO3albfeeostW7YwbNgwwsLCuPfeewFYvXo1t99+Oy+88AI33ngjc+fOpXfv3mzYsIGmTZuez2ciIiJlnMNqx7o7zR2ynByCuHuZ1A/DUjsUp82BPcOKPcOKo+DZnn7ivg0cThxZ+a6wJin7NHcGDOBbLRBLvXD86oVhjgnBaC7GXBwHNsLySZDwo2vfHAQdRsFVo8ASfO4fxgmcTifZ6VbSD+eQfiSHtCO5pB9xbacfziErzXr6FxsgpJKfK0yJCiC8aoA7ZPEL8q1QoUpxGQvmc6kaE0LbHjHeLkdERETKmPMaUmQwGDx6uDidTqKjo3nkkUcYO3YsAGlpaVStWpW4uDgGDBjA9u3badKkCWvXrqVt27YALFmyhB49erB//36io6OZOXMmTzzxBElJSZjNriUtH3vsMRYuXMiOHTsA6N+/P1lZWSxatMhdz5VXXknLli156623ilW/ug2KiJQPTocTW1KWa56Uv1PI250GJ65iYwDf6sH41Q/Dr3445prBGEow/4fT4cSRbcORaXMHMfYMK47CUCbLhk9lf1cvlrphmIo7D4fTCbtXwqrXjgctRl9oO8zVqyUosgSfgku+1U56QZCSVhimFAYrh3PIt515BSSzn4nQKgGEVQ0gPOp4qBJaxR8fX03iKiIVl74biEhpK9VloXfv3k1SUhJdu3Z1HwsNDaV9+/bEx8czYMAA4uPjCQsLc4ctAF27dsVoNLJmzRr69OlDfHw811xzjTtsAYiNjeV///sfKSkphIeHEx8fz5gxYzzuHxsby8KFC09bX15eHnl5x8fap6enl8K7FhGR0uZ0OMk/moN1X4Y7ZHFkeg4IMoVa8GsQjqW+a74UYwmW6j2ZwWjAFGTGFGTGNyrwfMsHez5sW+gKWpI2F94EmvaDLo9DRO0zvtzhcJJxNJfUQ9nuR0rBc1Zq3hlfazBAUIQfIZX9Ca3sR0ikv2u74Lm8z6EiIiIiUl6UauCSlORaYaFq1aoex6tWreo+l5SURJUqVTyL8PEhIiLCo03t2rWLXKPwXHh4OElJSWe8z6m88MILTJo06RzemYiIXCj2TCu2pCxsSdnYDmZhO5RF/qFsnCf11DD4GrHUDXMFLPXDTz0ZrbdZs+CPORA/A1ITXcd8/KH1ndDhAQiP8Wiem2VzhSlJx4OV1GTXCkD2/NP3VDH7mQiJ9Ce0sitEcW9H+hEU4VcmVvcRERERqehKNXAp6yZMmODRKyY9PZ0aNWp4sSIRkYrDabNjO5TtClaSstyPk3uuFDL4GvGJCsSvIGSx1Aop1ipCXpF5GH5/B9a+CzkprmMBlchvcz/ZDe4gyxpA1j95pB/ZWzBRrStcyc06/TS+Jh8joVX8CataMPyn4DmsSgCWQPVSERERESnrSjVwiYqKAuDQoUNUq1bNffzQoUO0bNnS3SY5Odnjdfn5+Rw7dsz9+qioKA4dOuTRpnD/bG0Kz5+KxWLBYtHSjCIiF5LT6cSekoftYKZHuJJ/JOfUywsbwCfCD5+oQHzdjwB8KvljMJbNUCHfZic7zUpW4j9krVtM9j9bybIFk2W/g2xTNFm+tclKDyDv83xg+xmvFRRuIbTKCYFKwYS1QRF+GMvo+xcRERGRsyvVwKV27dpERUWxfPlyd8CSnp7OmjVrGDFiBAAdOnQgNTWV9evX06ZNGwB+/PFHHA4H7du3d7d54oknsNls+Pq6xuQvW7aMhg0bEh4e7m6zfPlyRo8e7b7/smXL6NChQ2m+JREROQOn3Un+4Wys/2a6hgMdyMR6IAtn7qmXGDYG+uBbNRDfasfDFZ+qAcVb5ecisdscZKTkknEsl4yjrufMo7lkpeWRlWYlKzXvpCWU2xY8TuZqY/QxEBhqITDUTHAlf4/eKqFV/DH7VajOpiIiIiIVRol/y8vMzGTXrl3u/d27d7Nx40YiIiKoWbMmo0eP5r///S/169d3LwsdHR3tXsmocePGdO/enXvuuYe33noLm83GqFGjGDBgANHR0QAMHDiQSZMmMXz4cMaPH8/WrVt57bXXeOWVV9z3/b//+z+uvfZapk2bRs+ePZk3bx7r1q3jnXfeOc+PRERETsVhtbt6qxzIxHYgC+uBTGxJWZB/im4rJgO+VQNO6LHiClmMZWB5YVue3R2kuEKVnOP7R3PJSreeuifOSUxYCTQdIyDQSWC1aAKqRRMYZikIVywEhJoJDLNokloRERGRCqrEy0KvWLGCLl26FDk+ZMgQ4uLicDqdPP3007zzzjukpqZy9dVX8+abb9KgQQN322PHjjFq1Ci++eYbjEYjffv2Zfr06QQFBbnbbN68mZEjR7J27VoqV67Mgw8+yPjx4z3u+fnnn/Pkk0+yZ88e6tevz9SpU+nRo0ex34uWfhMROTV7ls0zWDmQedohQQaLCd9qgZijg/CNDsI3OhDfKgFen28lL9vGv3+lcnBXKulHj/dWyT3NnDEn8vE1ElzJj+AIP4LCfQi27iLo4FICs7YSYEwh0DcdS/OeGDo+CFWbXIR3IyIiF5q+G4hIaStx4HIp0R+qIlLROB1OHNk27OnWgkceDve2a9+ebj3tRLbGYF+PYMUcHYQp3K9MzLVitzk4+E8a+3ccY/+OFJL3pHO6v+HM/j4ER/i5QpWCYKVwP6SSH36BPhgO/AF/fARb50NeWsELg6HtUGg/AkIvu2jvTURELjx9NxCR0qaB4yIilwinw4n9WC75qXnYM6zY0wrDlLzjgUqGFezFy9lNlfwKwpVAfKODXOFKsPkCv4viczqcHPk3k/3bU9i/4xgH/k4l/6SlpMOjArisQTjh1QIKAhV/giv5YfE/zV9/mcmwebZraefDO44fD60J7YZBm7vAP+zCvSkRERERuWQocBERKYccVjv5h7Jdw30OZhU8MnFaHWd/MWAM8sUUYsYUYil4NmM8Yd8nwg9jGZzMNf1IDvt3pLCvoBfLycODAkLMVG8cTo1GEVRvFE5QuN/ZL2q3wd/LXCHL30vBUTAhro8fNL4JWg2GmE5gLKNLUouIiIhImVT2fpsWEREP9gwrtoNZJ4QrmeQfPs0Syz5GfCIsruAk2Iwp1FzwbDkeqAT7YjCVj/AgN9PG/p2uHiz7dqSQfjjH47yvxcRlDcKo3iiC6o3DiagWWPwJapN3wMY5sGkeZB0+fvyyttBqEDTtC36hpfhuRERERKQiUeAiIlJGOB1O8o/kYDtYMFltwTLLp51PJcjXtbxydBDmgmefSv4YTN6fT+Vs7PkOstNdSyxnp1nJSstz7aflkZVqJTvdtQRzTobnikFGo4GqdUKo3iiCGo3CqVI7BFNJwqPcNNecLH/MgX/XHT8eGAnN+7t6s1RpXHpvVEREREQqLAUuIiJe4Mg7YYnlg65wJT8pC6ftFEOCDOBT2b9IuFKW5lMp5LA7yEqzkpmSR1ZqnitISbOSnebazkqzkp1mJTfr7CsFFYqIDnQNEWocTnT9MMwlHerkcMCeX2Djx7Dta8gv6CVjMEGD7q7eLPW7gcm3ZNcVERERETkDBS4iIheQ0+nEkW5191YpnG8l/+hpllj2NbqClYJQxbdaIL5RgRjNpotf/EmcDifZGVYyj+WRmZJLZkoeGSm5ZKUc389KzTvtykAnM5oMBISYCQyzuJ5DLQSEej4HRVjwDzrHYCnrKGyYDes/gNTE48cjG7l6sjTvD0FVzu3aIiIiIiJnocBFRKSUOO0O8g/neIYrBzJxZOefsr0x2Pz/7d13nFxl2Tfw3ynTy/ZseiMJSSCBAIFUQFooopDQFJBmgYcWeJEmEhBEpT36CBo0KjYQFUQlgCIWSOiYhHQgvWzJ1ulz2vX+ccrM2Tq72WRnN9c3n/mcM2fOXHvPzMnuzG/uc9/wDg/BMyzshCxyZeCgTbFMBkFVdChpHUpag5KxLmkdqZjihCiJ5gwSTWaYYhjdpymiKCBU6rMuXgRLfAiVeBGMmtftQMUf9ByYx7p3NfDeT4C1fwT0rLnNFzXHZJlxOTDiGKDQcV4YY4wxxhjrJQ5cGGOsh8gg6C1ZqHVJqHUpaPUpqHUpqLXJjqdcFgG5MgjP8BC8w6xploeFIPW250YHDN1Ac10KjbsTSMdVKzixLhk9dz2ju7Z1OPBuFwQBCJX6EC7zIVTqR7jch0iZ37xeZq4Hol6IByk0cmgKsPEvZtCy693c9mFHAcd/DTjifMAbPLhtYowxxhhjhzQOXBhjrBNkEPTmDFQrUNHqUlDrzYClw7FWAAg+yemt4oQr1UEInr47JUhXDTTuTWDfzjgadiWwb1ccjbsT0DppU3dEUYA3IMMbkODxy/AFZPjDHoTLfAhbYYq9DJV4IRbTDEfxWuDDp4EPfg4k6sxtogc44jzg+K8CI2dybxbGGGOMMdYvOHBhjB3ynGDFDlQKCFYgCfBUBSBXh+AZEoSnOmj2Winz9+lpMkpGQ8PuBBp2xbFvZxz7diXQvDfZ4ak9sk9C1cgwwmU+eAIyfH53iOL1y/AEpNy631yXPGLhUykXAyJg13tmb5YNfwYMawDecDVw3NXAsVcCkaH92kTGGGOMMcY4cGGMHXL0WBbZHXEoO2NQdsah7k10E6wEIVcHnWBFrg5CLu/76ZczCRX7dsWxb1ccDVa40lKf6vC0H19IRtWoiHkZbV5Kqg7e+C/9Qs0A654H3nsKqFmT2z5qFnD8V4ApnwPk4pu5iTHGGGOMHZo4cGHsEKKpOpItWSgZHZpiQMvqUBUdmqJDzZrbVEXP225Y292366qBYNSL0uogSoYEUDrEXJZUBSD34akzfYE0A2pNEtkdMSdg0Vuy7XeUOwhWhvR9sKKpOlr3pdFSlzIv9Wm01KbQUp9CJtHxVMmhUh+qRoVROToXsITLfAOrV8r+aNkFfPAz4MNfAukmc5vkA6ZdaAYtw4/u1+YxxhhjjDHWEQ5cGBtEDN1AojmLWGMGsYY04tYy1pBBrDGNVKvSZz+rpS6FvZ+0uDcKQLjMZwUwQZQOCTjLaGUAknzgx/7QYwqUnTFkd8ag7IhD2ZMAtDa9VwTAMzQE75govKMj8I6KQK7ou94hZBDizRm01qXRXGeGKa11KTTXpRBvynQ5UG20KoCqUWGz18qoCCpHRRCMHoK9NhL1wPYVZo+WzS8DZL2GJaOAmdcAM74EhCr6t42MMcYYY4x1gQMXxgYQIkIqprQLUmINGcQb00g0dT9tr+wR4Q3IkH0SPF4RsleCxyeZS69obbeu+8zb7X3M7SIkWUSiJWsGCfVptNabPTWUtIZEUxaJpix2b2p2/VxBACIVfjOAqTKDmEDEA0kWIXlE11Juc91cCpDk3FgjRARSDGj1KTNc2RmHsiPWYe8VMSjDOzoK75iIuRwZgejrWU8cIoKa0ZFNa8imVGRTWt5FRTquWs+D+VzoXQxg6/VLKK0Oui9WLyGv/xD9tZzYB+xYAWx70wxaGja7bx93ojnb0KQzAekQfY4YY4wxxtiAwu9aGSsihkFItmQRb8og3pgxl00ZJOz1xky3M9GIsoBIuR/RygCiFeYyYi2jlX74Q54DcioKESGTUNHiBDBmGGMv1axuBkQNGewCIALwCPZFgCzkrsuC0OFtMgR4xNx6Rx1SCEBGFpHyy0gHZGTDXhgBCZJHgtiYhdzaCGlTsxnkyGaQA8AMUpJa+0DFuq6kNFAPplAWJQElVYF2oUpptRk0HTKnA3XGDli2W5d9m9rsIABDjwTGnQTMuAwYMqVfmskYY4wxxlhvceDC2EGkq4YTorhCFWuZbO6+hwoEIFzqcwKViBWkRCvMZajE1y8DpwqCAH/Yg2pJQGXEA70qAGO0Aj1uXpTGDJTmDPS4AiGtQdR7kF50QTEITTqhWTOXLRpBAwB0ME5LHxBlAb6gB/6gDG9Ahi/ogS8owx/yuAKWSLmvuKZP7m/Jhly4sn0FsG9j+32qpwFj55mXMXOAYPnBbydjjDHGGGN9hAMXxvqYfdpPc00STTVJNNWk0LQ3gdb6NFKx7sdQEUUBoTIfIuV+RCr87qV1kTwH94M8aQb0hAIjrkKPKzASqhOk6HEFRt46tK6DFNeJPAIg+GSIfgmiX4YQMJeiX4Zgb/NJgFcEeSSQLJoXSYAhidBEQCCgWidUagZ0+6JSbl0zYGgGdI2gqXnbnHWzvd6gDF/QnD7ZDlHMi8fcFjJvk73FNShw0UrUAzvfzgUs9Rva71N9ZF7AMpcDFsYYY4wxNqhw4MJYL7ULVvbaAUsS2aTW6f1kj+gEKOH8IMVaD5X6IB6EHiqkG7ngJKGaoYmzVKDHVRjWkjKdP56OCH4ZUtQDKeyFGPVCCnshRb2QIl6IEQ+kiLkuBGQ+tWYwSDcDe1cBe/5rLveuAmJ72u835Ah3wMKD3jLGGGOMsUGMAxfGumEHK001STNcKSRYEYCSygDKh4dQNiyE8mEhlA0NIlLuhz/cP+N36AkFyXdrkV7bAD2WhZHqWYgCSYAU9kCMmAGKGPY4IYoZpNjrHghFNjU060PZBFCzBtj731zI0rytgx0Fc9wVJ2CZxwELY4wxxhg7pHDgwg5ZhkFIxxWkYgpSrQpSsayznmxzXc3qHRfJC1bKh1nhyvAQyqqDRXPqiVqbRHzFHqRW17c/3UcExLAXUtjsdSKGzcDEvTRv594ohyA1A9Sty+u58l9g32Z0OK912ThgxDHA8BnA8GOAYUcBvvBBbzJjjDHGGGPFggMXNiiRQYg1ptG4O4l4c8YdqMTMQCUTVwqedUYQgGiRByv5yCBkPm5GYsUeZD9tcbZ7RoYRnjMc3uFhiGEPxKCnXwbYZUXK0M1xVzb+FdjxljnuitFBT6joCCtYmWGGLMOO5vFXGGOMMcYYa4MDFzbgaaqOpr1JNOxKoGFXHA17EmjYnYCa6aRXSj4BCES8CJV4EYxalxKfs25u9yFc5ivKYKUtQ9GR+m8dEiv3QtuXNjcKQODISoTnDod3TJR7qTA3XQN2rAQ2/NkMWpL17tuDle6eK8NnAJHq/mkrY4wxxhhjAwgHLmxASccVM1jZnUDD7jgadifQXJsCdTCVsiSLKB8eQrQygGBJfqjiQ9BaD4Q9g2LqXq0li+Tbe5F4rxaUNnskCD4JoZlDEZ4zHHK5v59byIqKrgLb37RClpeAVEPuNn8JMPmzwMTTgRHHAiWjzC5ejDHGGGOMsR7hwIUVJTIIrfvSZrCyK+4sk60dT6vsD3tQOTKMylERaxlGWXVwUIQpXVF2xRFfsQfptfsAw9wmlfsRnjscoeOqIfr4vzizaAqw7Q1gw4vApuVAuil3W6DMDFmOOA8YeyIge/urlYwxxhhjjA0a/GmM9TsiQqI5i/rtMdTviKFuexz7dsahpDsYO0IASqoCqBwZQeWoMCpHhlE1KoJgifeQOVWGdEJ6fQMSK/ZA2Rl3tnvHlSAybwT8U8p5XBZm0rLA1n8D618ENi8HMq2524KVwJTPAlPPM2cRkjz91EjGGGOMMcYGJw5c2EGXjiuo2x5D/Y446nfEUL89hnRcbbef5BFRMcLsrVI1MoyKkRFUjAjB6z/0Dlsigt6SRXptAxJv7YXekjVvkAQEj6pCeO4IeEfwjDAM5sxCW/5p9mTZ/AqQjeVuCw0Bppxr9mQZPQeQDr3/S4wxxhhjjB0s/G6bHVDZtIZ9O+NO75X67XHEmzLt9hNEARUjQhgyJoohYyIYMjaK8uEhSIP8lKDOGCkVyu4ElF1xKLvjUHbFYSRyoZQYkhE6YRjCs4dDivDpH4c0IqB+o9mTZeu/gO0rATWZuz08FJj6ObMny+hZgFj8gz8zxhhjjDE2GHDgwvqEOQ1zBs01STTVJtG4J4H67XG01KU63L+0OoghYyMYMiaK6rFRVI4MD4hZgA4E0gyoNUkzXLEuWkO6/Y6iAM+IMMLHD0Xw6CoInkPz+WIA4rVmwLLlX+YyUeu+PTIcmPp5syfLyOMB8dAMLhljjDHGGOtPHLiwHtF1A631aTTXJs1wpSaF5tokWmpT0FSjw/uEy32oHhPFkLFm75WqMVH4AofmoUcGQWtM58KV3QmoexOA3sEsSxV+eEdF4B0ZMZfDwxA8/MH5kJRNADveMnuwbPkXsG+j+3bZD4yZA4z/DDD+ZKD6SA5ZGGOMMcYY62eH5qde1i1N1dFSl0JzTQpNNVa4UptCa10KRgdTMAOAKAsoqw6ibFgI5cNCqBpt9mAJRg/dU170pGoGKztjVsiSAGXaDwYshuRcsDIqAs/ICKQQD2J6yDJ0YO8qqwfLv4Bd7wFG/jhHAjDsKOAwK2AZNQvw8NTfjDHGGGOMFRMOXAYIIoJhEHTVgK4a0NosdU3PWyfoqg5dI3ObZm+37qO135a/TMVVxBvSoI5zFcg+CeVDzWClbGgQ5cNCKBsaQrTSP+inYe6Kc2rQzhiyVg8WvbH9eDWQRXhHhK1wJQzvyAikcv8hM8sS60SsBtj8sjng7fY33TMKAUDpaLMHy2GfMaduDlX0TzsZY4wxxhhjBeHApQg07kngzd9/4gQeZnCi58IRK0jpLAA5UHxB2QpTcr1WyoaFEC71HfLTDhMR9OYslF0xKDut04P2JgCt/YskDwnAOyqa670yNAjhEA6mWJ7WPcDGv5ozCu18B0De8eMvAcadmDtNqHw8wKEcY4wxxhhjAwYHLkVAVXTs2dzco/tIsgjJY17kvHVJFiHnrTvXZQGSR7KWonN/OW/d3t8XkFE2LIRAxMO9LixGVoOyK+E6PSh/1iCbGJThHW2FK6PN8VfEQ3S8GtaJ1t3Ahj+bl13vum8bOROYtMAMWYbP4BmFGGOMMcYYG8D4k2ARKB0SxOnXTIUsS7kQpW0okreUJPGQ72HSE2QQSNFhZHVQRjOXWR1GRgdlNWupw8hqoEyb/TI6jIwGvTXr6nwAAJAEeIaF4B0Vgc8KWaQKPjWIdaB5B7DxL8D6F4E9H7hvGzXLnE1oyrlAycj+aB1jjDHWb4gI0HUIMn8sYYwNPvybrQj4Qx5Mmjm0v5sxoJFqQGtMQ92XhtaQgrbPXk+D0u0Hqe0NqdRn9loZFTWXPGsQ60rTtlxPlr3/zbtBMGcUmvp5M2SJDu+3JjLGGGMHi6EoULZvh7J1G5RtW5HdshXK1q3Ibt+O4Q89hOiZC/q7iYwx1uc4cGEDBhHBiCkdhip6c6Z9D5S2RAGiX4LgkyD6ZAh+CaJPguCXraW13SdZ+8nO/nKZH1Lk0J1tiRWocYsVsrwI1KzJbRdEYMzcXMgS4YCVMcbY4KS3tCC71QpTtm4zl9u2Qt21GzCMDu+T3brlILeSMcYODg5cWFHSWrJQdsag1aecUEXblwYpeqf3EXwS5KoAPFVByJUByFUByFVBSBEPRJ8EyOIhcboPGQaMVApGIuFc9ETSXE8mYCRT5o6iCAiAIIpmICAIgCiYz5Egdni7IArmfoIIweeFGAhA9PshBAIQfT5z6fdD8PsheL09fr5JVaG3tpqXlpa8S971Vve64PHAO3YsvOPHwTduHLzWRR4y5OC83plWYPUzwOrfArVrc9sFERg7PxeyhIcc+LYwxhgb9MgwQIoCymbNpaLAyCogNbfNcG5TQUqbbVnzPiACZAmCJEOQJfOUnk7XzaWzLskQPDKMRALZbdugbDFDFWXrNuhNTZ22XQyH4T1sPHzjxsM7fjx8h42Hd9x4eEfxKbWMscGJAxfW74gIWmMGyrZWZLe1Irs9Br2pg+mUAUAE5DI/5LxQxWMFK2J4cAzya2Sz0FtbYbS2Qo/FrAAiBr21BUYsDiOZgJ5IwLBCFD0Rd9bNUCXZ3w/BJAh5AYwPor9NOOP3g7JZV3hiJBK9+lHq7t1Irljh2iYGg1YQMx7ecWNzYczYsRADgf1/fHXrgfd+Cnz0e0C1nnNBMmcWskOWUOX+/xzGGGMHHRGBVBWUSsHIZGCk06BMxtymaWaQoWlmyKFpgL1dVUGqvexgH9W8blhBCamqFYoouYvqvm6oVnBibYfWN6dKH0jy8GG5UGX8OHjHmeGKVFk5KN6rMcZYoThwYQcdGQStPmWGK9bFiLeZ8UcAPMPD8AwNuUIVudwPQR4Y46aYp0DFoO3bZ16amsxQIRYze2xYYYph9+iwrlOmk7Cpp2QZUjgM0bmEIIXCEENBAAKIDMAg8xsuMsxB6wwyu/sStb/dXjcMEBnmN2SZNIx0BkY2A0qbb0ih6/YTAEqloKdSPWu3IECMRiGVlkAqKTWXpaXuded6KSidMr9d27YdyrZtZrfl3XtgpFLIbNiAzIYN7Z+aYcNcvWF8kyYicPTREL3dnDamq+Y0zu/9FNj5Vm571RRg5jXAEQuBUEXPHi9jjB0EZBgwkkkY8Tj0eNxcxuIwEtYyHoMeT+Qt4yBdN3/vA9bfgrx1AGSfy0tod5u9P4EA3TD/dhgGoOvm35f8ba6l3u42CILZa9LjMZdeDwSPuRQ9+de9bfbLrUMUQJksjHTK/HuVycDIpEGpNIxMJvf3LJ0Gpc1tnZ3+UlTs58bnc54b0esraJsgiiBNB+kaoGnWug7SVKDDdWs/3bqPqkHw+Vyhit3bVAwG+/uZYYyxosCBCzvgSCeoexO5gGV7rP1AtpJgzvYzrgS+cSXwjolA9BV+eBIRjHgcWkMj9MYGaI2N5npTIyBKEMMhiKEQpJC5FEMhM4TIu17oKTCk69CbmnJBSrtLg7NOitLTp8skipAiEYilJZCiJZBKSiBFoxBLopDCkVyAYocpIXMpha3HFYn06pSevkCqar15zbi+FXS2pXNvbAW/zwpP8oKUaBSC1LPpkIMzZ7rboChQdu2yAhgrjNm6Fcq2bdBbW6HV1ECrqUHyrVxoIgQCCJ1wAkLz5iE8fx68Y8bkCsZqgA+fNi+JWusOEjDls8DMrwBj55mnWjHGihrZobGum70NdOuDpKpCDAYhhcP93UQHEZkf/FMp85JOw0ha66mks51SKRipvP1SqVywkkiYIX/CDFCcMIT1jMeT663p8QIe2QxyZI+59HjM023spdcDyG32sa975Fw4lB8MOUGSuU10be9gX48XotcDeAZH717GGBusBKJD969vLBZDSUkJWltbEY1G+7s5g4aR1qDWJK1wpRXKjhhIcX9LJHhFeMdE4RtrBSyjIu1m/CEiGK2tufCksQFaQwO0hkZojQ3QGxrN2xoboTc29j7csHk8kIJBVwhjhzJGJg1t3z7o+8wwpyffeonRKOSqKsjl5ZBKSyCW5IUoJVFIJSVmj46S0tz1cNgcO4X1Oa25Gcq2bc4lu3Ub0h99BL2hwbWfZ9QohI+agFB0D4LqSkiS1QsrNAQ47irg2Ct5hiHG9hMpijtQSKXMUCGdcgcKrrDB3jcXOpinc3Tzjby13hUxFII8bCg81UMhD62GZ+gwZ+kZWg152LD9CmWMbNYM5OvzQvr6endo39QISpqP8UAEJILHY/7NiUQgRiK5ZTQCMRKFFAk7S1jT9Dof6Nsu0XY7nOvOfURrDDBJAkTJHAtMlMwxwyQJEEXz750oQZCs8cPabCPDaH/qjaqap+p0cBqO4bpunYZjGBACfvP01mAAgt9aD1inujpjkgXNbX5/bpvH0+evAytO/NmAMdbXOHDhX6q9QgZBb86YA9ruS0PbZw1uuy8FI6G2218IyPCNjTo9WDzDQ4AoQG9shLp7N5Q9e6Du3gN1926oe/ZA2bMb2t4akNq+VlfEcBhyRQWkykpzWVEO6FY36ryLbg0eaySToHS650+AIECqqDCDlKpKa2ldKq3lkCrIlZUQ/f6e12cHFRkGsps3I7FiBZL/+Q9Sq1aZXdptIiE40o/Q/BMRPv8r8B1xJH+jyFgeuzeG3twMzR6XqbnFPfh1c3O760ZPTzk8UESx4CBdDIUgDx0Kz9C2ocxQiH5/u16PqhOoNMBobe1d84JBCMEgxLaXQMBchoLufQJBM0AJ20GKFaxEoxB9vl61gbFDAX82YIz1NQ5cBuAvVdIM6EkVRkKFnlBgJFQYCQV6QgUMMqc5DphTGot+GUJAhui3rgdkCH7Z/IapAEZGs6ZfTrmDlcY0oHV+6EglXnhHR+EZ6oXgS8BI1EHbkwtT1N17oO7ZU9B4JWI0CrmiwhWkyJX2eiXkSuu2iopehRuk67lZffJDmUQulBF8XneYUlFujtTPBo+GT4D3lwGrn4GeiCNV70WyLoxEQynUJncoJ1VVIjx3HkLz5iE0dw7ksrJ+ajRjHTNnK0u3C5uNlLVMp81AW9OsQT2tpWZtswf91DrYbm/LH/S6pWW/ehkKHk/XoUJ+oBBou0/APMWio5lUrHVBksxTPDpalyQIoggjmYRaVw+ttgZqbR20ulqoNbVQ62qh1dRCravrdWDieqxe6+/JkCHusN6+XlFu9q60Hp/g93OPR8YOkoH62YAxVrw4cCmCX6pEBFJ0GHHVDFLiinuZF6zocRWU2f/R6QWfBNEv5YUzZiAjBGTAICdkaTeYbT4REIME0ZMFUQJQmqAnamE074FWvxfqnj3dzzojCJCrq+EZOQLeESPhGTECnpEjresjIFVVdT+QKWO9ldgHbPknsOZZYOu/ctvLDwNmfhk4+otAoBTKjh1IvLkCyRUrkHz3XXevKEGA/8gjEZp1AqSycohB8xtnwf7mORB0ttnfRguBAH+AYh0iXTdnH4snrMFMY2YYnD/AqT1LWdswJf9ygE5H6Y7g8eTGYyory627rptjNsllZeYpltYYWgOBkUq5whitrhZqbR3U2hpotXWgTAZSVSU8bcOUvEBFjEa5hxxjRapYPhswxgYPDlyK4Jdq5tNmNCxb17M7iYAY8kIKeyCGPZDCXnNaZFGAkdFgZHQYaQ2U0czraR2U0UBqz0fcJyMFyjTCiNdCb9oJvXk3jEQtKNUEoPvDR6qshGfEcDNQscIUz4gR8I4cCc+wYQPmjTYbBHQV2PUe8Ok/gC2vAzVr8m4UgElnAsd/GRh/inmKQQcMRUH6v/9F4s03kVyxEtnNm3vVFGfMADuEsUOZkD2bVCg3w1Qo6B4gORTKDZocCpkBDn+AO2ic6WLtwaCzWVA2CyOTBWXtbYq1bm6zbzeSSejxGAxrFhhnthhrcNM+n9ZdFN3jUoVCZm+RQDDX+8PjMQcBlWVzgE9ZhuCRc71AXIN+2ts9ELweZ7YwM0AphRAM8rHIGBuwiuWzAWNs8OBzIoqAFDYDB8ErQgxbIUrIAylihihSyAMx4s1tC3nMU4MKPC0oH2kGjIwGZU89spu2ILt1F9SdNVDrGqDH0hA85jR+RqIORrwWRqIO0NqPcSL4/fAMHwapvBxSRTnksnJI5eWQK8ohlZlLzwgzWBEDgf17ghjbH83bgU9fN3uybP0PoMTdtw+dDkw8AzjmcqBsbLflRK8XoVmzEJo1C/j616HW1SO5ciXSH61xBvt0Zg2xBwG1lpQ3XgWl09DTaeh98RhF0Rng2ZypKmLOamUPjFkShRSJQiqJWoNjRt23RyIDuseNoSjmTCyxOIxYK/S41TPE7hUSj1sDbFqnyKgqSFNzp9Qo+dtzS2iq+7ZsFoYVrhzo3iOCzwcxGjFnJbOX9jgcrhnWcgN9S+2ClZB5OgoHIIwxxhhj/YJ7uBRBiq2nM9B274VUUQopHO7THh9kGFB27EB240ZkNm5CZuNGZDZtajcji00eNgy+ww5zxkSRy8sglVmhSnk5pHJzmxgM9lkbGetTShLYvjLXi6XxU/ftwQrgsFOBCacCh50ChIcctKaRYVhTY6edWVco3XaGlrwxhOzTRhIJZ4whPene3icf/AXBnFY8EjFP8YhEzF437aYstaYtzZ+y1NP57RAlwNBBulHgUs9N2asbIMOcrteIJ8xeITErSInFzFDF2kbZ7P4/B/vx3Al+P0Sfzww3fF6IPn9um89nTiXr85shSiiUNztMuN2sMKJ1G59KyRhjB1+xfDZgjA0e3MOlCChbt2D7oguc64LfDzESdn+zmf8NZ/7MA/kzEITD0JpbkNm4AVk7XNm82fWtukMU4R03Dv4pU6zLZPimTOHBP9nAQwTUb8wFLDveAvS8wTsFCRh1AjDhFGDCacDQozo9XehAE0TRGRS0Lzgzw7jCmbzTVFpj7YOKmHsbZTIAEQzrPti7t0/adtAJgmsmFnMZgRQtgRgOmQGGc1qM1zmVRvDIeafLeMzTZTye3Gk0+bf7fBB8fog+rxOowOPhHiSMMcYYY6xDHLgUAcpmIQaDzvSYlMlAz2Sg7+u4F0pPCT4ffIcf7gQr/ilT4Js0iU/1YQMTkdlrZefbwI63ga3/BuJtQoKS0WYPlgmnAuNOBPwl/dLUA00QhFyA08uOOoaiOOGMEbcCmdYYKJOGoSggRTFPq3HWFfP0Gmdd6Xw/Q4cg5maBKWgpiYBoLQXRnL0mGjFPiYpGzJ4g9rIkmpvqNhQa0KdFMcYYY4yxwYcDlyIQPOYYHP7fD0GaZs5O0XZGCmsMAnugRT0Rh9HuNnMpBoPw2b1WpppL79ixPIUxG7h0Dahba4YrO98Cdr4DJPe595EDwNh5VshyGlAxAeBeBwURvV6I1rTrjDHGGGOMsb7Dn8KLiCDLzmwPjB2y1DSw+wOrB8tbwO73AaXN9OKSDxh5HDB6NjB2LjB6DuDx9097GWOMMcYYY6wDHLgwxvpXqgnY9W7uFKG9qwBDde/jKwFGn2AGLGPmAMNnALKvf9rLGGOMMcYYYwXgwIUxdnClmoDtbwLb3jB7sNRvaL9PZFguXBk9Gxgytd8GumWMMcYYY4yx3uDAhTF2YGViZrCy7Q3zUre2/T4VE4HRs3IBS9lYHoOFMcYYY4wxNqBx4MIY61tKyjxFyA5Y9q4CSHfvUzXFnD3IHn8lXNU/bWWMMcYYY4yxA4QDF8bY/tEUYM8HuYBl9/uArrj3KR9vBizjTgTGzgfCvZzDmDHGGGOMMcYGCA5cGGM9Y+hAzepcwLLzHUBNufeJjnAHLKWj+qWpjDHGGGOMMdZf+nwUyvvuuw+CILgukydPdm7PZDK4/vrrUVFRgXA4jEWLFqGurs5VY+fOnTjnnHMQDAYxZMgQfP3rX4emaa59/v3vf+OYY46Bz+fDhAkT8PTTT/f1Q2GMAQAR0PAJ8N5Pgd9dCjw8DvjpKcA/7gO2/NMMW4KVwBELgc9+H7jxv8At64HzlwJHf5HDFsYYY4wxxtgh6YD0cDniiCPwj3/8I/dD5NyPueWWW7B8+XL84Q9/QElJCW644QYsXLgQK1euBADouo5zzjkHQ4cOxVtvvYWamhp86UtfgsfjwUMPPQQA2LZtG8455xxce+21+O1vf4vXX38dX/7ylzFs2DAsWLDgQDwkxg4t8Vpg63+Abf8Btv4biO1x3+4rAcbOy/ViGTKFB7lljDHGGGOMsTwCEVFfFrzvvvvw4osvYvXq1e1ua21tRVVVFZ555hlccMEFAIBNmzZhypQpePvttzFr1iy88sor+OxnP4u9e/eiuroaALB06VLccccd2LdvH7xeL+644w4sX74c69atc2pfcsklaGlpwauvvlpwW2OxGEpKStDa2opoNLp/D5yxgSwTA3asNMOVrf8B9m103y55gVEnAONPBsZ/Bhh2FCDxGYmMMcYYGzz4swFjrK8dkE9Mn3zyCYYPHw6/34/Zs2fjO9/5DkaPHo0PP/wQqqritNNOc/adPHkyRo8e7QQub7/9NqZNm+aELQCwYMECXHfddVi/fj1mzJiBt99+21XD3mfx4sVdtiubzSKbzTrXY7FY3zxgxgYaTTEHt936b7MXy+4P2swkJADDplsBy8nAqFmAN9g/bWWMMcYYY4yxAajPA5cTTjgBTz/9NA4//HDU1NTg/vvvx/z587Fu3TrU1tbC6/WitLTUdZ/q6mrU1tYCAGpra11hi327fVtX+8RiMaTTaQQCgQ7b9p3vfAf3339/XzxMxgYWXQVq1gDbVwDb3wR2vNV+oNvy8cC4k8yAZdyJQLC8X5rKGGOMMcYYY4NBnwcuZ511lrM+ffp0nHDCCRgzZgx+//vfdxqEHCx33XUXbr31Vud6LBbDqFE8oCcbhDQF2LvKCldWAjvfBdSke59gJTDeDlhOAsrG9EtTGWOMMcYYY2wwOuCDMJSWlmLSpEn49NNPcfrpp0NRFLS0tLh6udTV1WHo0KEAgKFDh+K9995z1bBnMcrfp+3MRnV1dYhGo12GOj6fDz6fry8eFmPFRcuapwXtWGn2Ytn1HqCl3fv4S4Exc4Gxc82AZchUQOzzicoYY4wxxhhjjOEgBC6JRAJbtmzB5ZdfjmOPPRYejwevv/46Fi1aBADYvHkzdu7cidmzZwMAZs+ejW9/+9uor6/HkCFDAACvvfYaotEopk6d6uzz8ssvu37Oa6+95tRgbNBT0+YYLNtXmiHL7vcBLePeJ1gBjJkDjJlnzijEAQtjjDHGGGOMHTR9HrjcdtttOPfcczFmzBjs3bsXS5YsgSRJ+MIXvoCSkhJcc801uPXWW1FeXo5oNIobb7wRs2fPxqxZswAAZ5xxBqZOnYrLL78cDz/8MGpra3HPPffg+uuvd3qnXHvttXjiiSdw++234+qrr8Y///lP/P73v8fy5cv7+uEwVhzUDLDrXfMUoe0rgT0fALri3idUZfVgsQKWysM5YGGMMcYYY4yxftLngcvu3bvxhS98AY2NjaiqqsK8efPwzjvvoKqqCgDwv//7vxBFEYsWLUI2m8WCBQvwox/9yLm/JEl46aWXcN1112H27NkIhUK44oor8K1vfcvZZ9y4cVi+fDluueUW/OAHP8DIkSOxbNkyLFiwoK8fDmP9Q9eAmtW5WYR2vgvoWfc+4aHm6UFj55m9WConAoLQH61ljDHGGGOMMdaGQETU343oL7FYDCUlJWhtbUU0Gu3v5rBDGRFQv9EMV7b+xzxNKNtm2vLwUHP2ILsHS/l4DlgYY4wxxvoIfzZgjPW1Az6GC2OsE83bzXBl23+AbW8AyX3u2/0lwNj51lTNJwGVkzhgYYwxxhhjjLEBggMXxg6WRL0ZrGz9t7ls2eG+XQ4AY2abvVjGnQQMOwoQpX5pKmOMMcYYY4yx/cOBC2MHSqrJnKJ5+5vAtjeBfRvdt4syMOI4M2AZfxIwciYg87TljDHGGGOMMTYYcODCWF/JtAI73jLDle1vALXrALQZImnoNLP3yriTzN4svki/NJUxxhhjjDHG2IHFgQtjvZVNADvfMcOVbW8ANWsAMtz7VB4OjJtvjsUydj4QquiftjLGGGOMMcYYO6g4cGGsUEoK2PVu7hShvf8FDM29T/l4ayYhK2CJVPdPWxljjDHGGGOM9SsOXBjriJICGj8B9m02p2ve9S6w+31AV9z7lY4Gxp6Y68VSMqJ/2ssYY4wxxhhjrKhw4MIObZkY0PAxsG+TdbHWW3ai3fgrABAZngtXxs0HysYe7BYzxhhjjDHGGBsAOHBhh4ZUU/tQZd9mIL638/sEyoGqyUDV4eYUzeNONE8ZEoSD127GGGOMMcYYYwMSBy5scMnGzVOA6tYD9RvM9X2bgOS+zu8THmqGKlWTgapJ1nIyEKo8eO1mjDHGGGOMMTaocODCBiZdBRo+MUMVO1yp2wC07uz8PiWjrWDl8FzAUjkJCJQetGYzxhhjjDHGGDs0cODCihsR0LrLDFPq11vLjea4K4ba8X0iw4AhU4HqqeZyyBSgYiLgCx/ctjPGGGOMMcYYO2Rx4MKKh306UO1aoG6d1XNlI5CNdby/N5IXquQFLMHyg9tuxhhjjDHGGGOsDQ5c2MFHBLTsAGqtUKVurbnevK3j/UWPeepPtdVbZcgR5nrJKB7AljHGGGOMMcZYUeLAhR1YSrJ9r5W69Z33WokMA6qPAKqPtC5HABUTANl7cNvNGGOMMcYYY4ztBw5cWN9QUkDjp+bYKg2fAPs2mr1WmrYCoPb7S15z4Fo7WBlqLXlmIMYYY4yxQwoRQeBey4yxQYgDF1Y4InN65YaPc8FKw8fAvo+7nh0oNCQXqNjhSuUkQPIcvLYzxhhjjLGDjojQlGlCTbIGexN7UZOsca3vTezFN2d9E2eOO7O/m8oYY32OAxfWnq4BzdvbBysNHwOZls7vFygDKg8HKieagYodsoSHHKyWM8YYY4yxg0gzNNSn6tuFKPayNlmLjJ7pssbe5N6D1FrGGDu4OHA51GgKkKgFYjVAfG/eMm+9dU/nUy5DAMrGmIFK5SQrXDncXA9VHNSHwhhjjDE2EBhkQDd0qIaKrJ5FRssgraeR1tLIaBnzumZd1zNIq+ay7XZ7X83QQPY/6mQJAsj82fn7AnCt29c7Wgfg2q+tpJpEfaoeOundPgdVgSoMCw/D8NBwDAsPw7BQbn1keGRPn1LGGBsQOHAZLAwdyLQCiTozPInXuEOV2B5zW3JfYfXkQK6nihOsTAIqDgM8gQP7WBhjjDHG+ohBBlJqygku7EtKc2/LDzeci5q3rqehGzp00qEZGnTS2103yHDdppEG3dDbhRiDjSzKGBocmgtSwsOdMGV4aDiGhobCK/EECIyxQw8HLsVISQHpJiDV1GbZbC7Tze1vS7egw8FpOyJ5gchQIDIciA7LLaPDzfWSkUB0BCCKB/JRMsYYY4wVRDM0xJU4YkoMsWwst25fsrF21+19EmoCBhn9/RBcPKIHATkAv+w3l5LfuW5va7vd3uaTfJBFGQIECIJ1sf8JbZbWuiiY7+na3oY249QKbTa0Hci27e0+yYdhoWGoDFRCEqWCHrumqkg0NiDe1IB4YwPiDfsw/tjjUTV6bM+eRMYYGwA4cCkGez4E/nJTLjzRuj7PtUv+Uis4GdYmTBlhbRsOBCsAHgmeMcYYYz2kGipaMi1oyjShMdOIxnQjmjJN5vW8dfuS1bO5D/0QYX7G7zwIcO1jBQOqoSKpJve77QIEJ7QIyAEEPAH3dTmAoBxsF3A44Yfsh0f0QBIkSKIESZAgi7JzXRZk122d7eOVvJDFA/MWnIigZjNIx1qRam1FKtaKVKwF6VgMqdYWc3vcXAeAQCTquvgjkXbbApEoZG9hvVN0TUOyuQmxxn2INzaYwUpjA+LW9Xhjg/Oz8/lCYQ5cGGODEgcuRUEA6ta5N4kyECgHguV5y7I21zu4nWf+YYwxxlgBiAhxNY7WbCti2Rhas61oybagVTGXzZnmdkFKS7al5z/HGi/EgFFwZ9zOhDwhRL1RRLwRRL1R8+JzX494Iyjxlbiuh71h+CX/gJl6WNdUKOm0dUmZy0zuejoeQzqeF6JYl3RrKzRV6fP2eHz+DsMYQRRdoUqipdmc1bIbsseLSGUlIhWViFRUoXTosD5vM2OMFQMOXIpB5UTgsufdAYovwr1QGGOMMVYQRVecUKQ504zWbCtalVZzaV+sIMUOV2JKrKDBTtsSBRGlvlJUBCpQ7i9Hub8cFf4K53qF39oeKIdP8gFAlwO7GmQGMfkDu9rhDIEgi7ITnByoniF9zdB1MxSJtSIViyEdbzXDkXgMSjqFbMoMUNR0ygxSUqlcoJJJQ1c7m7ygMLLHi0BJCYJR8xKwLvnXBUFwgpt0PIZMPO66bl/IMKBmM1CzGcQbuh8LUJRkRCoqEKmosgIVM1QJO+uVZljD73MZY4eAgfFXa7DzRYAJp/V3KxhjjDFWJFRddQUojZlGNGea0Zxtdp2y05xpRnOmGQk10eufFZADiHqjKPGVoNRX6vQOccKU/GAlUIESb0nB43UMBkQETVWQTSTMXiSxGFLxVqRjrU7vknQshlSsxQxXYq3IJBMF9fTojuz1wRsIwOsPwBMIwBcIwhsIwB8KI1BSaoUnUQSj5nqwxAxTPL6+6c1DRMimkp2GMYau50KV8kpEKqsQjJZA4HEAGWMMAAcujDHGGGMHhWqoaM40Y196HxrTjWhIN7gu9rbmTDPiarzH9WVBRpm/zLz4yhD1mSFKibfECVOivmi763YvlMGKiMxeJckkMskElFQKmVQS2WQC2VQK2ZS1TCZd60o6iUwyiWwyCUPXev6DBQH+cATBSBTBklIEouZpOL5QGF5/wAxSrACl/XVzKUr9G2wJggB/KAx/KMyn/TDGWC9w4MIYY4wx1g3d0KEaau6iq1AMxVnXDA1JNdkuRGlIN6AhY4YpzZnmHk0PLAmSE6CU+8tR7jNP0ynzlaE8YF63byvzlyHqPbRO0zB0HcnWZiSbm5FsaUaypclab0KiuRmplmYkWpqQammGrvUiMGlDEEQnNHGfphO1lqV56yXwRyIQD6GeQIwxxtrjwIUxxhhjA55BBlJqCkk1mbtoSSQVa5m3PaEkkNLMfRNqAik1hYyegarnAhXN0KDoinO9r6YVFgURFf4KVAYqURGoQFWgylmvDFSa458EzHFQIt6IM4vPoYSIkI7HEG/Yh1hDPeKNja4wxQxXmpGKtfbotB3J44EvGDIvoVDP1oMheP1+PlWGMcZYj3DgwhhjjLGioRqqM8hrS7al3bqzTcmt2wHKwSSLMjyiJ3eRPAjIAVQGKlHpt8KUYJXremWgEqW+0kNq/JOOaIqCeFODFajsc4IVez3esK/gmXYEUUSopBShsnKESsvMS1k5QqXlCJWVIVRShnBZOQIlJfB4B/epU4wxxooPBy6MMcYYOyCICAk14RrktSnThKZ0kzn4a9qcZrgl24KYEkNLtgVJNblfP1MWZAQ9QYQ9YQQ9QYQ8oe7X5RD8sh9eydsuROns+qF06k6hiAhqJo1ka4vZA6W1BYnGhnahSqq1paB6obJyRCurECmv7CBQMdcD0SiftsMYY6xoceDCGGOMsYIouoKYEkNCSSCmxFwz6NjrbbdpRs/HzhAgIOKNoNRX6syakz+DTtv1qCfqhCg+ycdhSB9TMmkzQGlpQcoKU5KtLUi1NiPZYi7N7S3QlGxBNWWfD9GKKkQqqxCtGpJbr6xCpHIIwuUVkD2eA/zIGGOMsQOLAxfGGGPsEGHPktOSbUFCSSCuxM0ARTXX7SAlrsSdbfkXxSjsNI+2gnLQHPQ1kBv4tdxvDv5a6s8LVbxmkBLxRg75024OBjWTQaK5EYkm8xJvakSyuclcb25EygpWtGxhIYrN4w8gVFKKYEkpwmXliFQNQbRyiBWmmKGKPxzhYIwxxtigx4ELY4wxNkCphoqWTIvZq8Q6Rac522zOiJN33e5xEld6PtVwRyKeCCLeiGuGnAp/hbNe7i93LmX+Mvhlf5/8XFYYw9CRamlxgpNkU5MTrOSHKtlU4advyT4fQqVlCJaUIlRShlCpGajY24Il1uk+JaXw+Pn1ZowxxgAOXBhjjLF+Z491Yg8G25ptRUyJIZaNOYPGxpSYM2isPRZKTIn1+GeJgogSbwmivijCnjAi3kju4okg7DW3Rb0d3O6NIOQJHZIz5xwsRAQ1m0E2lYSSSiGbSiKbTJpL67qSbr9dSSWRTafMbelUwbP3eHx+hMsrzEtZuWs9VGqOlRIsLYXXHzjAj5x1hoiQ1QxkVB1pVUdGNaBoBlTdgGYQNN2AqhM0w4Cmk7NdtbfrBlRrP00nqNZ+AgCfR4RXEuHzSPDJIryyCJ+cv+7e5rPXrfsRgKSiIZ7RkMhoSGRVcz2b2xbPdnKbtT2eUXHf547AhceN6u+nmjHG+hwHLowxxgYle7abWDYGURCdAU+9otdZl0V5v8IDVVeR0lJIa2lzqabbXXfWtTTiStwdpljhSlyJQye9V20QBRGlvlJXj5IyX5lz+k5+j5MyfxlKfCUcmPQTMgykYq3mTDyNDYg37kOsscFZjzc2INXSDEPv3bGQTxBEhMrK2oQobZblFfAGAnxqTx+xg5FYWkXMChKcZdpcxjMa0k5wYl8MpBUdGc1ct7en824f7OKZno/1xBhjAwEHLowxxoqeQQbiShwt2RY0Z5qdcUias83OKTX515szzYirhZ0+IwsyPJKnw2l+7XVZlKHoiis8SatpaNS3HxL8kh9RX9QZz8QZFNYbdZalvlLnFB4OUIoHESGTiOfCk4ZciGJvSzQ1QtcKO2YEUYQvGIIvGITXWprXQx1sDzu3e4NB+ENhnr3HYhi53iGKnusZolo9QbLOdfOiaAYUnaBa23P3IWQ1HfH8AMXqsRFLW8uMClUvrGdRb0migIBHgkcS4JFEeCQRsiRAFt3XPaK1XRLhlQTI1nWPJEIWze2A+dxkNQNZ1XysWVVHVjMfc1bLX89d76jzlEcSEPF7EPbJiPhl1zLslxH2eRDx522ztket+1RGeMpuxtjgxIELY4yxPmOQgYyWQUpLIaWawURGz5hLLYOMZq7b2+1tKS1lruu5fTJaBkk1ieZsM1qzrb3qASJAQNgbBsjs8aIYCgxyf1uskQatwA/BnZFFGQE5gKAcREAOmOueYLttEW/EFaDkBytRXxQ+iT90FAsiQjaZRCrWinSsFal4K9Ktrbnrsdy6eT0GQy/gOBIEhEvLEKmoQqSiEpHKytx6RRVCZeXwh8Pw+PyHRM8Tu1dIStGRzGrmUtGQzGpIZnWkFHNbRtWRUsxeH2kl1wMkreR6gqStfTL2fv3UO0QQgIhPRsTvQTRgBg1RvwdRK3AIeGX4PSICHgl+jwS/R7SWkmubve7LW/dI/RuuEhE0K8RSNANEhLBfhk/mcI8xxjrCgQtjjB3isnoWsWzMmbHGnvbXDk1SWsoVoDjb2iztIOVACnlCZg8Pa3abcn+50+PDXtq3lfnKEPVG2812oxs6VEPNXXTVfb3NNs3QoOoqPJLHDE88AVeQEpSD8Eg8fW2xI8NAJpnIC0linYcn8RjSsdZendoTiJY44Ym5rESk0lyPWoGKJA+Mt1+GQa7TXOyeIvZpLlktf+ne5pwqo9pBSi5ASdjBirXUjAPbK8QmiYLTM8Qni06PkA63yeYYJV4513PEK4ttwhMrTMkLVSJ+GSGvDFEcnGGZIOSeQ3A+zBhj3RoYf/EZY4x1SdEVZ3DVVqU1F55kY06I0tl6Vu/ZlK+FEAXR6dXhl/zwy/7cddnv2uaX/Ah4Au22+WU/gp6gGaD4SlHqL+2THiCSKEESJfjBM6kMZLqmIpNIIJOI5wUnsU56n7QiHY+BjJ73dvAGAghESxCMlCAQjSJYUmpdj5rLklIEo9Zt0VLIXu8BeLQ5ROQMkGqfFtN2oFTFCkaSio5UVjOXVuCRVtzX7R4k9r52D5NU1jwF52Dye0SEvDKCPslceiWEfDICHglBr4SAV0LAIyPgzfX4MLdZF6976W+zLg3SEIQxxljx4sCFMcaKBBEhraVdM9W4Zq3JG2Q1f9aamBLb754lAgRnZpqI15ypJiSHEPAEEPKEEJSDCHqC5jJvPeAJuG+zlj7Jd0icDsH2n6YoyCTi1iWBdCLmBCn2tkwijkwyjrSzPQE107tj3hsImgFJSYm5jJQgGM0LT6wgJRA1b+/rAIWI0JpWsbclg5rWNGparWVLBntb02hIKE6IouhGu5llDlZvkLY8kgC/LDmz2eSfBuP3mDPX+D1im33MoCTolRD2yQj6ZIS8EoJe2bouOQFL0CNZ44owxhhjgwcHLowx1scMMpwpfp1pfQsIUFqVVmhG78cSEQXRHCPEa44REvVFzWXeuh2qtL0t7AnzwKusTxi6jnQ8hlRrC5KtLUi3tpg9TvKXznorNGU/elgJAvzBEALRKALR0lxwkh+k5PVACURKIHsO7OlfsYyK2tYM9rZYYUpLGntbM+Y2K1hJq/s/C1E+cxBUc6BUj2wOihq0go2Qz710tnslJwAJeCVXz5KQT0LAa/YssYMT7h3CGGOM9RwHLowxBkAzNKS1NJJq0pnO1163xyjJv825nndbfo+TtgOz9oRH9LQbTDV/xhrX9rzrIU+IQxPW5zRFQToRQzoWQyYRRzoeQzoeRzpuBiZmcNLsrGfisR7/DEEQ4Q+H4Q9H4I9EEAhH4A9Z18MR+EJhyMEQBF8Q5AtC9wSgeQJQRC/Sau50Gs0w0KoTGg2zJ4iuG9BaCVozQdOboRlNTi8R3TolR7fup1nrqnWbvV/7fd2369ZpPLpBiGfM8UkKUR7yYliJH8NKAhhemltWhX3weURnVhmvJEK2ZpaxxxuR7aVoLrk3GWOMMVacOHBhjA14qq4irsaRUBK5pRJHXIkjoSZc2xNqwhkUNqGa+yXV5AEZxyQgBzqdjabUV9rhtL8lvhL4pUNjdhJ2cBmGDiWVRjaVRCaZQDoeQyYeywtQ8gOVmHV7HGo20+OfJQgifOEIvOEo5FAUYjAMBMIgfxi6NwzVG0JWDiAtBZAS/UiRhJRqzlSTyupIqRpSGR3JmDmmSErRoRtpAGkAjX3+3PS1qF/G8NKAGaiUBjDcClaGlfoxvCSAoSV++D08qwtjjDE22HHgwhjrM7qhOzPV5F/yZ7BJa2mkVXNK4KyedWaDUXTFmbZX1a1l3mwxzu16brtiKEhr6T4NSyRBQtATzI1bYo9L0maMEte4JtY2nuKXHShkGFCzGWRTKWRTSWRTKSipJDKpJBTrejaZyLs9b1va3FdJ936cHxJEkC8Iwxs0e5bI5iUtBZAUAogJPsTgR7PhRSt8yIh+kN3bSgcQty4uinVp7VFbvLLojANijw/ilXM9QmRRgCSKzmk25jL/uggp/zZnX9G6b26/ttftWW4k+37OzzOvB7wShpX4EfLx2yvGGGOMceDC2IBnkAFFV6AYihlGWEFE/jbnYoUZruDC6OC67p4e13U/az2tmaFJfoiiGEq/PhdBOYiwN4yIxxz01V63B4F1tnvC5jZrGfKEnItH9HDvEtZniAhaNmsGIOkUlHTKDEvSKSip3LodimTTaWufJJRUCkra7JGiZNIA9c1gqaogIyt6kRH9yEh+ZEQ/0tay7XV7qYheoJD/F3mdNiRRQMiaZSaYv/TKCPmscUI8bccWsdbzZqnJ38YDqzLGGGNsIOHAhbEDgIigGAoyWsbpgWGvp7U0MlrGFVY419V0l9szWsYdpBjKfg2yeqAIEJwpgANyAAFPwH1dNme28UpeeEUvPJLHWXpE8+KVvO2Wsii79xc98Mt+JzyRRO6iz/qGrmlQsxmomYyzzKZSyKbtICQXlqSTSedi9yxR02lo2TT0TBrYj/F82rULIhTRC0X0ImtdFNFnLb3Iij7ntrbb7XVDMP+feCVzppm2U+iWyRKGu7blpuD1502/a0/h21GgEvRJ8Eoih5eMMcYYO6Rx4MIYzF4icSXuzBrTkm3JzRyTbUVSTTqBR0bPIKtlkdbTyGpZ1/aMlnHCFUL/TN3pFb1mkJEXVPgkn7PuhByiBx7J4woxPGLHwYcsyq7www467ODEDlHsbTwlMOsPZBjIplOIt7aitbkVsZZWxFtbkYjFkc2koabTUKzwRMtmoGWz0JUMdCUDQ8mCVAWkZgE1C8Ho21lkDAhQRA8UKxBRBE9eMJJ3Ebx5+7XZR/BC8ngQ9MmI+GWEvOYy7JMR9nswxCcj7JMQ9nkQ9suI+GSE/WYgEvbl7ytzTxHGGGOMsYOAAxc2oGmGBkVXkNHNnh924GFfMloGcSXunno3awUqijktb0u2Zb9nlemKLMjwy374JF+ut4dkhhN2QOGXzPWgHGy3vW2QYQcoTk8PK0CxwxAOOlixIiIouoGMaiCr6sioBjKajoyqI5NVkcpkkc5kkUlnkclkkVEUKOkMUvE4lFQcajIBLZ2Enk6AMikgm4KopCGpKXjUDDx6BuJ+Bp1t//foEKGKMrSOAhIhF4xkRS80yQfB44fo90PyBSH7A/AEgvAGgggE/AhYPUDCVi8Rv9WLxO4x4pMlp7dJwOpZ4m9zO0/NyxhjjDE2cHDgwg4o+9Qae/rcpJo0B1FVU0hquW3tpt611rN6Flkt6wpR7CBF0RVo1Len0zgDn7aZVSbsCTuhiV/2OwGJa91a5u/jk82eJYz1JcMwgwtVN6emVXXDuk7QdANZzUBG1ZHVDGQ1M9hwlqqOjGYgq3ZwW95S0wkEgkEADAJ0FaKuQNCyELUsJC0LUVesdQWipkDSs5B0BbJuX1cAQwN0DYKhQzA0SKQ7FzlvvbugREbhf7AUQUbWGo9Elf3QPQEYshck+wDZC8HjheDxQfTaFz9krx+y3weP3w+Pzw+vPwBfIAC/zwufLMIriwh4ZYS8ZvgRzFsPeWUrEOFTaBhjjDHGWA4HLgyaoTkhRv5YI21nlskfg6TDWWjU9ttSago69W3X/M54RbPnh0/2mUvrEvFGXAFKqa+0XahS6i9F1BuFV/IelLay/kVE0A2CqhNUIxda2AGGZpjhhZoXYmgGuQIO1bC2WzVUzd7H3s+AYt3X3t/eR7Fuz+1Lrn1U6+cp1rq9j6Ib0DQzvJBJc0KL3LoGyb4NBiRDM0MNWMGGYa7b+7cNPSTSEbVu8xgqPIYKL6nwGsp+9xzp0esDASRKIEkGSR7AF4TgD0HyhyAFw/AGQ/CGIvCHwwhFowhGo4hEo4iWliBaWopoyI+Al8cQYYwxxhhj/YsDlyKQUBLY3LwZmqFBN3RopEEzzItOurOukXW7tV01VGd/e7tiKE6vEHva3fz1/FNu7PWDFYjY433kT6sb8AQQkkPuqXatdXtcECc8yQtS/JIfXskLv+x3TrERBR6PoDNEBM0gJxzQ7aW1TTMIumE4+9jXVd0OJqx9ndtz1/W8S34dXSfoRK79NN283d6uGwQiswMFwV7PW1ptt68bZE7UQtZtBuXaZz42O9ToIMzIC01UvY/CAyKIMMxwgjTIpEE2rCVZYYezTc/bbu+rw0MaAuS+3QlCjLwadiiCA3PqW6FEjw+izw/J57eWAUg+PySvH7I/AMkXgGxt9/h98Pl8Zi8Rnw/+gBcBvw9+nw9+vw+yxxyTRPZ4IFkX2eOFKPHgx4wxxhhjbODjwKUIfNryKa589cr+bgYAs5eIPV5I21lm8kOQbi9tgpSAHBhQM8jkn7Jh9jIwQwY7bHDCCyuIcIIJax87rMjdJ9dLot31vHr54YH7ttzP6ShMsPdR86637a1xyCJyen94SEMoLxxxghJDhQ8avNDghwavta+P7H1VeAxzP8lQzVNmDBWSrkI4QGP/FEKUZMheL2SvFVx4fZBlGbLXlwswvF5IshVq2Oter3ldNreZgUduKXk88Ph88AYC8PqD8Aatpd8PQeRgkzHGGGOMsUJw4FIEAnIAY6NjIYsyJEEyl6IEWZDbbfOIntx1a5m/7hE98MlmDxB7LBG7R4jdQ8Reb7uPV/L2ay+R/LEnzDEmzDEoFM1wloquI6ua41Vk87dbY1Uo7fbPXbfDE8UJUdrclrf9UAkoPJIASRQgiyJkSYBsrUui0PFtkmhts9YFQBJFyKIAydpHEgVIggA57/72faT8iyBAFAWIggCQYY0PooBUcwkttzQvWZCqAmoWsPYjNQtoqrOPvc3QFBiKAkPNQleyZreYA0yUZHh8PicAkb1t19vf5un0NisA8XohW0GI7PVB8po9QOyARRxAISZjjDHGGGOHGoHoIHwSKVKxWAwlJSVobW1FNBrt7+b0GOWdrqHouTEk7FM17NMtzCWgGQYMA87pHM7t9ikfZK67Tw/p5HSRTk4TsU8l0QwygxMrNMnkzUiSzVvag3RmVB2aUbyHoh0WeCR3MJEfRJhLc7sdVnis7XYoIUu5bfa+TrghAB7SIOqqeVqJrkA0NHNAUkMzAwlDg0g6RMOAQDpEMiCSDljXBUMHjNzSvpChA7oGMgwYmgaQATJ0kGGY23TzumEYMAxrXTes2/O267p1u9WrQwAECIAgwBwqQzDHzMjbDkEwZ34RBGc8DcHarqsq1GwGuqoelNdRkmV4fH7IPh88Pn/eunXd74fX74fsswdO9TvbPT4fPP5A3r7mKTN2HUnm/JoxxhgbyAb6ZwPGWPHhTwhF4JO6OL77yiZrIM3ceBOuATd190Cb9ukugzUu88oifLIInyw5M4TYS68kwucxl15rH2/+PpIArwj4RIJXIHhEwCMSZAHwCARZIHMJc10WCKJA8IAggSAKhrkkA6K1hBU66JoGQ7cvunnRNBiGuW7ebm3XNRiq7ly3wwU1m4WazUDLZs11JQstk4GmKgAAA4DSv09//xGEXMjhM0MOuc313CwydjDiy+3b5ro7XPHx2CCMMcYYY4yxg4YDlyIQz2p4fVN9n9QSBLM3hijkTtuQpNzpG5LgPq1DFGAtrVNArP3sHh1tTwex95EFAzIZkMiAJORmOjGXBiTS4RV0yCB4oEGGYV7sGVMMHaKhQyDNXOqaM30sdA26pkHXVBiaCj2tOwGHrmlmwKHr0DvYZu8HAFnrMhDJPh88XjNckL12j4rcIKOiJEGS7aUMUZIhyu23uZZ5t4uSBEEUIYr2UoQgSRDzt1n72OuiKEIQ7aV96pk5oC3InEIY1gC35nYCXOtkXSVrIFyC7PHkQhG/H7LHy7PKMMYYY4wxxgYFDlyKwJjyIL63aBo8kmhdhLx193VZBGQBkAQz1BANAxLM00oEQ4ehqdAUxbyo2dy6UsB62lpXFeiqGXjoqgrNWuqqam7TtILGxFCtS/qAP4PdEwQRomSHCpITOoiiCFGWzZDBvu7cZm2TRDPQsLZLeet20CGKkrmUZEj5t+Wt2wORdtTzIv/UFtnj5YFJGWOMMcYYY2yA48ClCBhNNaCXfoS0piHh9Nawe3loVg8O1VkvtvOIBFE0Z0ORc1O7SrJ7KXvaXvdC8sjOtvzZUXLXPRBlO8CwemhIHnewIcvte3lIuV4dgiRBsnpqMMYYY4wxxhhjB8uAD1yefPJJPPLII6itrcVRRx2FH/7whzj++OP7u1k9omWz2LNpQ6/vnzudRLamfO18phSPs27d5ul4v3ZhiSxDlNsGJzLPlMIYY4wxxhhjjHVgQAcuzz33HG699VYsXboUJ5xwAr7//e9jwYIF2Lx5M4YMGdLfzStY2bAROPfWu8zARDKDDTM8kc0eHrLHFaiI1m12rw4e84IxxhhjjDHGGCsuA3pa6BNOOAEzZ87EE088AQAwDAOjRo3CjTfeiDvvvLPd/tlsFtlsbhjVWCyGUaNG8dRvjDHGGGOMHeJ4WmjGWF8bsANbKIqCDz/8EKeddpqzTRRFnHbaaXj77bc7vM93vvMdlJSUOJdRo0YdrOYyxhhjjDHGGGPsEDJgA5eGhgbouo7q6mrX9urqatTW1nZ4n7vuugutra3OZdeuXQejqYwxxhhjjDHGGDvEDOgxXHrK5/PB5/P1dzMYY4wxxhhjjDE2yA3YHi6VlZWQJAl1dXWu7XV1dRg6dGg/tYoxxhhjjDHGGGNsAAcuXq8Xxx57LF5//XVnm2EYeP311zF79ux+bBljjDHGGGOMMcYOdQP6lKJbb70VV1xxBY477jgcf/zx+P73v49kMomrrrqqv5vGGGOMMcYYY4yxQ9iADlwuvvhi7Nu3D/feey9qa2tx9NFH49VXX203kC5jjDHGGGOMMcbYwSQQEfV3I/pLLBZDSUkJWltbEY1G+7s5jDHGGGOMsX7Cnw0YY31twI7hwhhjjDHGGGOMMVasOHBhjDHGGGOMMcYY62McuDDGGGOMMcYYY4z1MQ5cGGOMMcYYY4wxxvoYBy6MMcYYY4wxxhhjfYwDF8YYY4wxxhhjjLE+xoELY4wxxhhjjDHGWB/jwIUxxhhjjDHGGGOsj3HgwhhjjDHGGGOMMdbH5P5uQH8iIgBALBbr55YwxhhjjDHG+pP9mcD+jMAYY/vrkA5c4vE4AGDUqFH93BLGGGOMMcZYMYjH4ygpKenvZjDGBgGBDuEI1zAM7N27F5FIBIIg9GtbYrEYRo0ahV27diEajR7yNYqpLVyjeNsymGoUU1sGU41iagvXKN62DKYaxdQWrlG8bRlMNfoSESEej2P48OEQRR55gTG2/w7pHi6iKGLkyJH93QyXaDS6339wBlONYmoL1yjetgymGsXUlsFUo5jawjWKty2DqUYxtYVrFG9bBlONvsI9WxhjfYmjW8YYY4wxxhhjjLE+xoELY4wxxhhjjDHGWB/jwKVI+Hw+LFmyBD6fj2sUWVu4RvG2ZTDVKKa2DKYaxdQWrlG8bRlMNYqpLVyjeNsymGowxlgxO6QHzWWMMcYYY4wxxhg7ELiHC2OMMcYYY4wxxlgf48CFMcYYY4wxxhhjrI9x4MIYY4wxxhhjjDHWxzhwYYwxxhhjjDHGGOtjHLgwxhhjjDHGGGOM9TEOXBhjjLFBpC8mHzQMo9/b0RePI5vN7neNYjOYJpfsi8ei63oftGT/9cX/mUwm02e1iuH/H2OMMQ5cGCuaDyeMdaev3gDz8Wpq+3wO9A8Y9gfP/XkcDQ0NAABRFHv9QXbLli1obm6GIAi9bse2bdvwhz/8Aa2trb2usXnzZpx++un49NNPe10jmUxCURQ0NzcD6Lv/O715jdq+HvvTlv4+1hVFAZALxHrTntraWgCAJEn7Fbp88sknWL16da/vD5jH/BNPPIF9+/b1usaGDRswefJkrFmzBqLYu7fnsVgMzc3NqK2thSAIvTpGNE0DkHtNenucDbbfr4wx1lscuAwwxfIHazCEFIlEAgD260NBU1MTAPT6zREA7Ny5Ex999BGA/n9ObH11nPHx2jf64lgF+HjNt3nzZixZsgRXXnklli1bhk2bNvX4A0pdXR0+/vjjHv/sfNu2bcPSpUtx66234rXXXnMCj576+OOPcdttt2HRokV48MEHsW3btl7VGD9+PL761a8C6N0H2TVr1mDixIn405/+1OOfb/voo49w/PHHY9WqVc4H2J4ea6tXr8asWbOwYsWKXh+vGzZswEUXXYSTTz4ZCxYswDvvvNOr/zv5x9oTTzyBtWvXQhCEHh23GzduxI033ojzzjsPd999Nz788MMet2X37t348MMPAfT+d8mnn36Khx56CFdccQWWLVuG7du397jGpk2b8LWvfQ0LFizA1772Naxbt67H7dmyZQuGDx+Os88+G0DvQ5c1a9bg8MMPx9tvv93j+9o++ugjnHDCCdixY4fz/7c3x+v8+fOxc+dOvPbaa72qsX79enz2s5/FqaeeiunTp+Pvf/97j4+RjRs34qabbsKFF16IW265BW+//fZ+H/P9+fuVMcaKAQcuRa6+vh5r167Fe++9B6B3b5LsN3X2txa90dLSgh07dmDTpk1OO3r6ZqC2thZvvfUW/vKXvwAwP/T1tMamTZvwyCOPIJlM9uh+ba1evRqXX345tmzZ0usa69atw+mnn45ly5b1usb69esxduxYXHvttQB690F4+/bt+PnPf45vfetb2LJlS68+fNbX12PdunVYuXIliKjXb8b5eHXri+O1L45VgI/XfBs2bMAJJ5yADRs24JNPPsGyZctw+umn4/XXX4coigW1aePGjTj++OPxzW9+E+vXr+/xYwCAtWvXYt68efjLX/6Cl156CTfeeCN+/vOfwzCMHj0va9euxZw5c9Dc3AzDMPDKK6/g2WefBRH1qM6GDRsQCASwdu1afO1rXwNgfpAt9Lhfs2YN5s6di9tvvx1XX311wT83365du3DuuefiiiuuwHe+8x1MmDABQO73QSFtWbNmDebMmYPbbrsNF154IR566CEAPTteN2zYgHnz5mHSpElYuHAhxo4diyVLliCTyfToOV23bh1mz56N3bt3o6WlBcuXL8dJJ52Ev/3tbwUft5s2bcKsWbOQSqUgyzI+/PBDzJ07F7/+9a8LbsfmzZtx3HHH4brrrsOKFSsKvl/bxzJnzhysWbMGn3zyCX7yk5/ge9/7Xo9+v9nHqs/nw2GHHYa6ujo8/vjjUFW1R89rfX09Ro4ciU8//RRnnnkmgJ4dq0DuOLn99ttx3XXXFXy/fDU1NVi4cCGuuOIKPPbYY5gyZQqAnp3KtmbNGsyePRuLFy/GzTffjKVLl0LTtIJ/FwHmMXLSSSdh1qxZ+PrXv47zzz8fN9xwA2KxGIDCQun169dj7ty5ICJUVVWhrq4OJ554IpYtW9aj17hYfr8yxljRIFa0Vq9eTRMnTqRx48ZRdXU1HXPMMfTmm29SMpksuMa6devo7LPPpubmZiIiUlW1x+1Yu3YtzZs3jyZOnEgTJkygSy+9tMc1PvroIzriiCNo2rRpVFpaSnPnzu3R/Q3DoEQiQePGjSNBEOiuu+6ibDbb43YQmc+rLMt02223dfhzCrF+/XoqLS2lW2+9lbZu3dqrdqxatYpCoRDNmzePpkyZQq+99lqP2kBkPq8jRoygE088kaqrq2nEiBG0e/fuHrVjzZo1dPjhh9NRRx1FY8aMoalTp9Ly5cuptbW1R3X4eM3pq+O1L45VIj5e82maRpdddpnruFi1ahVdc801JEkSvfTSS0REpOt6pzX27NlDc+bMoaOOOoqOP/54uuaaa2jt2rU9ehzbt2+niRMn0t13302KohAR0Z133kkTJkygdDpdcJ0tW7bQmDFj6Bvf+Iaz7ZprrqGbbrqJiHr2f+jll1+mSZMm0Xe/+12aNm0afe1rX3Nui8fjXd5348aNJMsyfetb3yIi8/l7/fXX6amnnqKVK1cW/Dr/7ne/o5NPPtmp8Y1vfIMuueQSWrhwIb3++uvd3n/VqlXk9XrpzjvvJCKif/7znzRmzBj63e9+V9DPJyJKp9N0/vnn03XXXeds+9nPfkaXXnopKYpC+/btK6hOIpGgBQsWuP7/fvjhh1RWVkY+n49+//vfO4+zK//zP/9D5513nnO9rq6O7rnnHpIkiX70ox8RUdf/D2tqaujkk0+muXPn0llnnUVnnHEGvfHGGwU9BtvOnTtp6tSpzvNKRPTkk0/S+PHjac+ePQXV2Lp1Kx122GGuY/W+++6jq6++mojM54uo++fDMAx6++23acqUKfTMM8/QpEmT6Oyzz3ZuL6Q99vFqPx7DMOj555+nhx56iJ599lnavHlzQY/p1VdfpTlz5jjtvvHGG+mcc86hmTNn0q9+9atu/y+vWrWKZFmmu+66i4iItm3bRqNGjaKHH364oJ9PZP4f/9KXvkRf+tKXnG2vvfYaLVy4kJqammjXrl3d1shkMrRo0SK68cYbnW179+6lyZMnk9frpccee4yIuv99Xyy/XxljrJhw4FKkampqaPz48XT33XfTmjVr6P3336fTTjuNhg0bRsuWLaNYLNZtja1btzof+I499ljnQ6ymaQW3Y+PGjVRRUUG33347vfbaa7Rs2TKaNm0a/d///V/BNTZs2EAVFRV0991308aNG+nNN9+k6upqWrFiRcE1bNdddx195StfoWAwSDfeeGO7D/PdvRlYu3YtBYNBuueee5xtsViM6uvrC26Doih06aWXOh9GDMOgDz74gJ5//nmqr68v6MPS6tWrKRgM0pIlSyiZTNLYsWPp5ptvLrgNRES7d++mCRMm0AMPPOA8D4cddhj99re/LbjGjh07aPTo0XTffffRJ598Qnv27KHTTz+dhgwZQo8++ig1NDQUVIeP147tz/HaF8cqER+vbSmKQieddJLrgyMRUX19PV133XXk9/vp7bff7rLG66+/TgsWLKDVq1fT008/Tcccc0yPPhRomkY/+MEP6KKLLqKamhrnGK+traXRo0fTRx99VHCdpUuX0tVXX01NTU3O8XTDDTfQKaecQieddBJddtlltHLlyoLq7dq1i77whS9QQ0MDPf744zR9+nS69dZb6aqrrqKlS5c6wVBbuq7T/fffT4Ig0IYNG4iI6JRTTqGjjjqKSkpK6LDDDqNTTz2V1qxZ020bHnnkEfr85z9PRESzZ8+mBQsW0FVXXUWLFi0iQRDoZz/7GRF1/H+nsbGRjjvuONdru2/fPpoxYwZdfvnlBT0HREStra00ffp0euKJJ5xtd999N40ePZqOOuooGjt2LP3iF7/otB22hoYGmjp1Kv3xj3907bto0SI6+eSTyev10jvvvNNtexYuXEjXXHNNu+0PPfQQCYJAy5cv77It77//Pp166qm0cuVKeuWVV3ocuhiGQb/85S/pvPPOo+3btzsfljOZDI0fP94JX7vz3HPP0Ze+9CWqq6tztt166600ffp0Ov7442nevHn06quvdvlYbMlkkhYtWkR79uyhP/3pTzRhwgQ6//zz6aqrrnJ+T3Vl6dKlJAgCvfTSS6TrOp100kk0c+ZMGj16NE2bNo0OO+wweuutt7p9TL/97W/pxBNPJCKi+fPn05lnnkl333033XDDDSQIAi1ZsqTTxxOLxeicc85xHa+xWIzOPfdcOuuss7r92bZ0Ok3z58+n++67z9m2ZMkSKisroyOPPJJKSkrovvvuo0wm02mNeDxO06dPp6VLlxJRLqi95ppr6Oyzz3aeq+4Uw+9XxhgrNhy4FKkPPviAJkyYQJs2bXJtv+qqq2j06NH0zDPPdPmGJJlM0k033USLFi2i5557jmbNmkXTp0/v0YfY1tZW+vznP0/XX3+9s83+FqTQN6+NjY00a9Ys+n//7/8521RVpVNOOYWee+45+sUvfkE1NTXd1rHf4F122WX0+OOP0z/+8Q/yeDxO3WXLlnX7LU5dXR2VlJTQZz7zGWfbtddeS7Nnz6bJkyfTOeec43yY7eq5TafTNHPmTHr++eeJiOjUU0+l6dOnUzgcptGjR9O3v/1t1xvKtj7++GMSBMH1Ld/SpUupsrKS3n333W6eiZy//e1vdMwxx7i+OT733HPpwQcfpBtuuIFefvnlLttBRPT888/TySefTPF43DkmXnzxRfL7/XT44YfTsmXLiKj7N798vLrt7/HaV8cqER+vHbn++utp9uzZ1NTU5Nq+c+dOWrRoEZ199tld9phJp9OuD2M///nPnQ8F+WFJV+14+umn6Qc/+IFrW11dHZWWltK//vWvLtufb8uWLbRu3Trn+v33309+v58eeughuvfee+niiy+m8ePHF9SzKZlM0vTp02nVqlWUTCbpJz/5CVVUVJAgCM7j6uz/Ym1tLX31q18ln89HRx55JC1cuJBWr15NiqLQCy+8QGeccQZdeOGF3faU+e1vf0vV1dW0bNkyOvvss6mxsdG57dvf/jbJsux6vG299957zrrd1hdeeIH8fj/9+9//7vY5IDJfty984Qs0bdo0+uMf/0i33XYbBYNBevrpp2n58uX00EMPkSiK3QYW9fX1NHv2bHrwwQedYHPr1q00fPhwev755+nMM8+kSy+9lDRN6/JYue+++2jUqFFOzw17X0VR6Nprr6UpU6Z0+3tp9erVzvry5cud0OU///mPs93+vdVR74Ply5c7H8btNsTjcRoxYgT94Q9/6PJn25qbm11/Ix5++GHy+/30/e9/n5YuXUrXXXcdeb3eggLHTCZDM2bMcEKAf/7zn1RaWuo6Vrvr3XXfffeRJEl02GGH0aJFi2jz5s2kaRq99957dOGFF9Jxxx3X7e+kV155hfx+P/3yl7+khQsXuvb/1a9+RYIgdBnW5/eksZ/3FStWkCAITlBXiJtuuokikQg9+eSTdP3111MgEKBnn32WVq1aRb/97W9JEAR64YUXOr2/oih07rnn0jXXXOP87tu+fTtVVlbS3//+d7ryyitp7ty5BfVYLYbfr4wxVkw4cClS//znP6myspK2bNlCROT6I/eFL3yBhg0b1u0HrqeeeoqeeeYZIjL/gPf0Q2xdXR1dddVVTg37zcBPf/pTOumkk8gwDNc3np2149FHH3W9MX3ggQfI6/XSzJkzaeLEiVRdXe18A9tZDftnP/PMM843Jy+99BJ5vV6aOHEiHX744bRjx44uHw8R0QUXXEDHHHMMLVu2jE444QQ67bTT6PHHH6cnn3ySpk2bRlOmTHG6NXfWlnQ6Taeffjq98MIL9I1vfIMWLFhA69evp2QySXfddRcdeeSR9POf/9zV7nzvvPOO0w3ctmbNGpo6dSo9+uijRFRYwPDLX/6SIpGI8wbk0UcfJY/HQ5dddhnNnTuXJkyYQA8//HCXtb73ve/R8OHDXdv+/ve/09VXX02f+9znaOjQoc7z0ZV//etf+328/uQnPymK4/Wxxx7b7+PV3r4/x+uFF16438cqkfnBpBiO11/96lf7fbw+/PDDfXK8Pvfcc3T00UfTY4891q731dNPP03Dhw+nnTt3dlmj7XPe0Tex999/f0G9Ouxa6XSaJk+e7Aqy/vznPxfclkwmQ2effbbrm+g333yThgwZQn//+9+7rKEoCqmqSmeccQa9+eabRER08cUXUzQapYkTJzqnKHXF/hb7uOOOc3q62P73f/+Xhg4d2u2pRdu3b6dzzz2Xjj32WNepRUTm//GJEyfSc88912WNtq/Ntm3b6Nhjj6VvfvObrnpdef311+miiy6i8847jyZMmEBPPfWUc1s2m6UjjjjC6b3QlcWLF9P06dPpi1/8Ij388MMUDoedUPiRRx6hI444osNjPr+N7777Ls2dO5duuOEG5wO9ffs//vEPGj58OK1atarLGm29/PLLdOaZZ9KCBQuc33c333xzux43HbUt//k99thj6c9//rNz/Ze//GW703E6qpHNZukrX/mK67i0w6hf/epXXT4W++dfccUV9Kc//YmIzL8z5eXlNHr0aNfpV221bcuDDz5I06ZNa/f8/eEPf6CKiooOw5/8tui6TpdccgmNGzfO+Z2saZqzz4wZM+jxxx9vV6Oz3mKGYVAsFqPPfe5zdPnll1Mqler0dczfvmXLFrr++uvpsssuo2OOOYYeeeQR175z586la6+9tssa3//+92nWrFk0f/58uuuuuygUCjn3efbZZ2ns2LHU0tLSYVvyPffcczRjxoyi+f3KGGP9jQOXImUYBk2ZMsX1xiG/O+iUKVNc59p2VYfIfJPxxhtvtPsQm0qlaOvWrR3+Qc9kMvThhx+2q/XUU0/RrFmzXNsKtXz5chozZgz9+c9/dr65PPnkk13f5Hflz3/+M82YMcNp72c+8xmSJIkuueSSgtvyxS9+kSRJos9//vOu0zP27NlDY8aMcfVu6MzChQvpmGOOoauuuop+85vfuG676qqraMaMGZ3et6M3jkTmN1SFfmC0HXvssVReXk4LFiwgr9frevN6yy230Lhx49p9y5Rv48aNNGbMGLrllluorq6O3n//fQqFQs752uPHj3d90OjqMU2dOrVXx2tHb8Z7c7ymUin64IMPnOs9PV47+ja0N8dr/s/ozfGa/0Z8f49V+2fsz/Ga/7z05njNv89xxx3Xq+PVrrFhw4YeH6/btm2jn/zkJ7Rs2TLndAUi87SbSZMm0Y9+9CNXL4r169fThAkTaP369d3WIHIfv/aHgi9/+ct00UUXkSiKTp38Gq+88kqHjy+bzdLUqVOdXhp33XUXDR061BXOddUWova9FNavX0/Tpk1z/d/Ir/G3v/3Ndf877riDfvGLX9Dll19Ow4YNo//85z/0xBNP0MiRI+nWW2/tth319fW0cuVKZ8wi+/n561//SlOmTHEdx53V+P73v0+VlZVUWlrq6pmTTCZp5syZ9OKLLxb0WPKPvW984xtUUVHRYY+Frl6bhoYGmjx5shNiGYZByWSSZs+e7erx0bbOyy+/7Gz/9re/TWeffTZ95jOfoe9973vO9p/85Cd03HHHuf6P2b/r8p87IqLvfve7dMwxx9DXv/51V2i1e/dumjhxoqsXRX6Ntr8r858T+/SiM888k8477zwSBIH++9//tqvRVU+R/Nfj7rvvpkgkQh9//HGXj8VuQ9tj1Q7G8nt4dfVYHn74YVqyZAldeumlNHToUHrnnXdo+fLlVF5eThdddJFr387aQmSOMWL3QLJ/xsqVK2ny5Mn06aefdtuW3//+9zRjxgzy+/2uAEDXdZo/f75z+ll3jyff//3f/1EoFKJPPvmEiNyvW1ePJZ1O0/HHH0+//vWvndvtXpr5x15nr+8vf/lLuuKKK2jRokX0/e9/39n+wgsv0PTp09sFLnv27KG//vWv9Pzzz9P777/vbL/uuuto8uTJBf1+za/R9m94/nPU1e9XxhgrZhy4FIn6+nr64IMPaM2aNc43An/9619p7Nixrm8W7Texl1xyiWuAtLY18rtt23+QDcOg//znP86H2Lq6Orrhhhto3rx5To+E+vp6ev/9952u4Lb8P3pPPfUUzZw507m+ePFiOv/88ztsR9sPY5s3b3b+QNpvIO644452H2Dza9htMwyD1q1bR2eeeSYREV199dU0YsQIevzxxykUCtE111zTbmDS/Dr5XVi/+c1vthtEUdM0Oumkk+irX/1qpzXs12bHjh00depUEgTBGR/Efjy/+93vaNasWa7AIf95bdslN/+D0YQJE+iHP/yhq153j2X58uX061//mk4++WRKJBKUSqWIyPwGc/Lkya5TV/JrpFIpUhSF/u///o/GjBlD1dXVFI1GafHixc7zMWXKFPrOd75DbSWTSdJ13TX+x0svvUSjR48u+HjtqAZR7s1fIcerXcN+zG1rEHV/vHbWDqLCj9eOahiGQR999FHBx2tn7fjGN75R8LHaWZ0dO3bQ5MmTCz5eO3te898Ad3e8dvZ4XnrppYKP17Y1UqkU/fCHP6RRo0YVdLx+9NFHVFFRQbNmzaLDDjuMwuEwXXnllc7/42uuuYaOPPJIWrx4MX366ae0b98+uv3222nSpEnOeDAd1fjyl79Me/fudb0etp/97Gfk8XiopKTE+da8kBpE5oegqqoqWrlyJT3wwAPk9/tdH2J62hYicyDemTNnOgO9dlbD/hD/wAMPkCAING7cOCdwb25uph/96EdOD7aOalx99dVUW1tLnbn55pvp9NNPd/4mdFTjqquucj4IPvroozR06FCaPn06vfPOO7R27Vq69957aezYsc634z15Pnbt2kVHH3003Xfffa6/Z509lvwa559/Pt16661UU1ND6XSa7r33Xho9erQrDOqozhVXXOH6gNr22/6rr76aFi1a5Pwe2LBhA40bN87piUPkDmDvvfdeOuGEE+jcc8+l1atX0yeffEJ33nknjRkzxjmlqKMaXYUuf/3rX6msrIxKS0ud044KqUFkfrgfP348/elPf6Lvfve75Pf7nQ/MPW0HkRnYHHXUUQU/lmXLlpEgCDRx4kTnWM1kMrR8+XInqOisTne98v7f//t/NGfOHOd47KhG/t+ZX//613T44YdTNBqlF198kf7xj3/QPffcQyNHjnSOk548J4Zh0Jw5c+jyyy93HQOFPJZrrrmGzjnnHNq2bRs1NDTQkiVLaMSIEc5z0lGNtu+d2vbAufbaa+mMM85w/U346KOPaPz48XT88cdTZWUlHXfccfTss886t1955ZU0bdq0bn+/tq3R9hS1/Oeoo9+vjDFW7DhwKQIfffQRTZkyhaZNm0aCIDiDZDY3N9Ojjz5KkyZNoq985Suu+1xyySX0la98hXRddz7Yta2R/2Ym/4/4G2+8QXPnziVZlikUCjnd1zuq0dGbrGeffZaOP/54IjK/gQ0Gg84gaJ3V6KpnwRVXXEE33nhjQY9FVVU67bTTaNKkSVRdXe28yfr9739P1dXVrjf8HdXJf1PRdgA5VVXpc5/7nNMVt7O26LpO2WyW/vjHP9K4cePo6KOPpnXr1jm1b7rpJlqwYIHzIbHQ51VVVVqwYAGddtpp7W7r7rH86le/ounTp7vus3jxYpo3b54TzrStYY/JkU6nac+ePfTaa6+5upPHYjE67bTTnDdQ9muwdu1aOu200+jkk092egjs3r2bNE2jxx57jCZMmNDt8dq2xo9//GPatm2bs39+SNjZ8dpdDbu9XR2v3dXoSNvjtasamqbRKaec0u3x2lEN+1tiIuowUGp7rHb3eJ5//nkaO3Zst8droc9rV8drR8dI/gegp59+utvjtW2NJ5980umdsHfvXvrb3/7W5fEai8Vo9uzZTs+qmpoaeuWVV6i8vJxOPfVUp9b9999P8+fPdwZrHjp0qPMtfzwe77TGmWee6fr2W9d10jSNbrrpJiorK3PGGelJjXg8TjNmzKCTTz7Z9eG1p3WIzJDt61//OpWVlTnfundV44wzzqC9e/eSqqp03XXXOb1s2vZG6KrGggULnFAmvx233XYblZeXO6dndFXjtNNOc8KO3/zmN3TmmWeSIAh0xBFH0IQJE3r12tjtP+OMM+jkk092jv1Cazz44IM0c+ZMGjJkCJ1yyik0fPhwpx3d1Tn99NPbtWX16tV08803U0lJiXN6xM6dO+noo4+miRMn0pFHHkn333+/s3/+7/pf/OIXdNZZZ5EgCHTkkUfSmDFjnLZ0VaOjD/a6rtPixYspEokU1I62NXRdp3nz5tERRxxBwWDQCQd7UoOIaNOmTXTLLbdQWVmZE/p0VSM/YLjjjjtc/0/aKrSObePGjbR48WLX/5tCX5s333yTrrjiCgqHwzR16lSaPn16r14b21e+8hU64YQTnJCy0Bq/+c1v6KSTTiKv10uzZs2i0aNHF9SOjnozrly5kq6//nqKRqOu3juffvopjRw5km6//XZqaWmhDz74gK644gq6+uqrXe+tuvr92lWNtuMaGYbR4e9XxhgbCDhw6WeffvopVVdX0x133EHbt2+nJ598kgRBcLqQNzQ00I9//GMaNmwYzZgxg6677jq69NJLKRgMOn9wOqohimK7QTntNxfpdJrOOeccKi8v73ENIvPD/amnnkr33nsveb1e50NkT2oQmX/c77nnHhoyZIgzkF53NRKJBF122WV03HHHuU53InJPW9rTtmiaRvfccw8NHz7c+cDQ2Wtjf7uaSqXo1VdfpQkTJtCoUaPotNNOo4ULF1JpaanzxqTQdthvdP773/+SKIqub4kKqbFr1y4qLy+ns846i5544gn62te+RuXl5V22I/+xtJVOp+muu+6i4cOH0/bt253tH3/8MVVVVdHixYvpD3/4A913330kCAKdf/75tGbNGlIUhX784x/T8OHDOz1eO6uxaNEi10B59hvIjo7XQmsQdX689qSG/Rq1PV67qmF38b/sssto5syZnR6vhdTI19Gx2lWdhQsXOh9IXn31VZo4cWKnx2uhz4n9u6Sj47WrGvbYN7t27aKKiopOj9euHktHr01Hx2s6naZjjjmmXe+gzZs3U2VlJX32s591ttXV1dErr7xCK1ascP2/6q7Geeed5/rQ9t5775EgCK5eKT2p0dTURGPGjKHy8nLXIKc9rfPOO+/Q//zP/9BRRx3lqtOT56QzPWnHW2+9RVdffTVNnjzZ9W10dzXOPfdcZ5thGPThhx/SJ5984jodqCftsH+/7ty50zW+SHc1Pve5zznbli9fTt/73vdo6dKl7QYg7q7O+eef7/w+a2lpoV//+tc0Y8YM5zkxDIO+973v0dlnn01///vfacmSJTR58uROP9gTmeO6rF+/3ukNUkiNtgGDPU27/fuhpzVUVaU5c+a4wome1li3bp3TC6snNQqZXa2nbfnoo4/olltuoWnTpjn/b3rz2nzyySdUW1vrnErTm9eGyBwI3v4dX0iN/F4pa9eupZ/97Gf0/PPPO+8ne9oOXdfpz3/+M82ePdv1eySbzdKtt95KF110keux/+xnP6OKiop2s8U1NDS0+/3a0xpEHf9+ZYyxgYADl352zz33tHuTe9ZZZ9GKFStoxYoVzjfgW7dupSuuuIIuvPBC+tKXvuSaHq+zGitXrqS33nrL9e20oij03e9+l7xer+sNcE9q2NMplpSUuL5Z6kmNf/3rX/TFL36Rhg0b5vqmsKsaK1asoObmZorH490OONqTtrz++ut0wQUX0JAhQwpqi/3a2F3ws9ks3XfffXTzzTfTnXfeSRs3buxVOwzDoF27dtFFF13kekNfaI3XXnuNZsyYQTNmzKDPfvazPTpG8n/ee++955wTn/98EJmnBVxyySWubVdeeSX5/X5auHChM1Dmli1b6Morr+zweO2sRiAQoAsuuMB1TGma1uHx2pMaTz31VIfHa09q/Pvf/+7weO2qxsKFC+nTTz+l+vp6V2jVVnftyA9q/vnPf3Z4rHZVx35t7A8zmUyGvvWtb3V4vPbkOSGiDo/XQmv8/e9/p2OPPbbD47W7GvlvuD/44IMOj9dEIkEjRozo8APJmjVrKBQKuaZR7UghNR544AHXffLHRuhNje985zuu16S3dVauXNnulKVCanzrW9/q4hnpeTv+9a9/tRsotz9em456WRZSo5CBcXvallQq1e44qampoaeffpqIzADQ/jCc/zx0NtBqT2q07U3RdraYntb4+c9/7uq91psa69ataze2TiE1Chmsu6dtWbVqVbsZnwqp0dlYV71tR0fj5vTXMdL2VLh0Ok2PP/44/fSnP3U9XntMOPv562qMmkJrtNX2/w1jjA0EHLj0s5tvvpnOOussZ6BI+/z5mTNnUnV1dbtpG4nav8noqsbQoUNpwYIFrhq/+MUv2s0gUUgNe0rNd999l2bPnu36gNTTGu+88w7ddddd7T5YdPd8nH766V1OsdibtqxcuZIWL17cbvC1Ql6b119/fb/b0fb1bXv6SCHtyJ81JxaL9ahGZ8dI2zfRROYsT/YMG/absAcffJDOOOMMmjRpEt19993t7tP2eO2qxuGHH+6c6mS/AevoeC20BlHnx2uhNdLpdKfHa3fPx1133eV6LB3pSTs6O1Z7+pzsb1vy30i3Pda6q5F/jHR2vPb0sXR2vD722GM0cuRI+utf/+pssz+QPPjgg3TCCSdQY2Njlx8MCq2RP/ZQb2rkDya7P22xx2rZ38fT1THbF4/nYLWjL2o0NDQ4x0hXs5sVUqfQwd337t3b4YfhF198saCgobsadtu6a09nNexp5venHX1R48UXXyxo1qlia8uBrPGnP/1pv4+R7mrkh+z2MVRTU0MTJkxw9Zxt+8XA/tbgqaAZYwMRBy797Mc//jGFQiG64IIL6NJLLyWPx0MvvPACJRIJevvtt2n+/Pl05513usZBafsHp9AaXf2hKrQGkfkBqKNvGXpSQ9f1Dr/B6UmNvnheicxAoKNvhXryvHb2Zrynz0lvHsu8efOcY2R/n4/u3ujdcsstNGzYMOec8pqaGiorK6PXXnuNfvzjH1MgEGh3ulTb56S7GsFgsNNTv3pTI5FIdHi8FlIj/01fR8frwXosdjvaTm29v23pj9cmEAh0OyVob9qxd+9eevfdd+nVV191Pihs27aNLrzwQpo/f367GWyWLl1KU6ZMcQ1iXSw1iqktXOPgvTZE5Ppbv2fPHufD8JIlS2jx4sUkCALt2bOHa3RQo5jaMphq5Nd55ZVXXO8T8mtu2rSJKioqnN/v3/zmN6msrMwJGvuiBmOMDUQcuBSBH/7wh/Td736XLrjgArr22mtdt1155ZU0f/78bj8Id1dj3rx5fVKjq+khC63R3TcvffFYiqktg6nGjh07aM6cOeTz+ejMM8+kYDDoDJDb0NBAI0aM6LYHEtfo+xrF1Jb+qLFmzRoaM2YMTZo0iUpKSujwww+nZ599lhRFoffff58++9nP0syZM52xZhRFodtvv51OOukkpwdNsdQoprZwjYPz2kyePJmeeeYZZ8yP/A/De/fupXvvvZcEQaCysjLnlDyu4a5RTG0ZTDUKqWPX2Lx5M1VVVVFTUxM98MADFAgECm5LITUYY2yg4sDlINq0aRPdeeeddNlll9EjjzzSbuAve0wFotwfnyuvvJKuvfZaJ+jgGu4axdSWwVSjozr5M51897vfpYceeoh+85vfOPv/97//pYkTJ7pO3eEafV+jmNpSDDXq6+tp8uTJdPfdd9OWLVtoz549dPHFF9OkSZPo/vvvp0wmQ6tXr6Zrr72WZFmmo446imbNmkVlZWXOuEDFUqOY2sI1Du5rM2XKFFqyZIlzKlb+t/mXX345RaNR51RCruGuUUxtGUw1elKHyBwTZsaMGXTxxReT1+t1gpK+qMEYYwMZBy4Hyfr166m0tJQuvPBCuvbaa2nUqFF0zDHH0JNPPuns861vfYtCoRC98cYb9NZbb9GSJUuovLzc+ePHNdw1iqktg6lGZ3WOPvpoWrp0qbNP294wt99+Ox199NHOGBJco+9rFFNbiqnG2LFj270xv+OOO+iII46gRx99lAzDcE6fe+CBB2jp0qWuMV+KpUYxtYVrHPzXZtq0afTwww+7Tj1atmwZlZaWusax4Bql7cYGKZa2DKYaPa2zYcMGEgSBAoGAK6jsixqMMTaQceByEMTjcVqwYAHdfvvtzrbdu3dTRUUFVVdXO7MX6LpOF198MYmiSJMmTaKjjz7amYqPa7hrFFNbBlONntSxvfHGG3TjjTdSJBJx3iBxjb6vUUxtKZYaRESrV6+mkSNH0htvvEFE7kF8b7rpJhozZozTa6YzxVKjmNrCNfqnLePGjXPVqK2tbTcNNddw1yimtgymGj2tU1NTQ9dff327weX7ogZjjA1kHLgcBMlkkmbOnEnPPPOMc52I6MILL6RTTz2VZs+eTS+//LKz/xtvvEFr1651TZPINda2mzayWNoymGoUUmfOnDmuOitWrKDrrruO1q1bxzUOYI1iakux1LDNnDmTPvOZzzjXM5mMs37ccce1m2K6I8VSo5jawjX6ty1djTHGNYq3LYOpRk/qEJmz6R2oGowxNlCJYAcUESGRSGDPnj3Ys2cPACAYDGL37t1Yv349vvSlLyGZTOL555937jN//nwceeSRGDJkCNfooEYxtWUw1Si0TiKRwAsvvODcZ+7cuXj88cdxxBFHcI0DVKOY2tLfNcaOHYt4PI5YLObc9tRTT2H9+vX44he/CADw+XzQNA0AcOKJJyKZTCJfMpksihrF1BauUXyvjSRJXKODGsXUlsFUY3/rAIDf7++TGowxNqgc3Hzn0NH2G4MnnniCBEGgq6++mu655x4Kh8POrBt/+MMfaOzYsdTQ0NDpVHlco7jaMphq7E+d/EF2uUbf1yimthRDjfXr19MZZ5xBM2bMoOHDhzuD6abTaXr22WepsrKSLrjgAlIUxTnGL7vsMrrkkktIVVUyDKNoagy2xzOYavBrU7w1+LUZ/M8rY4wNNhy4HACbN2+mRx99lPbu3ets03Wdnn76aZo5cyadeeaZ9L3vfc+57Yc//CHNmDHD9YeGa8xo94e3WNoymGoUU1u4Br82XdVYv349VVRU0C233EK//e1v6dZbbyWPx+MM8phMJukvf/kLjRw5kiZPnkznnXceXXTRRRQKhZwZjYqlRjG1hWvwazNQahRTWwZTjWJrC2OMDTYcuPSxTz75hMrLy0kQBLrrrrtcs4sQmSl//rmrREQ33HADXXDBBZROp8kwDK7RpgY/r/y8Hmo1iPi1ya/R0NBAZ5xxBt10002ufU4++WS68cYbXdtisRjdfvvt9OUvf5luuOEGZ/atxsbGoqhRTG3hGvzaDJQaxdSWwVSj2NrCGGODEQcufSiRSNDVV19NV155JT355JMkCAJ9/etfd324yP/Gd+PGjbR48WKKRCL00UcfcY0OahRTWwZTjWJqC9fg16a7GrW1tXT88cc7s1zYXdGvuuoquvTSS50abU+Vy79eLDWKqS1cg1+bgVKjmNoymGoUW1sYY2wwkvt7DJnBRBRFHHvssaioqMDFF1+MyspKXHLJJQCA22+/HZWVlRAEAQAQj8fx2muvYdWqVXjjjTcwbdo0rtFBjWJqy2CqUUxt4Rr82nRXo7q6Gr/5zW8wceJEAICu6xBFESNGjMCOHTsAAIIgQBAExGIxRKNRZ5utWGoUU1u4Br82A6VGMbVlMNUotrYwxtig1N+Jz2CTSCRc13/3u9+RIAh02223UUNDAxGZA0fW1dWRqqrU1NTENbqpUUxtGUw1iqktXKO9YmlLsdSw5X8j+o1vfIMWLFjgXH/ooYfoscceazfwcLHWKKa2cI3ibQvXKN62DKYaxdYWxhgbLLiHSx8LhUIAcun+xRdfDCLCF7/4RQiCgMWLF+PRRx/Ftm3b8Mwzz6CsrIxrdFOjmNoymGoUU1u4Br82hTwngNljhoicb0ZFUQQA3HvvvXjwwQexatUqyHLXf9qKpUYxtYVrFG9buEbxtmUw1Si2tjDG2KBxoJIc5j5f9Xe/+x15PB46/PDDSZZlZ9R2rtGzGsXUlsFUo5jawjWKty3FUsO+/5IlS+irX/0qPfLII+Tz+ejDDz8s6P7FVKOY2sI1irctXKN42zKYahRbWxhjbDDgwOUAMwzDGRDylFNOofLyctfgmFyj5zWKqS2DqUYxtYVrFG9biqUGEdGDDz5IgiBQSUkJvf/++z2+fzHVKKa2cI3ibQvXKN62DKYaxdYWxhgbyDhwOQg0TaNbbrmFBEGgNWvWcI0+qFFMbRlMNYqpLVyjeNtSLDXef/99EgRhv6YVLZYaxdQWrlG8beEaxduWwVSj2NrCGGMDmUBE1N+nNQ12uq7j6aefxrHHHoujjz6aa/RBjWJqy2CqUUxt4RrF25ZiqQEAyWTSGSNmoNcoprZwjeJtC9co3rYMphrF1hbGGBuoOHA5SChvADGu0Tc1iqktg6lGMbWFaxRvW4qlBmOMMcYYY8WKAxfGGGOMMcYYY4yxPib2dwMYY4wxxhhjjDHGBhsOXBhjjDHGGGOMMcb6GAcujDHGGGOMMcYYY32MAxfGGGOMMcYYY4yxPsaBC2OMMcYYY4wxxlgf48CFMcYYY4wxxhhjrI9x4MIYY4wxxhhjjDHWxzhwYYwxxhhjjDHGGOtjHLgwxhhjjDHGGGOM9bH/Dwh+GzrfM0rkAAAAAElFTkSuQmCC\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFwAAAIOCAYAAACF7xkPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5jUlEQVR4nOzdeZiN9f/H8ec5Z+ac2TeGMVnGvmRfkqT4JiNSRBGKaBP1k0QqlXwrX6VFSpsaJWlDRZEUFZMs2bKUCUOMscy+nTPnnN8fZ+ZwjGWG4cyY1+O6znXu5XPu+31ODXNePovB6XQ6ERERERERERGRUmP0dgEiIiIiIiIiIpcaBS4iIiIiIiIiIqVMgYuIiIiIiIiISClT4CIiIiIiIiIiUsoUuIiIiIiIiIiIlDIFLiIiIiIiIiIipUyBi4iIiIiIiIhIKfPxdgHe5HA4OHDgAMHBwRgMBm+XIyIiIiIiXuJ0OsnIyCA6OhqjUf8uLSLnr0IHLgcOHKBGjRreLkNERERERMqIffv2Ub16dW+XISKXgAoduAQHBwOuP1RDQkK8XI2IiIiIiHhLeno6NWrUcH9HEBE5XxU6cCkcRhQSEqLARURERERENNWAiJQaDU4UERERERERESllClxEREREREREREqZAhcRERERERERkVJWoedwERERERERuRTY7XZsNpu3yxC55Pn6+mIymYrVVoGLiIiIiIhIOeV0OklKSiI1NdXbpYhUGGFhYURFRZ11km0FLiIiIiIiIuVUYdhSpUoVAgICtMqSyAXkdDrJzs4mOTkZgGrVqp2xvQIXERERERGRcshut7vDlkqVKnm7HJEKwd/fH4Dk5GSqVKlyxuFFmjRXRERERESkHCqcsyUgIMDLlYhULIU/c2ebN0mBi4iIiIiISDmmYUQiF1dxf+YUuIiIiIiIiIiIlDIFLiIiIiIiIiIipUyBi4iIiIiIiJQpTqeTe++9l4iICAwGAxs3bjxtW4PBwMKFCy9abSLFpcBFREREREREvCI+Ph6TyUTPnj09ji9ZsoS4uDgWLVrEwYMHadq06WmvcfDgQW644YYLXapIiSlwEREREREREa+YNWsWDz74ID///DMHDhxwH09ISKBatWpcddVVREVF4ePjU+S1VqsVgKioKCwWy0WrWaS4FLiIiIiIiIhcIpxOJ9nWfK88nE5niWrNzMzk008/ZcSIEfTs2ZO4uDgAhg4dyoMPPkhiYiIGg4GYmBgAOnfuzKhRoxg9ejSVK1cmNjYWKDqkaP/+/dx+++1EREQQGBhI27ZtWbNmDeAKcm6++WaqVq1KUFAQ7dq144cffjjvz13kVIrGhCIiIiIiIlIu5djsNHlqqVfuve3ZWALMxf+K+dlnn9GoUSMaNmzI4MGDGT16NBMmTOC1116jbt26vPPOO6xduxaTyeR+zezZsxkxYgSrVq065TUzMzO59tprueyyy/j666+Jiopiw4YNOBwO9/kePXrw3HPPYbFY+PDDD+nVqxc7d+6kZs2a5/cBiJxEgYuIiIiIiFx8TifYreCjoSAV1axZsxg8eDAA3bt3Jy0tjZUrV9K5c2eCg4MxmUxERUV5vKZ+/fpMnTr1tNecO3cuhw8fZu3atURERABQr1499/kWLVrQokUL9/7kyZNZsGABX3/9NaNGjSrNtyeiwEVERERERLxg48fw66tw4ytQu5O3q7lk+Pua2PZsrNfuXVw7d+7k999/Z8GCBQD4+PjQv39/Zs2aRefOnU/7ujZt2pzxuhs3bqRVq1busOVkmZmZPPPMMyxevJiDBw+Sn59PTk4OiYmJxa5dpLgUuIiIiIiIyMWVdRS+nwg5x+DABgUupchgMJRoWI+3zJo1i/z8fKKjo93HnE4nFouFGTNmnPZ1gYGBZ7yuv7//Gc+PHTuWZcuW8dJLL1GvXj38/f3p16+fewJekdJU9n8SRURERETk0vLDU66wpcrlcOUD3q5GLrL8/Hw+/PBDpk2bRrdu3TzO9e7dm08++eScr928eXPee+89jh07dspeLqtWrWLo0KH06dMHcPV42bNnzznfT+RMtEqRiIiIiIhcPHtXwx9zXNs3vgImX+/WIxfdokWLSElJYfjw4TRt2tTj0bdvX2bNmnXO17799tuJioqid+/erFq1in/++Ycvv/yS+Ph4wDUHzPz589m4cSObNm1i4MCB7gl1RUqbAhcREREREbk48q2w6GHXdpuhULO9V8sR75g1axZdu3YlNDS0yLm+ffuybt060tPTz+naZrOZ77//nipVqtCjRw+aNWvGlClT3Csdvfzyy4SHh3PVVVfRq1cvYmNjad269Xm9H5HTMThLulj6JSQ9PZ3Q0FDS0tIICQnxdjkiIiIiIpe2X16G5ZMgoDKMWgsBp57Y1BvK43eD3Nxcdu/eTe3atfHz8/N2OSIVRnF/9tTDRURERERELryUPbCyYDnf2OfKVNgiInIhKHAREREREZELy+mExWMhPwdiOkHz/t6uSETkglPgIiIiIiIiF9a2r2DXMjCZXRPlGgzerkhE5IJT4CIiIiIiIhdObjosecy13XE0VK7v1XJERC6WEgUuM2fOpHnz5oSEhBASEkKHDh347rvv3Odzc3MZOXIklSpVIigoiL59+3Lo0CGPayQmJtKzZ08CAgKoUqUKjz76KPn5+R5tVqxYQevWrbFYLNSrV4+4uLgitbzxxhvExMTg5+dH+/bt+f3330vyVkRERERE5GL46XnIOAjhtaHTI96uRkTkoilR4FK9enWmTJnC+vXrWbduHf/5z3+4+eab+fPPPwF4+OGH+eabb/j8889ZuXIlBw4c4JZbbnG/3m6307NnT6xWK6tXr2b27NnExcXx1FNPudvs3r2bnj170qVLFzZu3Mjo0aO5++67Wbp0qbvNp59+ypgxY3j66afZsGEDLVq0IDY2luTk5PP9PEREREREpLQc2Ai/v+3avvFl8NVKOiJScZz3stARERG8+OKL9OvXj8jISObOnUu/fv0A2LFjB40bNyY+Pp4rr7yS7777jhtvvJEDBw5QtWpVAN566y3Gjx/P4cOHMZvNjB8/nsWLF7N161b3PQYMGEBqaipLliwBoH379rRr144ZM2YA4HA4qFGjBg8++CCPPfZYsWsvj0u/iYiIiIiUCw47vHcdHPgDmvaDfrO8XdEZlcfvBloWWsQ7Lviy0Ha7nXnz5pGVlUWHDh1Yv349NpuNrl27uts0atSImjVrEh8fD0B8fDzNmjVzhy0AsbGxpKenu3vJxMfHe1yjsE3hNaxWK+vXr/doYzQa6dq1q7vN6eTl5ZGenu7xEBERERGRC2Dd+66wxRIKsc97uxoRkYuuxIHLli1bCAoKwmKxcP/997NgwQKaNGlCUlISZrOZsLAwj/ZVq1YlKSkJgKSkJI+wpfB84bkztUlPTycnJ4cjR45gt9tP2abwGqfzwgsvEBoa6n7UqFGjpG9fRERERETOJv0gLH/WtX3dRAiueub2IiW0Z88eDAYDGzdu9HYp5Ubnzp0ZPXq0t8uoUEocuDRs2JCNGzeyZs0aRowYwZAhQ9i2bduFqK3UTZgwgbS0NPdj37593i5JREREROTSs/RxyEuHy9pA22HerkbKsPj4eEwmEz179izR62rUqMHBgwdp2rTped3f4XAwfvx4oqOj8ff3p3nz5nz11VfFfv2iRYu49tprCQ4OJiAggHbt2p1y0ZeyYP78+UyePNnbZVQoJQ5czGYz9erVo02bNrzwwgu0aNGC1157jaioKKxWK6mpqR7tDx06RFRUFABRUVFFVi0q3D9bm5CQEPz9/alcuTImk+mUbQqvcToWi8W9wlLhQ0REREREStGuH+DP+WAwwo2vgNHk7YqkDJs1axYPPvggP//8MwcOHCj260wmE1FRUfj4+JzX/efMmcMrr7zCyy+/zPbt23n55ZcJDAws1mtff/11br75Zjp27MiaNWvYvHkzAwYM4P7772fs2LHnVdeFEBERQXBwsLfLqFDOeQ6XQg6Hg7y8PNq0aYOvry/Lly93n9u5cyeJiYl06NABgA4dOrBlyxaP1YSWLVtGSEgITZo0cbc58RqFbQqvYTabadOmjUcbh8PB8uXL3W1ERERERMQLbDmwuGDp5/YjoFoL79YjZVpmZiaffvopI0aMoGfPnkV6hqSkpDBo0CAiIyPx9/enfv36fPDBB0DRIUV2u53hw4dTu3Zt/P39adiwIa+99tpZazAajURGRjJgwABiYmLo2rVrkTlFT2Xfvn088sgjjB49mueff54mTZpQr149HnnkEV588UWmTZvGmjVr3O3//PNPbrzxRkJCQggODqZTp04kJCS4z7/33ns0btwYPz8/GjVqxJtvvulxv/Hjx9OgQQMCAgKoU6cOEydOxGazuc8/88wztGzZko8++oiYmBhCQ0MZMGAAGRkZ7jYnDyn66KOPaNu2LcHBwURFRTFw4ECt/FvKShQHTpgwgRtuuIGaNWuSkZHB3LlzWbFiBUuXLiU0NJThw4czZswYIiIiCAkJ4cEHH6RDhw5ceeWVAHTr1o0mTZpwxx13MHXqVJKSknjyyScZOXIkFosFgPvvv58ZM2Ywbtw4hg0bxo8//shnn33G4sWL3XWMGTOGIUOG0LZtW6644gpeffVVsrKyuOuuu0rxoxERERERkRL5ZRqk7IHgaOgywdvVVExOJ9iyvXNv3wAwGIrd/LPPPqNRo0Y0bNiQwYMHM3r0aCZMmICh4BoTJ05k27ZtfPfdd1SuXJldu3aRk5Nzyms5HA6qV6/O559/TqVKlVi9ejX33nsv1apV47bbbjttDddddx1paWlMnDixRMNtvvjiC2w22yl7stx33308/vjjfPLJJ7Rv355///2Xa665hs6dO/Pjjz8SEhLCqlWryM/PB+Djjz/mqaeeYsaMGbRq1Yo//viDe+65h8DAQIYMGQJAcHAwcXFxREdHs2XLFu655x6Cg4MZN26c+74JCQksXLiQRYsWkZKSwm233caUKVN47rnnTvkebDYbkydPpmHDhiQnJzNmzBiGDh3Kt99+W+zPQc6sRIFLcnIyd955JwcPHiQ0NJTmzZuzdOlSrr/+egBeeeUVjEYjffv2JS8vj9jYWI9kzmQysWjRIkaMGEGHDh3c/wM9++yz7ja1a9dm8eLFPPzww7z22mtUr16d9957j9jYWHeb/v37c/jwYZ566imSkpJo2bIlS5YsKTKRroiIiIiIXCSHd8Kvr7q2b/gfWDR0wSts2fB8tHfu/fgBMBdvOA64hhMNHjwYgO7du5OWlsbKlSvp3LkzAImJibRq1Yq2bdsCEBMTc9pr+fr6MmnSJPd+7dq1iY+P57PPPjtt4JKdnc3111/PwIEDWbZsGTk5Obz44ovuwCckJIT333+ffv36FXntX3/9RWhoKNWqVStyzmw2U6dOHf766y8A3njjDUJDQ5k3bx6+vr4ANGjQwN3+6aefZtq0adxyyy3u2rdt28bbb7/tDlyefPJJd/uYmBjGjh3LvHnzPAIXh8NBXFyce9jQHXfcwfLly08buAwbdnx+pTp16jB9+nTatWtHZmYmQUFBp3yNlEyJApdZs2ad8byfnx9vvPEGb7zxxmnb1KpV66yJWefOnfnjjz/O2GbUqFGMGjXqjG1EREREROQicDph0Rhw2KBBd2jcy9sVSRm3c+dOfv/9dxYsWACAj48P/fv3Z9asWe7AZcSIEfTt25cNGzbQrVs3evfuzVVXXXXaa77xxhu8//77JCYmkpOTg9VqpWXLlqdtHxcXR2pqKm+88QaZmZl07tyZu+66i/fee4/9+/eTmZlJx44dz/u9bty4kU6dOrnDlhNlZWWRkJDA8OHDueeee9zH8/PzCQ0Nde9/+umnTJ8+nYSEBDIzM8nPzy8yJ2lMTIzHHC3VqlU74xCh9evX88wzz7Bp0yZSUlJwOByAK+gqnPJDzs/5zTAkIiIiIiKyaR7s/RV8/OGGqSUaViKlzDfA1dPEW/cuplmzZpGfn0909PHeOE6nE4vFwowZMwgNDeWGG25g7969fPvttyxbtozrrruOkSNH8tJLLxW53rx58xg7dizTpk2jQ4cOBAcH8+KLL3rMo3KyzZs3c/nll+Pr60t4eDjLli2jU6dO9OnTh/r169O9e/dT9mABVw+VtLQ0Dhw44PEeAKxWKwkJCXTp0gUAf3//09aQmZkJwLvvvkv79u09zplMrgmn4+PjGTRoEJMmTSI2NtbdW2batGke7U8OdAwGgztEOVlWVhaxsbHExsby8ccfExkZSWJiIrGxsVit1tPWKyWjwEVERERERM5d9jH4/gnXdufHILyWd+up6AyGEg3r8Yb8/Hw+/PBDpk2bRrdu3TzO9e7dm08++YT7778fgMjISIYMGcKQIUPo1KkTjz766CkDl1WrVnHVVVfxwAMPuI+dOCntqVx22WUsWLCAjIwMgoODqVKlCj/88AOdOnVi0aJFrF+//rSv7du3L+PHj2fatGlFgo+33nqLrKwsbr/9dgCaN2/O7NmzsdlsRUKRqlWrEh0dzT///MOgQYNOea/Vq1dTq1YtnnjiCfexvXv3nvG9nc2OHTs4evQoU6ZMoUaNGgCsW7fuvK4pRZ33KkUiIiIiIlKB/fA0ZB+FyMbQYaS3q5FyoHBS1+HDh9O0aVOPR9++fd1TWTz11FN89dVX7Nq1iz///JNFixbRuHHjU16zfv36rFu3jqVLl/LXX38xceJE1q5de8Y6hg8fjt1u56abbmL16tXs3LmTpUuXkpmZSUBAwBmn1KhZsyZTp07l1Vdf5YknnmDHjh0kJCTw8ssvM27cOB555BF3j5VRo0aRnp7OgAEDWLduHX///TcfffQRO3fuBGDSpEm88MILTJ8+nb/++ostW7bwwQcf8PLLL7vfW2JiIvPmzSMhIYHp06e7h2Kdq5o1a2I2m3n99df5559/+Prrr0s0abAUjwIXERERERE5N3vjYcOHru1er4Kp6BwVIiebNWsWXbt29ZijpFDfvn1Zt24dmzdvxmw2M2HCBJo3b84111yDyWRi3rx5p7zmfffdxy233EL//v1p3749R48e9ejtcirR0dH8/vvvVK5cmVtuuYVWrVrx4Ycf8uGHH7J48WLeeecdd+hxKqNHj2bBggX88ssvtG3blqZNmzJ37lxmzpzp0QunUqVK/Pjjj2RmZnLttdfSpk0b3n33XXdvl7vvvpv33nuPDz74gGbNmnHttdcSFxdH7dq1Abjpppt4+OGHGTVqFC1btmT16tVMnDjxrJ/zmURGRhIXF8fnn39OkyZNmDJlyil7Dsn5MTidTqe3i/CW9PR0QkNDSUtLKzLhkIiIiIiInIHdBm91gsPbofWdcNPr3q7ovJTH7wa5ubns3r2b2rVr4+fn5+1yRCqM4v7sqYeLiIiIiIiUXPwbrrAloBJ0nXT29iIiFYwCFxERERERKZmUvbBiimu7238hIMK79YiIlEEKXEREREREpPgObYPP7oT8HKh1NbS43dsViYiUSVoWWkREREREzi43zdWrZc3b4LSDORhufMW1DLGIiBShwEVERERERE7P6YTNn8H3T0JWsutY414Q+zyE1fRubSIiZZgCFxERERERObWkrfDto5C42rUfURd6TIV6Xb1bl4hIOaDARUREREREPOWmwU8vwO/vuIYP+QbANWOhwyjwsXi7OhGRckGBi4iIiIiIuDidsGkeLHvqhOFDNxUMH6rh3dpERMoZBS4iIiIiIgJJW2DxWNj3m2u/Uj3o8SLU/Y936xIRKae0LLSIiIiISEWWkwrfjoO3r3GFLb4BcN3TMGK1whaRU4iJieHVV1/1dhkXhMFgYOHChd4u47wNHTqU3r17e7sMBS4iIiIiIhWSwwEb58KMtvD72+B0QJPeMGotdBqjuVrkgktKSuLBBx+kTp06WCwWatSoQa9evVi+fHmp3qdz586MHj26VK95Nrt27SI2NpaQkBAiIiK44YYbOHz48FlfZ7fbmTJlCo0aNcLf35+IiAjat2/Pe++9V6r1PfPMM7Rs2bJUr/nJJ59gMpkYOXJkqV73XLz22mvExcV5uwwNKRIRERERqXAOboZvx8K+Na79SvULhg918W5dUmHs2bOHjh07EhYWxosvvkizZs2w2WwsXbqUkSNHsmPHjotaj9PpxG634+NTOl+R7733XtLS0li5ciUBAQHEx8fjdDrP+rpJkybx9ttvM2PGDNq2bUt6ejrr1q0jJSWlVOq6kGbNmsW4ceN4++23mTZtGn5+fhe9BrvdjsFgIDQ09KLf+1TUw0VEREREpKLIz4MlE+Cda11hi28gdJ1UMHxIYYtcPA888AAGg4Hff/+dvn370qBBAy6//HLGjBnDb7/95m6XmprK3XffTWRkJCEhIfznP/9h06ZN7vOFPTU++ugjYmJiCA0NZcCAAWRkZACuoSUrV67ktddew2AwYDAY2LNnDytWrMBgMPDdd9/Rpk0bLBYLv/76KwkJCdx8881UrVqVoKAg2rVrxw8//FDi92c0GomNjaVVq1Y0bNiQoUOHUqVKlbO+7uuvv+aBBx7g1ltvpXbt2rRo0YLhw4czduxYd5u8vDweeughqlSpgp+fH1dffTVr1651n4+LiyMsLMzjugsXLsRgMLjPT5o0iU2bNrk/kxN7gxw5coQ+ffoQEBBA/fr1+frrr89a9+7du1m9ejWPPfYYDRo0YP78+R7nC2tatGgRDRs2JCAggH79+pGdnc3s2bOJiYkhPDychx56CLvd7vFex44dy2WXXUZgYCDt27dnxYoVRa779ddf06RJEywWC4mJiUWGFDkcDqZOnUq9evWwWCzUrFmT5557zn1+/PjxNGjQgICAAOrUqcPEiROx2Wxnfd9no8BFRERERKQiSNsPH9wAv73pGj50eR/X8KGrR4OP2dvVSSlxOp1k27K98ihODw6AY8eOsWTJEkaOHElgYGCR8yeGBbfeeivJycl89913rF+/ntatW3Pddddx7Ngxd5uEhAQWLlzIokWLWLRoEStXrmTKlCmAa2hJhw4duOeeezh48CAHDx6kRo3jK2499thjTJkyhe3bt9O8eXMyMzPp0aMHy5cv548//qB79+706tWLxMTEEv13uPnmm3nzzTfZsGFDiV4XFRXFjz/+eMbhR+PGjePLL79k9uzZbNiwgXr16hEbG+vxmZxJ//79eeSRR7j88svdn0n//v3d5ydNmsRtt93G5s2b6dGjB4MGDTrrtT/44AN69uxJaGgogwcPZtasWUXaZGdnM336dObNm8eSJUtYsWIFffr04dtvv+Xbb7/lo48+4u233+aLL75wv2bUqFHEx8czb948Nm/ezK233kr37t35+++/Pa77v//9j/fee48///zzlMHWhAkTmDJlChMnTmTbtm3MnTuXqlWrus8HBwcTFxfHtm3beO2113j33Xd55ZVXivV5nomGFImIiIiIXOr+WQFfDIPso+AXBre8Aw1ivV2VXAA5+Tm0n9veK/deM3ANAb4BZ223a9cunE4njRo1OmO7X3/9ld9//53k5GQsFtecQi+99BILFy7kiy++4N577wVcvRfi4uIIDg4G4I477mD58uU899xzhIaGYjabCQgIICoqqsg9nn32Wa6//nr3fkREBC1atHDvT548mQULFvD1118zatSos38IwI8//shjjz3GpEmTuPHGG/n000/p1KkTAF9++SVDhw5198A52csvv0y/fv2Iiori8ssv56qrruLmm2/mhhtuACArK4uZM2cSFxfnPvbuu++ybNkyZs2axaOPPnrW+vz9/QkKCsLHx+eUn8nQoUO5/fbbAXj++eeZPn06v//+O927dz/l9Qo//9dffx2AAQMG8Mgjj7B7925q167tbmez2Zg5cyZ169YFoF+/fnz00UccOnSIoKAgmjRpQpcuXfjpp5/o378/iYmJfPDBByQmJhIdHQ3A2LFjWbJkCR988AHPP/+8+7pvvvmmx3+3E2VkZPDaa68xY8YMhgwZAkDdunW5+uqr3W2efPJJ93ZMTAxjx45l3rx5jBs37qyf55moh4uIiIiIyKXK6YRfXoaP+rjClqjmcN9KhS3iVcXtCbNp0yYyMzOpVKkSQUFB7sfu3btJSEhwt4uJiXGHLQDVqlUjOTm5WPdo27atx35mZiZjx46lcePGhIWFERQUxPbt20vUw+Wxxx5j5MiRjB07llmzZtGrVy+++eYbALZs2eLxRf9kTZo0YevWrfz2228MGzaM5ORkevXqxd133w24evPYbDY6duzofo2vry9XXHEF27dvL3aNZ9K8eXP3dmBgICEhIWf8PJctW0ZWVhY9evQAoHLlylx//fW8//77Hu0CAgLcYQtA1apViYmJISgoyONY4b22bNmC3W6nQYMGHv/9V65c6fHf32w2e9R8su3bt5OXl8d111132jaffvopHTt2JCoqiqCgIJ588skS92o6FfVwERERERG5FOWmwcIHYMci137LwdDzJfD1925dckH5+/izZuAar927OOrXr4/BYDjrxLiZmZlUq1bNY86OQicOO/L19fU4ZzAYcDgcxarl5CFNY8eOZdmyZbz00kvUq1cPf39/+vXrh9VqLdb1ADZv3szDDz8MwA033MCsWbO49dZbmTFjBnFxcUydOvWMrzcajbRr14527doxevRo5syZwx133METTzxRrPsbjcYioVZJ5iMp6ec5a9Ysjh07hr//8f/+DoeDzZs3M2nSJIxG42mve6Z7ZWZmYjKZWL9+PSaTyaPdiSGNv7+/e36aUzmxrlOJj49n0KBBTJo0idjYWEJDQ5k3bx7Tpk074+uKQ4GLiIiIiMil5tA2+HQwHEsAk9m1AlHrIXCGLyVyaTAYDMUa1uNNERERxMbG8sYbb/DQQw8VCT1SU1MJCwujdevWJCUl4ePjQ0xMzDnfz2w2e0zEeiarVq1i6NCh9OnTB3B96d+zZ0+J7nfZZZfx888/u4fl9O3bl8zMTO666y6aN2/OrbfeWqLrNWnSBHANJ6pbty5ms5lVq1ZRq1YtwBWmrF271r30dWRkJBkZGWRlZbk/240bN3pcsySfyZkcPXqUr776innz5nH55Ze7j9vtdq6++mq+//770w5FOptWrVpht9tJTk52D8k6F/Xr18ff35/ly5e7ewqdaPXq1dSqVcsj0Nq7d+853+9EClxERERERC4lW76Arx8EWzaEVIf+H8JlbbxdlYiHN954g44dO3LFFVfw7LPP0rx5c/Lz81m2bBkzZ85k+/btdO3alQ4dOtC7d2+mTp1KgwYNOHDgAIsXL6ZPnz5FhgOdTkxMDGvWrGHPnj0EBQURERFx2rb169dn/vz59OrVC4PBwMSJE4vdW6bQuHHjeOCBB4iKiqJ///6kpaURHx9PQEAAO3bsYNWqVacdVtSvXz86duzIVVddRVRUFLt372bChAk0aNCARo0a4ePjw4gRI3j00UeJiIigZs2aTJ06lezsbIYPHw5A+/btCQgI4PHHH+ehhx5izZo1HqsQFX4mu3fvZuPGjVSvXp3g4GD3PDkl8dFHH1GpUiVuu+22Ir1MevTowaxZs845cGnQoAGDBg3izjvvZNq0abRq1YrDhw+zfPlymjdvTs+ePYt1HT8/P8aPH8+4ceMwm8107NiRw4cP8+effzJ8+HDq169PYmIi8+bNo127dixevJgFCxacU80n0xwuIiIiIiKXArsNvnsMvhzuClvqdIb7flbYImVSnTp12LBhA126dOGRRx6hadOmXH/99SxfvpyZM2cCrt463377Lddccw133XUXDRo0YMCAAezdu9djhZmzGTt2LCaTiSZNmhAZGXnGuTlefvllwsPDueqqq+jVqxexsbG0bt26RO/tvvvu49NPP+Wbb76hTZs23HTTTVitVnbs2MEdd9xB7969PVbZOVFsbCzffPMNvXr1okGDBgwZMoRGjRrx/fff4+Pj6i8xZcoU+vbtyx133EHr1q3ZtWsXS5cuJTw8HHD1IJozZw7ffvstzZo145NPPuGZZ57xuE/fvn3p3r07Xbp0ITIykk8++aRE77HQ+++/T58+fU45pKdv3758/fXXHDly5JyuDa7Vj+68804eeeQRGjZsSO/evVm7di01a9Ys0XUmTpzII488wlNPPUXjxo3p37+/e66Ym266iYcffphRo0bRsmVLVq9ezcSJE8+55hMZnMWdsegSlJ6eTmhoKGlpaYSEhHi7HBERERGRc5ORBJ8NgX2/ufY7PQJdngCj6cyvE7fy+N0gNzfXvRKMn5+ft8sRqTCK+7OnIUUiIiIiIuXZnlXw+VDISgZLCPR5CxoVr6u9iIhcOApcRERERETKI6cTfnsTvp8ITjtUaQL950Clumd/rYiIXHAKXEREREREypu8TPh6FPxZMLFjs1uh12tgDjzz60RE5KJR4CIiIiIiUp4c/su15PORnWD0gdgX4Ip7tOSziEgZo8BFRERERKS82PY1LHwArBkQXA1unQ0123u7KhEROQUFLiIiIiIi5cHmz2D+Pa7tWldDv/chuPhL44qIyMWlwEVEREREpKxL+BEWjnBttx0GN7wIJv0qLyJSlulPaRERERGRsuzgJvj0DnDkQ9O+0GMaGI3erkpERM5Cf1KLiIiIiJRVKXvg41vBmgkxnaD3TIUtIiLlhP60FhEREREpi7KOwpy+kHkIqjaFAR+Dj8XbVYlc0jp37szo0aO9XYZcIhS4iIiIiIiUNdZs+KQ/HN0FoTVg0BfgF+rtqkRKzdChQzEYDEUe3bt392pd8+fPZ/LkyV6tQS4dmsNFRERERKQssefDF8Ng/1rwC4PBX0JINW9XJVLqunfvzgcffOBxzGI5t15cTqcTu92Oj8/5fcWNiIg4r9eLnEg9XEREREREygqnExaPgb++Ax8/GPgpRDb0dlUiF4TFYiEqKsrjER4ezp49ezAYDGzcuNHdNjU1FYPBwIoVKwBYsWIFBoOB7777jjZt2mCxWPj1119JSEjg5ptvpmrVqgQFBdGuXTt++OEHj/u++eab1K9fHz8/P6pWrUq/fv3c504eUvTRRx/Rtm1bgoODiYqKYuDAgSQnJ1/Ij0UuIerhIiIiIiJSVqycChtmg8EIfd+Dmld6uyIpZ5xOJ86cHK/c2+Dvj8FguKj3fOyxx3jppZeoU6cO4eHh7Nu3jx49evDcc89hsVj48MMP6dWrFzt37qRmzZqsW7eOhx56iI8++oirrrqKY8eO8csvv5z2+jabjcmTJ9OwYUOSk5MZM2YMQ4cO5dtvv72I71LKKwUuIiIiIiJlwYYPYcXzru0eL0LjXt6tR8olZ04OO1u38cq9G25YjyEgoNjtFy1aRFBQkMexxx9/nIEDBxb7Gs8++yzXX3+9ez8iIoIWLVq49ydPnsyCBQv4+uuvGTVqFImJiQQGBnLjjTcSHBxMrVq1aNWq1WmvP2zYMPd2nTp1mD59Ou3atSMzM7NI7SInU+AiIiIiIuJtfy2Fb0a7tjs9Au3u9mo5IhdDly5dmDlzpsexiIgI0tPTi32Ntm3beuxnZmbyzDPPsHjxYg4ePEh+fj45OTkkJiYCcP3111OrVi3q1KlD9+7d6d69O3369CHgNEHR+vXreeaZZ9i0aRMpKSk4HA4AEhMTadKkSUnerlRAClxERERERLxp/zr4bAg47dBiIPxnorcrknLM4O9Pww3rvXbvkggMDKRevXpFjmdmZgKu4VGFbDbbaa9xorFjx7Js2TJeeukl6tWrh7+/P/369cNqtQIQHBzMhg0bWLFiBd9//z1PPfUUzzzzDGvXriUsLMzjWllZWcTGxhIbG8vHH39MZGQkiYmJxMbGuq8nciYKXEREREREvOXILph7G+TnQN3r4KbpcJHnwJBLi8FgKNGwnrIoMjISgIMHD7qH+5w4ge6ZrFq1iqFDh9KnTx/AFd7s2bPHo42Pjw9du3ala9euPP3004SFhfHjjz9yyy23eLTbsWMHR48eZcqUKdSoUQOAdevWncc7k4pGgYuIiIiIiDdkJsOcWyD7KFRrCbd9CCZfb1clctHk5eWRlJTkcczHx4fKlStz5ZVXMmXKFGrXrk1ycjJPPvlksa5Zv3595s+fT69evTAYDEycONE9DAhc88b8888/XHPNNYSHh/Ptt9/icDho2LDoamA1a9bEbDbz+uuvc//997N161YmT558fm9aKhQtCy0iIiIicrHlZcDH/SB1L4THwKDPwaIJOKViWbJkCdWqVfN4XH311QC8//775Ofn06ZNG0aPHs1///vfYl3z5ZdfJjw8nKuuuopevXoRGxtL69at3efDwsKYP38+//nPf2jcuDFvvfUWn3zyCZdffnmRa0VGRhIXF8fnn39OkyZNmDJlCi+99FLpvHmpEAzOEwfGVTDp6emEhoaSlpZGSEiIt8sRERERkYrAbnMNI0r4EQIqwfBlUKmut6uq8Mrjd4Pc3Fx2795N7dq18fPz83Y5IhVGcX/21MNFRERERORicTrh6wddYYtvAAz8XGGLiMglSoGLiIiIiMjFsvxZ2PQJGExw62yo3sbbFYmIyAWiwEVERERE5GJY8w78+rJru9dr0KCbd+sREZELSoGLiIiIiMiFtmMxfDfOtd3lCWh9h3frERGRC06Bi4iIiIjIhXRgI3x5N+CENkPhmke9XJCIiFwMClxERERERC6U9APwyQCwZUOdLtDjJTAYvF2ViIhcBApcREREREQuBGuWK2zJOAiVG8KtcWDy9XZVIiJykShwEREREREpbQ4HzL8XDm6CgEow8FPwD/N2VSIichEpcBERERERKW3LJ8GORWAyw4C5EFHb2xWJiMhFpsBFRERERKQ0/TEHVr3q2r75Dah5pVfLERER71DgIiIiIiJSWvb8Ct+Mdm1fMw6a3+bVckTKqqFDh2IwGIo8unfv7u3SREpNiQKXF154gXbt2hEcHEyVKlXo3bs3O3fu9GjTuXPnIj80999/v0ebxMREevbsSUBAAFWqVOHRRx8lPz/fo82KFSto3bo1FouFevXqERcXV6SeN954g5iYGPz8/Gjfvj2///57Sd6OiIiIiEjpOZoAnw4Ghw0u7wOdJ3i7IpEyrXv37hw8eNDj8cknn5zTtZxOZ5HvlCLeVqLAZeXKlYwcOZLffvuNZcuWYbPZ6NatG1lZWR7t7rnnHo8fmqlTp7rP2e12evbsidVqZfXq1cyePZu4uDieeuopd5vdu3fTs2dPunTpwsaNGxk9ejR33303S5cudbf59NNPGTNmDE8//TQbNmygRYsWxMbGkpycfK6fhYiIiIjIuck+BnNvg5wUuKwN9J4JRnUmFzkTi8VCVFSUxyM8PJw9e/ZgMBjYuHGju21qaioGg4EVK1YArn+gNxgMfPfdd7Rp0waLxcKvv/5KXl4eDz30EFWqVMHPz4+rr76atWvXuq9T+LrFixfTvHlz/Pz8uPLKK9m6datHbb/++iudOnXC39+fGjVq8NBDDxX53ityNiX6W2DJkiUMHTqUyy+/nBYtWhAXF0diYiLr16/3aBcQEODxQxMSEuI+9/3337Nt2zbmzJlDy5YtueGGG5g8eTJvvPEGVqsVgLfeeovatWszbdo0GjduzKhRo+jXrx+vvPKK+zovv/wy99xzD3fddRdNmjThrbfeIiAggPfff/+09efl5ZGenu7xEBERERE5L/lW+OxOOLoLQmvAgE/A19/bVUkF5XQ6seXZvfJwOp0X/f0+9thjTJkyhe3bt9O8eXPGjRvHl19+yezZs9mwYQP16tUjNjaWY8eOebzu0UcfZdq0aaxdu5bIyEh69eqFzWYDICEhge7du9O3b182b97Mp59+yq+//sqoUaMu+vuT8s3nfF6clpYGQEREhMfxjz/+mDlz5hAVFUWvXr2YOHEiAQEBAMTHx9OsWTOqVq3qbh8bG8uIESP4888/adWqFfHx8XTt2tXjmrGxsYwePRoAq9XK+vXrmTDheDdNo9FI165diY+PP229L7zwApMmTTqftywiIiIicpzTCYvHwJ5fwBwEt8+D4Kpnf53IBZJvdfDO/630yr3vfe1afC2mYrdftGgRQUFBHscef/xxBg4cWOxrPPvss1x//fUAZGVlMXPmTOLi4rjhhhsAePfdd1m2bBmzZs3i0Ucfdb/u6aefdr9u9uzZVK9enQULFnDbbbfxwgsvMGjQIPf3z/r16zN9+nSuvfZaZs6ciZ+fX7Hrk4rtnAMXh8PB6NGj6dixI02bNnUfHzhwILVq1SI6OprNmzczfvx4du7cyfz58wFISkryCFsA935SUtIZ26Snp5OTk0NKSgp2u/2UbXbs2HHamidMmMCYMWPc++np6dSoUeMc3r2IiIiICLD6dfjjIzAYod/7ENX07K8REQC6dOnCzJkzPY5FRESUaCRC27Zt3dsJCQnYbDY6duzoPubr68sVV1zB9u3bPV7XoUMHj3s2bNjQ3WbTpk1s3ryZjz/+2N3G6XTicDjYvXs3jRs3LnZ9UrGdc+AycuRItm7dyq+//upx/N5773VvN2vWjGrVqnHdddeRkJBA3bp1z73SUmCxWLBYLF6tQUREREQuEdsXwbKCeQhjn4cGsd6tRwTwMRu597VrvXbvkggMDKRevXpFjmdmZgJ4DFEqHO5zqmuUtszMTO677z4eeuihIudq1qxZ6veTS9c5BS6jRo1i0aJF/Pzzz1SvXv2Mbdu3bw/Arl27qFu3LlFRUUVWEzp06BAAUVFR7ufCYye2CQkJwd/fH5PJhMlkOmWbwmuIiIiIiFwwBzfB/HsAJ7QdDu3vP+tLRC4Gg8FQomE9ZVFkZCQABw8epFWrVgAeE+ieTt26dTGbzaxatYpatWoBrqBm7dq17uFBhX777Td3eJKSksJff/3l7rnSunVrtm3bdsowSKQkShRBOp1ORo0axYIFC/jxxx+pXbv2WV9T+INRrVo1wNV1a8uWLR6rCS1btoyQkBCaNGnibrN8+XKP6yxbtszd7ctsNtOmTRuPNg6Hg+XLl3t0DRMRERERKXXpB2DuALBlQ50ucMP/wGDwdlUi5U5eXh5JSUkejyNHjuDv78+VV17pngx35cqVPPnkk2e9XmBgICNGjODRRx9lyZIlbNu2jXvuuYfs7GyGDx/u0fbZZ59l+fLlbN26laFDh1K5cmV69+4NwPjx41m9ejWjRo1i48aN/P3333z11VeaNFdKrEQ9XEaOHMncuXP56quvCA4Ods+5Ehoair+/PwkJCcydO5cePXpQqVIlNm/ezMMPP8w111xD8+bNAejWrRtNmjThjjvuYOrUqSQlJfHkk08ycuRI93Cf+++/nxkzZjBu3DiGDRvGjz/+yGeffcbixYvdtYwZM4YhQ4bQtm1brrjiCl599VWysrK46667SuuzERERERHxZM2CTwZAxgGo3BBujQOTr7erEimXlixZ4v6H+UINGzZkx44dvP/++wwfPpw2bdrQsGFDpk6dSrdu3c56zSlTpuBwOLjjjjvIyMigbdu2LF26lPDw8CLt/u///o+///6bli1b8s0332A2mwFo3rw5K1eu5IknnqBTp044nU7q1q1L//79S+/NS4VgcJZg7S7DaZL7Dz74gKFDh7Jv3z4GDx7M1q1bycrKokaNGvTp04cnn3zSY2novXv3MmLECFasWEFgYCBDhgxhypQp+Pgcz39WrFjBww8/zLZt26hevToTJ05k6NChHvedMWMGL774IklJSbRs2ZLp06e7hzAVR3p6OqGhoaSlpXnUJyIiIiJShMMBn98J27+BgEpw93KIOHuPbykfyuN3g9zcXHbv3k3t2rW1ck4xrVixgi5dupCSkkJYWJi3y5Fyqrg/eyUKXC415fEPVRERERHxkh+egV9fAZMZhnwDNa/0dkVSisrjdwMFLiWnwEVKQ3F/9ko2jbSIiIiISEX0xxxX2AJw0wyFLSIiclbnvCy0iIiIiEiFsPtn+Ga0a/uaR6GF5nEQKa86d+5MBR7kIReZeriIiIiIiJzO3tWuFYkcNri8D3R+3NsViYhIOaHARURERETkVBJ/g49vBVsW1P0P9H4LjPr1WUREikd/Y4iIiIiInGzfWpjTD6yZUPtaGDAXfDUpqYiIFJ8CFxERERGRE/27HubcAtYMiOkEt88DX39vVyUiIuWMAhcRERERkUIH/oCP+kBeOtS8CgZ+CuYAb1clIiLlkAIXERERERGAg5vgw96QmwY1roRBn4M50NtViYhIOaXARUREREQkaQt8eDPkpkL1K2DwF2AJ8nZVIlKgc+fOjB49+oxtYmJiePXVV8/YxmAwsHDhQgD27NmDwWBg48aNpVKjyMkUuIiIiIhIxXZomytsyUmBy9oUhC3B3q5K5JI2dOhQDAYD999/f5FzI0eOxGAwMHToUPex+fPnM3ny5ItYYfGsWLECg8FwykdSUlKp3KM4QZKUTQpcRERERKTiSt4Bs3tB9lGo1hIGzwe/UG9XJVIh1KhRg3nz5pGTk+M+lpuby9y5c6lZs6ZH24iICIKDy24QunPnTg4ePOjxqFKlirfLEi9T4CIiIiIiFdPhvwrCliMQ1RzuWAD+Yd6uSqTCaN26NTVq1GD+/PnuY/Pnz6dmzZq0atXKo+3JQ4qSk5Pp1asX/v7+1K5dm48//rjI9f/++2+uueYa/Pz8aNKkCcuWLTtrTVu3buWGG24gKCiIqlWrcscdd3DkyJGzvq5KlSpERUV5PIxG19fttWvXcv3111O5cmVCQ0O59tpr2bBhg/u1TqeTZ555hpo1a2KxWIiOjuahhx5yv++9e/fy8MMPu3vOSPmhwEVEREREKp4ju1xhS1YyVG0Gd34FARHerkrkvDmdTmy5uV55OJ3OEtc7bNgwPvjgA/f++++/z1133XXW1w0dOpR9+/bx008/8cUXX/Dmm2+SnJzsPu9wOLjlllswm82sWbOGt956i/Hjx5/xmqmpqfznP/+hVatWrFu3jiVLlnDo0CFuu+22Er+vE2VkZDBkyBB+/fVXfvvtN+rXr0+PHj3IyMgA4Msvv+SVV17h7bff5u+//2bhwoU0a9YMcAVQ1atX59lnn3X3nJHyw8fbBYiIiIiIXFRHE2D2jZCZBFUuV9gil5T8vDymD+nnlXs/NPsLfP38SvSawYMHM2HCBPbu3QvAqlWrmDdvHitWrDjta/766y++++47fv/9d9q1awfArFmzaNy4sbvNDz/8wI4dO1i6dCnR0dEAPP/889xwww2nve6MGTNo1aoVzz//vPvY+++/T40aNfjrr79o0KDBaV9bvXp1j/1atWrx559/AvCf//zH49w777xDWFgYK1eu5MYbbyQxMZGoqCi6du2Kr68vNWvW5IorrgBcQ6lMJhPBwcFERUWd9v5SNilwEREREZGK49huV8+WjIMQ2cgVtgRW8nZVIhVWZGQkPXv2JC4uDqfTSc+ePalcufIZX7N9+3Z8fHxo06aN+1ijRo0ICwvzaFOjRg132ALQoUOHM15306ZN/PTTTwQFFV2hLCEh4YyByy+//OIxx4yvr697+9ChQzz55JOsWLGC5ORk7HY72dnZJCYmAnDrrbfy6quvUqdOHbp3706PHj3o1asXPj76ul7e6b+giIiIiFQMKXtdYUv6v1C5AQz5BoIivV2VSKnysVh4aPYXXrv3uRg2bBijRo0C4I033ijNkkokMzOTXr168b///a/IuWrVqp3xtbVr1/YIfE40ZMgQjh49ymuvvUatWrWwWCx06NABq9UKuCYP3rlzJz/88APLli3jgQce4MUXX2TlypUewY2UPwpcREREROTSl7rPNYwobR9UqlcQtmgFEbn0GAyGEg/r8bbu3btjtVoxGAzExsaetX2jRo3Iz89n/fr17iFFO3fuJDU11d2mcePG7Nu3j4MHD7rDkt9+++2M123dujVffvklMTExpdq7ZNWqVbz55pv06NEDgH379hWZiNff359evXrRq1cvRo4cSaNGjdiyZQutW7fGbDZjt9tLrR65eDRproiIiIhc2tL+dYUtqYkQUccVtgRrLgSRssJkMrF9+3a2bduGyWQ6a/uGDRvSvXt37rvvPtasWcP69eu5++678ff3d7fp2rUrDRo0YMiQIWzatIlffvmFJ5544ozXHTlyJMeOHeP2229n7dq1JCQksHTpUu66666zBh7JyckkJSV5PGw2GwD169fno48+Yvv27axZs4ZBgwZ51BoXF8esWbPYunUr//zzD3PmzMHf359atWoBEBMTw88//8y///5brBWTpOxQ4CIiIiIil670A66wJWUPhMfAkEUQEn22V4nIRRYSEkJISEix23/wwQdER0dz7bXXcsstt3DvvfdSpcrxXmtGo5EFCxaQk5PDFVdcwd13381zzz13xmtGR0ezatUq7HY73bp1o1mzZowePZqwsDD3Es+n07BhQ6pVq+bxWL9+PeCa0DclJYXWrVtzxx138NBDD3nUGhYWxrvvvkvHjh1p3rw5P/zwA9988w2VKrnml3r22WfZs2cPdevWJTJSwyDLE4PzXNbuukSkp6cTGhpKWlpaiX64RURERKSMc9hhw2xY/izkpEBYTRj6LYTV8HZlUkaVx+8Gubm57N69m9q1a+NXzoYRiZRnxf3Z0xwuIiIiInJp2bcWvh0LBze69qtcDrfPVdgiIiIXlQIXEREREbk0ZB6GH56BjXNc+5YQ6PIEtLsbTPq1V0RELi79zSMiIiIi5Zs9H9a+Bz89D3lprmMtB0PXp7USkYiIeI0CFxEREREpv/asgm8fheQ/XfvVWkCPaVCjnXfrEhGRCk+Bi4iIiIiUP+kHYdlE2PK5a98/HK57CloPAePZl5UVERG50BS4iIiIiEj5kW+FNW/Byv+BNRMwQJuhrrAlIMLb1YmIiLgpcBERERGR8iHhJ/huHBz5y7VfvR30eBGiW3m3LhERkVNQ4CIiIiIiZVvqPlj6OGz/2rUfGAldJ0GL28Fo9G5tIiIip6HARURERETKJlsuxL8OP0+D/BwwmOCKe6HzY+Af5u3qREREzkj/JCAiIiIiZc+hbfB2J/jxv66wpVZHuO9nuGGKwhYROWdDhw6ld+/e3i7jvK1YsQKDwUBqaqq3S5EzUOAiIiIiImXLxrnw7n9cc7UEVYW+s2DoYohq6u3KRKSUDB06FIPBwJQpUzyOL1y4EIPBcN7X37NnDwaDgY0bN573tQrl5OQQERFB5cqVycvLK7XrnourrrqKgwcPEhoa6tU65MwUuIiIiIhI2WDNhq9GwsIRrl4tdf8DI1ZDs35QCl/ARKRs8fPz43//+x8pKSmlel2r1Vqq1yv05Zdfcvnll9OoUSMWLlx4Qe5RHDabDbPZTFRUVKmEU3LhKHAREREREe878je81xX+mAMGI3R5EgZ9CYGVvV2ZiFwgXbt2JSoqihdeeOGM7QqDDovFQkxMDNOmTfM4HxMTw+TJk7nzzjsJCQnh3nvvpXbt2gC0atUKg8FA586dPV7z0ksvUa1aNSpVqsTIkSOx2WxnrXfWrFkMHjyYwYMHM2vWrCLnDQYDb7/9NjfeeCMBAQE0btyY+Ph4du3aRefOnQkMDOSqq64iISHB43VfffUVrVu3xs/Pjzp16jBp0iTy8/M9rjtz5kxuuukmAgMDee655045pGjVqlV07tyZgIAAwsPDiY2NdYdZS5Ys4eqrryYsLIxKlSpx4403FqlDSp8CFxERERHxri1fwDudIflPCKwCdyyEax/VCkQi58DpdOKw2r3ycDqdJarVZDLx/PPP8/rrr7N///5Ttlm/fj233XYbAwYMYMuWLTzzzDNMnDiRuLg4j3YvvfQSLVq04I8//mDixIn8/vvvAPzwww8cPHiQ+fPnu9v+9NNPJCQk8NNPPzF79mzi4uKKXO9kCQkJxMfHc9ttt3Hbbbfxyy+/sHfv3iLtCoOfjRs30qhRIwYOHMh9993HhAkTWLduHU6nk1GjRrnb//LLL9x555383//9H9u2bePtt98mLi6O5557zuO6zzzzDH369GHLli0MGzasyH03btzIddddR5MmTYiPj+fXX3+lV69e2O12ALKyshgzZgzr1q1j+fLlGI1G+vTpg8PhOOP7lvNjcJb0p+ISkp6eTmhoKGlpaYSEhHi7HBEREZGKxZbrWu55XcG/FMd0cs3XElzVu3VJhVQevxvk5uaye/duateujZ+fHwAOq50DT632Sj3Rz16F0WwqVtuhQ4eSmprKwoUL6dChA02aNGHWrFksXLiQPn36uMObQYMGcfjwYb7//nv3a8eNG8fixYv5888/AVcPl1atWrFgwQJ3mz179lC7dm3++OMPWrZs6XHfFStWkJCQgMnkqvW2227DaDQyb96809b7xBNPsG3bNvc9evfuTcuWLXnmmWfcbQwGA08++SSTJ08G4LfffqNDhw7MmjXLHZLMmzePu+66i5ycHMDVy+e6665jwoQJ7uvMmTOHcePGceDAAfd1R48ezSuvvOJus2LFCrp06UJKSgphYWEMHDiQxMREfv3112J9/keOHCEyMpItW7bQtKnmxyqpU/3snYr+2UBERERELr5ju+H9bsfDlmsedfVsUdgiUuH873//Y/bs2Wzfvr3Iue3bt9OxY0ePYx07duTvv/92994AaNu2bbHvd/nll7vDFoBq1aqRnJx82vZ2u53Zs2czePBg97HBgwcTFxdXpIdI8+bN3dtVq7r+PGvWrJnHsdzcXNLT0wHYtGkTzz77LEFBQe7HPffcw8GDB8nOzi72+yvs4XI6f//9N7fffjt16tQhJCSEmJgYABITE894XTk/Pt4uQEREREQqmO3fwMKRkJcG/hFwy7tQv6u3qxK5JBh8jUQ/e5XX7n0urrnmGmJjY5kwYQJDhw49p2sEBgYWu62vr6/HvsFgOOPQmqVLl/Lvv//Sv39/j+N2u53ly5dz/fXXn/LahRPanupY4f0yMzOZNGkSt9xyS5H7nthz4mzvz9/f/4zne/XqRa1atXj33XeJjo7G4XDQtGnTCzbBsLgocBERERGRiyPfCj88A7+94dqv0R76vQ+h1b1alsilxGAwYCjmsJ6yZMqUKbRs2ZKGDRt6HG/cuDGrVq3yOLZq1SoaNGjg0UvlZGazGcCjF8y5mjVrFgMGDOCJJ57wOP7cc88xa9Ysj8ClpFq3bs3OnTupV6/eedXYvHlzli9fzqRJk4qcO3r0KDt37uTdd9+lU6dOAMUeeiTnR4GLiIiIiFx4qfvgi7tg/1rX/lUPwnVPg8n3zK8TkQqhWbNmDBo0iOnTp3scf+SRR2jXrh2TJ0+mf//+xMfHM2PGDN58880zXq9KlSr4+/uzZMkSqlevjp+fH6GhoSWu6/Dhw3zzzTd8/fXXReY6ufPOO+nTpw/Hjh0jIiKixNcGeOqpp7jxxhupWbMm/fr1w2g0smnTJrZu3cp///vfYl9nwoQJNGvWjAceeID7778fs9nMTz/9xK233kpERASVKlXinXfeoVq1aiQmJvLYY4+dU71SMprDRUREREQurL++h7c7ucIWv1AYMBe6/Vdhi4h4ePbZZ4sM7WndujWfffYZ8+bNo2nTpjz11FM8++yzZx165OPjw/Tp03n77beJjo7m5ptvPqeaPvzwQwIDA085P8p1112Hv78/c+bMOadrA8TGxrJo0SK+//572rVrx5VXXskrr7xCrVq1SnSdBg0a8P3337Np0yauuOIKOnTowFdffYWPj497QuD169fTtGlTHn74YV588cVzrlmKT6sUlbOZyEVERETKDXs+/PRf+LVgZY3oVnBrHITHeLMqkVMqj98NirtSioiUruL+7GlIkYiIiIiUvvSD8OVw2Fsw98IV90G3yeBj8W5dIiIiF4kCFxEREREpXYf+hA97Q1YymIPh5tfh8j7erkpEROSiUuAiIiIiIqUnaQvMvglyjkGVy6H/R1CprrerEhERuegUuIiIiIhI6TiwET7qDTkpEN0a7pgP/uHerkpERMQrFLiIiIiIyPn7dz181Ady06B6Oxj8pWtFIhG54CrwOigiXlHcnzktCy0iIiIi52ffWtecLblpUONKGDxfYYvIReDr61paPTs728uViFQshT9zhT+Dp6MeLiIiIiJy7hJ/gzn9wJoBtTrCwM/AEuTtqkQqBJPJRFhYGMnJyQAEBARgMBi8XJXIpcvpdJKdnU1ycjJhYWGYTKYztlfgIiIiIiLnZs8q+PhWsGVBTCcY+CmYA71dlUiFEhUVBeAOXUTkwgsLC3P/7J2JAhcRERERKbndP8Pc/mDLhjpdYMBcMAd4uyqRCsdgMFCtWjWqVKmCzWbzdjkilzxfX9+z9mwppMBFREREREom4Sf45HbIz4F6XaH/HPD193ZVIhWayWQq9pdAEbk4FLiIiIiISPH9/QPMGwj2PKgfC7d9CL5+3q5KRESkzNEqRSIiIiJSPH8thXm3u8KWhj2h/0cKW0RERE5DPVxERERE5Ox2LIbPhoDDBo17Qd/3wcfs7apERETKLPVwEREREZEz2/Y1fHanK2y5vA/0+0Bhi4iIyFkocBERERGR09s6Hz4fCo58aHYr3PIemHy9XZWIiEiZp8BFRERERE5t8+fw5XBw2qH5AOjzNpg0Il1ERKQ4ShS4vPDCC7Rr147g4GCqVKlC79692blzp0eb3NxcRo4cSaVKlQgKCqJv374cOnTIo01iYiI9e/YkICCAKlWq8Oijj5Kfn+/RZsWKFbRu3RqLxUK9evWIi4srUs8bb7xBTEwMfn5+tG/fnt9//70kb0dERERETmfTPFhwLzgd0HIw9H4TjFpyVkREpLhKFLisXLmSkSNH8ttvv7Fs2TJsNhvdunUjKyvL3ebhhx/mm2++4fPPP2flypUcOHCAW265xX3ebrfTs2dPrFYrq1evZvbs2cTFxfHUU0+52+zevZuePXvSpUsXNm7cyOjRo7n77rtZunSpu82nn37KmDFjePrpp9mwYQMtWrQgNjaW5OTk8/k8REREROSPObDgflfY0noI3PS6whYREZESMjidTue5vvjw4cNUqVKFlStXcs0115CWlkZkZCRz586lX79+AOzYsYPGjRsTHx/PlVdeyXfffceNN97IgQMHqFq1KgBvvfUW48eP5/Dhw5jNZsaPH8/ixYvZunWr+14DBgwgNTWVJUuWANC+fXvatWvHjBkzAHA4HNSoUYMHH3yQxx57rFj1p6enExoaSlpaGiEhIef6MYiIiIhcGuz5sOIF+OUl137b4dDjJTBqFLpc+vTdQERK23n97ZmWlgZAREQEAOvXr8dms9G1a1d3m0aNGlGzZk3i4+MBiI+Pp1mzZu6wBSA2Npb09HT+/PNPd5sTr1HYpvAaVquV9evXe7QxGo107drV3eZU8vLySE9P93iIiIiICJB+ED686XjY0mEU9JymsEVEROQcnfPfoA6Hg9GjR9OxY0eaNm0KQFJSEmazmbCwMI+2VatWJSkpyd3mxLCl8HzhuTO1SU9PJycnhyNHjmC320/ZpvAap/LCCy8QGhrqftSoUaPkb1xERETkUrPrB3jrati7CszB0O99iH0ODAZvVyYiIlJunXPgMnLkSLZu3cq8efNKs54LasKECaSlpbkf+/bt83ZJIiIiIt5jz4cfJsGcvpB9BKKawX0roWlfb1cmIiJS7p3Tun6jRo1i0aJF/Pzzz1SvXt19PCoqCqvVSmpqqkcvl0OHDhEVFeVuc/JqQoWrGJ3Y5uSVjQ4dOkRISAj+/v6YTCZMJtMp2xRe41QsFgsWi6Xkb1hERETkUpP2r2vJ58SC4djt7oZuz4Gvn3frEhERuUSUqIeL0+lk1KhRLFiwgB9//JHatWt7nG/Tpg2+vr4sX77cfWznzp0kJibSoUMHADp06MCWLVs8VhNatmwZISEhNGnSxN3mxGsUtim8htlspk2bNh5tHA4Hy5cvd7cRERERkdP4e5lrCFFivGsI0a1xrvlaFLaIiIiUmhL1cBk5ciRz587lq6++Ijg42D1fSmhoKP7+/oSGhjJ8+HDGjBlDREQEISEhPPjgg3To0IErr7wSgG7dutGkSRPuuOMOpk6dSlJSEk8++SQjR4509z65//77mTFjBuPGjWPYsGH8+OOPfPbZZyxevNhdy5gxYxgyZAht27bliiuu4NVXXyUrK4u77rqrtD4bERERkUuLPR9++i/8+oprv1oL6PcBVKrr3bpEREQuQSVaFtpwmonTPvjgA4YOHQpAbm4ujzzyCJ988gl5eXnExsby5ptvegz12bt3LyNGjGDFihUEBgYyZMgQpkyZgo/P8fxnxYoVPPzww2zbto3q1aszceJE9z0KzZgxgxdffJGkpCRatmzJ9OnTad++fbHfvJZ+ExERkQojbT98MRz2/ebav+Je6PZf8NFwaxHQdwMRKX0lClwuNfpDVURERCqEv5bCgvsgJwUsIXDT63B5b29XJVKm6LuBiJS2c5o0V0RERETKAbsNlj8Lq6e79qu1hFs/gIg6Xi1LRESkIlDgIiIiInIpSt0HXwyD/QWrQ15xH3SbrCFEIiIiF4kCFxEREZFLzc7vYOGIgiFEoXDzDGhyk7erEhERqVAUuIiIiIhcKuw2WD4JVr/u2o9u7RpCFB7j1bJEREQqIgUuIiIiIpcCh8PVq2XL5679Kx+ArpPAx+zdukRERCooBS4iIiIil4Kf/usKW4w+0HeWViESERHxMqO3CxARERGR87TuA/hlmmu713SFLSIiImWAAhcRERGR8uzvZbD4Edf2tY9Bq0HerUdEREQABS4iIiIi5dfBTfD5UHDaocVA6PyYtysSERGRAgpcRERERMqj1H3w8W1gzYTa10Cv18Bg8HZVIiIiUkCBi4iIiEh5k5sGc2+DzCSo0gT6z9FqRCIiImWMAhcRERGR8iTfCp/eAcnbICgKBn0OfqHerkpEREROosBFREREpLxwOuGbh2D3SjAHwaDPILS6t6sSERGRU1DgIiIiIlJerJgCmz4BgwlujYNqLbxdkYiIiJyGAhcRERGR8uCPj2HlFNf2jS9D/eu9W4+IiIickQIXERERkbIu4SfXUCKAq8dAm6FeLUdERETOToGLiIiISFl26E/47E5w5EPTfvCfid6uSERERIpBgYuIiIhIWZV+AD6+FfLSodbV0PtNMOrXNxERkfJAf2OLiIiIlEV5GfDxbZD+L1RuAAPmgI/F21WJiIhIMSlwERERESlr7Db4bAgc2gKBkTDoc/AP93ZVIiIiUgIKXERERETKEqcTFo+BhOXgGwADP4PwGG9XJSIiIiWkwEVERESkLPllGmz4EAxG6Pc+XNba2xWJiIjIOVDgIiIiIlJWbP4Mfpzs2r5hKjS8wbv1iIiIyDlT4CIiIiJSFuz5FRY+4NruMAquuMe79YiIiMh5UeAiIiIi4m3pB1yT5Dps0ORmuH6ytysSERGR86TARURERMSb7Db4YhhkH4GqzaDP22DUr2giIiLlnf42FxEREfGm5ZMgMR4sIXDbbPD193ZFIiIiUgoUuIiIiIh4y47FsPp11/bNb0Clut6tR0REREqNAhcRERERbzi2GxaMcG1fORKa3OTdekRERKRUKXARERERudhsufDZnZCXBtWvgOsnebsiERERKWUKXEREREQutiWPQdJmCKgEt34AJl9vVyQiIiKlTIGLiIiIyMW06VNY/wFggFvehdDq3q5IRERELgAFLiIiIiIXS/J2WDTatX3teKh3nVfLERERkQtHgYuIiIjIxZCX6Zq3xZYNdTrDteO8XZGIiIhcQApcRERERC40pxO++T848hcEV4Nb3gOjydtViYiIyAWkwEVERETkQls3C7Z+AQYT3BoHQZHerkhEREQuMAUuIiIiIhfSvxtgyQTX9vWToOaV3q1HRERELgoFLiIiIiIXSk4KfD4E7FZodCN0GOXtikREROQiUeAiIiIiciE4HLDgfkhNhPAYuPkNMBi8XZWIiIhcJApcRERERC6E1a/BX0vAZIHbPgT/MG9XJCIiIheRAhcRERGR0rZnFSyf7NruMRWqtfBuPSIiInLRKXARERERKU0Zh+CLu8Bph+YDoPUQb1ckIiIiXqDARURERKS0OOzw5XDIPASRjeHGlzVvi4iISAWlwEVERESktPz0POz5BXwDXfO2mAO9XZGIiIh4iQIXERERkdLw9zL45SXX9k3TIbKBd+sRERERr1LgIiIiInK+UvfB/Htc2+3ugWb9vFuPiIiIeJ0CFxEREZHzsWs5zO4FOSkQ3Rpin/N2RSIiIlIG+Hi7ABEREZFyKWUvLH0cdixy7QdXg1vjwMfi1bJERESkbFDgIiIiIlIStlxYPR1+mQb5uWAwQfv7oPNj4Bfq7epERESkjFDgIiIiIlJcO5fAkvGQsse1X+tq6PEiVG3i1bJERESk7FHgIiIiInI2x/6B7x6Dv5e69oOrQbf/QtO+YDB4tzYREREpkxS4iIiIiJyONRt+fRlWvQZ2Kxh9ocMDcM04sAR5uzoREREpwxS4iIiIiJzM6YTtX8PSJyBtn+tYnS5ww1SIbODd2kRERKRcUOAiIiIicqLDf8F34+Cfn1z7oTUg9nlo3EvDh0RERKTYFLiIiIiIAORlwMqp8Nub4MgHkxk6/h9cPQbMAd6uTkRERMoZBS4iIiJSsTmdsPVL+P5JyDjoOlY/Frq/AJXqerc2ERERKbcUuIiIiEjFZMuBbV/D2ndh/1rXsfAY6P4/aNjdq6WJiIhI+Wcs6Qt+/vlnevXqRXR0NAaDgYULF3qcHzp0KAaDwePRvbvnLy3Hjh1j0KBBhISEEBYWxvDhw8nMzPRos3nzZjp16oSfnx81atRg6tSpRWr5/PPPadSoEX5+fjRr1oxvv/22pG9HREREKppDf8K342BaQ1hwryts8fGDLk/AA2sUtoiIiEipKHEPl6ysLFq0aMGwYcO45ZZbTtmme/fufPDBB+59i8XicX7QoEEcPHiQZcuWYbPZuOuuu7j33nuZO3cuAOnp6XTr1o2uXbvy1ltvsWXLFoYNG0ZYWBj33nsvAKtXr+b222/nhRde4MYbb2Tu3Ln07t2bDRs20LRp05K+LREREbmU5WXCn/Nh/Wz4d93x46E1ofUd0OoOCKnmvfpERETkkmNwOp3Oc36xwcCCBQvo3bu3+9jQoUNJTU0t0vOl0Pbt22nSpAlr166lbdu2ACxZsoQePXqwf/9+oqOjmTlzJk888QRJSUmYzWYAHnvsMRYuXMiOHTsA6N+/P1lZWSxatMh97SuvvJKWLVvy1ltvFav+9PR0QkNDSUtLIyQk5Bw+ARERESnTDvwB6+Ngy5dgzXAdM/pAwx7QZohrqWejyaslikjZoO8GIlLaSjykqDhWrFhBlSpVaNiwISNGjODo0aPuc/Hx8YSFhbnDFoCuXbtiNBpZs2aNu80111zjDlsAYmNj2blzJykpKe42Xbt29bhvbGws8fHxp60rLy+P9PR0j4eIiIhcYnLTYO178FYneKezK3CxZkBEHeg6CcZsh/4fQb2uCltERETkgin1SXO7d+/OLbfcQu3atUlISODxxx/nhhtuID4+HpPJRFJSElWqVPEswseHiIgIkpKSAEhKSqJ27doebapWreo+Fx4eTlJSkvvYiW0Kr3EqL7zwApMmTSqNtykiIiJlidMJ+36HDbPhzwVgy3YdN5mh8U2u3iwxncBg8G6dIiIiUmGUeuAyYMAA93azZs1o3rw5devWZcWKFVx33XWlfbsSmTBhAmPGjHHvp6enU6NGDS9WJCIiIucl+xhs/tQ1N8vh7cePRzaC1kOgxQAIiPBefSIiIlJhXfBloevUqUPlypXZtWsX1113HVFRUSQnJ3u0yc/P59ixY0RFRQEQFRXFoUOHPNoU7p+tTeH5U7FYLEUm8BUREZFyKuFH+PQOsBasdOjjD5f3gTZDocYV6s0iIiIiXnVB5nA50f79+zl69CjVqrlm/u/QoQOpqamsX7/e3ebHH3/E4XDQvn17d5uff/4Zm83mbrNs2TIaNmxIeHi4u83y5cs97rVs2TI6dOhwod+SiIiIeNuOxTC3vytsqdIEerwEj+yAPjOhZnuFLSIiIuJ1JQ5cMjMz2bhxIxs3bgRg9+7dbNy4kcTERDIzM3n00Uf57bff2LNnD8uXL+fmm2+mXr16xMbGAtC4cWO6d+/OPffcw++//86qVasYNWoUAwYMIDo6GoCBAwdiNpsZPnw4f/75J59++imvvfaax3Cg//u//2PJkiVMmzaNHTt28Mwzz7Bu3TpGjRpVCh+LiIiIlFlbvnD1bLFbXfOz3LsSrrgH/MO8XZmIiIiIW4mXhV6xYgVdunQpcnzIkCHMnDmT3r1788cff5Camkp0dDTdunVj8uTJHhPcHjt2jFGjRvHNN99gNBrp27cv06dPJygoyN1m8+bNjBw5krVr11K5cmUefPBBxo8f73HPzz//nCeffJI9e/ZQv359pk6dSo8ePYr9XrT0m4iISDmz4UP4+iHACc0HwM1vgOmCj5AWkQpA3w1EpLSVOHC5lOgPVRERkXLkt7dgScE/vrQdBj2mgfGCj44WkQpC3w1EpLTptxQREREp+35+6XjY0mEU9HxZYYuIiIiUaeqDKyIiImWX0wnLn4VfX3btd54A147XpLgiIiJS5ilwERERkbLJ4YClE2DNW679bv+Fqx70bk0iIiIixaTARURERMoehx2+eQj+mOPa7/kytBvu3ZpERERESkCBi4iIiJQtdhssuA+2fgkGI9z8JrS83dtViYiIiJSIAhcREREpO2y58MVdsPNbMPpCv1nQ5GZvVyUiIiJSYgpcREREpGywZsG8QfDPT+DjB7d9BA26ebsqERERkXOiwEVERES8LzcN5vaHxHjwDYSB86D2Nd6uSkREROScKXARERER78o+BnNugQN/gCUUBn8BNa7wdlUiIiIi50WBi4iIiHhPxiH4qDckb4OASnDHAqjWwttViYiIiJw3BS4iIiLiHWn7YfZNcCwBgqLgzq+gSiNvVyUiIiJSKhS4iIiIyMV3NAE+7A1piRBaE4Z8BRF1vF2ViIiISKlR4CIiIiIXV+Ia+GQA5ByDSvVcPVtCq3u7KhEREZFSpcBFRERELp5tX8H8eyE/F6Jbw8BPIaiKt6sSERERKXUKXEREROTiiH8Tlj4OOKHBDdBvFpgDvV2ViIiIyAWhwEVEREQuLIcdlj4Ba2a69tvdDTdMBaPJu3WJiIiIXEAKXEREROTCseXA/Htg+zeu/eufhaseAoPBu3WJiIiIXGAKXEREROTCyDoK826HfWvAZIbeM6FZP29XJSIiInJRKHARERGR0nfsH5jTD44lgF8oDPgEYjp6uyoRERGRi0aBi4iIiJSu/etgbn/IPgKhNWHwFxDZ0NtViYiIiFxUClxERESk9OxYDF8Mh/wcqNYCBn4GwVHerkpERETkolPgIiIiIqVjzTvw3TjACfW7Qb8PwBLk7apEREREvEKBi4iIiJwfhwN+eApWv+7abz0Eer4MJv2aISIiIhWXfhMSERGRc2fLhYX3w58LXPv/mQidHtGyzyIiIlLhKXARERGRc5N9DOYNhMR4MPrCzW9Ai/7erkpERESkTFDgIiIiIiWXsse17PPRv8ESAv3nQJ1rvV2ViIiISJmhwEVERERKZu9q+OxOyDoMIZfBoC+gahNvVyUiIiJSpihwERERkeLJy4AfJsHad137VZvBoM8gJNq7dYmIiIiUQQpcRERE5Ox2/QDfjIa0fa79VoMh9gXwC/FqWSIiIiJllQIXEREROb3sY7D0Cdg017UfVhN6TYe6Xbxbl4iIiEgZp8BFRERETm3bV7B4LGQlAwZofz/850mwBHm7MhEREZEyT4GLiIiIeMo4BN+Ohe1fu/YrN4CbZkDN9t6tS0RERKQcUeAiIiIiLk4nbPoElkyA3FQwmODqh+GaR8HXz9vViYiIiJQrClxEREQEUhNdk+ImLHftRzWHm9+Aas29WpaIiIhIeaXARUREpCJzOGDdLPjhGbBmgskCnR+Dqx4Ck35NEBERETlX+k1KRESkojqyC74eBYnxrv2aHeCm16Fyfe/WJSIenHYH1r0Z5P6VQl5CKk6nE1OwGVOIGVOwGWOw2XM/yIzBZPB22WfkyLaRty8D6950AlpVwTcywNsliYiUOgUuIiIiFY09H+Jfh59eAHse+AbC9ZOg7XAwGr1dnYgA+am55O5McYUsu1Jx5tk9ztvO9GIDGAN93SFMkUAm2IxPuAVjsBmD4cIHM06Hk/zD2Vj3ZpCXmI51bzr5h3Pc503BZgUuInJJUuAiIiJSkRz6ExaOgIObXPt1r4Ner0JYTa+WJVLROW0O8nankftXCrl/HSM/OcfjvDHQB7/64VgahGP088GeYcWebsWRYXVv2zOsODKt4ABHpg1Hpg3bwazT3tNgNuJT2d/1iAzA173tj9Hv3L8mOHLzsRb0XslLzMCamIEzN79IO5/K/phrBuOjsEVELlEKXERERCoCpxM2zIbvxkN+LviFQfcXoMXtcBH+hVtEPDmdTvKP5Lh6sPyVQt4/aThtjuMNDGCuGYJfg3D8GobjGx2EwXj2n1Wnw4kjy+YZyBSEMfaME/bT83BaHdgOZGE7UDSUMQb5usMY30h/fCoH4BPpj0+EHwaf4z3hnE4n+Udzse5Nx5qYjnVvBrZDWeD0vJ7B14i5RjDmmiGYa7meTYG+5/z5iYiUBwpcRERELnV5mbB4DGz+1LVfvxvcNAOCq3q3LpEzcOY7cOTm47Q6wOHE6XCC04nT7nR9mS88dsLz8W3c7XG4XuO0OXDmOzye8di348x3nvRccN7mqsFgNmGwmDBaTBj8fFzPhfsWE0Y/H8/zZhMGv+PnDUYDeXvSC3qxpGA/luvxno0hZlfA0iAcv3phGANKHkgYjAbX8KFgM0Sf+fPNP5ZL/pEc1+NwDrYj2eQfycGR4eodY820Yd2TftINwBTuh2+kPxgMWPel48gq2nvFFOGHuWYwllohmGuG4BsVWObnlRERKW0KXERERC5lydvhsyFwZCcYTHDdU64ViDRXi1xgTqcTp9WOIycfR44dZ44NR07Bfm4+jpx8nDn5BeeLHvPo7VFWZBcNFs6LyYAlJgS/BhH4NQzHp2rARZlTBcDgY8S3SgC+VYoO53Hk5ruDGNvhHI9Qxmm1Yz+W6xkW+RgwXxaMuVYwlpohmGuFuAIfEZEKToGLiIjIpWrjJ66eLbZsCK4G/d6HWld5uyopRc58B448O848e8Gzq0eIwdfo2fPCYgIfY6l8mXdY7cfnDcmw4cgsnDvEdsKwFRv2TCvYnWe/4FkYfI1gNIDR4BpSY3T14sBgAJPBvV147ni7488YDa7PxMdYomdO3DcZcFodOPLyXZ93rufn7rGfm4/DaseZa3e3d1pdAZIpws/di8VSN8z136aMMfr5YK4ejLl6sMdxp9OJI8NG/pFsbEdywObAt0Yw5uggj2FGIiLiosBFRETkUmPLgW8fhT8+cu3X6QK3vAtBkd6tqxQ4sm1Y/83Euj8D675MbP9m4sy3g9H1hdhgKvgSbjIe/zJuOvGcaxujoeCYq51PuB9+jSPwifS/aD0MTuR0OrEdzMK2P9PV06MgRHF9gc8/4Yu83fVFvuALfokCDaOhSAhjsJhcw17cxwqGxJiNOHLt2DMLJ2UtDFZsOK32s9/rRCYDRn8f98Pg5+OxbyzYN/ibPPYL2xZn3pLywGl34sy3u4YlldN5kwwGg2uloxAzljphpXJNp9M1ROxS+e8sInIiBS4iIiKXkiN/u4YQJf8JGKDL49DpETCWvX9FPxuH1Y7tQCbWfa6AxbY/g/yjuWd/4TlK+243pkp++DeKwK9JJSwxIa5A5gJx5OWTtyuV3B0p5Ow8hiPdes7X8ujR4msq6Pni2bMChxNnTj72nPMfFmPwNWIMMWMKMmMK8nUvO2wM9nUdK9wO9C21njXlnSvg06/edpuD5MQMDiakkpSQRtI/aVw3tAm1Lq/k7dJEREqd/tQXERG5VGz5Ar75P7BmQmAk9H0P6nT2dlXF4rQ7sCVlF/RcycC2PxNbchacYhoPUyW/guEOQZirB2MM8HFNpGp34rQ7jm87nHDifsH5wklUC8858x1Y92eSl5CK/WgumasOkLnqAAY/E34NI/BvHIFfg/BzmsD0ZLbD2eTuSCF35zHydqd59FAx+Boxx7hWbjGcOPmq+7lgkla/E4/7uHpMnGEyUqfDNZfK8eEvJ/WaOeHZvW21Y7CY3JOvGoN9XdtBZozB5jI5DEbKppwMKwcT0tzhSvLeDOz5nj/YSQlpClxE5JKkwEVERKS8s+XC0sdh3SzXfq2rod8sCI66ILdzOp04svNdK7yctEqM037q/VOtKOO0OrAdzHKFLAcyIb/o8BhjsNm1lGxBuGKuHlQqwcepOPLyyfs7lZztx8jdcQxHlo2cTYfJ2XQYjGCJCcWvcQR+jSvhW9m/WNd02hzk7U4jd8cxcnceK9JDx1TJD/+GEfg1isBSO9Q1b0gpMxgNGPx8wM8HxSSlz57vwJZnP80jH1vu8f18qx2ns2AldoMBA4Xz0XB8G9fQHQqmqTm+bfDYNxbMUXP8ueC/9QnHjm9zUlsDPmYT/kG++AX6Yiql/++cTieph7I5mJDmDllSD2UXaecf7EtUnVCq1Q0jqm4oVWoGn+JqIiLln8HpdJ7/bGblVHp6OqGhoaSlpRESEuLtckREREru2D/w+VA4uMm132ksdJ4ApTh0wZGbj3Wfq+eJNdH17Miyldr1Cxn8fDDXCPLovWIKtZT6fYrD6XBi3ZdB7vaj5Gw/Rv5JXxp9Iv3xa1wJ/8YRmGuGePQwyU/NI3enK7TJ25XqudqOyYCldih+DSPwaxSOT2XvzBlT0TmdTvJtDqw5+Vhz8skreLbm2E/aP+F8rmd4UvhwlMLEwN7mYzHhH+iLX1DBI/D4s/9J+4VtfM0m8q12kvceHx508J808k6xRHR4tUCq1Qkhqm4Y1eqGElqlbP5/r+8GIlLaFLjoD1URESmvtn0NX42EvHTwj3BNjFu/63ld0ml3YjuU5RGu5B/OhlP9tlAw8SwnrQjjmqi26L5Hm4J930j/gh4swZgq+ZXJL2EA+UdzyNlxjNztx8j7J83Va6eAMcAHv4YRGIPN5P11DFuSZzhjDDEX9GIJx1IvDKNFHYwvtHybnWMHskjem8HhfRmkJWeTl+0ZqjgcpfsrsNHHgK/FVPDwOWG74OFnwtfX5FpJyQFOnDidgPP4xLFOZ+Ex17MTXL3BnAXtHSecczhxFPQYczgKep4VDKXz3Mbd7sTX2PLs5Gblu3qcnQOTr9F1vZMCJ5OvkaoxIUTVDaVa3VCi6oTiF3hheqWVNn03EJHSpr/xRUREypt8Kyx7CtbMdO3XaO9a8jm0eokvZU/Lw7ovg7zEDKz70rHtz/TskVHAFOHnCkZqBGOuGYy5WtAFGf5SVvlU8ie442UEd7wMR24+uX+lkLv9GDk7juHIzif7j+TjjQ1grhmCX6Nw/BpG4FstsMwGScXldBZ+YQeH0zVUzFHwxd7p8Pzyf/zLPpj9TQSEmDFewMmHbVY7R/dncjgxg8OJGSQnZpByIKtYgYrBAGZ/H8x+Pq5nfxMW/8Jt18O972fC1+8UQUrBw1QOl0V2OpxYc/PJybSRm2Uj98TnTBs5WTbyMm1FzjvsTuwFf04EhJhdwUrBI7JGcLn8LERELgQFLiIiIuVJaqJrCNG/6137Vz0I1z0NprP/C7IjN//4qj/70rEmZmA/xco4BovpeLhSELCYgsyl/EbKL6OfDwHNIwloHonT7sS6N52cHUdxZOfjVy8MS/1w1+o8ZYzT6SQvO5+cDCs5GVay022u5wwrOelWcjIK9tOt5GTasNtcc/Q43F0tzo3B4PpSHhhmITDMQlCYhcBwi+d+mAWz39l/LbXm5nNkX0G4ss8VsKQczOJU/bX9An2JrBVMZI1gIqID8Qv0LRKq+FrK7xLNpcFgNGAJ8MVSgnmRnE4ntlw7uVk2MEBwRNntmSYi4m0KXERERMoDpxN2LIKvRkFuKviFQu+3oFGPUzZ35BUsqbw/E9u/GVj/zST/cE7RhgbwjQo83nOlRjA+kQHuyTvlzAwmA5Y6oVjqhJ73tew2B8eSsnDkF/YWceAo6EniHh7icA0PcTgc7l4mhecKtx12Z0GoUjRQKe1hNIUMBtdnYTQcn6zVYABrrh2nw0lWmpWsNCvszTjtNXz9TO7w5cQwJt/mcPdeSU0+9fA2/xAzVWoGE1nTFbBE1gomKNyiIOACMBgM7t4/IiJyZvqTUkREpKzbtxZ+eBr2rnLtR7eGW+MgvBYADqvdvdqPbX9mQbhy6i+mpjAL5suC3OGK72XBWuLXixwOJ//+lcLfvx8i4Y/DWHOKTjha2sz+PgSEmPEP9sU/2ExA8AnbIWb8C/ZNvsYiK+EUBikn758u2HA4XOFPVmoemSl5ZKUef2Se8GzLtWPLtZOSlE1KUtFVbU4UGGZxBSsFjyo1gwkINStcERGRMkeBi4iISFl1eCcsf9bVswXAZMF5xSisDUZi25GHdf9fWPdnkH+af/U3hZrxvSzYFbBUD8L3sqBLamhQvs1OdpqVvJx88vPs2Kx28vMcrmdr4TK8BfuF560O9/K8J54PCDZTo3E4NZpUompM8AWdc8TpdHJoTzp/rz3ErnXJZJ8wrMsS4Oo5YDQaMBZMPGw0GYouAVx4rOD5xADEZDLgF1Q0QAkIMeMfZC61JYCLw2g0EBhqITDUQpVap29nzc33CGGyUvPISnHtG40GKtc4HrAEhFw6/w+LiMilTasUaSZyERG5yJx2B45cO87cfBw5+UW2HanHcCaswXF4Pw5nAA6CcPpVx+EbiT0jH4rOaYsx2Ne1nPJlQfgWPJuCy+cXU6fDSU6mrUhPiKw0z94Rp1p+tjSY/UxUbxRREMBEEBoZUCrXPXYgi7/WJvH32kOkH8l1H7cE+lCvdRXqt6tKdL0wDecS8RJ9NxCR0qYeLiIiIheI0+Ygb28aebtSyUtIw56WhyM3H6f1FIlJEQ0LHgWyAVwBgzHI1yNYMVcPwhRiuQDvoHTZbQ5yMo/PLXJiqFIYqGSm5pGdZi2y1OzpmHyNWAJ88DWb8DGb8LUY8XFvm/A1G/GxFOwXHPMxG084b8JkNpJ6KJt9246xb8cx8rLy+WfjYf7ZeBiAkMp+1GhSiZqNI7isYViJJhhNP5rDrnXJ/PX7IY7+m+k+7mMxUbt5ZRpcUZUajSO0qouIiMglSD1clGKLiEgpcTqc2A5kkrsr1RWy7EmD/NP/NWswmzD6mzBYjBhthzFm7MLgSMNoyMQYGoGxYScMUbUx+vlg9PfB4GfCFGrBFFI25qvIt9rJybQdn6C1IEzJPSlUKXy25dqLf3EDBASbT5pA1UxAqMVjYlVLgE+pfhYOh5PDiRmu8GX7MZIS0jwmmjUYDVSNCaFGkwhqNI445fCj7HQrCRuS+XvtIQ4mpLmPG00Gal5eiQbtqhLTvDK+mjtHpEzRdwMRKW0KXPSHqoiInCOn00n+kRzyElLJ+zuV3IQ0nLmew1yMIWbXUsH1wvCtGojRz+QKTyw+GMiHPz6CFf+DzCTXC6o2dS3zXP9619IvXpZvtZOanO2ezDQ1KYuUQ9mkJedgyytBgFLAaDw+v4h/sC8BoWbPlWlCXc8BoWZMF3AeleKy5uZz4K9UErcfY9+2Y6Qe8pzQ1ezvQ/WGrqFHJh8ju9YdYt+OFJyFIY0BLmsQRoN2UdRpFYlfGVwuWkRc9N1AREqbAhf9oSoicklxOpzYDmaR+3cKeX+lYN2f6eoZEmx2PULMGAu3T9wP8sVQjGEd9gwrebtS3b1Y7Gl5HucNFhOWumHukMUn0r9oDwynE7Z9BT9OhqO7XMfCakKXJ6HZrWC8uEGD0+kkJ8NGSlJWQaiSTcoh13bGsdxTTshbyGgyuMMT/yBf/IIKt4+vfONfELD4BfmWeo+Uiy39aA77t6ewb/vx4UenUqVWMPXbVaVem6oEhZf94V4iou8GIlL6SjyHy88//8yLL77I+vXrOXjwIAsWLKB3797u806nk6effpp3332X1NRUOnbsyMyZM6lfv767zbFjx3jwwQf55ptvMBqN9O3bl9dee42goCB3m82bNzNy5EjWrl1LZGQkDz74IOPGjfOo5fPPP2fixIns2bOH+vXr87///Y8ePXqcw8cgIiLlmT0tj9y/U10hy64UHCd9CXZa7TjSrdjOch1joA+m4BMCmRAzxiAzxgAfbP+6hgrln9TDAZMBS60QLAUBi/myYAymMwQK/6yAH56BA3+49gMqwzWPQtu7wOfCfjHPt9pJP5pLWmGPlUMFPVaSssnLPv0EtJYAH8KjAgmPCiAsKoDwqEDCqvgTEGrB7Gcq1wFKSYVU8qfJ1f40uTq6yPAjW56d2i0qU79tVcKqls5EuyIiIlJ+lThwycrKokWLFgwbNoxbbrmlyPmpU6cyffp0Zs+eTe3atZk4cSKxsbFs27YNPz8/AAYNGsTBgwdZtmwZNpuNu+66i3vvvZe5c+cCrnS5W7dudO3albfeeostW7YwbNgwwsLCuPfeewFYvXo1t99+Oy+88AI33ngjc+fOpXfv3mzYsIGmTZuez2ciIiJlnMNqx7o7zR2ynByCuHuZ1A/DUjsUp82BPcOKPcOKo+DZnn7ivg0cThxZ+a6wJin7NHcGDOBbLRBLvXD86oVhjgnBaC7GXBwHNsLySZDwo2vfHAQdRsFVo8ASfO4fxgmcTifZ6VbSD+eQfiSHtCO5pB9xbacfziErzXr6FxsgpJKfK0yJCiC8aoA7ZPEL8q1QoUpxGQvmc6kaE0LbHjHeLkdERETKmPMaUmQwGDx6uDidTqKjo3nkkUcYO3YsAGlpaVStWpW4uDgGDBjA9u3badKkCWvXrqVt27YALFmyhB49erB//36io6OZOXMmTzzxBElJSZjNriUtH3vsMRYuXMiOHTsA6N+/P1lZWSxatMhdz5VXXknLli156623ilW/ug2KiJQPTocTW1KWa56Uv1PI250GJ65iYwDf6sH41Q/Dr3445prBGEow/4fT4cSRbcORaXMHMfYMK47CUCbLhk9lf1cvlrphmIo7D4fTCbtXwqrXjgctRl9oO8zVqyUosgSfgku+1U56QZCSVhimFAYrh3PIt515BSSzn4nQKgGEVQ0gPOp4qBJaxR8fX03iKiIVl74biEhpK9VloXfv3k1SUhJdu3Z1HwsNDaV9+/bEx8czYMAA4uPjCQsLc4ctAF27dsVoNLJmzRr69OlDfHw811xzjTtsAYiNjeV///sfKSkphIeHEx8fz5gxYzzuHxsby8KFC09bX15eHnl5x8fap6enl8K7FhGR0uZ0OMk/moN1X4Y7ZHFkeg4IMoVa8GsQjqW+a74UYwmW6j2ZwWjAFGTGFGTGNyrwfMsHez5sW+gKWpI2F94EmvaDLo9DRO0zvtzhcJJxNJfUQ9nuR0rBc1Zq3hlfazBAUIQfIZX9Ca3sR0ikv2u74Lm8z6EiIiIiUl6UauCSlORaYaFq1aoex6tWreo+l5SURJUqVTyL8PEhIiLCo03t2rWLXKPwXHh4OElJSWe8z6m88MILTJo06RzemYiIXCj2TCu2pCxsSdnYDmZhO5RF/qFsnCf11DD4GrHUDXMFLPXDTz0ZrbdZs+CPORA/A1ITXcd8/KH1ndDhAQiP8Wiem2VzhSlJx4OV1GTXCkD2/NP3VDH7mQiJ9Ce0sitEcW9H+hEU4VcmVvcRERERqehKNXAp6yZMmODRKyY9PZ0aNWp4sSIRkYrDabNjO5TtClaSstyPk3uuFDL4GvGJCsSvIGSx1Aop1ipCXpF5GH5/B9a+CzkprmMBlchvcz/ZDe4gyxpA1j95pB/ZWzBRrStcyc06/TS+Jh8joVX8CataMPyn4DmsSgCWQPVSERERESnrSjVwiYqKAuDQoUNUq1bNffzQoUO0bNnS3SY5Odnjdfn5+Rw7dsz9+qioKA4dOuTRpnD/bG0Kz5+KxWLBYtHSjCIiF5LT6cSekoftYKZHuJJ/JOfUywsbwCfCD5+oQHzdjwB8KvljMJbNUCHfZic7zUpW4j9krVtM9j9bybIFk2W/g2xTNFm+tclKDyDv83xg+xmvFRRuIbTKCYFKwYS1QRF+GMvo+xcRERGRsyvVwKV27dpERUWxfPlyd8CSnp7OmjVrGDFiBAAdOnQgNTWV9evX06ZNGwB+/PFHHA4H7du3d7d54oknsNls+Pq6xuQvW7aMhg0bEh4e7m6zfPlyRo8e7b7/smXL6NChQ2m+JREROQOn3Un+4Wys/2a6hgMdyMR6IAtn7qmXGDYG+uBbNRDfasfDFZ+qAcVb5ecisdscZKTkknEsl4yjrufMo7lkpeWRlWYlKzXvpCWU2xY8TuZqY/QxEBhqITDUTHAlf4/eKqFV/DH7VajOpiIiIiIVRol/y8vMzGTXrl3u/d27d7Nx40YiIiKoWbMmo0eP5r///S/169d3LwsdHR3tXsmocePGdO/enXvuuYe33noLm83GqFGjGDBgANHR0QAMHDiQSZMmMXz4cMaPH8/WrVt57bXXeOWVV9z3/b//+z+uvfZapk2bRs+ePZk3bx7r1q3jnXfeOc+PRERETsVhtbt6qxzIxHYgC+uBTGxJWZB/im4rJgO+VQNO6LHiClmMZWB5YVue3R2kuEKVnOP7R3PJSreeuifOSUxYCTQdIyDQSWC1aAKqRRMYZikIVywEhJoJDLNokloRERGRCqrEy0KvWLGCLl26FDk+ZMgQ4uLicDqdPP3007zzzjukpqZy9dVX8+abb9KgQQN322PHjjFq1Ci++eYbjEYjffv2Zfr06QQFBbnbbN68mZEjR7J27VoqV67Mgw8+yPjx4z3u+fnnn/Pkk0+yZ88e6tevz9SpU+nRo0ex34uWfhMROTV7ls0zWDmQedohQQaLCd9qgZijg/CNDsI3OhDfKgFen28lL9vGv3+lcnBXKulHj/dWyT3NnDEn8vE1ElzJj+AIP4LCfQi27iLo4FICs7YSYEwh0DcdS/OeGDo+CFWbXIR3IyIiF5q+G4hIaStx4HIp0R+qIlLROB1OHNk27OnWgkceDve2a9+ebj3tRLbGYF+PYMUcHYQp3K9MzLVitzk4+E8a+3ccY/+OFJL3pHO6v+HM/j4ER/i5QpWCYKVwP6SSH36BPhgO/AF/fARb50NeWsELg6HtUGg/AkIvu2jvTURELjx9NxCR0qaB4yIilwinw4n9WC75qXnYM6zY0wrDlLzjgUqGFezFy9lNlfwKwpVAfKODXOFKsPkCv4viczqcHPk3k/3bU9i/4xgH/k4l/6SlpMOjArisQTjh1QIKAhV/giv5YfE/zV9/mcmwebZraefDO44fD60J7YZBm7vAP+zCvSkRERERuWQocBERKYccVjv5h7Jdw30OZhU8MnFaHWd/MWAM8sUUYsYUYil4NmM8Yd8nwg9jGZzMNf1IDvt3pLCvoBfLycODAkLMVG8cTo1GEVRvFE5QuN/ZL2q3wd/LXCHL30vBUTAhro8fNL4JWg2GmE5gLKNLUouIiIhImVT2fpsWEREP9gwrtoNZJ4QrmeQfPs0Syz5GfCIsruAk2Iwp1FzwbDkeqAT7YjCVj/AgN9PG/p2uHiz7dqSQfjjH47yvxcRlDcKo3iiC6o3DiagWWPwJapN3wMY5sGkeZB0+fvyyttBqEDTtC36hpfhuRERERKQiUeAiIlJGOB1O8o/kYDtYMFltwTLLp51PJcjXtbxydBDmgmefSv4YTN6fT+Vs7PkOstNdSyxnp1nJSstz7aflkZVqJTvdtQRzTobnikFGo4GqdUKo3iiCGo3CqVI7BFNJwqPcNNecLH/MgX/XHT8eGAnN+7t6s1RpXHpvVEREREQqLAUuIiJe4Mg7YYnlg65wJT8pC6ftFEOCDOBT2b9IuFKW5lMp5LA7yEqzkpmSR1ZqnitISbOSnebazkqzkp1mJTfr7CsFFYqIDnQNEWocTnT9MMwlHerkcMCeX2Djx7Dta8gv6CVjMEGD7q7eLPW7gcm3ZNcVERERETkDBS4iIheQ0+nEkW5191YpnG8l/+hpllj2NbqClYJQxbdaIL5RgRjNpotf/EmcDifZGVYyj+WRmZJLZkoeGSm5ZKUc389KzTvtykAnM5oMBISYCQyzuJ5DLQSEej4HRVjwDzrHYCnrKGyYDes/gNTE48cjG7l6sjTvD0FVzu3aIiIiIiJnocBFRKSUOO0O8g/neIYrBzJxZOefsr0x2Pz/7d13nBx1/T/w15Tt5WpyyaWHJCSBBAIEUgFpoYhCQlNAmgW+tMAPaSIBQVTaV7+CBo2KDUQFUQmgiAUSOiYhHUgvV3J1+057//6YsjtX9y6X3N7l/YR9zOzM3Ps+uze5233tZz4feKtD8AwPOyGLXBk4aFMsk0FQFR1KWoeS1qBkrFtaRyqmOCFKojmDRJMZphhG92mKKAoIlfqsmxfBEh9CJV4Eo+Z9O1DxBz0H5rHuXQ289xNg7R8BPWtu80XNMVlmXA6MOAYodJwXxhhjjDHGeokDF8YY6yEyCHpLFmpdEmpdClp9CmpdCmptsuMpl0VArgzCUx2Cd7g1zfLwEKTe9tzogKEbaK5LoXF3Aum4agUn1i2j5+5ndNe2Dgfe7YIgAKFSH8JlPoRK/QiX+xAp85v3y8z1QNQL8SCFRg5NATb+xQxadr2b2z78KOD4rwFHnA94gwe3TYwxxhhj7JDGgQtjjHWCDILenIFqBSpaXQpqvRmwdDjWCgDBJzm9VZxwpSoIwdN3lwTpqoHGvQns2xlHw64E9u2Ko3F3AlonbeqOKArwBmR4AxI8fhm+gAx/2INwmQ9hK0yxl6ESL8RimuEoXgt8+DTwwc+BRJ25TfQAR5wHHP9VYORM7s3CGGOMMcb6BQcujLFDnhOs2IFKAcEKJAGeIQHIVSF4hgbhqQqavVbK/H16mYyS0dCwO4GGXXHs2xnHvl0JNO9Ndnhpj+yTMGRkGOEyHzwBGT6/O0Tx+mV4AlJu3W+uSx6x8KmUiwERsOs9szfLhj8DhjUAb7gKOO5q4Ngrgciwfm0iY4wxxhhjHLgwxg45eiyL7I44lJ0xKDvjUPcmuglWgpCrgk6wIlcFIZf3/fTLmYSKfbvi2LcrjgYrXGmpT3V42Y8vJGPIqIh5G23eSoYcvPFf+oWaAdY9D7z3FFCzJrd91Czg+K8AUz4HyMU3cxNjjDHGGDs0ceDC2CFEU3UkW7JQMjo0xYCW1aEqOjRFh5o1t6mKnrfdsLa79+uqgWDUi9KqIEqGBlA61FyWDAlA7sNLZ/oCaQbUmiSyO2JOwKK3ZNsfKHcQrAzt+2BFU3W07kujpS5l3urTaKlNoaU+hUyi46mSQ6U+DBkVRuXoXMASLvMNrF4p+6NlF/DBz4APfwmkm8xtkg+YdqEZtFQf3a/NY4wxxhhjrCMcuDA2iBi6gURzFrHGDGINacStZawhg1hjGqlWpc++V0tdCns/aXFvFIBwmc8KYIIoHRpwltHKACT5wI/9occUKDtjyO6MQdkRh7InAWhteq8IgGdYCN4xUXhHR+AdFYFc0Xe9Q8ggxJszaK1Lo7nODFNa61Jorksh3pTpcqDa6JAAhowKm71WRkVQOSqCYPQQ7LWRqAe2rzB7tGx+GSDrZ1gyCph5DTDjS0Coon/byBhjjDHGWBc4cGFsACEipGJKuyAl1pBBvDGNRFP30/bKHhHegAzZJ8HjFSF7JXh8krn0itZ2677P3G8fY24XIckiEi1ZM0ioT6O13uypoaQ1JJqySDRlsXtTs+v7CgIQqfCbAcwQM4gJRDyQZBGSR3Qt5Tb3zaUASc6NNUJEIMWAVp8yw5WdcSg7Yh32XhGDMryjo/COiZjLkRGIvp71xCEiqBkd2bSGbEpFNqXl3VSk46r1PJjPhd7FALZev4TSqqD7ZvUS8voP0V/LiX3AjhXAtjfNoKVhs3v/uBPN2YYmnQlIh+hzxBhjjDHGBhR+1cpYETEMQrIli3hTBvHGjLlsyiBhrzdmup2JRpQFRMr9iFYGEK0wlxFrGa30wx/yHJBLUYgImYSKFieAMcMYe6lmdTMgashgFwARgEewbwJkIXdfFoQO98kQ4BFz6x11SCEAGVlEyi8jHZCRDXthBCRIHgliYxZyayOkTc1mkCObQQ4AM0hJau0DFeu+ktJAPZhCWZQElAwJtAtVSqvMoOmQuRyoM3bAst267dvU5gABGHYkMO4kYMZlwNAp/dJMxhhjjDHGeosDF8YOIl01nBDFFapYy2Rz9z1UIADhUp8TqESsICVaYS5DJb5+GThVEAT4wx5USQIqIx7oQwIwRivQ4+ZNacxAac5AjysQ0hpEvQfpRRcUg9CkE5o1c9miETQAQAfjtPQBURbgC3rgD8rwBmT4gh74gjL8IY8rYImU+4pr+uT+lmzIhSvbVwD7NrY/pmoaMHaeeRszBwiWH/x2MsYYY4wx1kc4cGGsj9mX/TTXJNFUk0RTTQpNexNorU8jFet+DBVRFBAq8yFS7kekwu9eWjfJc3DfyJNmQE8oMOIq9LgCI6E6QYoeV2DkrUPrOkhxXcgjAIJPhuiXIPplCAFzKfplCPY2nwR4RZBHAsmieZMEGJIITQQEAqp0QqVmQLdvKuXWNQOGZkDXCJqat81ZN9vrDcrwBc3pk+0Qxbx5zG0hc5/sLa5BgYtWoh7Y+XYuYKnf0P6YqiPzApa5HLAwxhhjjLFBhQMXxnqpXbCy1w5YksgmtU6/TvaIToASzg9SrPVQqQ/iQeihQrqRC04SqhmaOEsFelyFYS0p0/nj6YjglyFFPZDCXohRL6SwF1LUCynihRjxQIqY60JA5ktrBoN0M7B3FbDnv+Zy7yogtqf9cUOPcAcsPOgtY4wxxhgbxDhwYawbdrDSVJM0w5VCghUBKKkMoLw6hLLhIZQPD6FsWBCRcj/84f4Zv0NPKEi+W4v02gbosSyMVM9CFEgCpLAHYsQMUMSwxwlRzCDFXvdAKLKpoVkfyiaAmjXA3v/mQpbmbR0cKJjjrjgByzwOWBhjjDHG2CGFAxd2yDIMQjquIBVTkGpVkIplnfVkm/tqVu+4SF6wUj7cCleqQyirChbNpSdqbRLxFXuQWl3f/nIfERDDXkhhs9eJGDYDE/fS3M+9UQ5BagaoW5fXc+W/wL7N6HBe67JxwIhjgOoZQPUxwPCjAF/4oDeZMcYYY4yxYsGBCxuUyCDEGtNo3J1EvDnjDlRiZqCSiSsFzzojCEC0yIOVfGQQMh83I7FiD7KftjjbPSPDCM+phrc6DDHsgRj09MsAu6xIGbo57srGvwI73jLHXTE66AkVHWEFKzPMkGX40Tz+CmOMMcYYY21w4MIGPE3V0bQ3iYZdCTTsiqNhTwINuxNQM530SsknAIGIF6ESL4JR61bic9bN7T6Ey3xFGay0ZSg6Uv+tQ2LlXmj70uZGAQgcWYnw3Gp4x0S5lwpz0zVgx0pgw5/NoCVZ794frHT3XKmeAUSq+qetjDHGGGOMDSAcuLABJR1XzGBldwINu+No2J1Ac20K1MFUypIsorw6hGhlAMGS/FDFh6C1Hgh7BsXUvVpLFsm39yLxXi0obfZIEHwSQjOHITynGnK5v59byIqKrgLb37RClpeAVENun78EmPxZYOLpwIhjgZJRZhcvxhhjjDHGWI9w4MKKEhmE1n1pM1jZFXeWydaOp1X2hz2oHBlG5aiItQyjrCo4KMKUrii74oiv2IP02n2AYW6Tyv0Iz61G6LgqiD7+J84smgJsewPY8CKwaTmQbsrtC5SZIcsR5wFjTwRkb3+1kjHGGGOMsUGD342xfkdESDRnUb89hvodMdRtj2PfzjiUdAdjRwhAyZAAKkdGUDkqjMqRYQwZFUGwxHvIXCpDOiG9vgGJFXug7Iw7273jShCZNwL+KeU8LgszaVlg67+B9S8Cm5cDmdbcvmAlMOWzwNTzzFmEJE8/NZIxxhhjjLHBiQMXdtCl4wrqtsdQvyOO+h0x1G+PIR1X2x0neURUjDB7qwwZGUbFyAgqRoTg9R96py0RQW/JIr22AYm39kJvyZo7JAHBo4YgPHcEvCN4RhgGc2ahLf80e7JsfgXIxnL7QkOBKeeaPVlGzwGkQ+/fEmOMMcYYYwcLv9pmB1Q2rWHfzrjTe6V+exzxpky74wRRQMWIEIaOiWLomAiGjo2ivDoEaZBfEtQZI6VC2Z2AsisOZXccyq44jEQulBJDMkInDEd4djWkCF/+cUgjAuo3mj1Ztv4L2L4SUJO5/eFhwNTPmT1ZRs8CxOIf/JkxxhhjjLHBgAMX1ifMaZgzaK5Joqk2icY9CdRvj6OlLtXh8aVVQQwdG8HQMVFUjY2icmR4QMwCdCCQZkCtSZrhinXTGtLtDxQFeEaEET5+GIJHD4HgOTSfLwYgXmsGLFv+ZS4Tte79kWpg6ufNniwjjwfEQzO4ZIwxxhhjrD9x4MJ6RNcNtNan0VybNMOVmhSaa5NoqU1BU40OvyZc7kPVmCiGjjV7rwwZE4UvcGieemQQtMZ0LlzZnYC6NwHoHcyyVOGHd1QE3pERc1kdhuDhN86HpGwC2PGW2YNly7+AfRvd+2U/MGYOMP4zwPiTgaojOWRhjDHGGGOsnx2a73pZtzRVR0tdCs01KTTVWOFKbQqtdSkYHUzBDACiLKCsKoiy4SGUDw9hyGizB0sweuhe8qInVTNY2RmzQpYEKNN+MGAxJOeClVEReEZGIIV4ENNDlqEDe1dZPVj+Bex6DzDyxzkSgOFHAYdZAcuoWYCHp/5mjDHGGGOsmHDgMkAQEQyDoKsGdNWA1mapa3reOkFXdegamds0e7v1NVr7bfnLVFxFvCEN6jhXgeyTUD7MDFbKhgVRPjyEsmEhRCv9g34a5q44lwbtjCFr9WDRG9uPVwNZhHdE2ApXwvCOjEAq9x8ysyyxTsRqgM0vmwPebn/TPaMQAJSONnuwHPYZc+rmUEX/tJMxxhhjjDFWEA5cikDjngTe/P0nTuBhBid6LhyxgpTOApADxReUrTAl12ulbHgI4VLfIT/tMBFBb85C2RWDstO6PGhvAtDa/5DkoQF4R0VzvVeGBSEcwsEUy9O6B9j4V3NGoZ3vAMg7f/wlwLgTc5cJlY8HOJRjjDHGGGNswODApQioio49m5t79DWSLELymDc5b12SRch56859WYDkkayl6Hy9nLduH+8LyCgbHkIg4uFeFxYjq0HZlXBdHpQ/a5BNDMrwjrbCldHm+CviITpeDetE625gw5/N26533ftGzgQmLTBDluoZPKMQY4wxxhhjAxi/EywCpUODOP2aqZBlKReitA1F8paSJB7yPUx6ggwCKTqMrA7KaOYyq8PI6KCsZi11GFkNlGlzXEaHkdGgt2ZdnQ8AAJIAz/AQvKMi8Fkhi1TBlwaxDjTvADb+BVj/IrDnA/e+UbPM2YSmnAuUjOyP1jHGGGP9hogAXYcg89sSxtjgw7/ZioA/5MGkmcP6uxkDGqkGtMY01H1paA0paPvs9TQo3X6Q2t6QSn1mr5VRUXPJswaxrjRty/Vk2fvfvB2COaPQ1M+bIUu0ut+ayBhjjB0shqJA2b4dytZtULZtRXbLVihbtyK7fTuqH3oI0TMX9HcTGWOsz3HgwgYMIoIRUzoMVfTmTPseKG2JAkS/BMEnQfTJEPwSRJ8EwS9bS2u7T7KOk53j5TI/pMihO9sSK1DjFitkeRGoWZPbLojAmLm5kCXCAStjjLHBSW9pQXarFaZs3WYut22Fums3YBgdfk1265aD3ErGGDs4OHBhRUlryULZGYNWn3JCFW1fGqTonX6N4JMgDwnAMyQIuTIAeUgA8pAgpIgHok8CZPGQuNyHDANGKgUjkXBueiJpricTMJIp80BRBARAEEUzEBAEQBTM50gQO9wviIJ5nCBC8HkhBgIQ/X4IgQBEn89c+v0Q/H4IXm+Pn29SVeitreatpSXvlne/1b0ueDzwjh0L7/hx8I0bB691k4cOPTg/70wrsPoZYPVvgdq1ue2CCIydnwtZwkMPfFsYY4wNemQYIEUBZbPmUlFgZBWQmttmOPtUkNJmW9b8GhABsgRBkiHIknlJT6fr5tJZl2QIHhlGIoHstm1QtpihirJ1G/Smpk7bLobD8B42Hr5x4+EdPx6+w8bDO248vKP4klrG2ODEgQvrd0QErTEDZVsrsttakd0eg97UwXTKACACcpkfcl6o4rGCFTE8OAb5NbJZ6K2tMFpbocdiVgARg97aAiMWh5FMQE8kYFghip6IO+tmqJLs74dgEoS8AMYH0d8mnPH7QdmsKzwxEolefSt1924kV6xwbRODQSuIGQ/vuLG5MGbsWIiBwP4/vrr1wHs/BT76PaBaz7kgmTML2SFLqHL/vw9jjLGDjohAqgpKpWBkMjDSaVAmY27TNDPI0DQz5NA0wN6uqiDVXnZwjGreN6yghFTVCkWU3E113zdUKzixtkPrm0ulDyS5enguVBk/Dt5xZrgiVVYOitdqjDFWKA5c2EFHBkGrT5nhinUz4m1m/BEAT3UYnmEhV6gil/shyANj3BTzEqgYtH37zFtTkxkqxGJmjw0rTDHsHh3Wfcp0Ejb1lCxDCochOrcQpFAYYigIQACRARhkfsJFhjlonUFmd1+i9vvtdcMAkWF+QpZJw0hnYGQzoLT5ghS6bj8BoFQKeirVs3YLAsRoFFJpCaSSUnNZWuped+6XgtIp89O1bduhbNtmdlvevQdGKoXMhg3IbNjQ/qkZPtzVG8Y3aSICRx8N0dvNZWO6ak7j/N5PgZ1v5bYPmQLMvAY4YiEQqujZ42WMsYOADANGMgkjHocej5vLWBxGwlrGY9DjibxlHKTr5u99wPpbkLcOgOxreQnt9tnHEwjQDfNvh2EAum7+fcnf5lrq7fZBEMxekx6PufR6IHjMpejJv+9tc1xuHaIAymRhpFPm36tMBkYmDUqlYWQyub9n6TQobW7r7PKXomI/Nz6f89yIXl9B2wRRBGk6SNcATbPWdZCmAh2uW8fp1teoGgSfzxWq2L1NxWCwv58ZxhgrChy4sAOOdIK6N5ELWLbH2g9kKwnmbD/jSuAbVwLvmAhEX+GnJxHBiMehNTRCb2yA1thorjc1AqIEMRyCGApBCplLMRQyQ4i8+4VeAkO6Dr2pKRektLs1OOukKD19ukyiCCkSgVhaAilaAqmkBFI0CrEkCikcyQUodpgSMpdS2HpckUivLunpC6Sq1ovXjOtTQWdbOvfCVvD7rPAkL0iJRiFIPZsOOThzprsNigJl1y4rgLHCmK1boWzbBr21FVpNDbSaGiTfyoUmQiCA0AknIDRvHsLz58E7ZkyuYKwG+PBp85aotb5AAqZ8Fpj5FWDsPPNSK8ZYUSM7NNZ1s7eBbr2RVFWIwSCkcLi/m+ggIvONfypl3tJpGElrPZV0tlMqBSOVd1wqlQtWEgkz5E+YAYoThrCe8XhyvTU9XsAjm0GO7DGXHo95uY299HoAuc0x9n2PnAuH8oMhJ0gyt4mu7R0c6/FC9HoAz+Do3csYY4OVQHTo/vWNxWIoKSlBa2srotFofzdn0DDSGtSapBWutELZEQMp7k+JBK8I75gofGOtgGVUpN2MP0QEo7U1F540NkBraIDW0AitsQF6Q6O5r7ERemNj78MNm8cDKRh0hTB2KGNk0tD27YO+zwxzevKplxiNQh4yBHJ5OaTSEogleSFKSRRSSYnZo6OkNHc/HDbHTmF9TmtuhrJtm3PLbt2G9EcfQW9ocB3nGTUK4aMmIBTdg6C6EpJk9cIKDQWOuwo49kqeYYix/USK4g4UUikzVEin3IGCK2ywj82FDublHN18Im+td0UMhSAPHwZP1TDIw6rgGTbcWXqGVUEePny/QhkjmzUD+fq8kL6+3h3aNzWCkuZjPBABieDxmH9zIhGIkUhuGY1AjEQhRcLOEtY0vc4b+rZLtN0O577zNaI1BpgkAaJkjgUmSuaYYZIEiKL5906UIEjW+GFttpFhtL/0RlXNS3U6uAzHcN23LsMxDAgBv3l5azAAwW+tB6xLXZ0xyYLmNr8/t83j6fOfAytO/N6AMdbXOHDhX6q9QgZBb86YA9ruS0PbZw1uuy8FI6G2O14IyPCNjTo9WDzVIUAUoDc2Qt29G8qePVB374G6ezfUPXug7NkNbW8NSG1fqytiOAy5ogJSZaW5rCgHdKsbdd5NtwaPNZJJUDrd8ydAECBVVJhBypBKa2ndKq3l0CGQKysh+v09r88OKjIMZDdvRmLFCiT/8x+kVq0yu7TbREJwpB+h+ScifP5X4DviSP5EkbE8dm8MvbkZmj0uU3OLe/Dr5uZ2942eXnJ4oIhiwUG6GApBHjYMnmFtQ5lhEP3+dr0eVSdQaYDR2tq75gWDEIJBiG1vgYC5DAXdxwSCZoAStoMUK1iJRiH6fL1qA2OHAn5vwBjraxy4DMBfqqQZ0JMqjIQKPaHASKgwEgr0hAoYZE5zHDCnNBb9MoSADNFv3Q/IEPyy+QlTAYyMZk2/nHIHK41pQOv81JFKvPCOjsIzzAvBl4CRqIO2JxemqLv3QN2zp6DxSsRoFHJFhStIkSvt9UrIlda+iopehRuk67lZffJDmUQulBF8XneYUlFujtTPBo+GT4D3lwGrn4GeiCNV70WyLoxEQynUJncoJw2pRHjuPITmzUNo7hzIZWX91GjGOmbOVpZuFzYbKWuZTpuBtqZZg3paS83aZg/6qXWw3d6WP+h1S8t+9TIUPJ6uQ4X8QCHQ9piAeYlFRzOpWOuCJJmXeHS0LkkQRBFGMgm1rh5abQ3U2jpodbVQa2qh1tVCq6mFWlfX68DE9Vi91t+ToUPdYb19v6Lc7F1pPT7B7+cej4wdJAP1vQFjrHhx4FIEv1SJCKToMOKqGaTEFfcyL1jR4yoos/+j0ws+CaJfygtnzEBGCMiAQU7I0m4w23wiIAYJoicLogSgNEFP1MJo3gOtfi/UPXu6n3VGECBXVcEzcgS8I0bCM2IEPCNHWvdHQBoypPuBTBnrrcQ+YMs/gTXPAlv/ldtefhgw88vA0V8EAqVQduxA4s0VSK5YgeS777p7RQkC/EceidCsEyCVlUMMmp84C/Ynz4Ggs83+NFoIBPgNFOsQ6bo5+1g8YQ1mGjPD4PwBTu1ZytqGKfm3A3Q5SncEjyc3HlNZWW7ddd8cs0kuKzMvsbTG0BoIjFTKFcZodbVQa+ug1tZAq60DZTKQhlTC0zZMyQtUxGiUe8gxVqSK5b0BY2zw4MClCH6pZj5tRsOydT37IhEQQ15IYQ/EsAdS2GtOiywKMDIajIwOI62BMpp5P62DMhpI7fmI+2SkQJlGGPFa6E07oTfvhpGoBaWaAHR/+kiVlfCMqDYDFStM8YwYAe/IkfAMHz5gXmizQUBXgV3vAZ/+A9jyOlCzJm+nAEw6Ezj+y8D4U8xLDDpgKArS//0vEm++ieSKlchu3tyrpjhjBtghjB3KhOzZpEK5GaZCQfcAyaFQbtDkUMgMcPgN3EHjTBdrDwadzYKyWRiZLChrb1OsdXObvd9IJqHHYzCsWWCc2WKswU37fFp3UXSPSxUKmb1FAsFc7w+PxxwEVJbNAT5lGYJHzvUCcQ36aW/3QPB6nNnCzAClFEIwyOciY2zAKpb3BoyxwYOviSgCUtgMHASvCDFshSghD6SIGaJIIQ/EiDe3LeQxLw0q8LKgfKQZMDIalD31yG7aguzWXVB31kCta4AeS0PwmNP4GYk6GPFaGIk6QGs/xong98NTPRxSeTmkinLIZeWQysshV5RDKjOXnhFmsCIGAvv3BDG2P5q3A5++bvZk2fofQIm79w+bDkw8AzjmcqBsbLflRK8XoVmzEJo1C/j616HW1SO5ciXSH61xBvt0Zg2xBwG1lpQ3XgWl09DTaeh98RhF0Rng2ZypKmLOamUPjFkShRSJQiqJWoNjRt37I5EB3ePGUBRzJpZYHEasFXrc6hli9wqJx60BNq1LZFQVpKm5S2qU/O25JTTVvS+bhWGFKwe694jg80GMRsxZyeylPQ6Ha4a13EDfUrtgJWRejsIBCGOMMcZYv+AeLkWQYuvpDLTdeyFVlEIKh/u0xwcZBpQdO5DduBGZjZuQ2bgRmU2b2s3IYpOHD4fvsMOcMVHk8jJIZVaoUl4OqdzcJgaDfdZGxvqUkgS2r8z1Ymn81L0/WAEcdiow4VTgsFOA8NCD1jQyDGtq7LQz6wql287QkjeGkH3ZSCLhjDGkJ93b++SNvyCY04pHIuYlHpGI2eum3ZSl1rSl+VOWejrfD1ECDB2kGwUu9dyUvboBMszpeo14wuwVErOClFjMDFWsbZTN7v9zsB/PneD3Q/T5zHDD54Xo8+e2+XzmVLI+vxmihEJ5s8OE280KI1r7+FJKxhg7+IrlvQFjbPDgHi5FQNm6BdsXXeDcF/x+iJGw+5PN/E8482ceyJ+BIByG1tyCzMYNyNrhyubNrk/VHaII77hx8E+ZYt0mwzdlCg/+yQYeIqB+Yy5g2fEWoOcN3ilIwKgTgAmnABNOA4Yd1enlQgeaIIrOoKB9wZkZxhXO5F2m0hprH1TE3NsokwGIYFhfg717+6RtB50guGZiMZcRSNESiOGQGWA4l8V4nUtpBI+cd7mMx7xcxuPJXUaTv9/ng+DzQ/R5nUAFHg/3IGGMMcYYYx3iwKUIUDYLMRh0psekTAZ6JgN9X8e9UHpK8PngO/xwJ1jxT5kC36RJfKkPG5iIzF4rO98GdrwNbP03EG8TEpSMNnuwTDgVGHci4C/pl6YeaIIg5AKcXnbUMRTFCWeMuBXItMZAmTQMRQEpinlZjbOumJfXOOtK58cZOgQxNwtMQUtJBERrKYjm7DXRiHlJVDRi9gSxlyXR3FS3odCAviyKMcYYY4wNPhy4FIHgMcfg8P9+CNI0c3aKtjNSWGMQ2AMt6ok4jHb7zKUYDMJn91qZai69Y8fyFMZs4NI1oG6tGa7sfAvY+Q6Q3Oc+Rg4AY+dZIctpQMUEgHsdFET0eiFa064zxhhjjDHG+g6/Cy8igiw7sz0wdshS08DuD6weLG8Bu98HlDbTi0s+YORxwOjZwNi5wOg5gMffP+1ljDHGGGOMsQ5w4MIY61+pJmDXu7lLhPauAgzVfYyvBBh9ghmwjJkDVM8AZF//tJcxxhhjjDHGCsCBC2Ps4Eo1AdvfBLa9YfZgqd/Q/pjI8Fy4Mno2MHRqvw10yxhjjDHGGGO9wYELY+zAysTMYGXbG+atbm37YyomAqNn5QKWsrE8BgtjjDHGGGNsQOPAhTHWt5SUeYmQHbDsXQWQ7j5myBRz9iB7/JXwkP5pK2OMMcYYY4wdIBy4MMb2j6YAez7IBSy73wd0xX1M+XgzYBl3IjB2PhDu5RzGjDHGGGOMMTZAcODCGOsZQwdqVucClp3vAGrKfUx0hDtgKR3VL01ljDHGGGOMsf7S56NQ3nfffRAEwXWbPHmysz+TyeD6669HRUUFwuEwFi1ahLq6OleNnTt34pxzzkEwGMTQoUPx9a9/HZqmuY7597//jWOOOQY+nw8TJkzA008/3dcPhTEGAERAwyfAez8Ffncp8PA44KenAP+4D9jyTzNsCVYCRywEPvt94Mb/AresB85fChz9RQ5bGGOMMcYYY4ekA9LD5YgjjsA//vGP3DeRc9/mlltuwfLly/GHP/wBJSUluOGGG7Bw4UKsXLkSAKDrOs455xwMGzYMb731FmpqavClL30JHo8HDz30EABg27ZtOOecc3Dttdfit7/9LV5//XV8+ctfxvDhw7FgwYID8ZAYO7TEa4Gt/wG2/QfY+m8gtse931cCjJ2X68UydAoPcssYY4wxxhhjeQQior4seN999+HFF1/E6tWr2+1rbW3FkCFD8Mwzz+CCCy4AAGzatAlTpkzB22+/jVmzZuGVV17BZz/7WezduxdVVVUAgKVLl+KOO+7Avn374PV6cccdd2D58uVYt26dU/uSSy5BS0sLXn311YLbGovFUFJSgtbWVkSj0f174IwNZJkYsGOlGa5s/Q+wb6N7v+QFRp0AjD8ZGP8ZYPhRgMRXJDLGGGNs8OD3BoyxvnZA3jF98sknqK6uht/vx+zZs/Gd73wHo0ePxocffghVVXHaaac5x06ePBmjR492Ape3334b06ZNc8IWAFiwYAGuu+46rF+/HjNmzMDbb7/tqmEfs3jx4i7blc1mkc1mnfuxWKxvHjBjA42mmIPbbv232Ytl9wdtZhISgOHTrYDlZGDULMAb7J+2MsYYY4wxxtgA1OeBywknnICnn34ahx9+OGpqanD//fdj/vz5WLduHWpra+H1elFaWur6mqqqKtTW1gIAamtrXWGLvd/e19UxsVgM6XQagUCgw7Z95zvfwf33398XD5OxgUVXgZo1wPYVwPY3gR1vtR/otnw8MO4kM2AZdyIQLO+XpjLGGGOMMcbYYNDngctZZ53lrE+fPh0nnHACxowZg9///vedBiEHy1133YVbb73VuR+LxTBqFA/oyQYhTQH2rrLClZXAzncBNek+JlgJjLcDlpOAsjH90lTGGGOMMcYYG4wO+CAMpaWlmDRpEj799FOcfvrpUBQFLS0trl4udXV1GDZsGABg2LBheO+991w17FmM8o9pO7NRXV0dotFol6GOz+eDz+fri4fFWHHRsuZlQTtWmr1Ydr0HaGn3Mf5SYMxcYOxcM2AZOhUQ+3yiMsYYY4wxxhhjOAiBSyKRwJYtW3D55Zfj2GOPhcfjweuvv45FixYBADZv3oydO3di9uzZAIDZs2fj29/+Nurr6zF06FAAwGuvvYZoNIqpU6c6x7z88suu7/Paa685NRgb9NS0OQbL9pVmyLL7fUDLuI8JVgBj5gBj5pkzCnHAwhhjjDHGGGMHTZ8HLrfddhvOPfdcjBkzBnv37sWSJUsgSRK+8IUvoKSkBNdccw1uvfVWlJeXIxqN4sYbb8Ts2bMxa9YsAMAZZ5yBqVOn4vLLL8fDDz+M2tpa3HPPPbj++uud3inXXnstnnjiCdx+++24+uqr8c9//hO///3vsXz58r5+OIwVBzUD7HrXvERo+0pgzweArriPCQ2xerBYAUvl4RywMMYYY4wxxlg/6fPAZffu3fjCF76AxsZGDBkyBPPmzcM777yDIUOGAAD+93//F6IoYtGiRchms1iwYAF+9KMfOV8vSRJeeuklXHfddZg9ezZCoRCuuOIKfOtb33KOGTduHJYvX45bbrkFP/jBDzBy5EgsW7YMCxYs6OuHw1j/0DWgZnVuFqGd7wJ61n1MeJh5edDYeWYvlsqJgCD0R2sZY4wxxhhjjLUhEBH1dyP6SywWQ0lJCVpbWxGNRvu7OexQRgTUbzTDla3/MS8TyraZtjw8zJw9yO7BUj6eAxbGGGOMsT7C7w0YY33tgI/hwhjrRPN2M1zZ9h9g2xtAcp97v78EGDvfmqr5JKByEgcsjDHGGGOMMTZAcODC2MGSqDeDla3/NpctO9z75QAwZrbZi2XcScDwowBR6pemMsYYY4wxxhjbPxy4MHagpJrMKZq3vwlsexPYt9G9X5SBEceZAcv4k4CRMwGZpy1njDHGGGOMscGAAxfG+kqmFdjxlhmubH8DqF0HoM0QScOmmb1Xxp1k9mbxRfqlqYwxxhhjjDHGDiwOXBjrrWwC2PmOGa5sewOoWQOQ4T6m8nBg3HxzLJax84FQRf+0lTHGGGOMMcbYQcWBC2OFUlLArndzlwjt/S9gaO5jysdbMwlZAUukqn/ayhhjjDHGGGOsX3HgwlhHlBTQ+Amwb7M5XfOud4Hd7wO64j6udDQw9sRcL5aSEf3TXsYYY4wxxhhjRYUDF3Zoy8SAho+BfZusm7XeshPtxl8BgEh1LlwZNx8oG3uwW8wYY4wxxhhjbADgwIUdGlJN7UOVfZuB+N7OvyZQDgyZDAw53JyiedyJ5iVDgnDw2s0YY4wxxhhjbEDiwIUNLtm4eQlQ3XqgfoO5vm8TkNzX+deEh5mhypDJwJBJ1nIyEKo8eO1mjDHGGGOMMTaocODCBiZdBRo+MUMVO1yp2wC07uz8a0pGW8HK4bmApXISECg9aM1mjDHGGGOMMXZo4MCFFTcioHWXGabUr7eWG81xVwy146+JDAeGTgWqpprLoVOAiomAL3xw284YY4wxxhhj7JDFgQsrHvblQLVrgbp1Vs+VjUA21vHx3kheqJIXsATLD267GWOMMcYYY4yxNjhwYQcfEdCyA6i1QpW6teZ687aOjxc95qU/VVZvlaFHmOslo3gAW8YYY4wxxhhjRYkDF3ZgKcn2vVbq1nfeayUyHKg6Aqg60rodAVRMAGTvwW03Y4wxxhhjjDG2HzhwYX1DSQGNn5pjqzR8AuzbaPZaadoKgNofL3nNgWvtYGWYteSZgRhjjDHGDhkGGTDIgCzy2xLG2ODDv9lY4YjM6ZUbPs4FKw0fA/s+7np2oNDQXKBihyuVkwDJc/DazhhjjDHGDjpVV1GbqkVNogY1yRrsTe5FTSK3rEnW4Nvzvo2zxp3V301ljLE+x4ELa0/XgObt7YOVho+BTEvnXxcoAyoPByonmoGKHbKEhx6sljPGGGOMsYMopabMICWx11nmhyr7UvtAHfV2zrM3sfcgtZYxxg4uDlwONZoCJGqBWA0Q35u3zFtv3dP5lMsQgLIxZqBSOckKVw4310MVB/WhMMYYY4wVK4MM6IYOjTTohg6ddKiGiqyeRUbLIKNlkNJS5rqeQVpLI6OZS3s9o7c5ztqmGRqICM5/1GZprdvtyL+ff5zN3mfv70z+cQCQ1JJozbZ2+1x4RS+Gh4djeGg4qsPVruXw0HBUhap69NwyxthAwYHLYGHoQKYVSNSZ4Um8xh2qxPaY25L7CqsnB3I9VZxgZRJQcRjgCRzYx8IYY4wx1geICGktjYSacIKMtJZGWjWXKS3lCjhcx3Rw00l3whPN0Jz7dqhikOGsd9erYzCJeCIYHh6O6lA1hoWGmWGKdb86XI1yfzlEQezvZjLG2EHHgUsxUlJAuglINbVZNpvLdHP7fekWdDg4bUckLxAZBkSqgejw3DJaba6XjASiIwCR/zAyxhhjrHdUQ4WqqxAEAQIEiIIIAQLM//O2CUKXdQwykFSTiCkxxLIxxJQY4krcdT//Fs/GXfc1QztIj7gwPskHv+xHQA7AL1nLvPv2emfb/bIfsiA7z2u7pb3e9n4Hy7ba/izaHtP2vk/2YXhoOCLeSMGPX1NVJBobEG9qQLyxAfGGfRh/7PEYMnps4U8iY4wNEBy4FIM9HwJ/uSkXnmiZ3tfyl1rByfA2YcoIa1s1EKwAunlxwxhjjDGWj4iQUBNoyjSZt3QTGjONaMw0OuvOvkxTQZea5OsslNFIg0HGfrVdFEQnxOjtzS/7IYsyZFGGJEiQRAmy0GZdlJz7HW4XpG4Dpv1BRFCzGaRjrUi1tiIVa0Uq1oJ0LIZka4u5PR5DqrUFABCIRF03fyTSblsgEoXs9Rb0/XVNQ7K5CbHGfYg3NpjBSmMD4tb9eGOD873z+UJhDlwYY4MSBy5FQQDq1rk3iTIQKAeC5XnLsjb3O9jPM/8wxhhjrACqoaI124qWTAtasi3meja3bgcnTpCSboJiKAesPQSCTrp9px2f5EPUG0XUG0XEG0HUF3Xf90YR9eWte6Mo8ZUg4o0gKAcPaNDR13RNhZJOW7eUuczk7qfjMaSt4CQds4OVVqRbW6Gpff8z8vj8HYYxgii6QpVES7M5q2U3ZI8XkcpKRCoqEakYgtJhw/u8zYwxVgw4cCkGlROBy553Byi+CPdCYYwxxlhBFF1xApLmTLMrOGm7bi+TarJX3ysoB1HuL0dFoALl/nLXeoW/wrXdJ/kAuAdqtXur5N+3xzvp6BhZlBH1RZ1aA4Gh62YoEmtFKhZDOt5qhiPxGJR0CtmUGaCo6ZQZpKRSuUAlk4audjZ5QWFkjxeBkhIEo+YtYN3y7wuC4AQ36XgMmXjcdd++kWFAzWagZjOIN3Q/FqAoyYhUVCBSMcQKVMxQJeysV5phDb/OZYwdAjhwKQa+CDDhtP5uBWOMMcaKhKqrrgClMdOI5kwzmrPNrst2mjPNaM40I6EmevV9BAiI+qIo9ZWixFeCUl8pSn2liHqjrhCl3F+O8oAZogTkQ2vwfCKCpirIJhJmL5JYDKl4K9KxVqd3SToWQyrWYoYrsVZkkomCenp0R/b64A0E4PUH4AkE4AsE4Q0E4A+FESgptcKTKIJRcz1YYoYpHp+/TwINIkI2lew0jDF0PReqlFciUjkEwWgJBB4HkDHGAHDgwhhjjDF2UKiGiuZMM/al96Ex3YiGdIPrZm9rzjQjrsZ7XF8WZJT5y8ybr8wJUEp8Ja4wJX894o1AEqUD8GiLBxGZvUqSSWSSCSipFDKpJLLJBLKpFLIpa5lMutaVdBKZZBLZZBKG3ouBdwUB/nAEwUgUwZJSBKLmZTi+UBhef8AMUqwApf19cylK/fuzEQQB/lAY/lCYL/thjLFe4MCFMcYYY6wbuqGbs+7YN12FYijOumZoSKrJdiFKQ7oBDRkzTGnONPdoqmBJkJwApdxfjnJfubNe5i9Dhb/CdT/qPbQu0zB0HcnWZiSbm5FsaUaypclab0KiuRmplmYkWpqQammGru3/TEWCIDqhifsynai1LM1bL4E/EoE4yMMsxhhjXePAhTHGGGMDnkEGUmoKSTWZu2lJJBVrmbc9oSSQ0sxjE2oCKTWFjJ6BqucCFc3QoOiKc39/Z8mxiYKICn8FKgOVqAhUYEhgiLNeGag0L98JmJfxRLwRiMKhd2kGESEdjyHesA+xhnrEGxtdYYoZrjQjFWvt0WU7kscDXzBk3kKhnq0HQ/D6/XypDGOMsR7hwIUxxhhjRcOeOSd/gNe2g722ZlvRquTW7QDlYJJFGR7Rk7tJHgTkACoDlaj0W2FKcIjrfmWgEqW+0kF/CU93NEVBvKnBClT2OcGKvR5v2FfwTDuCKCJUUopQWTlCpWXmrawcodJyhMrKECopQ7isHIGSEni8A2fQXcYYY4MDBy6MMcYYOyCICAk14Rrk1Z5euDnbjKZ0kzODTkyJ7dfMOTZZkBH0BBH2hBH0BBHyhLpfl0Pwy354JW+7EKWz+4fSpTuFIiKomTSSrS1mD5TWFiQaG9qFKqnWloLqhcrKEa0cgkh5ZQeBirkeiEb5sh3GGGNFiwMXxhhjjBVE0RXElBgSSgIxJeaaQcdeb7tNM3o+doYAARFvxDXIa0cDwNrrUU/UCVF8ko/DkD6mZNJmgNLSgpQVpiRbW5BqbUayxVya21ugKdmCaso+H6IVQxCpHILokKG59cohiFQORbi8ArLHc4AfGWOMMXZgceDCGGOMHSLsWXJasi1IKAnElbgZoKjmuh2kxJW4sy3/phiFXebRVlAO5qYV9uWmFy7zlaHUnxeqeEsOmZlzioGaySDR3IhEk3mLNzUi2dxkrjc3ImUFK1q2sBDF5vEHECopRbCkFOGyckSGDEW0cqgVppihij8c4WCMMcbYoMeBC2OMMTZAqYaKlkyL2avEukSnOdtszoiTd9/ucRJXej7VcEcinggi3ki7GXPs9XJ/uXMr85fBL/v75PuywhiGjlRLixOcJJuanGAlP1TJpgq/fEv2+RAqLUOwpBShkjKESs1Axd4WLLEu9ykphcfPP29WOCICESCKHMAxxgYfDlwYY4yxfmaPdWIPBtuabUVMiSGWjTmDxsaUmDNorD0WSkyJ9fh7iYKIEm8Jor4owp4wIt5I7uaJIOw1t0W9Hez3RhDyhA7JmXMOFiKCms0gm0pCSaWQTSWRTSbNpXVfSbffrqSSyKZT5rZ0quDZezw+P8LlFeatrNy1Hio1x0oJlpbC6w8c4EfOOqPqBtKqjoyqI6MYyGg6FM2AqhvQDDKXOkEzDCiaudR0cvZrugFFN5f5xwsC4JNFeGURPllyrZtL0b3fI8IrifB5cscDQCKrIZ7RkMhoiGdVJDJabpuzNLfHMxriWc05xtyv4tvnT8NFx43q52eaMcb6HgcujDHGBiV7tptYNgZREJ0BT72i11mXRXm/wgNVV5HSUkhraXOpptvdd9a1NOJK3B2mWOFKXIlDJ71XbRAFEaW+UlePkjJfmXP5Tn6PkzJ/GUp8JRyY9BMyDKRireZMPI0NiDfuQ6yxwVmPNzYg1dIMQ+/duZBPEESEysrahChtluUV8AYCfGlPHzEMQtwKEOIZDbG0agUMKmLp3Pa0qiOt6MhoBtKKjqxm39eRUdtuM6AbhU99PVDFMz0f64kxxgYCDlwYY4wVPYMMxJU4WrItaM40O+OQNGebnUtq8u83Z5oRVwu7fEYWZHgkT4fT/NrrsihD0RVXeJJW09Cob98k+CU/or6oM56JMyisN+osS32lziU8HKAUDyJCJhHPhScNuRDF3pZoaoSuFXbOCKIIXzAEXzAIr7U074c62B529nuDQfhDYZ69B+bPRNENV68QRTd7hqiauc/uKWLfspoB1eodolr7Fev4rKabAYodqLQJVhKKVmjHol4RBCDgkeD3SPBIAjySCI8kQhYFyJLobJNFaykJkEURXtlcypIAj72UROf5yarm4zZvOrKa+bjt+866qpvHa0a7xxn2yebNLyPiN9ftZdjnQdgvI+rPHWPvj/g9CPtklIe8B+6JY4yxfsSBC2OMsT5jkIGMlkFKSyGlmsFERs+YSy2DjGau29vtbSktZa7ruWMyWgZJNYnmbDNas6296gEiQEDYGwbI7PGiGAoMMlzHaKRBK/BNcGdkUUZADiAoBxGQA+a6J9huW8QbcQUo+cFK1BeFT/LtVztY3yEiZJNJpGKtSMdakYq3It3amrsfy62b92Mw9ALOI0FAuLQMkYohiFRUIlJZmVuvGIJQWTn84TA8Pv8h0fNENwhJRUMqq7uWyayGpKIjldWQUnTnkhpn3Vo6vUWs9ZS9bu3vj84hPllExO9B1C8jEjCXUb/HChhkBLwy/B7RCU/sdZ9HarfN75HglyX4veblPMVwThARVN0Ma4gIIa/M468wxlgnOHBhjLFDXFbPIpaNOTPW2NP+2qFJSku5AhRnW5ulHaQcSCFPyOzhYc1uU+4vd3p82Et7X5mvDFFvtN1sN7qhQzXU3E1X3ffbbNMMDaquwiN5zPDEE3AFKUE5CI/E09cWOzIMZJKJvJAk1nl4Eo8hHWvt1aU9gWiJE56Yy0pEKs31qBWoSHLxv/wiImQ1wxw3RDWXufvmpS5Za5lRdXNdNXtE2MdnNB1pxbDCEzM4cdatYCWjGt03pg9IogCv1QvEK5vhhUcWnV4iXmu7fd8jmeOXOD1JrK+JWr0yogFzGckLU6IBc+mTB3fPIkEQ4JXN54sxxljXiv8vPmOMsW4puuIMrtqqtObCk2zMCVE6W8/qPZvytRCiIDq9OvySH37Zn7sv+13b/JIfAU+g3Ta/7EfQEzQDFF8pSv2lfdIDRBIlSKIEP3gmlYFM11RkEglkEvG84CTWSe+TVqTjMZDR8zf33kAAgWgJgpESBKJRBEtKrftRc1lSimDU2hcthew9sJdG2L0LNCN36Uv+AKn2ZTBp1Qw3UoqORFZDyu4xomhIZnP77PAjkdXMfXavElU/oJfHtCWJAkJeCSGfjGDeMuyT4fdICHrN3h8Br2wtcz1AAs6+NkuPBL+17pE4HGCMMXbwceDCGGNFgoiQ1tKumWpcs9bkDbKaP2tNTIntd88SAYIzM03Ea85UE5JDCHgCCHlCCMpBBD1Bc5m3HvAE3PuspU/yFUXXd1b8NEVBJhG3bgmkEzEnSLG3ZRJxZJJxpJ3tCaiZ3p3z3kDQDEhKSsxlpATBaF54YgUpgai5v68DFCJCa1rF3pYMalrTqGm1li0Z7G1NoyGhOCGKohvmzDI6QbUClv4YQFUSBfhl0brUxZydxmdd9uKXzaXPWrY9JuiV8oIUGSGfhKDXHMMjP1jxycVxuQxjjDHWlzhwYYyxPmaQ4Uzx60zrW0CA0qq0QjN6P5aIKIjmGCFec4yQqC9qLvPW7VCl7b6wJ8wDr7I+Yeg60vEYUq0tSLa2IN3aYvY4yV86663QlP3oYSUI8AdDCESjCERLc8FJfpCS1wMlECmB7Dmwl3/FMipqWzPY22KFKS1p7G3NmNusYCWt7v8sRPnMQVPNAVE9sjloqtNTxCsj6DODjZBXckIP83773iT2/oB1rM+6zIYxxhhjPceBC2OMAdAMDWktjaSadKbztdftMUry9zn38/bl9zhpOzBrT3hET7vBVPNnrHFtz7sf8oQ4NGF9TlMUpBMxpGMxZBJxpOMxpONxpONmYGIGJ83OeiYe6/H3EAQR/nAY/nAE/kgEgXAE/pB1PxyBLxSGHAxB8AVBviB0TwCaJwBF9CKt5i6n0QwDrTqh0SBoBkHXDWitBK2ZoOnN0IwmaLq1L6/HiGaYvUh0g6Ba++zj2h/r3q9bl/HoBpkz1WQLC03LQ14ML/FjeEkA1aW55ZCwDz6P6Mwq45VEyHkzz3ik3Iw0smguuWcIY4wxVpw4cGGMDXiqriKuxpFQErmlEkdciSOhJlzbE2rCGRQ2oZrHJdXkARnHJCAHOp2NptRX2uG0vyW+EvilQ2N2EnZwGYYOJZVGNpVEJplAOh5DJh7LC1DyA5WYtT8ONZvp8fcSBBG+cATecBRyKAoxGAYCYZA/DN0bhuoNISsHkJYCSIl+pEhCSjWQUnSksjpSqoZURkcyZo4zklJ06EYaQBpAY58/N30t6pdRXRowA5XSAKqtYGV4qR/VJQEMK/HD7xncA6syxhhjjAMXxlgf0g3dmakm/5Y/g01aSyOtmlMCZ/WsMxuMoivOtL2qbi3zZotx9uu57YqhIK2l+zQskQQJQU8wN26JPS5JmzFKXOOaWNt4il92oJBhQM1mkE2lkE0lkU2loKSSyKSSUKz72WQib3/etrR5rJLu/Tg/JIggXxCGN2j2LJHNW1oKICkEEBN8iMGPZsOLVviQEf0gu7eVDiBu3VwU69bao7Z4ZdG5NCboNccI8cq5HiGyKEASRecyG3OZf1+ElL/POVa0vjZ3XNv7kijAI1nbXN/PvB/wShhe4kfIxy+vGGOMMcaBC2MDnkEGFF2BYihmGGEFEfnbnJsVZriCC6OD+7p7elzX11nrac0MTfJDFMVQ+vW5CMpBhL1hRDzmoK/2uj0IrLPdEza3WcuQJ+TcPKKHe5ewPkNE0LJZMwBJp6CkU2ZYkk5BSeXW7VAkm05bxyShpFJQ0maPFCWTRl9NGaMKMrKiFxnRj4zkR0b0I20t2963l4roBQr5d5HXaaOzWWdCXtkcP8QnIeDJDaJqhydBe8yRDrYFPRJkHk+EMcYYYwMEBy6MHQBEBMVQkNEyTg8Mez2tpZHRMq6wwrmvprvcntEy7iDFUPZrkNUDRYDgTAEckAMIeALu+7I5s41X8sIreuGRPM7SI5o3r+Rtt5RF2X286IFf9jvhiSRyF33WN3RNg5rNQM1knGU2lUI2bQchubAknUw6N7tniZpOQ8umoWfSwH6M59OuXRChiF4oohdZ66aIPmvpRVb0OfvabrfXDcH8d+KVRPg9ojOFrj29bpksodq1LTf9rt+Tm3bX7xGd8KRtoBL0SfBKPOsMY4wxxg5tHLgwBrOXSFyJO7PGtGRbcjPHZFuRVJNO4JHRM8hqWaT1NLJa1rU9o2WccIVw8KfuBACv6DWDjLygwif5nHUn5BA98EgeV4jhETsOPmRRdoUfdtBhByd2iGJv4ymBWX8gw0A2nUK8tRWtza2ItbQi3tqKRCyObCYNNZ2GYoUnWjYDLZuFrmSgKxkYShakKiA1C6hZCEbfziJjQIAieqBYgYgiePKCkbyb4M07rs0xgheSx4OgT0bEb84wE/Gb0+uG/R4M9ckI+ySEfR6E/TIiPhlhvxmIhH35x8rcU4Qxxhhj7CDgwIUNaJqhQdEVZHSz54cdeNi3jJZBXIm7p97NWoGKYk7L25Jt2e9ZZboiCzL8sh8+yZfr7SGZ4YQdUPglcz0oB9ttbxtk2AGK09PDClDsMISDDlasiAiKbiCjGsiqOjKqgYymI6PqyGRVpDJZpDNZZNJZZDJZZBQFSjqDVDwOJRWHmkxASyehpxOgTArIpiAqaUhqCh41A4+egbifQWfbfz06RKiiDK2jgETIBSNZ0QtN8kHw+CH6/ZB8Qcj+ADyBILyBIAIBPwL21LtWLxG/1YvE7jHikyWnt0nA6lnib7NfEvnfN2OMMcbYQMGBCzug7Etr7Olzk2rSHERVTSGp5ba1m3rXWs/qWWS1rCtEsYMURVegUd9eTuMMfNpmVpmwJ+yEJn7Z7wQkrnVrmX+MTzZ7ljDWlwzDDC5U3ZyaVtUN6z5B0w1kNQMZVUdWM5DVzGDDWao6MpqBrNrBvrylphMIBIMAGAToKkRdgaBlIWpZSFoWoq5Y6wpETYGkZyHpCmTdvq8AhgboGgRDh2BokEh3bnLeendBiYzC/2ApgoysNR6JKvuhewIwZC9I9gGyF4LHC8Hjg+i1b37IXj9kvw8evx8enx9efwC+QAB+nxc+WYRXFhHwygh5zfAjmLce8spWIMKX0DDGGGOMsRwOXBg0Q3NCjPyxRtrOLJM/BkmHs9Co7bel1BR06tuu+Z3ximbPD5/sM5fWLeKNuAKUUl9pu1Cl1F+KqDcKr+Q9KG1l/YuIoBsEVSeoRi60sAMMzTDDCzUvxNAMcgUcqmFtt2qomn2MfZwBxfpa+3j7GMXanzuWXMeo1vdTrHX7GEU3oGlmeCGT5oQWuXUNkr0PBiRDM0MNWMGGYa7bx7cNPSTSEbX2eQwVHkOFl1R4DWW/e4706OcDASRKIEkGSR7AF4TgD0HyhyAFw/AGQ/CGIvCHwwhFowhGo4hEo4iWliBaWopoyI+Al8cQYYwxxhhj/YsDlyKQUBLY3LwZmqFBN3RopEEzzJtOurOukbXf2q4aqnO8vV0xFKdXiD3tbv56/iU39vrBCkTs8T7yp9UNeAIIySH3VLvWuj0uiBOe5AUpfskPr+SFX/Y7l9iIAo9H0BkigmaQEw7o9tLaphkE3TCcY+z7qm4HE9axzv7cfT3vll9H1wk6kes4TTf329t1g0BkdqAg2Ot5S6vt9n2DzIlayNpnUK595mOzQ40Owoy80ETV+yg8IIIIwwwnSINMGmTDWpIVdjjb9Lzt9rE6PKQhQO79ThBi5NWwQxEcmEvfCiV6fBB9fkg+v7UMQPL5IXn9kP0BSL4AZGu7x++Dz+cze4n4fPAHvAj4ffD7fPD7fZA95pgksscDybrJHi9EiQc/ZowxxhhjAx8HLkXg05ZPceWrV/Z3MwCYvUTs8ULazjKTH4J0e2sTpATkwICaQSb/kg2zl4EZMthhgxNeWEGEE0xYx9hhRe5rcr0k2t3Pq5cfHrj35b5PR2GCfYyad79tb41DFpHT+8NDGkJ54YgTlBgqfNDghQY/NHitY31kH6vCY5jHSYZqXjJjqJB0FcIBGvunEKIkQ/Z6IXut4MLrgyzLkL2+XIDh9UKSrVDDXvd6zfuyuc0MPHJLyeOBx+eDNxCA1x+EN2gt/X4IIgebjDHGGGOMFYIDlyIQkAMYGx0LWZQhCZK5FCXIgtxum0f05O5by/x1j+iBTzZ7gNhjidg9QuweIvZ622O8krdfe4nkjz1hjjFhjkGhaIazVHQdWdUcryKbv90aq0Jpd3zuvh2eKE6I0mZf3vZDJaDwSAIkUYAsipAlAbK1LolCx/sk0dpmrQuAJIqQRQGSdYwkCpAEAXLe19tfI+XfBAGiKEAUBIAMa3wQBaSaS2i5pXnLglQVULOAdRypWUBTnWPsbYamwFAUGGoWupI1u8UcYKIkw+PzOQGI7G273n6fp9N9VgDi9UK2ghDZ64PkNXuA2AGLOIBCTMYYY4wxxg41AtFBeCdSpGKxGEpKStDa2opoNNrfzekxyrtcQ9FzY0jYl2rYl1uYS0AzDBgGnMs5nP32JR9krrsvD+nkcpFOLhOxLyXRDDKDEys0yeTNSJLNW9qDdGZUHZpRvKeiHRZ4JHcwkR9EmEtzux1WeKztdighS7lt9rFOuCEAHtIg6qp5WYmuQDQ0c0BSQzMDCUODSDpEw4BAOkQyIJIOWPcFQweM3NK+kaEDugYyDBiaBpABMnSQYZjbdPO+YRgwDGtdN6z9edt13dpv9eoQAAECIAgwh8oQzDEz8rZDEMyZXwTBGU9DsLbrqgo1m4Guqgfl5yjJMjw+P2SfDx6fP2/duu/3w+v3Q/bZA6f6ne0enw8efyDvWPOSGbuOJHN+zRhjjA1kA/29AWOs+PA7hCLwSV0c331lkzWQZm68CdeAm7p7oE37cpfBGpd5ZRE+WYRPlpwZQuylVxLh85hLr3WMN/8YSYBXBHwiwSsQPCLgEQmyAHgEgiyQuYS5LgsEUSB4QJBAEAXDXJIB0VrCCh10TYOh2zfdvGkaDMNcN/db23UNhqo79+1wQc1moWYz0LJZc13JQstkoKkKAMAAoPTv099/BCEXcvjMkENucz83i4wdjPhyx7a57w5XfDw2CGOMMcYYY+yg4cClCMSzGl7fVN8ntQTB7I0hCrnLNiQpd/mGJLgv6xAFWEvrEhDrOLtHR9vLQexjZMGATAYkMiAJuZlOzKUBiXR4BR0yCB5okGGYN3vGFEOHaOgQSDOXuuZMHwtdg65p0DUVhqZCT+tOwKFrmhlw6Dr0DrbZxwFA1roNRLLPB4/XDBdkr92jIjfIqChJkGR7KUOUZIhy+22uZd5+UZIgiCJE0V6KECQJYv426xh7XRRFCKK9tC89Mwe0BZlTCMMa4NbcToBrnay7ZA2ES5A9nlwo4vdD9nh5VhnGGGOMMcbYoMCBSxEYUx7E9xZNg0cSrZuQt+6+L4uALACSYIYaomFAgnlZiWDoMDQVmqKYNzWbW1cKWE9b66oCXTUDD11VoVlLXVXNbZpW0JgYqnVLH/BnsHuCIEKU7FBBckIHURQhyrIZMtj3nX3WNkk0Aw1ru5S3bgcdoiiZS0mGlL8vb90eiLSjnhf5l7bIHi8PTMoYY4wxxhhjAxwHLkXAaKoBvfQjpDUNCae3ht3LQ7N6cKjOerFdRySIojkbipyb2lWS3UvZ0/a+F5JHdrblz46Su++BKNsBhtVDQ/K4gw1Zbt/LQ8r16hAkCZLVU4MxxhhjjDHGGDtYBnzg8uSTT+KRRx5BbW0tjjrqKPzwhz/E8ccf39/N6hEtm8WeTRt6/fW5y0lka8rXzmdK8Tjr1j5Px8e1C0tkGaLcNjiReaYUxhhjjDHGGGOsAwM6cHnuuedw6623YunSpTjhhBPw/e9/HwsWLMDmzZsxdOjQ/m5ewcqGj8C5t95lBiaSGWyY4Yls9vCQPa5ARbT22b06eMwLxhhjjDHGGGOsuAzoaaFPOOEEzJw5E0888QQAwDAMjBo1CjfeeCPuvPPOdsdns1lks7lhVGOxGEaNGsVTvzHGGGOMMXaI42mhGWN9bcAObKEoCj788EOcdtppzjZRFHHaaafh7bff7vBrvvOd76CkpMS5jRo16mA1lzHGGGOMMcYYY4eQARu4NDQ0QNd1VFVVubZXVVWhtra2w6+566670Nra6tx27dp1MJrKGGOMMcYYY4yxQ8yAHsOlp3w+H3w+X383gzHGGGOMMcYYY4PcgO3hUllZCUmSUFdX59peV1eHYcOG9VOrGGOMMcYYY4wxxgZw4OL1enHsscfi9ddfd7YZhoHXX38ds2fP7seWMcYYY4wxxhhj7FA3oC8puvXWW3HFFVfguOOOw/HHH4/vf//7SCaTuOqqq/q7aYwxxhhjjDHGGDuEDejA5eKLL8a+fftw7733ora2FkcffTReffXVdgPpMsYYY4wxxhhjjB1MAhFRfzeiv8RiMZSUlKC1tRXRaLS/m8MYY4wxxhjrJ/zegDHW1wbsGC6MMcYYY4wxxhhjxYoDF8YYY4wxxhhjjLE+xoELY4wxxhhjjDHGWB/jwIUxxhhjjDHGGGOsj3HgwhhjjDHGGGOMMdbHOHBhjDHGGGOMMcYY62McuDDGGGOMMcYYY4z1MQ5cGGOMMcYYY4wxxvoYBy6MMcYYY4wxxhhjfUzu7wb0JyICAMRisX5uCWOMMcYYY6w/2e8J7PcIjDG2vw7pwCUejwMARo0a1c8tYYwxxhhjjBWDeDyOkpKS/m4GY2wQEOgQjnANw8DevXsRiUQgCEK/tiUWi2HUqFHYtWsXotHoIV+jmNrCNYq3LYOpRjG1ZTDVKKa2cI3ibctgqlFMbeEaxduWwVSjLxER4vE4qqurIYo88gJjbP8d0j1cRFHEyJEj+7sZLtFodL//4AymGsXUFq5RvG0ZTDWKqS2DqUYxtYVrFG9bBlONYmoL1yjetgymGn2Fe7YwxvoSR7eMMcYYY4wxxhhjfYwDF8YYY4wxxhhjjLE+xoFLkfD5fFiyZAl8Ph/XKLK2cI3ibctgqlFMbRlMNYqpLVyjeNsymGoUU1u4RvG2ZTDVYIyxYnZID5rLGGOMMcYYY4wxdiBwDxfGGGOMMcYYY4yxPsaBC2OMMcYYY4wxxlgf48CFMcYYY4wxxhhjrI9x4MIYY4wxxhhjjDHWxzhwYYwxxhhjjDHGGOtjHLgwxhhjg0hfTD5oGEa/t6MvHkc2m93vGsVmME0u2RePRdf1PmjJ/uuLfzOZTKbPahXDvz/GGGMcuDBWNG9OGOtOX70A5vPV1Pb5HOhvMOw3nvvzOBoaGgAAoij2+o3sli1b0NzcDEEQet2Obdu24Q9/+ANaW1t7XWPz5s04/fTT8emnn/a6RjKZhKIoaG5uBtB3/3Z68zNq+/PYn7b097muKAqAXCDWm/bU1tYCACRJ2q/Q5ZNPPsHq1at7/fWAec4/8cQT2LdvX69rbNiwAZMnT8aaNWsgir17eR6LxdDc3Iza2loIgtCrc0TTNAC5n0lvz7PB9vuVMcZ6iwOXAaZY/mANhpAikUgAwH69KWhqagKAXr84AoCdO3fio48+AtD/z4mtr84zPl/7Rl+cqwCfr/k2b96MJUuW4Morr8SyZcuwadOmHr9Bqaurw8cff9zj751v27ZtWLp0KW699Va89tprTuDRUx9//DFuu+02LFq0CA8++CC2bdvWqxrjx4/HV7/6VQC9eyO7Zs0aTJw4EX/60596/P1tH330EY4//nisWrXKeQPb03Nt9erVmDVrFlasWNHr83XDhg246KKLcPLJJ2PBggV45513evVvJ/9ce+KJJ7B27VoIgtCj83bjxo248cYbcd555+Huu+/Ghx9+2OO27N69Gx9++CGA3v8u+fTTT/HQQw/hiiuuwLJly7B9+/Ye19i0aRO+9rWvYcGCBfja176GdevW9bg9W7ZsQXV1Nc4++2wAvQ9d1qxZg8MPPxxvv/12j7/W9tFHH+GEE07Ajh07nH+/vTlf58+fj507d+K1117rVY3169fjs5/9LE499VRMnz4df//733t8jmzcuBE33XQTLrzwQtxyyy14++239/uc78/fr4wxVgw4cCly9fX1WLt2Ld577z0AvXuRZL+osz+16I2Wlhbs2LEDmzZtctrR0xcDtbW1eOutt/CXv/wFgPmmr6c1Nm3ahEceeQTJZLJHX9fW6tWrcfnll2PLli29rrFu3TqcfvrpWLZsWa9rrF+/HmPHjsW1114LoHdvhLdv346f//zn+Na3voUtW7b06s1nfX091q1bh5UrV4KIev1inM9Xt744X/viXAX4fM23YcMGnHDCCdiwYQM++eQTLFu2DKeffjpef/11iKJYUJs2btyI448/Ht/85jexfv36Hj8GAFi7di3mzZuHv/zlL3jppZdw44034uc//zkMw+jR87J27VrMmTMHzc3NMAwDr7zyCp599lkQUY/qbNiwAYFAAGvXrsXXvvY1AOYb2ULP+zVr1mDu3Lm4/fbbcfXVVxf8ffPt2rUL5557Lq644gp85zvfwYQJEwDkfh8U0pY1a9Zgzpw5uO2223DhhRfioYceAtCz83XDhg2YN28eJk2ahIULF2Ls2LFYsmQJMplMj57TdevWYfbs2di9ezdaWlqwfPlynHTSSfjb3/5W8Hm7adMmzJo1C6lUCrIs48MPP8TcuXPx61//uuB2bN68Gccddxyuu+46rFixouCva/tY5syZgzVr1uCTTz7BT37yE3zve9/r0e83+1z1+Xw47LDDUFdXh8cffxyqqvboea2vr8fIkSPx6aef4swzzwTQs3MVyJ0nt99+O6677rqCvy5fTU0NFi5ciCuuuAKPPfYYpkyZAqBnl7KtWbMGs2fPxuLFi3HzzTdj6dKl0DSt4N9FgHmOnHTSSZg1axa+/vWv4/zzz8cNN9yAWCwGoLBQev369Zg7dy6ICEOGDEFdXR1OPPFELFu2rEc/42L5/coYY0WDWNFavXo1TZw4kcaNG0dVVVV0zDHH0JtvvknJZLLgGuvWraOzzz6bmpubiYhIVdUet2Pt2rU0b948mjhxIk2YMIEuvfTSHtf46KOP6IgjjqBp06ZRaWkpzZ07t0dfbxgGJRIJGjduHAmCQHfddRdls9ket4PIfF5lWabbbrutw+9TiPXr11NpaSndeuuttHXr1l61Y9WqVRQKhWjevHk0ZcoUeu2113rUBiLzeR0xYgSdeOKJVFVVRSNGjKDdu3f3qB1r1qyhww8/nI466igaM2YMTZ06lZYvX06tra09qsPna05fna99ca4S8fmaT9M0uuyyy1znxapVq+iaa64hSZLopZdeIiIiXdc7rbFnzx6aM2cOHXXUUXT88cfTNddcQ2vXru3R49i+fTtNnDiR7r77blIUhYiI7rzzTpowYQKl0+mC62zZsoXGjBlD3/jGN5xt11xzDd10001E1LN/Qy+//DJNmjSJvvvd79K0adPoa1/7mrMvHo93+bUbN24kWZbpW9/6FhGZz9/rr79OTz31FK1cubLgn/Pvfvc7Ovnkk50a3/jGN+iSSy6hhQsX0uuvv97t169atYq8Xi/deeedRET0z3/+k8aMGUO/+93vCvr+RETpdJrOP/98uu6665xtP/vZz+jSSy8lRVFo3759BdVJJBK0YMEC17/fDz/8kMrKysjn89Hvf/9753F25X/+53/ovPPOc+7X1dXRPffcQ5Ik0Y9+9CMi6vrfYU1NDZ188sk0d+5cOuuss+iMM86gN954o6DHYNu5cydNnTrVeV6JiJ588kkaP3487dmzp6AaW7dupcMOO8x1rt5333109dVXE5H5fBF1/3wYhkFvv/02TZkyhZ555hmaNGkSnX322c7+Qtpjn6/24zEMg55//nl66KGH6Nlnn6XNmzcX9JheffVVmjNnjtPuG2+8kc455xyaOXMm/epXv+r23/KqVatIlmW66667iIho27ZtNGrUKHr44YcL+v5E5r/xL33pS/SlL33J2fbaa6/RwoULqampiXbt2tVtjUwmQ4sWLaIbb7zR2bZ3716aPHkyeb1eeuyxx4io+9/3xfL7lTHGigkHLkWqpqaGxo8fT3fffTetWbOG3n//fTrttNNo+PDhtGzZMorFYt3W2Lp1q/OG79hjj3XexGqaVnA7Nm7cSBUVFXT77bfTa6+9RsuWLaNp06bR//3f/xVcY8OGDVRRUUF33303bdy4kd58802qqqqiFStWFFzDdt1119FXvvIVCgaDdOONN7Z7M9/di4G1a9dSMBike+65x9kWi8Wovr6+4DYoikKXXnqp82bEMAz64IMP6Pnnn6f6+vqC3iytXr2agsEgLVmyhJLJJI0dO5ZuvvnmgttARLR7926aMGECPfDAA87zcNhhh9Fvf/vbgmvs2LGDRo8eTffddx998skntGfPHjr99NNp6NCh9Oijj1JDQ0NBdfh87dj+nK99ca4S8fnalqIodNJJJ7neOBIR1dfX03XXXUd+v5/efvvtLmu8/vrrtGDBAlq9ejU9/fTTdMwxx/ToTYGmafSDH/yALrroIqqpqXHO8draWho9ejR99NFHBddZunQpXX311dTU1OScTzfccAOdcsopdNJJJ9Fll11GK1euLKjerl276Atf+AI1NDTQ448/TtOnT6dbb72VrrrqKlq6dKkTDLWl6zrdf//9JAgCbdiwgYiITjnlFDrqqKOopKSEDjvsMDr11FNpzZo13bbhkUceoc9//vNERDR79mxasGABXXXVVbRo0SISBIF+9rOfEVHH/3YaGxvpuOOOc/1s9+3bRzNmzKDLL7+8oOeAiKi1tZWmT59OTzzxhLPt7rvvptGjR9NRRx1FY8eOpV/84hedtsPW0NBAU6dOpT/+8Y+uYxctWkQnn3wyeb1eeuedd7ptz8KFC+maa65pt/2hhx4iQRBo+fLlXbbl/fffp1NPPZVWrlxJr7zySo9DF8Mw6Je//CWdd955tH37dufNciaTofHjxzvha3eee+45+tKXvkR1dXXOtltvvZWmT59Oxx9/PM2bN49effXVLh+LLZlM0qJFi2jPnj30pz/9iSZMmEDnn38+XXXVVc7vqa4sXbqUBEGgl156iXRdp5NOOolmzpxJo0ePpmnTptFhhx1Gb731VreP6be//S2deOKJREQ0f/58OvPMM+nuu++mG264gQRBoCVLlnT6eGKxGJ1zzjmu8zUWi9G5555LZ511Vrff25ZOp2n+/Pl03333OduWLFlCZWVldOSRR1JJSQndd999lMlkOq0Rj8dp+vTptHTpUiLKBbXXXHMNnX322c5z1Z1i+P3KGGPFhgOXIvXBBx/QhAkTaNOmTa7tV111FY0ePZqeeeaZLl+QJJNJuummm2jRokX03HPP0axZs2j69Ok9ehPb2tpKn//85+n66693ttmfghT64rWxsZFmzZpF/+///T9nm6qqdMopp9Bzzz1Hv/jFL6impqbbOvYLvMsuu4wef/xx+sc//kEej8epu2zZsm4/xamrq6OSkhL6zGc+42y79tprafbs2TR58mQ655xznDezXT236XSaZs6cSc8//zwREZ166qk0ffp0CofDNHr0aPr2t7/tekHZ1scff0yCILg+5Vu6dClVVlbSu+++280zkfO3v/2NjjnmGNcnx+eeey49+OCDdMMNN9DLL7/cZTuIiJ5//nk6+eSTKR6PO+fEiy++SH6/nw4//HBatmwZEXX/4pfPV7f9PV/76lwl4vO1I9dffz3Nnj2bmpqaXNt37txJixYtorPPPrvLHjPpdNr1ZuznP/+586YgPyzpqh1PP/00/eAHP3Btq6uro9LSUvrXv/7VZfvzbdmyhdatW+fcv//++8nv99NDDz1E9957L1188cU0fvz4gno2JZNJmj59Oq1atYqSyST95Cc/oYqKChIEwXlcnf1brK2tpa9+9avk8/noyCOPpIULF9Lq1atJURR64YUX6IwzzqALL7yw254yv/3tb6mqqoqWLVtGZ599NjU2Njr7vv3tb5Msy67H29Z7773nrNttfeGFF8jv99O///3vbp8DIvPn9oUvfIGmTZtGf/zjH+m2226jYDBITz/9NC1fvpweeughEkWx28Civr6eZs+eTQ8++KATbG7dupWqq6vp+eefpzPPPJMuvfRS0jSty3Plvvvuo1GjRjk9N+xjFUWha6+9lqZMmdLt76XVq1c768uXL3dCl//85z/Odvv3Vke9D5YvX+68GbfbEI/HacSIEfSHP/yhy+9ta25udv2NePjhh8nv99P3v/99Wrp0KV133XXk9XoLChwzmQzNmDHDCQH++c9/Umlpqetc7a5313333UeSJNFhhx1GixYtos2bN5OmafTee+/RhRdeSMcdd1y3v5NeeeUV8vv99Mtf/pIWLlzoOv5Xv/oVCYLQZVif35PGft5XrFhBgiA4QV0hbrrpJopEIvTkk0/S9ddfT4FAgJ599llatWoV/fa3vyVBEOiFF17o9OsVRaFzzz2XrrnmGud33/bt26myspL+/ve/05VXXklz584tqMdqMfx+ZYyxYsKBS5H65z//SZWVlbRlyxYiItcfuS984Qs0fPjwbt9wPfXUU/TMM88QkfkHvKdvYuvq6uiqq65yatgvBn7605/SSSedRIZhuD7x7Kwdjz76qOuF6QMPPEBer5dmzpxJEydOpKqqKucT2M5q2N/7mWeecT45eemll8jr9dLEiRPp8MMPpx07dnT5eIiILrjgAjrmmGNo2bJldMIJJ9Bpp51Gjz/+OD355JM0bdo0mjJlitOtubO2pNNpOv300+mFF16gb3zjG7RgwQJav349JZNJuuuuu+jII4+kn//8565253vnnXecbuC2NWvW0NSpU+nRRx8losIChl/+8pcUiUScFyCPPvooeTweuuyyy2ju3Lk0YcIEevjhh7us9b3vfY+qq6td2/7+97/T1VdfTZ/73Odo2LBhzvPRlX/961/7fb7+5Cc/KYrz9bHHHtvv89Xevj/n64UXXrjf5yqR+cakGM7XX/3qV/t9vj788MN9cr4+99xzdPTRR9Njjz3WrvfV008/TdXV1bRz584ua7R9zjv6JPb+++8vqFeHXSudTtPkyZNdQdaf//zngtuSyWTo7LPPdn0S/eabb9LQoUPp73//e5c1FEUhVVXpjDPOoDfffJOIiC6++GKKRqM0ceJE5xKlrtifYh933HFOTxfb//7v/9KwYcO6vbRo+/btdO6559Kxxx7rurSIyPw3PnHiRHruuee6rNH2Z7Nt2zY69thj6Zvf/KarXldef/11uuiii+i8886jCRMm0FNPPeXsy2azdMQRRzi9F7qyePFimj59On3xi1+khx9+mMLhsBMKP/LII3TEEUd0eM7nt/Hdd9+luXPn0g033OC8obf3/+Mf/6Dq6mpatWpVlzXaevnll+nMM8+kBQsWOL/vbr755nY9bjpqW/7ze+yxx9Kf//xn5/4vf/nLdpfjdFQjm83SV77yFdd5aYdRv/rVr7p8LPb3v+KKK+hPf/oTEZl/Z8rLy2n06NGuy6/aatuWBx98kKZNm9bu+fvDH/5AFRUVHYY/+W3RdZ0uueQSGjdunPM7WdM055gZM2bQ448/3q5GZ73FDMOgWCxGn/vc5+jyyy+nVCrV6c8xf/uWLVvo+uuvp8suu4yOOeYYeuSRR1zHzp07l6699toua3z/+9+nWbNm0fz58+muu+6iUCjkfM2zzz5LY8eOpZaWlg7bku+5556jGTNmFM3vV8YY628cuBQpwzBoypQprhcO+d1Bp0yZ4rrWtqs6ROaLjDfeeKPdm9hUKkVbt27t8A96JpOhDz/8sF2tp556imbNmuXaVqjly5fTmDFj6M9//rPzyeXJJ5/s+iS/K3/+859pxowZTns/85nPkCRJdMkllxTcli9+8YskSRJ9/vOfd12esWfPHhozZoyrd0NnFi5cSMcccwxdddVV9Jvf/Ma176qrrqIZM2Z0+rUdvXAkMj+hKvQNo+3YY4+l8vJyWrBgAXm9XteL11tuuYXGjRvX7lOmfBs3bqQxY8bQLbfcQnV1dfT+++9TKBRyrtceP368641GV49p6tSpvTpfO3ox3pvzNZVK0QcffODc7+n52tGnob05X/O/R2/O1/wX4vt7rtrfY3/O1/znpTfna/7XHHfccb06X+0aGzZs6PH5um3bNvrJT35Cy5Ytcy5XIDIvu5k0aRL96Ec/cvWiWL9+PU2YMIHWr1/fbQ0i9/lrvyn48pe/TBdddBGJoujUya/xyiuvdPj4stksTZ061emlcdddd9GwYcNc4VxXbSFq30th/fr1NG3aNNe/jfwaf/vb31xff8cdd9AvfvELuvzyy2n48OH0n//8h5544gkaOXIk3Xrrrd22o76+nlauXOmMWWQ/P3/9619pypQprvO4sxrf//73qbKykkpLS109c5LJJM2cOZNefPHFgh5L/rn3jW98gyoqKjrssdDVz6ahoYEmT57shFiGYVAymaTZs2e7eny0rfPyyy8727/97W/T2WefTZ/5zGfoe9/7nrP9Jz/5CR133HGuf2P277r8546I6Lvf/S4dc8wx9PWvf90VWu3evZsmTpzo6kWRX6Pt78r858S+vOjMM8+k8847jwRBoP/+97/tanTVUyT/53H33XdTJBKhjz/+uMvHYreh7blqB2P5Pby6eiwPP/wwLVmyhC699FIaNmwYvfPOO7R8+XIqLy+niy66yHVsZ20hMscYsXsg2d9j5cqVNHnyZPr000+7bcvvf/97mjFjBvn9flcAoOs6zZ8/37n8rLvHk+///u//KBQK0SeffEJE7p9bV48lnU7T8ccfT7/+9a+d/XYvzfxzr7Of7y9/+Uu64ooraNGiRfT973/f2f7CCy/Q9OnT2wUue/bsob/+9a/0/PPP0/vvv+9sv+6662jy5MkF/X7Nr9H2b3j+c9TV71fGGCtmHLgUifr6evrggw9ozZo1zicCf/3rX2ns2LGuTxbtF7GXXHKJa4C0tjXyu23bf5ANw6D//Oc/zpvYuro6uuGGG2jevHlOj4T6+np6//33na7gtvw/ek899RTNnDnTub948WI6//zzO2xH2zdjmzdvdv5A2i8g7rjjjnZvYPNr2G0zDIPWrVtHZ555JhERXX311TRixAh6/PHHKRQK0TXXXNNuYNL8OvldWL/5zW+2G0RR0zQ66aST6Ktf/WqnNeyfzY4dO2jq1KkkCIIzPoj9eH73u9/RrFmzXIFD/vPatktu/hujCRMm0A9/+ENXve4ey/Lly+nXv/41nXzyyZRIJCiVShGR+Qnm5MmTXZeu5NdIpVKkKAr93//9H40ZM4aqqqooGo3S4sWLnedjypQp9J3vfIfaSiaTpOu6a/yPl156iUaPHl3w+dpRDaLci79Czle7hv2Y29Yg6v587awdRIWfrx3VMAyDPvroo4LP187a8Y1vfKPgc7WzOjt27KDJkycXfL529rzmvwDu7nzt7PG89NJLBZ+vbWukUin64Q9/SKNGjSrofP3oo4+ooqKCZs2aRYcddhiFw2G68sornX/H11xzDR155JG0ePFi+vTTT2nfvn10++2306RJk5zxYDqq8eUvf5n27t3r+nnYfvazn5HH46GSkhLnU/NCahCZb4KGDBlCK1eupAceeID8fr/rTUxP20JkDsQ7c+ZMZ6DXzmrYb+IfeOABEgSBxo0b5wTuzc3N9KMf/cjpwdZRjauvvppqa2upMzfffDOdfvrpzt+EjmpcddVVzhvBRx99lIYNG0bTp0+nd955h9auXUv33nsvjR071vl0vCfPx65du+joo4+m++67z/X3rLPHkl/j/PPPp1tvvZVqamoonU7TvffeS6NHj3aFQR3VueKKK1xvUNt+2n/11VfTokWLnN8DGzZsoHHjxjk9cYjcAey9995LJ5xwAp177rm0evVq+uSTT+jOO++kMWPGOJcUdVSjq9Dlr3/9K5WVlVFpaalz2VEhNYjMN/fjx4+nP/3pT/Td736X/H6/84a5p+0gMgObo446quDHsmzZMhIEgSZOnOicq5lMhpYvX+4EFZ3V6a5X3v/7f/+P5syZ45yPHdXI/zvz61//mg4//HCKRqP04osv0j/+8Q+65557aOTIkc550pPnxDAMmjNnDl1++eWuc6CQx3LNNdfQOeecQ9u2baOGhgZasmQJjRgxwnlOOqrR9rVT2x441157LZ1xxhmuvwkfffQRjR8/no4//niqrKyk4447jp599lln/5VXXknTpk3r9vdr2xptL1HLf446+v3KGGPFjgOXIvDRRx/RlClTaNq0aSQIgjNIZnNzMz366KM0adIk+spXvuL6mksuuYS+8pWvkK7rzhu7tjXyX8zk/xF/4403aO7cuSTLMoVCIaf7ekc1OnqR9eyzz9Lxxx9PROYnsMFg0BkErbMaXfUsuOKKK+jGG28s6LGoqkqnnXYaTZo0iaqqqpwXWb///e+pqqrK9YK/ozr5LyraDiCnqip97nOfc7ridtYWXdcpm83SH//4Rxo3bhwdffTRtG7dOqf2TTfdRAsWLHDeJBb6vKqqSgsWLKDTTjut3b7uHsuvfvUrmj59uutrFi9eTPPmzXPCmbY17DE50uk07dmzh1577TVXd/JYLEannXaa8wLK/hmsXbuWTjvtNDr55JOdHgK7d+8mTdPoscceowkTJnR7vrat8eMf/5i2bdvmHJ8fEnZ2vnZXw25vV+drdzU60vZ87aqGpml0yimndHu+dlTD/pSYiDoMlNqeq909nueff57Gjh3b7fla6PPa1fna0TmS/wbo6aef7vZ8bVvjySefdHon7N27l/72t791eb7GYjGaPXu207OqpqaGXnnlFSovL6dTTz3VqXX//ffT/PnzncGahw0b5nzKH4/HO61x5plnuj791nWdNE2jm266icrKypxxRnpSIx6P04wZM+jkk092vXntaR0iM2T7+te/TmVlZc6n7l3VOOOMM2jv3r2kqipdd911Ti+btr0RuqqxYMECJ5TJb8dtt91G5eXlzuUZXdU47bTTnLDjN7/5DZ155pkkCAIdccQRNGHChF79bOz2n3HGGXTyySc7536hNR588EGaOXMmDR06lE455RSqrq522tFdndNPP71dW1avXk0333wzlZSUOJdH7Ny5k44++miaOHEiHXnkkXT//fc7x+f/rv/FL35BZ511FgmCQEceeSSNGTPGaUtXNTp6Y6/rOi1evJgikUhB7WhbQ9d1mjdvHh1xxBEUDAadcLAnNYiINm3aRLfccguVlZU5oU9XNfIDhjvuuMP176StQuvYNm7cSIsXL3b9uyn0Z/Pmm2/SFVdcQeFwmKZOnUrTp0/v1c/G9pWvfIVOOOEEJ6QstMZvfvMbOumkk8jr9dKsWbNo9OjRBbWjo96MK1eupOuvv56i0air986nn35KI0eOpNtvv51aWlrogw8+oCuuuIKuvvpq12urrn6/dlWj7bhGhmF0+PuVMcYGAg5c+tmnn35KVVVVdMcdd9D27dvpySefJEEQnC7kDQ0N9OMf/5iGDx9OM2bMoOuuu44uvfRSCgaDzh+cjmqIothuUE77xUU6naZzzjmHysvLe1yDyHxzf+qpp9K9995LXq/XeRPZkxpE5h/3e+65h4YOHeoMpNddjUQiQZdddhkdd9xxrsudiNzTlva0LZqm0T333EPV1dXOG4bOfjb2p6upVIpeffVVmjBhAo0aNYpOO+00WrhwIZWWljovTApth/1C57///S+Jouj6lKiQGrt27aLy8nI666yz6IknnqCvfe1rVF5e3mU78h9LW+l0mu666y6qrq6m7du3O9s//vhjGjJkCC1evJj+8Ic/0H333UeCIND5559Pa9asIUVR6Mc//jFVV1d3er52VmPRokWugfLsF5Adna+F1iDq/HztSQ37Z9T2fO2qht3F/7LLLqOZM2d2er4WUiNfR+dqV3UWLlzovCF59dVXaeLEiZ2er4U+J/bvko7O165q2GPf7Nq1iyoqKjo9X7t6LB39bDo6X9PpNB1zzDHtegdt3ryZKisr6bOf/ayzra6ujl555RVasWKF699VdzXOO+8815u29957jwRBcPVK6UmNpqYmGjNmDJWXl7sGOe1pnXfeeYf+53/+h4466ihXnZ48J53pSTveeustuvrqq2ny5MmuT6O7q3Huuec62wzDoA8//JA++eQT1+VAPWmH/ft1586drvFFuqvxuc99ztm2fPly+t73vkdLly5tNwBxd3XOP/985/dZS0sL/frXv6YZM2Y4z4lhGPS9732Pzj77bPr73/9OS5YsocmTJ3f6xp7IHNdl/fr1Tm+QQmq0DRjsadrt3w89raGqKs2ZM8cVTvS0xrp165xeWD2pUcjsaj1ty0cffUS33HILTZs2zfl305ufzSeffEK1tbXOpTS9+dkQmQPB27/jC6mR3ytl7dq19LOf/Yyef/555/VkT9uh6zr9+c9/ptmzZ7t+j2SzWbr11lvpoosucj32n/3sZ1RRUdFutriGhoZ2v197WoOo49+vjDE2EHDg0s/uueeedi9yzzrrLFqxYgWtWLHC+QR869atdMUVV9CFF15IX/rSl1zT43VWY+XKlfTWW2+5Pp1WFIW++93vktfrdb0A7kkNezrFkpIS1ydLPanxr3/9i774xS/S8OHDXZ8UdlVjxYoV1NzcTPF4vNsBR3vSltdff50uuOACGjp0aEFtsX82dhf8bDZL9913H918881055130saNG3vVDsMwaNeuXXTRRRe5XtAXWuO1116jGTNm0IwZM+izn/1sj86R/O/33nvvOdfE5z8fROZlAZdccolr25VXXkl+v58WLlzoDJS5ZcsWuvLKKzs8XzurEQgE6IILLnCdU5qmdXi+9qTGU0891eH52pMa//73vzs8X7uqsXDhQvr000+pvr7eFVq11V078oOaf/7znx2eq13VsX829puZTCZD3/rWtzo8X3vynBBRh+droTX+/ve/07HHHtvh+dpdjfwX3B988EGH52sikaARI0Z0+IZkzZo1FAqFXNOodqSQGg888IDra/LHRuhNje985zuun0lv66xcubLdJUuF1PjWt77VxTPS83b861//ajdQbn/8bDrqZVlIjUIGxu1pW1KpVLvzpKamhp5++mkiMgNA+81w/vPQ2UCrPanRtjdF29lielrj5z//uav3Wm9qrFu3rt3YOoXUKGSw7p62ZdWqVe1mfCqkRmdjXfW2HR2Nm9Nf50jbS+HS6TQ9/vjj9NOf/tT1eO0x4eznr6sxagqt0VbbfzeMMTYQcODSz26++WY666yznIEi7evnZ86cSVVVVe2mbSRq/yKjqxrDhg2jBQsWuGr84he/aDeDRCE17Ck13333XZo9e7brDVJPa7zzzjt01113tXtj0d3zcfrpp3c5xWJv2rJy5UpavHhxu8HXCvnZvP766/vdjrY/37aXjxTSjvxZc2KxWI9qdHaOtH0RTWTO8mTPsGG/CHvwwQfpjDPOoEmTJtHdd9/d7mvanq9d1Tj88MOdS53sF2Adna+F1iDq/HwttEY6ne70fO3u+bjrrrtcj6UjPWlHZ+dqT5+T/W1L/gvptudadzXyz5HOzteePpbOztfHHnuMRo4cSX/961+dbfYbkgcffJBOOOEEamxs7PKNQaE18sce6k2N/MFk96ct9lgt+/t4ujpn++LxHKx29EWNhoYG5xzpanazQuoUOrj73r17O3wz/OKLLxYUNHRXw25bd+3prIY9zfz+tKMvarz44osFzTpVbG05kDX+9Kc/7fc50l2N/JDdPodqampowoQJrp6zbT8Y2N8aPBU0Y2wg4sCln/34xz+mUChEF1xwAV166aXk8XjohRdeoEQiQW+//TbNnz+f7rzzTtc4KG3/4BRao6s/VIXWIDLfAHX0KUNPaui63uEnOD2p0RfPK5EZCHT0qVBPntfOXoz39DnpzWOZN2+ec47s7/PR3Qu9W265hYYPH+5cU15TU0NlZWX02muv0Y9//GMKBALtLpdq+5x0VyMYDHZ66VdvaiQSiQ7P10Jq5L/o6+h8PViPxW5H26mt97ct/fGzCQQC3U4J2pt27N27l95991169dVXnTcK27ZtowsvvJDmz5/fbgabpUuX0pQpU1yDWBdLjWJqC9c4eD8bInL9rd+zZ4/zZnjJkiW0ePFiEgSB9uzZwzU6qFFMbRlMNfLrvPLKK67XCfk1N23aRBUVFc7v929+85tUVlbmBI19UYMxxgYiDlyKwA9/+EP67ne/SxdccAFde+21rn1XXnklzZ8/v9s3wt3VmDdvXp/U6Gp6yEJrdPfJS188lmJqy2CqsWPHDpozZw75fD4688wzKRgMOgPkNjQ00IgRI7rtgcQ1+r5GMbWlP2qsWbOGxowZQ5MmTaKSkhI6/PDD6dlnnyVFUej999+nz372szRz5kxnrBlFUej222+nk046yelBUyw1iqktXOPg/GwmT55MzzzzjDPmR/6b4b1799K9995LgiBQWVmZc0ke13DXKKa2DKYahdSxa2zevJmGDBlCTU1N9MADD1AgECi4LYXUYIyxgYoDl4No06ZNdOedd9Jll11GjzzySLuBv+wxFYhyf3yuvPJKuvbaa52gg2u4axRTWwZTjY7q5M908t3vfpceeugh+s1vfuMc/9///pcmTpzounSHa/R9jWJqSzHUqK+vp8mTJ9Pdd99NW7ZsoT179tDFF19MkyZNovvvv58ymQytXr2arr32WpJlmY466iiaNWsWlZWVOeMCFUuNYmoL1zi4P5spU6bQkiVLnEux8j/Nv/zyyykajTqXEnINd41iastgqtGTOkTmmDAzZsygiy++mLxerxOU9EUNxhgbyDhwOUjWr19PpaWldOGFF9K1115Lo0aNomOOOYaefPJJ55hvfetbFAqF6I033qC33nqLlixZQuXl5c4fP67hrlFMbRlMNTqrc/TRR9PSpUudY9r2hrn99tvp6KOPdsaQ4Bp9X6OY2lJMNcaOHdvuhfkdd9xBRxxxBD366KNkGIZz+dwDDzxAS5cudY35Uiw1iqktXOPg/2ymTZtGDz/8sOvSo2XLllFpaalrHAuuUdpubJBiactgqtHTOhs2bCBBECgQCLiCyr6owRhjAxkHLgdBPB6nBQsW0O233+5s2717N1VUVFBVVZUze4Gu63TxxReTKIo0adIkOvroo52p+LiGu0YxtWUw1ehJHdsbb7xBN954I0UiEecFEtfo+xrF1JZiqUFEtHr1aho5ciS98cYbROQexPemm26iMWPGOL1mOlMsNYqpLVyjf9oybtw4V43a2tp201BzDXeNYmrLYKrR0zo1NTV0/fXXtxtcvi9qMMbYQMaBy0GQTCZp5syZ9Mwzzzj3iYguvPBCOvXUU2n27Nn08ssvO8e/8cYbtHbtWtc0iVxjbbtpI4ulLYOpRiF15syZ46qzYsUKuu6662jdunVc4wDWKKa2FEsN28yZM+kzn/mMcz+TyTjrxx13XLsppjtSLDWKqS1co3/b0tUYY1yjeNsymGr0pA6ROZvegarBGGMDlQh2QBEREokE9uzZgz179gAAgsEgdu/ejfXr1+NLX/oSkskknn/+eedr5s+fjyOPPBJDhw7lGh3UKKa2DKYahdZJJBJ44YUXnK+ZO3cuHn/8cRxxxBFc4wDVKKa29HeNsWPHIh6PIxaLOfueeuoprF+/Hl/84hcBAD6fD5qmAQBOPPFEJJNJ5Esmk0VRo5jawjWK72cjSRLX6KBGMbVlMNXY3zoA4Pf7+6QGY4wNKgc33zl0tP3E4IknniBBEOjqq6+me+65h8LhsDPrxh/+8AcaO3YsNTQ0dDpVHtcorrYMphr7Uyd/kF2u0fc1iqktxVBj/fr1dMYZZ9CMGTOourraGUw3nU7Ts88+S5WVlXTBBReQoijOOX7ZZZfRJZdcQqqqkmEYRVNjsD2ewVSDfzbFW4N/NoP/eWWMscGGA5cDYPPmzfToo4/S3r17nW26rtPTTz9NM2fOpDPPPJO+973vOft++MMf0owZM1x/aLjGjHZ/eIulLYOpRjG1hWvwz6arGuvXr6eKigq65ZZb6Le//S3deuut5PF4nEEek8kk/eUvf6GRI0fS5MmT6bzzzqOLLrqIQqGQM6NRsdQoprZwDf7ZDJQaxdSWwVSj2NrCGGODDQcufeyTTz6h8vJyEgSB7rrrLtfsIkRmyp9/7SoR0Q033EAXXHABpdNpMgyDa7Spwc8rP6+HWg0i/tnk12hoaKAzzjiDbrrpJtcxJ598Mt14442ubbFYjG6//Xb68pe/TDfccIMz+1ZjY2NR1CimtnAN/tkMlBrF1JbBVKPY2sIYY4MRBy59KJFI0NVXX01XXnklPfnkkyQIAn396193vbnI/8R348aNtHjxYopEIvTRRx9xjQ5qFFNbBlONYmoL1+CfTXc1amtr6fjjj3dmubC7ol911VV06aWXOjXaXiqXf79YahRTW7gG/2wGSo1iastgqlFsbWGMscFI7u8xZAYTURRx7LHHoqKiAhdffDEqKytxySWXAABuv/12VFZWQhAEAEA8Hsdrr72GVatW4Y033sC0adO4Rgc1iqktg6lGMbWFa/DPprsaVVVV+M1vfoOJEycCAHRdhyiKGDFiBHbs2AEAEAQBgiAgFoshGo0622zFUqOY2sI1+GczUGoUU1sGU41iawtjjA1K/Z34DDaJRMJ1/3e/+x0JgkC33XYbNTQ0EJE5cGRdXR2pqkpNTU1co5saxdSWwVSjmNrCNdorlrYUSw1b/iei3/jGN2jBggXO/Yceeogee+yxdgMPF2uNYmoL1yjetnCN4m3LYKpRbG1hjLHBgnu49LFQKAQgl+5ffPHFICJ88YtfhCAIWLx4MR599FFs27YNzzzzDMrKyrhGNzWKqS2DqUYxtYVr8M+mkOcEMHvMEJHzyagoigCAe++9Fw8++CBWrVoFWe76T1ux1CimtnCN4m0L1yjetgymGsXWFsYYGzQOVJLD3Ner/u53vyOPx0OHH344ybLsjNrONXpWo5jaMphqFFNbuEbxtqVYathfv2TJEvrqV79KjzzyCPl8Pvrwww8L+vpiqlFMbeEaxdsWrlG8bRlMNYqtLYwxNhhw4HKAGYbhDAh5yimnUHl5uWtwTK7R8xrF1JbBVKOY2sI1irctxVKDiOjBBx8kQRCopKSE3n///R5/fTHVKKa2cI3ibQvXKN62DKYaxdYWxhgbyDhwOQg0TaNbbrmFBEGgNWvWcI0+qFFMbRlMNYqpLVyjeNtSLDXef/99EgRhv6YVLZYaxdQWrlG8beEaxduWwVSj2NrCGGMDmUBE1N+XNQ12uq7j6aefxrHHHoujjz6aa/RBjWJqy2CqUUxt4RrF25ZiqQEAyWTSGSNmoNcoprZwjeJtC9co3rYMphrF1hbGGBuoOHA5SChvADGu0Tc1iqktg6lGMbWFaxRvW4qlBmOMMcYYY8WKAxfGGGOMMcYYY4yxPib2dwMYY4wxxhhjjDHGBhsOXBhjjDHGGGOMMcb6GAcujDHGGGOMMcYYY32MAxfGGGOMMcYYY4yxPsaBC2OMMcYYY4wxxlgf48CFMcYYY4wxxhhjrI9x4MIYY4wxxhhjjDHWxzhwYYwxxhhjjDHGGOtjHLgwxhhjjDHGGGOM9bH/D3veI0nz09H2AAAAAElFTkSuQmCC\n" }, "metadata": {} } @@ -786,7 +790,7 @@ "metadata": { "id": "3HyCu76yuvpS" }, - "execution_count": 32, + "execution_count": 86, "outputs": [] }, { @@ -797,18 +801,21 @@ "y = df_grouped['2021']\n", "\n", "# Dividir los datos en conjuntos de entrenamiento y prueba\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Puedes cambiar 'test_size' y 'random_state'\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.42, random_state=45) # Puedes cambiar 'test_size' y 'random_state'\n", "\n", "# Crear la red LSTM\n", "model = Sequential()\n", - "model.add(LSTM(100, activation='relu', input_shape=(X_train.shape[1], 1))) # Puedes cambiar el número de neuronas (50 aquí) y la función de activación ('relu' aquí)\n", + "model.add(LSTM(150, activation='relu',kernel_regularizer=l2(0.1), input_shape=(X_train.shape[1], 1))) # Puedes cambiar el número de neuronas (50 aquí) y la función de activación ('relu' aquí)\n", "model.add(Dense(1))\n", "\n", "# Compilar el modelo\n", "model.compile(optimizer='adam', loss=MeanSquaredError()) # Puedes cambiar el optimizador ('adam' aquí) y la función de pérdida (MeanSquaredError aquí)\n", "\n", "# Ajustar el modelo a los datos de entrenamiento\n", - "history = model.fit(X_train, y_train, epochs=200, verbose=0) # Puedes cambiar el número de épocas (200 aquí)\n", + "history = model.fit(X_train, y_train, epochs=500, verbose=8) # Puedes cambiar el número de épocas (200 aquí)\n", + "\n", + "for i in range(len(history.history['loss'])):\n", + " print(f\"Epoch {i+1}: Loss = {history.history['loss'][i]}\")\n", "\n", "# Graficar la pérdida durante el entrenamiento\n", "plt.plot(history.history['loss'])\n", @@ -821,20 +828,1026 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 472 + "height": 1000 }, "id": "nfJrQD1i4qys", - "outputId": "4198e573-60a0-4bcb-c1c7-5ea9465d8254" + "outputId": "0109bd7f-ecfe-485d-f633-dccdc80ec34b" }, - "execution_count": 40, + "execution_count": 114, "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/500\n", + "Epoch 2/500\n", + "Epoch 3/500\n", + "Epoch 4/500\n", + "Epoch 5/500\n", + "Epoch 6/500\n", + "Epoch 7/500\n", + "Epoch 8/500\n", + "Epoch 9/500\n", + "Epoch 10/500\n", + "Epoch 11/500\n", + "Epoch 12/500\n", + "Epoch 13/500\n", + "Epoch 14/500\n", + "Epoch 15/500\n", + "Epoch 16/500\n", + "Epoch 17/500\n", + "Epoch 18/500\n", + "Epoch 19/500\n", + "Epoch 20/500\n", + "Epoch 21/500\n", + "Epoch 22/500\n", + "Epoch 23/500\n", + "Epoch 24/500\n", + "Epoch 25/500\n", + "Epoch 26/500\n", + "Epoch 27/500\n", + "Epoch 28/500\n", + "Epoch 29/500\n", + "Epoch 30/500\n", + "Epoch 31/500\n", + "Epoch 32/500\n", + "Epoch 33/500\n", + "Epoch 34/500\n", + "Epoch 35/500\n", + "Epoch 36/500\n", + "Epoch 37/500\n", + "Epoch 38/500\n", + "Epoch 39/500\n", + "Epoch 40/500\n", + "Epoch 41/500\n", + "Epoch 42/500\n", + "Epoch 43/500\n", + "Epoch 44/500\n", + "Epoch 45/500\n", + "Epoch 46/500\n", + "Epoch 47/500\n", + "Epoch 48/500\n", + "Epoch 49/500\n", + "Epoch 50/500\n", + "Epoch 51/500\n", + "Epoch 52/500\n", + "Epoch 53/500\n", + "Epoch 54/500\n", + "Epoch 55/500\n", + "Epoch 56/500\n", + "Epoch 57/500\n", + "Epoch 58/500\n", + "Epoch 59/500\n", + "Epoch 60/500\n", + "Epoch 61/500\n", + "Epoch 62/500\n", + "Epoch 63/500\n", + "Epoch 64/500\n", + "Epoch 65/500\n", + "Epoch 66/500\n", + "Epoch 67/500\n", + "Epoch 68/500\n", + "Epoch 69/500\n", + "Epoch 70/500\n", + "Epoch 71/500\n", + "Epoch 72/500\n", + "Epoch 73/500\n", + "Epoch 74/500\n", + "Epoch 75/500\n", + "Epoch 76/500\n", + "Epoch 77/500\n", + "Epoch 78/500\n", + "Epoch 79/500\n", + "Epoch 80/500\n", + "Epoch 81/500\n", + "Epoch 82/500\n", + "Epoch 83/500\n", + "Epoch 84/500\n", + "Epoch 85/500\n", + "Epoch 86/500\n", + "Epoch 87/500\n", + "Epoch 88/500\n", + "Epoch 89/500\n", + "Epoch 90/500\n", + "Epoch 91/500\n", + "Epoch 92/500\n", + "Epoch 93/500\n", + "Epoch 94/500\n", + "Epoch 95/500\n", + "Epoch 96/500\n", + "Epoch 97/500\n", + "Epoch 98/500\n", + "Epoch 99/500\n", + "Epoch 100/500\n", + "Epoch 101/500\n", + "Epoch 102/500\n", + "Epoch 103/500\n", + "Epoch 104/500\n", + "Epoch 105/500\n", + "Epoch 106/500\n", + "Epoch 107/500\n", + "Epoch 108/500\n", + "Epoch 109/500\n", + "Epoch 110/500\n", + "Epoch 111/500\n", + "Epoch 112/500\n", + "Epoch 113/500\n", + "Epoch 114/500\n", + "Epoch 115/500\n", + "Epoch 116/500\n", + "Epoch 117/500\n", + "Epoch 118/500\n", + "Epoch 119/500\n", + "Epoch 120/500\n", + "Epoch 121/500\n", + "Epoch 122/500\n", + "Epoch 123/500\n", + "Epoch 124/500\n", + "Epoch 125/500\n", + "Epoch 126/500\n", + "Epoch 127/500\n", + "Epoch 128/500\n", + "Epoch 129/500\n", + "Epoch 130/500\n", + "Epoch 131/500\n", + "Epoch 132/500\n", + "Epoch 133/500\n", + "Epoch 134/500\n", + "Epoch 135/500\n", + "Epoch 136/500\n", + "Epoch 137/500\n", + "Epoch 138/500\n", + "Epoch 139/500\n", + "Epoch 140/500\n", + "Epoch 141/500\n", + "Epoch 142/500\n", + "Epoch 143/500\n", + "Epoch 144/500\n", + "Epoch 145/500\n", + "Epoch 146/500\n", + "Epoch 147/500\n", + "Epoch 148/500\n", + "Epoch 149/500\n", + "Epoch 150/500\n", + "Epoch 151/500\n", + "Epoch 152/500\n", + "Epoch 153/500\n", + "Epoch 154/500\n", + "Epoch 155/500\n", + "Epoch 156/500\n", + "Epoch 157/500\n", + "Epoch 158/500\n", + "Epoch 159/500\n", + "Epoch 160/500\n", + "Epoch 161/500\n", + "Epoch 162/500\n", + "Epoch 163/500\n", + "Epoch 164/500\n", + "Epoch 165/500\n", + "Epoch 166/500\n", + "Epoch 167/500\n", + "Epoch 168/500\n", + "Epoch 169/500\n", + "Epoch 170/500\n", + "Epoch 171/500\n", + "Epoch 172/500\n", + "Epoch 173/500\n", + "Epoch 174/500\n", + "Epoch 175/500\n", + "Epoch 176/500\n", + "Epoch 177/500\n", + "Epoch 178/500\n", + "Epoch 179/500\n", + "Epoch 180/500\n", + "Epoch 181/500\n", + "Epoch 182/500\n", + "Epoch 183/500\n", + "Epoch 184/500\n", + "Epoch 185/500\n", + "Epoch 186/500\n", + "Epoch 187/500\n", + "Epoch 188/500\n", + "Epoch 189/500\n", + "Epoch 190/500\n", + "Epoch 191/500\n", + "Epoch 192/500\n", + "Epoch 193/500\n", + "Epoch 194/500\n", + "Epoch 195/500\n", + "Epoch 196/500\n", + "Epoch 197/500\n", + "Epoch 198/500\n", + "Epoch 199/500\n", + "Epoch 200/500\n", + "Epoch 201/500\n", + "Epoch 202/500\n", + "Epoch 203/500\n", + "Epoch 204/500\n", + "Epoch 205/500\n", + "Epoch 206/500\n", + "Epoch 207/500\n", + "Epoch 208/500\n", + "Epoch 209/500\n", + "Epoch 210/500\n", + "Epoch 211/500\n", + "Epoch 212/500\n", + "Epoch 213/500\n", + "Epoch 214/500\n", + "Epoch 215/500\n", + "Epoch 216/500\n", + "Epoch 217/500\n", + "Epoch 218/500\n", + "Epoch 219/500\n", + "Epoch 220/500\n", + "Epoch 221/500\n", + "Epoch 222/500\n", + "Epoch 223/500\n", + "Epoch 224/500\n", + "Epoch 225/500\n", + "Epoch 226/500\n", + "Epoch 227/500\n", + "Epoch 228/500\n", + "Epoch 229/500\n", + "Epoch 230/500\n", + "Epoch 231/500\n", + "Epoch 232/500\n", + "Epoch 233/500\n", + "Epoch 234/500\n", + "Epoch 235/500\n", + "Epoch 236/500\n", + "Epoch 237/500\n", + "Epoch 238/500\n", + "Epoch 239/500\n", + "Epoch 240/500\n", + "Epoch 241/500\n", + "Epoch 242/500\n", + "Epoch 243/500\n", + "Epoch 244/500\n", + "Epoch 245/500\n", + "Epoch 246/500\n", + "Epoch 247/500\n", + "Epoch 248/500\n", + "Epoch 249/500\n", + "Epoch 250/500\n", + "Epoch 251/500\n", + "Epoch 252/500\n", + "Epoch 253/500\n", + "Epoch 254/500\n", + "Epoch 255/500\n", + "Epoch 256/500\n", + "Epoch 257/500\n", + "Epoch 258/500\n", + "Epoch 259/500\n", + "Epoch 260/500\n", + "Epoch 261/500\n", + "Epoch 262/500\n", + "Epoch 263/500\n", + "Epoch 264/500\n", + "Epoch 265/500\n", + "Epoch 266/500\n", + "Epoch 267/500\n", + "Epoch 268/500\n", + "Epoch 269/500\n", + "Epoch 270/500\n", + "Epoch 271/500\n", + "Epoch 272/500\n", + "Epoch 273/500\n", + "Epoch 274/500\n", + "Epoch 275/500\n", + "Epoch 276/500\n", + "Epoch 277/500\n", + "Epoch 278/500\n", + "Epoch 279/500\n", + "Epoch 280/500\n", + "Epoch 281/500\n", + "Epoch 282/500\n", + "Epoch 283/500\n", + "Epoch 284/500\n", + "Epoch 285/500\n", + "Epoch 286/500\n", + "Epoch 287/500\n", + "Epoch 288/500\n", + "Epoch 289/500\n", + "Epoch 290/500\n", + "Epoch 291/500\n", + "Epoch 292/500\n", + "Epoch 293/500\n", + "Epoch 294/500\n", + "Epoch 295/500\n", + "Epoch 296/500\n", + "Epoch 297/500\n", + "Epoch 298/500\n", + "Epoch 299/500\n", + "Epoch 300/500\n", + "Epoch 301/500\n", + "Epoch 302/500\n", + "Epoch 303/500\n", + "Epoch 304/500\n", + "Epoch 305/500\n", + "Epoch 306/500\n", + "Epoch 307/500\n", + "Epoch 308/500\n", + "Epoch 309/500\n", + "Epoch 310/500\n", + "Epoch 311/500\n", + "Epoch 312/500\n", + "Epoch 313/500\n", + "Epoch 314/500\n", + "Epoch 315/500\n", + "Epoch 316/500\n", + "Epoch 317/500\n", + "Epoch 318/500\n", + "Epoch 319/500\n", + "Epoch 320/500\n", + "Epoch 321/500\n", + "Epoch 322/500\n", + "Epoch 323/500\n", + "Epoch 324/500\n", + "Epoch 325/500\n", + "Epoch 326/500\n", + "Epoch 327/500\n", + "Epoch 328/500\n", + "Epoch 329/500\n", + "Epoch 330/500\n", + "Epoch 331/500\n", + "Epoch 332/500\n", + "Epoch 333/500\n", + "Epoch 334/500\n", + "Epoch 335/500\n", + "Epoch 336/500\n", + "Epoch 337/500\n", + "Epoch 338/500\n", + "Epoch 339/500\n", + "Epoch 340/500\n", + "Epoch 341/500\n", + "Epoch 342/500\n", + "Epoch 343/500\n", + "Epoch 344/500\n", + "Epoch 345/500\n", + "Epoch 346/500\n", + "Epoch 347/500\n", + "Epoch 348/500\n", + "Epoch 349/500\n", + "Epoch 350/500\n", + "Epoch 351/500\n", + "Epoch 352/500\n", + "Epoch 353/500\n", + "Epoch 354/500\n", + "Epoch 355/500\n", + "Epoch 356/500\n", + "Epoch 357/500\n", + "Epoch 358/500\n", + "Epoch 359/500\n", + "Epoch 360/500\n", + "Epoch 361/500\n", + "Epoch 362/500\n", + "Epoch 363/500\n", + "Epoch 364/500\n", + "Epoch 365/500\n", + "Epoch 366/500\n", + "Epoch 367/500\n", + "Epoch 368/500\n", + "Epoch 369/500\n", + "Epoch 370/500\n", + "Epoch 371/500\n", + "Epoch 372/500\n", + "Epoch 373/500\n", + "Epoch 374/500\n", + "Epoch 375/500\n", + "Epoch 376/500\n", + "Epoch 377/500\n", + "Epoch 378/500\n", + "Epoch 379/500\n", + "Epoch 380/500\n", + "Epoch 381/500\n", + "Epoch 382/500\n", + "Epoch 383/500\n", + "Epoch 384/500\n", + "Epoch 385/500\n", + "Epoch 386/500\n", + "Epoch 387/500\n", + "Epoch 388/500\n", + "Epoch 389/500\n", + "Epoch 390/500\n", + "Epoch 391/500\n", + "Epoch 392/500\n", + "Epoch 393/500\n", + "Epoch 394/500\n", + "Epoch 395/500\n", + "Epoch 396/500\n", + "Epoch 397/500\n", + "Epoch 398/500\n", + "Epoch 399/500\n", + "Epoch 400/500\n", + "Epoch 401/500\n", + "Epoch 402/500\n", + "Epoch 403/500\n", + "Epoch 404/500\n", + "Epoch 405/500\n", + "Epoch 406/500\n", + "Epoch 407/500\n", + "Epoch 408/500\n", + "Epoch 409/500\n", + "Epoch 410/500\n", + "Epoch 411/500\n", + "Epoch 412/500\n", + "Epoch 413/500\n", + "Epoch 414/500\n", + "Epoch 415/500\n", + "Epoch 416/500\n", + "Epoch 417/500\n", + "Epoch 418/500\n", + "Epoch 419/500\n", + "Epoch 420/500\n", + "Epoch 421/500\n", + "Epoch 422/500\n", + "Epoch 423/500\n", + "Epoch 424/500\n", + "Epoch 425/500\n", + "Epoch 426/500\n", + "Epoch 427/500\n", + "Epoch 428/500\n", + "Epoch 429/500\n", + "Epoch 430/500\n", + "Epoch 431/500\n", + "Epoch 432/500\n", + "Epoch 433/500\n", + "Epoch 434/500\n", + "Epoch 435/500\n", + "Epoch 436/500\n", + "Epoch 437/500\n", + "Epoch 438/500\n", + "Epoch 439/500\n", + "Epoch 440/500\n", + "Epoch 441/500\n", + "Epoch 442/500\n", + "Epoch 443/500\n", + "Epoch 444/500\n", + "Epoch 445/500\n", + "Epoch 446/500\n", + "Epoch 447/500\n", + "Epoch 448/500\n", + "Epoch 449/500\n", + "Epoch 450/500\n", + "Epoch 451/500\n", + "Epoch 452/500\n", + "Epoch 453/500\n", + "Epoch 454/500\n", + "Epoch 455/500\n", + "Epoch 456/500\n", + "Epoch 457/500\n", + "Epoch 458/500\n", + "Epoch 459/500\n", + "Epoch 460/500\n", + "Epoch 461/500\n", + "Epoch 462/500\n", + "Epoch 463/500\n", + "Epoch 464/500\n", + "Epoch 465/500\n", + "Epoch 466/500\n", + "Epoch 467/500\n", + "Epoch 468/500\n", + "Epoch 469/500\n", + "Epoch 470/500\n", + "Epoch 471/500\n", + "Epoch 472/500\n", + "Epoch 473/500\n", + "Epoch 474/500\n", + "Epoch 475/500\n", + "Epoch 476/500\n", + "Epoch 477/500\n", + "Epoch 478/500\n", + "Epoch 479/500\n", + "Epoch 480/500\n", + "Epoch 481/500\n", + "Epoch 482/500\n", + "Epoch 483/500\n", + "Epoch 484/500\n", + "Epoch 485/500\n", + "Epoch 486/500\n", + "Epoch 487/500\n", + "Epoch 488/500\n", + "Epoch 489/500\n", + "Epoch 490/500\n", + "Epoch 491/500\n", + "Epoch 492/500\n", + "Epoch 493/500\n", + "Epoch 494/500\n", + "Epoch 495/500\n", + "Epoch 496/500\n", + "Epoch 497/500\n", + "Epoch 498/500\n", + "Epoch 499/500\n", + "Epoch 500/500\n", + "Epoch 1: Loss = 102832000.0\n", + "Epoch 2: Loss = 28581594.0\n", + "Epoch 3: Loss = 38466356.0\n", + "Epoch 4: Loss = 11858119.0\n", + "Epoch 5: Loss = 28559066.0\n", + "Epoch 6: Loss = 8444905.0\n", + "Epoch 7: Loss = 20377050.0\n", + "Epoch 8: Loss = 9812851.0\n", + "Epoch 9: Loss = 29177000.0\n", + "Epoch 10: Loss = 8028653.5\n", + "Epoch 11: Loss = 13237634.0\n", + "Epoch 12: Loss = 22082724.0\n", + "Epoch 13: Loss = 124183480.0\n", + "Epoch 14: Loss = 139594432.0\n", + "Epoch 15: Loss = 28150334.0\n", + "Epoch 16: Loss = 62225272.0\n", + "Epoch 17: Loss = 58199332.0\n", + "Epoch 18: Loss = 65592624.0\n", + "Epoch 19: Loss = 43185248.0\n", + "Epoch 20: Loss = 1464006.5\n", + "Epoch 21: Loss = 48347900.0\n", + "Epoch 22: Loss = 64234732.0\n", + "Epoch 23: Loss = 52944504.0\n", + "Epoch 24: Loss = 28143280.0\n", + "Epoch 25: Loss = 107148008.0\n", + "Epoch 26: Loss = 246287232.0\n", + "Epoch 27: Loss = 362880256.0\n", + "Epoch 28: Loss = 94853680.0\n", + "Epoch 29: Loss = 360159104.0\n", + "Epoch 30: Loss = 323046208.0\n", + "Epoch 31: Loss = 451675040.0\n", + "Epoch 32: Loss = 464746720.0\n", + "Epoch 33: Loss = 181614256.0\n", + "Epoch 34: Loss = 1016295040.0\n", + "Epoch 35: Loss = 48944064.0\n", + "Epoch 36: Loss = 537670912.0\n", + "Epoch 37: Loss = 183015648.0\n", + "Epoch 38: Loss = 36896788.0\n", + "Epoch 39: Loss = 208437264.0\n", + "Epoch 40: Loss = 404825856.0\n", + "Epoch 41: Loss = 145038928.0\n", + "Epoch 42: Loss = 90906088.0\n", + "Epoch 43: Loss = 317433088.0\n", + "Epoch 44: Loss = 207606352.0\n", + "Epoch 45: Loss = 67569608.0\n", + "Epoch 46: Loss = 248813776.0\n", + "Epoch 47: Loss = 28989996.0\n", + "Epoch 48: Loss = 152745104.0\n", + "Epoch 49: Loss = 378671104.0\n", + "Epoch 50: Loss = 67719336.0\n", + "Epoch 51: Loss = 58827168.0\n", + "Epoch 52: Loss = 44643036.0\n", + "Epoch 53: Loss = 17336574.0\n", + "Epoch 54: Loss = 44304728.0\n", + "Epoch 55: Loss = 62798080.0\n", + "Epoch 56: Loss = 16528823.0\n", + "Epoch 57: Loss = 7602400.0\n", + "Epoch 58: Loss = 27509160.0\n", + "Epoch 59: Loss = 45870420.0\n", + "Epoch 60: Loss = 3016445.25\n", + "Epoch 61: Loss = 37617712.0\n", + "Epoch 62: Loss = 539786.4375\n", + "Epoch 63: Loss = 6469420.5\n", + "Epoch 64: Loss = 5883493.0\n", + "Epoch 65: Loss = 9921310.0\n", + "Epoch 66: Loss = 40837956.0\n", + "Epoch 67: Loss = 28660466.0\n", + "Epoch 68: Loss = 25806316.0\n", + "Epoch 69: Loss = 1407943.875\n", + "Epoch 70: Loss = 26945542.0\n", + "Epoch 71: Loss = 65294368.0\n", + "Epoch 72: Loss = 41522256.0\n", + "Epoch 73: Loss = 50687172.0\n", + "Epoch 74: Loss = 10233583.0\n", + "Epoch 75: Loss = 50585760.0\n", + "Epoch 76: Loss = 5199648.5\n", + "Epoch 77: Loss = 28636404.0\n", + "Epoch 78: Loss = 5874281.5\n", + "Epoch 79: Loss = 20629022.0\n", + "Epoch 80: Loss = 13411407.0\n", + "Epoch 81: Loss = 6462674.0\n", + "Epoch 82: Loss = 36192340.0\n", + "Epoch 83: Loss = 39421420.0\n", + "Epoch 84: Loss = 11029152.0\n", + "Epoch 85: Loss = 13814310.0\n", + "Epoch 86: Loss = 2058303.625\n", + "Epoch 87: Loss = 21444492.0\n", + "Epoch 88: Loss = 60458524.0\n", + "Epoch 89: Loss = 946386.125\n", + "Epoch 90: Loss = 727960.6875\n", + "Epoch 91: Loss = 4561388.0\n", + "Epoch 92: Loss = 11874139.0\n", + "Epoch 93: Loss = 32916434.0\n", + "Epoch 94: Loss = 58273708.0\n", + "Epoch 95: Loss = 170226112.0\n", + "Epoch 96: Loss = 25728500.0\n", + "Epoch 97: Loss = 14353096.0\n", + "Epoch 98: Loss = 29355582.0\n", + "Epoch 99: Loss = 9882171.0\n", + "Epoch 100: Loss = 21905370.0\n", + "Epoch 101: Loss = 9851736.0\n", + "Epoch 102: Loss = 41945844.0\n", + "Epoch 103: Loss = 7750540.0\n", + "Epoch 104: Loss = 14483188.0\n", + "Epoch 105: Loss = 24603462.0\n", + "Epoch 106: Loss = 10265312.0\n", + "Epoch 107: Loss = 14629091.0\n", + "Epoch 108: Loss = 13545599.0\n", + "Epoch 109: Loss = 89341056.0\n", + "Epoch 110: Loss = 131173144.0\n", + "Epoch 111: Loss = 124960984.0\n", + "Epoch 112: Loss = 10596631.0\n", + "Epoch 113: Loss = 31328620.0\n", + "Epoch 114: Loss = 23911078.0\n", + "Epoch 115: Loss = 508030592.0\n", + "Epoch 116: Loss = 4951201.5\n", + "Epoch 117: Loss = 161397488.0\n", + "Epoch 118: Loss = 165640304.0\n", + "Epoch 119: Loss = 1637081600.0\n", + "Epoch 120: Loss = 4162158592.0\n", + "Epoch 121: Loss = 103552992.0\n", + "Epoch 122: Loss = 1941750784.0\n", + "Epoch 123: Loss = 939500736.0\n", + "Epoch 124: Loss = 2160167936.0\n", + "Epoch 125: Loss = 504996992.0\n", + "Epoch 126: Loss = 1218859776.0\n", + "Epoch 127: Loss = 188687232.0\n", + "Epoch 128: Loss = 1326811264.0\n", + "Epoch 129: Loss = 546000000.0\n", + "Epoch 130: Loss = 652817216.0\n", + "Epoch 131: Loss = 798477184.0\n", + "Epoch 132: Loss = 385249184.0\n", + "Epoch 133: Loss = 293815104.0\n", + "Epoch 134: Loss = 876512448.0\n", + "Epoch 135: Loss = 2855535104.0\n", + "Epoch 136: Loss = 554518656.0\n", + "Epoch 137: Loss = 176193920.0\n", + "Epoch 138: Loss = 455097728.0\n", + "Epoch 139: Loss = 38599364.0\n", + "Epoch 140: Loss = 24551452.0\n", + "Epoch 141: Loss = 110513104.0\n", + "Epoch 142: Loss = 110353048.0\n", + "Epoch 143: Loss = 460856768.0\n", + "Epoch 144: Loss = 292320032.0\n", + "Epoch 145: Loss = 447717472.0\n", + "Epoch 146: Loss = 517735072.0\n", + "Epoch 147: Loss = 230246288.0\n", + "Epoch 148: Loss = 74563280.0\n", + "Epoch 149: Loss = 223070800.0\n", + "Epoch 150: Loss = 143589808.0\n", + "Epoch 151: Loss = 138108752.0\n", + "Epoch 152: Loss = 24285336.0\n", + "Epoch 153: Loss = 109380440.0\n", + "Epoch 154: Loss = 59204900.0\n", + "Epoch 155: Loss = 45474664.0\n", + "Epoch 156: Loss = 21519894.0\n", + "Epoch 157: Loss = 9749383.0\n", + "Epoch 158: Loss = 98707960.0\n", + "Epoch 159: Loss = 38516540.0\n", + "Epoch 160: Loss = 117907128.0\n", + "Epoch 161: Loss = 18668372.0\n", + "Epoch 162: Loss = 23324586.0\n", + "Epoch 163: Loss = 16186311.0\n", + "Epoch 164: Loss = 132299872.0\n", + "Epoch 165: Loss = 4137220.5\n", + "Epoch 166: Loss = 32669248.0\n", + "Epoch 167: Loss = 9175897.0\n", + "Epoch 168: Loss = 34163052.0\n", + "Epoch 169: Loss = 23097474.0\n", + "Epoch 170: Loss = 51617992.0\n", + "Epoch 171: Loss = 11813448.0\n", + "Epoch 172: Loss = 41611636.0\n", + "Epoch 173: Loss = 30317978.0\n", + "Epoch 174: Loss = 17387690.0\n", + "Epoch 175: Loss = 3900669.75\n", + "Epoch 176: Loss = 3561742.25\n", + "Epoch 177: Loss = 5969533.0\n", + "Epoch 178: Loss = 117700544.0\n", + "Epoch 179: Loss = 5149296.0\n", + "Epoch 180: Loss = 9947249.0\n", + "Epoch 181: Loss = 46528292.0\n", + "Epoch 182: Loss = 39733124.0\n", + "Epoch 183: Loss = 19441794.0\n", + "Epoch 184: Loss = 8988196.0\n", + "Epoch 185: Loss = 18157304.0\n", + "Epoch 186: Loss = 7252877.5\n", + "Epoch 187: Loss = 41503044.0\n", + "Epoch 188: Loss = 26564140.0\n", + "Epoch 189: Loss = 33145384.0\n", + "Epoch 190: Loss = 24849360.0\n", + "Epoch 191: Loss = 19266568.0\n", + "Epoch 192: Loss = 18558142.0\n", + "Epoch 193: Loss = 68987280.0\n", + "Epoch 194: Loss = 41996672.0\n", + "Epoch 195: Loss = 93667328.0\n", + "Epoch 196: Loss = 893685.625\n", + "Epoch 197: Loss = 67667520.0\n", + "Epoch 198: Loss = 66997572.0\n", + "Epoch 199: Loss = 71625176.0\n", + "Epoch 200: Loss = 95644632.0\n", + "Epoch 201: Loss = 50191872.0\n", + "Epoch 202: Loss = 34075780.0\n", + "Epoch 203: Loss = 73167832.0\n", + "Epoch 204: Loss = 27575636.0\n", + "Epoch 205: Loss = 35330876.0\n", + "Epoch 206: Loss = 22916410.0\n", + "Epoch 207: Loss = 24282562.0\n", + "Epoch 208: Loss = 49295748.0\n", + "Epoch 209: Loss = 47714040.0\n", + "Epoch 210: Loss = 45224276.0\n", + "Epoch 211: Loss = 101702608.0\n", + "Epoch 212: Loss = 60757964.0\n", + "Epoch 213: Loss = 99960848.0\n", + "Epoch 214: Loss = 14283336.0\n", + "Epoch 215: Loss = 16283412.0\n", + "Epoch 216: Loss = 9840116.0\n", + "Epoch 217: Loss = 14328882.0\n", + "Epoch 218: Loss = 118184336.0\n", + "Epoch 219: Loss = 84319664.0\n", + "Epoch 220: Loss = 45551916.0\n", + "Epoch 221: Loss = 235838464.0\n", + "Epoch 222: Loss = 172541184.0\n", + "Epoch 223: Loss = 7404227.5\n", + "Epoch 224: Loss = 6032476.0\n", + "Epoch 225: Loss = 33620356.0\n", + "Epoch 226: Loss = 58161032.0\n", + "Epoch 227: Loss = 6120454.0\n", + "Epoch 228: Loss = 2004220.875\n", + "Epoch 229: Loss = 657080.8125\n", + "Epoch 230: Loss = 5642705.0\n", + "Epoch 231: Loss = 4763228.0\n", + "Epoch 232: Loss = 31776292.0\n", + "Epoch 233: Loss = 65007488.0\n", + "Epoch 234: Loss = 77484584.0\n", + "Epoch 235: Loss = 3585655.25\n", + "Epoch 236: Loss = 17067364.0\n", + "Epoch 237: Loss = 9166650.0\n", + "Epoch 238: Loss = 8339791.0\n", + "Epoch 239: Loss = 14555955.0\n", + "Epoch 240: Loss = 40074312.0\n", + "Epoch 241: Loss = 23534336.0\n", + "Epoch 242: Loss = 4477015.0\n", + "Epoch 243: Loss = 31477884.0\n", + "Epoch 244: Loss = 10155824.0\n", + "Epoch 245: Loss = 11160846.0\n", + "Epoch 246: Loss = 13042034.0\n", + "Epoch 247: Loss = 2841601.75\n", + "Epoch 248: Loss = 43013616.0\n", + "Epoch 249: Loss = 7460937.0\n", + "Epoch 250: Loss = 30927802.0\n", + "Epoch 251: Loss = 12506443.0\n", + "Epoch 252: Loss = 15761238.0\n", + "Epoch 253: Loss = 9420556.0\n", + "Epoch 254: Loss = 10614524.0\n", + "Epoch 255: Loss = 41148184.0\n", + "Epoch 256: Loss = 9866906.0\n", + "Epoch 257: Loss = 6530872.0\n", + "Epoch 258: Loss = 5475881.5\n", + "Epoch 259: Loss = 4417406.5\n", + "Epoch 260: Loss = 8015231.5\n", + "Epoch 261: Loss = 19830106.0\n", + "Epoch 262: Loss = 34233740.0\n", + "Epoch 263: Loss = 33586196.0\n", + "Epoch 264: Loss = 56163200.0\n", + "Epoch 265: Loss = 72808664.0\n", + "Epoch 266: Loss = 37919452.0\n", + "Epoch 267: Loss = 90733528.0\n", + "Epoch 268: Loss = 3429886.25\n", + "Epoch 269: Loss = 44704472.0\n", + "Epoch 270: Loss = 15747013.0\n", + "Epoch 271: Loss = 28768746.0\n", + "Epoch 272: Loss = 32492992.0\n", + "Epoch 273: Loss = 27031230.0\n", + "Epoch 274: Loss = 21846418.0\n", + "Epoch 275: Loss = 4649849.0\n", + "Epoch 276: Loss = 7733873.5\n", + "Epoch 277: Loss = 13470125.0\n", + "Epoch 278: Loss = 10613280.0\n", + "Epoch 279: Loss = 36575448.0\n", + "Epoch 280: Loss = 19551678.0\n", + "Epoch 281: Loss = 17854220.0\n", + "Epoch 282: Loss = 15834977.0\n", + "Epoch 283: Loss = 32908400.0\n", + "Epoch 284: Loss = 13467092.0\n", + "Epoch 285: Loss = 14299426.0\n", + "Epoch 286: Loss = 10788824.0\n", + "Epoch 287: Loss = 10841810.0\n", + "Epoch 288: Loss = 58854748.0\n", + "Epoch 289: Loss = 60941764.0\n", + "Epoch 290: Loss = 61065320.0\n", + "Epoch 291: Loss = 33045146.0\n", + "Epoch 292: Loss = 32921238.0\n", + "Epoch 293: Loss = 34047964.0\n", + "Epoch 294: Loss = 35546632.0\n", + "Epoch 295: Loss = 33580868.0\n", + "Epoch 296: Loss = 31460306.0\n", + "Epoch 297: Loss = 48280976.0\n", + "Epoch 298: Loss = 12115497.0\n", + "Epoch 299: Loss = 7208291.5\n", + "Epoch 300: Loss = 1766983.0\n", + "Epoch 301: Loss = 6763603.0\n", + "Epoch 302: Loss = 11206675.0\n", + "Epoch 303: Loss = 9650744.0\n", + "Epoch 304: Loss = 25572510.0\n", + "Epoch 305: Loss = 9444142.0\n", + "Epoch 306: Loss = 11093033.0\n", + "Epoch 307: Loss = 10070954.0\n", + "Epoch 308: Loss = 59487976.0\n", + "Epoch 309: Loss = 41377592.0\n", + "Epoch 310: Loss = 27515682.0\n", + "Epoch 311: Loss = 63783832.0\n", + "Epoch 312: Loss = 19595784.0\n", + "Epoch 313: Loss = 4278891.5\n", + "Epoch 314: Loss = 7336858.5\n", + "Epoch 315: Loss = 124383816.0\n", + "Epoch 316: Loss = 21640474.0\n", + "Epoch 317: Loss = 176682096.0\n", + "Epoch 318: Loss = 169359104.0\n", + "Epoch 319: Loss = 217748176.0\n", + "Epoch 320: Loss = 213649504.0\n", + "Epoch 321: Loss = 11420248.0\n", + "Epoch 322: Loss = 20710246.0\n", + "Epoch 323: Loss = 28334560.0\n", + "Epoch 324: Loss = 31568188.0\n", + "Epoch 325: Loss = 82415568.0\n", + "Epoch 326: Loss = 105856440.0\n", + "Epoch 327: Loss = 43879480.0\n", + "Epoch 328: Loss = 27950824.0\n", + "Epoch 329: Loss = 10049555.0\n", + "Epoch 330: Loss = 17207532.0\n", + "Epoch 331: Loss = 15334850.0\n", + "Epoch 332: Loss = 75185920.0\n", + "Epoch 333: Loss = 2053800.125\n", + "Epoch 334: Loss = 3618750.25\n", + "Epoch 335: Loss = 27956748.0\n", + "Epoch 336: Loss = 12379736.0\n", + "Epoch 337: Loss = 12098196.0\n", + "Epoch 338: Loss = 7388391.5\n", + "Epoch 339: Loss = 6162855.5\n", + "Epoch 340: Loss = 5634845.0\n", + "Epoch 341: Loss = 3414655.0\n", + "Epoch 342: Loss = 2931523.0\n", + "Epoch 343: Loss = 17941050.0\n", + "Epoch 344: Loss = 25871864.0\n", + "Epoch 345: Loss = 37890684.0\n", + "Epoch 346: Loss = 13986114.0\n", + "Epoch 347: Loss = 13123363.0\n", + "Epoch 348: Loss = 11382073.0\n", + "Epoch 349: Loss = 31477172.0\n", + "Epoch 350: Loss = 7196466.0\n", + "Epoch 351: Loss = 18594956.0\n", + "Epoch 352: Loss = 23716518.0\n", + "Epoch 353: Loss = 16498504.0\n", + "Epoch 354: Loss = 30585646.0\n", + "Epoch 355: Loss = 37859912.0\n", + "Epoch 356: Loss = 8174270.0\n", + "Epoch 357: Loss = 18000748.0\n", + "Epoch 358: Loss = 6179393.5\n", + "Epoch 359: Loss = 9815300.0\n", + "Epoch 360: Loss = 13170956.0\n", + "Epoch 361: Loss = 34797720.0\n", + "Epoch 362: Loss = 14839481.0\n", + "Epoch 363: Loss = 11062543.0\n", + "Epoch 364: Loss = 1226162.125\n", + "Epoch 365: Loss = 1730673.0\n", + "Epoch 366: Loss = 2638962.25\n", + "Epoch 367: Loss = 3740686.5\n", + "Epoch 368: Loss = 2295863.0\n", + "Epoch 369: Loss = 7822918.5\n", + "Epoch 370: Loss = 6592415.5\n", + "Epoch 371: Loss = 5863917.0\n", + "Epoch 372: Loss = 3220520.25\n", + "Epoch 373: Loss = 3901127.75\n", + "Epoch 374: Loss = 7227896.5\n", + "Epoch 375: Loss = 4244708.0\n", + "Epoch 376: Loss = 1960855.5\n", + "Epoch 377: Loss = 44605084.0\n", + "Epoch 378: Loss = 37953028.0\n", + "Epoch 379: Loss = 38479128.0\n", + "Epoch 380: Loss = 1646036.25\n", + "Epoch 381: Loss = 1956850.375\n", + "Epoch 382: Loss = 1022255.125\n", + "Epoch 383: Loss = 17024442.0\n", + "Epoch 384: Loss = 18889852.0\n", + "Epoch 385: Loss = 13461972.0\n", + "Epoch 386: Loss = 82066912.0\n", + "Epoch 387: Loss = 6709552.0\n", + "Epoch 388: Loss = 23933834.0\n", + "Epoch 389: Loss = 14408879.0\n", + "Epoch 390: Loss = 21427828.0\n", + "Epoch 391: Loss = 40592940.0\n", + "Epoch 392: Loss = 27474848.0\n", + "Epoch 393: Loss = 18541048.0\n", + "Epoch 394: Loss = 6633277.5\n", + "Epoch 395: Loss = 7380019.5\n", + "Epoch 396: Loss = 12679058.0\n", + "Epoch 397: Loss = 25765614.0\n", + "Epoch 398: Loss = 24309706.0\n", + "Epoch 399: Loss = 8185821.0\n", + "Epoch 400: Loss = 13782796.0\n", + "Epoch 401: Loss = 20877706.0\n", + "Epoch 402: Loss = 10918741.0\n", + "Epoch 403: Loss = 12428180.0\n", + "Epoch 404: Loss = 12314490.0\n", + "Epoch 405: Loss = 9034409.0\n", + "Epoch 406: Loss = 11179762.0\n", + "Epoch 407: Loss = 1332685.75\n", + "Epoch 408: Loss = 8724377.0\n", + "Epoch 409: Loss = 4092440.5\n", + "Epoch 410: Loss = 7746171.0\n", + "Epoch 411: Loss = 3990658.0\n", + "Epoch 412: Loss = 9052532.0\n", + "Epoch 413: Loss = 5382648.5\n", + "Epoch 414: Loss = 6087593.0\n", + "Epoch 415: Loss = 10909400.0\n", + "Epoch 416: Loss = 13880742.0\n", + "Epoch 417: Loss = 10404677.0\n", + "Epoch 418: Loss = 22503978.0\n", + "Epoch 419: Loss = 30100348.0\n", + "Epoch 420: Loss = 4746040.5\n", + "Epoch 421: Loss = 5709309.0\n", + "Epoch 422: Loss = 5332604.0\n", + "Epoch 423: Loss = 6832333.0\n", + "Epoch 424: Loss = 7631865.0\n", + "Epoch 425: Loss = 3771762.75\n", + "Epoch 426: Loss = 18801092.0\n", + "Epoch 427: Loss = 55575752.0\n", + "Epoch 428: Loss = 97920264.0\n", + "Epoch 429: Loss = 61876276.0\n", + "Epoch 430: Loss = 29736144.0\n", + "Epoch 431: Loss = 40055184.0\n", + "Epoch 432: Loss = 28055472.0\n", + "Epoch 433: Loss = 12496342.0\n", + "Epoch 434: Loss = 18982382.0\n", + "Epoch 435: Loss = 10846186.0\n", + "Epoch 436: Loss = 14282407.0\n", + "Epoch 437: Loss = 37909076.0\n", + "Epoch 438: Loss = 20137116.0\n", + "Epoch 439: Loss = 9262172.0\n", + "Epoch 440: Loss = 3640067.0\n", + "Epoch 441: Loss = 10816868.0\n", + "Epoch 442: Loss = 18398186.0\n", + "Epoch 443: Loss = 3821556.5\n", + "Epoch 444: Loss = 12209163.0\n", + "Epoch 445: Loss = 9349880.0\n", + "Epoch 446: Loss = 5125670.5\n", + "Epoch 447: Loss = 37675156.0\n", + "Epoch 448: Loss = 18691106.0\n", + "Epoch 449: Loss = 9890120.0\n", + "Epoch 450: Loss = 8104408.0\n", + "Epoch 451: Loss = 10571805.0\n", + "Epoch 452: Loss = 4060703.75\n", + "Epoch 453: Loss = 6327300.0\n", + "Epoch 454: Loss = 5932917.0\n", + "Epoch 455: Loss = 11192619.0\n", + "Epoch 456: Loss = 14876193.0\n", + "Epoch 457: Loss = 10281366.0\n", + "Epoch 458: Loss = 5453881.0\n", + "Epoch 459: Loss = 13143906.0\n", + "Epoch 460: Loss = 20262672.0\n", + "Epoch 461: Loss = 7708167.0\n", + "Epoch 462: Loss = 17447026.0\n", + "Epoch 463: Loss = 1170099.125\n", + "Epoch 464: Loss = 14493766.0\n", + "Epoch 465: Loss = 3540527.75\n", + "Epoch 466: Loss = 4028082.0\n", + "Epoch 467: Loss = 8608558.0\n", + "Epoch 468: Loss = 10065666.0\n", + "Epoch 469: Loss = 8405355.0\n", + "Epoch 470: Loss = 12151652.0\n", + "Epoch 471: Loss = 16991180.0\n", + "Epoch 472: Loss = 9371812.0\n", + "Epoch 473: Loss = 19665128.0\n", + "Epoch 474: Loss = 5872520.0\n", + "Epoch 475: Loss = 13190856.0\n", + "Epoch 476: Loss = 7332938.0\n", + "Epoch 477: Loss = 6324096.5\n", + "Epoch 478: Loss = 6623219.0\n", + "Epoch 479: Loss = 6425566.0\n", + "Epoch 480: Loss = 9061003.0\n", + "Epoch 481: Loss = 3552659.5\n", + "Epoch 482: Loss = 4545801.5\n", + "Epoch 483: Loss = 2553218.75\n", + "Epoch 484: Loss = 821733.375\n", + "Epoch 485: Loss = 8598632.0\n", + "Epoch 486: Loss = 8665224.0\n", + "Epoch 487: Loss = 4746739.5\n", + "Epoch 488: Loss = 1781845.375\n", + "Epoch 489: Loss = 1323368.0\n", + "Epoch 490: Loss = 829634.375\n", + "Epoch 491: Loss = 1419806.125\n", + "Epoch 492: Loss = 20782330.0\n", + "Epoch 493: Loss = 11469326.0\n", + "Epoch 494: Loss = 14554182.0\n", + "Epoch 495: Loss = 12838631.0\n", + "Epoch 496: Loss = 11325082.0\n", + "Epoch 497: Loss = 13525978.0\n", + "Epoch 498: Loss = 27821814.0\n", + "Epoch 499: Loss = 9435000.0\n", + "Epoch 500: Loss = 20394206.0\n" + ] + }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiVklEQVR4nO3dd3iUVd4+8PuZmcykJ0A6hI5UCYiAsQGKArIIiA3ZV+w/V3BVbMvuq6Kui2UV11VhfRVwbSCoqCgiHREQEEITQhEIkE5IT6ae3x8zzzM1ZVomGe7PdeUimXkyOcMAc/M933OOJIQQICIiIgoTqlAPgIiIiCiQGG6IiIgorDDcEBERUVhhuCEiIqKwwnBDREREYYXhhoiIiMIKww0RERGFFYYbIiIiCisMN0RERBRWGG6IqNWTJAlz5szx+vtOnjwJSZKwePHiRq/buHEjJEnCxo0bfRofEbUuDDdE1CyLFy+GJEmQJAlbtmxxu18IgczMTEiShD/84Q8hGCERkRXDDRF5JTIyEp9++qnb7Zs2bcKZM2eg0+lCMCoiIjuGGyLyyg033IBly5bBZDI53f7pp59iyJAhSEtLC9HIiIisGG6IyCtTp07FuXPnsGbNGuU2g8GA5cuX44477vD4PTU1NXj88ceRmZkJnU6H3r1745///CeEEE7X6fV6PPbYY0hOTkZcXBxuvPFGnDlzxuNjnj17Fvfccw9SU1Oh0+nQv39/LFy4MHBPFMCyZcswZMgQREVFISkpCX/84x9x9uxZp2sKCwtx9913o1OnTtDpdEhPT8fEiRNx8uRJ5Zpdu3ZhzJgxSEpKQlRUFLp164Z77rknoGMlIjtNqAdARG1L165dkZ2djc8++wzjxo0DAKxatQoVFRW4/fbb8dZbbzldL4TAjTfeiA0bNuDee+/FoEGDsHr1ajz55JM4e/Ys5s2bp1x733334eOPP8Ydd9yByy+/HOvXr8f48ePdxlBUVITLLrsMkiRh5syZSE5OxqpVq3DvvfeisrISjz76qN/Pc/Hixbj77rsxdOhQzJ07F0VFRfjXv/6Fn3/+GXv27EFiYiIAYMqUKTh48CAefvhhdO3aFcXFxVizZg3y8vKUr6+//nokJyfjL3/5CxITE3Hy5El8+eWXfo+RiBogiIiaYdGiRQKA2Llzp3j77bdFXFycqK2tFUIIccstt4hRo0YJIYTo0qWLGD9+vPJ9K1asEADE3//+d6fHu/nmm4UkSeLYsWNCCCFycnIEAPHQQw85XXfHHXcIAOK5555Tbrv33ntFenq6KC0tdbr29ttvFwkJCcq4Tpw4IQCIRYsWNfrcNmzYIACIDRs2CCGEMBgMIiUlRQwYMEDU1dUp161cuVIAEM8++6wQQojz588LAOK1115r8LG/+uor5feNiFoGp6WIyGu33nor6urqsHLlSlRVVWHlypUNTkl9//33UKvV+POf/+x0++OPPw4hBFatWqVcB8DtOtcqjBACX3zxBSZMmAAhBEpLS5WPMWPGoKKiArt37/br+e3atQvFxcV46KGHEBkZqdw+fvx49OnTB9999x0AICoqClqtFhs3bsT58+c9PpZc4Vm5ciWMRqNf4yKi5rmgw83mzZsxYcIEZGRkQJIkrFixwuvH+PzzzzFo0CBER0ejS5cueO211wI/UKJWJjk5GaNHj8ann36KL7/8EmazGTfffLPHa0+dOoWMjAzExcU53d63b1/lfvlXlUqFHj16OF3Xu3dvp69LSkpQXl6O9957D8nJyU4fd999NwCguLjYr+cnj8n1ZwNAnz59lPt1Oh1eeeUVrFq1Cqmpqbj66qvx6quvorCwULl+xIgRmDJlCp5//nkkJSVh4sSJWLRoEfR6vV9jJKKGXdA9NzU1NcjKysI999yDm266yevvX7VqFaZNm4Z///vfuP7663Ho0CHcf//9iIqKwsyZM4MwYqLW44477sD999+PwsJCjBs3TqlQBJvFYgEA/PGPf8T06dM9XjNw4MAWGQtgrSxNmDABK1aswOrVq/HMM89g7ty5WL9+PQYPHgxJkrB8+XJs374d3377LVavXo177rkHr7/+OrZv347Y2NgWGyvRheKCrtyMGzcOf//73zF58mSP9+v1ejzxxBPo2LEjYmJiMHz4cKcdTD/66CNMmjQJDz74ILp3747x48dj9uzZeOWVV9xWgRCFm8mTJ0OlUmH79u0NTkkBQJcuXZCfn4+qqiqn2w8fPqzcL/9qsVhw/Phxp+tyc3OdvpZXUpnNZowePdrjR0pKil/PTR6T68+Wb5Pvl/Xo0QOPP/44fvzxRxw4cAAGgwGvv/660zWXXXYZXnrpJezatQuffPIJDh48iCVLlvg1TiLy7IION02ZOXMmtm3bhiVLlmDfvn245ZZbMHbsWBw9ehSANfw4zscD1jn4M2fOKGVronAVGxuL+fPnY86cOZgwYUKD191www0wm814++23nW6fN28eJElSVlzJv7qutnrzzTedvlar1ZgyZQq++OILHDhwwO3nlZSU+PJ0nFx66aVISUnBggULnKaPVq1ahUOHDikruGpra1FfX+/0vT169EBcXJzyfefPn3f7z86gQYMAgFNTREFyQU9LNSYvLw+LFi1CXl4eMjIyAABPPPEEfvjhByxatAj/+Mc/MGbMGDz22GO46667MGrUKBw7dkz531pBQQG6du0awmdAFHwNTQs5mjBhAkaNGoW//e1vOHnyJLKysvDjjz/i66+/xqOPPqr02AwaNAhTp07Fu+++i4qKClx++eVYt24djh075vaYL7/8MjZs2IDhw4fj/vvvR79+/VBWVobdu3dj7dq1KCsr8+t5RURE4JVXXsHdd9+NESNGYOrUqcpS8K5du+Kxxx4DABw5cgTXXnstbr31VvTr1w8ajQZfffUVioqKcPvttwMAPvzwQ7z77ruYPHkyevTogaqqKvzf//0f4uPjccMNN/g1TiLyjOGmAfv374fZbMZFF13kdLter0eHDh0AAPfffz+OHz+OP/zhDzAajYiPj8cjjzyCOXPmQKViUYwIAFQqFb755hs8++yzWLp0KRYtWoSuXbvitddew+OPP+507cKFC5GcnIxPPvkEK1aswDXXXIPvvvsOmZmZTtelpqZix44deOGFF/Dll1/i3XffRYcOHdC/f3+88sorARn3XXfdhejoaLz88st4+umnERMTg8mTJ+OVV15R+osyMzMxdepUrFu3Dh999BE0Gg369OmDzz//HFOmTAFgbSjesWMHlixZgqKiIiQkJGDYsGH45JNP0K1bt4CMlYicSYLNIQCspw5/9dVXmDRpEgBg6dKlmDZtGg4ePAi1Wu10bWxsrNMW82azGYWFhUhOTsa6detwww03oLi4GMnJyS35FIiIiAis3DRo8ODBMJvNKC4uxlVXXdXotWq1Gh07dgQAfPbZZ8jOzmawISIiCpELOtxUV1c7zeefOHECOTk5aN++PS666CJMmzYNd955J15//XUMHjwYJSUlWLduHQYOHIjx48ejtLQUy5cvx8iRI1FfX49FixZh2bJl2LRpUwifFRER0YXtgp6W2rhxI0aNGuV2+/Tp07F48WIYjUb8/e9/x3//+1+cPXsWSUlJuOyyy/D888/j4osvRmlpKSZMmID9+/dDCIHs7Gy89NJLGD58eAieDREREQEXeLghIiKi8MMlPURERBRWGG6IiIgorFxwDcUWiwX5+fmIi4uDJEmhHg4RERE1gxACVVVVyMjIaHIvuQsu3OTn57ttCEZERERtw+nTp9GpU6dGr7ngwk1cXBwA629OfHx8iEdDREREzVFZWYnMzEzlfbwxF1y4kaei4uPjGW6IiIjamOa0lLChmIiIiMIKww0RERGFFYYbIiIiCisXXM8NERFRsJjNZhiNxlAPo83SarVNLvNuDoYbIiIiPwkhUFhYiPLy8lAPpU1TqVTo1q0btFqtX4/DcENEROQnOdikpKQgOjqam8T6QN5kt6CgAJ07d/br95DhhoiIyA9ms1kJNh06dAj1cNq05ORk5Ofnw2QyISIiwufHYUMxERGRH+Qem+jo6BCPpO2Tp6PMZrNfj8NwQ0REFACcivJfoH4PGW6IiIgorDDcEBERUUB07doVb775ZqiHwXBDRER0oZEkqdGPOXPm+PS4O3fuxAMPPBDYwfqAq6WIiIiCzGIRkKTW05dTUFCgfL506VI8++yzyM3NVW6LjY1VPhdCwGw2Q6NpOjIkJycHdqA+YuWGiIgoiExmCw4VVuJ0WW2oh6JIS0tTPhISEiBJkvL14cOHERcXh1WrVmHIkCHQ6XTYsmULjh8/jokTJyI1NRWxsbEYOnQo1q5d6/S4rtNSkiTh/fffx+TJkxEdHY1evXrhm2++CfrzY7ghIiIKICEEag0m5eN8rQE1ehPKag1OtwfjQwgRsOfxl7/8BS+//DIOHTqEgQMHorq6GjfccAPWrVuHPXv2YOzYsZgwYQLy8vIafZznn38et956K/bt24cbbrgB06ZNQ1lZWcDG6QmnpYiIiAKozmhGv2dXh+Rn//bCGERrA/PW/sILL+C6665Tvm7fvj2ysrKUr1988UV89dVX+OabbzBz5swGH+euu+7C1KlTAQD/+Mc/8NZbb2HHjh0YO3ZsQMbpCSs3RERE5ObSSy91+rq6uhpPPPEE+vbti8TERMTGxuLQoUNNVm4GDhyofB4TE4P4+HgUFxcHZcwyVm6IiIgCKCpCjd9eGKN8XVVvxKlztdCoVOiTHhf0nx0oMTExTl8/8cQTWLNmDf75z3+iZ8+eiIqKws033wyDwdDo47geoyBJEiwWS8DG6QnDDRERUQBJkuQ0NWQyC0RGqKFRSQGbMgqFn3/+GXfddRcmT54MwFrJOXnyZGgH1QBOSxEREQWRcPm1rerVqxe+/PJL5OTkYO/evbjjjjuCXoHxFcMNERFRUFljTQAXMoXEG2+8gXbt2uHyyy/HhAkTMGbMGFxyySWhHpZHkgjkurE2oLKyEgkJCaioqEB8fHyoh0NERG1cfX09Tpw4gW7duiEyMtLt/vJaA/LKaqGSJAzomBCCEbYdjf1eevP+zcoNERFRC7igKgkhxnBDREQURMr8yIU1URJSDDdERERB5NhQfIF1goQMww0REVEQCU5ItTiGGyIiogBosCojPH5KHgSqssVwQ0RE5Ad5B97aWs+nfju+XXNWqnHybsdqtX87LbfdrRKJiIhaAbVajcTEROW8pOjoaEiSpNxv0BsgTNY37fr6OqhVrCt4YrFYUFJSgujoaGg0/sUThhsiIiI/paWlAYDHAyGr6o2oqDMBADQ1kVCpJLdryEqlUqFz585O4dAXDDdERER+kiQJ6enpSElJgdFodLrv0x2n8MFP+QCA5Q9ejnYx2lAMsU3QarVQBaCyxXBDREQUIGq12q1fpNakwtkqs/X+CK3HXYwpsDjxR0REFEQmi72L2MyO4hbBcENERBREZodwYzIz3LQEhhsiIqIgcqzcWDxUbqr1ppYczgWB4YaIiCiILI6VG4tzuNl2/Byynv8R72481tLDCmsMN0REREHkVLlxCTe/FVTCbBE4cLaipYcV1hhuiIiIgsjcSEOxHHbYixNYDDdERERB1FhDsRx2PPXikO8YboiIiIKosYZiOfi49uKQfxhuiIiIgshssSifu4YYeVrKzHATUAw3REREQdRYQ7E8LcWem8BiuCEiIgqixpaCK5Ub9twEVEjDzdy5czF06FDExcUhJSUFkyZNQm5ubpPft2zZMvTp0weRkZG4+OKL8f3337fAaImIiLzXnMoNp6UCK6ThZtOmTZgxYwa2b9+ONWvWwGg04vrrr0dNTU2D37N161ZMnToV9957L/bs2YNJkyZh0qRJOHDgQAuOnIiIqHnMjVRuzBbPt5N/Qnoq+A8//OD09eLFi5GSkoJff/0VV199tcfv+de//oWxY8fiySefBAC8+OKLWLNmDd5++20sWLAg6GMmIiLyRmMHZ8rNxq4VHfJPq+q5qaiw7tDYvn37Bq/Ztm0bRo8e7XTbmDFjsG3bNo/X6/V6VFZWOn0QERG1FMfgYnbd54aVm6BoNeHGYrHg0UcfxRVXXIEBAwY0eF1hYSFSU1OdbktNTUVhYaHH6+fOnYuEhATlIzMzM6DjJiIiakxjlRuL0nNjAQVOqwk3M2bMwIEDB7BkyZKAPu7s2bNRUVGhfJw+fTqgj09ERNQYp+MX3HpuuIlfMIS050Y2c+ZMrFy5Eps3b0anTp0avTYtLQ1FRUVOtxUVFSEtLc3j9TqdDjqdLmBjJSIi8obJoSrjFm7k4xcYbgIqpJUbIQRmzpyJr776CuvXr0e3bt2a/J7s7GysW7fO6bY1a9YgOzs7WMMkIiLymeOMk+vxCxZWboIipJWbGTNm4NNPP8XXX3+NuLg4pW8mISEBUVFRAIA777wTHTt2xNy5cwEAjzzyCEaMGIHXX38d48ePx5IlS7Br1y689957IXseREREDXGs3LgdnMnjF4IipJWb+fPno6KiAiNHjkR6errysXTpUuWavLw8FBQUKF9ffvnl+PTTT/Hee+8hKysLy5cvx4oVKxptQiYiIgoVc2NLwQUrN8EQ0sqNaMZ20xs3bnS77ZZbbsEtt9wShBEREREFlqmRhmJ5Woo9N4HValZLERERhaNGV0vZvmTlJrAYboiIiIKosXBjYc9NUDDcEBERBVFz9rlhuAkshhsiIqIgcmwibmifG4abwGK4ISIiCiLH5d/uB2fKq6V4/EIgMdwQEREFUXOmpSyieSuIqXkYboiIiIKo0aXgjUxZke8YboiIiILIMcC4Lvl2DDRcDh44DDdERERBZDLb+2lcN+trbMqKfMdwQ0REFESNHb/QWFWHfMdwQ0REFESN9dw4fs0jGAKH4YaIiCiIGmsadjwknJWbwGG4ISIiCqLmHJzp6T7yHcMNERFRkFgsAo5tNo1NS3Ejv8BhuCEiIgoS16km168dp6yYbQKH4YaIiChILK6ro1i5aREMN0REREHSVOWmsUM1yXcMN0REREFiNjc8DQU0vgcO+Y7hhoiIKEhcA0ujxy+YGW4CheGGiIgoSFz7aFx7brgUPDgYboiIiIKksaXfgHNlh5v4BQ7DDRERUZC4TjW5T0vZP3ftxyHfMdwQEREFidtS8MYOzmTPTcAw3BAREQVJk0vB2XMTFAw3REREQdLYWVKuX3MTv8BhuCEiIgoS954b5wDj2FDMnpvAYbghIiIKEvfjF5zv5z43wcFwQ0REFCTuPTcu+97w+IWgYLghIiIKErPbNJTr/Tx+IRgYboiIiILEdarJMewIIeBYrGHlJnAYboiIiILEtRrjuGmfa5hhz03gMNwQEREFwNKdefho+ymn29yPX7CnG/fgw3ATKJpQD4CIiKitM5gs+NtXB2AWAjdmZSAhKgJA45v2ua2cYs9NwLByQ0RE5Kd6kxkmi4AQQHmtQbnd7DLV5NRjI1xXUjHcBArDDRERkZ8MJnsZpqLOqHwuBxiVZP3acSm425SVmTsUBwrDDRERkZ/0DYUbW4DRaqxvt45TUa5HMbByEzgMN0RERH7SG83K55V1JuVzObDoNGrb1w03FPP4hcBhuCEiIvJTQ5Ubi0vlxszKTYtguCEiIvJTQz03cmDRquVw08hScO5zEzAMN0RERH5yrNxU1jv23Fhv1ymVm4bPkuJS8MBhuCEiIvKT3mTvufFYufEQbho7IZz8w3BDRETkJ73RoXLjoedGqdw4ngLOfW6ChuGGiIjITwZzEz03HqelXE4MZ7gJGIYbIiIiPzlOS1U2ss+Nc7hxfgyGm8BhuCEiIvKT07RUvfs+N/JqKYsAhG06yv1QTYabQGG4ISIi8lNzdyh2vM110z6Ta4cx+YzhhoiIyE+u+9y4Vme0th2KAXsjMSs3wcNwQ0RE5CfHnhuzRaDWYP3a5LJaSr4f8LCJH8NNwDDcEBER+clxWgqwT03JK6I8Tkvx+IWgYbghIiLyk2u4kXcplldEyQ3F1ts4LRVsDDdERER+cjwVHAAqapuu3HBaKngYboiIiPxkMHuelpKnmjQqCWqVBMBxWsr5MRhuAofhhoiIyE+O+9wA9r1uLI7hRrKFG+G5csOem8BhuCEiIvJTQw3FcmBROVRuTGbPDcWs3AQOww0REZGf5KXgEWprgLGvlnKflrJwn5ugY7ghIiLyk1y5SY7VAbCfLyVXbtQqFWzZRrnNdRqK4SZwGG6IiIj8pISbOOdw49hzo5HPl+LxC0HHcENEROQne7iJBGDf58ax50Zlayg2cZ+boGO4ISIi8pO8z41cufHUc6NxXQrOfW6ChuGGiIjIT/I+N67hRp5qUrOhuEUx3BAREflJ3ucmRem5se5zI+/t57haqqFpKe5zEzgMN0RERH5ybSh2PTjTcZ8b14Zi+WgGVm4Ch+GGiIjIT/I+N3Llps5ohsFk8Xj8gr1yY/1enZrhJtAYboiIiPwkV26SbPvcANYVU2Zlnxv78Qty5cbMyk3QMNwQERH5QQgBgy3cRGnViNNpAFinpuyrpVRulRs55Mjhhj03gRPScLN582ZMmDABGRkZkCQJK1asaPT6jRs3QpIkt4/CwsKWGTAREZELxxPBdRoV4qMiAFg38rNXbmA/FdxltVQEp6UCLqThpqamBllZWXjnnXe8+r7c3FwUFBQoHykpKUEaIRERUeMcD83UalRIsIWbijqj8/ELcrgxs6E42DSh/OHjxo3DuHHjvP6+lJQUJCYmBn5AREREXpKXgQOAVq1CXKT1rbWy3uR5Ez+Xyo1WzWmpQGuTPTeDBg1Ceno6rrvuOvz888+NXqvX61FZWen0QUREFCjytJROo4IkSYi19dzUGUweG4rl2+QwE6FUbni2VKC0qXCTnp6OBQsW4IsvvsAXX3yBzMxMjBw5Ert3727we+bOnYuEhATlIzMzswVHTERE4U4+ekFnCynRtnBTozc7hxvX4xdsv+o4LRVwIZ2W8lbv3r3Ru3dv5evLL78cx48fx7x58/DRRx95/J7Zs2dj1qxZyteVlZUMOEREFDByz41WowYAxGitv9boTR6PXzC7LAVnuAm8NhVuPBk2bBi2bNnS4P06nQ46na7B+4mIiPwhhxulcqO1VW4MZsh5RdNI5YY9N4HXpqalPMnJyUF6enqoh0FERBcoeY8bXYT1LTVGZ63c1BoaqNwI58oNl4IHXkgrN9XV1Th27Jjy9YkTJ5CTk4P27dujc+fOmD17Ns6ePYv//ve/AIA333wT3bp1Q//+/VFfX4/3338f69evx48//hiqp0BERBc4+egFnW1aSqnc6M3Ksm+P01K2/mFlKbhguAmUkIabXbt2YdSoUcrXcm/M9OnTsXjxYhQUFCAvL0+532Aw4PHHH8fZs2cRHR2NgQMHYu3atU6PQURE1JLkpeDytFSsU+Wm4dVSrvvcCGGdqpL3wyHfhTTcjBw5EqKRpLp48WKnr5966ik89dRTQR4VERFR89kbij313Dgcv6B2rdw4hxvA2nejZbjxW5vvuSEiIgol+7SUS8+NvvHKjesmfoC9mkP+YbghIiLyg9JQ7NJzU603Ndpz4zotBXDFVKAw3BAREflB3+BqKbMSVjSeVkt5qNzIYYj8w3BDRETkB2VaSu3cc1NrMClBprGG4gi1Y+WGRzAEAsMNERGRH5TVUnLlRut+/IJGJTXYUKxRS7DlHi4HDxCGGyIiIj/YD8609dzYpqXqjPZwo3Ko3JhcDs5UO54Yzp6bgGC4ISIi8oPr8QvyqeCOHHtuLC7HL6glCSo5+LDnJiAYboiIiPwgnwour3rSaVRw3arGcbWUSTk4034fKzeBxXBDRETkB9fKjSRJSt+NTKNSKQFGbiS2WDwsE2fPTUAw3BAREfnBdZ8bwN53I1OpoByr4NpQrFJJ0PDwzIBiuCEiIvKD6z43ADxWbtx2KBbsuQkWhhsiIiI/yPvcOG7G51a5keC+Q7EyLQW3KSvyD8MNERGRHzxVbqIdKjcalQRJ8tRQbJuW8nAf+YfhhoiIyA/KJn4OPTcxWvvncq+N61Jws6eGYu5QHBAMN0RERH7Qm51XSwFAjM65cgPArTpjEe6b+LHnJjAYboiIiPwg73PjXLmxhxs51Lj21SirpSQuBQ80hhsiIiI/yEvBtRrPDcVyqFG5HL8gz0A5T0sx3AQCww0REZEfXDfxAxqo3Khdem7YUBw0DDdERER+8LhayqFyo3ar3Fhsv3o4OJM9NwHBcENEROQHeZ+bhnpuNCqV7Vd56sl6u+M+N+y5CSyGGyIiIj/oPfXcaD1UblyWe9uXgquUAMSem8BguCEiIvKREMLhbCnPS8HlcKMcv2DLLxbH4xds38qem8BguCEiIvKRwWzfdK+pcOPWUKwcnGmfurIw3AQEww0REZGP5CkpoOEdit2XgtumpRwqN1wtFVgMN0RERD6Sj14AgAhbZQZwPlvKbRM/t4ZiHr8QaAw3REREPrKvlFJBkuzhJsbTUnCV58qNSsXKTaAx3BAREfnI0wZ+QOOVG6WhWN6hWJIcqjoMN4HAcENEROQjZaVUhNrp9hhPxy80uBSclZtAY7ghIiLyUUOVm6gINeRZKrfKja1i4+n4Be5zExgMN0RERD6STwTXuoQbSZKUXYrd9rmxVW48NRSzchMYDDdEREQ+sldu1G73ybsUq2172LhWZ5Sl4CrHqg7DTSAw3BAREfnI0+7EMnkjPzm4uIUbs+O0FI9fCCSGGyIiIh811HMDOFZuXBqKhWvlRoKaxy8EFMMNERGRj+R9blx7bgD7yeByr40y9WR2OX5Bknj8QoAx3BAREfmo0Z4b23Jwtdr5+AW5YiMfnKlRs6E40BhuiIiIfGTf56bhyo1csZEPzlSWglvcz5bi8QuBwXBDRETkI8fjF1y59tw4LgUXQkAu0vD4hcBjuCEiIvKRfHBmY6ul5FDjuFrKMcPw+IXAY7ghIiLyUWM9N/IRDPJ0lGO4cVzyzcpN4DHcEBER+chgbrhyMyizHVQScHHHRAAO4UYIpZlYvt0+ZcVwEwiapi9xd/r0aUiShE6dOgEAduzYgU8//RT9+vXDAw88ENABEhERtVby8Quews11/VKxf84Y+/RUA5UbtSQpK6pYuQkMnyo3d9xxBzZs2AAAKCwsxHXXXYcdO3bgb3/7G1544YWADpCIiKi1kqelPO1zA9j7bgCXcCMcp6XAnpsA8yncHDhwAMOGDQMAfP755xgwYAC2bt2KTz75BIsXLw7k+IiIiFqtxnpuXMlTTxZh38hPvl0+foGVm8DwKdwYjUbodDoAwNq1a3HjjTcCAPr06YOCgoLAjY6IiKgVU5aCe9jnxpVcuQEAo9nidLttVoo9NwHiU7jp378/FixYgJ9++glr1qzB2LFjAQD5+fno0KFDQAdIRETUWjV2cKYrx3AjV3wkCZAkCWo1D84MJJ/CzSuvvIL//Oc/GDlyJKZOnYqsrCwAwDfffKNMVxEREYU7r6alHMKNvMrK9dwpTksFhk+rpUaOHInS0lJUVlaiXbt2yu0PPPAAoqOjAzY4IiKi1kzexK+hhmJHnqalVB52Lyb/+VS5qaurg16vV4LNqVOn8OabbyI3NxcpKSkBHSAREVFr1djxC67kAAMARpPt0EyV8wZ/rNwEhk/hZuLEifjvf/8LACgvL8fw4cPx+uuvY9KkSZg/f35AB0hERNRa+T4tZQ1FyrSUWl5JxXATCD6Fm927d+Oqq64CACxfvhypqak4deoU/vvf/+Ktt94K6ACJiIhaq8ZOBXclSRLkfGOwVW5UrpUbM8NNIPgUbmpraxEXFwcA+PHHH3HTTTdBpVLhsssuw6lTpwI6QCIiotZK2cRP3by3U41tPxulodit54bhJhB8Cjc9e/bEihUrcPr0aaxevRrXX389AKC4uBjx8fEBHSAREVFr5c0+N4A9zMjHNqgk9twEg0/h5tlnn8UTTzyBrl27YtiwYcjOzgZgreIMHjw4oAMkIiJqrbzpuQHsJ4VX1ZsAAHLBhz03geXTUvCbb74ZV155JQoKCpQ9bgDg2muvxeTJkwM2OCIiotZM78UmfgAQq9OgtNqAijojAPt0lHL8AntuAsKncAMAaWlpSEtLw5kzZwAAnTp14gZ+RER0wRBCKA3FzdnnBgBiI61vu3K4cd/nhuEmEHyalrJYLHjhhReQkJCALl26oEuXLkhMTMSLL74ICzcgIiKiC4BctQGaX7mJ0TqHG7XLaikzp6UCwqfKzd/+9jd88MEHePnll3HFFVcAALZs2YI5c+agvr4eL730UkAHSURE1No4h5vm9dzE2So3lS7TUnLPDSs3geFTuPnwww/x/vvvK6eBA8DAgQPRsWNHPPTQQww3REQU9gwOh19GqKUmrraK0XmelpJXTZk4+xEQPk1LlZWVoU+fPm639+nTB2VlZX4PioiIqLVzPHpBkpoXbmJt4aay3qVyI09LsaE4IHwKN1lZWXj77bfdbn/77bcxcOBAvwdFRETU2nm7gR/QSEMxe24CyqdpqVdffRXjx4/H2rVrlT1utm3bhtOnT+P7778P6ACJiIhaI/lEcF1E8/ptACDWraHYejt7bgLLp8rNiBEjcOTIEUyePBnl5eUoLy/HTTfdhIMHD+Kjjz4K9BiJiIhaHfkIheaulALslZvKOnkTP+v3ytNSBhN7bgLB531uMjIy3BqH9+7diw8++ADvvfee3wMjIiJqzeQjFLwJN3JDcZ1RPhXcenu01vl28o9PlRsiIqILndJz08xl4AAQp3OuKci9NvL+N0azYPUmAEIabjZv3owJEyYgIyMDkiRhxYoVTX7Pxo0bcckll0Cn06Fnz55YvHhx0MdJRETkytujFwD7tJRMXgIerbMHpBq9KQCju7CFNNzU1NQgKysL77zzTrOuP3HiBMaPH49Ro0YhJycHjz76KO677z6sXr06yCMlIiJyZvAh3MQ0ULmJUKuUIxxqDAw3/vKq5+amm25q9P7y8nKvfvi4ceMwbty4Zl+/YMECdOvWDa+//joAoG/fvtiyZQvmzZuHMWPGePWziYiI/KHsc+PFaqmGpqUAIEarhsFkQa2BfTf+8ircJCQkNHn/nXfe6deAGrNt2zaMHj3a6bYxY8bg0UcfDdrPJCIi8sSXfW5cKzcqh83/YnQanK81oprTUn7zKtwsWrQoWONolsLCQqSmpjrdlpqaisrKStTV1SEqKsrte/R6PfR6vfJ1ZWVl0MdJREThT1ktFeF7z41z5cZ6X62elRt/hf1qqblz5yIhIUH5yMzMDPWQiIgoDPjSUCwHGJlz5cY6vcXKjf/aVLhJS0tDUVGR021FRUWIj4/3WLUBgNmzZ6OiokL5OH36dEsMlYiIwpy9obj5PTdqlYRordrha/t98pRVLRuK/ebzJn6hkJ2d7Xa8w5o1a5QjIDzR6XTQ6XTBHhoREV1gfKncANbDM+WmYcdpKTn01LCh2G8hrdxUV1cjJycHOTk5AKxLvXNycpCXlwfAWnVxbFB+8MEH8fvvv+Opp57C4cOH8e677+Lzzz/HY489ForhExHRBczxVHBvOPbduDYUA9znJhBCGm527dqFwYMHY/DgwQCAWbNmYfDgwXj22WcBAAUFBUrQAYBu3brhu+++w5o1a5CVlYXXX38d77//PpeBExFRi/OnciPz3FDMcOOvkE5LjRw5EqKR49097T48cuRI7NmzJ4ijIiIiaprSc+PFPjdAI+FGrtxwWspvbaqhmIiIqLXwtXLjuNeNWnLexA/gtFQgMNwQERH5QO650XoZbuIaqNxEs3ITMAw3REREPtAbfey5cWwodgg3sTpWbgKF4YaIiMgHBrP3+9wADU9LRWu5WipQGG6IiIh84HPlpoFpqVhlEz9OS/mL4YaIiMgHvvbcOIYbleRhEz9WbvzGcENEROQDvQ/HLwCulRv77fal4Aw3/mK4ISIi8oESbrw4FRxouKHYvkMxp6X8xXBDRETkA0Mgdij2tM+NwdToBrfUNIYbIiIiHwSi58bTDsVCAPW2ZmXyDcMNERGRD+yrpbzsuWng4Mwoh2McqtlU7BeGGyIiIh8E+uBMlUpSpqZq2VTsF4YbIiIiLwkhHDbxC0y4ARyOYGBTsV8YboiIiLwkV20A708Fj9aqIc9GuYYbx6Zi8h3DDRERkZccw41W7d1bqSRJiLUdteC4WgpwXA7OcOMPhhsiIiIvySulJAmIUEtNXO1ObipWuVVuOC0VCAw3REREXnLc40aSvA83coXGNRfF6DgtFQgMN0RERF7y9egFmdxU3FBDcS2npfzCcENEROQleY8bbzfwk8nhxnVaSu7FqeHJ4H5huCEiIvKS3HPj7TJwWZ+0OABA96RYp9ujdTwZPBA0TV9CREREjnzdwE/21xv64t6ruiE9IcrpdntDMcONP1i5ISIi8pLBz54blUpyCzaAw1JwTkv5heGGiIjIS3Llxteem4bIq6V4/IJ/GG6IiIi85G/PTUPkaalq7nPjF4YbIiIiLykngnt59EJTlMoNe278wnBDRETkJV8PzWxKNJeCBwTDDRERkZf0Rmv4CHzPDVdLBQLDDRERkZf8XQreEDYUBwbDDRERkZf8PX6hIfaGYoYbfzDcEBEReckQtMqNNdzUGy0wW0RAH/tCwnBDRETkpaAtBdfZK0GcmvIdww0REZGXjGZrVSVCHdi3Ua1aBY3tMM0a7nXjM4YbIiIiL8lLwQMdbiRJQrTWdngmKzc+Y7ghIiLykskWbjRqKeCPHWvru6muZ7jxFcMNERGRl0zKtFQQwk0k97rxF8MNERGRl4I1LQXYKzdVDDc+Y7ghIiLykly50QQj3ERGAOC0lD8YboiIiLxktFVutEGYlorTcSM/fzHcEBEReclo22BPowretBTDje8YboiIiLwU1NVStobiKk5L+YzhhoiIyEv2aalgVm6MAX/sCwXDDRERkZeMQWwojovkPjf+YrghIiLyklFZCh7ETfzYc+MzhhsiIiIvmYJ0thTAnptAYLghIiLyktFiayhWsXLTGjHcEBEReUmZltIEseeG4cZnDDdEREReUqalgrLPDXco9hfDDRERkZfslZsg7nPDyo3PGG6IiIi8pCwFD+IOxQaTBQaTJeCPfyFguCEiIvKSqQWWggNADas3PmG4ISIi8pIxiEvB1SoJ0Vo1ADYV+4rhhoiIyAtCCPtS8CBUbgB79YZ73fiG4YaIiMgLZouAsBZugnK2FGBvKmblxjcMN0RERF4wWYTyeTDOlgKAOB6e6ReGGyIiIi/Iy8CB4OxQDPAIBn8x3BAREXlBbiYGgtNQDPAIBn8x3BAREXlBXgaukqwrm4KBuxT7h+GGiIjICwZlj5vgvYXyfCn/MNwQERF5wRTEPW5kMTrrPjfsufENww0REZEXTEHe4wZwmJZi5cYnDDdEREReMJiCX7lR9rlh5cYnDDdERERekCs3EUFqJgYc97lhuPEFww0REZEXlHOlNEGs3MjHLzDc+IThhoiIyAvyJn7B2sAPcJyW4g7FvmC4ISIi8kJLrJbiJn7+aRXh5p133kHXrl0RGRmJ4cOHY8eOHQ1eu3jxYkiS5PQRGRnZgqMlIqILmbEl97lhQ7FPQh5uli5dilmzZuG5557D7t27kZWVhTFjxqC4uLjB74mPj0dBQYHycerUqRYcMRERXciUaamgLgW3hpsagxlmh4M6qXlCHm7eeOMN3H///bj77rvRr18/LFiwANHR0Vi4cGGD3yNJEtLS0pSP1NTUFhwxERFdyORTwVtiKTgA1BhYvfFWSMONwWDAr7/+itGjRyu3qVQqjB49Gtu2bWvw+6qrq9GlSxdkZmZi4sSJOHjwYIPX6vV6VFZWOn0QERH5yj4tFbzKjU6jhtYWnjg15b2QhpvS0lKYzWa3yktqaioKCws9fk/v3r2xcOFCfP311/j4449hsVhw+eWX48yZMx6vnzt3LhISEpSPzMzMgD8PIiK6cMhLwTWq4L6FxvJ8KZ+FfFrKW9nZ2bjzzjsxaNAgjBgxAl9++SWSk5Pxn//8x+P1s2fPRkVFhfJx+vTpFh4xERGFk5ZoKAYc9rph5cZrmqYvCZ6kpCSo1WoUFRU53V5UVIS0tLRmPUZERAQGDx6MY8eOebxfp9NBp9P5PVYiIiIAMLXAtBTA5eD+CGnlRqvVYsiQIVi3bp1ym8Viwbp165Cdnd2sxzCbzdi/fz/S09ODNUwiIiKFsQX2uQF4vpQ/Qlq5AYBZs2Zh+vTpuPTSSzFs2DC8+eabqKmpwd133w0AuPPOO9GxY0fMnTsXAPDCCy/gsssuQ8+ePVFeXo7XXnsNp06dwn333RfKp0FERBeIllgKDjieL8Vdir0V8nBz2223oaSkBM8++ywKCwsxaNAg/PDDD0qTcV5eHlQOTVvnz5/H/fffj8LCQrRr1w5DhgzB1q1b0a9fv1A9BSIiuoAoS8FbqKGYPTfeC3m4AYCZM2di5syZHu/buHGj09fz5s3DvHnzWmBURERE7gwmW8+NJriVm4SoCABAZR0rN95qc6uliIiIQslkkQ/ODO5baKIt3JyvZbjxFsMNERGRF+SDM7Wa4L6FJkRrAQDlrNx4jeGGiIjICwa5oVgV3GmpdtHWyk15rSGoPyccMdwQERF5Qa7caIK8FDxRCTes3HiL4YaIiMgL8lJwbZCXgidEydNSrNx4i+GGiIjIC8YWqty0Y+XGZww3REREXrCvlgpu5SbR1lBcVW9Sjnyg5mG4ISIi8oIyLRXk1VLxkfat6Cq4YsorDDdEREReUKalgrzPjUatQpwt4HA5uHcYboiIiLxgbKFTwQGgnbzXDZeDe4XhhoiIyAumFjoVHOBycF8x3BARhZHv9hVg/5mKUA8jrLXUqeCA/XwphhvvMNwQEYWJU+dqMOPT3Zj52e5QD6VNO1tehwWbjjfYxGuflgr+W6g8LXWe01JeaRWnghMRkf9KqvQAgNNltTCZLUHfhyVczd94DB9vz0OEWoV7r+zmdr/JIk9LBb9yI09LcbWUd/gnn4goTNQazAAAiwDO1fB/+r4qrLCGRDksujKYWq5yk8hpKZ8w3BARhQk53ABAUWV9CEfStlXaqiQNVUvkyk2wl4ID9o38OC3lHYYbIqIwUWc0KZ8XVjDc+EoONZX1DYSbFlwKzmkp3zDcEBGFCafKTQNTKtQ0+aDKygYbirkUvLVjuCEiChN1juGGlRuf2Ss3Jo/3t+xScJ4M7guGGyKiMMGeG//VG82oN1rDS8OVG9vZUi2yFNxWualh5cYbDDdERGGC01L+cww0DYUbeYfillhqr5wMrjcpoYqaxnBDRBQm6gz2aRROS/nGsXG3st4IIYTbNUaLbVpKFfxpKceTwRsKW+SO4YaIKEw4V24YbnzhGG6MZqFMUTmSG4q1muC/hWrUKiXgnGdTcbMx3BARhYlaoz3clNcaUe/wNTWP66ok1yXYFouAWdnnJviVG8A+NVXBpuJmY7ghIgoTjqulAKC4kn033nINM6573chTUgAQ0QKVG4DLwX3BcENEFCZqDc5Llzk15T23cOPytdxMDAARLbBDMeC4SzHDTXMx3BARhQnXyg13KfZeeV3j01KO4aYl9rkBHM+X4rRUczHcEBGFCbmhOCnW+j997nXjPddKjeu0lMFhOXbL9dzwCAZvMdwQEYUJOdx0S4oBABRzrxuvuU9LOU/1mSz2c6UkqWUbinl4ZvMx3BARhYk62+qorh2s4YbTUt6Tp37kQzFdKzlGU8udKyWzT0uxctNcDDdERGFCbijuaqvccFrKe3LlpmNilNPXspbcwE/WLsYabs5Vs3LTXAw3RERhwGKxbzjXndNSPpPDTGb7aADuPTemFjwRXNYx0TqWM+W1LfYz2zqGGyKiMFDnsGGfXLkprKj3eHwANcwt3Lj03MjnO7VkuOlsG0t+eT1MPF+qWRhuiIjCgOPRC106WN8M64xmVOlNDX0LuRBC2MNNO+vvodu0lC1ctNQycABIidNBq1HBbBEoYB9VszDcEBGFAXmPm6gINaK1GmX58MnSmlAOq02pM5qVc6M6NzAtpZwr1YKVG5VKQidbD9DpMk5NNQfDDRFRGKg1Wis00Vo1AGBI53YAgC3HSkM2prZGXo2kUUlIS4gE4KnnpuUrNwDQyRa2Tp9nuGkOhhsiojAgT0tF2cLNiN7JAIDNR0pCNqbWaOW+fNz49haPFS15CiohKgIJtuXXbj03yqGZLfv22bm9XLmpa9Gf21Yx3BARhQF5Wkqu3Fzdyxpufj11HtXsu1F8vP0U9p2pwPrDxW73KeEmOgLxURoA1sqNxWJvyjaabA3FLXRopkzuAcrjtFSzMNwQEYUBe+XG+qbcNSkGXTpEw2gW2Hb8XCiH1qqcLLWGA0/nNMnTUglREYiPtFZuhACqHQ4kVXYobsF9bgD76i1OSzUPww0RURiQN/CLjlArt8nVG05NWdUaTCi0bWzo6YTtSodpqcgINXS26ozjLsXGEOxzA9gbnDkt1TwMN0REYcB1WgoArr7IGm42MdwAsFdtAM/nNDn23ABAfJT7gZWhWAoO2KelSqv1SpClhjHcEBGFAdeGYgDI7tEBEWoJeWW1XBIO4OQ5+++BpxO2y+usgUc+yyk+0tZ349BUHIodigFrH1CcbTxnzrN60xSGGyKiMCDvUOxYuYnVaTCki3VJ+E9HWb054RDwvKncOC4HN5jtp4K3NPvUFPtumsJwQ0QUBpSeG1tDsezyHkkAgF9OlLX4mLwlhMCZ87VBOzLCKdzUuFduKmwVGjnU2JeD26+173PT8m+f8tQUw03TGG6IiMKAp2kpABjatT0AYOfJslZ/ztQ7G47hylc2YNWBwqA8vuPUnOfVUrZpqWgtACgrphynsEyWlt+hWJZp2+smj03FTWK4ISIKA0pDcYRzuBncORERaglFlfpWvdJGCIHPdpwGAOw6eT4oP8OxclNjMMNgcj6EstJtWkre68becyNPS2laeCk44DAtxeXgTWK4ISIKAw1VbiIj1BjYKREA8MuJ1rvfzf6zFThbbg1fRVXW5dpCCDy9fB+e//ag349fWW/EuRrnao1r9cat5ybS07SUbYfiEFRuOrHnptkYboiIwkCtshRc43af49RUa+U4FVVkO/m6oKIeS3edxqKfT+J8jfs0kjfkKankOJ1yqGi5y4qpkio9AKBDrHVaKsFDQ7G8FFwbgoZix54bx12TyR3DDRFRGKhzOTjT0bBu1hVTO4M03eMvIQR+cAw3tspNfrl9Gu330mq/foY8JdWtQwza2XpqHANTVb0RNbaAmBZvPTQz3kNDsTGElZsuHaIRGaFCjcHs9+9HuGO4ISIKAw1NSwHAkC7tIUnWN/hiW3BoTXKLqpz6YYoq9RBCKNNUAHC82L99epRwkxSjVG4cdykutFWL4iM1iNFZq1/yyeC/l9h/dqhOBQese+sMykwE0HqDamvBcENEFAY87VAsS4iKQJ+0eADAzhMNvymWVOkxZf5WLN2ZF5xBNmDVfmvVRt5R2WCyoLzWiIIKexA7XuJfpUKeluqaZK/cOPbcyD8rPSFKue2STGvF6/fSGpRWW6es7NNSoXn7bAtTjK0Bww0RURiobSTcAMCwrvLUVMNviusOFeHXU+excMvJgI+vMasPWsPNjVkZaGerqhRV1TtNSx0rDtC0VFJ0o5UbuVoDWHcF7p0aB8C+gsto63XRqELz9nmpLdwEa0VZuGC4ISIKA8q0VIR7QzFgf1P89VTDb4pydeREaY0y/RJsp8tqcbiwCmqVhNF9U5Bq63cprHAON82p3OzOO49XfjiMettuzbKKWiOOFFm/v1tSrL1yU2ev3MgHasr9NrKh3ZxDodG2fDxC0/LTUgBwSedEqCQgr6wWxZWtb4qxtWC4ISIKA3WGhhuKAet+NwBwqKDS7c1fJveWGMyWFju/aN2hIgDApV3aITFaq4Sb4ko98svtb955ZbXQmzyPW/bSd4cwf+NxLN152un2dzcdQ53RjD5pceiVEqucHVXusEtxgYfKDWCfBtplCzfyJn4RIarcxEVGoLdtinFXI0H1QsdwQ0TUxgkhUOvhbClHHROjkByng8kicOBshcdrfndo6vV3Gqi51h4qBgCM7psKwF45KaysR36FPWBZBHDqXMP7uwghcKSoCgCw/nCxcntBRR0W/3wSAPDU2N5QqSQkxthWSzn03BTafla6S7iRK14H8itRazCF7FRwR0ObMcV4oWO4ISJq4/QmC+STFTytlgIASZIw2LbSZk9eudv9BpMFeQ6bw/nbwNsclfVGZWPB0f2s4SY1XgfA2gBcbuuJ6ZEcYx1TI4GrpEqPKttOwtt+P6c0WL+17ij0JguGdW2PUb1TAEDp6ymvbbpy0zExCh0To2C2COTklSvhpqVPBXfEvpumMdwQEbVxcr8N4HkTP9ngztb/8e857f6mmFdWA7PDxnAtUbnZfKQERrNA9+QYdEuyBphUW7jYc7ocABCn0yDLFsoaC1yO4zWYLNh6vBTHS6rx+a4zAICnx/WGJFmrLco+Nw6Vm6JKz+EGAC61VUp2nCxTdigOxangMrlyczC/AtV6UxNXX5gYboiIAii/vA67Tpa16A6y8ongWo0K6kbOPJL7bjxVbo6X1Lh8Hfxws842JXWdbUoKAFLjrOFCXt2UkRiFHsmxHsfoyHW8G3KL8c/VuTBbBEb3TcWQLu2V+1xXS9Ubzcrn6fFRcOVYKTG0gspNeoK1mmQRwM42cNp7KDDcEFFYKqiow63/2YbPXZpLg+lYcRVueOsn3LxgG656dQPeWndUmcZorq9zzmLV/gKvvqexPW4cXdwxASrJOgVTWOG80kZuJu6TZl36fKy4OqiniJvMFmzItYabax3CjWvlJCMx0iHcNF25uSjVeu3XOflYdaAQkmTttXEkV24q6gwQQii/F1ERauWwTEdypWTXqTLl2lDsUOxoVB/rnkDyMnpyxnBDRGFp8daT2HGiDLO/2o/tv9sPjAzWG3ZRZT2mL9yp9HGcLa/DG2uO4O31x5r9GBtyi/HIkhzM+HS3cs5Rc9Q2cCK4qxidRllpk+MyNfW7LThc0ycFkmQ9Cbu02r/znBqz/2wFymuNSIiKwCW2ihIApNh6bmQZiVHomWLvuWno9TtmG/8fL+sCnUal9N/cNLgTLrLtVSOTw43RLFBjMDts4BepTF056p0ah6xOCag3WnDUFqIiQnAquKOx/dMBAD/+VtRiy/bbEoYbIgo7FovAyr3W6ofZIvDwZ3uwYs9ZTHznZwx9aR22HC0N6M87mF+BOz/YgbPldeieFINts69RqgX/3XYSdQYzzBaBt9cfxSe/nPL4GFX1Rvz1y/3W8Qvg52PNH2NjRy+4amhqSq6K9E2PVw5oDGbfzS+26ZRh3do7VUE6xOicptYyEqPQuX0M1CoJNQYziio9hz75eIYBHROQ3aMDAOsuwo9d18vt2iitGjqN9WeerzE02m8DWJuxX7l5oFOfTSinpQBgePf2SIyOQFmNgUcxeMBwQ0RhZ8/p8zhbXodYnQYXpcaipEqPR5fmYO/pcpRW63HXoh1+HTHw6S95uOafG3HXoh2Y8clu/OHfW5BbVIXkOB0+vGcY0hOi8MBV3ZHZPgrna41Y/utpvP/T7/jnj0fwt68OePzZ//j+sNNxA5uPljR7PPZDMxtuJpY1tGJKXgbeIzkWPVOsUzvHgth3s8MWboZ3a+90u1olISXOXr3JSIyEVqNCl/bWwOVacQKswVDehK9HcixuHtIJAPD/RnRHJ1tQc5XosGJKWSkV7zncAECftHjMHGUPSqFcCg5Yw5Xcq/TDAe+mMS8EDDdEFHa+yckHAFzfLxXz/zgECVERiNaq8eCIHpg4KAMmi8DTX+zHR9s9V1EaU1xZjxdX/obfS2uwMbcE3+0vgBDAhKwMfD3jCmTa3oQ1ahXuu7I7AODtDcfwzx9zlcd45uuD2HemHIC1svSvtUfx2Q5r4PnzNT0BAFuOljZ7Cs2bys0lXaz9Izmny5UdgMtqDMp0WrekmGYtvfaH2SKURtjLundwuz/FIWRk2M56uq6/9Y38w63ur5ncaJwcp0NCVAT+MDADO/56LWZdd1GDY3BcMSXvcdNQ5Ub2p5E9cHHHBEgSlNVdoTR2QBoAYPXBohZtYG8Lmo75RBQ2jGYLPt5+CoM7t1NOFw43JrMF39kacicMykCP5FhsfmoUNCoJMToNhBDomBiFdzcex4srf8PQru2UQyWb4811R1FnNGNgpwTcemkmzpbX4do+KcqKGke3XNoJb6w5okylXGfby2XNb0W4e9FOXNUrCWfO1yk7zT44ogdmXNMT7/30O4qr9DhSVI3eaXFuj+uqqXOlHHVPisGwbu2x40QZ3lx7BK/enKVMSXVMjEKUVq1UboK1YupQQSWq9CbE6TTom+7+e58Wr8Ne2+cZidZwMz27K97/6QS2/X4OB/Mr0D8jQbleDmE9bY3HgHNA8sS+Ysrg1HPTGK1GhWUPZqO0Wt9gRaglXdkrCbE6DQor67H3TLmy1J9YuQk4k9mCw4WVbisRiFqDf68/hue//Q3TF+5Q+gxas+2/n2tW38f5GgO+2ZuP/2w6jjfXHkVptQHtoiNwZc8kANZTsWN01v/LSZKEJ8f0xqjeyTCYLPjzZ3saPI7A1fGSamVr//8d3w9/vKwLnh7bx2OwAazTRP9zWRcAQFKsDi/fdDFevzULPZJjcK7GgBU5+dh16jxitGq8cWsW/jKuD3QaNYZ3s1YzfjpaAiEETp2rcVp1JYRwqurUN7E7sSNJkvCXcX0AAMt/PYOjRVVKM3F3W8VGWZ0UpMqN3G9zadd2Hpeuy0cwSJL984zEKNxwsbWJduGWk9h7uhx/fP8XzN94XJk+65HS/GqKfcWU0aHnxn0ZuKvICHWrCDYAoNOocU0f68aE/1p3lNUbB62icvPOO+/gtddeQ2FhIbKysvDvf/8bw4YNa/D6ZcuW4ZlnnsHJkyfRq1cvvPLKK7jhhhtacMTufj11Hi+u/A2HCiqhN1mgVkn4y9g+uO+qbpAkCSazBfvOVmDHiTKoJQkXpcWhd2ocUuN1Sne+EAImi4DZIvB7SQ1+zTuPiloDLunSDpd0bgetWoUqvQlrfivCyn35UEkSbhnSCaP7pUICUKM3IzZSA5VkPUBuyY7TqDGYMKZ/GkZclIzSagOOl1Rj2/Fz+OVEGdpFR+DGrAwM7twO+eV1qKw3IrtHB6TEuf/vxWCy4EB+BQ7mV6KyzoiqehOq9UZU15uQnhiF24dmoksH539YzBYBlWT9x9RiESiu0uN8rQGp8ZFoFx3hcVUCBc++M+V4Z4N15U5FnRGzv9yPD6ZfGtTXQQjh8+Mv+vkEnv/2N0gSMGFgBv40sgd6p8ZBpZJgMFlwML8Cm4+UYuORYuw9XQ7Xf9fHXZzeYNOnJEl47ZYsjH3zJxwpqsYtC7Zh7IA0pMZHIu9cDSBJ+ONlnZ3+LhjNFvx95W+2fVNSMKyb50Dj6qFRPSAgMG5AOjrEWntJvn34Smw+UorfS6tRXW/CLZdmOk1zXNUrCZuOlGDdoWLsP1uBr3PyEaNVY3j3DqgzmHEgvwLtY7RYeNdQpMVH4rMd1sCVHKvzOAZXl3RuhzH9U7H6YBEeWZKDKr28E7A11PRKiYNKAvIr6vF1zllMHNSxWY/bXL/YVq8N9zAlBdgDTUqcDlqN/TW898pu+HZvPr7OOYuvc87CZBHYcqwU8ZHWtzLHyk1TEuVpqZrm9dy0Vg+N6oHVBwuxMbcE8zcdx4xRPRu9vlpvwuYjJVj7WxFKqvXISIhCemIkMhKjkBYfCbNFoMZgQq3ebP3VYEaN3oR6owUqydoTpVJJ0KgkaNUqRGnViNZqEK1V2z63fiRGa5U/T6EQ8nCzdOlSzJo1CwsWLMDw4cPx5ptvYsyYMcjNzUVKSorb9Vu3bsXUqVMxd+5c/OEPf8Cnn36KSZMmYffu3RgwYEAInoFVZIQKObYdNaMi1KgzmvHS94ewIbcYJovAwbMVqDG4/+8wISoCme2jUFZtQFGV3mmH0OZYf7gYWrVK2VhKJQHxURFO24p/v7/hfRC2Hj/n9LVKsh4UFxmhRmFFPWoMJlgsAudqDNCbGl5uuGDTcQzt2h6p8ZGIUEk4UlyFI4XVMFosiNVqoDdbYHD4/mhb6btPWhz6psejT1o89CYz1h0qxrHialzatR2u6pWMw4WV2HC4GBq1Clf06IAreyWjR3KM8oZZUqXH57tOY8nOPMRoNXj15oEY2CkR1XoTcgsr0Tc9vtEmSyEEjpfUYMvREpyrMcBgtiAhKgJX9UxG/4x4qBz+V6k3mVFabUBZtQH7z1Zg9cFCHC2qwuh+qbj/qu5Kr0VuYRW+25ePw4VViNFpEKNTI1YXgbhIDQZ3TsRl3TqgpFqPv393CBtzi9EuWoukWC2q9SaU1RjRMyUGf7ysC0b2TkF1vQml1Xrkl9fhbHkdzp6vQ35FHSRIaBcTgUiNGlX1JliEwLV9U3Ft3xSPb+h1BjNmfb4XZovA5T06YNfJ81h/uBjLdp3BrUMzlevKaw1Y81sRNh4pQVKMFlOGdLL1GEhOQaXeaMbJczWIilAjs1200++TbMeJMjy5fC8kAPdf3R190+OxYONxbP/9HK6+KBmPju6Fnin2KZe8c7U4c74W/TsmYOeJMry48jfbawR8szcf3+zNR1ykBh0To/B7SY3yZ17WOzUOfdLjUFlnhADw4NU9GnzdAWslZd5tWbh38S7sP1uB/S7nLS3acgKPXXcRxg5Ig0YlYeZne6z/OVFJeGpsn0Yf21G0VoMnx/Rxu03ul/Dkql7JAA5hm8MS9hqD2enMpKp6E25dsA190+NxqKASSbFaPDCi8efs6MkxfbDmtyL8VlAJwPpv2PW2vpaE6Ag8OKIH3t14HE8t34ceybEY0NE+DVRVb8T6w8VY81sRIiPUmDGqJ7p2iMa6Q8VYkXMW3ZNicF2/NAzoGO8Wbi0WoZyJ1FBATHOo1jgalJmIIV3aKSebZ2UmYu/pclTaln33SGn+m6l8BMPJczUoqbZOGzbVc9Ma9UmLx4uTBuCp5fvw+o+56JEcgzH905x+341mC34+Voovdp/FjwcLG/23PFCyOiXg65lXBv3nNEQSwdylqRmGDx+OoUOH4u233wYAWCwWZGZm4uGHH8Zf/vIXt+tvu+021NTUYOXKlcptl112GQYNGoQFCxY0+fMqKyuRkJCAiooKxMc3f569KUazBd/vL8DATono0j4an+zIwwvfHoTRbP/tTYiKwGXd20OtkpBbWIWT52obDDNxOg0GdU5EQlQEdp4sc1r+2D05BpMHdUS9yYylO0973ItCp1HhxqwMpMZH4pu9+cgrq0W0Vo3O7aMxpEs7XNEzCSfP1eCbnHycLa9Dx8QoaNQSDpytbPA5touOwODO7ZAUq1XerKO1amz7/Rw25ja9skOtkhAfqVF2AvVVekIkLu6YgN9La3C8pBqOf4I1Kgmj+qRg67FS1BjMSIrV4aGRPTCqTwrUkgSLEKgzmnHmfB02HSnGxtySBk8/ToiKQHKcDjE6DUoq61FQWY+G/raoJOv/BE1mi/IPbUM6t49GWY0hKNumJ8XqkBSrRXmtEdFaNbrb/ue07bj19yM5TocfH70aS3edxsurDgOwnsY8sFMi9pw+j31nKtz+TMbpNNCbLDCYLYjVaRClVaO0Wq/8XsTqNOiTFod+GfHolRILjVqF48XVWPjzCbdqiiNJAi5KiUNqQiTOnq9VmkIlyfo6Gs0CU4d1xrThnfGvdUex+UiJ0z/KidERyO7eASMuSsaI3slIb8aUgidny+uw/nAxfjpSghqDCZ3bR+PA2Uq3sCM/13m3DVJ6Z4JFCIHh/1iH4io94iM1eHfaECRGR2D77+cQF6lBz5RYPPfNQeXvq1atwmcPDHfahbc5Fv98Aj8dLcX1/VMx7uJ0xEdGKPeZLQL3frgTG3NLkBynw6jeyUiM1mL3qfPIOV2unI4NWI8i6JUSpwQlWVKsFsO7d0DftDjlzbay3oj/bPodURFq7JtzvccwXlFrxNNf7MNNl3TE9f2dQ+CBsxV45YfDuOmSjpg0qCNe//EI3rZVJLfPvrbZAeX/Nv+Ol74/5PQccl8c5zGotwVPLtuLZb9aj5rokxaHa/umQAjg9Pk6bMwtVvb9AYAuHaIxpn8aeibHorCyHgUVdThbXo/iynpEqFWI1qoRo7P++x6j1SBap0ZkhBpCAGaLBWaL9Ve9yYJagxm1BjPqjWbU2io9dUYz+qXHY/4fhwT0OXrz/h3ScGMwGBAdHY3ly5dj0qRJyu3Tp09HeXk5vv76a7fv6dy5M2bNmoVHH31Uue25557DihUrsHfvXrfr9Xo99Hp7MKisrERmZmbAw40n+89UYM1vhejcIQYXd0xAr5RYp7849UYzfi+pQX55HZLidEiN1yE6QgOVCojRapRrhbBWTlSShAi1hFidRvmHwmCyIL+8DvFREYjRqVFRa0RxlR6Z7aOREBWhfH9lvQnxkZompwhOl9ViY24xdBo1UhMiER+psYWSCHTpEN3g9586V4NfTpShut6EepMZ3TrEoH9GAqK0alTrTdCoJKQnREKjVqHeaMbZ8jrkFlbhcEElfiuowiHbP4pXX5SMfhnx2Ha8FL/8XoZuSTG4rl8qLALYcqwEO0+ed6oAAdZ9O6YO64yNucVOVarICBXqjU3/D0WrVmF49/bonhSDCLUKp8pqlXDkKkItoX2MFp3aReOaPinomRKLT37Jw+YjJU6Pd/VFybiyZwcYzQJVehNq9NYKzLpDxUqoGZSZiNnj+kClknCuWo+4yAjE6jRYd7gYn+3IQ0mVHmqVhHbRWnRMjETHdlHISIhCx3ZRkGBd4aI3WRAXqUFFnRFf7Tnb6KZrqfE6zLttEC7vkQSzReCxpTn4dl++W2DrkxaHMf3TcKK0Bj8cLHT7/ZbFR2pQb7S4VVAcTbmkE/pnxOP/bA2yE7MyMCErA0t25mH1wSKna9UqCWnxkThrW8FzVa8kLLxrqPLmZzRbcKSoCgXl9eidFodO7aKCNqVmtggs2ZmHhVtO4NS5WpgsAr1SYrHgf4a0WKl9+a9nsHJfPv53fD+lwddRZb0R93+4C7tOnccrUwYqy58DqaLOiMnv/Ox0Wrise3IMxvZPw+HCKqWipNOoMHVYZxRW1GPz0RKnM69cXdUrCR/dO9zvMQohsOjnk7AIgfuu6t7s78strML0hTtQrTchQi3hpks64Zk/9PN7PKFSbzRj7veH8PmuM6jz0EPWIUaL8QPTMeWSThjYKaFNtgW0mXCTn5+Pjh07YuvWrcjOzlZuf+qpp7Bp0yb88ssvbt+j1Wrx4YcfYurUqcpt7777Lp5//nkUFRW5XT9nzhw8//zzbre3RLihwKs3mrHjRBlyC6vQIyUGAzslIsnWZyCEwLf7CrDjxDlMGGjtJVr+6xm8/9PvKKnSw2TrAYrSqpEQFYHLeyRhZO9kZPfo4DZ1ZTBZcLS4ChW1RlTpTUiK1aFLh2h0iNF6/Echv7wO1XoTVJKE1Hgd4hz+B+yo1mDtmdJp1Li+X2qD/0s0WwRqDSanINsUg8mCnSfLYBECCVERqKo34XhJNeoMZlzRMwn90uPdfl5hRT2+21+AE6XVyOqUiOweHZyaJavqjSiq1CNaq0aEWoVqW1BLS4hEhxgtTLb+sN8KKnCooAonSmsghDUETsjKUBpAzRYBk8UCncbe8Hq6rBYnSmtQWFGP2EgNruiZhISoCBRV1iO3sArDu7d3uj5UzBaBc9V6JMXqWt3/6oUQKK81ol2MNmg/o6reiHWHipFXVouSKj36Z8Tjip5JyjQsYD0Ac9ep87h9aKYylaQ3mbH3dAW2HT+Hs+W1To+pUatwZ3YXr1apUfNU1BqxfPcZnDpXo/zH9OqLkjEoM7HRc8faAoYbB6Gs3BAREVFgeBNuQtpQnJSUBLVa7RZKioqKkJbmudkuLS3Nq+t1Oh10uuatICAiIqK2L6T73Gi1WgwZMgTr1q1TbrNYLFi3bp1TJcdRdna20/UAsGbNmgavJyIiogtLyJeCz5o1C9OnT8ell16KYcOG4c0330RNTQ3uvvtuAMCdd96Jjh07Yu7cuQCARx55BCNGjMDrr7+O8ePHY8mSJdi1axfee++9UD4NIiIiaiVCHm5uu+02lJSU4Nlnn0VhYSEGDRqEH374Aamp1qWWeXl5UKnsBabLL78cn376Kf73f/8Xf/3rX9GrVy+sWLEipHvcEBERUesR8n1uWlqw9rkhIiKi4PHm/ZtnSxEREVFYYbghIiKisMJwQ0RERGGF4YaIiIjCCsMNERERhRWGGyIiIgorDDdEREQUVhhuiIiIKKww3BAREVFYCfnxCy1N3pC5srIyxCMhIiKi5pLft5tzsMIFF26qqqoAAJmZmSEeCREREXmrqqoKCQkJjV5zwZ0tZbFYkJ+fj7i4OEiSFNDHrqysRGZmJk6fPh2W51aF+/MD+BzDQbg/P4DPMRyE+/MDAv8chRCoqqpCRkaG04HanlxwlRuVSoVOnToF9WfEx8eH7R9WIPyfH8DnGA7C/fkBfI7hINyfHxDY59hUxUbGhmIiIiIKKww3REREFFYYbgJIp9Phueeeg06nC/VQgiLcnx/A5xgOwv35AXyO4SDcnx8Q2ud4wTUUExERUXhj5YaIiIjCCsMNERERhRWGGyIiIgorDDdEREQUVhhuAuSdd95B165dERkZieHDh2PHjh2hHpLP5s6di6FDhyIuLg4pKSmYNGkScnNzna4ZOXIkJEly+njwwQdDNGLvzJkzx23sffr0Ue6vr6/HjBkz0KFDB8TGxmLKlCkoKioK4Yi917VrV7fnKEkSZsyYAaBtvn6bN2/GhAkTkJGRAUmSsGLFCqf7hRB49tlnkZ6ejqioKIwePRpHjx51uqasrAzTpk1DfHw8EhMTce+996K6uroFn0XDGnt+RqMRTz/9NC6++GLExMQgIyMDd955J/Lz850ew9Pr/vLLL7fwM2lYU6/hXXfd5Tb+sWPHOl3Tml9DoOnn6OnvpSRJeO2115RrWvPr2Jz3h+b8G5qXl4fx48cjOjoaKSkpePLJJ2EymQI2ToabAFi6dClmzZqF5557Drt370ZWVhbGjBmD4uLiUA/NJ5s2bcKMGTOwfft2rFmzBkajEddffz1qamqcrrv//vtRUFCgfLz66qshGrH3+vfv7zT2LVu2KPc99thj+Pbbb7Fs2TJs2rQJ+fn5uOmmm0I4Wu/t3LnT6fmtWbMGAHDLLbco17S116+mpgZZWVl45513PN7/6quv4q233sKCBQvwyy+/ICYmBmPGjEF9fb1yzbRp03Dw4EGsWbMGK1euxObNm/HAAw+01FNoVGPPr7a2Frt378YzzzyD3bt348svv0Rubi5uvPFGt2tfeOEFp9f14YcfbonhN0tTryEAjB071mn8n332mdP9rfk1BJp+jo7PraCgAAsXLoQkSZgyZYrTda31dWzO+0NT/4aazWaMHz8eBoMBW7duxYcffojFixfj2WefDdxABflt2LBhYsaMGcrXZrNZZGRkiLlz54ZwVIFTXFwsAIhNmzYpt40YMUI88sgjoRuUH5577jmRlZXl8b7y8nIREREhli1bptx26NAhAUBs27athUYYeI888ojo0aOHsFgsQoi2/foJIQQA8dVXXylfWywWkZaWJl577TXltvLycqHT6cRnn30mhBDit99+EwDEzp07lWtWrVolJEkSZ8+ebbGxN4fr8/Nkx44dAoA4deqUcluXLl3EvHnzgju4APH0HKdPny4mTpzY4Pe0pddQiOa9jhMnThTXXHON021t6XV0fX9ozr+h33//vVCpVKKwsFC5Zv78+SI+Pl7o9fqAjIuVGz8ZDAb8+uuvGD16tHKbSqXC6NGjsW3bthCOLHAqKioAAO3bt3e6/ZNPPkFSUhIGDBiA2bNno7a2NhTD88nRo0eRkZGB7t27Y9q0acjLywMA/PrrrzAajU6vZ58+fdC5c+c2+3oaDAZ8/PHHuOeee5wOi23Lr5+rEydOoLCw0Ol1S0hIwPDhw5XXbdu2bUhMTMSll16qXDN69GioVCr88ssvLT5mf1VUVECSJCQmJjrd/vLLL6NDhw4YPHgwXnvttYCW+lvCxo0bkZKSgt69e+NPf/oTzp07p9wXbq9hUVERvvvuO9x7771u97WV19H1/aE5/4Zu27YNF198MVJTU5VrxowZg8rKShw8eDAg47rgDs4MtNLSUpjNZqcXCQBSU1Nx+PDhEI0qcCwWCx599FFcccUVGDBggHL7HXfcgS5duiAjIwP79u3D008/jdzcXHz55ZchHG3zDB8+HIsXL0bv3r1RUFCA559/HldddRUOHDiAwsJCaLVatzeM1NRUFBYWhmbAflqxYgXKy8tx1113Kbe15dfPE/m18fT3UL6vsLAQKSkpTvdrNBq0b9++zb229fX1ePrppzF16lSnAwn//Oc/45JLLkH79u2xdetWzJ49GwUFBXjjjTdCONrmGzt2LG666SZ069YNx48fx1//+leMGzcO27Ztg1qtDqvXEAA+/PBDxMXFuU17t5XX0dP7Q3P+DS0sLPT4d1W+LxAYbqhRM2bMwIEDB5x6UgA4zXFffPHFSE9Px7XXXovjx4+jR48eLT1Mr4wbN075fODAgRg+fDi6dOmCzz//HFFRUSEcWXB88MEHGDduHDIyMpTb2vLrd6EzGo249dZbIYTA/Pnzne6bNWuW8vnAgQOh1Wrx//7f/8PcuXPbxDb/t99+u/L5xRdfjIEDB6JHjx7YuHEjrr322hCOLDgWLlyIadOmITIy0un2tvI6NvT+0BpwWspPSUlJUKvVbp3gRUVFSEtLC9GoAmPmzJlYuXIlNmzYgE6dOjV67fDhwwEAx44da4mhBVRiYiIuuugiHDt2DGlpaTAYDCgvL3e6pq2+nqdOncLatWtx3333NXpdW379ACivTWN/D9PS0tya/E0mE8rKytrMaysHm1OnTmHNmjVOVRtPhg8fDpPJhJMnT7bMAAOse/fuSEpKUv5chsNrKPvpp5+Qm5vb5N9NoHW+jg29PzTn39C0tDSPf1fl+wKB4cZPWq0WQ4YMwbp165TbLBYL1q1bh+zs7BCOzHdCCMycORNfffUV1q9fj27dujX5PTk5OQCA9PT0II8u8Kqrq3H8+HGkp6djyJAhiIiIcHo9c3NzkZeX1yZfz0WLFiElJQXjx49v9Lq2/PoBQLdu3ZCWlub0ulVWVuKXX35RXrfs7GyUl5fj119/Va5Zv349LBaLEu5aMznYHD16FGvXrkWHDh2a/J6cnByoVCq3qZy24syZMzh37pzy57Ktv4aOPvjgAwwZMgRZWVlNXtuaXsem3h+a829odnY29u/f7xRU5bDer1+/gA2U/LRkyRKh0+nE4sWLxW+//SYeeOABkZiY6NQJ3pb86U9/EgkJCWLjxo2ioKBA+aitrRVCCHHs2DHxwgsviF27dokTJ06Ir7/+WnTv3l1cffXVIR558zz++ONi48aN4sSJE+Lnn38Wo0ePFklJSaK4uFgIIcSDDz4oOnfuLNavXy927dolsrOzRXZ2dohH7T2z2Sw6d+4snn76aafb2+rrV1VVJfbs2SP27NkjAIg33nhD7NmzR1kt9PLLL4vExETx9ddfi3379omJEyeKbt26ibq6OuUxxo4dKwYPHix++eUXsWXLFtGrVy8xderUUD0lJ409P4PBIG688UbRqVMnkZOT4/T3Ul5dsnXrVjFv3jyRk5Mjjh8/Lj7++GORnJws7rzzzhA/M7vGnmNVVZV44oknxLZt28SJEyfE2rVrxSWXXCJ69eol6uvrlcdoza+hEE3/ORVCiIqKChEdHS3mz5/v9v2t/XVs6v1BiKb/DTWZTGLAgAHi+uuvFzk5OeKHH34QycnJYvbs2QEbJ8NNgPz73/8WnTt3FlqtVgwbNkxs37491EPyGQCPH4sWLRJCCJGXlyeuvvpq0b59e6HT6UTPnj3Fk08+KSoqKkI78Ga67bbbRHp6utBqtaJjx47itttuE8eOHVPur6urEw899JBo166diI6OFpMnTxYFBQUhHLFvVq9eLQCI3Nxcp9vb6uu3YcMGj38up0+fLoSwLgd/5plnRGpqqtDpdOLaa691e+7nzp0TU6dOFbGxsSI+Pl7cfffdoqqqKgTPxl1jz+/EiRMN/r3csGGDEEKIX3/9VQwfPlwkJCSIyMhI0bdvX/GPf/zDKRiEWmPPsba2Vlx//fUiOTlZREREiC5duoj777/f7T+Jrfk1FKLpP6dCCPGf//xHREVFifLycrfvb+2vY1PvD0I079/QkydPinHjxomoqCiRlJQkHn/8cWE0GgM2Tsk2WCIiIqKwwJ4bIiIiCisMN0RERBRWGG6IiIgorDDcEBERUVhhuCEiIqKwwnBDREREYYXhhoiIiMIKww0RXfAkScKKFStCPQwiChCGGyIKqbvuuguSJLl9jB07NtRDI6I2ShPqARARjR07FosWLXK6TafThWg0RNTWsXJDRCGn0+mQlpbm9NGuXTsA1imj+fPnY9y4cYiKikL37t2xfPlyp+/fv38/rrnmGkRFRaFDhw544IEHUF1d7XTNwoUL0b9/f+h0OqSnp2PmzJlO95eWlmLy5MmIjo5Gr1698M033wT3SRNR0DDcEFGr98wzz2DKlCnYu3cvpk2bhttvvx2HDh0CANTU1GDMmDFo164ddu7ciWXLlmHt2rVO4WX+/PmYMWMGHnjgAezfvx/ffPMNevbs6fQznn/+edx6663Yt28fbrjhBkybNg1lZWUt+jyJKEACdgQnEZEPpk+fLtRqtYiJiXH6eOmll4QQ1lOIH3zwQafvGT58uPjTn/4khBDivffeE+3atRPV1dXK/d99951QqVTKidIZGRnib3/7W4NjACD+93//V/m6urpaABCrVq0K2PMkopbDnhsiCrlRo0Zh/vz5Tre1b99e+Tw7O9vpvuzsbOTk5AAADh06hKysLMTExCj3X3HFFbBYLMjNzYUkScjPz8e1117b6BgGDhyofB4TE4P4+HgUFxf7+pSIKIQYbogo5GJiYtymiQIlKiqqWddFREQ4fS1JEiwWSzCGRERBxp4bImr1tm/f7vZ13759AQB9+/bF3r17UVNTo9z/888/Q6VSoXfv3oiLi0PXrl2xbt26Fh0zEYUOKzdEFHJ6vR6FhYVOt2k0GiQlJQEAli1bhksvvRRXXnklPvnkE+zYsQMffPABAGDatGl47rnnMH36dMyZMwclJSV4+OGH8T//8z9ITU0FAMyZMwcPPvggUlJSMG7cOFRVVeHnn3/Gww8/3LJPlIhaBMMNEYXcDz/8gPT0dKfbevfujcOHDwOwrmRasmQJHnroIaSnp+Ozzz5Dv379AADR0dFYvXo1HnnkEQwdOhTR0dGYMmUK3njjDeWxpk+fjvr6esybNw9PPPEEkpKScPPNN7fcEySiFiUJIUSoB0FE1BBJkvDVV19h0qRJoR4KEbUR7LkhIiKisMJwQ0RERGGFPTdE1Kpx5pyIvMXKDREREYUVhhsiIiIKKww3REREFFYYboiIiCisMNwQERFRWGG4ISIiorDCcENERERhheGGiIiIwgrDDREREYWV/w8asosaU+hzbwAAAABJRU5ErkJggg==\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVqElEQVR4nO3deXhTVf4/8HeatuneAt2h7MgqiyylriAomwiIoyKOiNtPBUdc5jswjgiOCuioqCjuoI4IgoAMspd9p0DZKVtLC93pvqVtcn5/tLnkpmla0rS5N7xfz9PH5ube25NLbd4553PO1QghBIiIiIgUyM3ZDSAiIiKqDYMKERERKRaDChERESkWgwoREREpFoMKERERKRaDChERESkWgwoREREpFoMKERERKRaDChERESkWgwoRNRmNRoNZs2bd8HFJSUnQaDRYvHixzf22b98OjUaD7du329U+IlIeBhWim8zixYuh0Wig0Wiwe/fuGs8LIRAVFQWNRoMHHnjACS0kIrqOQYXoJuXl5YUlS5bU2L5jxw5cuXIFOp3OCa0iIpJjUCG6SY0cORLLly9HZWWlbPuSJUvQt29fhIeHO6llRETXMagQ3aQmTJiAa9euYfPmzdK28vJyrFixAo8//rjVY4qLi/H6668jKioKOp0OnTt3xn/+8x9Y3oRdr9fj1VdfRUhICPz9/fHggw/iypUrVs959epVPP300wgLC4NOp0P37t3xww8/OO6FAli+fDn69u0Lb29vBAcH44knnsDVq1dl+6Snp2Py5Mlo1aoVdDodIiIiMGbMGCQlJUn7xMXFYdiwYQgODoa3tzfatWuHp59+2qFtJSI5d2c3gIico23btoiJicGvv/6KESNGAADWr1+P/Px8PPbYY/jss89k+wsh8OCDD2Lbtm145pln0Lt3b2zcuBF///vfcfXqVXzyySfSvs8++yz++9//4vHHH8ftt9+OrVu3YtSoUTXakJGRgYEDB0Kj0WDq1KkICQnB+vXr8cwzz6CgoADTpk1r8OtcvHgxJk+ejP79+2POnDnIyMjAp59+ij179uDo0aMICgoCAIwfPx6nTp3Cyy+/jLZt2yIzMxObN29GcnKy9Pj+++9HSEgIpk+fjqCgICQlJWHlypUNbiMR2SCI6KayaNEiAUAcOnRILFiwQPj7+4uSkhIhhBB/+ctfxODBg4UQQrRp00aMGjVKOm716tUCgHj33Xdl53v44YeFRqMRFy5cEEIIER8fLwCIl156Sbbf448/LgCIt99+W9r2zDPPiIiICJGdnS3b97HHHhOBgYFSuxITEwUAsWjRIpuvbdu2bQKA2LZtmxBCiPLychEaGip69OghSktLpf3Wrl0rAIiZM2cKIYTIzc0VAMSHH35Y67lXrVolXTciajoc+iG6iT3yyCMoLS3F2rVrUVhYiLVr19Y67LNu3TpotVr87W9/k21//fXXIYTA+vXrpf0A1NjPsndECIHff/8do0ePhhAC2dnZ0tewYcOQn5+PI0eONOj1xcXFITMzEy+99BK8vLyk7aNGjUKXLl3w559/AgC8vb3h6emJ7du3Izc31+q5TD0va9euRUVFRYPaRUT15zJBZefOnRg9ejQiIyOh0WiwevXqGz7Hb7/9ht69e8PHxwdt2rTBhx9+6PiGEilISEgIhg4diiVLlmDlypUwGAx4+OGHre57+fJlREZGwt/fX7a9a9eu0vOm/7q5uaFDhw6y/Tp37ix7nJWVhby8PHzzzTcICQmRfU2ePBkAkJmZ2aDXZ2qT5c8GgC5dukjP63Q6zJs3D+vXr0dYWBjuvvtufPDBB0hPT5f2v+eeezB+/HjMnj0bwcHBGDNmDBYtWgS9Xt+gNhKRbS5To1JcXIxevXrh6aefxkMPPXTDx69fvx4TJ07E559/jvvvvx9nzpzBc889B29vb0ydOrURWkykDI8//jiee+45pKenY8SIEVLPQWMzGo0AgCeeeAKTJk2yuk/Pnj2bpC1AVY/P6NGjsXr1amzcuBFvvfUW5syZg61bt6JPnz7QaDRYsWIF9u/fj//973/YuHEjnn76aXz00UfYv38//Pz8mqytRDcTl+lRGTFiBN59912MGzfO6vN6vR5vvPEGWrZsCV9fX0RHR8tWr/z5558xduxYvPDCC2jfvj1GjRqFGTNmYN68eTVmNBC5knHjxsHNzQ379++vddgHANq0aYPU1FQUFhbKtp89e1Z63vRfo9GIixcvyvZLSEiQPTbNCDIYDBg6dKjVr9DQ0Aa9NlObLH+2aZvpeZMOHTrg9ddfx6ZNm3Dy5EmUl5fjo48+ku0zcOBAvPfee4iLi8Mvv/yCU6dOYenSpQ1qJxHVzmWCSl2mTp2Kffv2YenSpTh+/Dj+8pe/YPjw4Th//jyAqiBjPoYNVI1bX7lyReoeJnJFfn5+WLhwIWbNmoXRo0fXut/IkSNhMBiwYMEC2fZPPvkEGo1Gmjlk+q/lrKH58+fLHmu1WowfPx6///47Tp48WePnZWVl2fNyZPr164fQ0FB89dVXsiGa9evX48yZM9JMpJKSEpSVlcmO7dChA/z9/aXjcnNza3xo6d27NwBw+IeoEbnM0I8tycnJWLRoEZKTkxEZGQkAeOONN7BhwwYsWrQI77//PoYNG4ZXX30VTz31FAYPHowLFy5In6TS0tLQtm1bJ74CosZV29CLudGjR2Pw4MF48803kZSUhF69emHTpk34448/MG3aNKkmpXfv3pgwYQK+/PJL5Ofn4/bbb0dsbCwuXLhQ45xz587Ftm3bEB0djeeeew7dunVDTk4Ojhw5gi1btiAnJ6dBr8vDwwPz5s3D5MmTcc8992DChAnS9OS2bdvi1VdfBQCcO3cOQ4YMwSOPPIJu3brB3d0dq1atQkZGBh577DEAwI8//ogvv/wS48aNQ4cOHVBYWIhvv/0WAQEBGDlyZIPaSUS1uymCyokTJ2AwGHDLLbfItuv1erRo0QIA8Nxzz+HixYt44IEHUFFRgYCAALzyyiuYNWsW3Nxumo4nolq5ublhzZo1mDlzJpYtW4ZFixahbdu2+PDDD/H666/L9v3hhx8QEhKCX375BatXr8a9996LP//8E1FRUbL9wsLCcPDgQbzzzjtYuXIlvvzyS7Ro0QLdu3fHvHnzHNLup556Cj4+Ppg7dy7+8Y9/wNfXF+PGjcO8efOkepyoqChMmDABsbGx+Pnnn+Hu7o4uXbrgt99+w/jx4wFUFdMePHgQS5cuRUZGBgIDAzFgwAD88ssvaNeunUPaSkQ1aYQLFmBoNBqsWrUKY8eOBQAsW7YMEydOxKlTp6DVamX7+vn5yZYKNxgMSE9PR0hICGJjYzFy5EhkZmYiJCSkKV8CERER4SbpUenTpw8MBgMyMzNx11132dxXq9WiZcuWAIBff/0VMTExDClERERO4jJBpaioSDYGnpiYiPj4eDRv3hy33HILJk6ciCeffBIfffQR+vTpg6ysLMTGxqJnz54YNWoUsrOzsWLFCgwaNAhlZWVYtGgRli9fjh07djjxVREREd3cXGboZ/v27Rg8eHCN7ZMmTcLixYtRUVGBd999Fz/99BOuXr2K4OBgDBw4ELNnz8att96K7OxsjB49GidOnIAQAjExMXjvvfcQHR3thFdDREREgAsFFSIiInI9nM5CREREisWgQkRERIql6mJao9GI1NRU+Pv7Q6PROLs5REREVA9CCBQWFiIyMrLOtcpUHVRSU1NrLCBFRERE6pCSkoJWrVrZ3EfVQcV0u/mUlBQEBAQ4uTVERERUHwUFBYiKipLex21RdVAxDfcEBAQwqBAREalMfco2WExLREREisWgQkRERIrFoEJERESKpeoaFSIiosZgNBpRXl7u7GaoloeHB7RarUPOxaBCRERkpry8HImJiTAajc5uiqoFBQUhPDy8weucMagQERFVE0IgLS0NWq0WUVFRdS5GRjUJIVBSUoLMzEwAQERERIPOx6BCRERUrbKyEiUlJYiMjISPj4+zm6Na3t7eAIDMzEyEhoY2aBiIUZGIiKiawWAAAHh6ejq5JepnCnoVFRUNOg+DChERkQXeP67hHHUNGVSIiIhIsRhUiIiIqIa2bdti/vz5zm4GgwoREZGaaTQam1+zZs2y67yHDh3C888/79jG2oGzfkj1hBDQVxrh5eGYxYWIiNQkLS1N+n7ZsmWYOXMmEhISpG1+fn7S90IIGAwGuLvX/fYfEhLi2IbaiT0qpHpTlxxFl7c2IPlaibObQkTU5MLDw6WvwMBAaDQa6fHZs2fh7++P9evXo2/fvtDpdNi9ezcuXryIMWPGICwsDH5+fujfvz+2bNkiO6/l0I9Go8F3332HcePGwcfHB506dcKaNWsa/fUxqJDq/Xmi6tPELwcvO7klRORqhBAoKa90ypcQwmGvY/r06Zg7dy7OnDmDnj17oqioCCNHjkRsbCyOHj2K4cOHY/To0UhOTrZ5ntmzZ+ORRx7B8ePHMXLkSEycOBE5OTkOa6c1HPohl6EBpxMSkWOVVhjQbeZGp/zs0+8Mg4+nY96m33nnHdx3333S4+bNm6NXr17S43//+99YtWoV1qxZg6lTp9Z6nqeeegoTJkwAALz//vv47LPPcPDgQQwfPtwh7bSGPSpEREQurl+/frLHRUVFeOONN9C1a1cEBQXBz88PZ86cqbNHpWfPntL3vr6+CAgIkJbKbyzsUSEiIqqFt4cWp98Z5rSf7Si+vr6yx2+88QY2b96M//znP+jYsSO8vb3x8MMP13nHaA8PD9ljjUbT6DdvZFAhl8GFJInI0TQajcOGX5Rkz549eOqppzBu3DgAVT0sSUlJzm1ULTj0Q0REdJPp1KkTVq5cifj4eBw7dgyPP/54o/eM2ItBhYiI6Cbz8ccfo1mzZrj99tsxevRoDBs2DLfddpuzm2WVRjhy/lMTKygoQGBgIPLz8xEQEODs5pCTtJ3+JwDgpUEd8H/Duzi5NUSkZmVlZUhMTES7du3g5eXl7Oaomq1reSPv3+xRIZfBGhUiItejmKAyd+5caDQaTJs2zdlNISIiIoVQRFA5dOgQvv76a9n8bCIiIiKnB5WioiJMnDgR3377LZo1a+bs5pCKcWVaIiLX4/SgMmXKFIwaNQpDhw6tc1+9Xo+CggLZFxERkaOpeJ6JYjjqGjp1FZulS5fiyJEjOHToUL32nzNnDmbPnt3IrSIiopuVVlu1Gmx5eTm8vb2d3Bp1KympuqO95Wq2N8ppQSUlJQWvvPIKNm/eXO8pYDNmzMBrr70mPS4oKEBUVFRjNZFUhrN+iKih3N3d4ePjg6ysLHh4eMDNzekDD6ojhEBJSQkyMzMRFBQkhT97OS2oHD58GJmZmbIFZgwGA3bu3IkFCxZAr9fXeHE6nQ46na6pm0oqwZxCRA2l0WgQERGBxMREXL582dnNUbWgoCCEh4c3+DxOCypDhgzBiRMnZNsmT56MLl264B//+EeDExgREZE9PD090alTpzpv0Ee18/DwcNj7uNOCir+/P3r06CHb5uvrixYtWtTYTkRE1JTc3Ny4Mq1CcPCNXAeLVIiIXI6i7l29fft2ZzeBiIiIFIQ9KkRERKRYDCrkMjjwQ0TkehhUyGWwRIWIyPUwqBAREZFiMagQERGRYjGokMvg3ZOJiFwPgwoREREpFoMKERERKRaDCrkMzvohInI9DCpERESkWAwq5DLYoUJE5HoYVIiIiEixGFTIZbBGhYjI9TCoEBERkWIxqBAREZFiMaiQy9Bw7IeIyOUwqBAREZFiMagQERGRYjGokMvgyA8RkethUCEiIiLFYlAhIiIixWJQISIiIsViUCFVE0JI32t4tx8iIpfDoEKqZpZTiIjIBTGokKqZ5xTO+iEicj0MKqRqRtnQDxERuRoGFVI1Dv0QEbk2BhVSNQEmFSIiV8agQqrGHhUiItfGoEIug8W0RESuh0GFVI09KkREro1BhVTNvEaFC74REbkeBhVSNaNZjwqHfoiIXA+DCqma4NgPEZFLY1AhVWNMISJybQwqpGrsUCEicm0MKqRuDCpERC6NQYVUjSvTEhG5NgYVUjUO/RARuTYGFVI185yi4fxkIiKXw6BCqmZklwoRkUtjUCFVY04hInJtDCqkaubFtFz8jYjI9TCokLoxmxARuTQGFVI185zCDhUiItfDoEKqxnBCROTaGFRI1WQ1KhwHIiJyOQwqpGpGs2zC3hUiItfDoEKqxpk+RESujUGFVM08pzCyEBG5HgYVchnsXCEicj0MKqRq8h4VJhUiIlfDoEKqxnBCROTaGFRI1QRn/RARuTQGFVI1ZhMiItfGoEKqZmQ3ChGRS2NQIVWTD/0wtBARuRoGFVI5syX0mVOIiFwOgwqpGsMJEZFrY1AhVRO1fE9ERK6BQYVUjdOTiYhcG4MKqZr5gm9c/I2IyPUwqJCqGY3ObgERETUmBhVSNcFZP0RELo1BhVRNflNCIiJyNQwqREREpFgMKqRqsuEejv0QEbkcBhVSNfmsHyIicjUMKqRqXEeFiMi1OTWoLFy4ED179kRAQAACAgIQExOD9evXO7NJpDLMJkRErs2pQaVVq1aYO3cuDh8+jLi4ONx7770YM2YMTp065cxmkYoYBRd8IyJyZe7O/OGjR4+WPX7vvfewcOFC7N+/H927d3dSq0hNOPRDROTanBpUzBkMBixfvhzFxcWIiYlxdnNINZhOiIhcmdODyokTJxATE4OysjL4+flh1apV6Natm9V99Xo99Hq99LigoKCpmkkKxQXfiIhcm9Nn/XTu3Bnx8fE4cOAAXnzxRUyaNAmnT5+2uu+cOXMQGBgofUVFRTVxa0lpuIwKEZFrc3pQ8fT0RMeOHdG3b1/MmTMHvXr1wqeffmp13xkzZiA/P1/6SklJaeLWktLIe1SYVIiIXI3Th34sGY1G2fCOOZ1OB51O18QtIiUT7EYhInJpTg0qM2bMwIgRI9C6dWsUFhZiyZIl2L59OzZu3OjMZpGKGGVjP05rBhERNRKnBpXMzEw8+eSTSEtLQ2BgIHr27ImNGzfivvvuc2azSEW4hD4RkWtzalD5/vvvnfnjyRUwnRARuTSnF9MSNYR81g9TCxGRq2FQIVXjyrRERK6NQYVUjVOSiYhcG4MKqRpXpiUicm0MKqRq9q5MazAKfBZ7HvsvXXN4m4iIyHEUt+Ab0Y0wCvPpyfVPKiuPXMHHm88BAJLmjnJ4u4iIyDHYo0LqZud4T2J2sWPbQUREjYJBhVRNtuAbi1SIiFwOgwqpGsMJEZFrY1AhVWNQISJybQwqpGr2rkzLfENEpA4MKqRqQvCmhEREroxBhVTN3nVUNA5vCRERNQYGFVI1e29EyN4XIiJ1YFAhVZMvoc/4QUTkahhUSNXsHfohIiJ1YFAhVWM4ISJybQwqpGqylWlv5DgGHCIiVWBQIVWT1agwfBARuRwGFVI1YeMRERGpH4MKqZq905OJiEgdGFRI1Tj0Q0Tk2hhUSNVkxbQ3EFS45goRkTowqJCqsReFiMi1MaiQqnFlWiIi18agQqrGlWmJiFwbgwqpmt2zfhhqiIhUgUGFVE3U8j0REbkGBhVSNfMeFQ79EBG5HgYVUjUW0xIRuTYGFVI1RhMiItfGoEKqJlikQkTk0hhUSNVkK9M6sR1ERNQ4GFRI1Tg7mYjItTGokKrJF3xj/CAicjUMKqRqsunJTmwHERE1DgYVUjXZ9GQmFSIil8OgQqpm73APh4mIiNSBQYVUjbOTiYhcG4MKqZp86Kf+UYUdKkRE6sCgQqrGvEFE5NoYVEjV7J31o9E4vi1EROR4DCrkOm4gqdg7ZERERE2LQYVUzSjrUbF3BpCjWkNERI7GoEKq5oiQYWRSISJSLAYVUjX5EvoNPwcRESkLgwqpmr0r0zoi4BARUeNjUCFVs7cuxdHnICKixsGgQqom61FhMS0RkcthUCGXYXeNCoMKEZFiMaiQqhmNHPohInJlDCqkavbelNDeIlwiImpaDCqkao4IHFxHhYhIuRhUSNWE3X0qDT2KiIiaAoMKqZojOkPYoUJEpFwMKqRq9i7cJuuJYVAhIlIsu4JKSkoKrly5Ij0+ePAgpk2bhm+++cZhDSOqF9lNCe3DGhUiIuWyK6g8/vjj2LZtGwAgPT0d9913Hw4ePIg333wT77zzjkMbSGSLIyIGYwoRkXLZFVROnjyJAQMGAAB+++039OjRA3v37sUvv/yCxYsXO7J9RDaZ94YIO3tG7D2OiIgan11BpaKiAjqdDgCwZcsWPPjggwCALl26IC0tzXGtI6qDsLPUxN7jiIioadkVVLp3746vvvoKu3btwubNmzF8+HAAQGpqKlq0aOHQBhLZYq2Ydv2JNJxOLaj3OVijQkSkXHYFlXnz5uHrr7/GoEGDMGHCBPTq1QsAsGbNGmlIiKgpWGaMw5dz8OIvRzDys102jzOyS4WISBXc7Tlo0KBByM7ORkFBAZo1ayZtf/755+Hj4+OwxhHVxXyasQBwJq2wfscxpxARqYJdPSqlpaXQ6/VSSLl8+TLmz5+PhIQEhIaGOrSBRDbJltCvf+SQF+E6skFERORIdgWVMWPG4KeffgIA5OXlITo6Gh999BHGjh2LhQsXOrSBRLZYZoz6Zg7z/VijQkSkXHYFlSNHjuCuu+4CAKxYsQJhYWG4fPkyfvrpJ3z22WcObSCRLUajRcioZ+gQDlgojoiIGp9dQaWkpAT+/v4AgE2bNuGhhx6Cm5sbBg4ciMuXLzu0gUS22L2Evp1DRkRE1LTsCiodO3bE6tWrkZKSgo0bN+L+++8HAGRmZiIgIMChDSSyRV4UK+rdO8IaFSIidbArqMycORNvvPEG2rZtiwEDBiAmJgZAVe9Knz59HNpAIlsso0l9Q4e8R8WBDSIiIoeya3ryww8/jDvvvBNpaWnSGioAMGTIEIwbN85hjSOqi72BQzZkxCoVIiLFsqtHBQDCw8PRp08fpKamSndSHjBgALp06VLvc8yZMwf9+/eHv78/QkNDMXbsWCQkJNjbJLrJCVH/ehMO/RARqYNdQcVoNOKdd95BYGAg2rRpgzZt2iAoKAj//ve/YTQa632eHTt2YMqUKdi/fz82b96MiooK3H///SguLranWXQTsrsQlgu+ERGpgl1DP2+++Sa+//57zJ07F3fccQcAYPfu3Zg1axbKysrw3nvv1es8GzZskD1evHgxQkNDcfjwYdx99932NI1uMpZDOPYU03IdFSIi5bIrqPz444/47rvvpLsmA0DPnj3RsmVLvPTSS/UOKpby8/MBAM2bN7f6vF6vh16vlx4XFNT/xnPkmiyHcOpdTGv+PXMKEZFi2TX0k5OTY7UWpUuXLsjJybGrIUajEdOmTcMdd9yBHj16WN1nzpw5CAwMlL6ioqLs+lnkOuwNGfJ14phUiIiUyq6g0qtXLyxYsKDG9gULFqBnz552NWTKlCk4efIkli5dWus+M2bMQH5+vvSVkpJi188i1yFq+b7O41hMS0SkCnYN/XzwwQcYNWoUtmzZIq2hsm/fPqSkpGDdunU3fL6pU6di7dq12LlzJ1q1alXrfjqdDjqdzp4mk4sSFkml3vf6MdvRchV+IiJSDrt6VO655x6cO3cO48aNQ15eHvLy8vDQQw/h1KlT+Pnnn+t9HiEEpk6dilWrVmHr1q1o166dPc2hm5r5PXtEvWcBCYvjiIhImezqUQGAyMjIGkWzx44dw/fff49vvvmmXueYMmUKlixZgj/++AP+/v5IT08HAAQGBsLb29veptFNxDyXHErKxaGkXLPnBDQaTZ3HceiHiEi57F7wzREWLlyI/Px8DBo0CBEREdLXsmXLnNksUhFbIcPWc1zwjYhIHezuUXEE3rWWGsrWGii2frvkNSr8PSQiUiqn9qgQNZStiGErgLCAlohIHW6oR+Whhx6y+XxeXl5D2kJ0w+o7vGPlyHqdg4iInOuGgkpgYGCdzz/55JMNahDRjbA1Y8d2iKnfOYiIyLluKKgsWrSosdpBZB87i2mF7F4/DmwPERE5FGtUSNUcUaPCom4iIuViUCFVsxUy6jsjiDGFiEi5GFRI1epXLmvlOa6jQkSkCgwqpGq26kuE0cZzHPohIlIFBhVSNfuHfszv9UNERErFoEKqZncxrVlvCztUiIiUi0GF1M3W0I/Nw8xrVJhUiIiUikGFVM3WYm31nZ7MdVSIiJSLQYVUzd67J5vnG65MS0SkXAwqpGr23utH9hxzChGRYjGokKrZnNlTz/oV5hQiIuViUCFVs3fWj/xeP4wqRERKxaBCqmZvjYr8Xj+Oaw8RETkWgwqpHO/1Q0TkyhhUSNXs7VGR3+uHUYWISKkYVEjV7K9Rsf49EREpC4MKqZrte/3Ufpx5iOE6KkREysWgQqpmO2KwR4WISO0YVEjVbPea2HrOvEbFgQ0iIiKHYlAhVbM99FO/BMJ1VIiIlItBhVTN5lopxvodx5hCRKRcDCqkarbXSqlfbws7VIiIlItBhVTNEff6YZ8KEZFyMaiQqtW3YNbWc7bOQUREzsWgQqpm7zoq4PRkIiJVYFAhVbMVRuo7I4gLvhERKReDCqma7eGd2o+T3ZSQOYWISLEYVEjVHNGjwnVUiIiUi0GF1M3m9GS7DiMiIgVhUCFVsznrx8aTvNcPEZE6MKiQqtldo8JiWiIiVWBQIVWzt0bF/BlbS+0TEZFzMaiQqtU3jFiST08mIiKlYlAhVavv6rOW5DUqjCpERErFoEKqZnsJ/fo9x5hCRKRcDCqkavb2qJjHE/aoEBEpF4MKqVo9s0gNRk5PJiJSBQYVUjX7a1RYTEtEpAYMKqRq9q6jwh4VIiJ1YFAhVbO1BorNqcu81w8RkSowqJCq2b7xoI3javmeiIiUhUGFVM3ulWlFbQ+IiEhJGFRI1eqqURFCILOgrMZzLKYlIlIHBhVSNdvDOwIfbz6HAe/H4se9SbUeZ+suy0RE5FwMKqRqddWofL71AgDg7TWn5MeBPSpERGrAoEKqVt+1UmoeZ76fI1tERESOxKBCqmZ7rZT6TfthTiEiUi4GFVK1+t4h2dZxvNcPEZFyMaiQqtkOIzaOq+c5iIjIuRhUSNUcc68fJhUiIqViUCFV492TiYhcG4MKqZqtXpPf4lKsbresSeEyKkREysWgQqpmqzck7nJuvY7h0A8RkXIxqJCq2XPnY8sjOPRDRKRcDCqkavYEFXuOISIi52BQIVWzp77EMqfwXj9ERMrFoEKqZe9CbZY9KowpRETKxaBCquWojhCOBBERKReDCqmWvbUmnPVDRKQeDCqkWvYGFcvjWKJCRKRcDCqkWvYO2dQ4jGM/RESKxaBCquWoHhXGFCIi5WJQIdWyd8imRo0KkwoRkWIxqJBq2V9Ma1mjwqRCRKRUDCqkWsJo53E1Zv0QEZFSMaiQajmsRoVJhYhIsZwaVHbu3InRo0cjMjISGo0Gq1evdmZzSGXsHvqp8ZhJhYhIqZwaVIqLi9GrVy988cUXzmyGopSUVzq7CarBYloiItfn7swfPmLECIwYMcKZTVCUFYev4I3lx/Du2B54YmAbZzdH8ey914/lcfaeh4iIGp+qalT0ej0KCgpkX67kjeXHAAD/Wn3SyS1RB7t7VCwfM6cQESmWqoLKnDlzEBgYKH1FRUU5u0nkRFzwjYjI9akqqMyYMQP5+fnSV0pKirObRE5kb8CwzDdcR4WISLmcWqNyo3Q6HXQ6nbObQQphtHPsh9OTiYjUQ1U9KkTm7L4pIYMJEZFqOLVHpaioCBcuXJAeJyYmIj4+Hs2bN0fr1q2d2DJSA/uX0Ld8zORCRKRUTg0qcXFxGDx4sPT4tddeAwBMmjQJixcvdlKrSC3sX/DN8l4/jmgNERE1BqcGlUGDBvHTLNnNWsB4pF8rBPl44pudl2o9rua9fvg7SESkVKxRIdWyFnJ9PN3hqbX9a81iWiIi9WBQIdWqbchGo7F9XM17/RARkVIxqJBqmXpG3MyCiZtGA00tScU0nZlL6BMRqQeDCqnW9aByPZhoNPLgYq6yOqgYjPLtzClERMrFoEKqZQoYsqBi8dicoTqoVBrlSYVBhYhIuRhUSLWkHhWz32KNpiqsWGOo3r/SYHmvHyYVIiKlYlAh1TJa61HRaOBWy9iPwWC9R4XrqBARKReDCqmWqUdFazHUU9usH1NAqbDsUWFQISJSLFXdlJDInJCGfuQ1KppaBn/iLucit7gcrZr5yM/DoR8iIsViUCHVMg3ZaM2HemzM+vl/Px8GALxwTwf5E8wpRESKxaEfUi3TuijynKKpddaPSVJ2sfw8HPshIlIsBhVSLWvFtEDdK9PqPOS/9owpRETKxaBCqmWqUTEf+nHToNaVaa/vI3+eHSpERMrFoEKqZX16cu01KiYl5ZWyx8wpRETKxaBCqmVtwbf6KCk3WD0PEREpD4MKqZYpXmhlS+hr6hzKKdbLe1TYpUJEpFwMKqRaRmvrqGjq7iGx7FHhOipERMrFoEKqJazdPRl1B5ViyxoV5hQiIsViUCHVMt2yx3IJ/bru3VOiZ40KEZFaMKiQalkf+tGwR4WIyIUwqJBqXZ+efH2bRnN9xdralFUYZccxpxARKReDCqmWtRoVoO6hHxMPrVv1eRzaLCIiciAGFVItqUfFTT49ub41J57upqDCpEJEpFQMKqRaUo2K5dBPPXOHp6lHxdENIyIih2FQIdUyBRWt5fTkeiYVd23VcexRISJSLgYVUi1hbeinHgu+mXiwR4WISPEYVEi1rPaoaDT1H/qprlGp7/5ERNT0GFQUgsMPN+56Ma3l9noW02pZTEtEpHQMKgph4Mf6G2asbXpyPa+laeiHiIiUi3+pFaLS4s11eVwKKgxGJ7VGHUw9IdoaNSr1O15XPfRTaWBIJCJSKgYVhbAcrvj7iuP4bleik1qjDtdXpq17HZUu4f7458gusm0+OncAQDkDIRGRYjGoKIRljwoA7Dqf5YSWKF95ZVWwsDb0U9usnw3T7sYtYf6ybX46rex81lwr0uPhhXvx26GUBrebiIhuHIOKQlirq+BdfWu6kFmIbjM34N21p6UeFfNSEw1qv26mWT4mvp5VPSr6SoO13QEA7687i7jLufi/3483qN1ERGQfBhWFsFZMa+SIRA2fbD6PSqPAd7sTa61RGX9bK6vH6iyDimnox0aPyqnU/IY2mYiIGoBBRSGsBRUDe1RsMvVCaSxm/fRp3Qx7p99bY39PrVb22Ld66EdvI6hczSttaDOJiKgB3J3dAAKK9ZX4bOv5Gts59GNbbcW0ABAZ5F1jf8uhHx9p6KdmUMkoKIMQQGFZpaOaS0REdmBQcTKjUWD057txKbu45nPMKTUIswXvTd9Z3pSwNjVrVKp6VHKKy/HX7w9g+ogu6B4ZiEqDEdHvxzqqyURE1AAc+nGyY1fyrIYUgCum1kXUsuBbbWoEFd31nL7rfDae+O4AAKCkomZxrYe2fj+DiIgci0HFydLyy2p9jkM/tpmuj3mEsKxXMeeprT2oAEBuSQUA68W1FQaBSq63QkTU5BhUnOxakb7W5zjrxzbT0JhGVqNSO1s9KuZqK64ts1F0S0REjYNBxcmyi8prfc7UY/D+ujP4ZufFpmqSalxf8O36Nps1KpY9Kp5aq/uVWRn6AYDS8trXWyEiosbBYlony7bVoyIEzmUU4pudlwAAz93V3ubQxs1GWJn1Y4tlj4q3pxYazfXzmOgraulRqSXAEBFR42GPipNds9mjAhSUVkiPaxuS+CP+Kr7bdcnhbVM60zoqbhYr09ZG66aBu1n3i4fWrUYvC1D7SrWlDCpERE2OPSpOkJ5fhpTcEvSIDERqfu0LihmFkN0DqKTcAC8P+XCFEAKvLI0HANzbJRTtQ/wapc1KYd77YbVGpY7elWa+nsgqrOrFcnfTQOfuJgVA0wq3tQVCDv0QETU9BhUnGDinfmt0CAGUlF9fcKykvBLNfT1l+5i/qRbcZIuTVVZXG9e3RgUAWgZ5S0HFQ+sGT3ctgKrrptXUEVTYo0JE1OQ49KNgRiFkK6Na+0RfYrbN7SYrXzFNI65vjQoAtGp2fcVad61Gdv8f0xBSrcW0DCpERE2OQaWJ3UhBZqVBHlRKrASVYv315ytugnU+zId+9FaCinwYqObxLc2DipsbdB7X/xeoq0eljEM/RERNjkGliZmGHeqj3GBEkVkQScsvxYyVJ3D4co60zfz5slpmq7gS8yX0TUWv5oGkrr6V8AAv6Xt3N42smFaqUbEIk6Zj2KNCRNT0GFSaWGZhzZVon7+7vdV99RUGFJZdn/Xzzv9O49eDyRi/cJ+0zbyG5WaYPmveaWStR6UusqCi1cimLNdWTBsRxKBCROQsDCpNzLJHpX2wL/45sqvVffWVRhSZDf2kWlluv0h//c3zZngjNR/euh5Urj9fV2YJC7weVDy0brLbFNQWVKQeFQ79EBE1OQaVJpZpEVS8a1kdFah6w6xrJk/xTTb0IwsqFVZqVGB7Of1bwvyl7z21brLbFJjOY9kzFeDlYXU7ERE1Pk5PbmKZBfKg4mMjqADAtWLrC8LpKw3QuWstgorrv5GaB5Xy6u/rKqA156dzx97p90LrpoGbm0bWo2Jas8bUo9I1IgCfT+iN/+5PBnBzBEEiIqVhUGlilkM/3p62/wlqu2lhZoEe/l7uN11QKTeYFdNWv94bnZYdGXR95o/BbEE903RnU5HuHR1aoGOov7TI3s0wtEZEpDQMKk3MspjWx8N2j0pt9wKa+utRHEvJQ0z7FtK22qbVupKKSms1KvW7e7I15j0qUlCp7jkxTV32ZlCRKauouUIyEVFjYY1KE7McyjHVqGhr6Rao7V5Ax1LyAAD7Ll2Ttt0MxZ6yoR87imktmXWooNxghBBCCkA696p/G2/Pqv9NysoNN8VaNbasPnoV3WZuwKqjV5zdFCK6STCoNDHL4GEKKtZujgdAdq+futwMQz/yWT+mdVRqKaatR2oxWFzfcoNRGlIyrVprGp5befQqus/ciO0JmXa2Xv2mLYuHUQCvLjvm7Ka4rNVHr2LehrO4lFXk7KYQKQKDShPLsehRMQ39mK/nYa+yWu7660oqzGpUrhfTmu1wgz0qNYJKpdGsR6Xq3yTI20P2M5/9Me7GfogLCTS7FuR4BWUVmLYsHgu3X8T4hXshRP0/qBC5KgaVJlRabqhR52Ca9eNRS4/KjbgZZqVYH/qxv0bF8o2gKqhU96hUh8ggH/mb8430crka80Jk/U0QjJvakcu50ve5JRU3xf/TRHVhUGlCOSU16028qoOKzhE9Kjfd0I+1GpXrD9oH+9Z5PsvMUW643qPiVV1M28zH0/Kwm5af7noR7YVMDk04Uk5xOb7acVG2zXxlaqKbFYNKE8q1siaKaehn0u1tGnx+JQeV1LxSPPnDQWxrYH2H+dBPXknVH/HaalG+fbIfRvQIx5qpd9R6vtYtfOTnrxTXZ/1UF9NaG+6wHDK6WZjfJDMhvdCJLXE905bFY/+lHNm2Qr3tBR+JbgYMKk3I2uJtPtWFms/c2R6//b+YBp1fyd3EM/84iZ3nsjB50aEGnafcyqwb894o88jSNtgXC5/oi56tgmo930d/6YXh3cPNzm+Qan1M523mW7NHJTWv9AZb7hrMg0qalVs6kP2OX8mrsa2ojpWpiW4GDCoOUF5pxP5L1+qcuppTXLUmSoTZ/WbMpycPaNe8Qe1Qco/KpaziBp9DCFHjGru7aTCmd0vp8Y1OT45q7oOv/toXof46AFXDSZY9Kr5WVg9efzLtxn6QiygwG4rIL+WwhCMZq3vpPn2sN24J8wMgvzs60c2KQaWBhBCY8O1+PPbNfqw4bHttiZziqj/sLc0KEutaQh+QBxtblDzrx1pPSH3sPJeFeRvOIiWnBAajgOUkiH8M74KQ6pAB3HhQMTHNupIX07pVn7PmSd9fdxZn0grqde6PNyXgs9jz9jVMQYxGIXvjzC9hUHGUIn2ldF+vOzsGw09X1dNayB4VIgaVhlpzLBWHqyv1D5gtvmaNqUelZbPrQcW9HrN9etkYujCn5AXfKg03XtNhNAq8Wj1Vc9B/tteY2g0AgRYzcjQ3PO+nimkdG2vTky25V1fv1lajcSGzCPO3nENhWQWyCvX4bOsFfLz5XL0LI4v1lfhi2wVcVMg6GkIIfLvzEnaez5IFRfaoOMbP+5LQ4+2N0uNAbw/4V98Ikz0qRAwqVl3JLcHKI1cQeyajzn2PJudJ39e1hL2pR6WVWVCpz9tqM1/PevW8KLlGxXzIpr6ru55JL5DqegxGgXMZNd+4gywKXRvaozLrf6el2ovalol/oGcEgKrix1eWHpUV1hqNAmO/2IP5W87jo03ncK34+i0Qaltl2NLHm8/hw40JePDz3Xa9FntVGow4k1YAg1HIph5vS8jEe+vO4CmL+qK80vq9HrLtrT9OSd/769zhrnWDn1dVj0qRWbi9kFmEDzeeld3fi+hmwKBixd4L1/Dab8eweG9Snfum5V8vqswosF1cmFn9fESgt839LAV6e6BDiF+d+yl5XQvz+pm8eg4Z7LmQLXt8Na+kxj6Wha6h/vUbJrNkCirmwznmgVL2MwKu/4w/4lMRX307gz0XstFz9ibpU/D+S9dkd8s2Dy227D5f9bqL7ewhW3owGb8eTJYen00vwNOLD+Hk1Xybx3298xJGfLoLHf65DrfO2oTE7Kq6otQ867/X+aXKfcNMSC+UejrVJMi3Knj7Vw/9mH6XhBAY+vEOfLHtIhbtSXRa+24mh5JycPucWGw6le7sptz0GFSsaBdStf5GfQpA081mPmQW2n4jSrpWdb42ZlNibwnzr/NnBHi7Y0jX0FqfN633odQelZLyStmbbq6V9WSs2XtRPpR2NbfmTBtTj8o3f+2Lvw/rjIHt7StItryFQdy/hkozsiyFmtXEAJACwIyVJ2Rd9Z7ubrLfiex69qg0RGZhGaavPIEZK09Iha9jv9iDrWcz8eaqEzaP/XBjgvR9eaURy+NSANRcTdkkvx7/jvklFVKQayqVBiOGzd+J8Qv31npTT6UK8q4K3pY1KlvPXp/Wb3k9i/SVUiGuGmUWlOEfK47XGaSb2mu/xSM1vwzP/3zY2U256TGoWGFaKOxqXmmdM2nMp2hmFuhRYTDiQmaRrH7h8rVi6CsNSMmpeqNt28IXe6bfi/Wv3IXwehTKBnp74KVBHfHsne2w5NnoGs83r16QrLTCIFtptaCswq4luC9kFiElp2bvhb3MexWA2t/4LJ2vHuoxzYC4Yi2oVL/2+7uHY8rgjvW6v4815rcw8PdyR7CfPIyYwiAAWfEuABxJrvrkbjmk5abRyO6Wbc+b5o28Ae06n4Xnfrr+R/WDDWfx2rJ4KcAeu5KPjzefw7BPdiLLIlRb+zmmLZbTkE2f9uuqUcksKMPQT3Zg7Bd7rE69bQwfbUpAxzfXS4+Tshs+28zEkcvZZxXqUVJeWeOcplWQTUM/pnVU1h6/PsvMvIfrSm4J+r27GVOWHHFY25ram6tPYllcCh75ep+zmyIxGoX09xqous7kPAwqVjT39URA9R+KRBt/6CoMRmSZvfmUG4zo9OZ6DP14B0Z/vhsXs4rw68Fk3PPhdsTM2YpygxEeWg0ig7zRMsgbXSMC6tWeAC8PeLq74V8PdMPtHYPRzeK4kAAveGrdYDAKvPXHSQgh8N2uS+g5axNWHrl6Q6/9WpEeDy7YjQc+342k7GIYjOKGAs/P+y9j2Cc7cdVsnRHLnqa8enwSL6swILV6WC26XQsAwBUra5c46t4z5kGldXOfGs//8FR/hAd44dsn+9UYXopLykWlwVijjiirUC8LBOY1KgajqPV3y2h2ra2tZmyNEAJ//f6gdFdtAPjv/mSsPCr/9/8s9jwSMgrx3/2Xr/88o0DitZptMYXV9Hz5dddXB7Li6rtJf7L5HD7ZfK7G8W+vOSW9/qboVdmekInPt16QbbvqgPVuZq05hZ6zNqLdjHV4dVm83ef5cONZPPtjHE6nFuDuD7bh+Z8O1xjeM/0+m3pUTOuomMIwUPVBwhSK/7s/GWUVRqw/ma7a+wLtr+45LVHQZICEDHmh/IaTHP5xJgYVKzQaDdpX14Tsu3it1j8AmYV6CFE1bKB1k3+SLzcY8c+VJzD7f1WFcqZehKjmPjX2tUa2iJnF7osm98c/R3aRHgf7euJfD3SFm6bqD9d7f57Bu3+eAQB8sa3qD/fXOy5i5h8nUV5plH16LtZXYltCpvSHb1tCFkrKDcgvrcCg/2xH17c2oOesTVi0J6lGGw1GgYT0Qmk2ixACb60+iYSMQunnAlWf9M2ZiopNDibm1Hgju3ytBEJU9W50iagaHrM29OOImzkC8qGfqGY1g8rtHYKx/59DcF+3MIQFyHtUruaV4sONCTUW9EsvKJPVLV0zC7UfbDiLwf/Zji+2XcCmU/I3GfMep2WHUjDph4M1xsljz2TIer1svSHPf7Q3+rZpJtt2oXpG0YXMIvR6ZxNGfLqrxnFSULHoESs3KxrfnpCFT2PP49PY87L2FJRVIPbM9eEKy2HUo8m5tc5S+9+xVBxMzKmxPS2/FPtrmVlnMAr8e+3pGtv/b8Vx/O9YqtVj6iOjoAyL9yZJU4dXHb0qu3WAEAL/WHEcIz7dZTOAF+kr8cW2i9hyJgMjP9uF0goDdl/IrjFzzBRS/b2u16hcK9Lj8rXr17bcYJRCrvlMMstestrkl9b9wcORazJdyS3BrDWnsPl0hlSnZ67SohgdqPrdO3HFeUNBO8/J/2Ytj7uC06k1lyMorMeHuDKLnm66cYoIKl988QXatm0LLy8vREdH4+DBg85uEtpVD/+8s/Y0Pt58DjvOZUm/bAcuXcOp1HykVb85hAXqZDM/PpvQp2q/xJwadSNe7rZn73zwcE/46dzx49MDpG2WU27DArzw/N0dpMfenlo8GdMWb47qBgD4bvf1YrvMQj32XszGnPVn8dO+y7jlX+vx6Df7pNfy3rozmLzoEJ77KQ5p+aXYdla+xL1p/ZN31p7G1rMZ0h+SIn0lHlywG8Pm78TTi6tmg5w1+6Nr+qNdVmHALweqCjtNf3wT0guw+uhVVBqMuJJbgke+3oexX+xBfmmFdB0Ts6veDNoH+0o9GI74dFwb88AT1dx2sbN5MW3/tlUB4Oudl2oUCRuMAqfM/rj9uO8yPo89j9Gf78bXOy8BqKoLef7nw5i7/iyAqhBgHng+3JiAHeey8PzPh6VZaLvOZ+GZH+Nw1wfb8PDCvdhwMg1HzGafmXvhng4Y26clxvVpKdv+5/E0PPHdAcxdfxaFZZVS+HhxUAesfflOAEBKdTA09aiM6R0pndP0b/lp7PWelKNmYXPL6QzZ2jmXzHqP/oi/inFf7sVTiw4iIb0Q/9mYINXTnLyaj5d/PYpHvt6H+VvOSW8OQghMXnQIj32zH3svyous45Jy0OPtjbhopaZMX2nEy78exbc7L+GN5cewPC5FNkRXUFaB+z7egSe+O4AKgxHnMwoxdckRqag6LqmqJyPYzxMD2lbVP0364SCGfLQdt/17M0Z8ugvL4lJwJq0A607U/NRt+v/gWC09SmuPy0OUKbyZpifnl1ZItUMdQ/0QXb0o5M/7qnrEzEPTuYwi7L2YjUobs+o+3XIevWZvwre7qn7/tp3NxDc7L0r/X5eUV+K1ZfHo8tYGfFe9D1D1uzxt6dEas9zqY96GBCzem4TnforDwDmxsgBiMArZ70l6QRnySyow9os9GL1gN9adkC+smJZfipJyxxRxJ2UXY+nBZKuTEEwh+6VBVX9nEzIKMfKzXfhy+/UPYPsvXUOfdzZj+u+1136dSs1Hz9mb8PcVxx3S5qZ08mo+sov0sg8mzmK9WrAJLVu2DK+99hq++uorREdHY/78+Rg2bBgSEhIQGlp7AWlj6xh6fZaNqTu5c5g/fHVaHEnOg4+nFs/e2Q4AEBHgjdziChTpKzGocwge7BWJ+VvOSZ8iXxnSCZ9WL/jVro4b5T3SLwoP39YKbm4aPNSnJY4k52JwlxCbx3SLrBoKeur2tliw9Txyzd4wi/SVePzbA7L9DyXlIiGjEG2a+2JJdYjYnpCFO+ZulW7SN6JHONZbdHc+vTgOnUL90Kd1EEL9vaQ34UNJuVh7PFX2qc/0B/SnfUnIKS5Hq2beGNEjHN/uSsSP+y7jx32XMc2iG33qkiOIT87D6N6RUl1Lu2DfGsWrjWFw51CpDsB8QT5rTN3yAPBw31bQuWux22yGUreIAJyufqMzvyYA8JGVIRKgKugE+XjiweowYM17687gWlE53l9/RtoWdzkXcWazW1o184aXh1a6/qb6nscHtMbGU+nYdf56O83b/NmEPvD3csfAdi1QYaz6w5RTXI4NJ9Ol36fZD3bHM3e2wy1h/lh7PBWFZZU4efV6EItPzsODvara//uRqsUP7+jYAnsuXMPOc1nYeS4Ld3UKxvwtVf8vHEjMwbD5OwFUfeqePaaHrBdm/pbzmL/lPL56oi8CvN2lILx4TxJu7xAMoOpWBi/897B0V/K/D+uMgtIKKQiaXzsAWHH4CuZvOY8fnuqPNi188M2OSzifWYTzmUV4ZelRxCXlIrNQjy1nMrDihdtxMLGqB2fUrREY0jUMT/5wUBaYzXu/Np9Ox+PRraXHX26/gA82JGDGiC61Ll2wJl4eVEwfbEy/Y4cv50qzl/q3bY5Rt0bgwPcH8PP+y/DzcscBs56nqb8eQV5JBUb0CMf8x3pLKysDVcPUs9ackj40zF1/FtHtWmBy9YeMDSfTkZ5fhlSzeqR3/zwDjUaDR/q1wtazmVhd3dbeUUGYfEc7q6/HktEoZLP3jKIqqN7aKhDbEjKx5ECyLPjcPner7PhXlh5FYVkFHu3fGp9sPodPY8/D20OL2WO6IzG7GFmFerxxf2fo3N0Q6O0Btzp6q41GgZTcEsSn5OH/VhyHvtKIxGvFmDGiq7RPTnE54i5XXdeJA9vgYGKO9P/YBxsSsCMhCw/0isSPe5NQaRRYFpeCod3CcF+3MGxPyERKTgke7d8a7m4aLN6ThPJKI1YcvoJRt0ZgcJfQGu1JyChEC19PhAZ4YVtCJv48noahXcNQbjDink4hqDAaa9TMnUkrwIkr+dC6aZCYXYxn7mwHnYdbrRMAbDmYmIMlBy5jTJ+WaObjidbNfbDpVDqmr6wKYKH+Oswb37NG25uSRji5Tyo6Ohr9+/fHggULAABGoxFRUVF4+eWXMX36dJvHFhQUIDAwEPn5+QgIqF+9R31lFpZh7vqz9arxeP7u9hjWPQwrDl/B9OFdEejjgZl/nMRP1Z96ljwbjdAAL3y5/QJeHXoLoqzUQNRGCFFrgei+i9cQeyYDfx/eWfqj9PGmBHy29QL8dO7o37YZtiVkWT0WAG5rHSR9EvfXuUuFe1HNvbH9jcF46Ms9ONaA7te5D92K99adQWFZJT54uCfaBfviL1/dWMHcq0NvwSP9WyFmzlarzyfNHWV3+8wJIfDvtWfwR/xV/P7i7WhbR6CctvQoDiXlYv20u3Dyar4UBpv5eODozPvx5A8Ha3Qf10evVoE1rnnPVoG4kltqtQg52M8T14rLpYXYvnj8NmjdNHjhv1VFtWtfvhM9WgYCqHqzunytBDvPZeG3uBTpjf++bmH49sl+svP2fmeTrIfIy8MNZ94ZLv0uPvD5LimkeLq7obzSiAAvd3z7ZD/8FncFvx+5AjcNsOqlOzDmiz3SeYJ8POo9Pd2Wvw5sg+a+nvj9yBVcyS1FRKAX3n/oVtzTKQRubhocTMypUZw5rHsYjiTnSUMkfjr3ei+o9vmEPhjdKxIHE3OQX1oBX08tArw9cCm7GKdS8/H1jkvw0Grw4j0dUFBWieVxKVanl/9zZBckZpfgbHqBbA0mk2+f7If7uoXhSHIuHvpyL4Cq1aufjGmL5+5qhxZ+OsxYeUI2/bw2Q7uGok0LX4QF6HAmrRCrjt5YvZpJyyBvZBfpZWFrRI9wvDSoIyqMVbecOJKcixNX8tHM1wMtfHUI9PZA4rViaTja20OLeQ/3xN9+PYo2LXzwwj0dMGOl7VlowX6e0ky59sG+sl45a/x17vDy1EIDoFOYHyIDvVFpFCirqKqlCg/0wubTGciwGMr093LHhAGtUVBagYKyCqlnrHtkAP782104m16AdcfTcDmnBH/EWx9G9NBqEBHojWSz4U9/L3dUGoQUorVuGnQK9UOFwVh9uxQN9lzIRnJOCbRuGvRoGWi1581T64bHo1sjOacEF7OKUGkQVnuXfT21uKtTCPy83GEUAql5pejXpjnCAnQIDfDC7vPZOJWaj8ggb9zXLUyqxXv+58N1Dhve2jIQf0y5o84geCNu5P3bqUGlvLwcPj4+WLFiBcaOHSttnzRpEvLy8vDHH3/I9tfr9dDrr1/QgoICREVFNUpQMVm8JxHvrztb6xLwj/WPwqwHu9dYHGz10atSj8GZd4ZL9/RpbGUVBnyz8xKGdg1DpdGIST8cRG5JBf7f3e1rfMo0+deorrirU4j06fZfo7ri2bva41BSDh79eh8se3rDAnTIKNDDQ6vBlxP74oX/HpY+FbUM8kZBaYXsrq+9o4Lw+4u3Q+umwYaTafh5/2UcT8mvcWdYNw3goXWDvvpNLyzACwufuA3tgv1w38c7YBACf0y5A/M2nMWvB1Pg7qbBhfdHOvDq2Q6GloxGIf2Pa/r0PCmmDWaP6YHkayXYfi4TidnFyCgokw0L3N8tDB8+3As/7kvCD3sS8etzA7Hi8BV8bzZkZ+7Tx3ojPMALz/wYJ72xhgXosHf6EGjdNLiUVYQtZzLg7aHF49FtEJeUg0e/2Q/A9u9eYVkFSssNCPHX1XjN3+26hN/iUqThlOfuao/pI67XRb3w82FsqK6b+cfwLpi34WyN8w/tGopvn+yHdjPWyba7u2nw5qiu+G5XYp3DeQFeVQHa1l+pyEAv/PZCDFqZ1Ral55dh4JxYAMDgziEY3SsSD93WClmFetz3yQ5ZWGrVzBszRnTF4cu5uJpXgua+OuxIyEReaQVKyg0I8HLHtjcGoYWf9Z49IQQmLTpUZzD10Gqw+dV70DbYFwajwMTv9kt3S37+7vZ4pF+U1JNbUFaBe/+zAyH+Onw+oY+sh7ewrAIPLtiDK7kl6NkqCMX6Stmwqyk4WrPg8T7w9tBi5h+nkJpfKruuk2LaQAC4u1MIDl3Owdc75H8verQMQHiAF2LPZtr897DmnltC8MXE23DbO5tlf0u7hPvDXatBbnGF9LswoF1zvDSoA+65JQTv/XlGNpT9t3s7Yuf5bMSn5MHXU2v3WkNAVS/Z8at5stk9JhoN8PPT0bizU7C0TV9pwLM/xlXf103A20OL1+67BQcSc7CleljWTYMafy99PLWIad8CsRbD6g1h7ec4gikcat008PHQolBfia4RAfjvMwNq/f23l2qCSmpqKlq2bIm9e/ciJub6nYP/7//+Dzt27MCBA/Ihi1mzZmH27Nk1ztOYQQWo+kOUU1yOq3mluCXMH/pKIy5fK4afzl0qurVUVmHA3349iq4RAXj1vlsarW11ySwsw4XMIsS0b4Evt1/EtaJyHEnOha9Oiz5RzdC/XXPc3SkYGo0G8zacxenUAnw58Tb4Vnc955WUo7TCgOVxVxDdrjkSMgrxaP8o7L14Df46d/Rr2xyl5QYcSLyGH/YkYdrQTth9Phvf705EkI8HHurTCv/vnvY1glxZhQG5JeXw1VV96kjNK4WPpxbtQ/yQUVCGYD+drOi40mBEpVHAy0OL/NIK/LA7EQ/2jqzXQnhNJTWvFGEBXlaLpb/deQkRQV7oGhGAyEDvGuHBYBRYsPUC4lNyER7ohQd6RmLfxWuIbt8cd3WqGvrLKtSjrMKApGvFiAj0QsdQ62vwVBiM+Ov3B9A+xA/vj7u1Qa+psKyqbsg0Ddwks7AM/zuWBh9PLR7rH4Xfj1zFkgOXcflaCbpGBKB9iC+evbM9WrfwweqjV3Hiaj4mDIhCYnYJuoT7I6q5D5KvlWDR3kQ8c2c7VBgEgrw9MH/LOfh5uePOjiFo3cIHLYO8oa80ICG9EOEBXvDy1GLzqQxcyCpCdqEeUc198NiAKKsL/X294yK8PLSYdHtb2faDiTlYfzIN0e1aIKZ9C+g83KyuQlxeaUR6fhla+HlK/z/UxmAU2HAyHUsPJcNP546H+7ZCeKAXOoT44XxGEXx1Wvh7ecimtmcV6vFZ7Hm0auaNiQPbyIYUgap/R3c3jdXgXFJeiQqDQKC3B3KKyzF1yRFoNFU9kH1aN8Pp1AIcSLyGzEI9MgvKkFWkx+DOoXj2rvay8xuMAhcyi1BYVomYDi2k58oqDIhLykWQjwf2X7qGOzoGo0u4PzQaDQ5fzsFbq08ht6QcHlo3eGg1aObjiUGdQ2AUVdPwrxWXI9jXE4X6SiRlF+Pvw7ogpkMLfLrlPJYdSoa+0ojeUUFY+ERfeLq7obCsAptPZ2B4j3DZ8IUQAptOZyAtrxR3dgpGx1B/FOsrcexKHga0bQ43jQaFZZXw9tTidFoB4pJy8PuRqwgP0CEswAteHloYjALNfDxQWmFAz1ZBuL97GHKKyxEe4IVjV/KxPC4FPp5aBHh5wNuzati0b5tm+Eu/KJv/3pVGI3TuWlQaqoZ29l+6hqfvbIeTVwtw+VoxBnZogfjkPNzeoQUGtGuOk1cLcCW3BJdzSnApqwih/l5o1cwbY3q3RHJOCdadSMM9nUPQMdQPR5PzsPdiNo5ezkO7YF9kF+nRPTIAd3QMRkmFAb1aBcHHU4vUvFJkFOiRnFOM5r46pOSUoKzSACGqPkidTM2HwShwKasYfl7ueLR/FK7mlmLHuSzkl1bAaBTwcHfDnIduxW2tm8HLQ4vScgM0mqqVua/mlSLMX1evW73cKJcNKs7oUSEiIiLHupGg4tRi2uDgYGi1WmRkyO+pk5GRgfDw8Br763Q66HSNX1hJREREyuDU6cmenp7o27cvYmNjpW1GoxGxsbGyHhYiIiK6OTl9evJrr72GSZMmoV+/fhgwYADmz5+P4uJiTJ482dlNIyIiIidzelB59NFHkZWVhZkzZyI9PR29e/fGhg0bEBYW5uymERERkZM5fR2VhmjMdVSIiIiocdzI+7ciltAnIiIisoZBhYiIiBSLQYWIiIgUi0GFiIiIFItBhYiIiBSLQYWIiIgUi0GFiIiIFItBhYiIiBSLQYWIiIgUy+lL6DeEaVHdgoICJ7eEiIiI6sv0vl2fxfFVHVQKCwsBAFFRUU5uCREREd2owsJCBAYG2txH1ff6MRqNSE1Nhb+/PzQajUPPXVBQgKioKKSkpPA+Qo2I17lp8Do3HV7rpsHr3HQa41oLIVBYWIjIyEi4udmuQlF1j4qbmxtatWrVqD8jICCA/xM0AV7npsHr3HR4rZsGr3PTcfS1rqsnxYTFtERERKRYDCpERESkWAwqtdDpdHj77beh0+mc3RSXxuvcNHidmw6vddPgdW46zr7Wqi6mJSIiItfGHhUiIiJSLAYVIiIiUiwGFSIiIlIsBhUiIiJSLAYVK7744gu0bdsWXl5eiI6OxsGDB53dJFXZuXMnRo8ejcjISGg0GqxevVr2vBACM2fOREREBLy9vTF06FCcP39etk9OTg4mTpyIgIAABAUF4ZlnnkFRUVETvgrlmzNnDvr37w9/f3+EhoZi7NixSEhIkO1TVlaGKVOmoEWLFvDz88P48eORkZEh2yc5ORmjRo2Cj48PQkND8fe//x2VlZVN+VIUb+HChejZs6e04FVMTAzWr18vPc/r3Djmzp0LjUaDadOmSdt4rRtu1qxZ0Gg0sq8uXbpIzyvuGguSWbp0qfD09BQ//PCDOHXqlHjuuedEUFCQyMjIcHbTVGPdunXizTffFCtXrhQAxKpVq2TPz507VwQGBorVq1eLY8eOiQcffFC0a9dOlJaWSvsMHz5c9OrVS+zfv1/s2rVLdOzYUUyYMKGJX4myDRs2TCxatEicPHlSxMfHi5EjR4rWrVuLoqIiaZ8XXnhBREVFidjYWBEXFycGDhwobr/9dun5yspK0aNHDzF06FBx9OhRsW7dOhEcHCxmzJjhjJekWGvWrBF//vmnOHfunEhISBD//Oc/hYeHhzh58qQQgte5MRw8eFC0bdtW9OzZU7zyyivSdl7rhnv77bdF9+7dRVpamvSVlZUlPa+0a8ygYmHAgAFiypQp0mODwSAiIyPFnDlznNgq9bIMKkajUYSHh4sPP/xQ2paXlyd0Op349ddfhRBCnD59WgAQhw4dkvZZv3690Gg04urVq03WdrXJzMwUAMSOHTuEEFXX1cPDQyxfvlza58yZMwKA2LdvnxCiKlS6ubmJ9PR0aZ+FCxeKgIAAodfrm/YFqEyzZs3Ed999x+vcCAoLC0WnTp3E5s2bxT333CMFFV5rx3j77bdFr169rD6nxGvMoR8z5eXlOHz4MIYOHSptc3Nzw9ChQ7Fv3z4ntsx1JCYmIj09XXaNAwMDER0dLV3jffv2ISgoCP369ZP2GTp0KNzc3HDgwIEmb7Na5OfnAwCaN28OADh8+DAqKipk17pLly5o3bq17FrfeuutCAsLk/YZNmwYCgoKcOrUqSZsvXoYDAYsXboUxcXFiImJ4XVuBFOmTMGoUaNk1xTg77QjnT9/HpGRkWjfvj0mTpyI5ORkAMq8xqq+KaGjZWdnw2AwyC4+AISFheHs2bNOapVrSU9PBwCr19j0XHp6OkJDQ2XPu7u7o3nz5tI+JGc0GjFt2jTccccd6NGjB4Cq6+jp6YmgoCDZvpbX2tq/hek5uu7EiROIiYlBWVkZ/Pz8sGrVKnTr1g3x8fG8zg60dOlSHDlyBIcOHarxHH+nHSM6OhqLFy9G586dkZaWhtmzZ+Ouu+7CyZMnFXmNGVSIXMCUKVNw8uRJ7N6929lNcVmdO3dGfHw88vPzsWLFCkyaNAk7duxwdrNcSkpKCl555RVs3rwZXl5ezm6OyxoxYoT0fc+ePREdHY02bdrgt99+g7e3txNbZh2HfswEBwdDq9XWqG7OyMhAeHi4k1rlWkzX0dY1Dg8PR2Zmpuz5yspK5OTk8N/BiqlTp2Lt2rXYtm0bWrVqJW0PDw9HeXk58vLyZPtbXmtr/xam5+g6T09PdOzYEX379sWcOXPQq1cvfPrpp7zODnT48GFkZmbitttug7u7O9zd3bFjxw589tlncHd3R1hYGK91IwgKCsItt9yCCxcuKPL3mUHFjKenJ/r27YvY2Fhpm9FoRGxsLGJiYpzYMtfRrl07hIeHy65xQUEBDhw4IF3jmJgY5OXl4fDhw9I+W7duhdFoRHR0dJO3WamEEJg6dSpWrVqFrVu3ol27drLn+/btCw8PD9m1TkhIQHJysuxanzhxQhYMN2/ejICAAHTr1q1pXohKGY1G6PV6XmcHGjJkCE6cOIH4+Hjpq1+/fpg4caL0Pa+14xUVFeHixYuIiIhQ5u+zw8tzVW7p0qVCp9OJxYsXi9OnT4vnn39eBAUFyaqbybbCwkJx9OhRcfToUQFAfPzxx+Lo0aPi8uXLQoiq6clBQUHijz/+EMePHxdjxoyxOj25T58+4sCBA2L37t2iU6dOnJ5s4cUXXxSBgYFi+/btsmmGJSUl0j4vvPCCaN26tdi6dauIi4sTMTExIiYmRnreNM3w/vvvF/Hx8WLDhg0iJCSEUzktTJ8+XezYsUMkJiaK48ePi+nTpwuNRiM2bdokhOB1bkzms36E4LV2hNdff11s375dJCYmij179oihQ4eK4OBgkZmZKYRQ3jVmULHi888/F61btxaenp5iwIABYv/+/c5ukqps27ZNAKjxNWnSJCFE1RTlt956S4SFhQmdTieGDBkiEhISZOe4du2amDBhgvDz8xMBAQFi8uTJorCw0AmvRrmsXWMAYtGiRdI+paWl4qWXXhLNmjUTPj4+Yty4cSItLU12nqSkJDFixAjh7e0tgoODxeuvvy4qKiqa+NUo29NPPy3atGkjPD09RUhIiBgyZIgUUoTgdW5MlkGF17rhHn30URERESE8PT1Fy5YtxaOPPiouXLggPa+0a6wRQgjH99MQERERNRxrVIiIiEixGFSIiIhIsRhUiIiISLEYVIiIiEixGFSIiIhIsRhUiIiISLEYVIiIiEixGFSIyKVoNBqsXr3a2c0gIgdhUCEih3nqqaeg0WhqfA0fPtzZTSMilXJ3dgOIyLUMHz4cixYtkm3T6XROag0RqR17VIjIoXQ6HcLDw2VfzZo1A1A1LLNw4UKMGDEC3t7eaN++PVasWCE7/sSJE7j33nvh7e2NFi1a4Pnnn0dRUZFsnx9++AHdu3eHTqdDREQEpk6dKns+Ozsb48aNg4+PDzp16oQ1a9Y07osmokbDoEJETeqtt97C+PHjcezYMUycOBGPPfYYzpw5AwAoLi7GsGHD0KxZMxw6dAjLly/Hli1bZEFk4cKFmDJlCp5//nmcOHECa9asQceOHWU/Y/bs2XjkkUdw/PhxjBw5EhMnTkROTk6Tvk4icpBGudUhEd2UJk2aJLRarfD19ZV9vffee0KIqjs+v/DCC7JjoqOjxYsvviiEEOKbb74RzZo1E0VFRdLzf/75p3BzcxPp6elCCCEiIyPFm2++WWsbAIh//etf0uOioiIBQKxfv95hr5OImg5rVIjIoQYPHoyFCxfKtjVv3lz6PiYmRvZcTEwM4uPjAQBnzpxBr1694OvrKz1/xx13wGg0IiEhARqNBqmpqRgyZIjNNvTs2VP63tfXFwEBAcjMzLT3JRGREzGoEJFD+fr61hiKcRRvb+967efh4SF7rNFoYDQaG6NJRNTIWKNCRE1q//79NR537doVANC1a1ccO3YMxcXF0vN79uyBm5sbOnfuDH9/f7Rt2xaxsbFN2mYich72qBCRQ+n1eqSnp8u2ubu7Izg4GACwfPly9OvXD3feeSd++eUXHDx4EN9//z0AYOLEiXj77bcxadIkzJo1C1lZWXj55Zfx17/+FWFhYQCAWbNm4YUXXkBoaChGjBiBwsJC7NmzBy+//HLTvlAiahIMKkTkUBs2bEBERIRsW+fOnXH27FkAVTNyli5dipdeegkRERH49ddf0a1bNwCAj48PNm7ciFdeeQX9+/eHj48Pxo8fj48//lg616RJk1BWVoZPPvkEb7zxBoKDg/Hwww833QskoialEUIIZzeCiG4OGo0Gq1atwtixY53dFCJSCdaoEBERkWIxqBAREZFisUaFiJoMR5qJ6EaxR4WIiIgUi0GFiIiIFItBhYiIiBSLQYWIiIgUi0GFiIiIFItBhYiIiBSLQYWIiIgUi0GFiIiIFItBhYiIiBTr/wP3XVry2YrjfAAAAABJRU5ErkJggg==\n" }, "metadata": {} } From da0be8bcd3ea5fd059b006a59019f707470ab4c9 Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Fri, 27 Oct 2023 17:14:49 -0300 Subject: [PATCH 08/16] Creado mediante Colaboratory --- proyectoIAPrediccion1GRU.ipynb | 2142 ++++++++++++++++++++++++++++++++ 1 file changed, 2142 insertions(+) create mode 100644 proyectoIAPrediccion1GRU.ipynb diff --git a/proyectoIAPrediccion1GRU.ipynb b/proyectoIAPrediccion1GRU.ipynb new file mode 100644 index 0000000..c55f0ab --- /dev/null +++ b/proyectoIAPrediccion1GRU.ipynb @@ -0,0 +1,2142 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "authorship_tag": "ABX9TyNp43MburvFerSKWrM2U2ox", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.colors as mcolors\n", + "import matplotlib.cm as cm\n", + "import seaborn as sns\n", + "import plotly.express as px\n", + "from wordcloud import WordCloud\n", + "import geopandas as gpd\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from keras.models import Sequential\n", + "from keras.layers import LSTM, GRU, Conv1D, MaxPooling1D, Flatten, Dense\n", + "from keras.losses import MeanSquaredError\n", + "from keras.regularizers import l2\n", + "\n" + ], + "metadata": { + "id": "H7kZjC_GUZZd" + }, + "execution_count": 77, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "id": "9_FId2wvQAgd" + }, + "outputs": [], + "source": [ + "# Leer los datos\n", + "GES_Data = \"global_electricity_statistics_cleaned.csv\"\n", + "df = pd.read_csv(GES_Data)" + ] + }, + { + "cell_type": "code", + "source": [ + "# Ver los primeros datos\n", + "print(df.head())\n", + "df[\"Features\"].value_counts()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "lWY6qwmkQ2PL", + "outputId": "e89148ab-3b26-4467-9a79-ac3d32f733d6" + }, + "execution_count": 79, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Country Features Region 1980 1981 1982 1983 \\\n", + "0 Algeria net generation Africa 6.683 7.65 8.824 9.615 \n", + "1 Angola net generation Africa 0.905 0.906 0.995 1.028 \n", + "2 Benin net generation Africa 0.005 0.005 0.005 0.005 \n", + "3 Botswana net generation Africa 0.443 0.502 0.489 0.434 \n", + "4 Burkina Faso net generation Africa 0.098 0.108 0.115 0.117 \n", + "\n", + " 1984 1985 1986 ... 2012 2013 2014 2015 \\\n", + "0 10.537 11.569 12.214 ... 53.9845 56.3134 60.39972 64.68244 \n", + "1 1.028 1.028 1.088 ... 6.03408 7.97606 9.21666 9.30914 \n", + "2 0.005 0.005 0.005 ... 0.04612 0.08848 0.22666 0.31056 \n", + "3 0.445 0.456 0.538 ... 0.33 0.86868 2.17628 2.79104 \n", + "4 0.113 0.115 0.122 ... 0.86834 0.98268 1.11808 1.43986 \n", + "\n", + " 2016 2017 2018 2019 2020 2021 \n", + "0 66.75504 71.49546 72.10903 76.685 72.73591277 77.53072719 \n", + "1 10.203511 10.67604 12.83194 15.4 16.6 16.429392 \n", + "2 0.26004 0.3115 0.19028 0.2017 0.22608 0.24109728 \n", + "3 2.52984 2.8438 2.97076 3.0469 2.05144 2.18234816 \n", + "4 1.5509 1.64602 1.6464 1.72552 1.647133174 1.761209666 \n", + "\n", + "[5 rows x 45 columns]\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "net generation 230\n", + "net consumption 230\n", + "imports 230\n", + "exports 230\n", + "net imports 230\n", + "installed capacity 230\n", + "distribution losses 230\n", + "Name: Features, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 79 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Convertir las columnas de los años a numéricas\n", + "cols = [str(year) for year in range(1980, 2022)]\n", + "df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')\n", + "\n", + "# Calcular el promedio de cada fila (ignorando los valores NaN)\n", + "df['avg'] = df.loc[:, '1980':'2021'].mean(axis=1)\n", + "\n", + "# Rellenar los valores NaN con el promedio de la fila correspondiente\n", + "for col in cols:\n", + " df[col].fillna(df['avg'], inplace=True)\n", + "\n", + "# Eliminar la columna 'avg' ya que ya no es necesaria\n", + "df.drop('avg', axis=1, inplace=True)\n", + "\n", + "# Agregar la columna 'Total' que es la suma de las columnas desde 1980 hasta 2021\n", + "df['Total'] = df.loc[:, '1980':'2021'].sum(axis=1)\n", + "\n", + "# Agrupar por 'Region' y 'Features', y obtener la suma\n", + "df_grouped = df.groupby(['Region', 'Features']).sum(numeric_only=True)\n" + ], + "metadata": { + "id": "9MZcbtw9t95l" + }, + "execution_count": 84, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "base de datos lista con regiones y caracteristicas 1980 al 2021 abajo listo falta red neuronal y entrenamiento\n", + "\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "_28HoIcVTX5H" + } + }, + { + "cell_type": "code", + "source": [ + "print(df_grouped)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6wZ4FIMSDhZH", + "outputId": "77273682-c22c-41a9-fae1-a801427bd5e7" + }, + "execution_count": 81, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " 1980 1981 \\\n", + "Region Features \n", + "Africa distribution losses 1.874121e+01 20.443093 \n", + " exports 3.935375e+00 4.327375 \n", + " imports 5.659906e+00 6.051906 \n", + " installed capacity 4.814117e+01 52.983167 \n", + " net consumption 1.737664e+02 183.373190 \n", + " net generation 1.907831e+02 202.091751 \n", + " net imports 1.724531e+00 1.724531 \n", + "Asia & Oceania distribution losses 1.031399e+02 110.245063 \n", + " exports 1.190000e+00 1.158000 \n", + " imports 1.507000e+00 1.585000 \n", + " installed capacity 3.299673e+02 350.290346 \n", + " net consumption 1.162988e+03 1192.215726 \n", + " net generation 1.265811e+03 1302.033789 \n", + " net imports 3.170000e-01 0.427000 \n", + "Central & South America distribution losses 3.859152e+01 36.077525 \n", + " exports 4.380000e-01 0.590000 \n", + " imports 4.380000e-01 0.449000 \n", + " installed capacity 8.227979e+01 89.194786 \n", + " net consumption 2.705502e+02 280.515562 \n", + " net generation 3.091417e+02 316.734087 \n", + " net imports 6.938894e-18 -0.141000 \n", + "Eurasia distribution losses 2.617115e+02 262.611506 \n", + " exports 7.943247e+01 81.441472 \n", + " imports 4.476119e+01 44.761188 \n", + " installed capacity 6.222894e+02 632.202353 \n", + " net consumption 2.343170e+03 2298.454189 \n", + " net generation 2.639553e+03 2597.745980 \n", + " net imports -3.467128e+01 -36.680284 \n", + "Europe distribution losses 2.120365e+02 209.191182 \n", + " exports 2.115657e+02 220.309746 \n", + " imports 2.116504e+02 222.262370 \n", + " installed capacity 7.708206e+02 786.288617 \n", + " net consumption 2.740265e+03 2745.516068 \n", + " net generation 2.952217e+03 2952.754626 \n", + " net imports 8.462388e-02 1.952624 \n", + "Middle East distribution losses 7.515476e+00 11.216626 \n", + " exports 2.320000e-01 0.227000 \n", + " imports 4.111621e+00 4.106621 \n", + " installed capacity 3.230383e+01 38.292828 \n", + " net consumption 8.818376e+01 95.959605 \n", + " net generation 9.181961e+01 103.296610 \n", + " net imports 3.879621e+00 3.879621 \n", + "North America distribution losses 2.558195e+02 221.393494 \n", + " exports 3.466465e+01 39.482123 \n", + " imports 3.003898e+01 39.913572 \n", + " installed capacity 6.737250e+02 698.724000 \n", + " net consumption 2.461083e+03 2531.029293 \n", + " net generation 2.721528e+03 2751.991338 \n", + " net imports -4.625664e+00 0.431449 \n", + "\n", + " 1982 1983 \\\n", + "Region Features \n", + "Africa distribution losses 20.504713 22.792113 \n", + " exports 4.989375 4.251375 \n", + " imports 6.722906 6.253906 \n", + " installed capacity 53.899167 56.308967 \n", + " net consumption 189.994270 196.583670 \n", + " net generation 208.765451 217.373251 \n", + " net imports 1.733531 2.002531 \n", + "Asia & Oceania distribution losses 112.874513 121.149903 \n", + " exports 1.179000 1.265000 \n", + " imports 2.009000 2.005000 \n", + " installed capacity 368.918346 392.552346 \n", + " net consumption 1246.608115 1325.026719 \n", + " net generation 1358.652628 1445.436622 \n", + " net imports 0.830000 0.740000 \n", + "Central & South America distribution losses 42.593765 45.658395 \n", + " exports 0.475000 4.261000 \n", + " imports 0.601000 4.033000 \n", + " installed capacity 94.589786 100.067786 \n", + " net consumption 293.158242 310.713632 \n", + " net generation 335.626007 356.600027 \n", + " net imports 0.126000 -0.228000 \n", + "Eurasia distribution losses 267.411506 270.111506 \n", + " exports 82.052472 83.838472 \n", + " imports 44.761188 44.761188 \n", + " installed capacity 640.328353 649.579353 \n", + " net consumption 2408.629042 2452.972540 \n", + " net generation 2713.331833 2762.161331 \n", + " net imports -37.291284 -39.077284 \n", + "Europe distribution losses 210.397242 220.819682 \n", + " exports 216.397746 239.093746 \n", + " imports 218.558370 243.130370 \n", + " installed capacity 804.458617 817.115617 \n", + " net consumption 2757.528008 2819.162568 \n", + " net generation 2965.764626 3035.945626 \n", + " net imports 2.160624 4.036624 \n", + "Middle East distribution losses 12.716366 12.381506 \n", + " exports 0.330000 0.291000 \n", + " imports 4.209621 4.170621 \n", + " installed capacity 43.108828 48.766828 \n", + " net consumption 114.088865 128.651725 \n", + " net generation 122.925610 137.153610 \n", + " net imports 3.879621 3.879621 \n", + "North America distribution losses 227.643996 237.414793 \n", + " exports 40.319463 42.314293 \n", + " imports 40.319634 42.314038 \n", + " installed capacity 717.576000 728.127000 \n", + " net consumption 2476.041662 2555.949638 \n", + " net generation 2703.685487 2793.364686 \n", + " net imports 0.000171 -0.000255 \n", + "\n", + " 1984 1985 \\\n", + "Region Features \n", + "Africa distribution losses 24.310513 29.939433 \n", + " exports 4.594375 4.237375 \n", + " imports 6.369906 5.961906 \n", + " installed capacity 60.707967 63.234967 \n", + " net consumption 214.139970 225.634750 \n", + " net generation 236.674951 253.849651 \n", + " net imports 1.775531 1.724531 \n", + "Asia & Oceania distribution losses 126.509673 148.113229 \n", + " exports 1.696000 1.903000 \n", + " imports 2.134000 2.228000 \n", + " installed capacity 416.259346 440.239786 \n", + " net consumption 1422.219174 1498.540497 \n", + " net generation 1548.290847 1646.328726 \n", + " net imports 0.438000 0.325000 \n", + "Central & South America distribution losses 46.117535 50.984685 \n", + " exports 3.760000 5.323000 \n", + " imports 3.665000 2.648000 \n", + " installed capacity 106.934786 113.188786 \n", + " net consumption 337.728692 350.544262 \n", + " net generation 383.941227 404.203947 \n", + " net imports -0.095000 -2.675000 \n", + "Eurasia distribution losses 280.911506 288.511506 \n", + " exports 84.734472 91.332472 \n", + " imports 44.761188 46.361188 \n", + " installed capacity 659.918353 669.045353 \n", + " net consumption 2516.762419 2557.075511 \n", + " net generation 2837.647210 2890.558302 \n", + " net imports -39.973284 -44.971284 \n", + "Europe distribution losses 227.212242 239.311152 \n", + " exports 244.937746 246.803746 \n", + " imports 250.172370 257.239370 \n", + " installed capacity 842.635617 862.814617 \n", + " net consumption 2923.534008 3014.283098 \n", + " net generation 3145.511626 3243.158626 \n", + " net imports 5.234624 10.435624 \n", + "Middle East distribution losses 12.534696 14.515696 \n", + " exports 0.199000 0.328000 \n", + " imports 4.078621 4.207621 \n", + " installed capacity 53.286828 54.877828 \n", + " net consumption 143.957535 153.760535 \n", + " net generation 152.612610 164.396610 \n", + " net imports 3.879621 3.879621 \n", + "North America distribution losses 213.703069 235.735172 \n", + " exports 43.476293 47.519917 \n", + " imports 43.476432 47.458180 \n", + " installed capacity 748.786000 770.521000 \n", + " net consumption 2720.030437 2778.895211 \n", + " net generation 2933.733367 3014.692120 \n", + " net imports 0.000139 -0.061737 \n", + "\n", + " 1986 1987 \\\n", + "Region Features \n", + "Africa distribution losses 23.062873 26.468153 \n", + " exports 4.171375 2.530375 \n", + " imports 6.010906 4.454906 \n", + " installed capacity 69.761967 71.632967 \n", + " net consumption 245.635010 254.337430 \n", + " net generation 266.858351 278.881051 \n", + " net imports 1.839531 1.924531 \n", + "Asia & Oceania distribution losses 153.614063 168.974833 \n", + " exports 2.265198 2.838005 \n", + " imports 2.184701 2.737251 \n", + " installed capacity 462.890166 486.629886 \n", + " net consumption 1583.920647 1715.996800 \n", + " net generation 1737.615207 1885.072388 \n", + " net imports -0.080498 -0.100755 \n", + "Central & South America distribution losses 59.351220 65.950150 \n", + " exports 13.315000 18.816000 \n", + " imports 13.188000 18.337600 \n", + " installed capacity 117.481000 122.055000 \n", + " net consumption 375.881060 385.142790 \n", + " net generation 435.359280 451.571340 \n", + " net imports -0.127000 -0.478400 \n", + "Eurasia distribution losses 292.111506 297.411506 \n", + " exports 91.067472 95.700472 \n", + " imports 46.061188 45.661188 \n", + " installed capacity 675.670353 679.240353 \n", + " net consumption 2518.068596 2569.916228 \n", + " net generation 2855.186387 2917.367019 \n", + " net imports -45.006284 -50.039284 \n", + "Europe distribution losses 236.588012 243.415292 \n", + " exports 241.788746 255.341746 \n", + " imports 252.566370 271.346370 \n", + " installed capacity 878.766617 898.170617 \n", + " net consumption 3073.428238 3145.392958 \n", + " net generation 3299.238626 3372.803626 \n", + " net imports 10.777624 16.004624 \n", + "Middle East distribution losses 12.710696 16.239696 \n", + " exports 0.573000 0.478000 \n", + " imports 4.252621 4.191621 \n", + " installed capacity 58.097828 62.736828 \n", + " net consumption 163.961535 169.719535 \n", + " net generation 172.992610 182.245610 \n", + " net imports 3.679621 3.713621 \n", + "North America distribution losses 201.979128 210.630140 \n", + " exports 44.521565 54.824235 \n", + " imports 44.511861 54.829032 \n", + " installed capacity 783.141000 796.349000 \n", + " net consumption 2843.497120 2954.184324 \n", + " net generation 3045.485952 3164.809667 \n", + " net imports -0.009704 0.004797 \n", + "\n", + " 1988 1989 ... \\\n", + "Region Features ... \n", + "Africa distribution losses 27.225493 28.415993 ... \n", + " exports 2.427375 2.709375 ... \n", + " imports 4.419906 4.531906 ... \n", + " installed capacity 75.977967 79.771567 ... \n", + " net consumption 262.564790 271.933940 ... \n", + " net generation 287.797751 298.527401 ... \n", + " net imports 1.992531 1.822531 ... \n", + "Asia & Oceania distribution losses 178.805683 200.790531 ... \n", + " exports 3.310800 3.860101 ... \n", + " imports 3.174608 3.324543 ... \n", + " installed capacity 513.284356 536.453276 ... \n", + " net consumption 1856.190046 1977.313215 ... \n", + " net generation 2035.131922 2178.639305 ... \n", + " net imports -0.136193 -0.535558 ... \n", + "Central & South America distribution losses 67.784620 72.544900 ... \n", + " exports 19.189000 21.934000 ... \n", + " imports 19.033500 23.353000 ... \n", + " installed capacity 127.767000 130.554000 ... \n", + " net consumption 405.170040 413.088700 ... \n", + " net generation 473.110160 484.214600 ... \n", + " net imports -0.155500 1.419000 ... \n", + "Eurasia distribution losses 294.711506 296.411506 ... \n", + " exports 99.212472 98.535472 ... \n", + " imports 45.461188 45.461188 ... \n", + " installed capacity 692.645353 695.674353 ... \n", + " net consumption 2607.296149 2638.989586 ... \n", + " net generation 2955.758940 2988.475377 ... \n", + " net imports -53.751284 -53.074284 ... \n", + "Europe distribution losses 241.951762 243.408832 ... \n", + " exports 272.139746 293.217746 ... \n", + " imports 291.926370 312.685370 ... \n", + " installed capacity 908.236617 916.832617 ... \n", + " net consumption 3199.221488 3253.479218 ... \n", + " net generation 3421.386626 3477.420426 ... \n", + " net imports 19.786624 19.467624 ... \n", + "Middle East distribution losses 19.424696 19.650696 ... \n", + " exports 0.375000 0.380000 ... \n", + " imports 4.234621 4.259621 ... \n", + " installed capacity 69.399828 72.768828 ... \n", + " net consumption 189.148535 200.692535 ... \n", + " net generation 204.713610 216.463610 ... \n", + " net imports 3.859621 3.879621 ... \n", + "North America distribution losses 213.193537 278.523167 ... \n", + " exports 42.929646 39.016589 ... \n", + " imports 42.936199 39.084799 ... \n", + " installed capacity 798.026000 834.564000 ... \n", + " net consumption 3095.903194 3292.470057 ... \n", + " net generation 3309.090178 3570.925014 ... \n", + " net imports 0.006553 0.068210 ... \n", + "\n", + " 2012 2013 \\\n", + "Region Features \n", + "Africa distribution losses 90.741794 100.652074 \n", + " exports 31.560100 29.270320 \n", + " imports 39.407200 38.460900 \n", + " installed capacity 157.783510 166.204887 \n", + " net consumption 611.512095 620.559458 \n", + " net generation 695.766565 713.380728 \n", + " net imports 7.847100 9.190580 \n", + "Asia & Oceania distribution losses 678.990130 718.717462 \n", + " exports 38.076848 43.201222 \n", + " imports 48.086716 53.728922 \n", + " installed capacity 2169.864984 2330.909732 \n", + " net consumption 8227.563211 8719.145784 \n", + " net generation 8896.543473 9427.335547 \n", + " net imports 10.009868 10.527699 \n", + "Central & South America distribution losses 178.592105 183.188955 \n", + " exports 50.448000 50.482230 \n", + " imports 51.803500 51.705970 \n", + " installed capacity 296.354729 317.115300 \n", + " net consumption 1006.331172 1046.180499 \n", + " net generation 1185.825005 1230.402943 \n", + " net imports 1.355500 1.223740 \n", + "Eurasia distribution losses 290.124833 293.506833 \n", + " exports 81.157750 76.856750 \n", + " imports 28.093500 26.833500 \n", + " installed capacity 670.648753 680.877699 \n", + " net consumption 2613.014998 2608.658934 \n", + " net generation 2956.204082 2952.189018 \n", + " net imports -53.064250 -50.023250 \n", + "Europe distribution losses 312.122568 313.103557 \n", + " exports 443.876981 430.539587 \n", + " imports 461.685229 448.473861 \n", + " installed capacity 1268.886878 1286.459488 \n", + " net consumption 4021.955784 4033.031850 \n", + " net generation 4316.270104 4328.201133 \n", + " net imports 17.808248 17.934274 \n", + "Middle East distribution losses 115.204000 115.606100 \n", + " exports 16.475700 17.626000 \n", + " imports 20.749000 22.276000 \n", + " installed capacity 233.853100 253.873369 \n", + " net consumption 814.418020 859.965481 \n", + " net generation 925.348720 970.921581 \n", + " net imports 4.273300 4.650000 \n", + "North America distribution losses 332.848244 324.129033 \n", + " exports 70.976291 74.859494 \n", + " imports 72.321289 81.829801 \n", + " installed capacity 1263.275800 1260.288100 \n", + " net consumption 4620.822297 4683.045310 \n", + " net generation 4952.325543 5000.204037 \n", + " net imports 1.344998 6.970307 \n", + "\n", + " 2014 2015 \\\n", + "Region Features \n", + "Africa distribution losses 100.862683 107.622472 \n", + " exports 31.922840 34.030950 \n", + " imports 40.958282 40.208600 \n", + " installed capacity 169.635611 179.322610 \n", + " net consumption 646.013219 658.567024 \n", + " net generation 739.200236 761.371622 \n", + " net imports 9.035442 6.177650 \n", + "Asia & Oceania distribution losses 726.043045 728.905453 \n", + " exports 43.899299 46.000806 \n", + " imports 53.420703 58.622526 \n", + " installed capacity 2463.426712 2668.076439 \n", + " net consumption 9121.177292 9385.732178 \n", + " net generation 9837.698933 10102.015911 \n", + " net imports 9.521404 12.621720 \n", + "Central & South America distribution losses 195.090374 195.044023 \n", + " exports 46.755000 46.214375 \n", + " imports 48.488000 46.891300 \n", + " installed capacity 327.351239 341.688198 \n", + " net consumption 1029.599917 1064.668354 \n", + " net generation 1225.214520 1261.292682 \n", + " net imports 1.733000 0.676925 \n", + "Eurasia distribution losses 288.718833 283.011833 \n", + " exports 72.713750 68.759750 \n", + " imports 25.708500 24.632500 \n", + " installed capacity 706.369683 704.632633 \n", + " net consumption 2609.666644 2602.340334 \n", + " net generation 2945.390728 2929.479418 \n", + " net imports -47.005250 -44.127250 \n", + "Europe distribution losses 302.146616 307.118887 \n", + " exports 470.691760 499.598125 \n", + " imports 484.565844 512.493304 \n", + " installed capacity 1310.856618 1325.619640 \n", + " net consumption 3927.158554 4010.027085 \n", + " net generation 4215.431086 4304.250793 \n", + " net imports 13.874084 12.895179 \n", + "Middle East distribution losses 121.753000 136.956300 \n", + " exports 15.734300 13.304700 \n", + " imports 22.482000 24.437000 \n", + " installed capacity 267.802900 281.223764 \n", + " net consumption 921.739356 960.867656 \n", + " net generation 1036.744656 1086.691656 \n", + " net imports 6.747700 11.132300 \n", + "North America distribution losses 314.189122 319.202703 \n", + " exports 75.406872 84.372314 \n", + " imports 80.754999 88.191435 \n", + " installed capacity 1281.423800 1288.473000 \n", + " net consumption 4723.259542 4715.376861 \n", + " net generation 5032.100536 5030.760443 \n", + " net imports 5.348127 3.819121 \n", + "\n", + " 2016 2017 \\\n", + "Region Features \n", + "Africa distribution losses 120.267951 117.446872 \n", + " exports 34.692430 33.327730 \n", + " imports 41.309200 39.782764 \n", + " installed capacity 192.320816 210.921447 \n", + " net consumption 653.876644 686.573884 \n", + " net generation 768.887601 798.925498 \n", + " net imports 6.616770 6.455034 \n", + "Asia & Oceania distribution losses 762.739982 777.224502 \n", + " exports 58.194332 63.917965 \n", + " imports 65.819156 71.950994 \n", + " installed capacity 2887.051792 3072.989237 \n", + " net consumption 9870.251320 10499.360390 \n", + " net generation 10625.366477 11268.551864 \n", + " net imports 7.624824 8.033029 \n", + "Central & South America distribution losses 196.301150 196.639998 \n", + " exports 54.136813 49.679473 \n", + " imports 55.026600 51.657462 \n", + " installed capacity 362.778609 375.971286 \n", + " net consumption 1071.664743 1078.315722 \n", + " net generation 1269.333335 1275.234959 \n", + " net imports 0.889787 1.977989 \n", + "Eurasia distribution losses 282.647833 282.927833 \n", + " exports 70.614750 76.300450 \n", + " imports 19.114500 24.919500 \n", + " installed capacity 715.716686 714.825145 \n", + " net consumption 2624.207881 2632.181290 \n", + " net generation 2958.355965 2966.490074 \n", + " net imports -51.500250 -51.380950 \n", + "Europe distribution losses 306.535603 303.730092 \n", + " exports 461.683138 470.334575 \n", + " imports 479.089613 484.382843 \n", + " installed capacity 1340.532988 1366.865274 \n", + " net consumption 4075.724022 4087.731918 \n", + " net generation 4364.853150 4377.413742 \n", + " net imports 17.406475 14.048268 \n", + "Middle East distribution losses 141.557300 152.387842 \n", + " exports 14.215200 15.588800 \n", + " imports 23.822000 22.874000 \n", + " installed capacity 290.084263 296.263143 \n", + " net consumption 989.887694 1027.643852 \n", + " net generation 1121.838194 1172.746494 \n", + " net imports 9.606800 7.285200 \n", + "North America distribution losses 314.334447 306.825106 \n", + " exports 81.285189 83.214566 \n", + " imports 84.250796 77.729212 \n", + " installed capacity 1309.804900 1326.263400 \n", + " net consumption 4733.993558 4702.000202 \n", + " net generation 5045.362399 5014.310663 \n", + " net imports 2.965607 -5.485354 \n", + "\n", + " 2018 2019 \\\n", + "Region Features \n", + "Africa distribution losses 120.350344 123.135014 \n", + " exports 31.730300 36.012330 \n", + " imports 37.158895 36.120142 \n", + " installed capacity 231.117096 239.367773 \n", + " net consumption 698.793253 702.889739 \n", + " net generation 815.074778 827.276717 \n", + " net imports 5.428595 0.107812 \n", + "Asia & Oceania distribution losses 810.210076 811.441910 \n", + " exports 67.358170 69.461613 \n", + " imports 75.641028 79.321945 \n", + " installed capacity 3265.095200 3429.788250 \n", + " net consumption 11070.559832 11474.482488 \n", + " net generation 11872.487050 12276.064067 \n", + " net imports 8.282858 9.860332 \n", + "Central & South America distribution losses 199.318646 198.809974 \n", + " exports 48.688924 41.949039 \n", + " imports 49.430425 42.838501 \n", + " installed capacity 387.997173 402.208029 \n", + " net consumption 1096.508255 1099.521880 \n", + " net generation 1297.342629 1299.699622 \n", + " net imports 0.741501 0.889462 \n", + "Eurasia distribution losses 274.900433 272.615133 \n", + " exports 74.254750 73.869750 \n", + " imports 16.404700 16.388500 \n", + " installed capacity 714.917193 724.167792 \n", + " net consumption 2662.169213 2678.159241 \n", + " net generation 2994.919697 3008.255625 \n", + " net imports -57.850050 -57.481250 \n", + "Europe distribution losses 303.082485 297.535852 \n", + " exports 465.459254 464.196084 \n", + " imports 486.205733 491.142257 \n", + " installed capacity 1400.952397 1418.280092 \n", + " net consumption 4069.003190 4055.926950 \n", + " net generation 4351.339196 4326.516629 \n", + " net imports 20.746479 26.946173 \n", + "Middle East distribution losses 155.221385 165.089182 \n", + " exports 14.144000 13.858000 \n", + " imports 31.987000 44.946100 \n", + " installed capacity 298.368401 303.954947 \n", + " net consumption 1052.527842 1086.018911 \n", + " net generation 1189.906227 1220.019993 \n", + " net imports 17.843000 31.088100 \n", + "North America distribution losses 298.010523 288.822191 \n", + " exports 77.631527 83.441019 \n", + " imports 75.128295 76.293597 \n", + " installed capacity 1351.724789 1364.576789 \n", + " net consumption 4878.979091 4816.574574 \n", + " net generation 5179.492847 5112.544188 \n", + " net imports -2.503232 -7.147422 \n", + "\n", + " 2020 2021 \n", + "Region Features \n", + "Africa distribution losses 124.310329 124.988388 \n", + " exports 37.082820 37.662881 \n", + " imports 36.093690 37.648292 \n", + " installed capacity 243.532941 245.193015 \n", + " net consumption 680.388746 712.584720 \n", + " net generation 807.047981 838.947473 \n", + " net imports -0.989130 -0.014589 \n", + "Asia & Oceania distribution losses 786.911065 792.500149 \n", + " exports 75.376583 77.030618 \n", + " imports 88.089951 87.463914 \n", + " installed capacity 3680.474175 3853.457685 \n", + " net consumption 11742.523702 12665.270200 \n", + " net generation 12516.721399 13447.337052 \n", + " net imports 12.713368 10.433296 \n", + "Central & South America distribution losses 195.857514 199.680010 \n", + " exports 38.434271 38.794599 \n", + " imports 39.625489 35.477785 \n", + " installed capacity 414.911323 428.896663 \n", + " net consumption 1100.092492 1167.026170 \n", + " net generation 1297.016017 1372.280224 \n", + " net imports 1.191218 -3.316815 \n", + "Eurasia distribution losses 265.384183 263.323374 \n", + " exports 63.197350 72.384710 \n", + " imports 21.221200 26.346138 \n", + " installed capacity 733.129110 743.105110 \n", + " net consumption 2673.289939 2761.897411 \n", + " net generation 2980.650272 3071.259358 \n", + " net imports -41.976150 -46.038573 \n", + "Europe distribution losses 292.605807 294.824287 \n", + " exports 480.083713 507.242862 \n", + " imports 494.061577 529.015329 \n", + " installed capacity 1444.290822 1482.995172 \n", + " net consumption 3990.746417 4082.522458 \n", + " net generation 4269.374360 4355.574277 \n", + " net imports 13.977864 21.772468 \n", + "Middle East distribution losses 163.117147 169.089625 \n", + " exports 14.629100 14.358920 \n", + " imports 29.050000 28.806431 \n", + " installed capacity 306.974447 309.632447 \n", + " net consumption 1045.687765 1109.498530 \n", + " net generation 1194.384012 1264.140644 \n", + " net imports 14.420900 14.447511 \n", + "North America distribution losses 270.644224 296.127051 \n", + " exports 87.486172 68.009584 \n", + " imports 81.225548 71.680961 \n", + " installed capacity 1387.359489 1425.152689 \n", + " net consumption 4725.063247 4836.156431 \n", + " net generation 5001.968095 5128.612105 \n", + " net imports -6.260624 3.671377 \n", + "\n", + "[49 rows x 42 columns]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Agrupar por 'Region' y obtener la suma de los valores\n", + "df_grouped = df.groupby('Region').sum(numeric_only=True)\n", + "\n", + "# Eliminar la columna 'Total'\n", + "df_groupedeT = df_grouped.drop(columns=['Total'])\n", + "\n", + "# Transponer el DataFrame para que los años sean las columnas y las regiones sean las filas\n", + "df_transposed = df_groupedeT.transpose()\n", + "\n", + "# Crear una figura más grande\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "\n", + "# Crear un mapa de colores\n", + "cmap = cm.get_cmap('tab10')\n", + "\n", + "# Crear un diccionario para asignar un color único a cada región\n", + "region_colors = {region: cmap(i) for i, region in enumerate(df_grouped.index.unique())}\n", + "\n", + "# Para cada región, trazar los valores a lo largo de los años\n", + "for i, (region, values) in enumerate(df_transposed.iteritems()):\n", + " ax.plot(df_transposed.index, values, label=region, color=region_colors[region])\n", + "\n", + "# Rotar las etiquetas del eje x\n", + "plt.xticks(rotation=45)\n", + "\n", + "# Añadir una leyenda fuera del gráfico\n", + "ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')\n", + "\n", + "# Mostrar el gráfico\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 497 + }, + "id": "UAOFyFDLLMo-", + "outputId": "bce87c94-9834-48fc-f7f7-cc2e09897650" + }, + "execution_count": 85, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":14: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.\n", + " cmap = cm.get_cmap('tab10')\n", + ":20: FutureWarning: iteritems is deprecated and will be removed in a future version. Use .items instead.\n", + " for i, (region, values) in enumerate(df_transposed.iteritems()):\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFwAAAIOCAYAAACF7xkPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5jUlEQVR4nOzdeZiN9f/H8ec5Z+ac2TeGMVnGvmRfkqT4JiNSRBGKaBP1k0QqlXwrX6VFSpsaJWlDRZEUFZMs2bKUCUOMscy+nTPnnN8fZ+ZwjGWG4cyY1+O6znXu5XPu+31ODXNePovB6XQ6ERERERERERGRUmP0dgEiIiIiIiIiIpcaBS4iIiIiIiIiIqVMgYuIiIiIiIiISClT4CIiIiIiIiIiUsoUuIiIiIiIiIiIlDIFLiIiIiIiIiIipUyBi4iIiIiIiIhIKfPxdgHe5HA4OHDgAMHBwRgMBm+XIyIiIiIiXuJ0OsnIyCA6OhqjUf8uLSLnr0IHLgcOHKBGjRreLkNERERERMqIffv2Ub16dW+XISKXgAoduAQHBwOuP1RDQkK8XI2IiIiIiHhLeno6NWrUcH9HEBE5XxU6cCkcRhQSEqLARURERERENNWAiJQaDU4UERERERERESllClxEREREREREREqZAhcRERERERERkVJWoedwERERERERuRTY7XZsNpu3yxC55Pn6+mIymYrVVoGLiIiIiIhIOeV0OklKSiI1NdXbpYhUGGFhYURFRZ11km0FLiIiIiIiIuVUYdhSpUoVAgICtMqSyAXkdDrJzs4mOTkZgGrVqp2xvQIXERERERGRcshut7vDlkqVKnm7HJEKwd/fH4Dk5GSqVKlyxuFFmjRXRERERESkHCqcsyUgIMDLlYhULIU/c2ebN0mBi4iIiIiISDmmYUQiF1dxf+YUuIiIiIiIiIiIlDIFLiIiIiIiIiIipUyBi4iIiIiIiJQpTqeTe++9l4iICAwGAxs3bjxtW4PBwMKFCy9abSLFpcBFREREREREvCI+Ph6TyUTPnj09ji9ZsoS4uDgWLVrEwYMHadq06WmvcfDgQW644YYLXapIiSlwEREREREREa+YNWsWDz74ID///DMHDhxwH09ISKBatWpcddVVREVF4ePjU+S1VqsVgKioKCwWy0WrWaS4FLiIiIiIiIhcIpxOJ9nWfK88nE5niWrNzMzk008/ZcSIEfTs2ZO4uDgAhg4dyoMPPkhiYiIGg4GYmBgAOnfuzKhRoxg9ejSVK1cmNjYWKDqkaP/+/dx+++1EREQQGBhI27ZtWbNmDeAKcm6++WaqVq1KUFAQ7dq144cffjjvz13kVIrGhCIiIiIiIlIu5djsNHlqqVfuve3ZWALMxf+K+dlnn9GoUSMaNmzI4MGDGT16NBMmTOC1116jbt26vPPOO6xduxaTyeR+zezZsxkxYgSrVq065TUzMzO59tprueyyy/j666+Jiopiw4YNOBwO9/kePXrw3HPPYbFY+PDDD+nVqxc7d+6kZs2a5/cBiJxEgYuIiIiIiFx8TifYreCjoSAV1axZsxg8eDAA3bt3Jy0tjZUrV9K5c2eCg4MxmUxERUV5vKZ+/fpMnTr1tNecO3cuhw8fZu3atURERABQr1499/kWLVrQokUL9/7kyZNZsGABX3/9NaNGjSrNtyeiwEVERERERLxg48fw66tw4ytQu5O3q7lk+Pua2PZsrNfuXVw7d+7k999/Z8GCBQD4+PjQv39/Zs2aRefOnU/7ujZt2pzxuhs3bqRVq1busOVkmZmZPPPMMyxevJiDBw+Sn59PTk4OiYmJxa5dpLgUuIiIiIiIyMWVdRS+nwg5x+DABgUupchgMJRoWI+3zJo1i/z8fKKjo93HnE4nFouFGTNmnPZ1gYGBZ7yuv7//Gc+PHTuWZcuW8dJLL1GvXj38/f3p16+fewJekdJU9n8SRURERETk0vLDU66wpcrlcOUD3q5GLrL8/Hw+/PBDpk2bRrdu3TzO9e7dm08++eScr928eXPee+89jh07dspeLqtWrWLo0KH06dMHcPV42bNnzznfT+RMtEqRiIiIiIhcPHtXwx9zXNs3vgImX+/WIxfdokWLSElJYfjw4TRt2tTj0bdvX2bNmnXO17799tuJioqid+/erFq1in/++Ycvv/yS+Ph4wDUHzPz589m4cSObNm1i4MCB7gl1RUqbAhcREREREbk48q2w6GHXdpuhULO9V8sR75g1axZdu3YlNDS0yLm+ffuybt060tPTz+naZrOZ77//nipVqtCjRw+aNWvGlClT3Csdvfzyy4SHh3PVVVfRq1cvYmNjad269Xm9H5HTMThLulj6JSQ9PZ3Q0FDS0tIICQnxdjkiIiIiIpe2X16G5ZMgoDKMWgsBp57Y1BvK43eD3Nxcdu/eTe3atfHz8/N2OSIVRnF/9tTDRURERERELryUPbCyYDnf2OfKVNgiInIhKHAREREREZELy+mExWMhPwdiOkHz/t6uSETkglPgIiIiIiIiF9a2r2DXMjCZXRPlGgzerkhE5IJT4CIiIiIiIhdObjosecy13XE0VK7v1XJERC6WEgUuM2fOpHnz5oSEhBASEkKHDh347rvv3Odzc3MZOXIklSpVIigoiL59+3Lo0CGPayQmJtKzZ08CAgKoUqUKjz76KPn5+R5tVqxYQevWrbFYLNSrV4+4uLgitbzxxhvExMTg5+dH+/bt+f3330vyVkRERERE5GL46XnIOAjhtaHTI96uRkTkoilR4FK9enWmTJnC+vXrWbduHf/5z3+4+eab+fPPPwF4+OGH+eabb/j8889ZuXIlBw4c4JZbbnG/3m6307NnT6xWK6tXr2b27NnExcXx1FNPudvs3r2bnj170qVLFzZu3Mjo0aO5++67Wbp0qbvNp59+ypgxY3j66afZsGEDLVq0IDY2luTk5PP9PEREREREpLQc2Ai/v+3avvFl8NVKOiJScZz3stARERG8+OKL9OvXj8jISObOnUu/fv0A2LFjB40bNyY+Pp4rr7yS7777jhtvvJEDBw5QtWpVAN566y3Gjx/P4cOHMZvNjB8/nsWLF7N161b3PQYMGEBqaipLliwBoH379rRr144ZM2YA4HA4qFGjBg8++CCPPfZYsWsvj0u/iYiIiIiUCw47vHcdHPgDmvaDfrO8XdEZlcfvBloWWsQ7Lviy0Ha7nXnz5pGVlUWHDh1Yv349NpuNrl27uts0atSImjVrEh8fD0B8fDzNmjVzhy0AsbGxpKenu3vJxMfHe1yjsE3hNaxWK+vXr/doYzQa6dq1q7vN6eTl5ZGenu7xEBERERGRC2Dd+66wxRIKsc97uxoRkYuuxIHLli1bCAoKwmKxcP/997NgwQKaNGlCUlISZrOZsLAwj/ZVq1YlKSkJgKSkJI+wpfB84bkztUlPTycnJ4cjR45gt9tP2abwGqfzwgsvEBoa6n7UqFGjpG9fRERERETOJv0gLH/WtX3dRAiueub2IiW0Z88eDAYDGzdu9HYp5Ubnzp0ZPXq0t8uoUEocuDRs2JCNGzeyZs0aRowYwZAhQ9i2bduFqK3UTZgwgbS0NPdj37593i5JREREROTSs/RxyEuHy9pA22HerkbKsPj4eEwmEz179izR62rUqMHBgwdp2rTped3f4XAwfvx4oqOj8ff3p3nz5nz11VfFfv2iRYu49tprCQ4OJiAggHbt2p1y0ZeyYP78+UyePNnbZVQoJQ5czGYz9erVo02bNrzwwgu0aNGC1157jaioKKxWK6mpqR7tDx06RFRUFABRUVFFVi0q3D9bm5CQEPz9/alcuTImk+mUbQqvcToWi8W9wlLhQ0REREREStGuH+DP+WAwwo2vgNHk7YqkDJs1axYPPvggP//8MwcOHCj260wmE1FRUfj4+JzX/efMmcMrr7zCyy+/zPbt23n55ZcJDAws1mtff/11br75Zjp27MiaNWvYvHkzAwYM4P7772fs2LHnVdeFEBERQXBwsLfLqFDOeQ6XQg6Hg7y8PNq0aYOvry/Lly93n9u5cyeJiYl06NABgA4dOrBlyxaP1YSWLVtGSEgITZo0cbc58RqFbQqvYTabadOmjUcbh8PB8uXL3W1ERERERMQLbDmwuGDp5/YjoFoL79YjZVpmZiaffvopI0aMoGfPnkV6hqSkpDBo0CAiIyPx9/enfv36fPDBB0DRIUV2u53hw4dTu3Zt/P39adiwIa+99tpZazAajURGRjJgwABiYmLo2rVrkTlFT2Xfvn088sgjjB49mueff54mTZpQr149HnnkEV588UWmTZvGmjVr3O3//PNPbrzxRkJCQggODqZTp04kJCS4z7/33ns0btwYPz8/GjVqxJtvvulxv/Hjx9OgQQMCAgKoU6cOEydOxGazuc8/88wztGzZko8++oiYmBhCQ0MZMGAAGRkZ7jYnDyn66KOPaNu2LcHBwURFRTFw4ECt/FvKShQHTpgwgRtuuIGaNWuSkZHB3LlzWbFiBUuXLiU0NJThw4czZswYIiIiCAkJ4cEHH6RDhw5ceeWVAHTr1o0mTZpwxx13MHXqVJKSknjyyScZOXIkFosFgPvvv58ZM2Ywbtw4hg0bxo8//shnn33G4sWL3XWMGTOGIUOG0LZtW6644gpeffVVsrKyuOuuu0rxoxERERERkRL5ZRqk7IHgaOgywdvVVExOJ9iyvXNv3wAwGIrd/LPPPqNRo0Y0bNiQwYMHM3r0aCZMmICh4BoTJ05k27ZtfPfdd1SuXJldu3aRk5Nzyms5HA6qV6/O559/TqVKlVi9ejX33nsv1apV47bbbjttDddddx1paWlMnDixRMNtvvjiC2w22yl7stx33308/vjjfPLJJ7Rv355///2Xa665hs6dO/Pjjz8SEhLCqlWryM/PB+Djjz/mqaeeYsaMGbRq1Yo//viDe+65h8DAQIYMGQJAcHAwcXFxREdHs2XLFu655x6Cg4MZN26c+74JCQksXLiQRYsWkZKSwm233caUKVN47rnnTvkebDYbkydPpmHDhiQnJzNmzBiGDh3Kt99+W+zPQc6sRIFLcnIyd955JwcPHiQ0NJTmzZuzdOlSrr/+egBeeeUVjEYjffv2JS8vj9jYWI9kzmQysWjRIkaMGEGHDh3c/wM9++yz7ja1a9dm8eLFPPzww7z22mtUr16d9957j9jYWHeb/v37c/jwYZ566imSkpJo2bIlS5YsKTKRroiIiIiIXCSHd8Kvr7q2b/gfWDR0wSts2fB8tHfu/fgBMBdvOA64hhMNHjwYgO7du5OWlsbKlSvp3LkzAImJibRq1Yq2bdsCEBMTc9pr+fr6MmnSJPd+7dq1iY+P57PPPjtt4JKdnc3111/PwIEDWbZsGTk5Obz44ovuwCckJIT333+ffv36FXntX3/9RWhoKNWqVStyzmw2U6dOHf766y8A3njjDUJDQ5k3bx6+vr4ANGjQwN3+6aefZtq0adxyyy3u2rdt28bbb7/tDlyefPJJd/uYmBjGjh3LvHnzPAIXh8NBXFyce9jQHXfcwfLly08buAwbdnx+pTp16jB9+nTatWtHZmYmQUFBp3yNlEyJApdZs2ad8byfnx9vvPEGb7zxxmnb1KpV66yJWefOnfnjjz/O2GbUqFGMGjXqjG1EREREROQicDph0Rhw2KBBd2jcy9sVSRm3c+dOfv/9dxYsWACAj48P/fv3Z9asWe7AZcSIEfTt25cNGzbQrVs3evfuzVVXXXXaa77xxhu8//77JCYmkpOTg9VqpWXLlqdtHxcXR2pqKm+88QaZmZl07tyZu+66i/fee4/9+/eTmZlJx44dz/u9bty4kU6dOrnDlhNlZWWRkJDA8OHDueeee9zH8/PzCQ0Nde9/+umnTJ8+nYSEBDIzM8nPzy8yJ2lMTIzHHC3VqlU74xCh9evX88wzz7Bp0yZSUlJwOByAK+gqnPJDzs/5zTAkIiIiIiKyaR7s/RV8/OGGqSUaViKlzDfA1dPEW/cuplmzZpGfn0909PHeOE6nE4vFwowZMwgNDeWGG25g7969fPvttyxbtozrrruOkSNH8tJLLxW53rx58xg7dizTpk2jQ4cOBAcH8+KLL3rMo3KyzZs3c/nll+Pr60t4eDjLli2jU6dO9OnTh/r169O9e/dT9mABVw+VtLQ0Dhw44PEeAKxWKwkJCXTp0gUAf3//09aQmZkJwLvvvkv79u09zplMrgmn4+PjGTRoEJMmTSI2NtbdW2batGke7U8OdAwGgztEOVlWVhaxsbHExsby8ccfExkZSWJiIrGxsVit1tPWKyWjwEVERERERM5d9jH4/gnXdufHILyWd+up6AyGEg3r8Yb8/Hw+/PBDpk2bRrdu3TzO9e7dm08++YT7778fgMjISIYMGcKQIUPo1KkTjz766CkDl1WrVnHVVVfxwAMPuI+dOCntqVx22WUsWLCAjIwMgoODqVKlCj/88AOdOnVi0aJFrF+//rSv7du3L+PHj2fatGlFgo+33nqLrKwsbr/9dgCaN2/O7NmzsdlsRUKRqlWrEh0dzT///MOgQYNOea/Vq1dTq1YtnnjiCfexvXv3nvG9nc2OHTs4evQoU6ZMoUaNGgCsW7fuvK4pRZ33KkUiIiIiIlKB/fA0ZB+FyMbQYaS3q5FyoHBS1+HDh9O0aVOPR9++fd1TWTz11FN89dVX7Nq1iz///JNFixbRuHHjU16zfv36rFu3jqVLl/LXX38xceJE1q5de8Y6hg8fjt1u56abbmL16tXs3LmTpUuXkpmZSUBAwBmn1KhZsyZTp07l1Vdf5YknnmDHjh0kJCTw8ssvM27cOB555BF3j5VRo0aRnp7OgAEDWLduHX///TcfffQRO3fuBGDSpEm88MILTJ8+nb/++ostW7bwwQcf8PLLL7vfW2JiIvPmzSMhIYHp06e7h2Kdq5o1a2I2m3n99df5559/+Prrr0s0abAUjwIXERERERE5N3vjYcOHru1er4Kp6BwVIiebNWsWXbt29ZijpFDfvn1Zt24dmzdvxmw2M2HCBJo3b84111yDyWRi3rx5p7zmfffdxy233EL//v1p3749R48e9ejtcirR0dH8/vvvVK5cmVtuuYVWrVrx4Ycf8uGHH7J48WLeeecdd+hxKqNHj2bBggX88ssvtG3blqZNmzJ37lxmzpzp0QunUqVK/Pjjj2RmZnLttdfSpk0b3n33XXdvl7vvvpv33nuPDz74gGbNmnHttdcSFxdH7dq1Abjpppt4+OGHGTVqFC1btmT16tVMnDjxrJ/zmURGRhIXF8fnn39OkyZNmDJlyil7Dsn5MTidTqe3i/CW9PR0QkNDSUtLKzLhkIiIiIiInIHdBm91gsPbofWdcNPr3q7ovJTH7wa5ubns3r2b2rVr4+fn5+1yRCqM4v7sqYeLiIiIiIiUXPwbrrAloBJ0nXT29iIiFYwCFxERERERKZmUvbBiimu7238hIMK79YiIlEEKXEREREREpPgObYPP7oT8HKh1NbS43dsViYiUSVoWWkREREREzi43zdWrZc3b4LSDORhufMW1DLGIiBShwEVERERERE7P6YTNn8H3T0JWsutY414Q+zyE1fRubSIiZZgCFxERERERObWkrfDto5C42rUfURd6TIV6Xb1bl4hIOaDARUREREREPOWmwU8vwO/vuIYP+QbANWOhwyjwsXi7OhGRckGBi4iIiIiIuDidsGkeLHvqhOFDNxUMH6rh3dpERMoZBS4iIiIiIgJJW2DxWNj3m2u/Uj3o8SLU/Y936xIRKae0LLSIiIiISEWWkwrfjoO3r3GFLb4BcN3TMGK1whaRU4iJieHVV1/1dhkXhMFgYOHChd4u47wNHTqU3r17e7sMBS4iIiIiIhWSwwEb58KMtvD72+B0QJPeMGotdBqjuVrkgktKSuLBBx+kTp06WCwWatSoQa9evVi+fHmp3qdz586MHj26VK95Nrt27SI2NpaQkBAiIiK44YYbOHz48FlfZ7fbmTJlCo0aNcLf35+IiAjat2/Pe++9V6r1PfPMM7Rs2bJUr/nJJ59gMpkYOXJkqV73XLz22mvExcV5uwwNKRIRERERqXAOboZvx8K+Na79SvULhg918W5dUmHs2bOHjh07EhYWxosvvkizZs2w2WwsXbqUkSNHsmPHjotaj9PpxG634+NTOl+R7733XtLS0li5ciUBAQHEx8fjdDrP+rpJkybx9ttvM2PGDNq2bUt6ejrr1q0jJSWlVOq6kGbNmsW4ceN4++23mTZtGn5+fhe9BrvdjsFgIDQ09KLf+1TUw0VEREREpKLIz4MlE+Cda11hi28gdJ1UMHxIYYtcPA888AAGg4Hff/+dvn370qBBAy6//HLGjBnDb7/95m6XmprK3XffTWRkJCEhIfznP/9h06ZN7vOFPTU++ugjYmJiCA0NZcCAAWRkZACuoSUrV67ktddew2AwYDAY2LNnDytWrMBgMPDdd9/Rpk0bLBYLv/76KwkJCdx8881UrVqVoKAg2rVrxw8//FDi92c0GomNjaVVq1Y0bNiQoUOHUqVKlbO+7uuvv+aBBx7g1ltvpXbt2rRo0YLhw4czduxYd5u8vDweeughqlSpgp+fH1dffTVr1651n4+LiyMsLMzjugsXLsRgMLjPT5o0iU2bNrk/kxN7gxw5coQ+ffoQEBBA/fr1+frrr89a9+7du1m9ejWPPfYYDRo0YP78+R7nC2tatGgRDRs2JCAggH79+pGdnc3s2bOJiYkhPDychx56CLvd7vFex44dy2WXXUZgYCDt27dnxYoVRa779ddf06RJEywWC4mJiUWGFDkcDqZOnUq9evWwWCzUrFmT5557zn1+/PjxNGjQgICAAOrUqcPEiROx2Wxnfd9no8BFRERERKQiSNsPH9wAv73pGj50eR/X8KGrR4OP2dvVSSlxOp1k27K98ihODw6AY8eOsWTJEkaOHElgYGCR8yeGBbfeeivJycl89913rF+/ntatW3Pddddx7Ngxd5uEhAQWLlzIokWLWLRoEStXrmTKlCmAa2hJhw4duOeeezh48CAHDx6kRo3jK2499thjTJkyhe3bt9O8eXMyMzPp0aMHy5cv548//qB79+706tWLxMTEEv13uPnmm3nzzTfZsGFDiV4XFRXFjz/+eMbhR+PGjePLL79k9uzZbNiwgXr16hEbG+vxmZxJ//79eeSRR7j88svdn0n//v3d5ydNmsRtt93G5s2b6dGjB4MGDTrrtT/44AN69uxJaGgogwcPZtasWUXaZGdnM336dObNm8eSJUtYsWIFffr04dtvv+Xbb7/lo48+4u233+aLL75wv2bUqFHEx8czb948Nm/ezK233kr37t35+++/Pa77v//9j/fee48///zzlMHWhAkTmDJlChMnTmTbtm3MnTuXqlWrus8HBwcTFxfHtm3beO2113j33Xd55ZVXivV5nomGFImIiIiIXOr+WQFfDIPso+AXBre8Aw1ivV2VXAA5+Tm0n9veK/deM3ANAb4BZ223a9cunE4njRo1OmO7X3/9ld9//53k5GQsFtecQi+99BILFy7kiy++4N577wVcvRfi4uIIDg4G4I477mD58uU899xzhIaGYjabCQgIICoqqsg9nn32Wa6//nr3fkREBC1atHDvT548mQULFvD1118zatSos38IwI8//shjjz3GpEmTuPHGG/n000/p1KkTAF9++SVDhw5198A52csvv0y/fv2Iiori8ssv56qrruLmm2/mhhtuACArK4uZM2cSFxfnPvbuu++ybNkyZs2axaOPPnrW+vz9/QkKCsLHx+eUn8nQoUO5/fbbAXj++eeZPn06v//+O927dz/l9Qo//9dffx2AAQMG8Mgjj7B7925q167tbmez2Zg5cyZ169YFoF+/fnz00UccOnSIoKAgmjRpQpcuXfjpp5/o378/iYmJfPDBByQmJhIdHQ3A2LFjWbJkCR988AHPP/+8+7pvvvmmx3+3E2VkZPDaa68xY8YMhgwZAkDdunW5+uqr3W2efPJJ93ZMTAxjx45l3rx5jBs37qyf55moh4uIiIiIyKXK6YRfXoaP+rjClqjmcN9KhS3iVcXtCbNp0yYyMzOpVKkSQUFB7sfu3btJSEhwt4uJiXGHLQDVqlUjOTm5WPdo27atx35mZiZjx46lcePGhIWFERQUxPbt20vUw+Wxxx5j5MiRjB07llmzZtGrVy+++eYbALZs2eLxRf9kTZo0YevWrfz2228MGzaM5ORkevXqxd133w24evPYbDY6duzofo2vry9XXHEF27dvL3aNZ9K8eXP3dmBgICEhIWf8PJctW0ZWVhY9evQAoHLlylx//fW8//77Hu0CAgLcYQtA1apViYmJISgoyONY4b22bNmC3W6nQYMGHv/9V65c6fHf32w2e9R8su3bt5OXl8d111132jaffvopHTt2JCoqiqCgIJ588skS92o6FfVwERERERG5FOWmwcIHYMci137LwdDzJfD1925dckH5+/izZuAar927OOrXr4/BYDjrxLiZmZlUq1bNY86OQicOO/L19fU4ZzAYcDgcxarl5CFNY8eOZdmyZbz00kvUq1cPf39/+vXrh9VqLdb1ADZv3szDDz8MwA033MCsWbO49dZbmTFjBnFxcUydOvWMrzcajbRr14527doxevRo5syZwx133METTzxRrPsbjcYioVZJ5iMp6ec5a9Ysjh07hr//8f/+DoeDzZs3M2nSJIxG42mve6Z7ZWZmYjKZWL9+PSaTyaPdiSGNv7+/e36aUzmxrlOJj49n0KBBTJo0idjYWEJDQ5k3bx7Tpk074+uKQ4GLiIiIiMil5tA2+HQwHEsAk9m1AlHrIXCGLyVyaTAYDMUa1uNNERERxMbG8sYbb/DQQw8VCT1SU1MJCwujdevWJCUl4ePjQ0xMzDnfz2w2e0zEeiarVq1i6NCh9OnTB3B96d+zZ0+J7nfZZZfx888/u4fl9O3bl8zMTO666y6aN2/OrbfeWqLrNWnSBHANJ6pbty5ms5lVq1ZRq1YtwBWmrF271r30dWRkJBkZGWRlZbk/240bN3pcsySfyZkcPXqUr776innz5nH55Ze7j9vtdq6++mq+//770w5FOptWrVpht9tJTk52D8k6F/Xr18ff35/ly5e7ewqdaPXq1dSqVcsj0Nq7d+853+9EClxERERERC4lW76Arx8EWzaEVIf+H8JlbbxdlYiHN954g44dO3LFFVfw7LPP0rx5c/Lz81m2bBkzZ85k+/btdO3alQ4dOtC7d2+mTp1KgwYNOHDgAIsXL6ZPnz5FhgOdTkxMDGvWrGHPnj0EBQURERFx2rb169dn/vz59OrVC4PBwMSJE4vdW6bQuHHjeOCBB4iKiqJ///6kpaURHx9PQEAAO3bsYNWqVacdVtSvXz86duzIVVddRVRUFLt372bChAk0aNCARo0a4ePjw4gRI3j00UeJiIigZs2aTJ06lezsbIYPHw5A+/btCQgI4PHHH+ehhx5izZo1HqsQFX4mu3fvZuPGjVSvXp3g4GD3PDkl8dFHH1GpUiVuu+22Ir1MevTowaxZs845cGnQoAGDBg3izjvvZNq0abRq1YrDhw+zfPlymjdvTs+ePYt1HT8/P8aPH8+4ceMwm8107NiRw4cP8+effzJ8+HDq169PYmIi8+bNo127dixevJgFCxacU80n0xwuIiIiIiKXArsNvnsMvhzuClvqdIb7flbYImVSnTp12LBhA126dOGRRx6hadOmXH/99SxfvpyZM2cCrt463377Lddccw133XUXDRo0YMCAAezdu9djhZmzGTt2LCaTiSZNmhAZGXnGuTlefvllwsPDueqqq+jVqxexsbG0bt26RO/tvvvu49NPP+Wbb76hTZs23HTTTVitVnbs2MEdd9xB7969PVbZOVFsbCzffPMNvXr1okGDBgwZMoRGjRrx/fff4+Pj6i8xZcoU+vbtyx133EHr1q3ZtWsXS5cuJTw8HHD1IJozZw7ffvstzZo145NPPuGZZ57xuE/fvn3p3r07Xbp0ITIykk8++aRE77HQ+++/T58+fU45pKdv3758/fXXHDly5JyuDa7Vj+68804eeeQRGjZsSO/evVm7di01a9Ys0XUmTpzII488wlNPPUXjxo3p37+/e66Ym266iYcffphRo0bRsmVLVq9ezcSJE8+55hMZnMWdsegSlJ6eTmhoKGlpaYSEhHi7HBERERGRc5ORBJ8NgX2/ufY7PQJdngCj6cyvE7fy+N0gNzfXvRKMn5+ft8sRqTCK+7OnIUUiIiIiIuXZnlXw+VDISgZLCPR5CxoVr6u9iIhcOApcRERERETKI6cTfnsTvp8ITjtUaQL950Clumd/rYiIXHAKXEREREREypu8TPh6FPxZMLFjs1uh12tgDjzz60RE5KJR4CIiIiIiUp4c/su15PORnWD0gdgX4Ip7tOSziEgZo8BFRERERKS82PY1LHwArBkQXA1unQ0123u7KhEROQUFLiIiIiIi5cHmz2D+Pa7tWldDv/chuPhL44qIyMWlwEVEREREpKxL+BEWjnBttx0GN7wIJv0qLyJSlulPaRERERGRsuzgJvj0DnDkQ9O+0GMaGI3erkpERM5Cf1KLiIiIiJRVKXvg41vBmgkxnaD3TIUtIiLlhP60FhEREREpi7KOwpy+kHkIqjaFAR+Dj8XbVYlc0jp37szo0aO9XYZcIhS4iIiIiIiUNdZs+KQ/HN0FoTVg0BfgF+rtqkRKzdChQzEYDEUe3bt392pd8+fPZ/LkyV6tQS4dmsNFRERERKQssefDF8Ng/1rwC4PBX0JINW9XJVLqunfvzgcffOBxzGI5t15cTqcTu92Oj8/5fcWNiIg4r9eLnEg9XEREREREygqnExaPgb++Ax8/GPgpRDb0dlUiF4TFYiEqKsrjER4ezp49ezAYDGzcuNHdNjU1FYPBwIoVKwBYsWIFBoOB7777jjZt2mCxWPj1119JSEjg5ptvpmrVqgQFBdGuXTt++OEHj/u++eab1K9fHz8/P6pWrUq/fv3c504eUvTRRx/Rtm1bgoODiYqKYuDAgSQnJ1/Ij0UuIerhIiIiIiJSVqycChtmg8EIfd+Dmld6uyIpZ5xOJ86cHK/c2+Dvj8FguKj3fOyxx3jppZeoU6cO4eHh7Nu3jx49evDcc89hsVj48MMP6dWrFzt37qRmzZqsW7eOhx56iI8++oirrrqKY8eO8csvv5z2+jabjcmTJ9OwYUOSk5MZM2YMQ4cO5dtvv72I71LKKwUuIiIiIiJlwYYPYcXzru0eL0LjXt6tR8olZ04OO1u38cq9G25YjyEgoNjtFy1aRFBQkMexxx9/nIEDBxb7Gs8++yzXX3+9ez8iIoIWLVq49ydPnsyCBQv4+uuvGTVqFImJiQQGBnLjjTcSHBxMrVq1aNWq1WmvP2zYMPd2nTp1mD59Ou3atSMzM7NI7SInU+AiIiIiIuJtfy2Fb0a7tjs9Au3u9mo5IhdDly5dmDlzpsexiIgI0tPTi32Ntm3beuxnZmbyzDPPsHjxYg4ePEh+fj45OTkkJiYCcP3111OrVi3q1KlD9+7d6d69O3369CHgNEHR+vXreeaZZ9i0aRMpKSk4HA4AEhMTadKkSUnerlRAClxERERERLxp/zr4bAg47dBiIPxnorcrknLM4O9Pww3rvXbvkggMDKRevXpFjmdmZgKu4VGFbDbbaa9xorFjx7Js2TJeeukl6tWrh7+/P/369cNqtQIQHBzMhg0bWLFiBd9//z1PPfUUzzzzDGvXriUsLMzjWllZWcTGxhIbG8vHH39MZGQkiYmJxMbGuq8nciYKXEREREREvOXILph7G+TnQN3r4KbpcJHnwJBLi8FgKNGwnrIoMjISgIMHD7qH+5w4ge6ZrFq1iqFDh9KnTx/AFd7s2bPHo42Pjw9du3ala9euPP3004SFhfHjjz9yyy23eLTbsWMHR48eZcqUKdSoUQOAdevWncc7k4pGgYuIiIiIiDdkJsOcWyD7KFRrCbd9CCZfb1clctHk5eWRlJTkcczHx4fKlStz5ZVXMmXKFGrXrk1ycjJPPvlksa5Zv3595s+fT69evTAYDEycONE9DAhc88b8888/XHPNNYSHh/Ptt9/icDho2LDoamA1a9bEbDbz+uuvc//997N161YmT558fm9aKhQtCy0iIiIicrHlZcDH/SB1L4THwKDPwaIJOKViWbJkCdWqVfN4XH311QC8//775Ofn06ZNG0aPHs1///vfYl3z5ZdfJjw8nKuuuopevXoRGxtL69at3efDwsKYP38+//nPf2jcuDFvvfUWn3zyCZdffnmRa0VGRhIXF8fnn39OkyZNmDJlCi+99FLpvHmpEAzOEwfGVTDp6emEhoaSlpZGSEiIt8sRERERkYrAbnMNI0r4EQIqwfBlUKmut6uq8Mrjd4Pc3Fx2795N7dq18fPz83Y5IhVGcX/21MNFRERERORicTrh6wddYYtvAAz8XGGLiMglSoGLiIiIiMjFsvxZ2PQJGExw62yo3sbbFYmIyAWiwEVERERE5GJY8w78+rJru9dr0KCbd+sREZELSoGLiIiIiMiFtmMxfDfOtd3lCWh9h3frERGRC06Bi4iIiIjIhXRgI3x5N+CENkPhmke9XJCIiFwMClxERERERC6U9APwyQCwZUOdLtDjJTAYvF2ViIhcBApcREREREQuBGuWK2zJOAiVG8KtcWDy9XZVIiJykShwEREREREpbQ4HzL8XDm6CgEow8FPwD/N2VSIichEpcBERERERKW3LJ8GORWAyw4C5EFHb2xWJiMhFpsBFRERERKQ0/TEHVr3q2r75Dah5pVfLERER71DgIiIiIiJSWvb8Ct+Mdm1fMw6a3+bVckTKqqFDh2IwGIo8unfv7u3SREpNiQKXF154gXbt2hEcHEyVKlXo3bs3O3fu9GjTuXPnIj80999/v0ebxMREevbsSUBAAFWqVOHRRx8lPz/fo82KFSto3bo1FouFevXqERcXV6SeN954g5iYGPz8/Gjfvj2///57Sd6OiIiIiEjpOZoAnw4Ghw0u7wOdJ3i7IpEyrXv37hw8eNDj8cknn5zTtZxOZ5HvlCLeVqLAZeXKlYwcOZLffvuNZcuWYbPZ6NatG1lZWR7t7rnnHo8fmqlTp7rP2e12evbsidVqZfXq1cyePZu4uDieeuopd5vdu3fTs2dPunTpwsaNGxk9ejR33303S5cudbf59NNPGTNmDE8//TQbNmygRYsWxMbGkpycfK6fhYiIiIjIuck+BnNvg5wUuKwN9J4JRnUmFzkTi8VCVFSUxyM8PJw9e/ZgMBjYuHGju21qaioGg4EVK1YArn+gNxgMfPfdd7Rp0waLxcKvv/5KXl4eDz30EFWqVMHPz4+rr76atWvXuq9T+LrFixfTvHlz/Pz8uPLKK9m6datHbb/++iudOnXC39+fGjVq8NBDDxX53ityNiX6W2DJkiUMHTqUyy+/nBYtWhAXF0diYiLr16/3aBcQEODxQxMSEuI+9/3337Nt2zbmzJlDy5YtueGGG5g8eTJvvPEGVqsVgLfeeovatWszbdo0GjduzKhRo+jXrx+vvPKK+zovv/wy99xzD3fddRdNmjThrbfeIiAggPfff/+09efl5ZGenu7xEBERERE5L/lW+OxOOLoLQmvAgE/A19/bVUkF5XQ6seXZvfJwOp0X/f0+9thjTJkyhe3bt9O8eXPGjRvHl19+yezZs9mwYQP16tUjNjaWY8eOebzu0UcfZdq0aaxdu5bIyEh69eqFzWYDICEhge7du9O3b182b97Mp59+yq+//sqoUaMu+vuT8s3nfF6clpYGQEREhMfxjz/+mDlz5hAVFUWvXr2YOHEiAQEBAMTHx9OsWTOqVq3qbh8bG8uIESP4888/adWqFfHx8XTt2tXjmrGxsYwePRoAq9XK+vXrmTDheDdNo9FI165diY+PP229L7zwApMmTTqftywiIiIicpzTCYvHwJ5fwBwEt8+D4Kpnf53IBZJvdfDO/630yr3vfe1afC2mYrdftGgRQUFBHscef/xxBg4cWOxrPPvss1x//fUAZGVlMXPmTOLi4rjhhhsAePfdd1m2bBmzZs3i0Ucfdb/u6aefdr9u9uzZVK9enQULFnDbbbfxwgsvMGjQIPf3z/r16zN9+nSuvfZaZs6ciZ+fX7Hrk4rtnAMXh8PB6NGj6dixI02bNnUfHzhwILVq1SI6OprNmzczfvx4du7cyfz58wFISkryCFsA935SUtIZ26Snp5OTk0NKSgp2u/2UbXbs2HHamidMmMCYMWPc++np6dSoUeMc3r2IiIiICLD6dfjjIzAYod/7ENX07K8REQC6dOnCzJkzPY5FRESUaCRC27Zt3dsJCQnYbDY6duzoPubr68sVV1zB9u3bPV7XoUMHj3s2bNjQ3WbTpk1s3ryZjz/+2N3G6XTicDjYvXs3jRs3LnZ9UrGdc+AycuRItm7dyq+//upx/N5773VvN2vWjGrVqnHdddeRkJBA3bp1z73SUmCxWLBYLF6tQUREREQuEdsXwbKCeQhjn4cGsd6tRwTwMRu597VrvXbvkggMDKRevXpFjmdmZgJ4DFEqHO5zqmuUtszMTO677z4eeuihIudq1qxZ6veTS9c5BS6jRo1i0aJF/Pzzz1SvXv2Mbdu3bw/Arl27qFu3LlFRUUVWEzp06BAAUVFR7ufCYye2CQkJwd/fH5PJhMlkOmWbwmuIiIiIiFwwBzfB/HsAJ7QdDu3vP+tLRC4Gg8FQomE9ZVFkZCQABw8epFWrVgAeE+ieTt26dTGbzaxatYpatWoBrqBm7dq17uFBhX777Td3eJKSksJff/3l7rnSunVrtm3bdsowSKQkShRBOp1ORo0axYIFC/jxxx+pXbv2WV9T+INRrVo1wNV1a8uWLR6rCS1btoyQkBCaNGnibrN8+XKP6yxbtszd7ctsNtOmTRuPNg6Hg+XLl3t0DRMRERERKXXpB2DuALBlQ50ucMP/wGDwdlUi5U5eXh5JSUkejyNHjuDv78+VV17pngx35cqVPPnkk2e9XmBgICNGjODRRx9lyZIlbNu2jXvuuYfs7GyGDx/u0fbZZ59l+fLlbN26laFDh1K5cmV69+4NwPjx41m9ejWjRo1i48aN/P3333z11VeaNFdKrEQ9XEaOHMncuXP56quvCA4Ods+5Ehoair+/PwkJCcydO5cePXpQqVIlNm/ezMMPP8w111xD8+bNAejWrRtNmjThjjvuYOrUqSQlJfHkk08ycuRI93Cf+++/nxkzZjBu3DiGDRvGjz/+yGeffcbixYvdtYwZM4YhQ4bQtm1brrjiCl599VWysrK46667SuuzERERERHxZM2CTwZAxgGo3BBujQOTr7erEimXlixZ4v6H+UINGzZkx44dvP/++wwfPpw2bdrQsGFDpk6dSrdu3c56zSlTpuBwOLjjjjvIyMigbdu2LF26lPDw8CLt/u///o+///6bli1b8s0332A2mwFo3rw5K1eu5IknnqBTp044nU7q1q1L//79S+/NS4VgcJZg7S7DaZL7Dz74gKFDh7Jv3z4GDx7M1q1bycrKokaNGvTp04cnn3zSY2novXv3MmLECFasWEFgYCBDhgxhypQp+Pgcz39WrFjBww8/zLZt26hevToTJ05k6NChHvedMWMGL774IklJSbRs2ZLp06e7hzAVR3p6OqGhoaSlpXnUJyIiIiJShMMBn98J27+BgEpw93KIOHuPbykfyuN3g9zcXHbv3k3t2rW1ck4xrVixgi5dupCSkkJYWJi3y5Fyqrg/eyUKXC415fEPVRERERHxkh+egV9fAZMZhnwDNa/0dkVSisrjdwMFLiWnwEVKQ3F/9ko2jbSIiIiISEX0xxxX2AJw0wyFLSIiclbnvCy0iIiIiEiFsPtn+Ga0a/uaR6GF5nEQKa86d+5MBR7kIReZeriIiIiIiJzO3tWuFYkcNri8D3R+3NsViYhIOaHARURERETkVBJ/g49vBVsW1P0P9H4LjPr1WUREikd/Y4iIiIiInGzfWpjTD6yZUPtaGDAXfDUpqYiIFJ8CFxERERGRE/27HubcAtYMiOkEt88DX39vVyUiIuWMAhcRERERkUIH/oCP+kBeOtS8CgZ+CuYAb1clIiLlkAIXERERERGAg5vgw96QmwY1roRBn4M50NtViYhIOaXARUREREQkaQt8eDPkpkL1K2DwF2AJ8nZVIlKgc+fOjB49+oxtYmJiePXVV8/YxmAwsHDhQgD27NmDwWBg48aNpVKjyMkUuIiIiIhIxXZomytsyUmBy9oUhC3B3q5K5JI2dOhQDAYD999/f5FzI0eOxGAwMHToUPex+fPnM3ny5ItYYfGsWLECg8FwykdSUlKp3KM4QZKUTQpcRERERKTiSt4Bs3tB9lGo1hIGzwe/UG9XJVIh1KhRg3nz5pGTk+M+lpuby9y5c6lZs6ZH24iICIKDy24QunPnTg4ePOjxqFKlirfLEi9T4CIiIiIiFdPhvwrCliMQ1RzuWAD+Yd6uSqTCaN26NTVq1GD+/PnuY/Pnz6dmzZq0atXKo+3JQ4qSk5Pp1asX/v7+1K5dm48//rjI9f/++2+uueYa/Pz8aNKkCcuWLTtrTVu3buWGG24gKCiIqlWrcscdd3DkyJGzvq5KlSpERUV5PIxG19fttWvXcv3111O5cmVCQ0O59tpr2bBhg/u1TqeTZ555hpo1a2KxWIiOjuahhx5yv++9e/fy8MMPu3vOSPmhwEVEREREKp4ju1xhS1YyVG0Gd34FARHerkrkvDmdTmy5uV55OJ3OEtc7bNgwPvjgA/f++++/z1133XXW1w0dOpR9+/bx008/8cUXX/Dmm2+SnJzsPu9wOLjlllswm82sWbOGt956i/Hjx5/xmqmpqfznP/+hVatWrFu3jiVLlnDo0CFuu+22Er+vE2VkZDBkyBB+/fVXfvvtN+rXr0+PHj3IyMgA4Msvv+SVV17h7bff5u+//2bhwoU0a9YMcAVQ1atX59lnn3X3nJHyw8fbBYiIiIiIXFRHE2D2jZCZBFUuV9gil5T8vDymD+nnlXs/NPsLfP38SvSawYMHM2HCBPbu3QvAqlWrmDdvHitWrDjta/766y++++47fv/9d9q1awfArFmzaNy4sbvNDz/8wI4dO1i6dCnR0dEAPP/889xwww2nve6MGTNo1aoVzz//vPvY+++/T40aNfjrr79o0KDBaV9bvXp1j/1atWrx559/AvCf//zH49w777xDWFgYK1eu5MYbbyQxMZGoqCi6du2Kr68vNWvW5IorrgBcQ6lMJhPBwcFERUWd9v5SNilwEREREZGK49huV8+WjIMQ2cgVtgRW8nZVIhVWZGQkPXv2JC4uDqfTSc+ePalcufIZX7N9+3Z8fHxo06aN+1ijRo0ICwvzaFOjRg132ALQoUOHM15306ZN/PTTTwQFFV2hLCEh4YyByy+//OIxx4yvr697+9ChQzz55JOsWLGC5ORk7HY72dnZJCYmAnDrrbfy6quvUqdOHbp3706PHj3o1asXPj76ul7e6b+giIiIiFQMKXtdYUv6v1C5AQz5BoIivV2VSKnysVh4aPYXXrv3uRg2bBijRo0C4I033ijNkkokMzOTXr168b///a/IuWrVqp3xtbVr1/YIfE40ZMgQjh49ymuvvUatWrWwWCx06NABq9UKuCYP3rlzJz/88APLli3jgQce4MUXX2TlypUewY2UPwpcREREROTSl7rPNYwobR9UqlcQtmgFEbn0GAyGEg/r8bbu3btjtVoxGAzExsaetX2jRo3Iz89n/fr17iFFO3fuJDU11d2mcePG7Nu3j4MHD7rDkt9+++2M123dujVffvklMTExpdq7ZNWqVbz55pv06NEDgH379hWZiNff359evXrRq1cvRo4cSaNGjdiyZQutW7fGbDZjt9tLrR65eDRproiIiIhc2tL+dYUtqYkQUccVtgRrLgSRssJkMrF9+3a2bduGyWQ6a/uGDRvSvXt37rvvPtasWcP69eu5++678ff3d7fp2rUrDRo0YMiQIWzatIlffvmFJ5544ozXHTlyJMeOHeP2229n7dq1JCQksHTpUu66666zBh7JyckkJSV5PGw2GwD169fno48+Yvv27axZs4ZBgwZ51BoXF8esWbPYunUr//zzD3PmzMHf359atWoBEBMTw88//8y///5brBWTpOxQ4CIiIiIil670A66wJWUPhMfAkEUQEn22V4nIRRYSEkJISEix23/wwQdER0dz7bXXcsstt3DvvfdSpcrxXmtGo5EFCxaQk5PDFVdcwd13381zzz13xmtGR0ezatUq7HY73bp1o1mzZowePZqwsDD3Es+n07BhQ6pVq+bxWL9+PeCa0DclJYXWrVtzxx138NBDD3nUGhYWxrvvvkvHjh1p3rw5P/zwA9988w2VKrnml3r22WfZs2cPdevWJTJSwyDLE4PzXNbuukSkp6cTGhpKWlpaiX64RURERKSMc9hhw2xY/izkpEBYTRj6LYTV8HZlUkaVx+8Gubm57N69m9q1a+NXzoYRiZRnxf3Z0xwuIiIiInJp2bcWvh0LBze69qtcDrfPVdgiIiIXlQIXEREREbk0ZB6GH56BjXNc+5YQ6PIEtLsbTPq1V0RELi79zSMiIiIi5Zs9H9a+Bz89D3lprmMtB0PXp7USkYiIeI0CFxEREREpv/asgm8fheQ/XfvVWkCPaVCjnXfrEhGRCk+Bi4iIiIiUP+kHYdlE2PK5a98/HK57CloPAePZl5UVERG50BS4iIiIiEj5kW+FNW/Byv+BNRMwQJuhrrAlIMLb1YmIiLgpcBERERGR8iHhJ/huHBz5y7VfvR30eBGiW3m3LhERkVNQ4CIiIiIiZVvqPlj6OGz/2rUfGAldJ0GL28Fo9G5tIiIip6HARURERETKJlsuxL8OP0+D/BwwmOCKe6HzY+Af5u3qREREzkj/JCAiIiIiZc+hbfB2J/jxv66wpVZHuO9nuGGKwhYROWdDhw6ld+/e3i7jvK1YsQKDwUBqaqq3S5EzUOAiIiIiImXLxrnw7n9cc7UEVYW+s2DoYohq6u3KRKSUDB06FIPBwJQpUzyOL1y4EIPBcN7X37NnDwaDgY0bN573tQrl5OQQERFB5cqVycvLK7XrnourrrqKgwcPEhoa6tU65MwUuIiIiIhI2WDNhq9GwsIRrl4tdf8DI1ZDs35QCl/ARKRs8fPz43//+x8pKSmlel2r1Vqq1yv05Zdfcvnll9OoUSMWLlx4Qe5RHDabDbPZTFRUVKmEU3LhKHAREREREe878je81xX+mAMGI3R5EgZ9CYGVvV2ZiFwgXbt2JSoqihdeeOGM7QqDDovFQkxMDNOmTfM4HxMTw+TJk7nzzjsJCQnh3nvvpXbt2gC0atUKg8FA586dPV7z0ksvUa1aNSpVqsTIkSOx2WxnrXfWrFkMHjyYwYMHM2vWrCLnDQYDb7/9NjfeeCMBAQE0btyY+Ph4du3aRefOnQkMDOSqq64iISHB43VfffUVrVu3xs/Pjzp16jBp0iTy8/M9rjtz5kxuuukmAgMDee655045pGjVqlV07tyZgIAAwsPDiY2NdYdZS5Ys4eqrryYsLIxKlSpx4403FqlDSp8CFxERERHxri1fwDudIflPCKwCdyyEax/VCkQi58DpdOKw2r3ycDqdJarVZDLx/PPP8/rrr7N///5Ttlm/fj233XYbAwYMYMuWLTzzzDNMnDiRuLg4j3YvvfQSLVq04I8//mDixIn8/vvvAPzwww8cPHiQ+fPnu9v+9NNPJCQk8NNPPzF79mzi4uKKXO9kCQkJxMfHc9ttt3Hbbbfxyy+/sHfv3iLtCoOfjRs30qhRIwYOHMh9993HhAkTWLduHU6nk1GjRrnb//LLL9x555383//9H9u2bePtt98mLi6O5557zuO6zzzzDH369GHLli0MGzasyH03btzIddddR5MmTYiPj+fXX3+lV69e2O12ALKyshgzZgzr1q1j+fLlGI1G+vTpg8PhOOP7lvNjcJb0p+ISkp6eTmhoKGlpaYSEhHi7HBEREZGKxZbrWu55XcG/FMd0cs3XElzVu3VJhVQevxvk5uaye/duateujZ+fHwAOq50DT632Sj3Rz16F0WwqVtuhQ4eSmprKwoUL6dChA02aNGHWrFksXLiQPn36uMObQYMGcfjwYb7//nv3a8eNG8fixYv5888/AVcPl1atWrFgwQJ3mz179lC7dm3++OMPWrZs6XHfFStWkJCQgMnkqvW2227DaDQyb96809b7xBNPsG3bNvc9evfuTcuWLXnmmWfcbQwGA08++SSTJ08G4LfffqNDhw7MmjXLHZLMmzePu+66i5ycHMDVy+e6665jwoQJ7uvMmTOHcePGceDAAfd1R48ezSuvvOJus2LFCrp06UJKSgphYWEMHDiQxMREfv3112J9/keOHCEyMpItW7bQtKnmxyqpU/3snYr+2UBERERELr5ju+H9bsfDlmsedfVsUdgiUuH873//Y/bs2Wzfvr3Iue3bt9OxY0ePYx07duTvv/92994AaNu2bbHvd/nll7vDFoBq1aqRnJx82vZ2u53Zs2czePBg97HBgwcTFxdXpIdI8+bN3dtVq7r+PGvWrJnHsdzcXNLT0wHYtGkTzz77LEFBQe7HPffcw8GDB8nOzi72+yvs4XI6f//9N7fffjt16tQhJCSEmJgYABITE894XTk/Pt4uQEREREQqmO3fwMKRkJcG/hFwy7tQv6u3qxK5JBh8jUQ/e5XX7n0urrnmGmJjY5kwYQJDhw49p2sEBgYWu62vr6/HvsFgOOPQmqVLl/Lvv//Sv39/j+N2u53ly5dz/fXXn/LahRPanupY4f0yMzOZNGkSt9xyS5H7nthz4mzvz9/f/4zne/XqRa1atXj33XeJjo7G4XDQtGnTCzbBsLgocBERERGRiyPfCj88A7+94dqv0R76vQ+h1b1alsilxGAwYCjmsJ6yZMqUKbRs2ZKGDRt6HG/cuDGrVq3yOLZq1SoaNGjg0UvlZGazGcCjF8y5mjVrFgMGDOCJJ57wOP7cc88xa9Ysj8ClpFq3bs3OnTupV6/eedXYvHlzli9fzqRJk4qcO3r0KDt37uTdd9+lU6dOAMUeeiTnR4GLiIiIiFx4qfvgi7tg/1rX/lUPwnVPg8n3zK8TkQqhWbNmDBo0iOnTp3scf+SRR2jXrh2TJ0+mf//+xMfHM2PGDN58880zXq9KlSr4+/uzZMkSqlevjp+fH6GhoSWu6/Dhw3zzzTd8/fXXReY6ufPOO+nTpw/Hjh0jIiKixNcGeOqpp7jxxhupWbMm/fr1w2g0smnTJrZu3cp///vfYl9nwoQJNGvWjAceeID7778fs9nMTz/9xK233kpERASVKlXinXfeoVq1aiQmJvLYY4+dU71SMprDRUREREQurL++h7c7ucIWv1AYMBe6/Vdhi4h4ePbZZ4sM7WndujWfffYZ8+bNo2nTpjz11FM8++yzZx165OPjw/Tp03n77beJjo7m5ptvPqeaPvzwQwIDA085P8p1112Hv78/c+bMOadrA8TGxrJo0SK+//572rVrx5VXXskrr7xCrVq1SnSdBg0a8P3337Np0yauuOIKOnTowFdffYWPj497QuD169fTtGlTHn74YV588cVzrlmKT6sUlbOZyEVERETKDXs+/PRf+LVgZY3oVnBrHITHeLMqkVMqj98NirtSioiUruL+7GlIkYiIiIiUvvSD8OVw2Fsw98IV90G3yeBj8W5dIiIiF4kCFxEREREpXYf+hA97Q1YymIPh5tfh8j7erkpEROSiUuAiIiIiIqUnaQvMvglyjkGVy6H/R1CprrerEhERuegUuIiIiIhI6TiwET7qDTkpEN0a7pgP/uHerkpERMQrFLiIiIiIyPn7dz181Ady06B6Oxj8pWtFIhG54CrwOigiXlHcnzktCy0iIiIi52ffWtecLblpUONKGDxfYYvIReDr61paPTs728uViFQshT9zhT+Dp6MeLiIiIiJy7hJ/gzn9wJoBtTrCwM/AEuTtqkQqBJPJRFhYGMnJyQAEBARgMBi8XJXIpcvpdJKdnU1ycjJhYWGYTKYztlfgIiIiIiLnZs8q+PhWsGVBTCcY+CmYA71dlUiFEhUVBeAOXUTkwgsLC3P/7J2JAhcRERERKbndP8Pc/mDLhjpdYMBcMAd4uyqRCsdgMFCtWjWqVKmCzWbzdjkilzxfX9+z9mwppMBFREREREom4Sf45HbIz4F6XaH/HPD193ZVIhWayWQq9pdAEbk4FLiIiIiISPH9/QPMGwj2PKgfC7d9CL5+3q5KRESkzNEqRSIiIiJSPH8thXm3u8KWhj2h/0cKW0RERE5DPVxERERE5Ox2LIbPhoDDBo17Qd/3wcfs7apERETKLPVwEREREZEz2/Y1fHanK2y5vA/0+0Bhi4iIyFkocBERERGR09s6Hz4fCo58aHYr3PIemHy9XZWIiEiZp8BFRERERE5t8+fw5XBw2qH5AOjzNpg0Il1ERKQ4ShS4vPDCC7Rr147g4GCqVKlC79692blzp0eb3NxcRo4cSaVKlQgKCqJv374cOnTIo01iYiI9e/YkICCAKlWq8Oijj5Kfn+/RZsWKFbRu3RqLxUK9evWIi4srUs8bb7xBTEwMfn5+tG/fnt9//70kb0dERERETmfTPFhwLzgd0HIw9H4TjFpyVkREpLhKFLisXLmSkSNH8ttvv7Fs2TJsNhvdunUjKyvL3ebhhx/mm2++4fPPP2flypUcOHCAW265xX3ebrfTs2dPrFYrq1evZvbs2cTFxfHUU0+52+zevZuePXvSpUsXNm7cyOjRo7n77rtZunSpu82nn37KmDFjePrpp9mwYQMtWrQgNjaW5OTk8/k8REREROSPObDgflfY0noI3PS6whYREZESMjidTue5vvjw4cNUqVKFlStXcs0115CWlkZkZCRz586lX79+AOzYsYPGjRsTHx/PlVdeyXfffceNN97IgQMHqFq1KgBvvfUW48eP5/Dhw5jNZsaPH8/ixYvZunWr+14DBgwgNTWVJUuWANC+fXvatWvHjBkzAHA4HNSoUYMHH3yQxx57rFj1p6enExoaSlpaGiEhIef6MYiIiIhcGuz5sOIF+OUl137b4dDjJTBqFLpc+vTdQERK23n97ZmWlgZAREQEAOvXr8dms9G1a1d3m0aNGlGzZk3i4+MBiI+Pp1mzZu6wBSA2Npb09HT+/PNPd5sTr1HYpvAaVquV9evXe7QxGo107drV3eZU8vLySE9P93iIiIiICJB+ED686XjY0mEU9JymsEVEROQcnfPfoA6Hg9GjR9OxY0eaNm0KQFJSEmazmbCwMI+2VatWJSkpyd3mxLCl8HzhuTO1SU9PJycnhyNHjmC320/ZpvAap/LCCy8QGhrqftSoUaPkb1xERETkUrPrB3jrati7CszB0O99iH0ODAZvVyYiIlJunXPgMnLkSLZu3cq8efNKs54LasKECaSlpbkf+/bt83ZJIiIiIt5jz4cfJsGcvpB9BKKawX0roWlfb1cmIiJS7p3Tun6jRo1i0aJF/Pzzz1SvXt19PCoqCqvVSmpqqkcvl0OHDhEVFeVuc/JqQoWrGJ3Y5uSVjQ4dOkRISAj+/v6YTCZMJtMp2xRe41QsFgsWi6Xkb1hERETkUpP2r2vJ58SC4djt7oZuz4Gvn3frEhERuUSUqIeL0+lk1KhRLFiwgB9//JHatWt7nG/Tpg2+vr4sX77cfWznzp0kJibSoUMHADp06MCWLVs8VhNatmwZISEhNGnSxN3mxGsUtim8htlspk2bNh5tHA4Hy5cvd7cRERERkdP4e5lrCFFivGsI0a1xrvlaFLaIiIiUmhL1cBk5ciRz587lq6++Ijg42D1fSmhoKP7+/oSGhjJ8+HDGjBlDREQEISEhPPjgg3To0IErr7wSgG7dutGkSRPuuOMOpk6dSlJSEk8++SQjR4509z65//77mTFjBuPGjWPYsGH8+OOPfPbZZyxevNhdy5gxYxgyZAht27bliiuu4NVXXyUrK4u77rqrtD4bERERkUuLPR9++i/8+oprv1oL6PcBVKrr3bpEREQuQSVaFtpwmonTPvjgA4YOHQpAbm4ujzzyCJ988gl5eXnExsby5ptvegz12bt3LyNGjGDFihUEBgYyZMgQpkyZgo/P8fxnxYoVPPzww2zbto3q1aszceJE9z0KzZgxgxdffJGkpCRatmzJ9OnTad++fbHfvJZ+ExERkQojbT98MRz2/ebav+Je6PZf8NFwaxHQdwMRKX0lClwuNfpDVURERCqEv5bCgvsgJwUsIXDT63B5b29XJVKm6LuBiJS2c5o0V0RERETKAbsNlj8Lq6e79qu1hFs/gIg6Xi1LRESkIlDgIiIiInIpSt0HXwyD/QWrQ15xH3SbrCFEIiIiF4kCFxEREZFLzc7vYOGIgiFEoXDzDGhyk7erEhERqVAUuIiIiIhcKuw2WD4JVr/u2o9u7RpCFB7j1bJEREQqIgUuIiIiIpcCh8PVq2XL5679Kx+ArpPAx+zdukRERCooBS4iIiIil4Kf/usKW4w+0HeWViESERHxMqO3CxARERGR87TuA/hlmmu713SFLSIiImWAAhcRERGR8uzvZbD4Edf2tY9Bq0HerUdEREQABS4iIiIi5dfBTfD5UHDaocVA6PyYtysSERGRAgpcRERERMqj1H3w8W1gzYTa10Cv18Bg8HZVIiIiUkCBi4iIiEh5k5sGc2+DzCSo0gT6z9FqRCIiImWMAhcRERGR8iTfCp/eAcnbICgKBn0OfqHerkpEREROosBFREREpLxwOuGbh2D3SjAHwaDPILS6t6sSERGRU1DgIiIiIlJerJgCmz4BgwlujYNqLbxdkYiIiJyGAhcRERGR8uCPj2HlFNf2jS9D/eu9W4+IiIickQIXERERkbIu4SfXUCKAq8dAm6FeLUdERETOToGLiIiISFl26E/47E5w5EPTfvCfid6uSERERIpBgYuIiIhIWZV+AD6+FfLSodbV0PtNMOrXNxERkfJAf2OLiIiIlEV5GfDxbZD+L1RuAAPmgI/F21WJiIhIMSlwERERESlr7Db4bAgc2gKBkTDoc/AP93ZVIiIiUgIKXERERETKEqcTFo+BhOXgGwADP4PwGG9XJSIiIiWkwEVERESkLPllGmz4EAxG6Pc+XNba2xWJiIjIOVDgIiIiIlJWbP4Mfpzs2r5hKjS8wbv1iIiIyDlT4CIiIiJSFuz5FRY+4NruMAquuMe79YiIiMh5UeAiIiIi4m3pB1yT5Dps0ORmuH6ytysSERGR86TARURERMSb7Db4YhhkH4GqzaDP22DUr2giIiLlnf42FxEREfGm5ZMgMR4sIXDbbPD193ZFIiIiUgoUuIiIiIh4y47FsPp11/bNb0Clut6tR0REREqNAhcRERERbzi2GxaMcG1fORKa3OTdekRERKRUKXARERERudhsufDZnZCXBtWvgOsnebsiERERKWUKXEREREQutiWPQdJmCKgEt34AJl9vVyQiIiKlTIGLiIiIyMW06VNY/wFggFvehdDq3q5IRERELgAFLiIiIiIXS/J2WDTatX3teKh3nVfLERERkQtHgYuIiIjIxZCX6Zq3xZYNdTrDteO8XZGIiIhcQApcRERERC40pxO++T848hcEV4Nb3gOjydtViYiIyAWkwEVERETkQls3C7Z+AQYT3BoHQZHerkhEREQuMAUuIiIiIhfSvxtgyQTX9vWToOaV3q1HRERELgoFLiIiIiIXSk4KfD4E7FZodCN0GOXtikREROQiUeAiIiIiciE4HLDgfkhNhPAYuPkNMBi8XZWIiIhcJApcRERERC6E1a/BX0vAZIHbPgT/MG9XJCIiIheRAhcRERGR0rZnFSyf7NruMRWqtfBuPSIiInLRKXARERERKU0Zh+CLu8Bph+YDoPUQb1ckIiIiXqDARURERKS0OOzw5XDIPASRjeHGlzVvi4iISAWlwEVERESktPz0POz5BXwDXfO2mAO9XZGIiIh4iQIXERERkdLw9zL45SXX9k3TIbKBd+sRERERr1LgIiIiInK+UvfB/Htc2+3ugWb9vFuPiIiIeJ0CFxEREZHzsWs5zO4FOSkQ3Rpin/N2RSIiIlIG+Hi7ABEREZFyKWUvLH0cdixy7QdXg1vjwMfi1bJERESkbFDgIiIiIlIStlxYPR1+mQb5uWAwQfv7oPNj4Bfq7epERESkjFDgIiIiIlJcO5fAkvGQsse1X+tq6PEiVG3i1bJERESk7FHgIiIiInI2x/6B7x6Dv5e69oOrQbf/QtO+YDB4tzYREREpkxS4iIiIiJyONRt+fRlWvQZ2Kxh9ocMDcM04sAR5uzoREREpwxS4iIiIiJzM6YTtX8PSJyBtn+tYnS5ww1SIbODd2kRERKRcUOAiIiIicqLDf8F34+Cfn1z7oTUg9nlo3EvDh0RERKTYFLiIiIiIAORlwMqp8Nub4MgHkxk6/h9cPQbMAd6uTkRERMoZBS4iIiJSsTmdsPVL+P5JyDjoOlY/Frq/AJXqerc2ERERKbcUuIiIiEjFZMuBbV/D2ndh/1rXsfAY6P4/aNjdq6WJiIhI+Wcs6Qt+/vlnevXqRXR0NAaDgYULF3qcHzp0KAaDwePRvbvnLy3Hjh1j0KBBhISEEBYWxvDhw8nMzPRos3nzZjp16oSfnx81atRg6tSpRWr5/PPPadSoEX5+fjRr1oxvv/22pG9HREREKppDf8K342BaQ1hwryts8fGDLk/AA2sUtoiIiEipKHEPl6ysLFq0aMGwYcO45ZZbTtmme/fufPDBB+59i8XicX7QoEEcPHiQZcuWYbPZuOuuu7j33nuZO3cuAOnp6XTr1o2uXbvy1ltvsWXLFoYNG0ZYWBj33nsvAKtXr+b222/nhRde4MYbb2Tu3Ln07t2bDRs20LRp05K+LREREbmU5WXCn/Nh/Wz4d93x46E1ofUd0OoOCKnmvfpERETkkmNwOp3Oc36xwcCCBQvo3bu3+9jQoUNJTU0t0vOl0Pbt22nSpAlr166lbdu2ACxZsoQePXqwf/9+oqOjmTlzJk888QRJSUmYzWYAHnvsMRYuXMiOHTsA6N+/P1lZWSxatMh97SuvvJKWLVvy1ltvFav+9PR0QkNDSUtLIyQk5Bw+ARERESnTDvwB6+Ngy5dgzXAdM/pAwx7QZohrqWejyaslikjZoO8GIlLaSjykqDhWrFhBlSpVaNiwISNGjODo0aPuc/Hx8YSFhbnDFoCuXbtiNBpZs2aNu80111zjDlsAYmNj2blzJykpKe42Xbt29bhvbGws8fHxp60rLy+P9PR0j4eIiIhcYnLTYO178FYneKezK3CxZkBEHeg6CcZsh/4fQb2uCltERETkgin1SXO7d+/OLbfcQu3atUlISODxxx/nhhtuID4+HpPJRFJSElWqVPEswseHiIgIkpKSAEhKSqJ27doebapWreo+Fx4eTlJSkvvYiW0Kr3EqL7zwApMmTSqNtykiIiJlidMJ+36HDbPhzwVgy3YdN5mh8U2u3iwxncBg8G6dIiIiUmGUeuAyYMAA93azZs1o3rw5devWZcWKFVx33XWlfbsSmTBhAmPGjHHvp6enU6NGDS9WJCIiIucl+xhs/tQ1N8vh7cePRzaC1kOgxQAIiPBefSIiIlJhXfBloevUqUPlypXZtWsX1113HVFRUSQnJ3u0yc/P59ixY0RFRQEQFRXFoUOHPNoU7p+tTeH5U7FYLEUm8BUREZFyKuFH+PQOsBasdOjjD5f3gTZDocYV6s0iIiIiXnVB5nA50f79+zl69CjVqrlm/u/QoQOpqamsX7/e3ebHH3/E4XDQvn17d5uff/4Zm83mbrNs2TIaNmxIeHi4u83y5cs97rVs2TI6dOhwod+SiIiIeNuOxTC3vytsqdIEerwEj+yAPjOhZnuFLSIiIuJ1JQ5cMjMz2bhxIxs3bgRg9+7dbNy4kcTERDIzM3n00Uf57bff2LNnD8uXL+fmm2+mXr16xMbGAtC4cWO6d+/OPffcw++//86qVasYNWoUAwYMIDo6GoCBAwdiNpsZPnw4f/75J59++imvvfaax3Cg//u//2PJkiVMmzaNHTt28Mwzz7Bu3TpGjRpVCh+LiIiIlFlbvnD1bLFbXfOz3LsSrrgH/MO8XZmIiIiIW4mXhV6xYgVdunQpcnzIkCHMnDmT3r1788cff5Camkp0dDTdunVj8uTJHhPcHjt2jFGjRvHNN99gNBrp27cv06dPJygoyN1m8+bNjBw5krVr11K5cmUefPBBxo8f73HPzz//nCeffJI9e/ZQv359pk6dSo8ePYr9XrT0m4iISDmz4UP4+iHACc0HwM1vgOmCj5AWkQpA3w1EpLSVOHC5lOgPVRERkXLkt7dgScE/vrQdBj2mgfGCj44WkQpC3w1EpLTptxQREREp+35+6XjY0mEU9HxZYYuIiIiUaeqDKyIiImWX0wnLn4VfX3btd54A147XpLgiIiJS5ilwERERkbLJ4YClE2DNW679bv+Fqx70bk0iIiIixaTARURERMoehx2+eQj+mOPa7/kytBvu3ZpERERESkCBi4iIiJQtdhssuA+2fgkGI9z8JrS83dtViYiIiJSIAhcREREpO2y58MVdsPNbMPpCv1nQ5GZvVyUiIiJSYgpcREREpGywZsG8QfDPT+DjB7d9BA26ebsqERERkXOiwEVERES8LzcN5vaHxHjwDYSB86D2Nd6uSkREROScKXARERER78o+BnNugQN/gCUUBn8BNa7wdlUiIiIi50WBi4iIiHhPxiH4qDckb4OASnDHAqjWwttViYiIiJw3BS4iIiLiHWn7YfZNcCwBgqLgzq+gSiNvVyUiIiJSKhS4iIiIyMV3NAE+7A1piRBaE4Z8BRF1vF2ViIiISKlR4CIiIiIXV+Ia+GQA5ByDSvVcPVtCq3u7KhEREZFSpcBFRERELp5tX8H8eyE/F6Jbw8BPIaiKt6sSERERKXUKXEREROTiiH8Tlj4OOKHBDdBvFpgDvV2ViIiIyAWhwEVEREQuLIcdlj4Ba2a69tvdDTdMBaPJu3WJiIiIXEAKXEREROTCseXA/Htg+zeu/eufhaseAoPBu3WJiIiIXGAKXEREROTCyDoK826HfWvAZIbeM6FZP29XJSIiInJRKHARERGR0nfsH5jTD44lgF8oDPgEYjp6uyoRERGRi0aBi4iIiJSu/etgbn/IPgKhNWHwFxDZ0NtViYiIiFxUClxERESk9OxYDF8Mh/wcqNYCBn4GwVHerkpERETkolPgIiIiIqVjzTvw3TjACfW7Qb8PwBLk7apEREREvEKBi4iIiJwfhwN+eApWv+7abz0Eer4MJv2aISIiIhWXfhMSERGRc2fLhYX3w58LXPv/mQidHtGyzyIiIlLhKXARERGRc5N9DOYNhMR4MPrCzW9Ai/7erkpERESkTFDgIiIiIiWXsse17PPRv8ESAv3nQJ1rvV2ViIiISJmhwEVERERKZu9q+OxOyDoMIZfBoC+gahNvVyUiIiJSpihwERERkeLJy4AfJsHad137VZvBoM8gJNq7dYmIiIiUQQpcRERE5Ox2/QDfjIa0fa79VoMh9gXwC/FqWSIiIiJllQIXEREROb3sY7D0Cdg017UfVhN6TYe6Xbxbl4iIiEgZp8BFRERETm3bV7B4LGQlAwZofz/850mwBHm7MhEREZEyT4GLiIiIeMo4BN+Ohe1fu/YrN4CbZkDN9t6tS0RERKQcUeAiIiIiLk4nbPoElkyA3FQwmODqh+GaR8HXz9vViYiIiJQrClxEREQEUhNdk+ImLHftRzWHm9+Aas29WpaIiIhIeaXARUREpCJzOGDdLPjhGbBmgskCnR+Dqx4Ck35NEBERETlX+k1KRESkojqyC74eBYnxrv2aHeCm16Fyfe/WJSIenHYH1r0Z5P6VQl5CKk6nE1OwGVOIGVOwGWOw2XM/yIzBZPB22WfkyLaRty8D6950AlpVwTcywNsliYiUOgUuIiIiFY09H+Jfh59eAHse+AbC9ZOg7XAwGr1dnYgA+am55O5McYUsu1Jx5tk9ztvO9GIDGAN93SFMkUAm2IxPuAVjsBmD4cIHM06Hk/zD2Vj3ZpCXmI51bzr5h3Pc503BZgUuInJJUuAiIiJSkRz6ExaOgIObXPt1r4Ner0JYTa+WJVLROW0O8nankftXCrl/HSM/OcfjvDHQB7/64VgahGP088GeYcWebsWRYXVv2zOsODKt4ABHpg1Hpg3bwazT3tNgNuJT2d/1iAzA173tj9Hv3L8mOHLzsRb0XslLzMCamIEzN79IO5/K/phrBuOjsEVELlEKXERERCoCpxM2zIbvxkN+LviFQfcXoMXtcBH+hVtEPDmdTvKP5Lh6sPyVQt4/aThtjuMNDGCuGYJfg3D8GobjGx2EwXj2n1Wnw4kjy+YZyBSEMfaME/bT83BaHdgOZGE7UDSUMQb5usMY30h/fCoH4BPpj0+EHwaf4z3hnE4n+Udzse5Nx5qYjnVvBrZDWeD0vJ7B14i5RjDmmiGYa7meTYG+5/z5iYiUBwpcRERELnV5mbB4DGz+1LVfvxvcNAOCq3q3LpEzcOY7cOTm47Q6wOHE6XCC04nT7nR9mS88dsLz8W3c7XG4XuO0OXDmOzye8di348x3nvRccN7mqsFgNmGwmDBaTBj8fFzPhfsWE0Y/H8/zZhMGv+PnDUYDeXvSC3qxpGA/luvxno0hZlfA0iAcv3phGANKHkgYjAbX8KFgM0Sf+fPNP5ZL/pEc1+NwDrYj2eQfycGR4eodY820Yd2TftINwBTuh2+kPxgMWPel48gq2nvFFOGHuWYwllohmGuG4BsVWObnlRERKW0KXERERC5lydvhsyFwZCcYTHDdU64ViDRXi1xgTqcTp9WOIycfR44dZ44NR07Bfm4+jpx8nDn5BeeLHvPo7VFWZBcNFs6LyYAlJgS/BhH4NQzHp2rARZlTBcDgY8S3SgC+VYoO53Hk5ruDGNvhHI9Qxmm1Yz+W6xkW+RgwXxaMuVYwlpohmGuFuAIfEZEKToGLiIjIpWrjJ66eLbZsCK4G/d6HWld5uyopRc58B448O848e8Gzq0eIwdfo2fPCYgIfY6l8mXdY7cfnDcmw4cgsnDvEdsKwFRv2TCvYnWe/4FkYfI1gNIDR4BpSY3T14sBgAJPBvV147ni7488YDa7PxMdYomdO3DcZcFodOPLyXZ93rufn7rGfm4/DaseZa3e3d1pdAZIpws/di8VSN8z136aMMfr5YK4ejLl6sMdxp9OJI8NG/pFsbEdywObAt0Yw5uggj2FGIiLiosBFRETkUmPLgW8fhT8+cu3X6QK3vAtBkd6tqxQ4sm1Y/83Euj8D675MbP9m4sy3g9H1hdhgKvgSbjIe/zJuOvGcaxujoeCYq51PuB9+jSPwifS/aD0MTuR0OrEdzMK2P9PV06MgRHF9gc8/4Yu83fVFvuALfokCDaOhSAhjsJhcw17cxwqGxJiNOHLt2DMLJ2UtDFZsOK32s9/rRCYDRn8f98Pg5+OxbyzYN/ibPPYL2xZn3pLywGl34sy3u4YlldN5kwwGg2uloxAzljphpXJNp9M1ROxS+e8sInIiBS4iIiKXkiN/u4YQJf8JGKDL49DpETCWvX9FPxuH1Y7tQCbWfa6AxbY/g/yjuWd/4TlK+243pkp++DeKwK9JJSwxIa5A5gJx5OWTtyuV3B0p5Ow8hiPdes7X8ujR4msq6Pni2bMChxNnTj72nPMfFmPwNWIMMWMKMmMK8nUvO2wM9nUdK9wO9C21njXlnSvg06/edpuD5MQMDiakkpSQRtI/aVw3tAm1Lq/k7dJEREqd/tQXERG5VGz5Ar75P7BmQmAk9H0P6nT2dlXF4rQ7sCVlF/RcycC2PxNbchacYhoPUyW/guEOQZirB2MM8HFNpGp34rQ7jm87nHDifsH5wklUC8858x1Y92eSl5CK/WgumasOkLnqAAY/E34NI/BvHIFfg/BzmsD0ZLbD2eTuSCF35zHydqd59FAx+Boxx7hWbjGcOPmq+7lgkla/E4/7uHpMnGEyUqfDNZfK8eEvJ/WaOeHZvW21Y7CY3JOvGoN9XdtBZozB5jI5DEbKppwMKwcT0tzhSvLeDOz5nj/YSQlpClxE5JKkwEVERKS8s+XC0sdh3SzXfq2rod8sCI66ILdzOp04svNdK7yctEqM037q/VOtKOO0OrAdzHKFLAcyIb/o8BhjsNm1lGxBuGKuHlQqwcepOPLyyfs7lZztx8jdcQxHlo2cTYfJ2XQYjGCJCcWvcQR+jSvhW9m/WNd02hzk7U4jd8cxcnceK9JDx1TJD/+GEfg1isBSO9Q1b0gpMxgNGPx8wM8HxSSlz57vwJZnP80jH1vu8f18qx2ns2AldoMBA4Xz0XB8G9fQHQqmqTm+bfDYNxbMUXP8ueC/9QnHjm9zUlsDPmYT/kG++AX6Yiql/++cTieph7I5mJDmDllSD2UXaecf7EtUnVCq1Q0jqm4oVWoGn+JqIiLln8HpdJ7/bGblVHp6OqGhoaSlpRESEuLtckREREru2D/w+VA4uMm132ksdJ4ApTh0wZGbj3Wfq+eJNdH17Miyldr1Cxn8fDDXCPLovWIKtZT6fYrD6XBi3ZdB7vaj5Gw/Rv5JXxp9Iv3xa1wJ/8YRmGuGePQwyU/NI3enK7TJ25XqudqOyYCldih+DSPwaxSOT2XvzBlT0TmdTvJtDqw5+Vhz8skreLbm2E/aP+F8rmd4UvhwlMLEwN7mYzHhH+iLX1DBI/D4s/9J+4VtfM0m8q12kvceHx508J808k6xRHR4tUCq1Qkhqm4Y1eqGElqlbP5/r+8GIlLaFLjoD1URESmvtn0NX42EvHTwj3BNjFu/63ld0ml3YjuU5RGu5B/OhlP9tlAw8SwnrQjjmqi26L5Hm4J930j/gh4swZgq+ZXJL2EA+UdzyNlxjNztx8j7J83Va6eAMcAHv4YRGIPN5P11DFuSZzhjDDEX9GIJx1IvDKNFHYwvtHybnWMHskjem8HhfRmkJWeTl+0ZqjgcpfsrsNHHgK/FVPDwOWG74OFnwtfX5FpJyQFOnDidgPP4xLFOZ+Ex17MTXL3BnAXtHSecczhxFPQYczgKep4VDKXz3Mbd7sTX2PLs5Gblu3qcnQOTr9F1vZMCJ5OvkaoxIUTVDaVa3VCi6oTiF3hheqWVNn03EJHSpr/xRUREypt8Kyx7CtbMdO3XaO9a8jm0eokvZU/Lw7ovg7zEDKz70rHtz/TskVHAFOHnCkZqBGOuGYy5WtAFGf5SVvlU8ie442UEd7wMR24+uX+lkLv9GDk7juHIzif7j+TjjQ1grhmCX6Nw/BpG4FstsMwGScXldBZ+YQeH0zVUzFHwxd7p8Pzyf/zLPpj9TQSEmDFewMmHbVY7R/dncjgxg8OJGSQnZpByIKtYgYrBAGZ/H8x+Pq5nfxMW/8Jt18O972fC1+8UQUrBw1QOl0V2OpxYc/PJybSRm2Uj98TnTBs5WTbyMm1FzjvsTuwFf04EhJhdwUrBI7JGcLn8LERELgQFLiIiIuVJaqJrCNG/6137Vz0I1z0NprP/C7IjN//4qj/70rEmZmA/xco4BovpeLhSELCYgsyl/EbKL6OfDwHNIwloHonT7sS6N52cHUdxZOfjVy8MS/1w1+o8ZYzT6SQvO5+cDCs5GVay022u5wwrOelWcjIK9tOt5GTasNtcc/Q43F0tzo3B4PpSHhhmITDMQlCYhcBwi+d+mAWz39l/LbXm5nNkX0G4ss8VsKQczOJU/bX9An2JrBVMZI1gIqID8Qv0LRKq+FrK7xLNpcFgNGAJ8MVSgnmRnE4ntlw7uVk2MEBwRNntmSYi4m0KXERERMoDpxN2LIKvRkFuKviFQu+3oFGPUzZ35BUsqbw/E9u/GVj/zST/cE7RhgbwjQo83nOlRjA+kQHuyTvlzAwmA5Y6oVjqhJ73tew2B8eSsnDkF/YWceAo6EniHh7icA0PcTgc7l4mhecKtx12Z0GoUjRQKe1hNIUMBtdnYTQcn6zVYABrrh2nw0lWmpWsNCvszTjtNXz9TO7w5cQwJt/mcPdeSU0+9fA2/xAzVWoGE1nTFbBE1gomKNyiIOACMBgM7t4/IiJyZvqTUkREpKzbtxZ+eBr2rnLtR7eGW+MgvBYADqvdvdqPbX9mQbhy6i+mpjAL5suC3OGK72XBWuLXixwOJ//+lcLfvx8i4Y/DWHOKTjha2sz+PgSEmPEP9sU/2ExA8AnbIWb8C/ZNvsYiK+EUBikn758u2HA4XOFPVmoemSl5ZKUef2Se8GzLtWPLtZOSlE1KUtFVbU4UGGZxBSsFjyo1gwkINStcERGRMkeBi4iISFl1eCcsf9bVswXAZMF5xSisDUZi25GHdf9fWPdnkH+af/U3hZrxvSzYFbBUD8L3sqBLamhQvs1OdpqVvJx88vPs2Kx28vMcrmdr4TK8BfuF560O9/K8J54PCDZTo3E4NZpUompM8AWdc8TpdHJoTzp/rz3ErnXJZJ8wrMsS4Oo5YDQaMBZMPGw0GYouAVx4rOD5xADEZDLgF1Q0QAkIMeMfZC61JYCLw2g0EBhqITDUQpVap29nzc33CGGyUvPISnHtG40GKtc4HrAEhFw6/w+LiMilTasUaSZyERG5yJx2B45cO87cfBw5+UW2HanHcCaswXF4Pw5nAA6CcPpVx+EbiT0jH4rOaYsx2Ne1nPJlQfgWPJuCy+cXU6fDSU6mrUhPiKw0z94Rp1p+tjSY/UxUbxRREMBEEBoZUCrXPXYgi7/WJvH32kOkH8l1H7cE+lCvdRXqt6tKdL0wDecS8RJ9NxCR0qYeLiIiIheI0+Ygb28aebtSyUtIw56WhyM3H6f1FIlJEQ0LHgWyAVwBgzHI1yNYMVcPwhRiuQDvoHTZbQ5yMo/PLXJiqFIYqGSm5pGdZi2y1OzpmHyNWAJ88DWb8DGb8LUY8XFvm/A1G/GxFOwXHPMxG084b8JkNpJ6KJt9246xb8cx8rLy+WfjYf7ZeBiAkMp+1GhSiZqNI7isYViJJhhNP5rDrnXJ/PX7IY7+m+k+7mMxUbt5ZRpcUZUajSO0qouIiMglSD1clGKLiEgpcTqc2A5kkrsr1RWy7EmD/NP/NWswmzD6mzBYjBhthzFm7MLgSMNoyMQYGoGxYScMUbUx+vlg9PfB4GfCFGrBFFI25qvIt9rJybQdn6C1IEzJPSlUKXy25dqLf3EDBASbT5pA1UxAqMVjYlVLgE+pfhYOh5PDiRmu8GX7MZIS0jwmmjUYDVSNCaFGkwhqNI445fCj7HQrCRuS+XvtIQ4mpLmPG00Gal5eiQbtqhLTvDK+mjtHpEzRdwMRKW0KXPSHqoiInCOn00n+kRzyElLJ+zuV3IQ0nLmew1yMIWbXUsH1wvCtGojRz+QKTyw+GMiHPz6CFf+DzCTXC6o2dS3zXP9619IvXpZvtZOanO2ezDQ1KYuUQ9mkJedgyytBgFLAaDw+v4h/sC8BoWbPlWlCXc8BoWZMF3AeleKy5uZz4K9UErcfY9+2Y6Qe8pzQ1ezvQ/WGrqFHJh8ju9YdYt+OFJyFIY0BLmsQRoN2UdRpFYlfGVwuWkRc9N1AREqbAhf9oSoicklxOpzYDmaR+3cKeX+lYN2f6eoZEmx2PULMGAu3T9wP8sVQjGEd9gwrebtS3b1Y7Gl5HucNFhOWumHukMUn0r9oDwynE7Z9BT9OhqO7XMfCakKXJ6HZrWC8uEGD0+kkJ8NGSlJWQaiSTcoh13bGsdxTTshbyGgyuMMT/yBf/IIKt4+vfONfELD4BfmWeo+Uiy39aA77t6ewb/vx4UenUqVWMPXbVaVem6oEhZf94V4iou8GIlL6SjyHy88//8yLL77I+vXrOXjwIAsWLKB3797u806nk6effpp3332X1NRUOnbsyMyZM6lfv767zbFjx3jwwQf55ptvMBqN9O3bl9dee42goCB3m82bNzNy5EjWrl1LZGQkDz74IOPGjfOo5fPPP2fixIns2bOH+vXr87///Y8ePXqcw8cgIiLlmT0tj9y/U10hy64UHCd9CXZa7TjSrdjOch1joA+m4BMCmRAzxiAzxgAfbP+6hgrln9TDAZMBS60QLAUBi/myYAymMwQK/6yAH56BA3+49gMqwzWPQtu7wOfCfjHPt9pJP5pLWmGPlUMFPVaSssnLPv0EtJYAH8KjAgmPCiAsKoDwqEDCqvgTEGrB7Gcq1wFKSYVU8qfJ1f40uTq6yPAjW56d2i0qU79tVcKqls5EuyIiIlJ+lThwycrKokWLFgwbNoxbbrmlyPmpU6cyffp0Zs+eTe3atZk4cSKxsbFs27YNPz8/AAYNGsTBgwdZtmwZNpuNu+66i3vvvZe5c+cCrnS5W7dudO3albfeeostW7YwbNgwwsLCuPfeewFYvXo1t99+Oy+88AI33ngjc+fOpXfv3mzYsIGmTZuez2ciIiJlnMNqx7o7zR2ynByCuHuZ1A/DUjsUp82BPcOKPcOKo+DZnn7ivg0cThxZ+a6wJin7NHcGDOBbLRBLvXD86oVhjgnBaC7GXBwHNsLySZDwo2vfHAQdRsFVo8ASfO4fxgmcTifZ6VbSD+eQfiSHtCO5pB9xbacfziErzXr6FxsgpJKfK0yJCiC8aoA7ZPEL8q1QoUpxGQvmc6kaE0LbHjHeLkdERETKmPMaUmQwGDx6uDidTqKjo3nkkUcYO3YsAGlpaVStWpW4uDgGDBjA9u3badKkCWvXrqVt27YALFmyhB49erB//36io6OZOXMmTzzxBElJSZjNriUtH3vsMRYuXMiOHTsA6N+/P1lZWSxatMhdz5VXXknLli156623ilW/ug2KiJQPTocTW1KWa56Uv1PI250GJ65iYwDf6sH41Q/Dr3445prBGEow/4fT4cSRbcORaXMHMfYMK47CUCbLhk9lf1cvlrphmIo7D4fTCbtXwqrXjgctRl9oO8zVqyUosgSfgku+1U56QZCSVhimFAYrh3PIt515BSSzn4nQKgGEVQ0gPOp4qBJaxR8fX03iKiIVl74biEhpK9VloXfv3k1SUhJdu3Z1HwsNDaV9+/bEx8czYMAA4uPjCQsLc4ctAF27dsVoNLJmzRr69OlDfHw811xzjTtsAYiNjeV///sfKSkphIeHEx8fz5gxYzzuHxsby8KFC09bX15eHnl5x8fap6enl8K7FhGR0uZ0OMk/moN1X4Y7ZHFkeg4IMoVa8GsQjqW+a74UYwmW6j2ZwWjAFGTGFGTGNyrwfMsHez5sW+gKWpI2F94EmvaDLo9DRO0zvtzhcJJxNJfUQ9nuR0rBc1Zq3hlfazBAUIQfIZX9Ca3sR0ikv2u74Lm8z6EiIiIiUl6UauCSlORaYaFq1aoex6tWreo+l5SURJUqVTyL8PEhIiLCo03t2rWLXKPwXHh4OElJSWe8z6m88MILTJo06RzemYiIXCj2TCu2pCxsSdnYDmZhO5RF/qFsnCf11DD4GrHUDXMFLPXDTz0ZrbdZs+CPORA/A1ITXcd8/KH1ndDhAQiP8Wiem2VzhSlJx4OV1GTXCkD2/NP3VDH7mQiJ9Ce0sitEcW9H+hEU4VcmVvcRERERqehKNXAp6yZMmODRKyY9PZ0aNWp4sSIRkYrDabNjO5TtClaSstyPk3uuFDL4GvGJCsSvIGSx1Aop1ipCXpF5GH5/B9a+CzkprmMBlchvcz/ZDe4gyxpA1j95pB/ZWzBRrStcyc06/TS+Jh8joVX8CataMPyn4DmsSgCWQPVSERERESnrSjVwiYqKAuDQoUNUq1bNffzQoUO0bNnS3SY5Odnjdfn5+Rw7dsz9+qioKA4dOuTRpnD/bG0Kz5+KxWLBYtHSjCIiF5LT6cSekoftYKZHuJJ/JOfUywsbwCfCD5+oQHzdjwB8KvljMJbNUCHfZic7zUpW4j9krVtM9j9bybIFk2W/g2xTNFm+tclKDyDv83xg+xmvFRRuIbTKCYFKwYS1QRF+GMvo+xcRERGRsyvVwKV27dpERUWxfPlyd8CSnp7OmjVrGDFiBAAdOnQgNTWV9evX06ZNGwB+/PFHHA4H7du3d7d54oknsNls+Pq6xuQvW7aMhg0bEh4e7m6zfPlyRo8e7b7/smXL6NChQ2m+JREROQOn3Un+4Wys/2a6hgMdyMR6IAtn7qmXGDYG+uBbNRDfasfDFZ+qAcVb5ecisdscZKTkknEsl4yjrufMo7lkpeWRlWYlKzXvpCWU2xY8TuZqY/QxEBhqITDUTHAlf4/eKqFV/DH7VajOpiIiIiIVRol/y8vMzGTXrl3u/d27d7Nx40YiIiKoWbMmo0eP5r///S/169d3LwsdHR3tXsmocePGdO/enXvuuYe33noLm83GqFGjGDBgANHR0QAMHDiQSZMmMXz4cMaPH8/WrVt57bXXeOWVV9z3/b//+z+uvfZapk2bRs+ePZk3bx7r1q3jnXfeOc+PRERETsVhtbt6qxzIxHYgC+uBTGxJWZB/im4rJgO+VQNO6LHiClmMZWB5YVue3R2kuEKVnOP7R3PJSreeuifOSUxYCTQdIyDQSWC1aAKqRRMYZikIVywEhJoJDLNokloRERGRCqrEy0KvWLGCLl26FDk+ZMgQ4uLicDqdPP3007zzzjukpqZy9dVX8+abb9KgQQN322PHjjFq1Ci++eYbjEYjffv2Zfr06QQFBbnbbN68mZEjR7J27VoqV67Mgw8+yPjx4z3u+fnnn/Pkk0+yZ88e6tevz9SpU+nRo0ex34uWfhMROTV7ls0zWDmQedohQQaLCd9qgZijg/CNDsI3OhDfKgFen28lL9vGv3+lcnBXKulHj/dWyT3NnDEn8vE1ElzJj+AIP4LCfQi27iLo4FICs7YSYEwh0DcdS/OeGDo+CFWbXIR3IyIiF5q+G4hIaStx4HIp0R+qIlLROB1OHNk27OnWgkceDve2a9+ebj3tRLbGYF+PYMUcHYQp3K9MzLVitzk4+E8a+3ccY/+OFJL3pHO6v+HM/j4ER/i5QpWCYKVwP6SSH36BPhgO/AF/fARb50NeWsELg6HtUGg/AkIvu2jvTURELjx9NxCR0qaB4yIilwinw4n9WC75qXnYM6zY0wrDlLzjgUqGFezFy9lNlfwKwpVAfKODXOFKsPkCv4viczqcHPk3k/3bU9i/4xgH/k4l/6SlpMOjArisQTjh1QIKAhV/giv5YfE/zV9/mcmwebZraefDO44fD60J7YZBm7vAP+zCvSkRERERuWQocBERKYccVjv5h7Jdw30OZhU8MnFaHWd/MWAM8sUUYsYUYil4NmM8Yd8nwg9jGZzMNf1IDvt3pLCvoBfLycODAkLMVG8cTo1GEVRvFE5QuN/ZL2q3wd/LXCHL30vBUTAhro8fNL4JWg2GmE5gLKNLUouIiIhImVT2fpsWEREP9gwrtoNZJ4QrmeQfPs0Syz5GfCIsruAk2Iwp1FzwbDkeqAT7YjCVj/AgN9PG/p2uHiz7dqSQfjjH47yvxcRlDcKo3iiC6o3DiagWWPwJapN3wMY5sGkeZB0+fvyyttBqEDTtC36hpfhuRERERKQiUeAiIlJGOB1O8o/kYDtYMFltwTLLp51PJcjXtbxydBDmgmefSv4YTN6fT+Vs7PkOstNdSyxnp1nJSstz7aflkZVqJTvdtQRzTobnikFGo4GqdUKo3iiCGo3CqVI7BFNJwqPcNNecLH/MgX/XHT8eGAnN+7t6s1RpXHpvVEREREQqLAUuIiJe4Mg7YYnlg65wJT8pC6ftFEOCDOBT2b9IuFKW5lMp5LA7yEqzkpmSR1ZqnitISbOSnebazkqzkp1mJTfr7CsFFYqIDnQNEWocTnT9MMwlHerkcMCeX2Djx7Dta8gv6CVjMEGD7q7eLPW7gcm3ZNcVERERETkDBS4iIheQ0+nEkW5191YpnG8l/+hpllj2NbqClYJQxbdaIL5RgRjNpotf/EmcDifZGVYyj+WRmZJLZkoeGSm5ZKUc389KzTvtykAnM5oMBISYCQyzuJ5DLQSEej4HRVjwDzrHYCnrKGyYDes/gNTE48cjG7l6sjTvD0FVzu3aIiIiIiJnocBFRKSUOO0O8g/neIYrBzJxZOefsr0x2Pz/7d13nBx1/T/w15Tt5WpyyaWHJCSBBAIEUgFpoYhCQlNAmgW+tMAPaSIBQVTaV7+CBo2KDUQFUQmgiAUSOiYhHUgvV3J1+057//6YsjtX9y6X3N7l/YR9zOzM3Ps+uze5233tZz4feKtD8AwPOyGLXBk4aFMsk0FQFR1KWoeS1qBkrFtaRyqmOCFKojmDRJMZphhG92mKKAoIlfqsmxfBEh9CJV4Eo+Z9O1DxBz0H5rHuXQ289xNg7R8BPWtu80XNMVlmXA6MOAYodJwXxhhjjDHGeokDF8YY6yEyCHpLFmpdEmpdClp9CmpdCmptsuMpl0VArgzCUx2Cd7g1zfLwEKTe9tzogKEbaK5LoXF3Aum4agUn1i2j5+5ndNe2Dgfe7YIgAKFSH8JlPoRK/QiX+xAp85v3y8z1QNQL8SCFRg5NATb+xQxadr2b2z78KOD4rwFHnA94gwe3TYwxxhhj7JDGgQtjjHWCDILenIFqBSpaXQpqvRmwdDjWCgDBJzm9VZxwpSoIwdN3lwTpqoHGvQns2xlHw64E9u2Ko3F3AlonbeqOKArwBmR4AxI8fhm+gAx/2INwmQ9hK0yxl6ESL8RimuEoXgt8+DTwwc+BRJ25TfQAR5wHHP9VYORM7s3CGGOMMcb6BQcujLFDnhOs2IFKAcEKJAGeIQHIVSF4hgbhqQqavVbK/H16mYyS0dCwO4GGXXHs2xnHvl0JNO9Ndnhpj+yTMGRkGOEyHzwBGT6/O0Tx+mV4AlJu3W+uSx6x8KmUiwERsOs9szfLhj8DhjUAb7gKOO5q4Ngrgciwfm0iY4wxxhhjHLgwxg45eiyL7I44lJ0xKDvjUPcmuglWgpCrgk6wIlcFIZf3/fTLmYSKfbvi2LcrjgYrXGmpT3V42Y8vJGPIqIh5G23eSoYcvPFf+oWaAdY9D7z3FFCzJrd91Czg+K8AUz4HyMU3cxNjjDHGGDs0ceDC2CFEU3UkW7JQMjo0xYCW1aEqOjRFh5o1t6mKnrfdsLa79+uqgWDUi9KqIEqGBlA61FyWDAlA7sNLZ/oCaQbUmiSyO2JOwKK3ZNsfKHcQrAzt+2BFU3W07kujpS5l3urTaKlNoaU+hUyi46mSQ6U+DBkVRuXoXMASLvMNrF4p+6NlF/DBz4APfwmkm8xtkg+YdqEZtFQf3a/NY4wxxhhjrCMcuDA2iBi6gURzFrHGDGINacStZawhg1hjGqlWpc++V0tdCns/aXFvFIBwmc8KYIIoHRpwltHKACT5wI/9occUKDtjyO6MQdkRh7InAWhteq8IgGdYCN4xUXhHR+AdFYFc0Xe9Q8ggxJszaK1Lo7nODFNa61Jorksh3pTpcqDa6JAAhowKm71WRkVQOSqCYPQQ7LWRqAe2rzB7tGx+GSDrZ1gyCph5DTDjS0Coon/byBhjjDHGWBc4cGFsACEipGJKuyAl1pBBvDGNRFP30/bKHhHegAzZJ8HjFSF7JXh8krn0itZ2677P3G8fY24XIckiEi1ZM0ioT6O13uypoaQ1JJqySDRlsXtTs+v7CgIQqfCbAcwQM4gJRDyQZBGSR3Qt5Tb3zaUASc6NNUJEIMWAVp8yw5WdcSg7Yh32XhGDMryjo/COiZjLkRGIvp71xCEiqBkd2bSGbEpFNqXl3VSk46r1PJjPhd7FALZev4TSqqD7ZvUS8voP0V/LiX3AjhXAtjfNoKVhs3v/uBPN2YYmnQlIh+hzxBhjjDHGBhR+1cpYETEMQrIli3hTBvHGjLlsyiBhrzdmup2JRpQFRMr9iFYGEK0wlxFrGa30wx/yHJBLUYgImYSKFieAMcMYe6lmdTMgashgFwARgEewbwJkIXdfFoQO98kQ4BFz6x11SCEAGVlEyi8jHZCRDXthBCRIHgliYxZyayOkTc1mkCObQQ4AM0hJau0DFeu+ktJAPZhCWZQElAwJtAtVSqvMoOmQuRyoM3bAst267dvU5gABGHYkMO4kYMZlwNAp/dJMxhhjjDHGeosDF8YOIl01nBDFFapYy2Rz9z1UIADhUp8TqESsICVaYS5DJb5+GThVEAT4wx5USQIqIx7oQwIwRivQ4+ZNacxAac5AjysQ0hpEvQfpRRcUg9CkE5o1c9miETQAQAfjtPQBURbgC3rgD8rwBmT4gh74gjL8IY8rYImU+4pr+uT+lmzIhSvbVwD7NrY/pmoaMHaeeRszBwiWH/x2MsYYY4wx1kc4cGGsj9mX/TTXJNFUk0RTTQpNexNorU8jFet+DBVRFBAq8yFS7kekwu9eWjfJc3DfyJNmQE8oMOIq9LgCI6E6QYoeV2DkrUPrOkhxXcgjAIJPhuiXIPplCAFzKfplCPY2nwR4RZBHAsmieZMEGJIITQQEAqp0QqVmQLdvKuXWNQOGZkDXCJqat81ZN9vrDcrwBc3pk+0Qxbx5zG0hc5/sLa5BgYtWoh7Y+XYuYKnf0P6YqiPzApa5HLAwxhhjjLFBhQMXxnqpXbCy1w5YksgmtU6/TvaIToASzg9SrPVQqQ/iQeihQrqRC04SqhmaOEsFelyFYS0p0/nj6YjglyFFPZDCXohRL6SwF1LUCynihRjxQIqY60JA5ktrBoN0M7B3FbDnv+Zy7yogtqf9cUOPcAcsPOgtY4wxxhgbxDhwYawbdrDSVJM0w5VCghUBKKkMoLw6hLLhIZQPD6FsWBCRcj/84f4Zv0NPKEi+W4v02gbosSyMVM9CFEgCpLAHYsQMUMSwxwlRzCDFXvdAKLKpoVkfyiaAmjXA3v/mQpbmbR0cKJjjrjgByzwOWBhjjDHG2CGFAxd2yDIMQjquIBVTkGpVkIplnfVkm/tqVu+4SF6wUj7cCleqQyirChbNpSdqbRLxFXuQWl3f/nIfERDDXkhhs9eJGDYDE/fS3M+9UQ5BagaoW5fXc+W/wL7N6HBe67JxwIhjgOoZQPUxwPCjAF/4oDeZMcYYY4yxYsGBCxuUyCDEGtNo3J1EvDnjDlRiZqCSiSsFzzojCEC0yIOVfGQQMh83I7FiD7KftjjbPSPDCM+phrc6DDHsgRj09MsAu6xIGbo57srGvwI73jLHXTE66AkVHWEFKzPMkGX40Tz+CmOMMcYYY21w4MIGPE3V0bQ3iYZdCTTsiqNhTwINuxNQM530SsknAIGIF6ESL4JR61bic9bN7T6Ey3xFGay0ZSg6Uv+tQ2LlXmj70uZGAQgcWYnw3Gp4x0S5lwpz0zVgx0pgw5/NoCVZ794frHT3XKmeAUSq+qetjDHGGGOMDSAcuLABJR1XzGBldwINu+No2J1Ac20K1MFUypIsorw6hGhlAMGS/FDFh6C1Hgh7BsXUvVpLFsm39yLxXi0obfZIEHwSQjOHITynGnK5v59byIqKrgLb37RClpeAVENun78EmPxZYOLpwIhjgZJRZhcvxhhjjDHGWI9w4MKKEhmE1n1pM1jZFXeWydaOp1X2hz2oHBlG5aiItQyjrCo4KMKUrii74oiv2IP02n2AYW6Tyv0Iz61G6LgqiD7+J84smgJsewPY8CKwaTmQbsrtC5SZIcsR5wFjTwRkb3+1kjHGGGOMsUGD342xfkdESDRnUb89hvodMdRtj2PfzjiUdAdjRwhAyZAAKkdGUDkqjMqRYQwZFUGwxHvIXCpDOiG9vgGJFXug7Iw7273jShCZNwL+KeU8LgszaVlg67+B9S8Cm5cDmdbcvmAlMOWzwNTzzFmEJE8/NZIxxhhjjLHBiQMXdtCl4wrqtsdQvyOO+h0x1G+PIR1X2x0neURUjDB7qwwZGUbFyAgqRoTg9R96py0RQW/JIr22AYm39kJvyZo7JAHBo4YgPHcEvCN4RhgGc2ahLf80e7JsfgXIxnL7QkOBKeeaPVlGzwGkQ+/fEmOMMcYYYwcLv9pmB1Q2rWHfzrjTe6V+exzxpky74wRRQMWIEIaOiWLomAiGjo2ivDoEaZBfEtQZI6VC2Z2AsisOZXccyq44jEQulBJDMkInDEd4djWkCF/+cUgjAuo3mj1Ztv4L2L4SUJO5/eFhwNTPmT1ZRs8CxOIf/JkxxhhjjLHBgAMX1ifMaZgzaK5Joqk2icY9CdRvj6OlLtXh8aVVQQwdG8HQMVFUjY2icmR4QMwCdCCQZkCtSZrhinXTGtLtDxQFeEaEET5+GIJHD4HgOTSfLwYgXmsGLFv+ZS4Tte79kWpg6ufNniwjjwfEQzO4ZIwxxhhjrD9x4MJ6RNcNtNan0VybNMOVmhSaa5NoqU1BU40OvyZc7kPVmCiGjjV7rwwZE4UvcGieemQQtMZ0LlzZnYC6NwHoHcyyVOGHd1QE3pERc1kdhuDhN86HpGwC2PGW2YNly7+AfRvd+2U/MGYOMP4zwPiTgaojOWRhjDHGGGOsnx2a73pZtzRVR0tdCs01KTTVWOFKbQqtdSkYHUzBDACiLKCsKoiy4SGUDw9hyGizB0sweuhe8qInVTNY2RmzQpYEKNN+MGAxJOeClVEReEZGIIV4ENNDlqEDe1dZPVj+Bex6DzDyxzkSgOFHAYdZAcuoWYCHp/5mjDHGGGOsmHDgMkAQEQyDoKsGdNWA1mapa3reOkFXdegamds0e7v1NVr7bfnLVFxFvCEN6jhXgeyTUD7MDFbKhgVRPjyEsmEhRCv9g34a5q44lwbtjCFr9WDRG9uPVwNZhHdE2ApXwvCOjEAq9x8ysyyxTsRqgM0vmwPebn/TPaMQAJSONnuwHPYZc+rmUEX/tJMxxhhjjDFWEA5cikDjngTe/P0nTuBhBid6LhyxgpTOApADxReUrTAl12ulbHgI4VLfIT/tMBFBb85C2RWDstO6PGhvAtDa/5DkoQF4R0VzvVeGBSEcwsEUy9O6B9j4V3NGoZ3vAMg7f/wlwLgTc5cJlY8HOJRjjDHGGGNswODApQioio49m5t79DWSLELymDc5b12SRch56859WYDkkayl6Hy9nLduH+8LyCgbHkIg4uFeFxYjq0HZlXBdHpQ/a5BNDMrwjrbCldHm+CviITpeDetE625gw5/N26533ftGzgQmLTBDluoZPKMQY4wxxhhjAxi/EywCpUODOP2aqZBlKReitA1F8paSJB7yPUx6ggwCKTqMrA7KaOYyq8PI6KCsZi11GFkNlGlzXEaHkdGgt2ZdnQ8AAJIAz/AQvKMi8Fkhi1TBlwaxDjTvADb+BVj/IrDnA/e+UbPM2YSmnAuUjOyP1jHGGGP9hogAXYcg89sSxtjgw7/ZioA/5MGkmcP6uxkDGqkGtMY01H1paA0paPvs9TQo3X6Q2t6QSn1mr5VRUXPJswaxrjRty/Vk2fvfvB2COaPQ1M+bIUu0ut+ayBhjjB0shqJA2b4dytZtULZtRXbLVihbtyK7fTuqH3oI0TMX9HcTGWOsz3HgwgYMIoIRUzoMVfTmTPseKG2JAkS/BMEnQfTJEPwSRJ8EwS9bS2u7T7KOk53j5TI/pMihO9sSK1DjFitkeRGoWZPbLojAmLm5kCXCAStjjLHBSW9pQXarFaZs3WYut22Fums3YBgdfk1265aD3ErGGDs4OHBhRUlryULZGYNWn3JCFW1fGqTonX6N4JMgDwnAMyQIuTIAeUgA8pAgpIgHok8CZPGQuNyHDANGKgUjkXBueiJpricTMJIp80BRBARAEEUzEBAEQBTM50gQO9wviIJ5nCBC8HkhBgIQ/X4IgQBEn89c+v0Q/H4IXm+Pn29SVeitreatpSXvlne/1b0ueDzwjh0L7/hx8I0bB691k4cOPTg/70wrsPoZYPVvgdq1ue2CCIydnwtZwkMPfFsYY4wNemQYIEUBZbPmUlFgZBWQmttmOPtUkNJmW9b8GhABsgRBkiHIknlJT6fr5tJZl2QIHhlGIoHstm1QtpihirJ1G/Smpk7bLobD8B42Hr5x4+EdPx6+w8bDO248vKP4klrG2ODEgQvrd0QErTEDZVsrsttakd0eg97UwXTKACACcpkfcl6o4rGCFTE8OAb5NbJZ6K2tMFpbocdiVgARg97aAiMWh5FMQE8kYFghip6IO+tmqJLs74dgEoS8AMYH0d8mnPH7QdmsKzwxEolefSt1924kV6xwbRODQSuIGQ/vuLG5MGbsWIiBwP4/vrr1wHs/BT76PaBaz7kgmTML2SFLqHL/vw9jjLGDjohAqgpKpWBkMjDSaVAmY27TNDPI0DQz5NA0wN6uqiDVXnZwjGreN6yghFTVCkWU3E113zdUKzixtkPrm0ulDyS5enguVBk/Dt5xZrgiVVYOitdqjDFWKA5c2EFHBkGrT5nhinUz4m1m/BEAT3UYnmEhV6gil/shyANj3BTzEqgYtH37zFtTkxkqxGJmjw0rTDHsHh3Wfcp0Ejb1lCxDCochOrcQpFAYYigIQACRARhkfsJFhjlonUFmd1+i9vvtdcMAkWF+QpZJw0hnYGQzoLT5ghS6bj8BoFQKeirVs3YLAsRoFFJpCaSSUnNZWuped+6XgtIp89O1bduhbNtmdlvevQdGKoXMhg3IbNjQ/qkZPtzVG8Y3aSICRx8N0dvNZWO6ak7j/N5PgZ1v5bYPmQLMvAY4YiEQqujZ42WMsYOADANGMgkjHocej5vLWBxGwlrGY9DjibxlHKTr5u99wPpbkLcOgOxreQnt9tnHEwjQDfNvh2EAum7+fcnf5lrq7fZBEMxekx6PufR6IHjMpejJv+9tc1xuHaIAymRhpFPm36tMBkYmDUqlYWQyub9n6TQobW7r7PKXomI/Nz6f89yIXl9B2wRRBGk6SNcATbPWdZCmAh2uW8fp1teoGgSfzxWq2L1NxWCwv58ZxhgrChy4sAOOdIK6N5ELWLbH2g9kKwnmbD/jSuAbVwLvmAhEX+GnJxHBiMehNTRCb2yA1thorjc1AqIEMRyCGApBCplLMRQyQ4i8+4VeAkO6Dr2pKRektLs1OOukKD19ukyiCCkSgVhaAilaAqmkBFI0CrEkCikcyQUodpgSMpdS2HpckUivLunpC6Sq1ovXjOtTQWdbOvfCVvD7rPAkL0iJRiFIPZsOOThzprsNigJl1y4rgLHCmK1boWzbBr21FVpNDbSaGiTfyoUmQiCA0AknIDRvHsLz58E7ZkyuYKwG+PBp85aotb5AAqZ8Fpj5FWDsPPNSK8ZYUSM7NNZ1s7eBbr2RVFWIwSCkcLi/m+ggIvONfypl3tJpGElrPZV0tlMqBSOVd1wqlQtWEgkz5E+YAYoThrCe8XhyvTU9XsAjm0GO7DGXHo95uY299HoAuc0x9n2PnAuH8oMhJ0gyt4mu7R0c6/FC9HoAz+Do3csYY4OVQHTo/vWNxWIoKSlBa2srotFofzdn0DDSGtSapBWutELZEQMp7k+JBK8I75gofGOtgGVUpN2MP0QEo7U1F540NkBraIDW0AitsQF6Q6O5r7ERemNj78MNm8cDKRh0hTB2KGNk0tD27YO+zwxzevKplxiNQh4yBHJ5OaTSEogleSFKSRRSSYnZo6OkNHc/HDbHTmF9TmtuhrJtm3PLbt2G9EcfQW9ocB3nGTUK4aMmIBTdg6C6EpJk9cIKDQWOuwo49kqeYYix/USK4g4UUikzVEin3IGCK2ywj82FDublHN18Im+td0UMhSAPHwZP1TDIw6rgGTbcWXqGVUEePny/QhkjmzUD+fq8kL6+3h3aNzWCkuZjPBABieDxmH9zIhGIkUhuGY1AjEQhRcLOEtY0vc4b+rZLtN0O577zNaI1BpgkAaJkjgUmSuaYYZIEiKL5906UIEjW+GFttpFhtL/0RlXNS3U6uAzHcN23LsMxDAgBv3l5azAAwW+tB6xLXZ0xyYLmNr8/t83j6fOfAytO/N6AMdbXOHDhX6q9QgZBb86YA9ruS0PbZw1uuy8FI6G2O14IyPCNjTo9WDzVIUAUoDc2Qt29G8qePVB374G6ezfUPXug7NkNbW8NSG1fqytiOAy5ogJSZaW5rCgHdKsbdd5NtwaPNZJJUDrd8ydAECBVVJhBypBKa2ndKq3l0CGQKysh+v09r88OKjIMZDdvRmLFCiT/8x+kVq0yu7TbREJwpB+h+ScifP5X4DviSP5EkbE8dm8MvbkZmj0uU3OLe/Dr5uZ2942eXnJ4oIhiwUG6GApBHjYMnmFtQ5lhEP3+dr0eVSdQaYDR2tq75gWDEIJBiG1vgYC5DAXdxwSCZoAStoMUK1iJRiH6fL1qA2OHAn5vwBjraxy4DMBfqqQZ0JMqjIQKPaHASKgwEgr0hAoYZE5zHDCnNBb9MoSADNFv3Q/IEPyy+QlTAYyMZk2/nHIHK41pQOv81JFKvPCOjsIzzAvBl4CRqIO2JxemqLv3QN2zp6DxSsRoFHJFhStIkSvt9UrIlda+iopehRuk67lZffJDmUQulBF8XneYUlFujtTPBo+GT4D3lwGrn4GeiCNV70WyLoxEQynUJncoJw2pRHjuPITmzUNo7hzIZWX91GjGOmbOVpZuFzYbKWuZTpuBtqZZg3paS83aZg/6qXWw3d6WP+h1S8t+9TIUPJ6uQ4X8QCHQ9piAeYlFRzOpWOuCJJmXeHS0LkkQRBFGMgm1rh5abQ3U2jpodbVQa2qh1tVCq6mFWlfX68DE9Vi91t+ToUPdYb19v6Lc7F1pPT7B7+cej4wdJAP1vQFjrHhx4FIEv1SJCKToMOKqGaTEFfcyL1jR4yoos/+j0ws+CaJfygtnzEBGCMiAQU7I0m4w23wiIAYJoicLogSgNEFP1MJo3gOtfi/UPXu6n3VGECBXVcEzcgS8I0bCM2IEPCNHWvdHQBoypPuBTBnrrcQ+YMs/gTXPAlv/ldtefhgw88vA0V8EAqVQduxA4s0VSK5YgeS777p7RQkC/EceidCsEyCVlUMMmp84C/Ynz4Ggs83+NFoIBPgNFOsQ6bo5+1g8YQ1mGjPD4PwBTu1ZytqGKfm3A3Q5SncEjyc3HlNZWW7ddd8cs0kuKzMvsbTG0BoIjFTKFcZodbVQa+ug1tZAq60DZTKQhlTC0zZMyQtUxGiUe8gxVqSK5b0BY2zw4MClCH6pZj5tRsOydT37IhEQQ15IYQ/EsAdS2GtOiywKMDIajIwOI62BMpp5P62DMhpI7fmI+2SkQJlGGPFa6E07oTfvhpGoBaWaAHR/+kiVlfCMqDYDFStM8YwYAe/IkfAMHz5gXmizQUBXgV3vAZ/+A9jyOlCzJm+nAEw6Ezj+y8D4U8xLDDpgKArS//0vEm++ieSKlchu3tyrpjhjBtghjB3KhOzZpEK5GaZCQfcAyaFQbtDkUMgMcPgN3EHjTBdrDwadzYKyWRiZLChrb1OsdXObvd9IJqHHYzCsWWCc2WKswU37fFp3UXSPSxUKmb1FAsFc7w+PxxwEVJbNAT5lGYJHzvUCcQ36aW/3QPB6nNnCzAClFEIwyOciY2zAKpb3BoyxwYOviSgCUtgMHASvCDFshSghD6SIGaJIIQ/EiDe3LeQxLw0q8LKgfKQZMDIalD31yG7aguzWXVB31kCta4AeS0PwmNP4GYk6GPFaGIk6QGs/xong98NTPRxSeTmkinLIZeWQysshV5RDKjOXnhFmsCIGAvv3BDG2P5q3A5++bvZk2fofQIm79w+bDkw8AzjmcqBsbLflRK8XoVmzEJo1C/j616HW1SO5ciXSH61xBvt0Zg2xBwG1lpQ3XgWl09DTaeh98RhF0Rng2ZypKmLOamUPjFkShRSJQiqJWoNjRt37I5EB3ePGUBRzJpZYHEasFXrc6hli9wqJx60BNq1LZFQVpKm5S2qU/O25JTTVvS+bhWGFKwe694jg80GMRsxZyeylPQ6Ha4a13EDfUrtgJWRejsIBCGOMMcZYv+AeLkWQYuvpDLTdeyFVlEIKh/u0xwcZBpQdO5DduBGZjZuQ2bgRmU2b2s3IYpOHD4fvsMOcMVHk8jJIZVaoUl4OqdzcJgaDfdZGxvqUkgS2r8z1Ymn81L0/WAEcdiow4VTgsFOA8NCD1jQyDGtq7LQz6wql287QkjeGkH3ZSCLhjDGkJ93b++SNvyCY04pHIuYlHpGI2eum3ZSl1rSl+VOWejrfD1ECDB2kGwUu9dyUvboBMszpeo14wuwVErOClFjMDFWsbZTN7v9zsB/PneD3Q/T5zHDD54Xo8+e2+XzmVLI+vxmihEJ5s8OE280KI1r7+FJKxhg7+IrlvQFjbPDgHi5FQNm6BdsXXeDcF/x+iJGw+5PN/E8482ceyJ+BIByG1tyCzMYNyNrhyubNrk/VHaII77hx8E+ZYt0mwzdlCg/+yQYeIqB+Yy5g2fEWoOcN3ilIwKgTgAmnABNOA4Yd1enlQgeaIIrOoKB9wZkZxhXO5F2m0hprH1TE3NsokwGIYFhfg717+6RtB50guGZiMZcRSNESiOGQGWA4l8V4nUtpBI+cd7mMx7xcxuPJXUaTv9/ng+DzQ/R5nUAFHg/3IGGMMcYYYx3iwKUIUDYLMRh0psekTAZ6JgN9X8e9UHpK8PngO/xwJ1jxT5kC36RJfKkPG5iIzF4rO98GdrwNbP03EG8TEpSMNnuwTDgVGHci4C/pl6YeaIIg5AKcXnbUMRTFCWeMuBXItMZAmTQMRQEpinlZjbOumJfXOOtK58cZOgQxNwtMQUtJBERrKYjm7DXRiHlJVDRi9gSxlyXR3FS3odCAviyKMcYYY4wNPhy4FIHgMcfg8P9+CNI0c3aKtjNSWGMQ2AMt6ok4jHb7zKUYDMJn91qZai69Y8fyFMZs4NI1oG6tGa7sfAvY+Q6Q3Oc+Rg4AY+dZIctpQMUEgHsdFET0eiFa064zxhhjjDHG+g6/Cy8igiw7sz0wdshS08DuD6weLG8Bu98HlDbTi0s+YORxwOjZwNi5wOg5gMffP+1ljDHGGGOMsQ5w4MIY61+pJmDXu7lLhPauAgzVfYyvBBh9ghmwjJkDVM8AZF//tJcxxhhjjDHGCsCBC2Ps4Eo1AdvfBLa9YfZgqd/Q/pjI8Fy4Mno2MHRqvw10yxhjjDHGGGO9wYELY+zAysTMYGXbG+atbm37YyomAqNn5QKWsrE8BgtjjDHGGGNsQOPAhTHWt5SUeYmQHbDsXQWQ7j5myBRz9iB7/JXwkP5pK2OMMcYYY4wdIBy4MMb2j6YAez7IBSy73wd0xX1M+XgzYBl3IjB2PhDu5RzGjDHGGGOMMTZAcODCGOsZQwdqVucClp3vAGrKfUx0hDtgKR3VL01ljDHGGGOMsf7S56NQ3nfffRAEwXWbPHmysz+TyeD6669HRUUFwuEwFi1ahLq6OleNnTt34pxzzkEwGMTQoUPx9a9/HZqmuY7597//jWOOOQY+nw8TJkzA008/3dcPhTEGAERAwyfAez8Ffncp8PA44KenAP+4D9jyTzNsCVYCRywEPvt94Mb/AresB85fChz9RQ5bGGOMMcYYY4ekA9LD5YgjjsA//vGP3DeRc9/mlltuwfLly/GHP/wBJSUluOGGG7Bw4UKsXLkSAKDrOs455xwMGzYMb731FmpqavClL30JHo8HDz30EABg27ZtOOecc3Dttdfit7/9LV5//XV8+ctfxvDhw7FgwYID8ZAYO7TEa4Gt/wG2/QfY+m8gtse931cCjJ2X68UydAoPcssYY4wxxhhjeQQior4seN999+HFF1/E6tWr2+1rbW3FkCFD8Mwzz+CCCy4AAGzatAlTpkzB22+/jVmzZuGVV17BZz/7WezduxdVVVUAgKVLl+KOO+7Avn374PV6cccdd2D58uVYt26dU/uSSy5BS0sLXn311YLbGovFUFJSgtbWVkSj0f174IwNZJkYsGOlGa5s/Q+wb6N7v+QFRp0AjD8ZGP8ZYPhRgMRXJDLGGGNs8OD3BoyxvnZA3jF98sknqK6uht/vx+zZs/Gd73wHo0ePxocffghVVXHaaac5x06ePBmjR492Ape3334b06ZNc8IWAFiwYAGuu+46rF+/HjNmzMDbb7/tqmEfs3jx4i7blc1mkc1mnfuxWKxvHjBjA42mmIPbbv232Ytl9wdtZhISgOHTrYDlZGDULMAb7J+2MsYYY4wxxtgA1OeBywknnICnn34ahx9+OGpqanD//fdj/vz5WLduHWpra+H1elFaWur6mqqqKtTW1gIAamtrXWGLvd/e19UxsVgM6XQagUCgw7Z95zvfwf33398XD5OxgUVXgZo1wPYVwPY3gR1vtR/otnw8MO4kM2AZdyIQLO+XpjLGGGOMMcbYYNDngctZZ53lrE+fPh0nnHACxowZg9///vedBiEHy1133YVbb73VuR+LxTBqFA/oyQYhTQH2rrLClZXAzncBNek+JlgJjLcDlpOAsjH90lTGGGOMMcYYG4wO+CAMpaWlmDRpEj799FOcfvrpUBQFLS0trl4udXV1GDZsGABg2LBheO+991w17FmM8o9pO7NRXV0dotFol6GOz+eDz+fri4fFWHHRsuZlQTtWmr1Ydr0HaGn3Mf5SYMxcYOxcM2AZOhUQ+3yiMsYYY4wxxhhjOAiBSyKRwJYtW3D55Zfj2GOPhcfjweuvv45FixYBADZv3oydO3di9uzZAIDZs2fj29/+Nurr6zF06FAAwGuvvYZoNIqpU6c6x7z88suu7/Paa685NRgb9NS0OQbL9pVmyLL7fUDLuI8JVgBj5gBj5pkzCnHAwhhjjDHGGGMHTZ8HLrfddhvOPfdcjBkzBnv37sWSJUsgSRK+8IUvoKSkBNdccw1uvfVWlJeXIxqN4sYbb8Ts2bMxa9YsAMAZZ5yBqVOn4vLLL8fDDz+M2tpa3HPPPbj++uud3inXXnstnnjiCdx+++24+uqr8c9//hO///3vsXz58r5+OIwVBzUD7HrXvERo+0pgzweArriPCQ2xerBYAUvl4RywMMYYY4wxxlg/6fPAZffu3fjCF76AxsZGDBkyBPPmzcM777yDIUOGAAD+93//F6IoYtGiRchms1iwYAF+9KMfOV8vSRJeeuklXHfddZg9ezZCoRCuuOIKfOtb33KOGTduHJYvX45bbrkFP/jBDzBy5EgsW7YMCxYs6OuHw1j/0DWgZnVuFqGd7wJ61n1MeJh5edDYeWYvlsqJgCD0R2sZY4wxxhhjjLUhEBH1dyP6SywWQ0lJCVpbWxGNRvu7OexQRgTUbzTDla3/MS8TyraZtjw8zJw9yO7BUj6eAxbGGGOMsT7C7w0YY33tgI/hwhjrRPN2M1zZ9h9g2xtAcp97v78EGDvfmqr5JKByEgcsjDHGGGOMMTZAcODC2MGSqDeDla3/NpctO9z75QAwZrbZi2XcScDwowBR6pemMsYYY4wxxhjbPxy4MHagpJrMKZq3vwlsexPYt9G9X5SBEceZAcv4k4CRMwGZpy1njDHGGGOMscGAAxfG+kqmFdjxlhmubH8DqF0HoM0QScOmmb1Xxp1k9mbxRfqlqYwxxhhjjDHGDiwOXBjrrWwC2PmOGa5sewOoWQOQ4T6m8nBg3HxzLJax84FQRf+0lTHGGGOMMcbYQcWBC2OFUlLArndzlwjt/S9gaO5jysdbMwlZAUukqn/ayhhjjDHGGGOsX3HgwlhHlBTQ+Amwb7M5XfOud4Hd7wO64j6udDQw9sRcL5aSEf3TXsYYY4wxxhhjRYUDF3Zoy8SAho+BfZusm7XeshPtxl8BgEh1LlwZNx8oG3uwW8wYY4wxxhhjbADgwIUdGlJN7UOVfZuB+N7OvyZQDgyZDAw53JyiedyJ5iVDgnDw2s0YY4wxxhhjbEDiwIUNLtm4eQlQ3XqgfoO5vm8TkNzX+deEh5mhypDJwJBJ1nIyEKo8eO1mjDHGGGOMMTaocODCBiZdBRo+MUMVO1yp2wC07uz8a0pGW8HK4bmApXISECg9aM1mjDHGGGOMMXZo4MCFFTcioHWXGabUr7eWG81xVwy146+JDAeGTgWqpprLoVOAiomAL3xw284YY4wxxhhj7JDFgQsrHvblQLVrgbp1Vs+VjUA21vHx3kheqJIXsATLD267GWOMMcYYY4yxNjhwYQcfEdCyA6i1QpW6teZ687aOjxc95qU/VVZvlaFHmOslo3gAW8YYY4wxxhhjRYkDF3ZgKcn2vVbq1nfeayUyHKg6Aqg60rodAVRMAGTvwW03Y4wxxhhjjDG2HzhwYX1DSQGNn5pjqzR8AuzbaPZaadoKgNofL3nNgWvtYGWYteSZgRhjjDHGDhkGGTDIgCzy2xLG2ODDv9lY4YjM6ZUbPs4FKw0fA/s+7np2oNDQXKBihyuVkwDJc/DazhhjjDHGDjpVV1GbqkVNogY1yRrsTe5FTSK3rEnW4Nvzvo2zxp3V301ljLE+x4ELa0/XgObt7YOVho+BTEvnXxcoAyoPByonmoGKHbKEhx6sljPGGGOMsYMopabMICWx11nmhyr7UvtAHfV2zrM3sfcgtZYxxg4uDlwONZoCJGqBWA0Q35u3zFtv3dP5lMsQgLIxZqBSOckKVw4310MVB/WhMMYYY4wVK4MM6IYOjTTohg6ddKiGiqyeRUbLIKNlkNJS5rqeQVpLI6OZS3s9o7c5ztqmGRqICM5/1GZprdvtyL+ff5zN3mfv70z+cQCQ1JJozbZ2+1x4RS+Gh4djeGg4qsPVruXw0HBUhap69NwyxthAwYHLYGHoQKYVSNSZ4Um8xh2qxPaY25L7CqsnB3I9VZxgZRJQcRjgCRzYx8IYY4wx1geICGktjYSacIKMtJZGWjWXKS3lCjhcx3Rw00l3whPN0Jz7dqhikOGsd9erYzCJeCIYHh6O6lA1hoWGmWGKdb86XI1yfzlEQezvZjLG2EHHgUsxUlJAuglINbVZNpvLdHP7fekWdDg4bUckLxAZBkSqgejw3DJaba6XjASiIwCR/zAyxhhjrHdUQ4WqqxAEAQIEiIIIAQLM//O2CUKXdQwykFSTiCkxxLIxxJQY4krcdT//Fs/GXfc1QztIj7gwPskHv+xHQA7AL1nLvPv2emfb/bIfsiA7z2u7pb3e9n4Hy7ba/izaHtP2vk/2YXhoOCLeSMGPX1NVJBobEG9qQLyxAfGGfRh/7PEYMnps4U8iY4wNEBy4FIM9HwJ/uSkXnmiZ3tfyl1rByfA2YcoIa1s1EKwAunlxwxhjjDGWj4iQUBNoyjSZt3QTGjONaMw0OuvOvkxTQZea5OsslNFIg0HGfrVdFEQnxOjtzS/7IYsyZFGGJEiQRAmy0GZdlJz7HW4XpG4Dpv1BRFCzGaRjrUi1tiIVa0Uq1oJ0LIZka4u5PR5DqrUFABCIRF03fyTSblsgEoXs9Rb0/XVNQ7K5CbHGfYg3NpjBSmMD4tb9eGOD873z+UJhDlwYY4MSBy5FQQDq1rk3iTIQKAeC5XnLsjb3O9jPM/8wxhhjrACqoaI124qWTAtasi3meja3bgcnTpCSboJiKAesPQSCTrp9px2f5EPUG0XUG0XEG0HUF3Xf90YR9eWte6Mo8ZUg4o0gKAcPaNDR13RNhZJOW7eUuczk7qfjMaSt4CQds4OVVqRbW6Gpff8z8vj8HYYxgii6QpVES7M5q2U3ZI8XkcpKRCoqEakYgtJhw/u8zYwxVgw4cCkGlROBy553Byi+CPdCYYwxxlhBFF1xApLmTLMrOGm7bi+TarJX3ysoB1HuL0dFoALl/nLXeoW/wrXdJ/kAuAdqtXur5N+3xzvp6BhZlBH1RZ1aA4Gh62YoEmtFKhZDOt5qhiPxGJR0CtmUGaCo6ZQZpKRSuUAlk4audjZ5QWFkjxeBkhIEo+YtYN3y7wuC4AQ36XgMmXjcdd++kWFAzWagZjOIN3Q/FqAoyYhUVCBSMcQKVMxQJeysV5phDb/OZYwdAjhwKQa+CDDhtP5uBWOMMcaKhKqrrgClMdOI5kwzmrPNrst2mjPNaM40I6EmevV9BAiI+qIo9ZWixFeCUl8pSn2liHqjrhCl3F+O8oAZogTkQ2vwfCKCpirIJhJmL5JYDKl4K9KxVqd3SToWQyrWYoYrsVZkkomCenp0R/b64A0E4PUH4AkE4AsE4Q0E4A+FESgptcKTKIJRcz1YYoYpHp+/TwINIkI2lew0jDF0PReqlFciUjkEwWgJBB4HkDHGAHDgwhhjjDF2UKiGiuZMM/al96Ex3YiGdIPrZm9rzjQjrsZ7XF8WZJT5y8ybr8wJUEp8Ja4wJX894o1AEqUD8GiLBxGZvUqSSWSSCSipFDKpJLLJBLKpFLIpa5lMutaVdBKZZBLZZBKG3ouBdwUB/nAEwUgUwZJSBKLmZTi+UBhef8AMUqwApf19cylK/fuzEQQB/lAY/lCYL/thjLFe4MCFMcYYY6wbuqGbs+7YN12FYijOumZoSKrJdiFKQ7oBDRkzTGnONPdoqmBJkJwApdxfjnJfubNe5i9Dhb/CdT/qPbQu0zB0HcnWZiSbm5FsaUaypclab0KiuRmplmYkWpqQammGru3/TEWCIDqhifsynai1LM1bL4E/EoE4yMMsxhhjXePAhTHGGGMDnkEGUmoKSTWZu2lJJBVrmbc9oSSQ0sxjE2oCKTWFjJ6BqucCFc3QoOiKc39/Z8mxiYKICn8FKgOVqAhUYEhgiLNeGag0L98JmJfxRLwRiMKhd2kGESEdjyHesA+xhnrEGxtdYYoZrjQjFWvt0WU7kscDXzBk3kKhnq0HQ/D6/XypDGOMsR7hwIUxxhhjRcOeOSd/gNe2g722ZlvRquTW7QDlYJJFGR7Rk7tJHgTkACoDlaj0W2FKcIjrfmWgEqW+0kF/CU93NEVBvKnBClT2OcGKvR5v2FfwTDuCKCJUUopQWTlCpWXmrawcodJyhMrKECopQ7isHIGSEni8A2fQXcYYY4MDBy6MMcYYOyCICAk14Rrk1Z5euDnbjKZ0kzODTkyJ7dfMOTZZkBH0BBH2hBH0BBHyhLpfl0Pwy354JW+7EKWz+4fSpTuFIiKomTSSrS1mD5TWFiQaG9qFKqnWloLqhcrKEa0cgkh5ZQeBirkeiEb5sh3GGGNFiwMXxhhjjBVE0RXElBgSSgIxJeaaQcdeb7tNM3o+doYAARFvxDXIa0cDwNrrUU/UCVF8ko/DkD6mZNJmgNLSgpQVpiRbW5BqbUayxVya21ugKdmCaso+H6IVQxCpHILokKG59cohiFQORbi8ArLHc4AfGWOMMXZgceDCGGOMHSLsWXJasi1IKAnElbgZoKjmuh2kxJW4sy3/phiFXebRVlAO5qYV9uWmFy7zlaHUnxeqeEsOmZlzioGaySDR3IhEk3mLNzUi2dxkrjc3ImUFK1q2sBDF5vEHECopRbCkFOGyckSGDEW0cqgVppihij8c4WCMMcbYoMeBC2OMMTZAqYaKlkyL2avEukSnOdtszoiTd9/ucRJXej7VcEcinggi3ki7GXPs9XJ/uXMr85fBL/v75PuywhiGjlRLixOcJJuanGAlP1TJpgq/fEv2+RAqLUOwpBShkjKESs1Axd4WLLEu9ykphcfPP29WOCICESCKHMAxxgYfDlwYY4yxfmaPdWIPBtuabUVMiSGWjTmDxsaUmDNorD0WSkyJ9fh7iYKIEm8Jor4owp4wIt5I7uaJIOw1t0W9Hez3RhDyhA7JmXMOFiKCms0gm0pCSaWQTSWRTSbNpXVfSbffrqSSyKZT5rZ0quDZezw+P8LlFeatrNy1Hio1x0oJlpbC6w8c4EfOOqPqBtKqjoyqI6MYyGg6FM2AqhvQDDKXOkEzDCiaudR0cvZrugFFN5f5xwsC4JNFeGURPllyrZtL0b3fI8IrifB5cscDQCKrIZ7RkMhoiGdVJDJabpuzNLfHMxriWc05xtyv4tvnT8NFx43q52eaMcb6HgcujDHGBiV7tptYNgZREJ0BT72i11mXRXm/wgNVV5HSUkhraXOpptvdd9a1NOJK3B2mWOFKXIlDJ71XbRAFEaW+UlePkjJfmXP5Tn6PkzJ/GUp8JRyY9BMyDKRireZMPI0NiDfuQ6yxwVmPNzYg1dIMQ+/duZBPEESEysrahChtluUV8AYCfGlPHzEMQtwKEOIZDbG0agUMKmLp3Pa0qiOt6MhoBtKKjqxm39eRUdtuM6AbhU99PVDFMz0f64kxxgYCDlwYY4wVPYMMxJU4WrItaM40O+OQNGebnUtq8u83Z5oRVwu7fEYWZHgkT4fT/NrrsihD0RVXeJJW09Cob98k+CU/or6oM56JMyisN+osS32lziU8HKAUDyJCJhHPhScNuRDF3pZoaoSuFXbOCKIIXzAEXzAIr7U074c62B529nuDQfhDYZ69B+bPRNENV68QRTd7hqiauc/uKWLfspoB1eodolr7Fev4rKabAYodqLQJVhKKVmjHol4RBCDgkeD3SPBIAjySCI8kQhYFyJLobJNFaykJkEURXtlcypIAj72UROf5yarm4zZvOrKa+bjt+866qpvHa0a7xxn2yebNLyPiN9ftZdjnQdgvI+rPHWPvj/g9CPtklIe8B+6JY4yxfsSBC2OMsT5jkIGMlkFKSyGlmsFERs+YSy2DjGau29vtbSktZa7ruWMyWgZJNYnmbDNas6296gEiQEDYGwbI7PGiGAoMMlzHaKRBK/BNcGdkUUZADiAoBxGQA+a6J9huW8QbcQUo+cFK1BeFT/LtVztY3yEiZJNJpGKtSMdakYq3It3amrsfy62b92Mw9ALOI0FAuLQMkYohiFRUIlJZmVuvGIJQWTn84TA8Pv8h0fNENwhJRUMqq7uWyayGpKIjldWQUnTnkhpn3Vo6vUWs9ZS9bu3vj84hPllExO9B1C8jEjCXUb/HChhkBLwy/B7RCU/sdZ9HarfN75HglyX4veblPMVwThARVN0Ma4gIIa/M468wxlgnOHBhjLFDXFbPIpaNOTPW2NP+2qFJSku5AhRnW5ulHaQcSCFPyOzhYc1uU+4vd3p82Et7X5mvDFFvtN1sN7qhQzXU3E1X3ffbbNMMDaquwiN5zPDEE3AFKUE5CI/E09cWOzIMZJKJvJAk1nl4Eo8hHWvt1aU9gWiJE56Yy0pEKs31qBWoSHLxv/wiImQ1wxw3RDWXufvmpS5Za5lRdXNdNXtE2MdnNB1pxbDCEzM4cdatYCWjGt03pg9IogCv1QvEK5vhhUcWnV4iXmu7fd8jmeOXOD1JrK+JWr0yogFzGckLU6IBc+mTB3fPIkEQ4JXN54sxxljXiv8vPmOMsW4puuIMrtqqtObCk2zMCVE6W8/qPZvytRCiIDq9OvySH37Zn7sv+13b/JIfAU+g3Ta/7EfQEzQDFF8pSv2lfdIDRBIlSKIEP3gmlYFM11RkEglkEvG84CTWSe+TVqTjMZDR8zf33kAAgWgJgpESBKJRBEtKrftRc1lSimDU2hcthew9sJdG2L0LNCN36Uv+AKn2ZTBp1Qw3UoqORFZDyu4xomhIZnP77PAjkdXMfXavElU/oJfHtCWJAkJeCSGfjGDeMuyT4fdICHrN3h8Br2wtcz1AAs6+NkuPBL+17pE4HGCMMXbwceDCGGNFgoiQ1tKumWpcs9bkDbKaP2tNTIntd88SAYIzM03Ea85UE5JDCHgCCHlCCMpBBD1Bc5m3HvAE3PuspU/yFUXXd1b8NEVBJhG3bgmkEzEnSLG3ZRJxZJJxpJ3tCaiZ3p3z3kDQDEhKSsxlpATBaF54YgUpgai5v68DFCJCa1rF3pYMalrTqGm1li0Z7G1NoyGhOCGKohvmzDI6QbUClv4YQFUSBfhl0brUxZydxmdd9uKXzaXPWrY9JuiV8oIUGSGfhKDXHMMjP1jxycVxuQxjjDHWlzhwYYyxPmaQ4Uzx60zrW0CA0qq0QjN6P5aIKIjmGCFec4yQqC9qLvPW7VCl7b6wJ8wDr7I+Yeg60vEYUq0tSLa2IN3aYvY4yV86663QlP3oYSUI8AdDCESjCERLc8FJfpCS1wMlECmB7Dmwl3/FMipqWzPY22KFKS1p7G3NmNusYCWt7v8sRPnMQVPNAVE9sjloqtNTxCsj6DODjZBXckIP83773iT2/oB1rM+6zIYxxhhjPceBC2OMAdAMDWktjaSadKbztdftMUry9zn38/bl9zhpOzBrT3hET7vBVPNnrHFtz7sf8oQ4NGF9TlMUpBMxpGMxZBJxpOMxpONxpONmYGIGJ83OeiYe6/H3EAQR/nAY/nAE/kgEgXAE/pB1PxyBLxSGHAxB8AVBviB0TwCaJwBF9CKt5i6n0QwDrTqh0SBoBkHXDWitBK2ZoOnN0IwmaLq1L6/HiGaYvUh0g6Ba++zj2h/r3q9bl/HoBpkz1WQLC03LQ14ML/FjeEkA1aW55ZCwDz6P6Mwq45VEyHkzz3ik3Iw0smguuWcIY4wxVpw4cGGMDXiqriKuxpFQErmlEkdciSOhJlzbE2rCGRQ2oZrHJdXkARnHJCAHOp2NptRX2uG0vyW+EvilQ2N2EnZwGYYOJZVGNpVEJplAOh5DJh7LC1DyA5WYtT8ONZvp8fcSBBG+cATecBRyKAoxGAYCYZA/DN0bhuoNISsHkJYCSIl+pEhCSjWQUnSksjpSqoZURkcyZo4zklJ06EYaQBpAY58/N30t6pdRXRowA5XSAKqtYGV4qR/VJQEMK/HD7xncA6syxhhjjAMXxlgf0g3dmakm/5Y/g01aSyOtmlMCZ/WsMxuMoivOtL2qbi3zZotx9uu57YqhIK2l+zQskQQJQU8wN26JPS5JmzFKXOOaWNt4il92oJBhQM1mkE2lkE0lkU2loKSSyKSSUKz72WQib3/etrR5rJLu/Tg/JIggXxCGN2j2LJHNW1oKICkEEBN8iMGPZsOLVviQEf0gu7eVDiBu3VwU69bao7Z4ZdG5NCboNccI8cq5HiGyKEASRecyG3OZf1+ElL/POVa0vjZ3XNv7kijAI1nbXN/PvB/wShhe4kfIxy+vGGOMMcaBC2MDnkEGFF2BYihmGGEFEfnbnJsVZriCC6OD+7p7elzX11nrac0MTfJDFMVQ+vW5CMpBhL1hRDzmoK/2uj0IrLPdEza3WcuQJ+TcPKKHe5ewPkNE0LJZMwBJp6CkU2ZYkk5BSeXW7VAkm05bxyShpFJQ0maPFCWTRl9NGaMKMrKiFxnRj4zkR0b0I20t2963l4roBQr5d5HXaaOzWWdCXtkcP8QnIeDJDaJqhydBe8yRDrYFPRJkHk+EMcYYYwMEBy6MHQBEBMVQkNEyTg8Mez2tpZHRMq6wwrmvprvcntEy7iDFUPZrkNUDRYDgTAEckAMIeALu+7I5s41X8sIreuGRPM7SI5o3r+Rtt5RF2X286IFf9jvhiSRyF33WN3RNg5rNQM1knGU2lUI2bQchubAknUw6N7tniZpOQ8umoWfSwH6M59OuXRChiF4oohdZ66aIPmvpRVb0OfvabrfXDcH8d+KVRPg9ojOFrj29bpksodq1LTf9rt+Tm3bX7xGd8KRtoBL0SfBKPOsMY4wxxg5tHLgwBrOXSFyJO7PGtGRbcjPHZFuRVJNO4JHRM8hqWaT1NLJa1rU9o2WccIVw8KfuBACv6DWDjLygwif5nHUn5BA98EgeV4jhETsOPmRRdoUfdtBhByd2iGJv4ymBWX8gw0A2nUK8tRWtza2ItbQi3tqKRCyObCYNNZ2GYoUnWjYDLZuFrmSgKxkYShakKiA1C6hZCEbfziJjQIAieqBYgYgiePKCkbyb4M07rs0xgheSx4OgT0bEb84wE/Gb0+uG/R4M9ckI+ySEfR6E/TIiPhlhvxmIhH35x8rcU4Qxxhhj7CDgwIUNaJqhQdEVZHSz54cdeNi3jJZBXIm7p97NWoGKYk7L25Jt2e9ZZboiCzL8sh8+yZfr7SGZ4YQdUPglcz0oB9ttbxtk2AGK09PDClDsMISDDlasiAiKbiCjGsiqOjKqgYymI6PqyGRVpDJZpDNZZNJZZDJZZBQFSjqDVDwOJRWHmkxASyehpxOgTArIpiAqaUhqCh41A4+egbifQWfbfz06RKiiDK2jgETIBSNZ0QtN8kHw+CH6/ZB8Qcj+ADyBILyBIAIBPwL21LtWLxG/1YvE7jHikyWnt0nA6lnib7NfEvnfN2OMMcbYQMGBCzug7Etr7Olzk2rSHERVTSGp5ba1m3rXWs/qWWS1rCtEsYMURVegUd9eTuMMfNpmVpmwJ+yEJn7Z7wQkrnVrmX+MTzZ7ljDWlwzDDC5U3ZyaVtUN6z5B0w1kNQMZVUdWM5DVzGDDWao6MpqBrNrBvrylphMIBIMAGAToKkRdgaBlIWpZSFoWoq5Y6wpETYGkZyHpCmTdvq8AhgboGgRDh2BokEh3bnLeendBiYzC/2ApgoysNR6JKvuhewIwZC9I9gGyF4LHC8Hjg+i1b37IXj9kvw8evx8enx9efwC+QAB+nxc+WYRXFhHwygh5zfAjmLce8spWIMKX0DDGGGOMsRwOXBg0Q3NCjPyxRtrOLJM/BkmHs9Co7bel1BR06tuu+Z3ximbPD5/sM5fWLeKNuAKUUl9pu1Cl1F+KqDcKr+Q9KG1l/YuIoBsEVSeoRi60sAMMzTDDCzUvxNAMcgUcqmFtt2qomn2MfZwBxfpa+3j7GMXanzuWXMeo1vdTrHX7GEU3oGlmeCGT5oQWuXUNkr0PBiRDM0MNWMGGYa7bx7cNPSTSEbX2eQwVHkOFl1R4DWW/e4706OcDASRKIEkGSR7AF4TgD0HyhyAFw/AGQ/CGIvCHwwhFowhGo4hEo4iWliBaWopoyI+Al8cQYYwxxhhj/YsDlyKQUBLY3LwZmqFBN3RopEEzzJtOurOukbXf2q4aqnO8vV0xFKdXiD3tbv56/iU39vrBCkTs8T7yp9UNeAIIySH3VLvWuj0uiBOe5AUpfskPr+SFX/Y7l9iIAo9H0BkigmaQEw7o9tLaphkE3TCcY+z7qm4HE9axzv7cfT3vll9H1wk6kes4TTf329t1g0BkdqAg2Ot5S6vt9n2DzIlayNpnUK595mOzQ40Owoy80ETV+yg8IIIIwwwnSINMGmTDWpIVdjjb9Lzt9rE6PKQhQO79ThBi5NWwQxEcmEvfCiV6fBB9fkg+v7UMQPL5IXn9kP0BSL4AZGu7x++Dz+cze4n4fPAHvAj4ffD7fPD7fZA95pgksscDybrJHi9EiQc/ZowxxhhjAx8HLkXg05ZPceWrV/Z3MwCYvUTs8ULazjKTH4J0e2sTpATkwICaQSb/kg2zl4EZMthhgxNeWEGEE0xYx9hhRe5rcr0k2t3Pq5cfHrj35b5PR2GCfYyad79tb41DFpHT+8NDGkJ54YgTlBgqfNDghQY/NHitY31kH6vCY5jHSYZqXjJjqJB0FcIBGvunEKIkQ/Z6IXut4MLrgyzLkL2+XIDh9UKSrVDDXvd6zfuyuc0MPHJLyeOBx+eDNxCA1x+EN2gt/X4IIgebjDHGGGOMFYIDlyIQkAMYGx0LWZQhCZK5FCXIgtxum0f05O5by/x1j+iBTzZ7gNhjidg9QuweIvZ622O8krdfe4nkjz1hjjFhjkGhaIazVHQdWdUcryKbv90aq0Jpd3zuvh2eKE6I0mZf3vZDJaDwSAIkUYAsipAlAbK1LolCx/sk0dpmrQuAJIqQRQGSdYwkCpAEAXLe19tfI+XfBAGiKEAUBIAMa3wQBaSaS2i5pXnLglQVULOAdRypWUBTnWPsbYamwFAUGGoWupI1u8UcYKIkw+PzOQGI7G273n6fp9N9VgDi9UK2ghDZ64PkNXuA2AGLOIBCTMYYY4wxxg41AtFBeCdSpGKxGEpKStDa2opoNNrfzekxyrtcQ9FzY0jYl2rYl1uYS0AzDBgGnMs5nP32JR9krrsvD+nkcpFOLhOxLyXRDDKDEys0yeTNSJLNW9qDdGZUHZpRvKeiHRZ4JHcwkR9EmEtzux1WeKztdighS7lt9rFOuCEAHtIg6qp5WYmuQDQ0c0BSQzMDCUODSDpEw4BAOkQyIJIOWPcFQweM3NK+kaEDugYyDBiaBpABMnSQYZjbdPO+YRgwDGtdN6z9edt13dpv9eoQAAECIAgwh8oQzDEz8rZDEMyZXwTBGU9DsLbrqgo1m4Guqgfl5yjJMjw+P2SfDx6fP2/duu/3w+v3Q/bZA6f6ne0enw8efyDvWPOSGbuOJHN+zRhjjA1kA/29AWOs+PA7hCLwSV0c331lkzWQZm68CdeAm7p7oE37cpfBGpd5ZRE+WYRPlpwZQuylVxLh85hLr3WMN/8YSYBXBHwiwSsQPCLgEQmyAHgEgiyQuYS5LgsEUSB4QJBAEAXDXJIB0VrCCh10TYOh2zfdvGkaDMNcN/db23UNhqo79+1wQc1moWYz0LJZc13JQstkoKkKAMAAoPTv099/BCEXcvjMkENucz83i4wdjPhyx7a57w5XfDw2CGOMMcYYY+yg4cClCMSzGl7fVN8ntQTB7I0hCrnLNiQpd/mGJLgv6xAFWEvrEhDrOLtHR9vLQexjZMGATAYkMiAJuZlOzKUBiXR4BR0yCB5okGGYN3vGFEOHaOgQSDOXuuZMHwtdg65p0DUVhqZCT+tOwKFrmhlw6Dr0DrbZxwFA1roNRLLPB4/XDBdkr92jIjfIqChJkGR7KUOUZIhy+22uZd5+UZIgiCJE0V6KECQJYv426xh7XRRFCKK9tC89Mwe0BZlTCMMa4NbcToBrnay7ZA2ES5A9nlwo4vdD9nh5VhnGGGOMMcbYoMCBSxEYUx7E9xZNg0cSrZuQt+6+L4uALACSYIYaomFAgnlZiWDoMDQVmqKYNzWbW1cKWE9b66oCXTUDD11VoVlLXVXNbZpW0JgYqnVLH/BnsHuCIEKU7FBBckIHURQhyrIZMtj3nX3WNkk0Aw1ru5S3bgcdoiiZS0mGlL8vb90eiLSjnhf5l7bIHi8PTMoYY4wxxhhjAxwHLkXAaKoBvfQjpDUNCae3ht3LQ7N6cKjOerFdRySIojkbipyb2lWS3UvZ0/a+F5JHdrblz46Su++BKNsBhtVDQ/K4gw1Zbt/LQ8r16hAkCZLVU4MxxhhjjDHGGDtYBnzg8uSTT+KRRx5BbW0tjjrqKPzwhz/E8ccf39/N6hEtm8WeTRt6/fW5y0lka8rXzmdK8Tjr1j5Px8e1C0tkGaLcNjiReaYUxhhjjDHGGGOsAwM6cHnuuedw6623YunSpTjhhBPw/e9/HwsWLMDmzZsxdOjQ/m5ewcqGj8C5t95lBiaSGWyY4Yls9vCQPa5ARbT22b06eMwLxhhjjDHGGGOsuAzoaaFPOOEEzJw5E0888QQAwDAMjBo1CjfeeCPuvPPOdsdns1lks7lhVGOxGEaNGsVTvzHGGGOMMXaI42mhGWN9bcAObKEoCj788EOcdtppzjZRFHHaaafh7bff7vBrvvOd76CkpMS5jRo16mA1lzHGGGOMMcYYY4eQARu4NDQ0QNd1VFVVubZXVVWhtra2w6+566670Nra6tx27dp1MJrKGGOMMcYYY4yxQ8yAHsOlp3w+H3w+X383gzHGGGOMMcYYY4PcgO3hUllZCUmSUFdX59peV1eHYcOG9VOrGGOMMcYYY4wxxgZw4OL1enHsscfi9ddfd7YZhoHXX38ds2fP7seWMcYYY4wxxhhj7FA3oC8puvXWW3HFFVfguOOOw/HHH4/vf//7SCaTuOqqq/q7aYwxxhhjjDHGGDuEDejA5eKLL8a+fftw7733ora2FkcffTReffXVdgPpMsYYY4wxxhhjjB1MAhFRfzeiv8RiMZSUlKC1tRXRaLS/m8MYY4wxxhjrJ/zegDHW1wbsGC6MMcYYY4wxxhhjxYoDF8YYY4wxxhhjjLE+xoELY4wxxhhjjDHGWB/jwIUxxhhjjDHGGGOsj3HgwhhjjDHGGGOMMdbHOHBhjDHGGGOMMcYY62McuDDGGGOMMcYYY4z1MQ5cGGOMMcYYY4wxxvoYBy6MMcYYY4wxxhhjfUzu7wb0JyICAMRisX5uCWOMMcYYY6w/2e8J7PcIjDG2vw7pwCUejwMARo0a1c8tYYwxxhhjjBWDeDyOkpKS/m4GY2wQEOgQjnANw8DevXsRiUQgCEK/tiUWi2HUqFHYtWsXotHoIV+jmNrCNYq3LYOpRjG1ZTDVKKa2cI3ibctgqlFMbeEaxduWwVSjLxER4vE4qqurIYo88gJjbP8d0j1cRFHEyJEj+7sZLtFodL//4AymGsXUFq5RvG0ZTDWKqS2DqUYxtYVrFG9bBlONYmoL1yjetgymGn2Fe7YwxvoSR7eMMcYYY4wxxhhjfYwDF8YYY4wxxhhjjLE+xoFLkfD5fFiyZAl8Ph/XKLK2cI3ibctgqlFMbRlMNYqpLVyjeNsymGoUU1u4RvG2ZTDVYIyxYnZID5rLGGOMMcYYY4wxdiBwDxfGGGOMMcYYY4yxPsaBC2OMMcYYY4wxxlgf48CFMcYYY4wxxhhjrI9x4MIYY4wxxhhjjDHWxzhwYYwxxhhjjDHGGOtjHLgwxhhjg0hfTD5oGEa/t6MvHkc2m93vGsVmME0u2RePRdf1PmjJ/uuLfzOZTKbPahXDvz/GGGMcuDBWNG9OGOtOX70A5vPV1Pb5HOhvMOw3nvvzOBoaGgAAoij2+o3sli1b0NzcDEEQet2Obdu24Q9/+ANaW1t7XWPz5s04/fTT8emnn/a6RjKZhKIoaG5uBtB3/3Z68zNq+/PYn7b097muKAqAXCDWm/bU1tYCACRJ2q/Q5ZNPPsHq1at7/fWAec4/8cQT2LdvX69rbNiwAZMnT8aaNWsgir17eR6LxdDc3Iza2loIgtCrc0TTNAC5n0lvz7PB9vuVMcZ6iwOXAaZY/mANhpAikUgAwH69KWhqagKAXr84AoCdO3fio48+AtD/z4mtr84zPl/7Rl+cqwCfr/k2b96MJUuW4Morr8SyZcuwadOmHr9Bqaurw8cff9zj751v27ZtWLp0KW699Va89tprTuDRUx9//DFuu+02LFq0CA8++CC2bdvWqxrjx4/HV7/6VQC9eyO7Zs0aTJw4EX/60596/P1tH330EY4//nisWrXKeQPb03Nt9erVmDVrFlasWNHr83XDhg246KKLcPLJJ2PBggV45513evVvJ/9ce+KJJ7B27VoIgtCj83bjxo248cYbcd555+Huu+/Ghx9+2OO27N69Gx9++CGA3v8u+fTTT/HQQw/hiiuuwLJly7B9+/Ye19i0aRO+9rWvYcGCBfja176GdevW9bg9W7ZsQXV1Nc4++2wAvQ9d1qxZg8MPPxxvv/12j7/W9tFHH+GEE07Ajh07nH+/vTlf58+fj507d+K1117rVY3169fjs5/9LE499VRMnz4df//733t8jmzcuBE33XQTLrzwQtxyyy14++239/uc78/fr4wxVgw4cCly9fX1WLt2Ld577z0AvXuRZL+osz+16I2Wlhbs2LEDmzZtctrR0xcDtbW1eOutt/CXv/wFgPmmr6c1Nm3ahEceeQTJZLJHX9fW6tWrcfnll2PLli29rrFu3TqcfvrpWLZsWa9rrF+/HmPHjsW1114LoHdvhLdv346f//zn+Na3voUtW7b06s1nfX091q1bh5UrV4KIev1inM9Xt744X/viXAX4fM23YcMGnHDCCdiwYQM++eQTLFu2DKeffjpef/11iKJYUJs2btyI448/Ht/85jexfv36Hj8GAFi7di3mzZuHv/zlL3jppZdw44034uc//zkMw+jR87J27VrMmTMHzc3NMAwDr7zyCp599lkQUY/qbNiwAYFAAGvXrsXXvvY1AOYb2ULP+zVr1mDu3Lm4/fbbcfXVVxf8ffPt2rUL5557Lq644gp85zvfwYQJEwDkfh8U0pY1a9Zgzpw5uO2223DhhRfioYceAtCz83XDhg2YN28eJk2ahIULF2Ls2LFYsmQJMplMj57TdevWYfbs2di9ezdaWlqwfPlynHTSSfjb3/5W8Hm7adMmzJo1C6lUCrIs48MPP8TcuXPx61//uuB2bN68Gccddxyuu+46rFixouCva/tY5syZgzVr1uCTTz7BT37yE3zve9/r0e83+1z1+Xw47LDDUFdXh8cffxyqqvboea2vr8fIkSPx6aef4swzzwTQs3MVyJ0nt99+O6677rqCvy5fTU0NFi5ciCuuuAKPPfYYpkyZAqBnl7KtWbMGs2fPxuLFi3HzzTdj6dKl0DSt4N9FgHmOnHTSSZg1axa+/vWv4/zzz8cNN9yAWCwGoLBQev369Zg7dy6ICEOGDEFdXR1OPPFELFu2rEc/42L5/coYY0WDWNFavXo1TZw4kcaNG0dVVVV0zDHH0JtvvknJZLLgGuvWraOzzz6bmpubiYhIVdUet2Pt2rU0b948mjhxIk2YMIEuvfTSHtf46KOP6IgjjqBp06ZRaWkpzZ07t0dfbxgGJRIJGjduHAmCQHfddRdls9ket4PIfF5lWabbbrutw+9TiPXr11NpaSndeuuttHXr1l61Y9WqVRQKhWjevHk0ZcoUeu2113rUBiLzeR0xYgSdeOKJVFVVRSNGjKDdu3f3qB1r1qyhww8/nI466igaM2YMTZ06lZYvX06tra09qsPna05fna99ca4S8fmaT9M0uuyyy1znxapVq+iaa64hSZLopZdeIiIiXdc7rbFnzx6aM2cOHXXUUXT88cfTNddcQ2vXru3R49i+fTtNnDiR7r77blIUhYiI7rzzTpowYQKl0+mC62zZsoXGjBlD3/jGN5xt11xzDd10001E1LN/Qy+//DJNmjSJvvvd79K0adPoa1/7mrMvHo93+bUbN24kWZbpW9/6FhGZz9/rr79OTz31FK1cubLgn/Pvfvc7Ovnkk50a3/jGN+iSSy6hhQsX0uuvv97t169atYq8Xi/deeedRET0z3/+k8aMGUO/+93vCvr+RETpdJrOP/98uu6665xtP/vZz+jSSy8lRVFo3759BdVJJBK0YMEC17/fDz/8kMrKysjn89Hvf/9753F25X/+53/ovPPOc+7X1dXRPffcQ5Ik0Y9+9CMi6vrfYU1NDZ188sk0d+5cOuuss+iMM86gN954o6DHYNu5cydNnTrVeV6JiJ588kkaP3487dmzp6AaW7dupcMOO8x1rt5333109dVXE5H5fBF1/3wYhkFvv/02TZkyhZ555hmaNGkSnX322c7+Qtpjn6/24zEMg55//nl66KGH6Nlnn6XNmzcX9JheffVVmjNnjtPuG2+8kc455xyaOXMm/epXv+r23/KqVatIlmW66667iIho27ZtNGrUKHr44YcL+v5E5r/xL33pS/SlL33J2fbaa6/RwoULqampiXbt2tVtjUwmQ4sWLaIbb7zR2bZ3716aPHkyeb1eeuyxx4io+9/3xfL7lTHGigkHLkWqpqaGxo8fT3fffTetWbOG3n//fTrttNNo+PDhtGzZMorFYt3W2Lp1q/OG79hjj3XexGqaVnA7Nm7cSBUVFXT77bfTa6+9RsuWLaNp06bR//3f/xVcY8OGDVRRUUF33303bdy4kd58802qqqqiFStWFFzDdt1119FXvvIVCgaDdOONN7Z7M9/di4G1a9dSMBike+65x9kWi8Wovr6+4DYoikKXXnqp82bEMAz64IMP6Pnnn6f6+vqC3iytXr2agsEgLVmyhJLJJI0dO5ZuvvnmgttARLR7926aMGECPfDAA87zcNhhh9Fvf/vbgmvs2LGDRo8eTffddx998skntGfPHjr99NNp6NCh9Oijj1JDQ0NBdfh87dj+nK99ca4S8fnalqIodNJJJ7neOBIR1dfX03XXXUd+v5/efvvtLmu8/vrrtGDBAlq9ejU9/fTTdMwxx/ToTYGmafSDH/yALrroIqqpqXHO8draWho9ejR99NFHBddZunQpXX311dTU1OScTzfccAOdcsopdNJJJ9Fll11GK1euLKjerl276Atf+AI1NDTQ448/TtOnT6dbb72VrrrqKlq6dKkTDLWl6zrdf//9JAgCbdiwgYiITjnlFDrqqKOopKSEDjvsMDr11FNpzZo13bbhkUceoc9//vNERDR79mxasGABXXXVVbRo0SISBIF+9rOfEVHH/3YaGxvpuOOOc/1s9+3bRzNmzKDLL7+8oOeAiKi1tZWmT59OTzzxhLPt7rvvptGjR9NRRx1FY8eOpV/84hedtsPW0NBAU6dOpT/+8Y+uYxctWkQnn3wyeb1eeuedd7ptz8KFC+maa65pt/2hhx4iQRBo+fLlXbbl/fffp1NPPZVWrlxJr7zySo9DF8Mw6Je//CWdd955tH37dufNciaTofHjxzvha3eee+45+tKXvkR1dXXOtltvvZWmT59Oxx9/PM2bN49effXVLh+LLZlM0qJFi2jPnj30pz/9iSZMmEDnn38+XXXVVc7vqa4sXbqUBEGgl156iXRdp5NOOolmzpxJo0ePpmnTptFhhx1Gb731VreP6be//S2deOKJREQ0f/58OvPMM+nuu++mG264gQRBoCVLlnT6eGKxGJ1zzjmu8zUWi9G5555LZ511Vrff25ZOp2n+/Pl03333OduWLFlCZWVldOSRR1JJSQndd999lMlkOq0Rj8dp+vTptHTpUiLKBbXXXHMNnX322c5z1Z1i+P3KGGPFhgOXIvXBBx/QhAkTaNOmTa7tV111FY0ePZqeeeaZLl+QJJNJuummm2jRokX03HPP0axZs2j69Ok9ehPb2tpKn//85+n66693ttmfghT64rWxsZFmzZpF/+///T9nm6qqdMopp9Bzzz1Hv/jFL6impqbbOvYLvMsuu4wef/xx+sc//kEej8epu2zZsm4/xamrq6OSkhL6zGc+42y79tprafbs2TR58mQ655xznDezXT236XSaZs6cSc8//zwREZ166qk0ffp0CofDNHr0aPr2t7/tekHZ1scff0yCILg+5Vu6dClVVlbSu+++280zkfO3v/2NjjnmGNcnx+eeey49+OCDdMMNN9DLL7/cZTuIiJ5//nk6+eSTKR6PO+fEiy++SH6/nw4//HBatmwZEXX/4pfPV7f9PV/76lwl4vO1I9dffz3Nnj2bmpqaXNt37txJixYtorPPPrvLHjPpdNr1ZuznP/+586YgPyzpqh1PP/00/eAHP3Btq6uro9LSUvrXv/7VZfvzbdmyhdatW+fcv//++8nv99NDDz1E9957L1188cU0fvz4gno2JZNJmj59Oq1atYqSyST95Cc/oYqKChIEwXlcnf1brK2tpa9+9avk8/noyCOPpIULF9Lq1atJURR64YUX6IwzzqALL7yw254yv/3tb6mqqoqWLVtGZ599NjU2Njr7vv3tb5Msy67H29Z7773nrNttfeGFF8jv99O///3vbp8DIvPn9oUvfIGmTZtGf/zjH+m2226jYDBITz/9NC1fvpweeughEkWx28Civr6eZs+eTQ8++KATbG7dupWqq6vp+eefpzPPPJMuvfRS0jSty3Plvvvuo1GjRjk9N+xjFUWha6+9lqZMmdLt76XVq1c768uXL3dCl//85z/Odvv3Vke9D5YvX+68GbfbEI/HacSIEfSHP/yhy+9ta25udv2NePjhh8nv99P3v/99Wrp0KV133XXk9XoLChwzmQzNmDHDCQH++c9/Umlpqetc7a5313333UeSJNFhhx1GixYtos2bN5OmafTee+/RhRdeSMcdd1y3v5NeeeUV8vv99Mtf/pIWLlzoOv5Xv/oVCYLQZVif35PGft5XrFhBgiA4QV0hbrrpJopEIvTkk0/S9ddfT4FAgJ599llatWoV/fa3vyVBEOiFF17o9OsVRaFzzz2XrrnmGud33/bt26myspL+/ve/05VXXklz584tqMdqMfx+ZYyxYsKBS5H65z//SZWVlbRlyxYiItcfuS984Qs0fPjwbt9wPfXUU/TMM88QkfkHvKdvYuvq6uiqq65yatgvBn7605/SSSedRIZhuD7x7Kwdjz76qOuF6QMPPEBer5dmzpxJEydOpKqqKucT2M5q2N/7mWeecT45eemll8jr9dLEiRPp8MMPpx07dnT5eIiILrjgAjrmmGNo2bJldMIJJ9Bpp51Gjz/+OD355JM0bdo0mjJlitOtubO2pNNpOv300+mFF16gb3zjG7RgwQJav349JZNJuuuuu+jII4+kn//8565253vnnXecbuC2NWvW0NSpU+nRRx8losIChl/+8pcUiUScFyCPPvooeTweuuyyy2ju3Lk0YcIEevjhh7us9b3vfY+qq6td2/7+97/T1VdfTZ/73Odo2LBhzvPRlX/961/7fb7+5Cc/KYrz9bHHHtvv89Xevj/n64UXXrjf5yqR+cakGM7XX/3qV/t9vj788MN9cr4+99xzdPTRR9Njjz3WrvfV008/TdXV1bRz584ua7R9zjv6JPb+++8vqFeHXSudTtPkyZNdQdaf//zngtuSyWTo7LPPdn0S/eabb9LQoUPp73//e5c1FEUhVVXpjDPOoDfffJOIiC6++GKKRqM0ceJE5xKlrtifYh933HFOTxfb//7v/9KwYcO6vbRo+/btdO6559Kxxx7rurSIyPw3PnHiRHruuee6rNH2Z7Nt2zY69thj6Zvf/KarXldef/11uuiii+i8886jCRMm0FNPPeXsy2azdMQRRzi9F7qyePFimj59On3xi1+khx9+mMLhsBMKP/LII3TEEUd0eM7nt/Hdd9+luXPn0g033OC8obf3/+Mf/6Dq6mpatWpVlzXaevnll+nMM8+kBQsWOL/vbr755nY9bjpqW/7ze+yxx9Kf//xn5/4vf/nLdpfjdFQjm83SV77yFdd5aYdRv/rVr7p8LPb3v+KKK+hPf/oTEZl/Z8rLy2n06NGuy6/aatuWBx98kKZNm9bu+fvDH/5AFRUVHYY/+W3RdZ0uueQSGjdunPM7WdM055gZM2bQ448/3q5GZ73FDMOgWCxGn/vc5+jyyy+nVCrV6c8xf/uWLVvo+uuvp8suu4yOOeYYeuSRR1zHzp07l6699toua3z/+9+nWbNm0fz58+muu+6iUCjkfM2zzz5LY8eOpZaWlg7bku+5556jGTNmFM3vV8YY628cuBQpwzBoypQprhcO+d1Bp0yZ4rrWtqs6ROaLjDfeeKPdm9hUKkVbt27t8A96JpOhDz/8sF2tp556imbNmuXaVqjly5fTmDFj6M9//rPzyeXJJ5/s+iS/K3/+859pxowZTns/85nPkCRJdMkllxTcli9+8YskSRJ9/vOfd12esWfPHhozZoyrd0NnFi5cSMcccwxdddVV9Jvf/Ma176qrrqIZM2Z0+rUdvXAkMj+hKvQNo+3YY4+l8vJyWrBgAXm9XteL11tuuYXGjRvX7lOmfBs3bqQxY8bQLbfcQnV1dfT+++9TKBRyrtceP368641GV49p6tSpvTpfO3ox3pvzNZVK0QcffODc7+n52tGnob05X/O/R2/O1/wX4vt7rtrfY3/O1/znpTfna/7XHHfccb06X+0aGzZs6PH5um3bNvrJT35Cy5Ytcy5XIDIvu5k0aRL96Ec/cvWiWL9+PU2YMIHWr1/fbQ0i9/lrvyn48pe/TBdddBGJoujUya/xyiuvdPj4stksTZ061emlcdddd9GwYcNc4VxXbSFq30th/fr1NG3aNNe/jfwaf/vb31xff8cdd9AvfvELuvzyy2n48OH0n//8h5544gkaOXIk3Xrrrd22o76+nlauXOmMWWQ/P3/9619pypQprvO4sxrf//73qbKykkpLS109c5LJJM2cOZNefPHFgh5L/rn3jW98gyoqKjrssdDVz6ahoYEmT57shFiGYVAymaTZs2e7eny0rfPyyy8727/97W/T2WefTZ/5zGfoe9/7nrP9Jz/5CR133HGuf2P277r8546I6Lvf/S4dc8wx9PWvf90VWu3evZsmTpzo6kWRX6Pt78r858S+vOjMM8+k8847jwRBoP/+97/tanTVUyT/53H33XdTJBKhjz/+uMvHYreh7blqB2P5Pby6eiwPP/wwLVmyhC699FIaNmwYvfPOO7R8+XIqLy+niy66yHVsZ20hMscYsXsg2d9j5cqVNHnyZPr000+7bcvvf/97mjFjBvn9flcAoOs6zZ8/37n8rLvHk+///u//KBQK0SeffEJE7p9bV48lnU7T8ccfT7/+9a+d/XYvzfxzr7Of7y9/+Uu64ooraNGiRfT973/f2f7CCy/Q9OnT2wUue/bsob/+9a/0/PPP0/vvv+9sv+6662jy5MkF/X7Nr9H2b3j+c9TV71fGGCtmHLgUifr6evrggw9ozZo1zicCf/3rX2ns2LGuTxbtF7GXXHKJa4C0tjXyu23bf5ANw6D//Oc/zpvYuro6uuGGG2jevHlOj4T6+np6//33na7gtvw/ek899RTNnDnTub948WI6//zzO2xH2zdjmzdvdv5A2i8g7rjjjnZvYPNr2G0zDIPWrVtHZ555JhERXX311TRixAh6/PHHKRQK0TXXXNNuYNL8OvldWL/5zW+2G0RR0zQ66aST6Ktf/WqnNeyfzY4dO2jq1KkkCIIzPoj9eH73u9/RrFmzXIFD/vPatktu/hujCRMm0A9/+ENXve4ey/Lly+nXv/41nXzyyZRIJCiVShGR+Qnm5MmTXZeu5NdIpVKkKAr93//9H40ZM4aqqqooGo3S4sWLnedjypQp9J3vfIfaSiaTpOu6a/yPl156iUaPHl3w+dpRDaLci79Czle7hv2Y29Yg6v587awdRIWfrx3VMAyDPvroo4LP187a8Y1vfKPgc7WzOjt27KDJkycXfL529rzmvwDu7nzt7PG89NJLBZ+vbWukUin64Q9/SKNGjSrofP3oo4+ooqKCZs2aRYcddhiFw2G68sornX/H11xzDR155JG0ePFi+vTTT2nfvn10++2306RJk5zxYDqq8eUvf5n27t3r+nnYfvazn5HH46GSkhLnU/NCahCZb4KGDBlCK1eupAceeID8fr/rTUxP20JkDsQ7c+ZMZ6DXzmrYb+IfeOABEgSBxo0b5wTuzc3N9KMf/cjpwdZRjauvvppqa2upMzfffDOdfvrpzt+EjmpcddVVzhvBRx99lIYNG0bTp0+nd955h9auXUv33nsvjR071vl0vCfPx65du+joo4+m++67z/X3rLPHkl/j/PPPp1tvvZVqamoonU7TvffeS6NHj3aFQR3VueKKK1xvUNt+2n/11VfTokWLnN8DGzZsoHHjxjk9cYjcAey9995LJ5xwAp177rm0evVq+uSTT+jOO++kMWPGOJcUdVSjq9Dlr3/9K5WVlVFpaalz2VEhNYjMN/fjx4+nP/3pT/Td736X/H6/84a5p+0gMgObo446quDHsmzZMhIEgSZOnOicq5lMhpYvX+4EFZ3V6a5X3v/7f/+P5syZ45yPHdXI/zvz61//mg4//HCKRqP04osv0j/+8Q+65557aOTIkc550pPnxDAMmjNnDl1++eWuc6CQx3LNNdfQOeecQ9u2baOGhgZasmQJjRgxwnlOOqrR9rVT2x441157LZ1xxhmuvwkfffQRjR8/no4//niqrKyk4447jp599lln/5VXXknTpk3r9vdr2xptL1HLf446+v3KGGPFjgOXIvDRRx/RlClTaNq0aSQIgjNIZnNzMz366KM0adIk+spXvuL6mksuuYS+8pWvkK7rzhu7tjXyX8zk/xF/4403aO7cuSTLMoVCIaf7ekc1OnqR9eyzz9Lxxx9PROYnsMFg0BkErbMaXfUsuOKKK+jGG28s6LGoqkqnnXYaTZo0iaqqqpwXWb///e+pqqrK9YK/ozr5LyraDiCnqip97nOfc7ridtYWXdcpm83SH//4Rxo3bhwdffTRtG7dOqf2TTfdRAsWLHDeJBb6vKqqSgsWLKDTTjut3b7uHsuvfvUrmj59uutrFi9eTPPmzXPCmbY17DE50uk07dmzh1577TVXd/JYLEannXaa8wLK/hmsXbuWTjvtNDr55JOdHgK7d+8mTdPoscceowkTJnR7vrat8eMf/5i2bdvmHJ8fEnZ2vnZXw25vV+drdzU60vZ87aqGpml0yimndHu+dlTD/pSYiDoMlNqeq909nueff57Gjh3b7fla6PPa1fna0TmS/wbo6aef7vZ8bVvjySefdHon7N27l/72t791eb7GYjGaPXu207OqpqaGXnnlFSovL6dTTz3VqXX//ffT/PnzncGahw0b5nzKH4/HO61x5plnuj791nWdNE2jm266icrKypxxRnpSIx6P04wZM+jkk092vXntaR0iM2T7+te/TmVlZc6n7l3VOOOMM2jv3r2kqipdd911Ti+btr0RuqqxYMECJ5TJb8dtt91G5eXlzuUZXdU47bTTnLDjN7/5DZ155pkkCAIdccQRNGHChF79bOz2n3HGGXTyySc7536hNR588EGaOXMmDR06lE455RSqrq522tFdndNPP71dW1avXk0333wzlZSUOJdH7Ny5k44++miaOHEiHXnkkXT//fc7x+f/rv/FL35BZ511FgmCQEceeSSNGTPGaUtXNTp6Y6/rOi1evJgikUhB7WhbQ9d1mjdvHh1xxBEUDAadcLAnNYiINm3aRLfccguVlZU5oU9XNfIDhjvuuMP176StQuvYNm7cSIsXL3b9uyn0Z/Pmm2/SFVdcQeFwmKZOnUrTp0/v1c/G9pWvfIVOOOEEJ6QstMZvfvMbOumkk8jr9dKsWbNo9OjRBbWjo96MK1eupOuvv56i0air986nn35KI0eOpNtvv51aWlrogw8+oCuuuIKuvvpq12urrn6/dlWj7bhGhmF0+PuVMcYGAg5c+tmnn35KVVVVdMcdd9D27dvpySefJEEQnC7kDQ0N9OMf/5iGDx9OM2bMoOuuu44uvfRSCgaDzh+cjmqIothuUE77xUU6naZzzjmHysvLe1yDyHxzf+qpp9K9995LXq/XeRPZkxpE5h/3e+65h4YOHeoMpNddjUQiQZdddhkdd9xxrsudiNzTlva0LZqm0T333EPV1dXOG4bOfjb2p6upVIpeffVVmjBhAo0aNYpOO+00WrhwIZWWljovTApth/1C57///S+Jouj6lKiQGrt27aLy8nI666yz6IknnqCvfe1rVF5e3mU78h9LW+l0mu666y6qrq6m7du3O9s//vhjGjJkCC1evJj+8Ic/0H333UeCIND5559Pa9asIUVR6Mc//jFVV1d3er52VmPRokWugfLsF5Adna+F1iDq/HztSQ37Z9T2fO2qht3F/7LLLqOZM2d2er4WUiNfR+dqV3UWLlzovCF59dVXaeLEiZ2er4U+J/bvko7O165q2GPf7Nq1iyoqKjo9X7t6LB39bDo6X9PpNB1zzDHtegdt3ryZKisr6bOf/ayzra6ujl555RVasWKF699VdzXOO+8815u29957jwRBcPVK6UmNpqYmGjNmDJWXl7sGOe1pnXfeeYf+53/+h4466ihXnZ48J53pSTveeustuvrqq2ny5MmuT6O7q3Huuec62wzDoA8//JA++eQT1+VAPWmH/ft1586drvFFuqvxuc99ztm2fPly+t73vkdLly5tNwBxd3XOP/985/dZS0sL/frXv6YZM2Y4z4lhGPS9732Pzj77bPr73/9OS5YsocmTJ3f6xp7IHNdl/fr1Tm+QQmq0DRjsadrt3w89raGqKs2ZM8cVTvS0xrp165xeWD2pUcjsaj1ty0cffUS33HILTZs2zfl305ufzSeffEK1tbXOpTS9+dkQmQPB27/jC6mR3ytl7dq19LOf/Yyef/555/VkT9uh6zr9+c9/ptmzZ7t+j2SzWbr11lvpoosucj32n/3sZ1RRUdFutriGhoZ2v197WoOo49+vjDE2EHDg0s/uueeedi9yzzrrLFqxYgWtWLHC+QR869atdMUVV9CFF15IX/rSl1zT43VWY+XKlfTWW2+5Pp1WFIW++93vktfrdb0A7kkNezrFkpIS1ydLPanxr3/9i774xS/S8OHDXZ8UdlVjxYoV1NzcTPF4vNsBR3vSltdff50uuOACGjp0aEFtsX82dhf8bDZL9913H918881055130saNG3vVDsMwaNeuXXTRRRe5XtAXWuO1116jGTNm0IwZM+izn/1sj86R/O/33nvvOdfE5z8fROZlAZdccolr25VXXkl+v58WLlzoDJS5ZcsWuvLKKzs8XzurEQgE6IILLnCdU5qmdXi+9qTGU0891eH52pMa//73vzs8X7uqsXDhQvr000+pvr7eFVq11V078oOaf/7znx2eq13VsX829puZTCZD3/rWtzo8X3vynBBRh+droTX+/ve/07HHHtvh+dpdjfwX3B988EGH52sikaARI0Z0+IZkzZo1FAqFXNOodqSQGg888IDra/LHRuhNje985zuun0lv66xcubLdJUuF1PjWt77VxTPS83b861//ajdQbn/8bDrqZVlIjUIGxu1pW1KpVLvzpKamhp5++mkiMgNA+81w/vPQ2UCrPanRtjdF29lielrj5z//uav3Wm9qrFu3rt3YOoXUKGSw7p62ZdWqVe1mfCqkRmdjXfW2HR2Nm9Nf50jbS+HS6TQ9/vjj9NOf/tT1eO0x4eznr6sxagqt0VbbfzeMMTYQcODSz26++WY666yznIEi7evnZ86cSVVVVe2mbSRq/yKjqxrDhg2jBQsWuGr84he/aDeDRCE17Ck13333XZo9e7brDVJPa7zzzjt01113tXtj0d3zcfrpp3c5xWJv2rJy5UpavHhxu8HXCvnZvP766/vdjrY/37aXjxTSjvxZc2KxWI9qdHaOtH0RTWTO8mTPsGG/CHvwwQfpjDPOoEmTJtHdd9/d7mvanq9d1Tj88MOdS53sF2Adna+F1iDq/HwttEY6ne70fO3u+bjrrrtcj6UjPWlHZ+dqT5+T/W1L/gvptudadzXyz5HOzteePpbOztfHHnuMRo4cSX/961+dbfYbkgcffJBOOOEEamxs7PKNQaE18sce6k2N/MFk96ct9lgt+/t4ujpn++LxHKx29EWNhoYG5xzpanazQuoUOrj73r17O3wz/OKLLxYUNHRXw25bd+3prIY9zfz+tKMvarz44osFzTpVbG05kDX+9Kc/7fc50l2N/JDdPodqampowoQJrp6zbT8Y2N8aPBU0Y2wg4sCln/34xz+mUChEF1xwAV166aXk8XjohRdeoEQiQW+//TbNnz+f7rzzTtc4KG3/4BRao6s/VIXWIDLfAHX0KUNPaui63uEnOD2p0RfPK5EZCHT0qVBPntfOXoz39DnpzWOZN2+ec47s7/PR3Qu9W265hYYPH+5cU15TU0NlZWX02muv0Y9//GMKBALtLpdq+5x0VyMYDHZ66VdvaiQSiQ7P10Jq5L/o6+h8PViPxW5H26mt97ct/fGzCQQC3U4J2pt27N27l95991169dVXnTcK27ZtowsvvJDmz5/fbgabpUuX0pQpU1yDWBdLjWJqC9c4eD8bInL9rd+zZ4/zZnjJkiW0ePFiEgSB9uzZwzU6qFFMbRlMNfLrvPLKK67XCfk1N23aRBUVFc7v929+85tUVlbmBI19UYMxxgYiDlyKwA9/+EP67ne/SxdccAFde+21rn1XXnklzZ8/v9s3wt3VmDdvXp/U6Gp6yEJrdPfJS188lmJqy2CqsWPHDpozZw75fD4688wzKRgMOgPkNjQ00IgRI7rtgcQ1+r5GMbWlP2qsWbOGxowZQ5MmTaKSkhI6/PDD6dlnnyVFUej999+nz372szRz5kxnrBlFUej222+nk046yelBUyw1iqktXOPg/GwmT55MzzzzjDPmR/6b4b1799K9995LgiBQWVmZc0ke13DXKKa2DKYahdSxa2zevJmGDBlCTU1N9MADD1AgECi4LYXUYIyxgYoDl4No06ZNdOedd9Jll11GjzzySLuBv+wxFYhyf3yuvPJKuvbaa52gg2u4axRTWwZTjY7q5M908t3vfpceeugh+s1vfuMc/9///pcmTpzounSHa/R9jWJqSzHUqK+vp8mTJ9Pdd99NW7ZsoT179tDFF19MkyZNovvvv58ymQytXr2arr32WpJlmY466iiaNWsWlZWVOeMCFUuNYmoL1zi4P5spU6bQkiVLnEux8j/Nv/zyyykajTqXEnINd41iastgqtGTOkTmmDAzZsygiy++mLxerxOU9EUNxhgbyDhwOUjWr19PpaWldOGFF9K1115Lo0aNomOOOYaefPJJ55hvfetbFAqF6I033qC33nqLlixZQuXl5c4fP67hrlFMbRlMNTqrc/TRR9PSpUudY9r2hrn99tvp6KOPdsaQ4Bp9X6OY2lJMNcaOHdvuhfkdd9xBRxxxBD366KNkGIZz+dwDDzxAS5cudY35Uiw1iqktXOPg/2ymTZtGDz/8sOvSo2XLllFpaalrHAuuUdpubJBiactgqtHTOhs2bCBBECgQCLiCyr6owRhjAxkHLgdBPB6nBQsW0O233+5s2717N1VUVFBVVZUze4Gu63TxxReTKIo0adIkOvroo52p+LiGu0YxtWUw1ehJHdsbb7xBN954I0UiEecFEtfo+xrF1JZiqUFEtHr1aho5ciS98cYbROQexPemm26iMWPGOL1mOlMsNYqpLVyjf9oybtw4V43a2tp201BzDXeNYmrLYKrR0zo1NTV0/fXXtxtcvi9qMMbYQMaBy0GQTCZp5syZ9Mwzzzj3iYguvPBCOvXUU2n27Nn08ssvO8e/8cYbtHbtWtc0iVxjbbtpI4ulLYOpRiF15syZ46qzYsUKuu6662jdunVc4wDWKKa2FEsN28yZM+kzn/mMcz+TyTjrxx13XLsppjtSLDWKqS1co3/b0tUYY1yjeNsymGr0pA6ROZvegarBGGMDlQh2QBEREokE9uzZgz179gAAgsEgdu/ejfXr1+NLX/oSkskknn/+eedr5s+fjyOPPBJDhw7lGh3UKKa2DKYahdZJJBJ44YUXnK+ZO3cuHn/8cRxxxBFc4wDVKKa29HeNsWPHIh6PIxaLOfueeuoprF+/Hl/84hcBAD6fD5qmAQBOPPFEJJNJ5Esmk0VRo5jawjWK72cjSRLX6KBGMbVlMNXY3zoA4Pf7+6QGY4wNKgc33zl0tP3E4IknniBBEOjqq6+me+65h8LhsDPrxh/+8AcaO3YsNTQ0dDpVHtcorrYMphr7Uyd/kF2u0fc1iqktxVBj/fr1dMYZZ9CMGTOourraGUw3nU7Ts88+S5WVlXTBBReQoijOOX7ZZZfRJZdcQqqqkmEYRVNjsD2ewVSDfzbFW4N/NoP/eWWMscGGA5cDYPPmzfToo4/S3r17nW26rtPTTz9NM2fOpDPPPJO+973vOft++MMf0owZM1x/aLjGjHZ/eIulLYOpRjG1hWvwz6arGuvXr6eKigq65ZZb6Le//S3deuut5PF4nEEek8kk/eUvf6GRI0fS5MmT6bzzzqOLLrqIQqGQM6NRsdQoprZwDf7ZDJQaxdSWwVSj2NrCGGODDQcufeyTTz6h8vJyEgSB7rrrLtfsIkRmyp9/7SoR0Q033EAXXHABpdNpMgyDa7Spwc8rP6+HWg0i/tnk12hoaKAzzjiDbrrpJtcxJ598Mt14442ubbFYjG6//Xb68pe/TDfccIMz+1ZjY2NR1CimtnAN/tkMlBrF1JbBVKPY2sIYY4MRBy59KJFI0NVXX01XXnklPfnkkyQIAn396193vbnI/8R348aNtHjxYopEIvTRRx9xjQ5qFFNbBlONYmoL1+CfTXc1amtr6fjjj3dmubC7ol911VV06aWXOjXaXiqXf79YahRTW7gG/2wGSo1iastgqlFsbWGMscFI7u8xZAYTURRx7LHHoqKiAhdffDEqKytxySWXAABuv/12VFZWQhAEAEA8Hsdrr72GVatW4Y033sC0adO4Rgc1iqktg6lGMbWFa/DPprsaVVVV+M1vfoOJEycCAHRdhyiKGDFiBHbs2AEAEAQBgiAgFoshGo0622zFUqOY2sI1+GczUGoUU1sGU41iawtjjA1K/Z34DDaJRMJ1/3e/+x0JgkC33XYbNTQ0EJE5cGRdXR2pqkpNTU1co5saxdSWwVSjmNrCNdorlrYUSw1b/iei3/jGN2jBggXO/Yceeogee+yxdgMPF2uNYmoL1yjetnCN4m3LYKpRbG1hjLHBgnu49LFQKAQgl+5ffPHFICJ88YtfhCAIWLx4MR599FFs27YNzzzzDMrKyrhGNzWKqS2DqUYxtYVr8M+mkOcEMHvMEJHzyagoigCAe++9Fw8++CBWrVoFWe76T1ux1CimtnCN4m0L1yjetgymGsXWFsYYGzQOVJLD3Ner/u53vyOPx0OHH344ybLsjNrONXpWo5jaMphqFFNbuEbxtqVYathfv2TJEvrqV79KjzzyCPl8Pvrwww8L+vpiqlFMbeEaxdsWrlG8bRlMNYqtLYwxNhhw4HKAGYbhDAh5yimnUHl5uWtwTK7R8xrF1JbBVKOY2sI1irctxVKDiOjBBx8kQRCopKSE3n///R5/fTHVKKa2cI3ibQvXKN62DKYaxdYWxhgbyDhwOQg0TaNbbrmFBEGgNWvWcI0+qFFMbRlMNYqpLVyjeNtSLDXef/99EgRhv6YVLZYaxdQWrlG8beEaxduWwVSj2NrCGGMDmUBE1N+XNQ12uq7j6aefxrHHHoujjz6aa/RBjWJqy2CqUUxt4RrF25ZiqQEAyWTSGSNmoNcoprZwjeJtC9co3rYMphrF1hbGGBuoOHA5SChvADGu0Tc1iqktg6lGMbWFaxRvW4qlBmOMMcYYY8WKAxfGGGOMMcYYY4yxPib2dwMYY4wxxhhjjDHGBhsOXBhjjDHGGGOMMcb6GAcujDHGGGOMMcYYY32MAxfGGGOMMcYYY4yxPsaBC2OMMcYYY4wxxlgf48CFMcYYY4wxxhhjrI9x4MIYY4wxxhhjjDHWxzhwYYwxxhhjjDHGGOtjHLgwxhhjjDHGGGOM9bH/D3veI0nz09H2AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Guardar el dataframe agrupado\n", + "df_grouped.to_csv('global_electricity_statistics_by_region.csv')" + ], + "metadata": { + "id": "3HyCu76yuvpS" + }, + "execution_count": 86, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Supongamos que 'df_grouped' es tu DataFrame y quieres predecir la columna '2021'\n", + "X = df_grouped.drop('2021', axis=1)\n", + "y = df_grouped['2021']\n", + "\n", + "# Dividir los datos en conjuntos de entrenamiento y prueba\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.42, random_state=45) # Puedes cambiar 'test_size' y 'random_state'\n", + "\n", + "# Crear la red GRU\n", + "model = Sequential()\n", + "model.add(GRU(200, activation='relu', kernel_regularizer=l2(0.2), input_shape=(X_train.shape[1], 1))) # Puedes cambiar el número de neuronas (150 aquí) y la función de activación ('relu' aquí)\n", + "model.add(Dense(1))\n", + "\n", + "# Compilar el modelo\n", + "model.compile(optimizer='adam', loss=MeanSquaredError()) # Puedes cambiar el optimizador ('adam' aquí) y la función de pérdida (MeanSquaredError aquí)\n", + "\n", + "# Ajustar el modelo a los datos de entrenamiento\n", + "history = model.fit(X_train, y_train, epochs=500, verbose=5) # Puedes cambiar el número de épocas (500 aquí)\n", + "\n", + "for i in range(len(history.history['loss'])):\n", + " print(f\"Epoch {i+1}: Loss = {history.history['loss'][i]}\")\n", + "\n", + "# Graficar la pérdida durante el entrenamiento\n", + "plt.plot(history.history['loss'])\n", + "plt.title('Model loss')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Epoch')\n", + "plt.legend(['Train'], loc='upper right')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "nfJrQD1i4qys", + "outputId": "13ef1135-788e-43a6-be85-1e57976461e6" + }, + "execution_count": 126, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/500\n", + "Epoch 2/500\n", + "Epoch 3/500\n", + "Epoch 4/500\n", + "Epoch 5/500\n", + "Epoch 6/500\n", + "Epoch 7/500\n", + "Epoch 8/500\n", + "Epoch 9/500\n", + "Epoch 10/500\n", + "Epoch 11/500\n", + "Epoch 12/500\n", + "Epoch 13/500\n", + "Epoch 14/500\n", + "Epoch 15/500\n", + "Epoch 16/500\n", + "Epoch 17/500\n", + "Epoch 18/500\n", + "Epoch 19/500\n", + "Epoch 20/500\n", + "Epoch 21/500\n", + "Epoch 22/500\n", + "Epoch 23/500\n", + "Epoch 24/500\n", + "Epoch 25/500\n", + "Epoch 26/500\n", + "Epoch 27/500\n", + "Epoch 28/500\n", + "Epoch 29/500\n", + "Epoch 30/500\n", + "Epoch 31/500\n", + "Epoch 32/500\n", + "Epoch 33/500\n", + "Epoch 34/500\n", + "Epoch 35/500\n", + "Epoch 36/500\n", + "Epoch 37/500\n", + "Epoch 38/500\n", + "Epoch 39/500\n", + "Epoch 40/500\n", + "Epoch 41/500\n", + "Epoch 42/500\n", + "Epoch 43/500\n", + "Epoch 44/500\n", + "Epoch 45/500\n", + "Epoch 46/500\n", + "Epoch 47/500\n", + "Epoch 48/500\n", + "Epoch 49/500\n", + "Epoch 50/500\n", + "Epoch 51/500\n", + "Epoch 52/500\n", + "Epoch 53/500\n", + "Epoch 54/500\n", + "Epoch 55/500\n", + "Epoch 56/500\n", + "Epoch 57/500\n", + "Epoch 58/500\n", + "Epoch 59/500\n", + "Epoch 60/500\n", + "Epoch 61/500\n", + "Epoch 62/500\n", + "Epoch 63/500\n", + "Epoch 64/500\n", + "Epoch 65/500\n", + "Epoch 66/500\n", + "Epoch 67/500\n", + "Epoch 68/500\n", + "Epoch 69/500\n", + "Epoch 70/500\n", + "Epoch 71/500\n", + "Epoch 72/500\n", + "Epoch 73/500\n", + "Epoch 74/500\n", + "Epoch 75/500\n", + "Epoch 76/500\n", + "Epoch 77/500\n", + "Epoch 78/500\n", + "Epoch 79/500\n", + "Epoch 80/500\n", + "Epoch 81/500\n", + "Epoch 82/500\n", + "Epoch 83/500\n", + "Epoch 84/500\n", + "Epoch 85/500\n", + "Epoch 86/500\n", + "Epoch 87/500\n", + "Epoch 88/500\n", + "Epoch 89/500\n", + "Epoch 90/500\n", + "Epoch 91/500\n", + "Epoch 92/500\n", + "Epoch 93/500\n", + "Epoch 94/500\n", + "Epoch 95/500\n", + "Epoch 96/500\n", + "Epoch 97/500\n", + "Epoch 98/500\n", + "Epoch 99/500\n", + "Epoch 100/500\n", + "Epoch 101/500\n", + "Epoch 102/500\n", + "Epoch 103/500\n", + "Epoch 104/500\n", + "Epoch 105/500\n", + "Epoch 106/500\n", + "Epoch 107/500\n", + "Epoch 108/500\n", + "Epoch 109/500\n", + "Epoch 110/500\n", + "Epoch 111/500\n", + "Epoch 112/500\n", + "Epoch 113/500\n", + "Epoch 114/500\n", + "Epoch 115/500\n", + "Epoch 116/500\n", + "Epoch 117/500\n", + "Epoch 118/500\n", + "Epoch 119/500\n", + "Epoch 120/500\n", + "Epoch 121/500\n", + "Epoch 122/500\n", + "Epoch 123/500\n", + "Epoch 124/500\n", + "Epoch 125/500\n", + "Epoch 126/500\n", + "Epoch 127/500\n", + "Epoch 128/500\n", + "Epoch 129/500\n", + "Epoch 130/500\n", + "Epoch 131/500\n", + "Epoch 132/500\n", + "Epoch 133/500\n", + "Epoch 134/500\n", + "Epoch 135/500\n", + "Epoch 136/500\n", + "Epoch 137/500\n", + "Epoch 138/500\n", + "Epoch 139/500\n", + "Epoch 140/500\n", + "Epoch 141/500\n", + "Epoch 142/500\n", + "Epoch 143/500\n", + "Epoch 144/500\n", + "Epoch 145/500\n", + "Epoch 146/500\n", + "Epoch 147/500\n", + "Epoch 148/500\n", + "Epoch 149/500\n", + "Epoch 150/500\n", + "Epoch 151/500\n", + "Epoch 152/500\n", + "Epoch 153/500\n", + "Epoch 154/500\n", + "Epoch 155/500\n", + "Epoch 156/500\n", + "Epoch 157/500\n", + "Epoch 158/500\n", + "Epoch 159/500\n", + "Epoch 160/500\n", + "Epoch 161/500\n", + "Epoch 162/500\n", + "Epoch 163/500\n", + "Epoch 164/500\n", + "Epoch 165/500\n", + "Epoch 166/500\n", + "Epoch 167/500\n", + "Epoch 168/500\n", + "Epoch 169/500\n", + "Epoch 170/500\n", + "Epoch 171/500\n", + "Epoch 172/500\n", + "Epoch 173/500\n", + "Epoch 174/500\n", + "Epoch 175/500\n", + "Epoch 176/500\n", + "Epoch 177/500\n", + "Epoch 178/500\n", + "Epoch 179/500\n", + "Epoch 180/500\n", + "Epoch 181/500\n", + "Epoch 182/500\n", + "Epoch 183/500\n", + "Epoch 184/500\n", + "Epoch 185/500\n", + "Epoch 186/500\n", + "Epoch 187/500\n", + "Epoch 188/500\n", + "Epoch 189/500\n", + "Epoch 190/500\n", + "Epoch 191/500\n", + "Epoch 192/500\n", + "Epoch 193/500\n", + "Epoch 194/500\n", + "Epoch 195/500\n", + "Epoch 196/500\n", + "Epoch 197/500\n", + "Epoch 198/500\n", + "Epoch 199/500\n", + "Epoch 200/500\n", + "Epoch 201/500\n", + "Epoch 202/500\n", + "Epoch 203/500\n", + "Epoch 204/500\n", + "Epoch 205/500\n", + "Epoch 206/500\n", + "Epoch 207/500\n", + "Epoch 208/500\n", + "Epoch 209/500\n", + "Epoch 210/500\n", + "Epoch 211/500\n", + "Epoch 212/500\n", + "Epoch 213/500\n", + "Epoch 214/500\n", + "Epoch 215/500\n", + "Epoch 216/500\n", + "Epoch 217/500\n", + "Epoch 218/500\n", + "Epoch 219/500\n", + "Epoch 220/500\n", + "Epoch 221/500\n", + "Epoch 222/500\n", + "Epoch 223/500\n", + "Epoch 224/500\n", + "Epoch 225/500\n", + "Epoch 226/500\n", + "Epoch 227/500\n", + "Epoch 228/500\n", + "Epoch 229/500\n", + "Epoch 230/500\n", + "Epoch 231/500\n", + "Epoch 232/500\n", + "Epoch 233/500\n", + "Epoch 234/500\n", + "Epoch 235/500\n", + "Epoch 236/500\n", + "Epoch 237/500\n", + "Epoch 238/500\n", + "Epoch 239/500\n", + "Epoch 240/500\n", + "Epoch 241/500\n", + "Epoch 242/500\n", + "Epoch 243/500\n", + "Epoch 244/500\n", + "Epoch 245/500\n", + "Epoch 246/500\n", + "Epoch 247/500\n", + "Epoch 248/500\n", + "Epoch 249/500\n", + "Epoch 250/500\n", + "Epoch 251/500\n", + "Epoch 252/500\n", + "Epoch 253/500\n", + "Epoch 254/500\n", + "Epoch 255/500\n", + "Epoch 256/500\n", + "Epoch 257/500\n", + "Epoch 258/500\n", + "Epoch 259/500\n", + "Epoch 260/500\n", + "Epoch 261/500\n", + "Epoch 262/500\n", + "Epoch 263/500\n", + "Epoch 264/500\n", + "Epoch 265/500\n", + "Epoch 266/500\n", + "Epoch 267/500\n", + "Epoch 268/500\n", + "Epoch 269/500\n", + "Epoch 270/500\n", + "Epoch 271/500\n", + "Epoch 272/500\n", + "Epoch 273/500\n", + "Epoch 274/500\n", + "Epoch 275/500\n", + "Epoch 276/500\n", + "Epoch 277/500\n", + "Epoch 278/500\n", + "Epoch 279/500\n", + "Epoch 280/500\n", + "Epoch 281/500\n", + "Epoch 282/500\n", + "Epoch 283/500\n", + "Epoch 284/500\n", + "Epoch 285/500\n", + "Epoch 286/500\n", + "Epoch 287/500\n", + "Epoch 288/500\n", + "Epoch 289/500\n", + "Epoch 290/500\n", + "Epoch 291/500\n", + "Epoch 292/500\n", + "Epoch 293/500\n", + "Epoch 294/500\n", + "Epoch 295/500\n", + "Epoch 296/500\n", + "Epoch 297/500\n", + "Epoch 298/500\n", + "Epoch 299/500\n", + "Epoch 300/500\n", + "Epoch 301/500\n", + "Epoch 302/500\n", + "Epoch 303/500\n", + "Epoch 304/500\n", + "Epoch 305/500\n", + "Epoch 306/500\n", + "Epoch 307/500\n", + "Epoch 308/500\n", + "Epoch 309/500\n", + "Epoch 310/500\n", + "Epoch 311/500\n", + "Epoch 312/500\n", + "Epoch 313/500\n", + "Epoch 314/500\n", + "Epoch 315/500\n", + "Epoch 316/500\n", + "Epoch 317/500\n", + "Epoch 318/500\n", + "Epoch 319/500\n", + "Epoch 320/500\n", + "Epoch 321/500\n", + "Epoch 322/500\n", + "Epoch 323/500\n", + "Epoch 324/500\n", + "Epoch 325/500\n", + "Epoch 326/500\n", + "Epoch 327/500\n", + "Epoch 328/500\n", + "Epoch 329/500\n", + "Epoch 330/500\n", + "Epoch 331/500\n", + "Epoch 332/500\n", + "Epoch 333/500\n", + "Epoch 334/500\n", + "Epoch 335/500\n", + "Epoch 336/500\n", + "Epoch 337/500\n", + "Epoch 338/500\n", + "Epoch 339/500\n", + "Epoch 340/500\n", + "Epoch 341/500\n", + "Epoch 342/500\n", + "Epoch 343/500\n", + "Epoch 344/500\n", + "Epoch 345/500\n", + "Epoch 346/500\n", + "Epoch 347/500\n", + "Epoch 348/500\n", + "Epoch 349/500\n", + "Epoch 350/500\n", + "Epoch 351/500\n", + "Epoch 352/500\n", + "Epoch 353/500\n", + "Epoch 354/500\n", + "Epoch 355/500\n", + "Epoch 356/500\n", + "Epoch 357/500\n", + "Epoch 358/500\n", + "Epoch 359/500\n", + "Epoch 360/500\n", + "Epoch 361/500\n", + "Epoch 362/500\n", + "Epoch 363/500\n", + "Epoch 364/500\n", + "Epoch 365/500\n", + "Epoch 366/500\n", + "Epoch 367/500\n", + "Epoch 368/500\n", + "Epoch 369/500\n", + "Epoch 370/500\n", + "Epoch 371/500\n", + "Epoch 372/500\n", + "Epoch 373/500\n", + "Epoch 374/500\n", + "Epoch 375/500\n", + "Epoch 376/500\n", + "Epoch 377/500\n", + "Epoch 378/500\n", + "Epoch 379/500\n", + "Epoch 380/500\n", + "Epoch 381/500\n", + "Epoch 382/500\n", + "Epoch 383/500\n", + "Epoch 384/500\n", + "Epoch 385/500\n", + "Epoch 386/500\n", + "Epoch 387/500\n", + "Epoch 388/500\n", + "Epoch 389/500\n", + "Epoch 390/500\n", + "Epoch 391/500\n", + "Epoch 392/500\n", + "Epoch 393/500\n", + "Epoch 394/500\n", + "Epoch 395/500\n", + "Epoch 396/500\n", + "Epoch 397/500\n", + "Epoch 398/500\n", + "Epoch 399/500\n", + "Epoch 400/500\n", + "Epoch 401/500\n", + "Epoch 402/500\n", + "Epoch 403/500\n", + "Epoch 404/500\n", + "Epoch 405/500\n", + "Epoch 406/500\n", + "Epoch 407/500\n", + "Epoch 408/500\n", + "Epoch 409/500\n", + "Epoch 410/500\n", + "Epoch 411/500\n", + "Epoch 412/500\n", + "Epoch 413/500\n", + "Epoch 414/500\n", + "Epoch 415/500\n", + "Epoch 416/500\n", + "Epoch 417/500\n", + "Epoch 418/500\n", + "Epoch 419/500\n", + "Epoch 420/500\n", + "Epoch 421/500\n", + "Epoch 422/500\n", + "Epoch 423/500\n", + "Epoch 424/500\n", + "Epoch 425/500\n", + "Epoch 426/500\n", + "Epoch 427/500\n", + "Epoch 428/500\n", + "Epoch 429/500\n", + "Epoch 430/500\n", + "Epoch 431/500\n", + "Epoch 432/500\n", + "Epoch 433/500\n", + "Epoch 434/500\n", + "Epoch 435/500\n", + "Epoch 436/500\n", + "Epoch 437/500\n", + "Epoch 438/500\n", + "Epoch 439/500\n", + "Epoch 440/500\n", + "Epoch 441/500\n", + "Epoch 442/500\n", + "Epoch 443/500\n", + "Epoch 444/500\n", + "Epoch 445/500\n", + "Epoch 446/500\n", + "Epoch 447/500\n", + "Epoch 448/500\n", + "Epoch 449/500\n", + "Epoch 450/500\n", + "Epoch 451/500\n", + "Epoch 452/500\n", + "Epoch 453/500\n", + "Epoch 454/500\n", + "Epoch 455/500\n", + "Epoch 456/500\n", + "Epoch 457/500\n", + "Epoch 458/500\n", + "Epoch 459/500\n", + "Epoch 460/500\n", + "Epoch 461/500\n", + "Epoch 462/500\n", + "Epoch 463/500\n", + "Epoch 464/500\n", + "Epoch 465/500\n", + "Epoch 466/500\n", + "Epoch 467/500\n", + "Epoch 468/500\n", + "Epoch 469/500\n", + "Epoch 470/500\n", + "Epoch 471/500\n", + "Epoch 472/500\n", + "Epoch 473/500\n", + "Epoch 474/500\n", + "Epoch 475/500\n", + "Epoch 476/500\n", + "Epoch 477/500\n", + "Epoch 478/500\n", + "Epoch 479/500\n", + "Epoch 480/500\n", + "Epoch 481/500\n", + "Epoch 482/500\n", + "Epoch 483/500\n", + "Epoch 484/500\n", + "Epoch 485/500\n", + "Epoch 486/500\n", + "Epoch 487/500\n", + "Epoch 488/500\n", + "Epoch 489/500\n", + "Epoch 490/500\n", + "Epoch 491/500\n", + "Epoch 492/500\n", + "Epoch 493/500\n", + "Epoch 494/500\n", + "Epoch 495/500\n", + "Epoch 496/500\n", + "Epoch 497/500\n", + "Epoch 498/500\n", + "Epoch 499/500\n", + "Epoch 500/500\n", + "Epoch 1: Loss = 476664320.0\n", + "Epoch 2: Loss = 383786176.0\n", + "Epoch 3: Loss = 275799584.0\n", + "Epoch 4: Loss = 144508784.0\n", + "Epoch 5: Loss = 86024400.0\n", + "Epoch 6: Loss = 50962160.0\n", + "Epoch 7: Loss = 30715182.0\n", + "Epoch 8: Loss = 21446492.0\n", + "Epoch 9: Loss = 1780972.0\n", + "Epoch 10: Loss = 616118.25\n", + "Epoch 11: Loss = 4608782.5\n", + "Epoch 12: Loss = 11165317.0\n", + "Epoch 13: Loss = 18538434.0\n", + "Epoch 14: Loss = 25265214.0\n", + "Epoch 15: Loss = 30020844.0\n", + "Epoch 16: Loss = 32484670.0\n", + "Epoch 17: Loss = 32069092.0\n", + "Epoch 18: Loss = 29959058.0\n", + "Epoch 19: Loss = 26224408.0\n", + "Epoch 20: Loss = 21320588.0\n", + "Epoch 21: Loss = 16034396.0\n", + "Epoch 22: Loss = 10948210.0\n", + "Epoch 23: Loss = 6723899.5\n", + "Epoch 24: Loss = 3383370.25\n", + "Epoch 25: Loss = 1263004.0\n", + "Epoch 26: Loss = 327972.90625\n", + "Epoch 27: Loss = 414811.9375\n", + "Epoch 28: Loss = 1275788.875\n", + "Epoch 29: Loss = 2570814.25\n", + "Epoch 30: Loss = 3942282.25\n", + "Epoch 31: Loss = 5124012.5\n", + "Epoch 32: Loss = 5742816.0\n", + "Epoch 33: Loss = 5946823.0\n", + "Epoch 34: Loss = 5374017.5\n", + "Epoch 35: Loss = 4437854.5\n", + "Epoch 36: Loss = 3458658.75\n", + "Epoch 37: Loss = 2136305.25\n", + "Epoch 38: Loss = 1345446.125\n", + "Epoch 39: Loss = 745571.375\n", + "Epoch 40: Loss = 379348.625\n", + "Epoch 41: Loss = 243101.40625\n", + "Epoch 42: Loss = 333880.9375\n", + "Epoch 43: Loss = 639979.25\n", + "Epoch 44: Loss = 1131097.625\n", + "Epoch 45: Loss = 1276156.875\n", + "Epoch 46: Loss = 1350289.25\n", + "Epoch 47: Loss = 1262604.875\n", + "Epoch 48: Loss = 1080269.875\n", + "Epoch 49: Loss = 1366670.75\n", + "Epoch 50: Loss = 920123.5625\n", + "Epoch 51: Loss = 612060.0625\n", + "Epoch 52: Loss = 242664.03125\n", + "Epoch 53: Loss = 238456.203125\n", + "Epoch 54: Loss = 331863.59375\n", + "Epoch 55: Loss = 405303.8125\n", + "Epoch 56: Loss = 509425.5\n", + "Epoch 57: Loss = 567652.6875\n", + "Epoch 58: Loss = 567605.5\n", + "Epoch 59: Loss = 449008.65625\n", + "Epoch 60: Loss = 367502.3125\n", + "Epoch 61: Loss = 254137.484375\n", + "Epoch 62: Loss = 217291.21875\n", + "Epoch 63: Loss = 210903.125\n", + "Epoch 64: Loss = 259898.296875\n", + "Epoch 65: Loss = 344656.0\n", + "Epoch 66: Loss = 313494.625\n", + "Epoch 67: Loss = 271120.15625\n", + "Epoch 68: Loss = 252635.640625\n", + "Epoch 69: Loss = 215255.4375\n", + "Epoch 70: Loss = 207134.53125\n", + "Epoch 71: Loss = 213421.859375\n", + "Epoch 72: Loss = 227616.375\n", + "Epoch 73: Loss = 224419.578125\n", + "Epoch 74: Loss = 330953.875\n", + "Epoch 75: Loss = 280401.9375\n", + "Epoch 76: Loss = 248410.046875\n", + "Epoch 77: Loss = 225617.59375\n", + "Epoch 78: Loss = 234678.0625\n", + "Epoch 79: Loss = 476375.5625\n", + "Epoch 80: Loss = 413566.6875\n", + "Epoch 81: Loss = 805563.9375\n", + "Epoch 82: Loss = 611543.1875\n", + "Epoch 83: Loss = 412170.9375\n", + "Epoch 84: Loss = 272107.21875\n", + "Epoch 85: Loss = 224679.125\n", + "Epoch 86: Loss = 223775.265625\n", + "Epoch 87: Loss = 405831.0\n", + "Epoch 88: Loss = 250020.84375\n", + "Epoch 89: Loss = 225281.484375\n", + "Epoch 90: Loss = 293061.0625\n", + "Epoch 91: Loss = 303139.40625\n", + "Epoch 92: Loss = 18937316.0\n", + "Epoch 93: Loss = 14433902.0\n", + "Epoch 94: Loss = 9064868.0\n", + "Epoch 95: Loss = 4095144.0\n", + "Epoch 96: Loss = 1124284.625\n", + "Epoch 97: Loss = 253690.03125\n", + "Epoch 98: Loss = 1039788.9375\n", + "Epoch 99: Loss = 2869081.5\n", + "Epoch 100: Loss = 4597382.0\n", + "Epoch 101: Loss = 6111712.5\n", + "Epoch 102: Loss = 5288407.0\n", + "Epoch 103: Loss = 4304008.0\n", + "Epoch 104: Loss = 2920462.5\n", + "Epoch 105: Loss = 1562694.0\n", + "Epoch 106: Loss = 597787.0625\n", + "Epoch 107: Loss = 215539.296875\n", + "Epoch 108: Loss = 433322.15625\n", + "Epoch 109: Loss = 1002153.875\n", + "Epoch 110: Loss = 1704510.25\n", + "Epoch 111: Loss = 1702312.875\n", + "Epoch 112: Loss = 1679507.125\n", + "Epoch 113: Loss = 1609862.25\n", + "Epoch 114: Loss = 1132493.375\n", + "Epoch 115: Loss = 671538.75\n", + "Epoch 116: Loss = 342272.4375\n", + "Epoch 117: Loss = 219786.6875\n", + "Epoch 118: Loss = 290771.59375\n", + "Epoch 119: Loss = 417387.09375\n", + "Epoch 120: Loss = 278222.0\n", + "Epoch 121: Loss = 352689.5\n", + "Epoch 122: Loss = 385353.6875\n", + "Epoch 123: Loss = 372619.09375\n", + "Epoch 124: Loss = 324061.1875\n", + "Epoch 125: Loss = 282354.34375\n", + "Epoch 126: Loss = 218600.09375\n", + "Epoch 127: Loss = 251053.46875\n", + "Epoch 128: Loss = 303800.65625\n", + "Epoch 129: Loss = 306274.875\n", + "Epoch 130: Loss = 282078.875\n", + "Epoch 131: Loss = 240117.25\n", + "Epoch 132: Loss = 219662.078125\n", + "Epoch 133: Loss = 212038.1875\n", + "Epoch 134: Loss = 237756.65625\n", + "Epoch 135: Loss = 241494.6875\n", + "Epoch 136: Loss = 226768.640625\n", + "Epoch 137: Loss = 204988.609375\n", + "Epoch 138: Loss = 160396.921875\n", + "Epoch 139: Loss = 158947.828125\n", + "Epoch 140: Loss = 1449201.0\n", + "Epoch 141: Loss = 1005428.5625\n", + "Epoch 142: Loss = 505652.53125\n", + "Epoch 143: Loss = 230413.359375\n", + "Epoch 144: Loss = 262285.5625\n", + "Epoch 145: Loss = 486337.03125\n", + "Epoch 146: Loss = 699882.125\n", + "Epoch 147: Loss = 684973.0625\n", + "Epoch 148: Loss = 494940.25\n", + "Epoch 149: Loss = 308742.875\n", + "Epoch 150: Loss = 192906.546875\n", + "Epoch 151: Loss = 198533.234375\n", + "Epoch 152: Loss = 276844.96875\n", + "Epoch 153: Loss = 344609.65625\n", + "Epoch 154: Loss = 1425865.125\n", + "Epoch 155: Loss = 243603.234375\n", + "Epoch 156: Loss = 185963.453125\n", + "Epoch 157: Loss = 155074.109375\n", + "Epoch 158: Loss = 187397.578125\n", + "Epoch 159: Loss = 259713.296875\n", + "Epoch 160: Loss = 286994.21875\n", + "Epoch 161: Loss = 280063.15625\n", + "Epoch 162: Loss = 247889.078125\n", + "Epoch 163: Loss = 211460.59375\n", + "Epoch 164: Loss = 963858.75\n", + "Epoch 165: Loss = 843820.625\n", + "Epoch 166: Loss = 574424.125\n", + "Epoch 167: Loss = 307616.46875\n", + "Epoch 168: Loss = 179169.984375\n", + "Epoch 169: Loss = 217556.984375\n", + "Epoch 170: Loss = 352362.5625\n", + "Epoch 171: Loss = 475269.0\n", + "Epoch 172: Loss = 509051.0\n", + "Epoch 173: Loss = 442788.5625\n", + "Epoch 174: Loss = 322979.46875\n", + "Epoch 175: Loss = 217366.40625\n", + "Epoch 176: Loss = 173403.359375\n", + "Epoch 177: Loss = 771162.4375\n", + "Epoch 178: Loss = 1202059.875\n", + "Epoch 179: Loss = 923131.25\n", + "Epoch 180: Loss = 542332.4375\n", + "Epoch 181: Loss = 271904.15625\n", + "Epoch 182: Loss = 221525.28125\n", + "Epoch 183: Loss = 353268.59375\n", + "Epoch 184: Loss = 537740.4375\n", + "Epoch 185: Loss = 645227.125\n", + "Epoch 186: Loss = 609486.8125\n", + "Epoch 187: Loss = 478009.40625\n", + "Epoch 188: Loss = 323947.40625\n", + "Epoch 189: Loss = 226339.125\n", + "Epoch 190: Loss = 219845.109375\n", + "Epoch 191: Loss = 283317.71875\n", + "Epoch 192: Loss = 360763.59375\n", + "Epoch 193: Loss = 399017.46875\n", + "Epoch 194: Loss = 377548.6875\n", + "Epoch 195: Loss = 313441.8125\n", + "Epoch 196: Loss = 242432.34375\n", + "Epoch 197: Loss = 201209.328125\n", + "Epoch 198: Loss = 204912.0\n", + "Epoch 199: Loss = 183994.796875\n", + "Epoch 200: Loss = 140977.359375\n", + "Epoch 201: Loss = 195614.4375\n", + "Epoch 202: Loss = 180938.765625\n", + "Epoch 203: Loss = 192589.75\n", + "Epoch 204: Loss = 213580.953125\n", + "Epoch 205: Loss = 196357.59375\n", + "Epoch 206: Loss = 180170.359375\n", + "Epoch 207: Loss = 168971.796875\n", + "Epoch 208: Loss = 172608.015625\n", + "Epoch 209: Loss = 180740.421875\n", + "Epoch 210: Loss = 176480.765625\n", + "Epoch 211: Loss = 164719.640625\n", + "Epoch 212: Loss = 159779.75\n", + "Epoch 213: Loss = 162895.375\n", + "Epoch 214: Loss = 165778.8125\n", + "Epoch 215: Loss = 3625436.0\n", + "Epoch 216: Loss = 1046363.3125\n", + "Epoch 217: Loss = 280614.3125\n", + "Epoch 218: Loss = 193853.546875\n", + "Epoch 219: Loss = 726596.1875\n", + "Epoch 220: Loss = 1165000.625\n", + "Epoch 221: Loss = 1018852.8125\n", + "Epoch 222: Loss = 533663.375\n", + "Epoch 223: Loss = 182641.734375\n", + "Epoch 224: Loss = 188730.09375\n", + "Epoch 225: Loss = 357399.84375\n", + "Epoch 226: Loss = 525476.8125\n", + "Epoch 227: Loss = 559322.3125\n", + "Epoch 228: Loss = 434058.71875\n", + "Epoch 229: Loss = 245131.515625\n", + "Epoch 230: Loss = 146602.6875\n", + "Epoch 231: Loss = 166093.71875\n", + "Epoch 232: Loss = 258646.921875\n", + "Epoch 233: Loss = 333600.21875\n", + "Epoch 234: Loss = 330236.40625\n", + "Epoch 235: Loss = 258638.9375\n", + "Epoch 236: Loss = 164502.59375\n", + "Epoch 237: Loss = 150593.515625\n", + "Epoch 238: Loss = 197698.4375\n", + "Epoch 239: Loss = 203402.265625\n", + "Epoch 240: Loss = 177990.0\n", + "Epoch 241: Loss = 169388.296875\n", + "Epoch 242: Loss = 160226.796875\n", + "Epoch 243: Loss = 143777.171875\n", + "Epoch 244: Loss = 141049.171875\n", + "Epoch 245: Loss = 148986.640625\n", + "Epoch 246: Loss = 157991.78125\n", + "Epoch 247: Loss = 180828.921875\n", + "Epoch 248: Loss = 147415.21875\n", + "Epoch 249: Loss = 138972.5\n", + "Epoch 250: Loss = 140020.015625\n", + "Epoch 251: Loss = 151804.21875\n", + "Epoch 252: Loss = 156365.265625\n", + "Epoch 253: Loss = 147665.734375\n", + "Epoch 254: Loss = 138242.765625\n", + "Epoch 255: Loss = 133920.265625\n", + "Epoch 256: Loss = 135045.671875\n", + "Epoch 257: Loss = 137099.125\n", + "Epoch 258: Loss = 136219.078125\n", + "Epoch 259: Loss = 132869.734375\n", + "Epoch 260: Loss = 6329099.0\n", + "Epoch 261: Loss = 4039440.75\n", + "Epoch 262: Loss = 1535747.0\n", + "Epoch 263: Loss = 264612.5\n", + "Epoch 264: Loss = 473520.125\n", + "Epoch 265: Loss = 1281833.125\n", + "Epoch 266: Loss = 2285685.0\n", + "Epoch 267: Loss = 2647135.0\n", + "Epoch 268: Loss = 2151582.25\n", + "Epoch 269: Loss = 1216443.125\n", + "Epoch 270: Loss = 318984.0\n", + "Epoch 271: Loss = 182622.453125\n", + "Epoch 272: Loss = 519531.40625\n", + "Epoch 273: Loss = 2095936.75\n", + "Epoch 274: Loss = 933172.3125\n", + "Epoch 275: Loss = 656698.3125\n", + "Epoch 276: Loss = 351158.5625\n", + "Epoch 277: Loss = 179935.265625\n", + "Epoch 278: Loss = 198289.71875\n", + "Epoch 279: Loss = 328879.15625\n", + "Epoch 280: Loss = 429191.8125\n", + "Epoch 281: Loss = 385994.09375\n", + "Epoch 282: Loss = 311288.125\n", + "Epoch 283: Loss = 225913.046875\n", + "Epoch 284: Loss = 171472.59375\n", + "Epoch 285: Loss = 172492.109375\n", + "Epoch 286: Loss = 210539.671875\n", + "Epoch 287: Loss = 243812.453125\n", + "Epoch 288: Loss = 3413708.5\n", + "Epoch 289: Loss = 1607231.125\n", + "Epoch 290: Loss = 257074.296875\n", + "Epoch 291: Loss = 259135.96875\n", + "Epoch 292: Loss = 902523.875\n", + "Epoch 293: Loss = 1470664.0\n", + "Epoch 294: Loss = 1556418.5\n", + "Epoch 295: Loss = 1906245.0\n", + "Epoch 296: Loss = 534941.125\n", + "Epoch 297: Loss = 192017.3125\n", + "Epoch 298: Loss = 202692.484375\n", + "Epoch 299: Loss = 465808.90625\n", + "Epoch 300: Loss = 732611.375\n", + "Epoch 301: Loss = 803350.0625\n", + "Epoch 302: Loss = 650247.125\n", + "Epoch 303: Loss = 397986.9375\n", + "Epoch 304: Loss = 206968.65625\n", + "Epoch 305: Loss = 165366.515625\n", + "Epoch 306: Loss = 159550.28125\n", + "Epoch 307: Loss = 175349.578125\n", + "Epoch 308: Loss = 188417.609375\n", + "Epoch 309: Loss = 173470.484375\n", + "Epoch 310: Loss = 151514.28125\n", + "Epoch 311: Loss = 159768.921875\n", + "Epoch 312: Loss = 168476.234375\n", + "Epoch 313: Loss = 148719.296875\n", + "Epoch 314: Loss = 150364.03125\n", + "Epoch 315: Loss = 154403.078125\n", + "Epoch 316: Loss = 454715.65625\n", + "Epoch 317: Loss = 276361.25\n", + "Epoch 318: Loss = 1367032.625\n", + "Epoch 319: Loss = 928810.3125\n", + "Epoch 320: Loss = 344173.21875\n", + "Epoch 321: Loss = 227058.609375\n", + "Epoch 322: Loss = 488522.09375\n", + "Epoch 323: Loss = 738131.5\n", + "Epoch 324: Loss = 729562.1875\n", + "Epoch 325: Loss = 2578598.75\n", + "Epoch 326: Loss = 171772.78125\n", + "Epoch 327: Loss = 293189.34375\n", + "Epoch 328: Loss = 569136.6875\n", + "Epoch 329: Loss = 625360.5625\n", + "Epoch 330: Loss = 471528.84375\n", + "Epoch 331: Loss = 242281.265625\n", + "Epoch 332: Loss = 137829.65625\n", + "Epoch 333: Loss = 196910.203125\n", + "Epoch 334: Loss = 318009.46875\n", + "Epoch 335: Loss = 380215.03125\n", + "Epoch 336: Loss = 337928.9375\n", + "Epoch 337: Loss = 235216.65625\n", + "Epoch 338: Loss = 154426.1875\n", + "Epoch 339: Loss = 147600.515625\n", + "Epoch 340: Loss = 201735.1875\n", + "Epoch 341: Loss = 255848.203125\n", + "Epoch 342: Loss = 248465.671875\n", + "Epoch 343: Loss = 169249.984375\n", + "Epoch 344: Loss = 149859.984375\n", + "Epoch 345: Loss = 147534.65625\n", + "Epoch 346: Loss = 154858.921875\n", + "Epoch 347: Loss = 174684.453125\n", + "Epoch 348: Loss = 156387.296875\n", + "Epoch 349: Loss = 266670.25\n", + "Epoch 350: Loss = 194430.09375\n", + "Epoch 351: Loss = 145305.296875\n", + "Epoch 352: Loss = 157074.5625\n", + "Epoch 353: Loss = 198298.328125\n", + "Epoch 354: Loss = 210365.546875\n", + "Epoch 355: Loss = 184047.78125\n", + "Epoch 356: Loss = 150473.921875\n", + "Epoch 357: Loss = 145185.453125\n", + "Epoch 358: Loss = 161722.375\n", + "Epoch 359: Loss = 163034.34375\n", + "Epoch 360: Loss = 162141.3125\n", + "Epoch 361: Loss = 151445.453125\n", + "Epoch 362: Loss = 141140.578125\n", + "Epoch 363: Loss = 137765.796875\n", + "Epoch 364: Loss = 132135.046875\n", + "Epoch 365: Loss = 130028.3359375\n", + "Epoch 366: Loss = 131535.71875\n", + "Epoch 367: Loss = 132132.625\n", + "Epoch 368: Loss = 130477.3671875\n", + "Epoch 369: Loss = 182739.78125\n", + "Epoch 370: Loss = 193128.734375\n", + "Epoch 371: Loss = 22865238.0\n", + "Epoch 372: Loss = 1247231.5\n", + "Epoch 373: Loss = 3883804.75\n", + "Epoch 374: Loss = 5641214.0\n", + "Epoch 375: Loss = 5474279.0\n", + "Epoch 376: Loss = 3782541.75\n", + "Epoch 377: Loss = 1704671.875\n", + "Epoch 378: Loss = 369237.78125\n", + "Epoch 379: Loss = 277872.375\n", + "Epoch 380: Loss = 1141628.75\n", + "Epoch 381: Loss = 2284744.5\n", + "Epoch 382: Loss = 2868966.5\n", + "Epoch 383: Loss = 4432581.0\n", + "Epoch 384: Loss = 3062475.5\n", + "Epoch 385: Loss = 1425274.75\n", + "Epoch 386: Loss = 361800.25\n", + "Epoch 387: Loss = 190131.125\n", + "Epoch 388: Loss = 583218.4375\n", + "Epoch 389: Loss = 1354179.625\n", + "Epoch 390: Loss = 1971119.0\n", + "Epoch 391: Loss = 2051274.25\n", + "Epoch 392: Loss = 1588909.625\n", + "Epoch 393: Loss = 846037.125\n", + "Epoch 394: Loss = 311060.71875\n", + "Epoch 395: Loss = 182415.859375\n", + "Epoch 396: Loss = 392944.65625\n", + "Epoch 397: Loss = 729744.125\n", + "Epoch 398: Loss = 846853.25\n", + "Epoch 399: Loss = 1221546.25\n", + "Epoch 400: Loss = 569594.3125\n", + "Epoch 401: Loss = 3032983.5\n", + "Epoch 402: Loss = 1657521.875\n", + "Epoch 403: Loss = 642202.375\n", + "Epoch 404: Loss = 194139.296875\n", + "Epoch 405: Loss = 488545.5625\n", + "Epoch 406: Loss = 1146071.375\n", + "Epoch 407: Loss = 1704032.75\n", + "Epoch 408: Loss = 1833427.125\n", + "Epoch 409: Loss = 1364362.375\n", + "Epoch 410: Loss = 838029.4375\n", + "Epoch 411: Loss = 319070.53125\n", + "Epoch 412: Loss = 214860.4375\n", + "Epoch 413: Loss = 387015.40625\n", + "Epoch 414: Loss = 685258.0625\n", + "Epoch 415: Loss = 809109.5625\n", + "Epoch 416: Loss = 734258.5625\n", + "Epoch 417: Loss = 530141.8125\n", + "Epoch 418: Loss = 320167.46875\n", + "Epoch 419: Loss = 206332.953125\n", + "Epoch 420: Loss = 212957.328125\n", + "Epoch 421: Loss = 294922.65625\n", + "Epoch 422: Loss = 344933.9375\n", + "Epoch 423: Loss = 204774.484375\n", + "Epoch 424: Loss = 206724.75\n", + "Epoch 425: Loss = 208003.921875\n", + "Epoch 426: Loss = 157369.796875\n", + "Epoch 427: Loss = 1339827.875\n", + "Epoch 428: Loss = 1548149.375\n", + "Epoch 429: Loss = 805548.5625\n", + "Epoch 430: Loss = 295187.8125\n", + "Epoch 431: Loss = 242409.140625\n", + "Epoch 432: Loss = 546811.1875\n", + "Epoch 433: Loss = 907333.9375\n", + "Epoch 434: Loss = 1055614.25\n", + "Epoch 435: Loss = 914947.3125\n", + "Epoch 436: Loss = 599572.8125\n", + "Epoch 437: Loss = 313066.53125\n", + "Epoch 438: Loss = 205606.96875\n", + "Epoch 439: Loss = 292028.78125\n", + "Epoch 440: Loss = 464949.09375\n", + "Epoch 441: Loss = 582895.625\n", + "Epoch 442: Loss = 567657.625\n", + "Epoch 443: Loss = 441874.75\n", + "Epoch 444: Loss = 294223.65625\n", + "Epoch 445: Loss = 210527.5\n", + "Epoch 446: Loss = 221002.015625\n", + "Epoch 447: Loss = 292714.5\n", + "Epoch 448: Loss = 376907.78125\n", + "Epoch 449: Loss = 393276.125\n", + "Epoch 450: Loss = 347753.3125\n", + "Epoch 451: Loss = 274122.65625\n", + "Epoch 452: Loss = 217602.421875\n", + "Epoch 453: Loss = 205256.78125\n", + "Epoch 454: Loss = 232232.40625\n", + "Epoch 455: Loss = 270426.03125\n", + "Epoch 456: Loss = 290370.03125\n", + "Epoch 457: Loss = 279821.8125\n", + "Epoch 458: Loss = 248248.0\n", + "Epoch 459: Loss = 216701.484375\n", + "Epoch 460: Loss = 202339.890625\n", + "Epoch 461: Loss = 208689.25\n", + "Epoch 462: Loss = 225922.78125\n", + "Epoch 463: Loss = 227206.375\n", + "Epoch 464: Loss = 229209.265625\n", + "Epoch 465: Loss = 221308.84375\n", + "Epoch 466: Loss = 209248.5625\n", + "Epoch 467: Loss = 203957.484375\n", + "Epoch 468: Loss = 199229.015625\n", + "Epoch 469: Loss = 202812.390625\n", + "Epoch 470: Loss = 209775.265625\n", + "Epoch 471: Loss = 213797.46875\n", + "Epoch 472: Loss = 211998.78125\n", + "Epoch 473: Loss = 206037.359375\n", + "Epoch 474: Loss = 200049.890625\n", + "Epoch 475: Loss = 197442.015625\n", + "Epoch 476: Loss = 198735.453125\n", + "Epoch 477: Loss = 201724.953125\n", + "Epoch 478: Loss = 203506.46875\n", + "Epoch 479: Loss = 202587.015625\n", + "Epoch 480: Loss = 200548.953125\n", + "Epoch 481: Loss = 196328.765625\n", + "Epoch 482: Loss = 194465.296875\n", + "Epoch 483: Loss = 194272.71875\n", + "Epoch 484: Loss = 193126.453125\n", + "Epoch 485: Loss = 384194.28125\n", + "Epoch 486: Loss = 1150305.375\n", + "Epoch 487: Loss = 752610.9375\n", + "Epoch 488: Loss = 376524.59375\n", + "Epoch 489: Loss = 230985.640625\n", + "Epoch 490: Loss = 338725.0\n", + "Epoch 491: Loss = 468431.59375\n", + "Epoch 492: Loss = 573539.6875\n", + "Epoch 493: Loss = 556648.1875\n", + "Epoch 494: Loss = 393611.5\n", + "Epoch 495: Loss = 260614.734375\n", + "Epoch 496: Loss = 214723.8125\n", + "Epoch 497: Loss = 269375.84375\n", + "Epoch 498: Loss = 356699.34375\n", + "Epoch 499: Loss = 364865.96875\n", + "Epoch 500: Loss = 287824.5\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCRUlEQVR4nO3deXxU9b3/8feZJZOFLEA2ImEREAQFFQXiUjcqIhcVsSrSW0RvrRWsttpftd4qWC3axVqrpdoq1FbFagW5KiogYFV2iQICCmUJSxIwZE8mycz390cyBwayAWHOQF7Px2MeZGZOks+chOSdz3c5ljHGCAAAIAq5nC4AAACgKQQVAAAQtQgqAAAgahFUAABA1CKoAACAqEVQAQAAUYugAgAAohZBBQAARC2CCgAAiFoEFQARY1mWpkyZcsTvt23bNlmWpZkzZzZ73OLFi2VZlhYvXnxU9QGIPgQVoJ2ZOXOmLMuSZVn6+OOPD3veGKPs7GxZlqX/+q//cqBCADiAoAK0U7GxsXrllVcOe3zJkiXauXOnfD6fA1UBQDiCCtBOXXXVVXr99ddVV1cX9vgrr7yiwYMHKzMz06HKAOAAggrQTo0bN07ffPON5s+fbz9WU1OjN954QzfffHOj71NRUaF7771X2dnZ8vl86tu3r37729/q0Iuw+/1+/fjHP1ZaWpoSExN19dVXa+fOnY1+zF27dunWW29VRkaGfD6fBgwYoBdffLHtXqik119/XYMHD1ZcXJxSU1P13e9+V7t27Qo7Jj8/XxMnTlTXrl3l8/nUpUsXXXPNNdq2bZt9zKpVqzRixAilpqYqLi5OPXv21K233tqmtQII53G6AADO6NGjh3JycvTqq69q5MiRkqR58+appKREN910k55++umw440xuvrqq7Vo0SLddtttOuuss/T+++/rpz/9qXbt2qXf//739rH/8z//o3/84x+6+eabdf755+vDDz/UqFGjDquhoKBAw4YNk2VZmjx5stLS0jRv3jzddtttKi0t1T333HPMr3PmzJmaOHGizjvvPE2bNk0FBQX6wx/+oE8++URr1qxRSkqKJGns2LFav3697rrrLvXo0UOFhYWaP3++duzYYd+/4oorlJaWpvvvv18pKSnatm2b3nzzzWOuEUAzDIB2ZcaMGUaSWblypXnmmWdMYmKiqaysNMYY853vfMdceumlxhhjunfvbkaNGmW/35w5c4wk8+ijj4Z9vOuvv95YlmU2b95sjDEmNzfXSDJ33nln2HE333yzkWQefvhh+7HbbrvNdOnSxezbty/s2JtuuskkJyfbdW3dutVIMjNmzGj2tS1atMhIMosWLTLGGFNTU2PS09PNGWecYaqqquzj3n77bSPJPPTQQ8YYY/bv328kmd/85jdNfuzZs2fb5w1A5DD0A7RjN9xwg6qqqvT222+rrKxMb7/9dpPDPu+++67cbrd+9KMfhT1+7733yhijefPm2cdJOuy4Q7sjxhj961//0ujRo2WM0b59++zbiBEjVFJSos8+++yYXt+qVatUWFioO++8U7Gxsfbjo0aNUr9+/fTOO+9IkuLi4hQTE6PFixdr//79jX6sUOfl7bffVm1t7THVBaD1Tpqg8tFHH2n06NHKysqSZVmaM2fOEX+M999/X8OGDVNiYqLS0tI0duzYsPFp4GSTlpam4cOH65VXXtGbb76pQCCg66+/vtFjt2/frqysLCUmJoY9fvrpp9vPh/51uVzq1atX2HF9+/YNu793714VFxfr+eefV1paWtht4sSJkqTCwsJjen2hmg793JLUr18/+3mfz6cnnnhC8+bNU0ZGhr71rW/p17/+tfLz8+3jL774Yo0dO1ZTp05VamqqrrnmGs2YMUN+v/+YagTQvJMmqFRUVGjQoEF69tlnj+r9t27dqmuuuUaXXXaZcnNz9f7772vfvn267rrr2rhSILrcfPPNmjdvnv785z9r5MiRdufgeAsGg5Kk7373u5o/f36jtwsuuCAitUj1HZ+vvvpK06ZNU2xsrH7xi1/o9NNP15o1ayTVb1b3xhtvaOnSpZo8ebI9CXjw4MEqLy+PWJ1Ae3PSBJWRI0fq0Ucf1ZgxYxp93u/367777tMpp5yihIQEDR06NGz3ytWrVysQCOjRRx9Vr169dM455+i+++5Tbm4ubV6c1MaMGSOXy6Vly5Y1OewjSd27d9fu3btVVlYW9vjGjRvt50P/BoNBbdmyJey4TZs2hd0PrQgKBAIaPnx4o7f09PRjem2hmg793KHHQs+H9OrVS/fee68++OADrVu3TjU1Nfrd734XdsywYcP02GOPadWqVXr55Ze1fv16zZo165jqBNC0kyaotGTy5MlaunSpZs2apS+++ELf+c53dOWVV+rrr7+WJA0ePFgul0szZsxQIBBQSUmJ/v73v2v48OHyer0OVw8cPx06dND06dM1ZcoUjR49usnjrrrqKgUCAT3zzDNhj//+97+XZVn2yqHQv4euGnrqqafC7rvdbo0dO1b/+te/tG7dusM+3969e4/m5YQ599xzlZ6erj//+c9hQzTz5s3Thg0b7JVIlZWVqq6uDnvfXr16KTEx0X6//fv3H7YM+6yzzpIkhn+A46hdLE/esWOHZsyYoR07digrK0uSdN999+m9997TjBkz9Ktf/Uo9e/bUBx98oBtuuEE/+MEPFAgElJOTY08MBE5mEyZMaPGY0aNH69JLL9WDDz6obdu2adCgQfrggw/01ltv6Z577rHnpJx11lkaN26c/vSnP6mkpETnn3++Fi5cqM2bNx/2MR9//HEtWrRIQ4cO1fe//331799fRUVF+uyzz7RgwQIVFRUd0+vyer164oknNHHiRF188cUaN26cvTy5R48e+vGPfyxJ+uqrr3T55ZfrhhtuUP/+/eXxeDR79mwVFBTopptukiT97W9/05/+9CeNGTNGvXr1UllZmf7yl78oKSlJV1111THVCaBp7SKorF27VoFAQKeddlrY436/X507d5ZUv9nT97//fU2YMEHjxo1TWVmZHnroIV1//fWaP3++LMtyonQgarhcLs2dO1cPPfSQXnvtNc2YMUM9evTQb37zG917771hx7744otKS0vTyy+/rDlz5uiyyy7TO++8o+zs7LDjMjIytGLFCj3yyCN688039ac//UmdO3fWgAED9MQTT7RJ3bfccovi4+P1+OOP62c/+5kSEhI0ZswYPfHEE/Z8nOzsbI0bN04LFy7U3//+d3k8HvXr10///Oc/NXbsWEn1k2lXrFihWbNmqaCgQMnJyRoyZIhefvll9ezZs01qBXA4yxzayzwJWJal2bNn69prr5Ukvfbaaxo/frzWr18vt9sddmyHDh2UmZmpX/ziF3rvvfe0cuVK+7mdO3cqOztbS5cu1bBhwyL5EgAAgNpJR+Xss89WIBBQYWGhLrrookaPqayslMsVPmUnFGpCqxMAAEBknTSTacvLy5Wbm6vc3FxJ9cuNc3NztWPHDp122mkaP368vve97+nNN9/U1q1btWLFCk2bNs3e8GnUqFFauXKlHnnkEX399df67LPPNHHiRHXv3l1nn322g68MAID266QZ+lm8eLEuvfTSwx6fMGGCZs6cqdraWj366KN66aWXtGvXLqWmpmrYsGGaOnWqzjzzTEnSrFmz9Otf/1pfffWV4uPjlZOToyeeeEL9+vWL9MsBAAByOKhMmTJFU6dODXusb9++9r4MAACgfXN8jsqAAQO0YMEC+77H43hJAAAgSjieCjwejzIzM50uAwAARCHHg8rXX3+trKwsxcbGKicnR9OmTVO3bt0aPdbv94ftABkMBlVUVKTOnTuzzwkAACcIY4zKysqUlZV12IrbQzk6R2XevHkqLy9X3759tWfPHk2dOlW7du3SunXrDrtCq9T4nBYAAHBiysvLU9euXZs9JqpW/RQXF6t79+568sknddtttx32/KEdlZKSEnXr1k15eXlKSkqKZKkAAOAolZaWKjs7W8XFxUpOTm72WMeHfg6WkpKi0047rdFrgkiSz+eTz+c77PGkpCSCCgAAJ5jWTNuIqg3fysvLtWXLFnXp0sXpUgAAQBRwNKjcd999WrJkibZt26ZPP/1UY8aMkdvt1rhx45wsCwAARAlHh3527typcePG6ZtvvlFaWpouvPBCLVu2TGlpaU6WBQAAooSjQWXWrFlOfnoAABoVDAZVU1PjdBknLK/Xa1/Y91hF1WRaAACcVlNTo61btyoYDDpdygktJSVFmZmZx7zPGUEFAIAGxhjt2bNHbrdb2dnZLW5GhsMZY1RZWanCwkJJOuYFMgQVAAAa1NXVqbKyUllZWYqPj3e6nBNWXFycJKmwsFDp6enHNAxEVAQAoEEgEJAkxcTEOFzJiS8U9Gpra4/p4xBUAAA4BNePO3ZtdQ4JKgAAIGoRVAAAwGF69Oihp556yukyCCoAAJzILMtq9jZlypSj+rgrV67U7bff3rbFHgVW/TSisqZORRU1ivG4lJ4Y63Q5AAA0ac+ePfbbr732mh566CFt2rTJfqxDhw7228YYBQIBeTwt//qPll3i6ag04oP1BbrwiUX68Wu5TpcCAECzMjMz7VtycrIsy7Lvb9y4UYmJiZo3b54GDx4sn8+njz/+WFu2bNE111yjjIwMdejQQeedd54WLFgQ9nEPHfqxLEt//etfNWbMGMXHx6tPnz6aO3fucX99BJVGuF31M5XrAsbhSgAATjLGqLKmzpGbMW33O+j+++/X448/rg0bNmjgwIEqLy/XVVddpYULF2rNmjW68sorNXr0aO3YsaPZjzN16lTdcMMN+uKLL3TVVVdp/PjxKioqarM6G8PQTyNCQSXYht8kAIATT1VtQP0fet+Rz/3lIyMUH9M2v6YfeeQRffvb37bvd+rUSYMGDbLv//KXv9Ts2bM1d+5cTZ48ucmPc8stt2jcuHGSpF/96ld6+umntWLFCl155ZVtUmdj6Kg0wu6oBAkqAIAT37nnnht2v7y8XPfdd59OP/10paSkqEOHDtqwYUOLHZWBAwfabyckJCgpKcneKv94oaPSCE+oo0JQAYB2Lc7r1pePjHDsc7eVhISEsPv33Xef5s+fr9/+9rfq3bu34uLidP3117d4xWiv1xt237Ks437xRoJKI1x0VAAAqv9F3FbDL9Hkk08+0S233KIxY8ZIqu+wbNu2zdmimsDQTyNCHZUAQQUAcBLq06eP3nzzTeXm5urzzz/XzTfffNw7I0eLoNIIt0VQAQCcvJ588kl17NhR559/vkaPHq0RI0bonHPOcbqsRlmmLdc/RVhpaamSk5NVUlKipKSkNvu4y//zjW58fplOTUvQh/de0mYfFwAQ3aqrq7V161b17NlTsbFs+HksmjuXR/L7m45KI9wM/QAAEBUIKo0gqAAAEB0IKo0gqAAAEB0IKo0gqAAAEB0IKo0gqABA+3YCrzOJGm11DgkqjbD3UeEbFQDaFbe7fjfYlnZoRcsqKyslHb6b7ZE6+bbbawOu0D4qXD0ZANoVj8ej+Ph47d27V16vVy4Xf88fKWOMKisrVVhYqJSUFDv8HS2CSiM8Dd+YdFQAoH2xLEtdunTR1q1btX37dqfLOaGlpKQoMzPzmD8OQaURoQDNtX4AoP2JiYlRnz59GP45Bl6v95g7KSEElUbYHRWCCgC0Sy6Xi51powSDb404eNUPM78BAHAOQaURoaAiSTRVAABwDkGlEQcHFYZ/AABwDkGlEQQVAACiA0GlEZ6DgwpzVAAAcAxBpRGhDd8kNn0DAMBJBJVG0FEBACA6EFQa4TooqNQFgw5WAgBA+0ZQaUKoq0JOAQDAOQSVJoS6KnRUAABwDkGlCXRUAABwHkGlCW6LjgoAAE4jqDTB7W7oqLDqBwAAxxBUmnCgo0JQAQDAKQSVJoS20a9jwzcAABxDUGmCPZmWoR8AABxDUGnCgeXJBBUAAJxCUGnCgeXJBBUAAJxCUGkCHRUAAJxHUGkCHRUAAJxHUGmCi+XJAAA4jqDSBE/Dhm8BVv0AAOAYgkoTQhu+BdhHBQAAxxBUmhDa8I2OCgAAziGoNMEOKsxRAQDAMQSVJhBUAABwHkGlCQQVAACcR1BpgttVf2oIKgAAOIeg0oSG1ckEFQAAHERQaUKoo8KGbwAAOIeg0gR3w5lheTIAAM4hqDTBE5qjEgg6XAkAAO1X1ASVxx9/XJZl6Z577nG6FEkHb/jmcCEAALRjURFUVq5cqeeee04DBw50uhTbgeXJdFQAAHCK40GlvLxc48eP11/+8hd17NjR6XJsB4KKw4UAANCOOR5UJk2apFGjRmn48OEtHuv3+1VaWhp2O17sixLSUQEAwDEeJz/5rFmz9Nlnn2nlypWtOn7atGmaOnXqca6qnttNRwUAAKc51lHJy8vT3XffrZdfflmxsbGtep8HHnhAJSUl9i0vL++41UdHBQAA5znWUVm9erUKCwt1zjnn2I8FAgF99NFHeuaZZ+T3++V2u8Pex+fzyefzRaS+A6t+WPYDAIBTHAsql19+udauXRv22MSJE9WvXz/97Gc/OyykRFooqLAzLQAAznEsqCQmJuqMM84IeywhIUGdO3c+7HEneBqCSpCgAgCAYxxf9ROtXHRUAABwnKOrfg61ePFip0uw0VEBAMB5dFSa4LLoqAAA4DSCShM89s60BBUAAJxCUGmCi6ACAIDjCCpNoKMCAIDzCCpNYMM3AACcR1BpgsuiowIAgNMIKk0IdVSCdFQAAHAMQaUJTKYFAMB5BJUmHLh6ssOFAADQjhFUmuBuODMM/QAA4ByCShPcrvpTw860AAA4h6DSBLujQlABAMAxBJUmsDwZAADnEVSawIZvAAA4j6DShNCqH4Z+AABwDkGlCS46KgAAOI6g0gQ6KgAAOI+g0gTmqAAA4DyCShMObKHvcCEAALRjBJUmMPQDAIDzCCpNaNiYlqEfAAAcRFBpAh0VAACcR1BpApNpAQBwHkGlCQcm0xJUAABwCkGlCQz9AADgPIJKExj6AQDAeQSVJhy4erLDhQAA0I4RVJoQ6qgE6agAAOAYgkoT3KF9VJijAgCAYwgqTXAxmRYAAMcRVJrAZFoAAJxHUGmCm31UAABwHEGlCUymBQDAeQSVJrgtOioAADiNoNIEl91RkQxdFQAAHEFQaUKooyLVhxUAABB5BJUmhDoqEsM/AAA4haDSBLfr4I4KQQUAACcQVJpw8NAPHRUAAJxBUGmC66Azw6ZvAAA4g6DShLCOSoCgAgCAEwgqTTh4jgodFQAAnEFQaYJlWQo1VbgwIQAAziCoNMPenZaOCgAAjiCoNMPFhQkBAHAUQaUZoY5KMOhwIQAAtFMElWaEJtQy9AMAgDMIKs0ILfxh6AcAAGcQVJrhtq+gTFABAMAJBJVmuJlMCwCAowgqzXBZBBUAAJxEUGkGQz8AADiLoNIMhn4AAHAWQaUZdFQAAHAWQaUZ9hb6bPgGAIAjCCrNYAt9AACcRVBphr2FPkM/AAA4gqDSDDoqAAA4i6DSDHfD2eFaPwAAOMPRoDJ9+nQNHDhQSUlJSkpKUk5OjubNm+dkSWEOXD2ZoAIAgBMcDSpdu3bV448/rtWrV2vVqlW67LLLdM0112j9+vVOlmVj6AcAAGd5nPzko0ePDrv/2GOPafr06Vq2bJkGDBjgUFUHMJkWAABnORpUDhYIBPT666+roqJCOTk5jR7j9/vl9/vt+6Wlpce1pgMdleP6aQAAQBMcn0y7du1adejQQT6fT3fccYdmz56t/v37N3rstGnTlJycbN+ys7OPa232hm90VAAAcITjQaVv377Kzc3V8uXL9cMf/lATJkzQl19+2eixDzzwgEpKSuxbXl7eca3N3kKfOSoAADjC8aGfmJgY9e7dW5I0ePBgrVy5Un/4wx/03HPPHXasz+eTz+eLWG1MpgUAwFmOd1QOFQwGw+ahOMldn1MY+gEAwCGOdlQeeOABjRw5Ut26dVNZWZleeeUVLV68WO+//76TZdkY+gEAwFmOBpXCwkJ973vf0549e5ScnKyBAwfq/fff17e//W0ny7K5mEwLAICjHA0qL7zwgpOfvkV0VAAAcFbUzVGJJqHJtHUEFQAAHEFQaYa9jwpBBQAARxBUmmEP/TBHBQAARxBUmuFmC30AABxFUGkGFyUEAMBZBJVmsDMtAADOIqg0w91wdggqAAA4g6DSDIZ+AABwFkGlGQz9AADgLIJKM9xsoQ8AgKMIKs1gC30AAJxFUGmGy97wzeFCAABopwgqzWjIKcxRAQDAIQSVZoTmqBjmqAAA4AiCSjMsJtMCAOAogkoz3MxRAQDAUQSVZoTmqLDqBwAAZxBUmnFg1Q9BBQAAJxBUmuEKzVEJOlwIAADtFEGlGaz6AQDAWQSVZlihfVQIKgAAOIKg0gxW/QAA4CyCSjNCc1RY9QMAgDMIKs1g1Q8AAM4iqDSDa/0AAOCsowoqeXl52rlzp31/xYoVuueee/T888+3WWHRILTqh5wCAIAzjiqo3HzzzVq0aJEkKT8/X9/+9re1YsUKPfjgg3rkkUfatEAn2XNUGPoBAMARRxVU1q1bpyFDhkiS/vnPf+qMM87Qp59+qpdfflkzZ85sy/ocxRwVAACcdVRBpba2Vj6fT5K0YMECXX311ZKkfv36ac+ePW1XncOYowIAgLOOKqgMGDBAf/7zn/Xvf/9b8+fP15VXXilJ2r17tzp37tymBToptI8KDRUAAJxxVEHliSee0HPPPadLLrlE48aN06BBgyRJc+fOtYeETgaWfa0fkgoAAE7wHM07XXLJJdq3b59KS0vVsWNH+/Hbb79d8fHxbVac00JDP8xRAQDAGUfVUamqqpLf77dDyvbt2/XUU09p06ZNSk9Pb9MCneRm1Q8AAI46qqByzTXX6KWXXpIkFRcXa+jQofrd736na6+9VtOnT2/TAp1ksY8KAACOOqqg8tlnn+miiy6SJL3xxhvKyMjQ9u3b9dJLL+npp59u0wKdFJpMyxwVAACccVRBpbKyUomJiZKkDz74QNddd51cLpeGDRum7du3t2mBTgrNUTEM/QAA4IijCiq9e/fWnDlzlJeXp/fff19XXHGFJKmwsFBJSUltWqCTQhu+BQgqAAA44qiCykMPPaT77rtPPXr00JAhQ5STkyOpvrty9tlnt2mBTrK30A86XAgAAO3UUS1Pvv7663XhhRdqz5499h4qknT55ZdrzJgxbVac01j1AwCAs44qqEhSZmamMjMz7asod+3a9aTa7E1iHxUAAJx2VEM/wWBQjzzyiJKTk9W9e3d1795dKSkp+uUvf6ngSTRO4mLVDwAAjjqqjsqDDz6oF154QY8//rguuOACSdLHH3+sKVOmqLq6Wo899libFumU0BwVGioAADjjqILK3/72N/31r3+1r5osSQMHDtQpp5yiO++886QJKu6GfhOrfgAAcMZRDf0UFRWpX79+hz3er18/FRUVHXNR0cJiMi0AAI46qqAyaNAgPfPMM4c9/swzz2jgwIHHXFS0cLM8GQAARx3V0M+vf/1rjRo1SgsWLLD3UFm6dKny8vL07rvvtmmBTnLRUQEAwFFH1VG5+OKL9dVXX2nMmDEqLi5WcXGxrrvuOq1fv15///vf27pGx7gazg5BBQAAZxz1PipZWVmHTZr9/PPP9cILL+j5558/5sKiQaijEmDoBwAARxxVR6W9CF09mYsSAgDgDIJKM0I707I8GQAAZxBUmnHgooQEFQAAnHBEc1Suu+66Zp8vLi4+llqizoFVPw4XAgBAO3VEQSU5ObnF57/3ve8dU0HRJDRHhVU/AAA444iCyowZM45XHVHJCs1RoaUCAIAjmKPSjAOrfhwuBACAdoqg0gx7HxWSCgAAjiCoNIMt9AEAcBZBpRmhfVSMYdM3AACcQFBpRmiOisQSZQAAnEBQaYZlHQgqrPwBACDyHA0q06ZN03nnnafExESlp6fr2muv1aZNm5wsKUx4R4WgAgBApDkaVJYsWaJJkyZp2bJlmj9/vmpra3XFFVeooqLCybJsB+UUggoAAA44og3f2tp7770Xdn/mzJlKT0/X6tWr9a1vfcuhqg5wWcxRAQDASY4GlUOVlJRIkjp16tTo836/X36/375fWlp6XOtxMUcFAABHRc1k2mAwqHvuuUcXXHCBzjjjjEaPmTZtmpKTk+1bdnb2ca3p4DkqLE8GACDyoiaoTJo0SevWrdOsWbOaPOaBBx5QSUmJfcvLyzuuNR08R4WOCgAAkRcVQz+TJ0/W22+/rY8++khdu3Zt8jifzyefzxexuizLkmXVb/hGTgEAIPIc7agYYzR58mTNnj1bH374oXr27OlkOY1iG30AAJzjaEdl0qRJeuWVV/TWW28pMTFR+fn5kqTk5GTFxcU5WZrNbVkKyBBUAABwgKMdlenTp6ukpESXXHKJunTpYt9ee+01J8sKE1r4wxwVAAAiz9GOyomwkia08ucEKBUAgJNO1Kz6iVahOSp0VAAAiDyCSgtCS5SZowIAQOQRVFrgcrHqBwAApxBUWuC2lyc7XAgAAO0QQaUFFnNUAABwDEGlBe6GM8TQDwAAkUdQaYG9M23Q4UIAAGiHCCotYAt9AACcQ1BpgavhDAUIKgAARBxBpQWhVT8nwi66AACcbAgqLTiwM63DhQAA0A4RVFrAhm8AADiHoNICewt99lEBACDiCCotcLEzLQAAjiGotMCeo8LQDwAAEUdQaYGbOSoAADiGoNIC5qgAAOAcgkoLDqz6cbgQAADaIYJKC1xcPRkAAMcQVFrAzrQAADiHoNKChpzCqh8AABxAUGmBmzkqAAA4hqDSAnvDN5IKAAARR1BpAdf6AQDAOQSVFoT2UWHVDwAAkUdQacGBVT8OFwIAQDtEUGmBxbV+AABwDEGlBe6GM8QcFQAAIo+g0gJW/QAA4ByCSgu41g8AAM4hqLSAa/0AAOAcgkoL3A3Lk5mjAgBA5BFUWhAa+qmjowIAQMQRVFoQ07Dspy4QdLgSAADaH4JKC7wNQaU2QEcFAIBII6i0wNMwSaWWjgoAABFHUGmBPfTDHBUAACKOoNKCUEelpo6OCgAAkUZQacGBOSoEFQAAIo2g0gKvveqHoR8AACKNoNICL5NpAQBwDEGlBaGOSg1BBQCAiCOotMDD0A8AAI4hqLQghqEfAAAcQ1Bpgb3qh31UAACIOIJKC0JDP7XsowIAQMQRVFrA0A8AAM4hqLTA42LoBwAApxBUWuD1MPQDAIBTCCotYMM3AACcQ1BpgZerJwMA4BiCSgvsnWkZ+gEAIOIIKi3wuOqHfuqCBBUAACKNoNKCmNBkWrbQBwAg4ggqLfCy4RsAAI4hqLQgNPRTy9APAAARR1BpAUM/AAA4h6DSglBHJRA0CrJEGQCAiCKotCC0M63E8A8AAJHmaFD56KOPNHr0aGVlZcmyLM2ZM8fJchoV4z4oqDD8AwBARDkaVCoqKjRo0CA9++yzTpbRrNDQjyTVsY0+AAAR5XHyk48cOVIjR450soQWuV2WLEsyRqohqAAAEFHMUWmBZVnyulj5AwCAExztqBwpv98vv99v3y8tLY3I5/W6LdUEGPoBACDSTqiOyrRp05ScnGzfsrOzI/J5vfZeKgQVAAAi6YQKKg888IBKSkrsW15eXkQ+r8cVuoIyQz8AAETSCTX04/P55PP5Iv55Y9xcQRkAACc4GlTKy8u1efNm+/7WrVuVm5urTp06qVu3bg5WFs7jZugHAAAnOBpUVq1apUsvvdS+/5Of/ESSNGHCBM2cOdOhqg7nbeioMPQDAEBkORpULrnkEhkT/b/8vQ0dFYZ+AACIrBNqMq1TvAz9AADgCIJKK4SGftjwDQCAyCKotAKTaQEAcAZBpRVCV1CuqSOoAAAQSQSVVoj1uiVJ1bUEFQAAIomg0gqx3vrTVF0bcLgSAADaF4JKK9gdlTqCCgAAkURQaYW4UFCpIagAABBJBJVWsId+mEwLAEBEEVRaITT0U0VHBQCAiCKotMKBVT8EFQAAIomg0goHJtMy9AMAQCQRVFohjqEfAAAcQVBphdBkWj/LkwEAiCiCSiswRwUAAGcQVFrBHvohqAAAEFEElVbw2VvoM5kWAIBIIqi0AkM/AAA4g6DSCnEEFQAAHEFQaYUDHRWGfgAAiCSCSivQUQEAwBkElVYI7aNSFzSqDdBVAQAgUggqrRAa+pHoqgAAEEkElVbweQ6cJuapAAAQOQSVVrAsyx7+oaMCAEDkEFRaiQm1AABEHkGllWLZRh8AgIgjqLQSe6kAABB5BJVWio+pDyoV/jqHKwEAoP0gqLRScpxXklRaXetwJQAAtB8ElVZKim0IKlUEFQAAIoWg0kpJcR5JUmk1Qz8AAEQKQaWV6KgAABB5BJVWSmKOCgAAEUdQaSV7Mm0VQz8AAEQKQaWVDsxRoaMCAECkEFRaKTRHpYQ5KgAARAxBpZXsOSoEFQAAIoag0kr2qh+WJwMAEDEElVay56hU1coY43A1AAC0DwSVVgqt+qkLmiavoPzHhV/r0t8u1m/e36i6ABcvBADgWBFUWinO65bHZUlqfIny1n0Vemrh19q6r0LPLtqil5Zuj3SJAACcdAgqrWRZllLiYyRJ+8r9hz3/58VbFAgeGBJ6cv5XLGUGAOAYEVSOQHanOEnSjqLKsMeNMVq4sVCS9I/bhurUtASV++v0wfqCiNcIAMDJhKByBHp0TpAkbfumIuzxjfll2lfuV5zXrfN6dtQ1g06RJL39xe6I1wgAwMmEoHIEunWKlyTt+Ca8o/Lx1/skSUNP7SSfx63/GtTFfryM4R8AAI4aQeUI9EitDyqHdlRWb98vSco5tbMkqVdaB3XvHK+6oNGKrUWRLRIAHFJTF1R1E6sigaNFUDkC3TrVD/0c2lFZv6dEknTmKcn2Y+f3SpUkfbL5mwhVBwDOMcbost8t1pDHFshfR1hB2yGoHIEenes7KntKq+2/GkqqapVXVCVJ6p+VZB97Qe/67sqnW/ZFuEoAiLzq2qB27q9SaXWd8g5ZcAAcC4LKEeiUECOPy5Ix0v7KGknShj2lkqRTUuLs5cvSgY7Kxvwy7S07fDlze7Exv1TbDxkqA3DyOXg+Xm2A3bvRdggqR8CyrIMuTli/6duXu+uDysHdFKk+1PTvUv9Ye+2qlFTW6sqn/q2Lf7NYNXXs1AuczMr8BzbCLPdzTTS0HYLKEQptpV/ScBXlLxs6KqFQcjB7+KedzlPZVVxlvx2acAzg5FR20AVbuco82hJB5QglxdZfnDAUVEJDP4d2VCTp/N71wz8fb97XLi9keHArePFXhQ5WAuB4Kz8oqJRxlXm0IYLKETow9FOr2kBQXxeUS2q8ozKkRyd53ZZ2FVcdtptte1B80F9VSzbtdbASAMfbwX+YsH8U2hJB5QgdPPSzZW+5agJBJfo86tox7rBjE3wenZ3dUVL7XKZcUnngh9XG/DIVVdQ4WA2A4+ngOSqldFTQhggqR8juqFTX2sM+/bokyrKsRo8/v2GeyiftcEJtySHj1Gx+B5y8wuao0FFBGyKoHKGDOyob9pRJkk5vZNgn5MKGeSqfbt6nYLB9zVMprgrvoCz7T/vrKgHtBXNUcLwQVI5QeFCp76g0F1QGZacoIcat/ZW12pBfGpEao0Woo9I7vYMkaTkdFeCkVe4/eI4KQQVth6ByhJJiD+yj0pqg4nW7NKRnJ0nSJ5ubHv4pq67Vpvyyk2rr6eKGOSpX9M+QVL/5W3FleJclr6hSXxWURbw2nPiMMZq9Zudhl7SAM8rCOioM/aDtEFSOUKij8p+95dpXXiOXJfXNSGz2fS7qkyZJendt/mHPVdUE9PPZa3XOL+drxFMf6cInFun/Pt/d9oU74OCOSq+0BBkTPk9l/e4SjXjqI13x+4/0yP99ycXMcEQWb9qrH7/2uca/sIwNBaPAwZNpV24t0rmPLtC5j87Xayt3NHp8ZU2dAu1sOBxHJyqCyrPPPqsePXooNjZWQ4cO1YoVK5wuqUl2UNlXvy18z9QExcW4m32f0YOy5HZZys0rDuseVNUE9P2XVumV5TtUGzByWdLeMr/uenWNHnhz7QnfXQkFlZR4r4Y2XFl6acM8lZKqWt3+0mpV1tS/xhc/2aobn1/GX2JR5MONBXp9VV7U7gG0Ylt96M0rqtIry7cft8+zdmeJVm5j2LIlB3dUKmoC2lfu177yGv189rrDJtKv21WinGkfasRTH6mwrPqoPl91bSBsZSFOXo4Hlddee00/+clP9PDDD+uzzz7ToEGDNGLECBUWRucGYUlxnrD7oV/AzUlL9OmyfumSpOeW/EfSgZDy8eZ9Sohx66Vbh2jjL0fqrst6y7KkV1fs0ORX1qjiBN6KOjT0kxzn1bcaukr/9/lu+esCenD2Wu0qrlJ2pzj9/sZBSon36vO8Yv3P31aFdVZKq2u1evt+fbGzWBvzS4/71txHOuHZGBO1v8iPRVFFjW6duUo/feMLfbolOidBf7Gz2H77jx9uVrm/TsYYvb4qT2Onf6qx0z/Vv1bvtL8++ytq9PLy7fqmvPXX3iqqqNENzy3VDc8t1dKDzkO5v07rd5do4YaCiHQFPtm8T2Onf6rcvOLj/rmOVvkhf2Qkx3k1pEcnBYJG9//rC/nrAjLG6G+fbtPNf1mmkqpabS4s160zV4b9n9+wp1QvfLxV/1yV12QQCQSNbnxuqYZNW6hPDxpSDwaNPs8r1uJNhcf8szMYNIetXIQzLOPwT9mhQ4fqvPPO0zPPPCNJCgaDys7O1l133aX777+/2fctLS1VcnKySkpKlJTU9DyRtpRXVKmLfr3Ivv/324bYQzvN+WzHfl33p08lST+6vI8+3bxPq7bvV0KMWzNvHaLzenSyj120sVA/+Mdq1dQFlZ7o0/dyumtw9/r/8Cu2fqMFGwpVWFatCn9AnTvEqDZQ3/b+Vp80XdI3XRlJPlXXBlVZU6eq2oAq/AEFjFFynFfJcV6lxHnldYdnVKPDvw2Mqf+BUBc0sizJbVmq8Ndpb7lf27+pVEVNnbp3SlD3zvHq4PMoaIyKKmrUwedRfIxHN/9lmcr8dVrwk4vVvXO8LnpikfJLq9Ux3qv9lbVyuyy9cUeOzu7WUWt3lmjcX5ap3F+nc7t31KRLe2vV9iL97dPtYeEkxu3St05L1ZVndNFpGR0UNFJNXVA1dUEFTH1XymVZsiTJkixZ9Y+56v+1LEsuy5LbsmQ1HOtySR6XpWc+3Ky3v9ijnF6dNWJApvpnJWlPcbW27C1XbaD+a9G1U7zSE32qDRjtK/PrV/M2qIPPo4dH91d8jEdul6W6gFFNINjwC8zogy8LVFBSrZ6pHXRqWoJ6dE5QTSCo0upalVbVqi5glBjrUXKcV3Exbi3cUKgPvixQ54QY9c9K0oCsJHXtGK/S6loVV9Zof0WtvG5LKfEx6pQQo6RYr+qCQfnr6m9BY+TzuOTzuBv+dSnG41LQSIFgUIGgFGz4b281nKP6f+vvS5beXbtHT87/SpLULzNRD43ur6VbvtGHGwuVGOvRRX3S9K0+abIsqbCsWnvL/LJkKSXeW19TnFc1dUFV1QZUGwgqxu2S111fh9tVv5T/4M93oBbZS/2tg+qTfewBVz39b5VV1ykx1qOy6jqd36uzOsbH6J21e8KO+3b/DE08v4ceeftLbcwvU3anOH1ncLbOOCVJGUmxqvAHVN1Qp9ftUnyMW3Ex9eduzprdembRZkn1f3D89Iq+WrixQB98WaDQT85RZ3bR5Mt6q6C0Wmt3lqiwzK8En0cZST5lJMUqPdGnjgkxDf+njIKm/vwHG74OwYbHAsGgnl64WRvzS3Xt2afo0r7p2lvmV25esV74eKskKbtTnKZePUC7iqsVCATVtWO8unaKk8flUnVtoP581wUVG+NWB59HXrdLNXVB1QaCsizZXwdXE9spNPFwk4IHvZ7bZq7UtoPmCz167Rm6+qwsXf67Jdpb5tfw0zOU4HPrrdz6oe34GLdq6oKqCxpd3i9dE87voTc/26k5uQeGvjv4PPrBt07VxX3TVFDq16b8UuXmlWjBhgL7GJ/HpftH9lOc160XPt6qrwvrN+FMiHHr6rOyNOrMLFlW/XD91n2VivG41CU5VqekxKlLSqy8bteB77WGnx1rd5Voytz12l9Zqwt7p2riBT3kdln6YmeJvthZLH9dUKdlJOrc7h3VtWO8KmvqVFxVq5LKWvkDQftnbXKcV0FjVFUTUFVNoOFnjUselyW3y5LHXf/zyGXV33c1/Fxq7bkP/YwOfR2MMQ33G94+6OtT6Q/o3XV7VOmv0yV90zUgK0m1AWP/HKoJBNU5IUapHXyKi3HbP/uDQaOU+Bh7UURbOZLf344GlZqaGsXHx+uNN97Qtddeaz8+YcIEFRcX66233go73u/3y+8/8NdQaWmpsrOzIxpUjDG66fllWr61SMlxXq363+GH/dJvyoOz1+rl5QfGaxsLKSFLt3yj//evz5VXVHXYcyeaVf87XKkdfPrLR//RY+9usB//6Yi+mnRpb/v+8v98o9v+tuqwrklqB5+8bktVtQG7SwNIUozHpT+OO1t3/GO1HRxclnTnJb3ldlmavniLagLMX4m0U9MS9O6PLlKs160FXxbo9r+vUqjxZFnSz0eerlsu6KEVW4t0y4wVh11t+aI+qcovqbZDx5FIiHErMdar/NKjG1LC4a49K0tP3XR2m37MIwkqnmafPc727dunQCCgjIyMsMczMjK0cePGw46fNm2apk6dGqnyGmVZlv526xD95aP/6Myuya0OKZI09eoBykqJ0wfr89W1Y7x+OqKveqQmNHpsTq/OWvCTizU3d7feW5ev/+yrqJ+4m5mob/fPUL/MJMXHuLW3zK9A0MhfF9SSr/bq46/3qbouoFiPW/E+t+Jj3IqP8chl1c8LKamqU0lljepa2a72uCy53ZaMqW+F+rxuZSbFKjnOq/Qkn/KKKrWjqFLVtUEZY9SpQ4wq/fV/2fk8LuX0SlVqB58k6bYLe0qS5uTu0k1Duum7Q7uFfa6hp3bW/911oX4//yvl5hWrW6d4fXdYd13RP0MulyVjjL4qKNe7a/do8aZCFZb55bIs+TwNfyU2HBPqFhgjGTV0D4wO+svVhP9la+r/ckiK9equy3rrm4oafbA+X/kl1UpLilWf9A6K87q1p6RaO/dXal95jWK9LsV53eqYEKMKf52+Ka8/p0Fj5HFZDfVItXVGWSmxyunVWYWlfv1nX4V2FFXK53EpOc6rpFivPG5LZdV1Kq2qVWl1nfqkd9B3zu2qmrqg1u8u1frdJSoo9Ssl3quO8TFKjvcqEDAqqqxRcWWNSqvq5PVYdgdFqu8y1XdYAvbbbsuSy2XJ47IauhbGPkfGmIZ/1XDujLI7xeuBkafrT4s3a8vecvXNTNLogV1UEwjq/fUFWrerRB6XpfQkn9Iavsb7K2u1v7JGJVW1imnoTnjcLtUF6rteNYGg/dde6DvQNNyX6mtRQ03S4ccdatyQbhoxIFNP3XiWnl20Wd07J+hHl/XRmV2TJUlXDMjQo29v0Ja95eqV1kE/uPhU/WdvhdbtKtHaXSXaX1mrxFiPYr1ued2W3QWqqgmopqHD0ie9g3415kw9NHe9tu4r15AenXXHxaeqT0ai5n9ZoGcXbdaOokqlxHs1qGuKunaMU1l1nfaW+VVQWq2CsmoVV9Y2/OXc0PFrePvgv6JdlqW0RJ8uOS1Nn+8s1lcF5eoY79WAU5LVMd4rl2XpjdU71SkhRlkpcXJblnYWV2rX/ioFjRTnre8Eed2WKmsCqvDXqS5gFNPw/yNo6jt9tXXBRvqn4Vr689XI2J0AuzNpSX0yEvXChHPlcbkU662fuze8f4aeufkc/XnJFsW4XfrJFafp/F71+0td0DtVr35/mKbN26g9xVU6p3tH/eBbvXRm12QFg0ZzP9+tV5bv0NZvKpSe6FPfjESdlplodyl+eEkv/X3pds1es0tet0tXnpGp/87prkSfR8u3Fum1lXn6bMd+uSxLvdIS1DM1QbUBoz0lVdpVXKWCUr+CDf9vjep/xhnVv54xZ5+i7w7rphmfbNPSLd/IsqQzTknWoK4pSvC5tXZXidbsKNa+8voOWkqcVynxMfK6rbCftW63pXivR7ExbskY1QZMQ7ciaP/MCAbrfy4FWtk3MEZyuxT2NTj4e8l9yNfG3dBR7topXqemJmj19v32z6Gkhp9DXreloooa7SuvUXVtwP4Z5nG51Lnh/7dTHO2o7N69W6eccoo+/fRT5eTk2I//v//3/7RkyRItX7487Pho6KgAAIBjc8J0VFJTU+V2u1VQUBD2eEFBgTIzMw873ufzyedzNtkBAIDIcXTVT0xMjAYPHqyFCxfajwWDQS1cuDCswwIAANonRzsqkvSTn/xEEyZM0LnnnqshQ4boqaeeUkVFhSZOnOh0aQAAwGGOB5Ubb7xRe/fu1UMPPaT8/HydddZZeu+99w6bYAsAANofx/dRORZO7KMCAACOzZH8/nZ8Z1oAAICmEFQAAEDUIqgAAICoRVABAABRi6ACAACiFkEFAABELYIKAACIWgQVAAAQtQgqAAAgajm+hf6xCG2qW1pa6nAlAACgtUK/t1uzOf4JHVTKysokSdnZ2Q5XAgAAjlRZWZmSk5ObPeaEvtZPMBjU7t27lZiYKMuy2vRjl5aWKjs7W3l5eVxH6DjiPEcG5zlyONeRwXmOnONxro0xKisrU1ZWllyu5mehnNAdFZfLpa5dux7Xz5GUlMR/ggjgPEcG5zlyONeRwXmOnLY+1y11UkKYTAsAAKIWQQUAAEQtgkoTfD6fHn74Yfl8PqdLOalxniOD8xw5nOvI4DxHjtPn+oSeTAsAAE5udFQAAEDUIqgAAICoRVABAABRi6ACAACiFkGlEc8++6x69Oih2NhYDR06VCtWrHC6pBPKRx99pNGjRysrK0uWZWnOnDlhzxtj9NBDD6lLly6Ki4vT8OHD9fXXX4cdU1RUpPHjxyspKUkpKSm67bbbVF5eHsFXEf2mTZum8847T4mJiUpPT9e1116rTZs2hR1TXV2tSZMmqXPnzurQoYPGjh2rgoKCsGN27NihUaNGKT4+Xunp6frpT3+qurq6SL6UqDd9+nQNHDjQ3vAqJydH8+bNs5/nPB8fjz/+uCzL0j333GM/xrk+dlOmTJFlWWG3fv362c9H3Tk2CDNr1iwTExNjXnzxRbN+/Xrz/e9/36SkpJiCggKnSzthvPvuu+bBBx80b775ppFkZs+eHfb8448/bpKTk82cOXPM559/bq6++mrTs2dPU1VVZR9z5ZVXmkGDBplly5aZf//736Z3795m3LhxEX4l0W3EiBFmxowZZt26dSY3N9dcddVVplu3bqa8vNw+5o477jDZ2dlm4cKFZtWqVWbYsGHm/PPPt5+vq6szZ5xxhhk+fLhZs2aNeffdd01qaqp54IEHnHhJUWvu3LnmnXfeMV999ZXZtGmT+fnPf268Xq9Zt26dMYbzfDysWLHC9OjRwwwcONDcfffd9uOc62P38MMPmwEDBpg9e/bYt71799rPR9s5JqgcYsiQIWbSpEn2/UAgYLKyssy0adMcrOrEdWhQCQaDJjMz0/zmN7+xHysuLjY+n8+8+uqrxhhjvvzySyPJrFy50j5m3rx5xrIss2vXrojVfqIpLCw0ksySJUuMMfXn1ev1mtdff90+ZsOGDUaSWbp0qTGmPlS6XC6Tn59vHzN9+nSTlJRk/H5/ZF/ACaZjx47mr3/9K+f5OCgrKzN9+vQx8+fPNxdffLEdVDjXbePhhx82gwYNavS5aDzHDP0cpKamRqtXr9bw4cPtx1wul4YPH66lS5c6WNnJY+vWrcrPzw87x8nJyRo6dKh9jpcuXaqUlBSde+659jHDhw+Xy+XS8uXLI17ziaKkpESS1KlTJ0nS6tWrVVtbG3au+/Xrp27duoWd6zPPPFMZGRn2MSNGjFBpaanWr18fwepPHIFAQLNmzVJFRYVycnI4z8fBpEmTNGrUqLBzKvE93Za+/vprZWVl6dRTT9X48eO1Y8cOSdF5jk/oixK2tX379ikQCISdfEnKyMjQxo0bHarq5JKfny9JjZ7j0HP5+flKT08Pe97j8ahTp072MQgXDAZ1zz336IILLtAZZ5whqf48xsTEKCUlJezYQ891Y1+L0HM4YO3atcrJyVF1dbU6dOig2bNnq3///srNzeU8t6FZs2bps88+08qVKw97ju/ptjF06FDNnDlTffv21Z49ezR16lRddNFFWrduXVSeY4IKcBKYNGmS1q1bp48//tjpUk5affv2VW5urkpKSvTGG29owoQJWrJkidNlnVTy8vJ09913a/78+YqNjXW6nJPWyJEj7bcHDhyooUOHqnv37vrnP/+puLg4BytrHEM/B0lNTZXb7T5sdnNBQYEyMzMdqurkEjqPzZ3jzMxMFRYWhj1fV1enoqIivg6NmDx5st5++20tWrRIXbt2tR/PzMxUTU2NiouLw44/9Fw39rUIPYcDYmJi1Lt3bw0ePFjTpk3ToEGD9Ic//IHz3IZWr16twsJCnXPOOfJ4PPJ4PFqyZImefvppeTweZWRkcK6Pg5SUFJ122mnavHlzVH4/E1QOEhMTo8GDB2vhwoX2Y8FgUAsXLlROTo6DlZ08evbsqczMzLBzXFpaquXLl9vnOCcnR8XFxVq9erV9zIcffqhgMKihQ4dGvOZoZYzR5MmTNXv2bH344Yfq2bNn2PODBw+W1+sNO9ebNm3Sjh07ws712rVrw4Lh/PnzlZSUpP79+0fmhZyggsGg/H4/57kNXX755Vq7dq1yc3Pt27nnnqvx48fbb3Ou2155ebm2bNmiLl26ROf3c5tPzz3BzZo1y/h8PjNz5kzz5Zdfmttvv92kpKSEzW5G88rKysyaNWvMmjVrjCTz5JNPmjVr1pjt27cbY+qXJ6ekpJi33nrLfPHFF+aaa65pdHny2WefbZYvX24+/vhj06dPH5YnH+KHP/yhSU5ONosXLw5bZlhZWWkfc8cdd5hu3bqZDz/80Kxatcrk5OSYnJwc+/nQMsMrrrjC5Obmmvfee8+kpaWxlPMQ999/v1myZInZunWr+eKLL8z9999vLMsyH3zwgTGG83w8HbzqxxjOdVu49957zeLFi83WrVvNJ598YoYPH25SU1NNYWGhMSb6zjFBpRF//OMfTbdu3UxMTIwZMmSIWbZsmdMlnVAWLVpkJB12mzBhgjGmfonyL37xC5ORkWF8Pp+5/PLLzaZNm8I+xjfffGPGjRtnOnToYJKSkszEiRNNWVmZA68mejV2jiWZGTNm2MdUVVWZO++803Ts2NHEx8ebMWPGmD179oR9nG3btpmRI0eauLg4k5qaau69915TW1sb4VcT3W699VbTvXt3ExMTY9LS0szll19uhxRjOM/H06FBhXN97G688UbTpUsXExMTY0455RRz4403ms2bN9vPR9s5towxpu37NAAAAMeOOSoAACBqEVQAAEDUIqgAAICoRVABAABRi6ACAACiFkEFAABELYIKAACIWgQVACcVy7I0Z84cp8sA0EYIKgDazC233CLLsg67XXnllU6XBuAE5XG6AAAnlyuvvFIzZswIe8zn8zlUDYATHR0VAG3K5/MpMzMz7NaxY0dJ9cMy06dP18iRIxUXF6dTTz1Vb7zxRtj7r127Vpdddpni4uLUuXNn3X777SovLw875sUXX9SAAQPk8/nUpUsXTZ48Oez5ffv2acyYMYqPj1efPn00d+7c4/uiARw3BBUAEfWLX/xCY8eO1eeff67x48frpptu0oYNGyRJFRUVGjFihDp27KiVK1fq9ddf14IFC8KCyPTp0zVp0iTdfvvtWrt2rebOnavevXuHfY6pU6fqhhtu0BdffKGrrrpK48ePV1FRUURfJ4A2clwudQigXZowYYJxu90mISEh7PbYY48ZY+qv+HzHHXeEvc/QoUPND3/4Q2OMMc8//7zp2LGjKS8vt59/5513jMvlMvn5+cYYY7KyssyDDz7YZA2SzP/+7//a98vLy40kM2/evDZ7nQAihzkqANrUpZdequnTp4c91qlTJ/vtnJycsOdycnKUm5srSdqwYYMGDRqkhIQE+/kLLrhAwWBQmzZtkmVZ2r17ty6//PJmaxg4cKD9dkJCgpKSklRYWHi0LwmAgwgqANpUQkLCYUMxbSUuLq5Vx3m93rD7lmUpGAwej5IAHGfMUQEQUcuWLTvs/umnny5JOv300/X555+roqLCfv6TTz6Ry+VS3759lZiYqB49emjhwoURrRmAc+ioAGhTfr9f+fn5YY95PB6lpqZKkl5//XWde+65uvDCC/Xyyy9rxYoVeuGFFyRJ48eP18MPP6wJEyZoypQp2rt3r+666y7993//tzIyMiRJU6ZM0R133KH09HSNHDlSZWVl+uSTT3TXXXdF9oUCiAiCCoA29d5776lLly5hj/Xt21cbN26UVL8iZ9asWbrzzjvVpUsXvfrqq+rfv78kKT4+Xu+//77uvvtunXfeeYqPj9fYsWP15JNP2h9rwoQJqq6u1u9//3vdd999Sk1N1fXXXx+5FwggoixjjHG6CADtg2VZmj17tq699lqnSwFwgmCOCgAAiFoEFQAAELWYowIgYhhpBnCk6KgAAICoRVABAABRi6ACAACiFkEFAABELYIKAACIWgQVAAAQtQgqAAAgahFUAABA1CKoAACAqPX/ARI1hgoScvrIAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "loss_values = history.history['loss']\n", + "print" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "My8by2_2DI_X", + "outputId": "f696d0f4-2591-4271-e7ce-719f7e48a721" + }, + "execution_count": 38, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[13978865.0, 13661791.0, 13745915.0, 14039383.0, 14036662.0, 13992389.0, 14043848.0, 13798370.0, 13376729.0, 13109994.0, 13637852.0, 13281099.0, 12732879.0, 11649245.0, 12006907.0, 10077946.0, 6745423.5, 8057920.0, 7560234.0, 10751578.0, 7243948.5, 7888572.0, 8588810.0, 8419626.0, 9516969.0, 7365000.0, 7175318.0, 9339095.0, 8668128.0, 7203061.5, 8713561.0, 9448430.0, 9513725.0, 6670869.5, 10145086.0, 6996037.5, 8719094.0, 9057428.0, 7909514.0, 10276208.0, 9739874.0, 10149930.0, 8913145.0, 10026408.0, 8749553.0, 9029780.0, 9004435.0, 9100776.0, 10185200.0, 10122906.0, 8880246.0, 8821126.0, 8521718.0, 8372325.5, 8121804.5, 8525467.0, 8518840.0, 8578520.0, 8065098.5, 7953030.5, 7886762.5, 7736829.5, 7885539.5, 8038061.0, 7792236.5, 7960796.0, 7895030.0, 7796317.5, 7477304.0, 8136023.0, 8435440.0, 8509963.0, 9771523.0, 10068050.0, 10016277.0, 10018746.0, 9927969.0, 9876155.0, 9829617.0, 9834552.0, 9743723.0, 9708187.0, 9673909.0, 9640575.0, 9607001.0, 9573277.0, 9538612.0, 9519751.0, 9463637.0, 9405359.0, 9351933.0, 9333471.0, 9251945.0, 9175816.0, 9133273.0, 9092211.0, 9026029.0, 8972206.0, 8917377.0, 8855146.0, 8817475.0, 8767893.0, 8704868.0, 8672368.0, 8623803.0, 8594071.0, 8551559.0, 8497334.0, 8350219.5, 8291855.0, 8181426.0, 8152970.0, 9679971.0, 9600615.0, 9520171.0, 8666106.0, 7868696.0, 8550929.0, 8475719.0, 8423616.0, 7516146.0, 8298322.0, 8117534.5, 8174611.5, 8131674.5, 8084244.5, 8049593.5, 7999823.5, 7967148.5, 7924028.0, 7876899.5, 7842282.0, 7801153.5, 7763562.5, 7723649.0, 7688537.5, 7653228.5, 7620349.5, 7590787.5, 7560942.0, 7530991.0, 7501377.0, 7471123.0, 7446005.5, 7411576.0, 7382610.0, 7355635.5, 7322470.5, 7322630.5, 7260817.0, 7230733.0, 7197820.0, 7166958.0, 7129025.5, 7092078.0, 7065559.0, 7030418.0, 6997822.5, 7857188.0, 6936069.0, 6907201.0, 6877264.5, 6851487.0, 6826318.0, 6801646.5, 6775227.5, 6749586.0, 6723898.5, 6692865.5, 6664151.0, 6631443.0, 6594502.5, 6556715.5, 6509205.5, 6480022.5, 6434694.0, 6394368.0, 6357692.5, 6316935.5, 6289429.5, 6248276.0, 6222152.5, 6186493.0, 6155007.5, 6119027.5, 6094129.0, 6062169.5, 6032828.5, 6004689.5, 5974583.5, 5951585.0, 5917849.5, 5894174.0, 5858341.0, 5828297.0, 5789473.5, 5757150.5, 5716894.5, 5683586.5, 5637409.5]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Escalar los datos entre 0 y 1scaler_X = MinMaxScaler(feature_range=(0, 1))\n", + "scaler_X = MinMaxScaler(feature_range=(0, 1))\n", + "scaler_y = MinMaxScaler(feature_range=(0, 1))\n", + "train_X_scaled = scaler_X.fit_transform(train_X)\n", + "test_X_scaled = scaler_X.transform(test_X)\n", + "train_y_scaled = scaler_y.fit_transform(train_y.values.reshape(-1, 1))\n", + "test_y_scaled = scaler_y.transform(test_y.values.reshape(-1, 1))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 303 + }, + "id": "ji9qjt_SCrvY", + "outputId": "7610dff1-9cc5-4bba-92ea-a0b93fdf3a09" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mscaler_X\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mMinMaxScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_range\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mscaler_y\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mMinMaxScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_range\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mtrain_X_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_X\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_X\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mtest_X_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_X\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_X\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mtrain_y_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_y\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_y\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/utils/_set_output.py\u001b[0m in \u001b[0;36mwrapped\u001b[0;34m(self, X, *args, **kwargs)\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mwraps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mwrapped\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 140\u001b[0;31m \u001b[0mdata_to_wrap\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 141\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_to_wrap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 142\u001b[0m \u001b[0;31m# only wrap the first output for cross decomposition\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/base.py\u001b[0m in \u001b[0;36mfit_transform\u001b[0;34m(self, X, y, **fit_params)\u001b[0m\n\u001b[1;32m 876\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0my\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 877\u001b[0m \u001b[0;31m# fit method of arity 1 (unsupervised transformation)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 878\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mfit_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 879\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 880\u001b[0m \u001b[0;31m# fit method of arity 2 (supervised transformation)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_data.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 425\u001b[0m \u001b[0;31m# Reset internal state before fitting\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 426\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 427\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpartial_fit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 428\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 429\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mpartial_fit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_data.py\u001b[0m in \u001b[0;36mpartial_fit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 464\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 465\u001b[0m \u001b[0mfirst_pass\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"n_samples_seen_\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 466\u001b[0;31m X = self._validate_data(\n\u001b[0m\u001b[1;32m 467\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 468\u001b[0m \u001b[0mreset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfirst_pass\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/base.py\u001b[0m in \u001b[0;36m_validate_data\u001b[0;34m(self, X, y, reset, validate_separately, **check_params)\u001b[0m\n\u001b[1;32m 563\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Validation should be done on X, y or both.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 564\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mno_val_X\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mno_val_y\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 565\u001b[0;31m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcheck_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_name\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"X\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mcheck_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 566\u001b[0m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 567\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mno_val_X\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mno_val_y\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py\u001b[0m in \u001b[0;36mcheck_array\u001b[0;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)\u001b[0m\n\u001b[1;32m 776\u001b[0m )\n\u001b[1;32m 777\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype_iter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdtype_iter\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdtypes_orig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 778\u001b[0;31m \u001b[0mdtype_orig\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mdtypes_orig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 779\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 780\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"iloc\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"dtype\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/overrides.py\u001b[0m in \u001b[0;36mresult_type\u001b[0;34m(*args, **kwargs)\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: at least one array or dtype is required" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Definir el modelo LSTM\n", + "model_lstm = Sequential()\n", + "model_lstm.add(LSTM(50, activation='relu', input_shape=(train_scaled.shape[1], 1)))\n", + "model_lstm.add(Dense(1))\n", + "model_lstm.compile(optimizer='adam', loss='mse')\n", + "\n", + "#/ Definir el modelo GRU\n", + "#model_gru = Sequential()\n", + "#model_gru.add(GRU(50, activation='relu', input_shape=(train_scaled.shape[1], 1)))\n", + "#model_gru.add(Dense(1))\n", + "#model_gru.compile(optimizer='adam', loss='mse')\n", + "#" + ], + "metadata": { + "id": "CaTJQmj33IvW" + }, + "execution_count": 16, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "model_lstm.fit(train_X, train_y, epochs=10, verbose=0)\n", + "#model_gru.fit(train_X, train_y, epochs=10, verbose=0)\n", + "\n", + "# Evaluar los modelos\n", + "mse_lstm = model_lstm.evaluate(test_X, test_y)\n", + "#mse_gru = model_gru.evaluate(test_X, test_y)\n", + "\n", + "print(f'Test MSE LSTM: {mse_lstm}')\n", + "#print(f'Test MSE GRU: {mse_gru}')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 245 + }, + "id": "3wBcalVC41ED", + "outputId": "671dcbb9-7d07-4da9-b9e3-1c52a5f16ef9" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_X\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_y\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m#model_gru.fit(train_X, train_y, epochs=10, verbose=0)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Evaluar los modelos\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mmse_lstm\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_X\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_y\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'train_X' is not defined" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "hasta aca\n" + ], + "metadata": { + "id": "keXYd4TrurKV" + } + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Convertir los datos a un formato largo usando melt de pandas\n", + "new_data = pd.melt(data, id_vars=['Country', 'Latitude', 'Longitude', 'Features', 'Region'], var_name='Year', value_name='Value')\n", + "\n", + "# Convertir las columnas al tipo de datos correcto\n", + "new_data['Year'] = new_data['Year'].astype(int)\n", + "new_data['Latitude'] = pd.to_numeric(new_data['Latitude'])\n", + "new_data['Longitude'] = pd.to_numeric(new_data['Longitude'])" + ], + "metadata": { + "id": "Xd6En43Apl_Z", + "outputId": "ff66b8ad-695e-4976-8859-ea466bc350cc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 303 + } + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/lib.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.maybe_convert_numeric\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unable to parse string \" -24.653257\"", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Convertir las columnas al tipo de datos correcto\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Latitude'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numeric\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Latitude'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Longitude'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numeric\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Longitude'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/tools/numeric.py\u001b[0m in \u001b[0;36mto_numeric\u001b[0;34m(arg, errors, downcast)\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0mcoerce_numeric\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0merrors\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m\"ignore\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"raise\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 184\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 185\u001b[0;31m values, _ = lib.maybe_convert_numeric(\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcoerce_numeric\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcoerce_numeric\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m )\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/lib.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.maybe_convert_numeric\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unable to parse string \" -24.653257\" at position 161" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Reordenar los niveles de 'Features' en la secuencia deseada\n", + "feature_order = [\"imports\", \"exports\", \"net imports\", \"installed capacity\", \"net generation\", \"net consumption\", \"distribution losses\"]\n", + "new_data['Features'] = pd.Categorical(new_data['Features'], categories=feature_order, ordered=True)\n", + "\n", + "custom_palette = [\"red\", \"blue\", \"green\",\"purple\", \"#FF7F00\", \"cyan\", \"brown\"]\n", + "\n", + "# Agrupar los datos por 'Year' y 'Region' y calcular la suma de valores\n", + "region_features = new_data.groupby(['Year', 'Region', 'Features']).agg(Total_Value=('Value', 'sum')).reset_index()\n", + "\n", + "# Establecer el estilo de los gráficos en Seaborn a \"whitegrid\"\n", + "sns.set_style(\"whitegrid\")\n", + "\n", + "# Crear el gráfico de líneas con la paleta de colores personalizada\n", + "sns.lineplot(data=region_features, x='Year', y='Total_Value', hue='Region')\n", + "plt.title('Total Values by Region Over Time')\n", + "plt.xlabel('Year')\n", + "plt.ylabel('Total')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 390 + }, + "id": "cYzGOiNeVfY7", + "outputId": "d3044941-773c-479f-a4bf-7e86be3e6785" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# Agrupar los datos por 'Year' y 'Region' y calcular la suma de valores\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mregion_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Region'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Features'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0magg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mTotal_Value\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Value'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sum'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;31m# Establecer el estilo de los gráficos en Seaborn a \"whitegrid\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mgroupby\u001b[0;34m(self, by, axis, level, as_index, sort, group_keys, squeeze, observed, dropna)\u001b[0m\n\u001b[1;32m 8400\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_axis_number\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8401\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 8402\u001b[0;31m return DataFrameGroupBy(\n\u001b[0m\u001b[1;32m 8403\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8404\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mby\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort, group_keys, squeeze, observed, mutated, dropna)\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mpandas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrouper\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_grouper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 965\u001b[0;31m grouper, exclusions, obj = get_grouper(\n\u001b[0m\u001b[1;32m 966\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 967\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/grouper.py\u001b[0m in \u001b[0;36mget_grouper\u001b[0;34m(obj, key, axis, level, sort, observed, mutated, validate, dropna)\u001b[0m\n\u001b[1;32m 886\u001b[0m \u001b[0min_axis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 888\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgpr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 889\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgpr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mGrouper\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mgpr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkey\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 890\u001b[0m \u001b[0;31m# Add key to exclusions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "custom_palette = [\"#E41A1C\", \"#377EB8\", \"#4DAF4A\", \"#984EA3\", \"#FF7F00\", \"#FFFF33\", \"#A65628\"]\n", + "\n", + "# Filter the data for the past five years and 'exports'\n", + "export_data = new_data[(new_data['Features'] == \"exports\") & (new_data['Year'] >= (new_data['Year'].max() - 4))]\n", + "\n", + "# Group by 'Country' and calculate the total export value\n", + "top_exporting_countries = export_data.groupby('Country')['Value'].sum().reset_index().sort_values(by='Value', ascending=False).head(10)\n", + "\n", + "# Plotting\n", + "plt.figure(figsize=(10,6))\n", + "sns.barplot(x='Value', y='Country', data=top_exporting_countries, palette=custom_palette)\n", + "print(top_exporting_countries)\n", + "\n", + "plt.xlabel('Total Exports')\n", + "plt.ylabel('Country')\n", + "plt.title('Exports - Last 5 Years - Top Ten Countries')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 512 + }, + "id": "pEGfENwGVhHK", + "outputId": "2dc0d837-10ef-4939-a46a-d36246f692a7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3801\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3802\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m# Filter the data for the past five years and 'exports'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mexport_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Features'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"exports\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;31m# Group by 'Country' and calculate the total export value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3805\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3806\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3807\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3808\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3809\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3802\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3804\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3805\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3806\u001b[0m \u001b[0;31m# If we have a listlike key, _check_indexing_error will raise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'" + ] + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "RQfTp3HSXLqQ" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file From 64b9428c2311ef83e6bdc574b5f214f16befc9b4 Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Sat, 28 Oct 2023 12:07:08 -0300 Subject: [PATCH 09/16] Creado mediante Colaboratory --- proyectoIAPrediccion1LSTM.ipynb | 2141 +++++++++++++++++++++++++++++++ 1 file changed, 2141 insertions(+) create mode 100644 proyectoIAPrediccion1LSTM.ipynb diff --git a/proyectoIAPrediccion1LSTM.ipynb b/proyectoIAPrediccion1LSTM.ipynb new file mode 100644 index 0000000..8fa7ac5 --- /dev/null +++ b/proyectoIAPrediccion1LSTM.ipynb @@ -0,0 +1,2141 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.colors as mcolors\n", + "import matplotlib.cm as cm\n", + "import seaborn as sns\n", + "import plotly.express as px\n", + "from wordcloud import WordCloud\n", + "import geopandas as gpd\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from keras.models import Sequential\n", + "from keras.layers import LSTM, GRU, Conv1D, MaxPooling1D, Flatten, Dense\n", + "from keras.losses import MeanSquaredError\n", + "from keras.regularizers import l2\n", + "\n" + ], + "metadata": { + "id": "H7kZjC_GUZZd" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9_FId2wvQAgd" + }, + "outputs": [], + "source": [ + "# Leer los datos\n", + "GES_Data = \"global_electricity_statistics_cleaned.csv\"\n", + "df = pd.read_csv(GES_Data)" + ] + }, + { + "cell_type": "code", + "source": [ + "# Ver los primeros datos\n", + "print(df.head())\n", + "df[\"Features\"].value_counts()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "lWY6qwmkQ2PL", + "outputId": "e89148ab-3b26-4467-9a79-ac3d32f733d6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Country Features Region 1980 1981 1982 1983 \\\n", + "0 Algeria net generation Africa 6.683 7.65 8.824 9.615 \n", + "1 Angola net generation Africa 0.905 0.906 0.995 1.028 \n", + "2 Benin net generation Africa 0.005 0.005 0.005 0.005 \n", + "3 Botswana net generation Africa 0.443 0.502 0.489 0.434 \n", + "4 Burkina Faso net generation Africa 0.098 0.108 0.115 0.117 \n", + "\n", + " 1984 1985 1986 ... 2012 2013 2014 2015 \\\n", + "0 10.537 11.569 12.214 ... 53.9845 56.3134 60.39972 64.68244 \n", + "1 1.028 1.028 1.088 ... 6.03408 7.97606 9.21666 9.30914 \n", + "2 0.005 0.005 0.005 ... 0.04612 0.08848 0.22666 0.31056 \n", + "3 0.445 0.456 0.538 ... 0.33 0.86868 2.17628 2.79104 \n", + "4 0.113 0.115 0.122 ... 0.86834 0.98268 1.11808 1.43986 \n", + "\n", + " 2016 2017 2018 2019 2020 2021 \n", + "0 66.75504 71.49546 72.10903 76.685 72.73591277 77.53072719 \n", + "1 10.203511 10.67604 12.83194 15.4 16.6 16.429392 \n", + "2 0.26004 0.3115 0.19028 0.2017 0.22608 0.24109728 \n", + "3 2.52984 2.8438 2.97076 3.0469 2.05144 2.18234816 \n", + "4 1.5509 1.64602 1.6464 1.72552 1.647133174 1.761209666 \n", + "\n", + "[5 rows x 45 columns]\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "net generation 230\n", + "net consumption 230\n", + "imports 230\n", + "exports 230\n", + "net imports 230\n", + "installed capacity 230\n", + "distribution losses 230\n", + "Name: Features, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 79 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Convertir las columnas de los años a numéricas\n", + "cols = [str(year) for year in range(1980, 2022)]\n", + "df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')\n", + "\n", + "# Calcular el promedio de cada fila (ignorando los valores NaN)\n", + "df['avg'] = df.loc[:, '1980':'2021'].mean(axis=1)\n", + "\n", + "# Rellenar los valores NaN con el promedio de la fila correspondiente\n", + "for col in cols:\n", + " df[col].fillna(df['avg'], inplace=True)\n", + "\n", + "# Eliminar la columna 'avg' ya que ya no es necesaria\n", + "df.drop('avg', axis=1, inplace=True)\n", + "\n", + "# Agregar la columna 'Total' que es la suma de las columnas desde 1980 hasta 2021\n", + "df['Total'] = df.loc[:, '1980':'2021'].sum(axis=1)\n", + "\n", + "# Agrupar por 'Region' y 'Features', y obtener la suma\n", + "df_grouped = df.groupby(['Region', 'Features']).sum(numeric_only=True)\n" + ], + "metadata": { + "id": "9MZcbtw9t95l" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "base de datos lista con regiones y caracteristicas 1980 al 2021 abajo listo falta red neuronal y entrenamiento\n", + "\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "_28HoIcVTX5H" + } + }, + { + "cell_type": "code", + "source": [ + "print(df_grouped)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6wZ4FIMSDhZH", + "outputId": "77273682-c22c-41a9-fae1-a801427bd5e7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " 1980 1981 \\\n", + "Region Features \n", + "Africa distribution losses 1.874121e+01 20.443093 \n", + " exports 3.935375e+00 4.327375 \n", + " imports 5.659906e+00 6.051906 \n", + " installed capacity 4.814117e+01 52.983167 \n", + " net consumption 1.737664e+02 183.373190 \n", + " net generation 1.907831e+02 202.091751 \n", + " net imports 1.724531e+00 1.724531 \n", + "Asia & Oceania distribution losses 1.031399e+02 110.245063 \n", + " exports 1.190000e+00 1.158000 \n", + " imports 1.507000e+00 1.585000 \n", + " installed capacity 3.299673e+02 350.290346 \n", + " net consumption 1.162988e+03 1192.215726 \n", + " net generation 1.265811e+03 1302.033789 \n", + " net imports 3.170000e-01 0.427000 \n", + "Central & South America distribution losses 3.859152e+01 36.077525 \n", + " exports 4.380000e-01 0.590000 \n", + " imports 4.380000e-01 0.449000 \n", + " installed capacity 8.227979e+01 89.194786 \n", + " net consumption 2.705502e+02 280.515562 \n", + " net generation 3.091417e+02 316.734087 \n", + " net imports 6.938894e-18 -0.141000 \n", + "Eurasia distribution losses 2.617115e+02 262.611506 \n", + " exports 7.943247e+01 81.441472 \n", + " imports 4.476119e+01 44.761188 \n", + " installed capacity 6.222894e+02 632.202353 \n", + " net consumption 2.343170e+03 2298.454189 \n", + " net generation 2.639553e+03 2597.745980 \n", + " net imports -3.467128e+01 -36.680284 \n", + "Europe distribution losses 2.120365e+02 209.191182 \n", + " exports 2.115657e+02 220.309746 \n", + " imports 2.116504e+02 222.262370 \n", + " installed capacity 7.708206e+02 786.288617 \n", + " net consumption 2.740265e+03 2745.516068 \n", + " net generation 2.952217e+03 2952.754626 \n", + " net imports 8.462388e-02 1.952624 \n", + "Middle East distribution losses 7.515476e+00 11.216626 \n", + " exports 2.320000e-01 0.227000 \n", + " imports 4.111621e+00 4.106621 \n", + " installed capacity 3.230383e+01 38.292828 \n", + " net consumption 8.818376e+01 95.959605 \n", + " net generation 9.181961e+01 103.296610 \n", + " net imports 3.879621e+00 3.879621 \n", + "North America distribution losses 2.558195e+02 221.393494 \n", + " exports 3.466465e+01 39.482123 \n", + " imports 3.003898e+01 39.913572 \n", + " installed capacity 6.737250e+02 698.724000 \n", + " net consumption 2.461083e+03 2531.029293 \n", + " net generation 2.721528e+03 2751.991338 \n", + " net imports -4.625664e+00 0.431449 \n", + "\n", + " 1982 1983 \\\n", + "Region Features \n", + "Africa distribution losses 20.504713 22.792113 \n", + " exports 4.989375 4.251375 \n", + " imports 6.722906 6.253906 \n", + " installed capacity 53.899167 56.308967 \n", + " net consumption 189.994270 196.583670 \n", + " net generation 208.765451 217.373251 \n", + " net imports 1.733531 2.002531 \n", + "Asia & Oceania distribution losses 112.874513 121.149903 \n", + " exports 1.179000 1.265000 \n", + " imports 2.009000 2.005000 \n", + " installed capacity 368.918346 392.552346 \n", + " net consumption 1246.608115 1325.026719 \n", + " net generation 1358.652628 1445.436622 \n", + " net imports 0.830000 0.740000 \n", + "Central & South America distribution losses 42.593765 45.658395 \n", + " exports 0.475000 4.261000 \n", + " imports 0.601000 4.033000 \n", + " installed capacity 94.589786 100.067786 \n", + " net consumption 293.158242 310.713632 \n", + " net generation 335.626007 356.600027 \n", + " net imports 0.126000 -0.228000 \n", + "Eurasia distribution losses 267.411506 270.111506 \n", + " exports 82.052472 83.838472 \n", + " imports 44.761188 44.761188 \n", + " installed capacity 640.328353 649.579353 \n", + " net consumption 2408.629042 2452.972540 \n", + " net generation 2713.331833 2762.161331 \n", + " net imports -37.291284 -39.077284 \n", + "Europe distribution losses 210.397242 220.819682 \n", + " exports 216.397746 239.093746 \n", + " imports 218.558370 243.130370 \n", + " installed capacity 804.458617 817.115617 \n", + " net consumption 2757.528008 2819.162568 \n", + " net generation 2965.764626 3035.945626 \n", + " net imports 2.160624 4.036624 \n", + "Middle East distribution losses 12.716366 12.381506 \n", + " exports 0.330000 0.291000 \n", + " imports 4.209621 4.170621 \n", + " installed capacity 43.108828 48.766828 \n", + " net consumption 114.088865 128.651725 \n", + " net generation 122.925610 137.153610 \n", + " net imports 3.879621 3.879621 \n", + "North America distribution losses 227.643996 237.414793 \n", + " exports 40.319463 42.314293 \n", + " imports 40.319634 42.314038 \n", + " installed capacity 717.576000 728.127000 \n", + " net consumption 2476.041662 2555.949638 \n", + " net generation 2703.685487 2793.364686 \n", + " net imports 0.000171 -0.000255 \n", + "\n", + " 1984 1985 \\\n", + "Region Features \n", + "Africa distribution losses 24.310513 29.939433 \n", + " exports 4.594375 4.237375 \n", + " imports 6.369906 5.961906 \n", + " installed capacity 60.707967 63.234967 \n", + " net consumption 214.139970 225.634750 \n", + " net generation 236.674951 253.849651 \n", + " net imports 1.775531 1.724531 \n", + "Asia & Oceania distribution losses 126.509673 148.113229 \n", + " exports 1.696000 1.903000 \n", + " imports 2.134000 2.228000 \n", + " installed capacity 416.259346 440.239786 \n", + " net consumption 1422.219174 1498.540497 \n", + " net generation 1548.290847 1646.328726 \n", + " net imports 0.438000 0.325000 \n", + "Central & South America distribution losses 46.117535 50.984685 \n", + " exports 3.760000 5.323000 \n", + " imports 3.665000 2.648000 \n", + " installed capacity 106.934786 113.188786 \n", + " net consumption 337.728692 350.544262 \n", + " net generation 383.941227 404.203947 \n", + " net imports -0.095000 -2.675000 \n", + "Eurasia distribution losses 280.911506 288.511506 \n", + " exports 84.734472 91.332472 \n", + " imports 44.761188 46.361188 \n", + " installed capacity 659.918353 669.045353 \n", + " net consumption 2516.762419 2557.075511 \n", + " net generation 2837.647210 2890.558302 \n", + " net imports -39.973284 -44.971284 \n", + "Europe distribution losses 227.212242 239.311152 \n", + " exports 244.937746 246.803746 \n", + " imports 250.172370 257.239370 \n", + " installed capacity 842.635617 862.814617 \n", + " net consumption 2923.534008 3014.283098 \n", + " net generation 3145.511626 3243.158626 \n", + " net imports 5.234624 10.435624 \n", + "Middle East distribution losses 12.534696 14.515696 \n", + " exports 0.199000 0.328000 \n", + " imports 4.078621 4.207621 \n", + " installed capacity 53.286828 54.877828 \n", + " net consumption 143.957535 153.760535 \n", + " net generation 152.612610 164.396610 \n", + " net imports 3.879621 3.879621 \n", + "North America distribution losses 213.703069 235.735172 \n", + " exports 43.476293 47.519917 \n", + " imports 43.476432 47.458180 \n", + " installed capacity 748.786000 770.521000 \n", + " net consumption 2720.030437 2778.895211 \n", + " net generation 2933.733367 3014.692120 \n", + " net imports 0.000139 -0.061737 \n", + "\n", + " 1986 1987 \\\n", + "Region Features \n", + "Africa distribution losses 23.062873 26.468153 \n", + " exports 4.171375 2.530375 \n", + " imports 6.010906 4.454906 \n", + " installed capacity 69.761967 71.632967 \n", + " net consumption 245.635010 254.337430 \n", + " net generation 266.858351 278.881051 \n", + " net imports 1.839531 1.924531 \n", + "Asia & Oceania distribution losses 153.614063 168.974833 \n", + " exports 2.265198 2.838005 \n", + " imports 2.184701 2.737251 \n", + " installed capacity 462.890166 486.629886 \n", + " net consumption 1583.920647 1715.996800 \n", + " net generation 1737.615207 1885.072388 \n", + " net imports -0.080498 -0.100755 \n", + "Central & South America distribution losses 59.351220 65.950150 \n", + " exports 13.315000 18.816000 \n", + " imports 13.188000 18.337600 \n", + " installed capacity 117.481000 122.055000 \n", + " net consumption 375.881060 385.142790 \n", + " net generation 435.359280 451.571340 \n", + " net imports -0.127000 -0.478400 \n", + "Eurasia distribution losses 292.111506 297.411506 \n", + " exports 91.067472 95.700472 \n", + " imports 46.061188 45.661188 \n", + " installed capacity 675.670353 679.240353 \n", + " net consumption 2518.068596 2569.916228 \n", + " net generation 2855.186387 2917.367019 \n", + " net imports -45.006284 -50.039284 \n", + "Europe distribution losses 236.588012 243.415292 \n", + " exports 241.788746 255.341746 \n", + " imports 252.566370 271.346370 \n", + " installed capacity 878.766617 898.170617 \n", + " net consumption 3073.428238 3145.392958 \n", + " net generation 3299.238626 3372.803626 \n", + " net imports 10.777624 16.004624 \n", + "Middle East distribution losses 12.710696 16.239696 \n", + " exports 0.573000 0.478000 \n", + " imports 4.252621 4.191621 \n", + " installed capacity 58.097828 62.736828 \n", + " net consumption 163.961535 169.719535 \n", + " net generation 172.992610 182.245610 \n", + " net imports 3.679621 3.713621 \n", + "North America distribution losses 201.979128 210.630140 \n", + " exports 44.521565 54.824235 \n", + " imports 44.511861 54.829032 \n", + " installed capacity 783.141000 796.349000 \n", + " net consumption 2843.497120 2954.184324 \n", + " net generation 3045.485952 3164.809667 \n", + " net imports -0.009704 0.004797 \n", + "\n", + " 1988 1989 ... \\\n", + "Region Features ... \n", + "Africa distribution losses 27.225493 28.415993 ... \n", + " exports 2.427375 2.709375 ... \n", + " imports 4.419906 4.531906 ... \n", + " installed capacity 75.977967 79.771567 ... \n", + " net consumption 262.564790 271.933940 ... \n", + " net generation 287.797751 298.527401 ... \n", + " net imports 1.992531 1.822531 ... \n", + "Asia & Oceania distribution losses 178.805683 200.790531 ... \n", + " exports 3.310800 3.860101 ... \n", + " imports 3.174608 3.324543 ... \n", + " installed capacity 513.284356 536.453276 ... \n", + " net consumption 1856.190046 1977.313215 ... \n", + " net generation 2035.131922 2178.639305 ... \n", + " net imports -0.136193 -0.535558 ... \n", + "Central & South America distribution losses 67.784620 72.544900 ... \n", + " exports 19.189000 21.934000 ... \n", + " imports 19.033500 23.353000 ... \n", + " installed capacity 127.767000 130.554000 ... \n", + " net consumption 405.170040 413.088700 ... \n", + " net generation 473.110160 484.214600 ... \n", + " net imports -0.155500 1.419000 ... \n", + "Eurasia distribution losses 294.711506 296.411506 ... \n", + " exports 99.212472 98.535472 ... \n", + " imports 45.461188 45.461188 ... \n", + " installed capacity 692.645353 695.674353 ... \n", + " net consumption 2607.296149 2638.989586 ... \n", + " net generation 2955.758940 2988.475377 ... \n", + " net imports -53.751284 -53.074284 ... \n", + "Europe distribution losses 241.951762 243.408832 ... \n", + " exports 272.139746 293.217746 ... \n", + " imports 291.926370 312.685370 ... \n", + " installed capacity 908.236617 916.832617 ... \n", + " net consumption 3199.221488 3253.479218 ... \n", + " net generation 3421.386626 3477.420426 ... \n", + " net imports 19.786624 19.467624 ... \n", + "Middle East distribution losses 19.424696 19.650696 ... \n", + " exports 0.375000 0.380000 ... \n", + " imports 4.234621 4.259621 ... \n", + " installed capacity 69.399828 72.768828 ... \n", + " net consumption 189.148535 200.692535 ... \n", + " net generation 204.713610 216.463610 ... \n", + " net imports 3.859621 3.879621 ... \n", + "North America distribution losses 213.193537 278.523167 ... \n", + " exports 42.929646 39.016589 ... \n", + " imports 42.936199 39.084799 ... \n", + " installed capacity 798.026000 834.564000 ... \n", + " net consumption 3095.903194 3292.470057 ... \n", + " net generation 3309.090178 3570.925014 ... \n", + " net imports 0.006553 0.068210 ... \n", + "\n", + " 2012 2013 \\\n", + "Region Features \n", + "Africa distribution losses 90.741794 100.652074 \n", + " exports 31.560100 29.270320 \n", + " imports 39.407200 38.460900 \n", + " installed capacity 157.783510 166.204887 \n", + " net consumption 611.512095 620.559458 \n", + " net generation 695.766565 713.380728 \n", + " net imports 7.847100 9.190580 \n", + "Asia & Oceania distribution losses 678.990130 718.717462 \n", + " exports 38.076848 43.201222 \n", + " imports 48.086716 53.728922 \n", + " installed capacity 2169.864984 2330.909732 \n", + " net consumption 8227.563211 8719.145784 \n", + " net generation 8896.543473 9427.335547 \n", + " net imports 10.009868 10.527699 \n", + "Central & South America distribution losses 178.592105 183.188955 \n", + " exports 50.448000 50.482230 \n", + " imports 51.803500 51.705970 \n", + " installed capacity 296.354729 317.115300 \n", + " net consumption 1006.331172 1046.180499 \n", + " net generation 1185.825005 1230.402943 \n", + " net imports 1.355500 1.223740 \n", + "Eurasia distribution losses 290.124833 293.506833 \n", + " exports 81.157750 76.856750 \n", + " imports 28.093500 26.833500 \n", + " installed capacity 670.648753 680.877699 \n", + " net consumption 2613.014998 2608.658934 \n", + " net generation 2956.204082 2952.189018 \n", + " net imports -53.064250 -50.023250 \n", + "Europe distribution losses 312.122568 313.103557 \n", + " exports 443.876981 430.539587 \n", + " imports 461.685229 448.473861 \n", + " installed capacity 1268.886878 1286.459488 \n", + " net consumption 4021.955784 4033.031850 \n", + " net generation 4316.270104 4328.201133 \n", + " net imports 17.808248 17.934274 \n", + "Middle East distribution losses 115.204000 115.606100 \n", + " exports 16.475700 17.626000 \n", + " imports 20.749000 22.276000 \n", + " installed capacity 233.853100 253.873369 \n", + " net consumption 814.418020 859.965481 \n", + " net generation 925.348720 970.921581 \n", + " net imports 4.273300 4.650000 \n", + "North America distribution losses 332.848244 324.129033 \n", + " exports 70.976291 74.859494 \n", + " imports 72.321289 81.829801 \n", + " installed capacity 1263.275800 1260.288100 \n", + " net consumption 4620.822297 4683.045310 \n", + " net generation 4952.325543 5000.204037 \n", + " net imports 1.344998 6.970307 \n", + "\n", + " 2014 2015 \\\n", + "Region Features \n", + "Africa distribution losses 100.862683 107.622472 \n", + " exports 31.922840 34.030950 \n", + " imports 40.958282 40.208600 \n", + " installed capacity 169.635611 179.322610 \n", + " net consumption 646.013219 658.567024 \n", + " net generation 739.200236 761.371622 \n", + " net imports 9.035442 6.177650 \n", + "Asia & Oceania distribution losses 726.043045 728.905453 \n", + " exports 43.899299 46.000806 \n", + " imports 53.420703 58.622526 \n", + " installed capacity 2463.426712 2668.076439 \n", + " net consumption 9121.177292 9385.732178 \n", + " net generation 9837.698933 10102.015911 \n", + " net imports 9.521404 12.621720 \n", + "Central & South America distribution losses 195.090374 195.044023 \n", + " exports 46.755000 46.214375 \n", + " imports 48.488000 46.891300 \n", + " installed capacity 327.351239 341.688198 \n", + " net consumption 1029.599917 1064.668354 \n", + " net generation 1225.214520 1261.292682 \n", + " net imports 1.733000 0.676925 \n", + "Eurasia distribution losses 288.718833 283.011833 \n", + " exports 72.713750 68.759750 \n", + " imports 25.708500 24.632500 \n", + " installed capacity 706.369683 704.632633 \n", + " net consumption 2609.666644 2602.340334 \n", + " net generation 2945.390728 2929.479418 \n", + " net imports -47.005250 -44.127250 \n", + "Europe distribution losses 302.146616 307.118887 \n", + " exports 470.691760 499.598125 \n", + " imports 484.565844 512.493304 \n", + " installed capacity 1310.856618 1325.619640 \n", + " net consumption 3927.158554 4010.027085 \n", + " net generation 4215.431086 4304.250793 \n", + " net imports 13.874084 12.895179 \n", + "Middle East distribution losses 121.753000 136.956300 \n", + " exports 15.734300 13.304700 \n", + " imports 22.482000 24.437000 \n", + " installed capacity 267.802900 281.223764 \n", + " net consumption 921.739356 960.867656 \n", + " net generation 1036.744656 1086.691656 \n", + " net imports 6.747700 11.132300 \n", + "North America distribution losses 314.189122 319.202703 \n", + " exports 75.406872 84.372314 \n", + " imports 80.754999 88.191435 \n", + " installed capacity 1281.423800 1288.473000 \n", + " net consumption 4723.259542 4715.376861 \n", + " net generation 5032.100536 5030.760443 \n", + " net imports 5.348127 3.819121 \n", + "\n", + " 2016 2017 \\\n", + "Region Features \n", + "Africa distribution losses 120.267951 117.446872 \n", + " exports 34.692430 33.327730 \n", + " imports 41.309200 39.782764 \n", + " installed capacity 192.320816 210.921447 \n", + " net consumption 653.876644 686.573884 \n", + " net generation 768.887601 798.925498 \n", + " net imports 6.616770 6.455034 \n", + "Asia & Oceania distribution losses 762.739982 777.224502 \n", + " exports 58.194332 63.917965 \n", + " imports 65.819156 71.950994 \n", + " installed capacity 2887.051792 3072.989237 \n", + " net consumption 9870.251320 10499.360390 \n", + " net generation 10625.366477 11268.551864 \n", + " net imports 7.624824 8.033029 \n", + "Central & South America distribution losses 196.301150 196.639998 \n", + " exports 54.136813 49.679473 \n", + " imports 55.026600 51.657462 \n", + " installed capacity 362.778609 375.971286 \n", + " net consumption 1071.664743 1078.315722 \n", + " net generation 1269.333335 1275.234959 \n", + " net imports 0.889787 1.977989 \n", + "Eurasia distribution losses 282.647833 282.927833 \n", + " exports 70.614750 76.300450 \n", + " imports 19.114500 24.919500 \n", + " installed capacity 715.716686 714.825145 \n", + " net consumption 2624.207881 2632.181290 \n", + " net generation 2958.355965 2966.490074 \n", + " net imports -51.500250 -51.380950 \n", + "Europe distribution losses 306.535603 303.730092 \n", + " exports 461.683138 470.334575 \n", + " imports 479.089613 484.382843 \n", + " installed capacity 1340.532988 1366.865274 \n", + " net consumption 4075.724022 4087.731918 \n", + " net generation 4364.853150 4377.413742 \n", + " net imports 17.406475 14.048268 \n", + "Middle East distribution losses 141.557300 152.387842 \n", + " exports 14.215200 15.588800 \n", + " imports 23.822000 22.874000 \n", + " installed capacity 290.084263 296.263143 \n", + " net consumption 989.887694 1027.643852 \n", + " net generation 1121.838194 1172.746494 \n", + " net imports 9.606800 7.285200 \n", + "North America distribution losses 314.334447 306.825106 \n", + " exports 81.285189 83.214566 \n", + " imports 84.250796 77.729212 \n", + " installed capacity 1309.804900 1326.263400 \n", + " net consumption 4733.993558 4702.000202 \n", + " net generation 5045.362399 5014.310663 \n", + " net imports 2.965607 -5.485354 \n", + "\n", + " 2018 2019 \\\n", + "Region Features \n", + "Africa distribution losses 120.350344 123.135014 \n", + " exports 31.730300 36.012330 \n", + " imports 37.158895 36.120142 \n", + " installed capacity 231.117096 239.367773 \n", + " net consumption 698.793253 702.889739 \n", + " net generation 815.074778 827.276717 \n", + " net imports 5.428595 0.107812 \n", + "Asia & Oceania distribution losses 810.210076 811.441910 \n", + " exports 67.358170 69.461613 \n", + " imports 75.641028 79.321945 \n", + " installed capacity 3265.095200 3429.788250 \n", + " net consumption 11070.559832 11474.482488 \n", + " net generation 11872.487050 12276.064067 \n", + " net imports 8.282858 9.860332 \n", + "Central & South America distribution losses 199.318646 198.809974 \n", + " exports 48.688924 41.949039 \n", + " imports 49.430425 42.838501 \n", + " installed capacity 387.997173 402.208029 \n", + " net consumption 1096.508255 1099.521880 \n", + " net generation 1297.342629 1299.699622 \n", + " net imports 0.741501 0.889462 \n", + "Eurasia distribution losses 274.900433 272.615133 \n", + " exports 74.254750 73.869750 \n", + " imports 16.404700 16.388500 \n", + " installed capacity 714.917193 724.167792 \n", + " net consumption 2662.169213 2678.159241 \n", + " net generation 2994.919697 3008.255625 \n", + " net imports -57.850050 -57.481250 \n", + "Europe distribution losses 303.082485 297.535852 \n", + " exports 465.459254 464.196084 \n", + " imports 486.205733 491.142257 \n", + " installed capacity 1400.952397 1418.280092 \n", + " net consumption 4069.003190 4055.926950 \n", + " net generation 4351.339196 4326.516629 \n", + " net imports 20.746479 26.946173 \n", + "Middle East distribution losses 155.221385 165.089182 \n", + " exports 14.144000 13.858000 \n", + " imports 31.987000 44.946100 \n", + " installed capacity 298.368401 303.954947 \n", + " net consumption 1052.527842 1086.018911 \n", + " net generation 1189.906227 1220.019993 \n", + " net imports 17.843000 31.088100 \n", + "North America distribution losses 298.010523 288.822191 \n", + " exports 77.631527 83.441019 \n", + " imports 75.128295 76.293597 \n", + " installed capacity 1351.724789 1364.576789 \n", + " net consumption 4878.979091 4816.574574 \n", + " net generation 5179.492847 5112.544188 \n", + " net imports -2.503232 -7.147422 \n", + "\n", + " 2020 2021 \n", + "Region Features \n", + "Africa distribution losses 124.310329 124.988388 \n", + " exports 37.082820 37.662881 \n", + " imports 36.093690 37.648292 \n", + " installed capacity 243.532941 245.193015 \n", + " net consumption 680.388746 712.584720 \n", + " net generation 807.047981 838.947473 \n", + " net imports -0.989130 -0.014589 \n", + "Asia & Oceania distribution losses 786.911065 792.500149 \n", + " exports 75.376583 77.030618 \n", + " imports 88.089951 87.463914 \n", + " installed capacity 3680.474175 3853.457685 \n", + " net consumption 11742.523702 12665.270200 \n", + " net generation 12516.721399 13447.337052 \n", + " net imports 12.713368 10.433296 \n", + "Central & South America distribution losses 195.857514 199.680010 \n", + " exports 38.434271 38.794599 \n", + " imports 39.625489 35.477785 \n", + " installed capacity 414.911323 428.896663 \n", + " net consumption 1100.092492 1167.026170 \n", + " net generation 1297.016017 1372.280224 \n", + " net imports 1.191218 -3.316815 \n", + "Eurasia distribution losses 265.384183 263.323374 \n", + " exports 63.197350 72.384710 \n", + " imports 21.221200 26.346138 \n", + " installed capacity 733.129110 743.105110 \n", + " net consumption 2673.289939 2761.897411 \n", + " net generation 2980.650272 3071.259358 \n", + " net imports -41.976150 -46.038573 \n", + "Europe distribution losses 292.605807 294.824287 \n", + " exports 480.083713 507.242862 \n", + " imports 494.061577 529.015329 \n", + " installed capacity 1444.290822 1482.995172 \n", + " net consumption 3990.746417 4082.522458 \n", + " net generation 4269.374360 4355.574277 \n", + " net imports 13.977864 21.772468 \n", + "Middle East distribution losses 163.117147 169.089625 \n", + " exports 14.629100 14.358920 \n", + " imports 29.050000 28.806431 \n", + " installed capacity 306.974447 309.632447 \n", + " net consumption 1045.687765 1109.498530 \n", + " net generation 1194.384012 1264.140644 \n", + " net imports 14.420900 14.447511 \n", + "North America distribution losses 270.644224 296.127051 \n", + " exports 87.486172 68.009584 \n", + " imports 81.225548 71.680961 \n", + " installed capacity 1387.359489 1425.152689 \n", + " net consumption 4725.063247 4836.156431 \n", + " net generation 5001.968095 5128.612105 \n", + " net imports -6.260624 3.671377 \n", + "\n", + "[49 rows x 42 columns]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Agrupar por 'Region' y obtener la suma de los valores\n", + "df_grouped = df.groupby('Region').sum(numeric_only=True)\n", + "\n", + "# Eliminar la columna 'Total'\n", + "df_groupedeT = df_grouped.drop(columns=['Total'])\n", + "\n", + "# Transponer el DataFrame para que los años sean las columnas y las regiones sean las filas\n", + "df_transposed = df_groupedeT.transpose()\n", + "\n", + "# Crear una figura más grande\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "\n", + "# Crear un mapa de colores\n", + "cmap = cm.get_cmap('tab10')\n", + "\n", + "# Crear un diccionario para asignar un color único a cada región\n", + "region_colors = {region: cmap(i) for i, region in enumerate(df_grouped.index.unique())}\n", + "\n", + "# Para cada región, trazar los valores a lo largo de los años\n", + "for i, (region, values) in enumerate(df_transposed.iteritems()):\n", + " ax.plot(df_transposed.index, values, label=region, color=region_colors[region])\n", + "\n", + "# Rotar las etiquetas del eje x\n", + "plt.xticks(rotation=45)\n", + "\n", + "# Añadir una leyenda fuera del gráfico\n", + "ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')\n", + "\n", + "# Mostrar el gráfico\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 632 + }, + "id": "UAOFyFDLLMo-", + "outputId": "bce87c94-9834-48fc-f7f7-cc2e09897650" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + ":14: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.\n", + " cmap = cm.get_cmap('tab10')\n", + ":20: FutureWarning: iteritems is deprecated and will be removed in a future version. Use .items instead.\n", + " for i, (region, values) in enumerate(df_transposed.iteritems()):\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFwAAAIOCAYAAACF7xkPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5jUlEQVR4nOzdeZiN9f/H8ec5Z+ac2TeGMVnGvmRfkqT4JiNSRBGKaBP1k0QqlXwrX6VFSpsaJWlDRZEUFZMs2bKUCUOMscy+nTPnnN8fZ+ZwjGWG4cyY1+O6znXu5XPu+31ODXNePovB6XQ6ERERERERERGRUmP0dgEiIiIiIiIiIpcaBS4iIiIiIiIiIqVMgYuIiIiIiIiISClT4CIiIiIiIiIiUsoUuIiIiIiIiIiIlDIFLiIiIiIiIiIipUyBi4iIiIiIiIhIKfPxdgHe5HA4OHDgAMHBwRgMBm+XIyIiIiIiXuJ0OsnIyCA6OhqjUf8uLSLnr0IHLgcOHKBGjRreLkNERERERMqIffv2Ub16dW+XISKXgAoduAQHBwOuP1RDQkK8XI2IiIiIiHhLeno6NWrUcH9HEBE5XxU6cCkcRhQSEqLARURERERENNWAiJQaDU4UERERERERESllClxEREREREREREqZAhcRERERERERkVJWoedwERERERERuRTY7XZsNpu3yxC55Pn6+mIymYrVVoGLiIiIiIhIOeV0OklKSiI1NdXbpYhUGGFhYURFRZ11km0FLiIiIiIiIuVUYdhSpUoVAgICtMqSyAXkdDrJzs4mOTkZgGrVqp2xvQIXERERERGRcshut7vDlkqVKnm7HJEKwd/fH4Dk5GSqVKlyxuFFmjRXRERERESkHCqcsyUgIMDLlYhULIU/c2ebN0mBi4iIiIiISDmmYUQiF1dxf+YUuIiIiIiIiIiIlDIFLiIiIiIiIiIipUyBi4iIiIiIiJQpTqeTe++9l4iICAwGAxs3bjxtW4PBwMKFCy9abSLFpcBFREREREREvCI+Ph6TyUTPnj09ji9ZsoS4uDgWLVrEwYMHadq06WmvcfDgQW644YYLXapIiSlwEREREREREa+YNWsWDz74ID///DMHDhxwH09ISKBatWpcddVVREVF4ePjU+S1VqsVgKioKCwWy0WrWaS4FLiIiIiIiIhcIpxOJ9nWfK88nE5niWrNzMzk008/ZcSIEfTs2ZO4uDgAhg4dyoMPPkhiYiIGg4GYmBgAOnfuzKhRoxg9ejSVK1cmNjYWKDqkaP/+/dx+++1EREQQGBhI27ZtWbNmDeAKcm6++WaqVq1KUFAQ7dq144cffjjvz13kVIrGhCIiIiIiIlIu5djsNHlqqVfuve3ZWALMxf+K+dlnn9GoUSMaNmzI4MGDGT16NBMmTOC1116jbt26vPPOO6xduxaTyeR+zezZsxkxYgSrVq065TUzMzO59tprueyyy/j666+Jiopiw4YNOBwO9/kePXrw3HPPYbFY+PDDD+nVqxc7d+6kZs2a5/cBiJxEgYuIiIiIiFx8TifYreCjoSAV1axZsxg8eDAA3bt3Jy0tjZUrV9K5c2eCg4MxmUxERUV5vKZ+/fpMnTr1tNecO3cuhw8fZu3atURERABQr1499/kWLVrQokUL9/7kyZNZsGABX3/9NaNGjSrNtyeiwEVERERERLxg48fw66tw4ytQu5O3q7lk+Pua2PZsrNfuXVw7d+7k999/Z8GCBQD4+PjQv39/Zs2aRefOnU/7ujZt2pzxuhs3bqRVq1busOVkmZmZPPPMMyxevJiDBw+Sn59PTk4OiYmJxa5dpLgUuIiIiIiIyMWVdRS+nwg5x+DABgUupchgMJRoWI+3zJo1i/z8fKKjo93HnE4nFouFGTNmnPZ1gYGBZ7yuv7//Gc+PHTuWZcuW8dJLL1GvXj38/f3p16+fewJekdJU9n8SRURERETk0vLDU66wpcrlcOUD3q5GLrL8/Hw+/PBDpk2bRrdu3TzO9e7dm08++eScr928eXPee+89jh07dspeLqtWrWLo0KH06dMHcPV42bNnzznfT+RMtEqRiIiIiIhcPHtXwx9zXNs3vgImX+/WIxfdokWLSElJYfjw4TRt2tTj0bdvX2bNmnXO17799tuJioqid+/erFq1in/++Ycvv/yS+Ph4wDUHzPz589m4cSObNm1i4MCB7gl1RUqbAhcREREREbk48q2w6GHXdpuhULO9V8sR75g1axZdu3YlNDS0yLm+ffuybt060tPTz+naZrOZ77//nipVqtCjRw+aNWvGlClT3Csdvfzyy4SHh3PVVVfRq1cvYmNjad269Xm9H5HTMThLulj6JSQ9PZ3Q0FDS0tIICQnxdjkiIiIiIpe2X16G5ZMgoDKMWgsBp57Y1BvK43eD3Nxcdu/eTe3atfHz8/N2OSIVRnF/9tTDRURERERELryUPbCyYDnf2OfKVNgiInIhKHAREREREZELy+mExWMhPwdiOkHz/t6uSETkglPgIiIiIiIiF9a2r2DXMjCZXRPlGgzerkhE5IJT4CIiIiIiIhdObjosecy13XE0VK7v1XJERC6WEgUuM2fOpHnz5oSEhBASEkKHDh347rvv3Odzc3MZOXIklSpVIigoiL59+3Lo0CGPayQmJtKzZ08CAgKoUqUKjz76KPn5+R5tVqxYQevWrbFYLNSrV4+4uLgitbzxxhvExMTg5+dH+/bt+f3330vyVkRERERE5GL46XnIOAjhtaHTI96uRkTkoilR4FK9enWmTJnC+vXrWbduHf/5z3+4+eab+fPPPwF4+OGH+eabb/j8889ZuXIlBw4c4JZbbnG/3m6307NnT6xWK6tXr2b27NnExcXx1FNPudvs3r2bnj170qVLFzZu3Mjo0aO5++67Wbp0qbvNp59+ypgxY3j66afZsGEDLVq0IDY2luTk5PP9PEREREREpLQc2Ai/v+3avvFl8NVKOiJScZz3stARERG8+OKL9OvXj8jISObOnUu/fv0A2LFjB40bNyY+Pp4rr7yS7777jhtvvJEDBw5QtWpVAN566y3Gjx/P4cOHMZvNjB8/nsWLF7N161b3PQYMGEBqaipLliwBoH379rRr144ZM2YA4HA4qFGjBg8++CCPPfZYsWsvj0u/iYiIiIiUCw47vHcdHPgDmvaDfrO8XdEZlcfvBloWWsQ7Lviy0Ha7nXnz5pGVlUWHDh1Yv349NpuNrl27uts0atSImjVrEh8fD0B8fDzNmjVzhy0AsbGxpKenu3vJxMfHe1yjsE3hNaxWK+vXr/doYzQa6dq1q7vN6eTl5ZGenu7xEBERERGRC2Dd+66wxRIKsc97uxoRkYuuxIHLli1bCAoKwmKxcP/997NgwQKaNGlCUlISZrOZsLAwj/ZVq1YlKSkJgKSkJI+wpfB84bkztUlPTycnJ4cjR45gt9tP2abwGqfzwgsvEBoa6n7UqFGjpG9fRERERETOJv0gLH/WtX3dRAiueub2IiW0Z88eDAYDGzdu9HYp5Ubnzp0ZPXq0t8uoUEocuDRs2JCNGzeyZs0aRowYwZAhQ9i2bduFqK3UTZgwgbS0NPdj37593i5JREREROTSs/RxyEuHy9pA22HerkbKsPj4eEwmEz179izR62rUqMHBgwdp2rTped3f4XAwfvx4oqOj8ff3p3nz5nz11VfFfv2iRYu49tprCQ4OJiAggHbt2p1y0ZeyYP78+UyePNnbZVQoJQ5czGYz9erVo02bNrzwwgu0aNGC1157jaioKKxWK6mpqR7tDx06RFRUFABRUVFFVi0q3D9bm5CQEPz9/alcuTImk+mUbQqvcToWi8W9wlLhQ0REREREStGuH+DP+WAwwo2vgNHk7YqkDJs1axYPPvggP//8MwcOHCj260wmE1FRUfj4+JzX/efMmcMrr7zCyy+/zPbt23n55ZcJDAws1mtff/11br75Zjp27MiaNWvYvHkzAwYM4P7772fs2LHnVdeFEBERQXBwsLfLqFDOeQ6XQg6Hg7y8PNq0aYOvry/Lly93n9u5cyeJiYl06NABgA4dOrBlyxaP1YSWLVtGSEgITZo0cbc58RqFbQqvYTabadOmjUcbh8PB8uXL3W1ERERERMQLbDmwuGDp5/YjoFoL79YjZVpmZiaffvopI0aMoGfPnkV6hqSkpDBo0CAiIyPx9/enfv36fPDBB0DRIUV2u53hw4dTu3Zt/P39adiwIa+99tpZazAajURGRjJgwABiYmLo2rVrkTlFT2Xfvn088sgjjB49mueff54mTZpQr149HnnkEV588UWmTZvGmjVr3O3//PNPbrzxRkJCQggODqZTp04kJCS4z7/33ns0btwYPz8/GjVqxJtvvulxv/Hjx9OgQQMCAgKoU6cOEydOxGazuc8/88wztGzZko8++oiYmBhCQ0MZMGAAGRkZ7jYnDyn66KOPaNu2LcHBwURFRTFw4ECt/FvKShQHTpgwgRtuuIGaNWuSkZHB3LlzWbFiBUuXLiU0NJThw4czZswYIiIiCAkJ4cEHH6RDhw5ceeWVAHTr1o0mTZpwxx13MHXqVJKSknjyyScZOXIkFosFgPvvv58ZM2Ywbtw4hg0bxo8//shnn33G4sWL3XWMGTOGIUOG0LZtW6644gpeffVVsrKyuOuuu0rxoxERERERkRL5ZRqk7IHgaOgywdvVVExOJ9iyvXNv3wAwGIrd/LPPPqNRo0Y0bNiQwYMHM3r0aCZMmICh4BoTJ05k27ZtfPfdd1SuXJldu3aRk5Nzyms5HA6qV6/O559/TqVKlVi9ejX33nsv1apV47bbbjttDddddx1paWlMnDixRMNtvvjiC2w22yl7stx33308/vjjfPLJJ7Rv355///2Xa665hs6dO/Pjjz8SEhLCqlWryM/PB+Djjz/mqaeeYsaMGbRq1Yo//viDe+65h8DAQIYMGQJAcHAwcXFxREdHs2XLFu655x6Cg4MZN26c+74JCQksXLiQRYsWkZKSwm233caUKVN47rnnTvkebDYbkydPpmHDhiQnJzNmzBiGDh3Kt99+W+zPQc6sRIFLcnIyd955JwcPHiQ0NJTmzZuzdOlSrr/+egBeeeUVjEYjffv2JS8vj9jYWI9kzmQysWjRIkaMGEGHDh3c/wM9++yz7ja1a9dm8eLFPPzww7z22mtUr16d9957j9jYWHeb/v37c/jwYZ566imSkpJo2bIlS5YsKTKRroiIiIiIXCSHd8Kvr7q2b/gfWDR0wSts2fB8tHfu/fgBMBdvOA64hhMNHjwYgO7du5OWlsbKlSvp3LkzAImJibRq1Yq2bdsCEBMTc9pr+fr6MmnSJPd+7dq1iY+P57PPPjtt4JKdnc3111/PwIEDWbZsGTk5Obz44ovuwCckJIT333+ffv36FXntX3/9RWhoKNWqVStyzmw2U6dOHf766y8A3njjDUJDQ5k3bx6+vr4ANGjQwN3+6aefZtq0adxyyy3u2rdt28bbb7/tDlyefPJJd/uYmBjGjh3LvHnzPAIXh8NBXFyce9jQHXfcwfLly08buAwbdnx+pTp16jB9+nTatWtHZmYmQUFBp3yNlEyJApdZs2ad8byfnx9vvPEGb7zxxmnb1KpV66yJWefOnfnjjz/O2GbUqFGMGjXqjG1EREREROQicDph0Rhw2KBBd2jcy9sVSRm3c+dOfv/9dxYsWACAj48P/fv3Z9asWe7AZcSIEfTt25cNGzbQrVs3evfuzVVXXXXaa77xxhu8//77JCYmkpOTg9VqpWXLlqdtHxcXR2pqKm+88QaZmZl07tyZu+66i/fee4/9+/eTmZlJx44dz/u9bty4kU6dOrnDlhNlZWWRkJDA8OHDueeee9zH8/PzCQ0Nde9/+umnTJ8+nYSEBDIzM8nPzy8yJ2lMTIzHHC3VqlU74xCh9evX88wzz7Bp0yZSUlJwOByAK+gqnPJDzs/5zTAkIiIiIiKyaR7s/RV8/OGGqSUaViKlzDfA1dPEW/cuplmzZpGfn0909PHeOE6nE4vFwowZMwgNDeWGG25g7969fPvttyxbtozrrruOkSNH8tJLLxW53rx58xg7dizTpk2jQ4cOBAcH8+KLL3rMo3KyzZs3c/nll+Pr60t4eDjLli2jU6dO9OnTh/r169O9e/dT9mABVw+VtLQ0Dhw44PEeAKxWKwkJCXTp0gUAf3//09aQmZkJwLvvvkv79u09zplMrgmn4+PjGTRoEJMmTSI2NtbdW2batGke7U8OdAwGgztEOVlWVhaxsbHExsby8ccfExkZSWJiIrGxsVit1tPWKyWjwEVERERERM5d9jH4/gnXdufHILyWd+up6AyGEg3r8Yb8/Hw+/PBDpk2bRrdu3TzO9e7dm08++YT7778fgMjISIYMGcKQIUPo1KkTjz766CkDl1WrVnHVVVfxwAMPuI+dOCntqVx22WUsWLCAjIwMgoODqVKlCj/88AOdOnVi0aJFrF+//rSv7du3L+PHj2fatGlFgo+33nqLrKwsbr/9dgCaN2/O7NmzsdlsRUKRqlWrEh0dzT///MOgQYNOea/Vq1dTq1YtnnjiCfexvXv3nvG9nc2OHTs4evQoU6ZMoUaNGgCsW7fuvK4pRZ33KkUiIiIiIlKB/fA0ZB+FyMbQYaS3q5FyoHBS1+HDh9O0aVOPR9++fd1TWTz11FN89dVX7Nq1iz///JNFixbRuHHjU16zfv36rFu3jqVLl/LXX38xceJE1q5de8Y6hg8fjt1u56abbmL16tXs3LmTpUuXkpmZSUBAwBmn1KhZsyZTp07l1Vdf5YknnmDHjh0kJCTw8ssvM27cOB555BF3j5VRo0aRnp7OgAEDWLduHX///TcfffQRO3fuBGDSpEm88MILTJ8+nb/++ostW7bwwQcf8PLLL7vfW2JiIvPmzSMhIYHp06e7h2Kdq5o1a2I2m3n99df5559/+Prrr0s0abAUjwIXERERERE5N3vjYcOHru1er4Kp6BwVIiebNWsWXbt29ZijpFDfvn1Zt24dmzdvxmw2M2HCBJo3b84111yDyWRi3rx5p7zmfffdxy233EL//v1p3749R48e9ejtcirR0dH8/vvvVK5cmVtuuYVWrVrx4Ycf8uGHH7J48WLeeecdd+hxKqNHj2bBggX88ssvtG3blqZNmzJ37lxmzpzp0QunUqVK/Pjjj2RmZnLttdfSpk0b3n33XXdvl7vvvpv33nuPDz74gGbNmnHttdcSFxdH7dq1Abjpppt4+OGHGTVqFC1btmT16tVMnDjxrJ/zmURGRhIXF8fnn39OkyZNmDJlyil7Dsn5MTidTqe3i/CW9PR0QkNDSUtLKzLhkIiIiIiInIHdBm91gsPbofWdcNPr3q7ovJTH7wa5ubns3r2b2rVr4+fn5+1yRCqM4v7sqYeLiIiIiIiUXPwbrrAloBJ0nXT29iIiFYwCFxERERERKZmUvbBiimu7238hIMK79YiIlEEKXEREREREpPgObYPP7oT8HKh1NbS43dsViYiUSVoWWkREREREzi43zdWrZc3b4LSDORhufMW1DLGIiBShwEVERERERE7P6YTNn8H3T0JWsutY414Q+zyE1fRubSIiZZgCFxERERERObWkrfDto5C42rUfURd6TIV6Xb1bl4hIOaDARUREREREPOWmwU8vwO/vuIYP+QbANWOhwyjwsXi7OhGRckGBi4iIiIiIuDidsGkeLHvqhOFDNxUMH6rh3dpERMoZBS4iIiIiIgJJW2DxWNj3m2u/Uj3o8SLU/Y936xIRKae0LLSIiIiISEWWkwrfjoO3r3GFLb4BcN3TMGK1whaRU4iJieHVV1/1dhkXhMFgYOHChd4u47wNHTqU3r17e7sMBS4iIiIiIhWSwwEb58KMtvD72+B0QJPeMGotdBqjuVrkgktKSuLBBx+kTp06WCwWatSoQa9evVi+fHmp3qdz586MHj26VK95Nrt27SI2NpaQkBAiIiK44YYbOHz48FlfZ7fbmTJlCo0aNcLf35+IiAjat2/Pe++9V6r1PfPMM7Rs2bJUr/nJJ59gMpkYOXJkqV73XLz22mvExcV5uwwNKRIRERERqXAOboZvx8K+Na79SvULhg918W5dUmHs2bOHjh07EhYWxosvvkizZs2w2WwsXbqUkSNHsmPHjotaj9PpxG634+NTOl+R7733XtLS0li5ciUBAQHEx8fjdDrP+rpJkybx9ttvM2PGDNq2bUt6ejrr1q0jJSWlVOq6kGbNmsW4ceN4++23mTZtGn5+fhe9BrvdjsFgIDQ09KLf+1TUw0VEREREpKLIz4MlE+Cda11hi28gdJ1UMHxIYYtcPA888AAGg4Hff/+dvn370qBBAy6//HLGjBnDb7/95m6XmprK3XffTWRkJCEhIfznP/9h06ZN7vOFPTU++ugjYmJiCA0NZcCAAWRkZACuoSUrV67ktddew2AwYDAY2LNnDytWrMBgMPDdd9/Rpk0bLBYLv/76KwkJCdx8881UrVqVoKAg2rVrxw8//FDi92c0GomNjaVVq1Y0bNiQoUOHUqVKlbO+7uuvv+aBBx7g1ltvpXbt2rRo0YLhw4czduxYd5u8vDweeughqlSpgp+fH1dffTVr1651n4+LiyMsLMzjugsXLsRgMLjPT5o0iU2bNrk/kxN7gxw5coQ+ffoQEBBA/fr1+frrr89a9+7du1m9ejWPPfYYDRo0YP78+R7nC2tatGgRDRs2JCAggH79+pGdnc3s2bOJiYkhPDychx56CLvd7vFex44dy2WXXUZgYCDt27dnxYoVRa779ddf06RJEywWC4mJiUWGFDkcDqZOnUq9evWwWCzUrFmT5557zn1+/PjxNGjQgICAAOrUqcPEiROx2Wxnfd9no8BFRERERKQiSNsPH9wAv73pGj50eR/X8KGrR4OP2dvVSSlxOp1k27K98ihODw6AY8eOsWTJEkaOHElgYGCR8yeGBbfeeivJycl89913rF+/ntatW3Pddddx7Ngxd5uEhAQWLlzIokWLWLRoEStXrmTKlCmAa2hJhw4duOeeezh48CAHDx6kRo3jK2499thjTJkyhe3bt9O8eXMyMzPp0aMHy5cv548//qB79+706tWLxMTEEv13uPnmm3nzzTfZsGFDiV4XFRXFjz/+eMbhR+PGjePLL79k9uzZbNiwgXr16hEbG+vxmZxJ//79eeSRR7j88svdn0n//v3d5ydNmsRtt93G5s2b6dGjB4MGDTrrtT/44AN69uxJaGgogwcPZtasWUXaZGdnM336dObNm8eSJUtYsWIFffr04dtvv+Xbb7/lo48+4u233+aLL75wv2bUqFHEx8czb948Nm/ezK233kr37t35+++/Pa77v//9j/fee48///zzlMHWhAkTmDJlChMnTmTbtm3MnTuXqlWrus8HBwcTFxfHtm3beO2113j33Xd55ZVXivV5nomGFImIiIiIXOr+WQFfDIPso+AXBre8Aw1ivV2VXAA5+Tm0n9veK/deM3ANAb4BZ223a9cunE4njRo1OmO7X3/9ld9//53k5GQsFtecQi+99BILFy7kiy++4N577wVcvRfi4uIIDg4G4I477mD58uU899xzhIaGYjabCQgIICoqqsg9nn32Wa6//nr3fkREBC1atHDvT548mQULFvD1118zatSos38IwI8//shjjz3GpEmTuPHGG/n000/p1KkTAF9++SVDhw5198A52csvv0y/fv2Iiori8ssv56qrruLmm2/mhhtuACArK4uZM2cSFxfnPvbuu++ybNkyZs2axaOPPnrW+vz9/QkKCsLHx+eUn8nQoUO5/fbbAXj++eeZPn06v//+O927dz/l9Qo//9dffx2AAQMG8Mgjj7B7925q167tbmez2Zg5cyZ169YFoF+/fnz00UccOnSIoKAgmjRpQpcuXfjpp5/o378/iYmJfPDBByQmJhIdHQ3A2LFjWbJkCR988AHPP/+8+7pvvvmmx3+3E2VkZPDaa68xY8YMhgwZAkDdunW5+uqr3W2efPJJ93ZMTAxjx45l3rx5jBs37qyf55moh4uIiIiIyKXK6YRfXoaP+rjClqjmcN9KhS3iVcXtCbNp0yYyMzOpVKkSQUFB7sfu3btJSEhwt4uJiXGHLQDVqlUjOTm5WPdo27atx35mZiZjx46lcePGhIWFERQUxPbt20vUw+Wxxx5j5MiRjB07llmzZtGrVy+++eYbALZs2eLxRf9kTZo0YevWrfz2228MGzaM5ORkevXqxd133w24evPYbDY6duzofo2vry9XXHEF27dvL3aNZ9K8eXP3dmBgICEhIWf8PJctW0ZWVhY9evQAoHLlylx//fW8//77Hu0CAgLcYQtA1apViYmJISgoyONY4b22bNmC3W6nQYMGHv/9V65c6fHf32w2e9R8su3bt5OXl8d111132jaffvopHTt2JCoqiqCgIJ588skS92o6FfVwERERERG5FOWmwcIHYMci137LwdDzJfD1925dckH5+/izZuAar927OOrXr4/BYDjrxLiZmZlUq1bNY86OQicOO/L19fU4ZzAYcDgcxarl5CFNY8eOZdmyZbz00kvUq1cPf39/+vXrh9VqLdb1ADZv3szDDz8MwA033MCsWbO49dZbmTFjBnFxcUydOvWMrzcajbRr14527doxevRo5syZwx133METTzxRrPsbjcYioVZJ5iMp6ec5a9Ysjh07hr//8f/+DoeDzZs3M2nSJIxG42mve6Z7ZWZmYjKZWL9+PSaTyaPdiSGNv7+/e36aUzmxrlOJj49n0KBBTJo0idjYWEJDQ5k3bx7Tpk074+uKQ4GLiIiIiMil5tA2+HQwHEsAk9m1AlHrIXCGLyVyaTAYDMUa1uNNERERxMbG8sYbb/DQQw8VCT1SU1MJCwujdevWJCUl4ePjQ0xMzDnfz2w2e0zEeiarVq1i6NCh9OnTB3B96d+zZ0+J7nfZZZfx888/u4fl9O3bl8zMTO666y6aN2/OrbfeWqLrNWnSBHANJ6pbty5ms5lVq1ZRq1YtwBWmrF271r30dWRkJBkZGWRlZbk/240bN3pcsySfyZkcPXqUr776innz5nH55Ze7j9vtdq6++mq+//770w5FOptWrVpht9tJTk52D8k6F/Xr18ff35/ly5e7ewqdaPXq1dSqVcsj0Nq7d+853+9EClxERERERC4lW76Arx8EWzaEVIf+H8JlbbxdlYiHN954g44dO3LFFVfw7LPP0rx5c/Lz81m2bBkzZ85k+/btdO3alQ4dOtC7d2+mTp1KgwYNOHDgAIsXL6ZPnz5FhgOdTkxMDGvWrGHPnj0EBQURERFx2rb169dn/vz59OrVC4PBwMSJE4vdW6bQuHHjeOCBB4iKiqJ///6kpaURHx9PQEAAO3bsYNWqVacdVtSvXz86duzIVVddRVRUFLt372bChAk0aNCARo0a4ePjw4gRI3j00UeJiIigZs2aTJ06lezsbIYPHw5A+/btCQgI4PHHH+ehhx5izZo1HqsQFX4mu3fvZuPGjVSvXp3g4GD3PDkl8dFHH1GpUiVuu+22Ir1MevTowaxZs845cGnQoAGDBg3izjvvZNq0abRq1YrDhw+zfPlymjdvTs+ePYt1HT8/P8aPH8+4ceMwm8107NiRw4cP8+effzJ8+HDq169PYmIi8+bNo127dixevJgFCxacU80n0xwuIiIiIiKXArsNvnsMvhzuClvqdIb7flbYImVSnTp12LBhA126dOGRRx6hadOmXH/99SxfvpyZM2cCrt463377Lddccw133XUXDRo0YMCAAezdu9djhZmzGTt2LCaTiSZNmhAZGXnGuTlefvllwsPDueqqq+jVqxexsbG0bt26RO/tvvvu49NPP+Wbb76hTZs23HTTTVitVnbs2MEdd9xB7969PVbZOVFsbCzffPMNvXr1okGDBgwZMoRGjRrx/fff4+Pj6i8xZcoU+vbtyx133EHr1q3ZtWsXS5cuJTw8HHD1IJozZw7ffvstzZo145NPPuGZZ57xuE/fvn3p3r07Xbp0ITIykk8++aRE77HQ+++/T58+fU45pKdv3758/fXXHDly5JyuDa7Vj+68804eeeQRGjZsSO/evVm7di01a9Ys0XUmTpzII488wlNPPUXjxo3p37+/e66Ym266iYcffphRo0bRsmVLVq9ezcSJE8+55hMZnMWdsegSlJ6eTmhoKGlpaYSEhHi7HBERERGRc5ORBJ8NgX2/ufY7PQJdngCj6cyvE7fy+N0gNzfXvRKMn5+ft8sRqTCK+7OnIUUiIiIiIuXZnlXw+VDISgZLCPR5CxoVr6u9iIhcOApcRERERETKI6cTfnsTvp8ITjtUaQL950Clumd/rYiIXHAKXEREREREypu8TPh6FPxZMLFjs1uh12tgDjzz60RE5KJR4CIiIiIiUp4c/su15PORnWD0gdgX4Ip7tOSziEgZo8BFRERERKS82PY1LHwArBkQXA1unQ0123u7KhEROQUFLiIiIiIi5cHmz2D+Pa7tWldDv/chuPhL44qIyMWlwEVEREREpKxL+BEWjnBttx0GN7wIJv0qLyJSlulPaRERERGRsuzgJvj0DnDkQ9O+0GMaGI3erkpERM5Cf1KLiIiIiJRVKXvg41vBmgkxnaD3TIUtIiLlhP60FhEREREpi7KOwpy+kHkIqjaFAR+Dj8XbVYlc0jp37szo0aO9XYZcIhS4iIiIiIiUNdZs+KQ/HN0FoTVg0BfgF+rtqkRKzdChQzEYDEUe3bt392pd8+fPZ/LkyV6tQS4dmsNFRERERKQssefDF8Ng/1rwC4PBX0JINW9XJVLqunfvzgcffOBxzGI5t15cTqcTu92Oj8/5fcWNiIg4r9eLnEg9XEREREREygqnExaPgb++Ax8/GPgpRDb0dlUiF4TFYiEqKsrjER4ezp49ezAYDGzcuNHdNjU1FYPBwIoVKwBYsWIFBoOB7777jjZt2mCxWPj1119JSEjg5ptvpmrVqgQFBdGuXTt++OEHj/u++eab1K9fHz8/P6pWrUq/fv3c504eUvTRRx/Rtm1bgoODiYqKYuDAgSQnJ1/Ij0UuIerhIiIiIiJSVqycChtmg8EIfd+Dmld6uyIpZ5xOJ86cHK/c2+Dvj8FguKj3fOyxx3jppZeoU6cO4eHh7Nu3jx49evDcc89hsVj48MMP6dWrFzt37qRmzZqsW7eOhx56iI8++oirrrqKY8eO8csvv5z2+jabjcmTJ9OwYUOSk5MZM2YMQ4cO5dtvv72I71LKKwUuIiIiIiJlwYYPYcXzru0eL0LjXt6tR8olZ04OO1u38cq9G25YjyEgoNjtFy1aRFBQkMexxx9/nIEDBxb7Gs8++yzXX3+9ez8iIoIWLVq49ydPnsyCBQv4+uuvGTVqFImJiQQGBnLjjTcSHBxMrVq1aNWq1WmvP2zYMPd2nTp1mD59Ou3atSMzM7NI7SInU+AiIiIiIuJtfy2Fb0a7tjs9Au3u9mo5IhdDly5dmDlzpsexiIgI0tPTi32Ntm3beuxnZmbyzDPPsHjxYg4ePEh+fj45OTkkJiYCcP3111OrVi3q1KlD9+7d6d69O3369CHgNEHR+vXreeaZZ9i0aRMpKSk4HA4AEhMTadKkSUnerlRAClxERERERLxp/zr4bAg47dBiIPxnorcrknLM4O9Pww3rvXbvkggMDKRevXpFjmdmZgKu4VGFbDbbaa9xorFjx7Js2TJeeukl6tWrh7+/P/369cNqtQIQHBzMhg0bWLFiBd9//z1PPfUUzzzzDGvXriUsLMzjWllZWcTGxhIbG8vHH39MZGQkiYmJxMbGuq8nciYKXEREREREvOXILph7G+TnQN3r4KbpcJHnwJBLi8FgKNGwnrIoMjISgIMHD7qH+5w4ge6ZrFq1iqFDh9KnTx/AFd7s2bPHo42Pjw9du3ala9euPP3004SFhfHjjz9yyy23eLTbsWMHR48eZcqUKdSoUQOAdevWncc7k4pGgYuIiIiIiDdkJsOcWyD7KFRrCbd9CCZfb1clctHk5eWRlJTkcczHx4fKlStz5ZVXMmXKFGrXrk1ycjJPPvlksa5Zv3595s+fT69evTAYDEycONE9DAhc88b8888/XHPNNYSHh/Ptt9/icDho2LDoamA1a9bEbDbz+uuvc//997N161YmT558fm9aKhQtCy0iIiIicrHlZcDH/SB1L4THwKDPwaIJOKViWbJkCdWqVfN4XH311QC8//775Ofn06ZNG0aPHs1///vfYl3z5ZdfJjw8nKuuuopevXoRGxtL69at3efDwsKYP38+//nPf2jcuDFvvfUWn3zyCZdffnmRa0VGRhIXF8fnn39OkyZNmDJlCi+99FLpvHmpEAzOEwfGVTDp6emEhoaSlpZGSEiIt8sRERERkYrAbnMNI0r4EQIqwfBlUKmut6uq8Mrjd4Pc3Fx2795N7dq18fPz83Y5IhVGcX/21MNFRERERORicTrh6wddYYtvAAz8XGGLiMglSoGLiIiIiMjFsvxZ2PQJGExw62yo3sbbFYmIyAWiwEVERERE5GJY8w78+rJru9dr0KCbd+sREZELSoGLiIiIiMiFtmMxfDfOtd3lCWh9h3frERGRC06Bi4iIiIjIhXRgI3x5N+CENkPhmke9XJCIiFwMClxERERERC6U9APwyQCwZUOdLtDjJTAYvF2ViIhcBApcREREREQuBGuWK2zJOAiVG8KtcWDy9XZVIiJykShwEREREREpbQ4HzL8XDm6CgEow8FPwD/N2VSIichEpcBERERERKW3LJ8GORWAyw4C5EFHb2xWJiMhFpsBFRERERKQ0/TEHVr3q2r75Dah5pVfLERER71DgIiIiIiJSWvb8Ct+Mdm1fMw6a3+bVckTKqqFDh2IwGIo8unfv7u3SREpNiQKXF154gXbt2hEcHEyVKlXo3bs3O3fu9GjTuXPnIj80999/v0ebxMREevbsSUBAAFWqVOHRRx8lPz/fo82KFSto3bo1FouFevXqERcXV6SeN954g5iYGPz8/Gjfvj2///57Sd6OiIiIiEjpOZoAnw4Ghw0u7wOdJ3i7IpEyrXv37hw8eNDj8cknn5zTtZxOZ5HvlCLeVqLAZeXKlYwcOZLffvuNZcuWYbPZ6NatG1lZWR7t7rnnHo8fmqlTp7rP2e12evbsidVqZfXq1cyePZu4uDieeuopd5vdu3fTs2dPunTpwsaNGxk9ejR33303S5cudbf59NNPGTNmDE8//TQbNmygRYsWxMbGkpycfK6fhYiIiIjIuck+BnNvg5wUuKwN9J4JRnUmFzkTi8VCVFSUxyM8PJw9e/ZgMBjYuHGju21qaioGg4EVK1YArn+gNxgMfPfdd7Rp0waLxcKvv/5KXl4eDz30EFWqVMHPz4+rr76atWvXuq9T+LrFixfTvHlz/Pz8uPLKK9m6datHbb/++iudOnXC39+fGjVq8NBDDxX53ityNiX6W2DJkiUMHTqUyy+/nBYtWhAXF0diYiLr16/3aBcQEODxQxMSEuI+9/3337Nt2zbmzJlDy5YtueGGG5g8eTJvvPEGVqsVgLfeeovatWszbdo0GjduzKhRo+jXrx+vvPKK+zovv/wy99xzD3fddRdNmjThrbfeIiAggPfff/+09efl5ZGenu7xEBERERE5L/lW+OxOOLoLQmvAgE/A19/bVUkF5XQ6seXZvfJwOp0X/f0+9thjTJkyhe3bt9O8eXPGjRvHl19+yezZs9mwYQP16tUjNjaWY8eOebzu0UcfZdq0aaxdu5bIyEh69eqFzWYDICEhge7du9O3b182b97Mp59+yq+//sqoUaMu+vuT8s3nfF6clpYGQEREhMfxjz/+mDlz5hAVFUWvXr2YOHEiAQEBAMTHx9OsWTOqVq3qbh8bG8uIESP4888/adWqFfHx8XTt2tXjmrGxsYwePRoAq9XK+vXrmTDheDdNo9FI165diY+PP229L7zwApMmTTqftywiIiIicpzTCYvHwJ5fwBwEt8+D4Kpnf53IBZJvdfDO/630yr3vfe1afC2mYrdftGgRQUFBHscef/xxBg4cWOxrPPvss1x//fUAZGVlMXPmTOLi4rjhhhsAePfdd1m2bBmzZs3i0Ucfdb/u6aefdr9u9uzZVK9enQULFnDbbbfxwgsvMGjQIPf3z/r16zN9+nSuvfZaZs6ciZ+fX7Hrk4rtnAMXh8PB6NGj6dixI02bNnUfHzhwILVq1SI6OprNmzczfvx4du7cyfz58wFISkryCFsA935SUtIZ26Snp5OTk0NKSgp2u/2UbXbs2HHamidMmMCYMWPc++np6dSoUeMc3r2IiIiICLD6dfjjIzAYod/7ENX07K8REQC6dOnCzJkzPY5FRESUaCRC27Zt3dsJCQnYbDY6duzoPubr68sVV1zB9u3bPV7XoUMHj3s2bNjQ3WbTpk1s3ryZjz/+2N3G6XTicDjYvXs3jRs3LnZ9UrGdc+AycuRItm7dyq+//upx/N5773VvN2vWjGrVqnHdddeRkJBA3bp1z73SUmCxWLBYLF6tQUREREQuEdsXwbKCeQhjn4cGsd6tRwTwMRu597VrvXbvkggMDKRevXpFjmdmZgJ4DFEqHO5zqmuUtszMTO677z4eeuihIudq1qxZ6veTS9c5BS6jRo1i0aJF/Pzzz1SvXv2Mbdu3bw/Arl27qFu3LlFRUUVWEzp06BAAUVFR7ufCYye2CQkJwd/fH5PJhMlkOmWbwmuIiIiIiFwwBzfB/HsAJ7QdDu3vP+tLRC4Gg8FQomE9ZVFkZCQABw8epFWrVgAeE+ieTt26dTGbzaxatYpatWoBrqBm7dq17uFBhX777Td3eJKSksJff/3l7rnSunVrtm3bdsowSKQkShRBOp1ORo0axYIFC/jxxx+pXbv2WV9T+INRrVo1wNV1a8uWLR6rCS1btoyQkBCaNGnibrN8+XKP6yxbtszd7ctsNtOmTRuPNg6Hg+XLl3t0DRMRERERKXXpB2DuALBlQ50ucMP/wGDwdlUi5U5eXh5JSUkejyNHjuDv78+VV17pngx35cqVPPnkk2e9XmBgICNGjODRRx9lyZIlbNu2jXvuuYfs7GyGDx/u0fbZZ59l+fLlbN26laFDh1K5cmV69+4NwPjx41m9ejWjRo1i48aN/P3333z11VeaNFdKrEQ9XEaOHMncuXP56quvCA4Ods+5Ehoair+/PwkJCcydO5cePXpQqVIlNm/ezMMPP8w111xD8+bNAejWrRtNmjThjjvuYOrUqSQlJfHkk08ycuRI93Cf+++/nxkzZjBu3DiGDRvGjz/+yGeffcbixYvdtYwZM4YhQ4bQtm1brrjiCl599VWysrK46667SuuzERERERHxZM2CTwZAxgGo3BBujQOTr7erEimXlixZ4v6H+UINGzZkx44dvP/++wwfPpw2bdrQsGFDpk6dSrdu3c56zSlTpuBwOLjjjjvIyMigbdu2LF26lPDw8CLt/u///o+///6bli1b8s0332A2mwFo3rw5K1eu5IknnqBTp044nU7q1q1L//79S+/NS4VgcJZg7S7DaZL7Dz74gKFDh7Jv3z4GDx7M1q1bycrKokaNGvTp04cnn3zSY2novXv3MmLECFasWEFgYCBDhgxhypQp+Pgcz39WrFjBww8/zLZt26hevToTJ05k6NChHvedMWMGL774IklJSbRs2ZLp06e7hzAVR3p6OqGhoaSlpXnUJyIiIiJShMMBn98J27+BgEpw93KIOHuPbykfyuN3g9zcXHbv3k3t2rW1ck4xrVixgi5dupCSkkJYWJi3y5Fyqrg/eyUKXC415fEPVRERERHxkh+egV9fAZMZhnwDNa/0dkVSisrjdwMFLiWnwEVKQ3F/9ko2jbSIiIiISEX0xxxX2AJw0wyFLSIiclbnvCy0iIiIiEiFsPtn+Ga0a/uaR6GF5nEQKa86d+5MBR7kIReZeriIiIiIiJzO3tWuFYkcNri8D3R+3NsViYhIOaHARURERETkVBJ/g49vBVsW1P0P9H4LjPr1WUREikd/Y4iIiIiInGzfWpjTD6yZUPtaGDAXfDUpqYiIFJ8CFxERERGRE/27HubcAtYMiOkEt88DX39vVyUiIuWMAhcRERERkUIH/oCP+kBeOtS8CgZ+CuYAb1clIiLlkAIXERERERGAg5vgw96QmwY1roRBn4M50NtViYhIOaXARUREREQkaQt8eDPkpkL1K2DwF2AJ8nZVIlKgc+fOjB49+oxtYmJiePXVV8/YxmAwsHDhQgD27NmDwWBg48aNpVKjyMkUuIiIiIhIxXZomytsyUmBy9oUhC3B3q5K5JI2dOhQDAYD999/f5FzI0eOxGAwMHToUPex+fPnM3ny5ItYYfGsWLECg8FwykdSUlKp3KM4QZKUTQpcRERERKTiSt4Bs3tB9lGo1hIGzwe/UG9XJVIh1KhRg3nz5pGTk+M+lpuby9y5c6lZs6ZH24iICIKDy24QunPnTg4ePOjxqFKlirfLEi9T4CIiIiIiFdPhvwrCliMQ1RzuWAD+Yd6uSqTCaN26NTVq1GD+/PnuY/Pnz6dmzZq0atXKo+3JQ4qSk5Pp1asX/v7+1K5dm48//rjI9f/++2+uueYa/Pz8aNKkCcuWLTtrTVu3buWGG24gKCiIqlWrcscdd3DkyJGzvq5KlSpERUV5PIxG19fttWvXcv3111O5cmVCQ0O59tpr2bBhg/u1TqeTZ555hpo1a2KxWIiOjuahhx5yv++9e/fy8MMPu3vOSPmhwEVEREREKp4ju1xhS1YyVG0Gd34FARHerkrkvDmdTmy5uV55OJ3OEtc7bNgwPvjgA/f++++/z1133XXW1w0dOpR9+/bx008/8cUXX/Dmm2+SnJzsPu9wOLjlllswm82sWbOGt956i/Hjx5/xmqmpqfznP/+hVatWrFu3jiVLlnDo0CFuu+22Er+vE2VkZDBkyBB+/fVXfvvtN+rXr0+PHj3IyMgA4Msvv+SVV17h7bff5u+//2bhwoU0a9YMcAVQ1atX59lnn3X3nJHyw8fbBYiIiIiIXFRHE2D2jZCZBFUuV9gil5T8vDymD+nnlXs/NPsLfP38SvSawYMHM2HCBPbu3QvAqlWrmDdvHitWrDjta/766y++++47fv/9d9q1awfArFmzaNy4sbvNDz/8wI4dO1i6dCnR0dEAPP/889xwww2nve6MGTNo1aoVzz//vPvY+++/T40aNfjrr79o0KDBaV9bvXp1j/1atWrx559/AvCf//zH49w777xDWFgYK1eu5MYbbyQxMZGoqCi6du2Kr68vNWvW5IorrgBcQ6lMJhPBwcFERUWd9v5SNilwEREREZGK49huV8+WjIMQ2cgVtgRW8nZVIhVWZGQkPXv2JC4uDqfTSc+ePalcufIZX7N9+3Z8fHxo06aN+1ijRo0ICwvzaFOjRg132ALQoUOHM15306ZN/PTTTwQFFV2hLCEh4YyByy+//OIxx4yvr697+9ChQzz55JOsWLGC5ORk7HY72dnZJCYmAnDrrbfy6quvUqdOHbp3706PHj3o1asXPj76ul7e6b+giIiIiFQMKXtdYUv6v1C5AQz5BoIivV2VSKnysVh4aPYXXrv3uRg2bBijRo0C4I033ijNkkokMzOTXr168b///a/IuWrVqp3xtbVr1/YIfE40ZMgQjh49ymuvvUatWrWwWCx06NABq9UKuCYP3rlzJz/88APLli3jgQce4MUXX2TlypUewY2UPwpcREREROTSl7rPNYwobR9UqlcQtmgFEbn0GAyGEg/r8bbu3btjtVoxGAzExsaetX2jRo3Iz89n/fr17iFFO3fuJDU11d2mcePG7Nu3j4MHD7rDkt9+++2M123dujVffvklMTExpdq7ZNWqVbz55pv06NEDgH379hWZiNff359evXrRq1cvRo4cSaNGjdiyZQutW7fGbDZjt9tLrR65eDRproiIiIhc2tL+dYUtqYkQUccVtgRrLgSRssJkMrF9+3a2bduGyWQ6a/uGDRvSvXt37rvvPtasWcP69eu5++678ff3d7fp2rUrDRo0YMiQIWzatIlffvmFJ5544ozXHTlyJMeOHeP2229n7dq1JCQksHTpUu66666zBh7JyckkJSV5PGw2GwD169fno48+Yvv27axZs4ZBgwZ51BoXF8esWbPYunUr//zzD3PmzMHf359atWoBEBMTw88//8y///5brBWTpOxQ4CIiIiIil670A66wJWUPhMfAkEUQEn22V4nIRRYSEkJISEix23/wwQdER0dz7bXXcsstt3DvvfdSpcrxXmtGo5EFCxaQk5PDFVdcwd13381zzz13xmtGR0ezatUq7HY73bp1o1mzZowePZqwsDD3Es+n07BhQ6pVq+bxWL9+PeCa0DclJYXWrVtzxx138NBDD3nUGhYWxrvvvkvHjh1p3rw5P/zwA9988w2VKrnml3r22WfZs2cPdevWJTJSwyDLE4PzXNbuukSkp6cTGhpKWlpaiX64RURERKSMc9hhw2xY/izkpEBYTRj6LYTV8HZlUkaVx+8Gubm57N69m9q1a+NXzoYRiZRnxf3Z0xwuIiIiInJp2bcWvh0LBze69qtcDrfPVdgiIiIXlQIXEREREbk0ZB6GH56BjXNc+5YQ6PIEtLsbTPq1V0RELi79zSMiIiIi5Zs9H9a+Bz89D3lprmMtB0PXp7USkYiIeI0CFxEREREpv/asgm8fheQ/XfvVWkCPaVCjnXfrEhGRCk+Bi4iIiIiUP+kHYdlE2PK5a98/HK57CloPAePZl5UVERG50BS4iIiIiEj5kW+FNW/Byv+BNRMwQJuhrrAlIMLb1YmIiLgpcBERERGR8iHhJ/huHBz5y7VfvR30eBGiW3m3LhERkVNQ4CIiIiIiZVvqPlj6OGz/2rUfGAldJ0GL28Fo9G5tIiIip6HARURERETKJlsuxL8OP0+D/BwwmOCKe6HzY+Af5u3qREREzkj/JCAiIiIiZc+hbfB2J/jxv66wpVZHuO9nuGGKwhYROWdDhw6ld+/e3i7jvK1YsQKDwUBqaqq3S5EzUOAiIiIiImXLxrnw7n9cc7UEVYW+s2DoYohq6u3KRKSUDB06FIPBwJQpUzyOL1y4EIPBcN7X37NnDwaDgY0bN573tQrl5OQQERFB5cqVycvLK7XrnourrrqKgwcPEhoa6tU65MwUuIiIiIhI2WDNhq9GwsIRrl4tdf8DI1ZDs35QCl/ARKRs8fPz43//+x8pKSmlel2r1Vqq1yv05Zdfcvnll9OoUSMWLlx4Qe5RHDabDbPZTFRUVKmEU3LhKHAREREREe878je81xX+mAMGI3R5EgZ9CYGVvV2ZiFwgXbt2JSoqihdeeOGM7QqDDovFQkxMDNOmTfM4HxMTw+TJk7nzzjsJCQnh3nvvpXbt2gC0atUKg8FA586dPV7z0ksvUa1aNSpVqsTIkSOx2WxnrXfWrFkMHjyYwYMHM2vWrCLnDQYDb7/9NjfeeCMBAQE0btyY+Ph4du3aRefOnQkMDOSqq64iISHB43VfffUVrVu3xs/Pjzp16jBp0iTy8/M9rjtz5kxuuukmAgMDee655045pGjVqlV07tyZgIAAwsPDiY2NdYdZS5Ys4eqrryYsLIxKlSpx4403FqlDSp8CFxERERHxri1fwDudIflPCKwCdyyEax/VCkQi58DpdOKw2r3ycDqdJarVZDLx/PPP8/rrr7N///5Ttlm/fj233XYbAwYMYMuWLTzzzDNMnDiRuLg4j3YvvfQSLVq04I8//mDixIn8/vvvAPzwww8cPHiQ+fPnu9v+9NNPJCQk8NNPPzF79mzi4uKKXO9kCQkJxMfHc9ttt3Hbbbfxyy+/sHfv3iLtCoOfjRs30qhRIwYOHMh9993HhAkTWLduHU6nk1GjRrnb//LLL9x555383//9H9u2bePtt98mLi6O5557zuO6zzzzDH369GHLli0MGzasyH03btzIddddR5MmTYiPj+fXX3+lV69e2O12ALKyshgzZgzr1q1j+fLlGI1G+vTpg8PhOOP7lvNjcJb0p+ISkp6eTmhoKGlpaYSEhHi7HBEREZGKxZbrWu55XcG/FMd0cs3XElzVu3VJhVQevxvk5uaye/duateujZ+fHwAOq50DT632Sj3Rz16F0WwqVtuhQ4eSmprKwoUL6dChA02aNGHWrFksXLiQPn36uMObQYMGcfjwYb7//nv3a8eNG8fixYv5888/AVcPl1atWrFgwQJ3mz179lC7dm3++OMPWrZs6XHfFStWkJCQgMnkqvW2227DaDQyb96809b7xBNPsG3bNvc9evfuTcuWLXnmmWfcbQwGA08++SSTJ08G4LfffqNDhw7MmjXLHZLMmzePu+66i5ycHMDVy+e6665jwoQJ7uvMmTOHcePGceDAAfd1R48ezSuvvOJus2LFCrp06UJKSgphYWEMHDiQxMREfv3112J9/keOHCEyMpItW7bQtKnmxyqpU/3snYr+2UBERERELr5ju+H9bsfDlmsedfVsUdgiUuH873//Y/bs2Wzfvr3Iue3bt9OxY0ePYx07duTvv/92994AaNu2bbHvd/nll7vDFoBq1aqRnJx82vZ2u53Zs2czePBg97HBgwcTFxdXpIdI8+bN3dtVq7r+PGvWrJnHsdzcXNLT0wHYtGkTzz77LEFBQe7HPffcw8GDB8nOzi72+yvs4XI6f//9N7fffjt16tQhJCSEmJgYABITE894XTk/Pt4uQEREREQqmO3fwMKRkJcG/hFwy7tQv6u3qxK5JBh8jUQ/e5XX7n0urrnmGmJjY5kwYQJDhw49p2sEBgYWu62vr6/HvsFgOOPQmqVLl/Lvv//Sv39/j+N2u53ly5dz/fXXn/LahRPanupY4f0yMzOZNGkSt9xyS5H7nthz4mzvz9/f/4zne/XqRa1atXj33XeJjo7G4XDQtGnTCzbBsLgocBERERGRiyPfCj88A7+94dqv0R76vQ+h1b1alsilxGAwYCjmsJ6yZMqUKbRs2ZKGDRt6HG/cuDGrVq3yOLZq1SoaNGjg0UvlZGazGcCjF8y5mjVrFgMGDOCJJ57wOP7cc88xa9Ysj8ClpFq3bs3OnTupV6/eedXYvHlzli9fzqRJk4qcO3r0KDt37uTdd9+lU6dOAMUeeiTnR4GLiIiIiFx4qfvgi7tg/1rX/lUPwnVPg8n3zK8TkQqhWbNmDBo0iOnTp3scf+SRR2jXrh2TJ0+mf//+xMfHM2PGDN58880zXq9KlSr4+/uzZMkSqlevjp+fH6GhoSWu6/Dhw3zzzTd8/fXXReY6ufPOO+nTpw/Hjh0jIiKixNcGeOqpp7jxxhupWbMm/fr1w2g0smnTJrZu3cp///vfYl9nwoQJNGvWjAceeID7778fs9nMTz/9xK233kpERASVKlXinXfeoVq1aiQmJvLYY4+dU71SMprDRUREREQurL++h7c7ucIWv1AYMBe6/Vdhi4h4ePbZZ4sM7WndujWfffYZ8+bNo2nTpjz11FM8++yzZx165OPjw/Tp03n77beJjo7m5ptvPqeaPvzwQwIDA085P8p1112Hv78/c+bMOadrA8TGxrJo0SK+//572rVrx5VXXskrr7xCrVq1SnSdBg0a8P3337Np0yauuOIKOnTowFdffYWPj497QuD169fTtGlTHn74YV588cVzrlmKT6sUlbOZyEVERETKDXs+/PRf+LVgZY3oVnBrHITHeLMqkVMqj98NirtSioiUruL+7GlIkYiIiIiUvvSD8OVw2Fsw98IV90G3yeBj8W5dIiIiF4kCFxEREREpXYf+hA97Q1YymIPh5tfh8j7erkpEROSiUuAiIiIiIqUnaQvMvglyjkGVy6H/R1CprrerEhERuegUuIiIiIhI6TiwET7qDTkpEN0a7pgP/uHerkpERMQrFLiIiIiIyPn7dz181Ady06B6Oxj8pWtFIhG54CrwOigiXlHcnzktCy0iIiIi52ffWtecLblpUONKGDxfYYvIReDr61paPTs728uViFQshT9zhT+Dp6MeLiIiIiJy7hJ/gzn9wJoBtTrCwM/AEuTtqkQqBJPJRFhYGMnJyQAEBARgMBi8XJXIpcvpdJKdnU1ycjJhYWGYTKYztlfgIiIiIiLnZs8q+PhWsGVBTCcY+CmYA71dlUiFEhUVBeAOXUTkwgsLC3P/7J2JAhcRERERKbndP8Pc/mDLhjpdYMBcMAd4uyqRCsdgMFCtWjWqVKmCzWbzdjkilzxfX9+z9mwppMBFREREREom4Sf45HbIz4F6XaH/HPD193ZVIhWayWQq9pdAEbk4FLiIiIiISPH9/QPMGwj2PKgfC7d9CL5+3q5KRESkzNEqRSIiIiJSPH8thXm3u8KWhj2h/0cKW0RERE5DPVxERERE5Ox2LIbPhoDDBo17Qd/3wcfs7apERETKLPVwEREREZEz2/Y1fHanK2y5vA/0+0Bhi4iIyFkocBERERGR09s6Hz4fCo58aHYr3PIemHy9XZWIiEiZp8BFRERERE5t8+fw5XBw2qH5AOjzNpg0Il1ERKQ4ShS4vPDCC7Rr147g4GCqVKlC79692blzp0eb3NxcRo4cSaVKlQgKCqJv374cOnTIo01iYiI9e/YkICCAKlWq8Oijj5Kfn+/RZsWKFbRu3RqLxUK9evWIi4srUs8bb7xBTEwMfn5+tG/fnt9//70kb0dERERETmfTPFhwLzgd0HIw9H4TjFpyVkREpLhKFLisXLmSkSNH8ttvv7Fs2TJsNhvdunUjKyvL3ebhhx/mm2++4fPPP2flypUcOHCAW265xX3ebrfTs2dPrFYrq1evZvbs2cTFxfHUU0+52+zevZuePXvSpUsXNm7cyOjRo7n77rtZunSpu82nn37KmDFjePrpp9mwYQMtWrQgNjaW5OTk8/k8REREROSPObDgflfY0noI3PS6whYREZESMjidTue5vvjw4cNUqVKFlStXcs0115CWlkZkZCRz586lX79+AOzYsYPGjRsTHx/PlVdeyXfffceNN97IgQMHqFq1KgBvvfUW48eP5/Dhw5jNZsaPH8/ixYvZunWr+14DBgwgNTWVJUuWANC+fXvatWvHjBkzAHA4HNSoUYMHH3yQxx57rFj1p6enExoaSlpaGiEhIef6MYiIiIhcGuz5sOIF+OUl137b4dDjJTBqFLpc+vTdQERK23n97ZmWlgZAREQEAOvXr8dms9G1a1d3m0aNGlGzZk3i4+MBiI+Pp1mzZu6wBSA2Npb09HT+/PNPd5sTr1HYpvAaVquV9evXe7QxGo107drV3eZU8vLySE9P93iIiIiICJB+ED686XjY0mEU9JymsEVEROQcnfPfoA6Hg9GjR9OxY0eaNm0KQFJSEmazmbCwMI+2VatWJSkpyd3mxLCl8HzhuTO1SU9PJycnhyNHjmC320/ZpvAap/LCCy8QGhrqftSoUaPkb1xERETkUrPrB3jrati7CszB0O99iH0ODAZvVyYiIlJunXPgMnLkSLZu3cq8efNKs54LasKECaSlpbkf+/bt83ZJIiIiIt5jz4cfJsGcvpB9BKKawX0roWlfb1cmIiJS7p3Tun6jRo1i0aJF/Pzzz1SvXt19PCoqCqvVSmpqqkcvl0OHDhEVFeVuc/JqQoWrGJ3Y5uSVjQ4dOkRISAj+/v6YTCZMJtMp2xRe41QsFgsWi6Xkb1hERETkUpP2r2vJ58SC4djt7oZuz4Gvn3frEhERuUSUqIeL0+lk1KhRLFiwgB9//JHatWt7nG/Tpg2+vr4sX77cfWznzp0kJibSoUMHADp06MCWLVs8VhNatmwZISEhNGnSxN3mxGsUtim8htlspk2bNh5tHA4Hy5cvd7cRERERkdP4e5lrCFFivGsI0a1xrvlaFLaIiIiUmhL1cBk5ciRz587lq6++Ijg42D1fSmhoKP7+/oSGhjJ8+HDGjBlDREQEISEhPPjgg3To0IErr7wSgG7dutGkSRPuuOMOpk6dSlJSEk8++SQjR4509z65//77mTFjBuPGjWPYsGH8+OOPfPbZZyxevNhdy5gxYxgyZAht27bliiuu4NVXXyUrK4u77rqrtD4bERERkUuLPR9++i/8+oprv1oL6PcBVKrr3bpEREQuQSVaFtpwmonTPvjgA4YOHQpAbm4ujzzyCJ988gl5eXnExsby5ptvegz12bt3LyNGjGDFihUEBgYyZMgQpkyZgo/P8fxnxYoVPPzww2zbto3q1aszceJE9z0KzZgxgxdffJGkpCRatmzJ9OnTad++fbHfvJZ+ExERkQojbT98MRz2/ebav+Je6PZf8NFwaxHQdwMRKX0lClwuNfpDVURERCqEv5bCgvsgJwUsIXDT63B5b29XJVKm6LuBiJS2c5o0V0RERETKAbsNlj8Lq6e79qu1hFs/gIg6Xi1LRESkIlDgIiIiInIpSt0HXwyD/QWrQ15xH3SbrCFEIiIiF4kCFxEREZFLzc7vYOGIgiFEoXDzDGhyk7erEhERqVAUuIiIiIhcKuw2WD4JVr/u2o9u7RpCFB7j1bJEREQqIgUuIiIiIpcCh8PVq2XL5679Kx+ArpPAx+zdukRERCooBS4iIiIil4Kf/usKW4w+0HeWViESERHxMqO3CxARERGR87TuA/hlmmu713SFLSIiImWAAhcRERGR8uzvZbD4Edf2tY9Bq0HerUdEREQABS4iIiIi5dfBTfD5UHDaocVA6PyYtysSERGRAgpcRERERMqj1H3w8W1gzYTa10Cv18Bg8HZVIiIiUkCBi4iIiEh5k5sGc2+DzCSo0gT6z9FqRCIiImWMAhcRERGR8iTfCp/eAcnbICgKBn0OfqHerkpEREROosBFREREpLxwOuGbh2D3SjAHwaDPILS6t6sSERGRU1DgIiIiIlJerJgCmz4BgwlujYNqLbxdkYiIiJyGAhcRERGR8uCPj2HlFNf2jS9D/eu9W4+IiIickQIXERERkbIu4SfXUCKAq8dAm6FeLUdERETOToGLiIiISFl26E/47E5w5EPTfvCfid6uSERERIpBgYuIiIhIWZV+AD6+FfLSodbV0PtNMOrXNxERkfJAf2OLiIiIlEV5GfDxbZD+L1RuAAPmgI/F21WJiIhIMSlwERERESlr7Db4bAgc2gKBkTDoc/AP93ZVIiIiUgIKXERERETKEqcTFo+BhOXgGwADP4PwGG9XJSIiIiWkwEVERESkLPllGmz4EAxG6Pc+XNba2xWJiIjIOVDgIiIiIlJWbP4Mfpzs2r5hKjS8wbv1iIiIyDlT4CIiIiJSFuz5FRY+4NruMAquuMe79YiIiMh5UeAiIiIi4m3pB1yT5Dps0ORmuH6ytysSERGR86TARURERMSb7Db4YhhkH4GqzaDP22DUr2giIiLlnf42FxEREfGm5ZMgMR4sIXDbbPD193ZFIiIiUgoUuIiIiIh4y47FsPp11/bNb0Clut6tR0REREqNAhcRERERbzi2GxaMcG1fORKa3OTdekRERKRUKXARERERudhsufDZnZCXBtWvgOsnebsiERERKWUKXEREREQutiWPQdJmCKgEt34AJl9vVyQiIiKlTIGLiIiIyMW06VNY/wFggFvehdDq3q5IRERELgAFLiIiIiIXS/J2WDTatX3teKh3nVfLERERkQtHgYuIiIjIxZCX6Zq3xZYNdTrDteO8XZGIiIhcQApcRERERC40pxO++T848hcEV4Nb3gOjydtViYiIyAWkwEVERETkQls3C7Z+AQYT3BoHQZHerkhEREQuMAUuIiIiIhfSvxtgyQTX9vWToOaV3q1HRERELgoFLiIiIiIXSk4KfD4E7FZodCN0GOXtikREROQiUeAiIiIiciE4HLDgfkhNhPAYuPkNMBi8XZWIiIhcJApcRERERC6E1a/BX0vAZIHbPgT/MG9XJCIiIheRAhcRERGR0rZnFSyf7NruMRWqtfBuPSIiInLRKXARERERKU0Zh+CLu8Bph+YDoPUQb1ckIiIiXqDARURERKS0OOzw5XDIPASRjeHGlzVvi4iISAWlwEVERESktPz0POz5BXwDXfO2mAO9XZGIiIh4iQIXERERkdLw9zL45SXX9k3TIbKBd+sRERERr1LgIiIiInK+UvfB/Htc2+3ugWb9vFuPiIiIeJ0CFxEREZHzsWs5zO4FOSkQ3Rpin/N2RSIiIlIG+Hi7ABEREZFyKWUvLH0cdixy7QdXg1vjwMfi1bJERESkbFDgIiIiIlIStlxYPR1+mQb5uWAwQfv7oPNj4Bfq7epERESkjFDgIiIiIlJcO5fAkvGQsse1X+tq6PEiVG3i1bJERESk7FHgIiIiInI2x/6B7x6Dv5e69oOrQbf/QtO+YDB4tzYREREpkxS4iIiIiJyONRt+fRlWvQZ2Kxh9ocMDcM04sAR5uzoREREpwxS4iIiIiJzM6YTtX8PSJyBtn+tYnS5ww1SIbODd2kRERKRcUOAiIiIicqLDf8F34+Cfn1z7oTUg9nlo3EvDh0RERKTYFLiIiIiIAORlwMqp8Nub4MgHkxk6/h9cPQbMAd6uTkRERMoZBS4iIiJSsTmdsPVL+P5JyDjoOlY/Frq/AJXqerc2ERERKbcUuIiIiEjFZMuBbV/D2ndh/1rXsfAY6P4/aNjdq6WJiIhI+Wcs6Qt+/vlnevXqRXR0NAaDgYULF3qcHzp0KAaDwePRvbvnLy3Hjh1j0KBBhISEEBYWxvDhw8nMzPRos3nzZjp16oSfnx81atRg6tSpRWr5/PPPadSoEX5+fjRr1oxvv/22pG9HREREKppDf8K342BaQ1hwryts8fGDLk/AA2sUtoiIiEipKHEPl6ysLFq0aMGwYcO45ZZbTtmme/fufPDBB+59i8XicX7QoEEcPHiQZcuWYbPZuOuuu7j33nuZO3cuAOnp6XTr1o2uXbvy1ltvsWXLFoYNG0ZYWBj33nsvAKtXr+b222/nhRde4MYbb2Tu3Ln07t2bDRs20LRp05K+LREREbmU5WXCn/Nh/Wz4d93x46E1ofUd0OoOCKnmvfpERETkkmNwOp3Oc36xwcCCBQvo3bu3+9jQoUNJTU0t0vOl0Pbt22nSpAlr166lbdu2ACxZsoQePXqwf/9+oqOjmTlzJk888QRJSUmYzWYAHnvsMRYuXMiOHTsA6N+/P1lZWSxatMh97SuvvJKWLVvy1ltvFav+9PR0QkNDSUtLIyQk5Bw+ARERESnTDvwB6+Ngy5dgzXAdM/pAwx7QZohrqWejyaslikjZoO8GIlLaSjykqDhWrFhBlSpVaNiwISNGjODo0aPuc/Hx8YSFhbnDFoCuXbtiNBpZs2aNu80111zjDlsAYmNj2blzJykpKe42Xbt29bhvbGws8fHxp60rLy+P9PR0j4eIiIhcYnLTYO178FYneKezK3CxZkBEHeg6CcZsh/4fQb2uCltERETkgin1SXO7d+/OLbfcQu3atUlISODxxx/nhhtuID4+HpPJRFJSElWqVPEswseHiIgIkpKSAEhKSqJ27doebapWreo+Fx4eTlJSkvvYiW0Kr3EqL7zwApMmTSqNtykiIiJlidMJ+36HDbPhzwVgy3YdN5mh8U2u3iwxncBg8G6dIiIiUmGUeuAyYMAA93azZs1o3rw5devWZcWKFVx33XWlfbsSmTBhAmPGjHHvp6enU6NGDS9WJCIiIucl+xhs/tQ1N8vh7cePRzaC1kOgxQAIiPBefSIiIlJhXfBloevUqUPlypXZtWsX1113HVFRUSQnJ3u0yc/P59ixY0RFRQEQFRXFoUOHPNoU7p+tTeH5U7FYLEUm8BUREZFyKuFH+PQOsBasdOjjD5f3gTZDocYV6s0iIiIiXnVB5nA50f79+zl69CjVqrlm/u/QoQOpqamsX7/e3ebHH3/E4XDQvn17d5uff/4Zm83mbrNs2TIaNmxIeHi4u83y5cs97rVs2TI6dOhwod+SiIiIeNuOxTC3vytsqdIEerwEj+yAPjOhZnuFLSIiIuJ1JQ5cMjMz2bhxIxs3bgRg9+7dbNy4kcTERDIzM3n00Uf57bff2LNnD8uXL+fmm2+mXr16xMbGAtC4cWO6d+/OPffcw++//86qVasYNWoUAwYMIDo6GoCBAwdiNpsZPnw4f/75J59++imvvfaax3Cg//u//2PJkiVMmzaNHTt28Mwzz7Bu3TpGjRpVCh+LiIiIlFlbvnD1bLFbXfOz3LsSrrgH/MO8XZmIiIiIW4mXhV6xYgVdunQpcnzIkCHMnDmT3r1788cff5Camkp0dDTdunVj8uTJHhPcHjt2jFGjRvHNN99gNBrp27cv06dPJygoyN1m8+bNjBw5krVr11K5cmUefPBBxo8f73HPzz//nCeffJI9e/ZQv359pk6dSo8ePYr9XrT0m4iISDmz4UP4+iHACc0HwM1vgOmCj5AWkQpA3w1EpLSVOHC5lOgPVRERkXLkt7dgScE/vrQdBj2mgfGCj44WkQpC3w1EpLTptxQREREp+35+6XjY0mEU9HxZYYuIiIiUaeqDKyIiImWX0wnLn4VfX3btd54A147XpLgiIiJS5ilwERERkbLJ4YClE2DNW679bv+Fqx70bk0iIiIixaTARURERMoehx2+eQj+mOPa7/kytBvu3ZpERERESkCBi4iIiJQtdhssuA+2fgkGI9z8JrS83dtViYiIiJSIAhcREREpO2y58MVdsPNbMPpCv1nQ5GZvVyUiIiJSYgpcREREpGywZsG8QfDPT+DjB7d9BA26ebsqERERkXOiwEVERES8LzcN5vaHxHjwDYSB86D2Nd6uSkREROScKXARERER78o+BnNugQN/gCUUBn8BNa7wdlUiIiIi50WBi4iIiHhPxiH4qDckb4OASnDHAqjWwttViYiIiJw3BS4iIiLiHWn7YfZNcCwBgqLgzq+gSiNvVyUiIiJSKhS4iIiIyMV3NAE+7A1piRBaE4Z8BRF1vF2ViIiISKlR4CIiIiIXV+Ia+GQA5ByDSvVcPVtCq3u7KhEREZFSpcBFRERELp5tX8H8eyE/F6Jbw8BPIaiKt6sSERERKXUKXEREROTiiH8Tlj4OOKHBDdBvFpgDvV2ViIiIyAWhwEVEREQuLIcdlj4Ba2a69tvdDTdMBaPJu3WJiIiIXEAKXEREROTCseXA/Htg+zeu/eufhaseAoPBu3WJiIiIXGAKXEREROTCyDoK826HfWvAZIbeM6FZP29XJSIiInJRKHARERGR0nfsH5jTD44lgF8oDPgEYjp6uyoRERGRi0aBi4iIiJSu/etgbn/IPgKhNWHwFxDZ0NtViYiIiFxUClxERESk9OxYDF8Mh/wcqNYCBn4GwVHerkpERETkolPgIiIiIqVjzTvw3TjACfW7Qb8PwBLk7apEREREvEKBi4iIiJwfhwN+eApWv+7abz0Eer4MJv2aISIiIhWXfhMSERGRc2fLhYX3w58LXPv/mQidHtGyzyIiIlLhKXARERGRc5N9DOYNhMR4MPrCzW9Ai/7erkpERESkTFDgIiIiIiWXsse17PPRv8ESAv3nQJ1rvV2ViIiISJmhwEVERERKZu9q+OxOyDoMIZfBoC+gahNvVyUiIiJSpihwERERkeLJy4AfJsHad137VZvBoM8gJNq7dYmIiIiUQQpcRERE5Ox2/QDfjIa0fa79VoMh9gXwC/FqWSIiIiJllQIXEREROb3sY7D0Cdg017UfVhN6TYe6Xbxbl4iIiEgZp8BFRERETm3bV7B4LGQlAwZofz/850mwBHm7MhEREZEyT4GLiIiIeMo4BN+Ohe1fu/YrN4CbZkDN9t6tS0RERKQcUeAiIiIiLk4nbPoElkyA3FQwmODqh+GaR8HXz9vViYiIiJQrClxEREQEUhNdk+ImLHftRzWHm9+Aas29WpaIiIhIeaXARUREpCJzOGDdLPjhGbBmgskCnR+Dqx4Ck35NEBERETlX+k1KRESkojqyC74eBYnxrv2aHeCm16Fyfe/WJSIenHYH1r0Z5P6VQl5CKk6nE1OwGVOIGVOwGWOw2XM/yIzBZPB22WfkyLaRty8D6950AlpVwTcywNsliYiUOgUuIiIiFY09H+Jfh59eAHse+AbC9ZOg7XAwGr1dnYgA+am55O5McYUsu1Jx5tk9ztvO9GIDGAN93SFMkUAm2IxPuAVjsBmD4cIHM06Hk/zD2Vj3ZpCXmI51bzr5h3Pc503BZgUuInJJUuAiIiJSkRz6ExaOgIObXPt1r4Ner0JYTa+WJVLROW0O8nankftXCrl/HSM/OcfjvDHQB7/64VgahGP088GeYcWebsWRYXVv2zOsODKt4ABHpg1Hpg3bwazT3tNgNuJT2d/1iAzA173tj9Hv3L8mOHLzsRb0XslLzMCamIEzN79IO5/K/phrBuOjsEVELlEKXERERCoCpxM2zIbvxkN+LviFQfcXoMXtcBH+hVtEPDmdTvKP5Lh6sPyVQt4/aThtjuMNDGCuGYJfg3D8GobjGx2EwXj2n1Wnw4kjy+YZyBSEMfaME/bT83BaHdgOZGE7UDSUMQb5usMY30h/fCoH4BPpj0+EHwaf4z3hnE4n+Udzse5Nx5qYjnVvBrZDWeD0vJ7B14i5RjDmmiGYa7meTYG+5/z5iYiUBwpcRERELnV5mbB4DGz+1LVfvxvcNAOCq3q3LpEzcOY7cOTm47Q6wOHE6XCC04nT7nR9mS88dsLz8W3c7XG4XuO0OXDmOzye8di348x3nvRccN7mqsFgNmGwmDBaTBj8fFzPhfsWE0Y/H8/zZhMGv+PnDUYDeXvSC3qxpGA/luvxno0hZlfA0iAcv3phGANKHkgYjAbX8KFgM0Sf+fPNP5ZL/pEc1+NwDrYj2eQfycGR4eodY820Yd2TftINwBTuh2+kPxgMWPel48gq2nvFFOGHuWYwllohmGuG4BsVWObnlRERKW0KXERERC5lydvhsyFwZCcYTHDdU64ViDRXi1xgTqcTp9WOIycfR44dZ44NR07Bfm4+jpx8nDn5BeeLHvPo7VFWZBcNFs6LyYAlJgS/BhH4NQzHp2rARZlTBcDgY8S3SgC+VYoO53Hk5ruDGNvhHI9Qxmm1Yz+W6xkW+RgwXxaMuVYwlpohmGuFuAIfEZEKToGLiIjIpWrjJ66eLbZsCK4G/d6HWld5uyopRc58B448O848e8Gzq0eIwdfo2fPCYgIfY6l8mXdY7cfnDcmw4cgsnDvEdsKwFRv2TCvYnWe/4FkYfI1gNIDR4BpSY3T14sBgAJPBvV147ni7488YDa7PxMdYomdO3DcZcFodOPLyXZ93rufn7rGfm4/DaseZa3e3d1pdAZIpws/di8VSN8z136aMMfr5YK4ejLl6sMdxp9OJI8NG/pFsbEdywObAt0Yw5uggj2FGIiLiosBFRETkUmPLgW8fhT8+cu3X6QK3vAtBkd6tqxQ4sm1Y/83Euj8D675MbP9m4sy3g9H1hdhgKvgSbjIe/zJuOvGcaxujoeCYq51PuB9+jSPwifS/aD0MTuR0OrEdzMK2P9PV06MgRHF9gc8/4Yu83fVFvuALfokCDaOhSAhjsJhcw17cxwqGxJiNOHLt2DMLJ2UtDFZsOK32s9/rRCYDRn8f98Pg5+OxbyzYN/ibPPYL2xZn3pLywGl34sy3u4YlldN5kwwGg2uloxAzljphpXJNp9M1ROxS+e8sInIiBS4iIiKXkiN/u4YQJf8JGKDL49DpETCWvX9FPxuH1Y7tQCbWfa6AxbY/g/yjuWd/4TlK+243pkp++DeKwK9JJSwxIa5A5gJx5OWTtyuV3B0p5Ow8hiPdes7X8ujR4msq6Pni2bMChxNnTj72nPMfFmPwNWIMMWMKMmMK8nUvO2wM9nUdK9wO9C21njXlnSvg06/edpuD5MQMDiakkpSQRtI/aVw3tAm1Lq/k7dJEREqd/tQXERG5VGz5Ar75P7BmQmAk9H0P6nT2dlXF4rQ7sCVlF/RcycC2PxNbchacYhoPUyW/guEOQZirB2MM8HFNpGp34rQ7jm87nHDifsH5wklUC8858x1Y92eSl5CK/WgumasOkLnqAAY/E34NI/BvHIFfg/BzmsD0ZLbD2eTuSCF35zHydqd59FAx+Boxx7hWbjGcOPmq+7lgkla/E4/7uHpMnGEyUqfDNZfK8eEvJ/WaOeHZvW21Y7CY3JOvGoN9XdtBZozB5jI5DEbKppwMKwcT0tzhSvLeDOz5nj/YSQlpClxE5JKkwEVERKS8s+XC0sdh3SzXfq2rod8sCI66ILdzOp04svNdK7yctEqM037q/VOtKOO0OrAdzHKFLAcyIb/o8BhjsNm1lGxBuGKuHlQqwcepOPLyyfs7lZztx8jdcQxHlo2cTYfJ2XQYjGCJCcWvcQR+jSvhW9m/WNd02hzk7U4jd8cxcnceK9JDx1TJD/+GEfg1isBSO9Q1b0gpMxgNGPx8wM8HxSSlz57vwJZnP80jH1vu8f18qx2ns2AldoMBA4Xz0XB8G9fQHQqmqTm+bfDYNxbMUXP8ueC/9QnHjm9zUlsDPmYT/kG++AX6Yiql/++cTieph7I5mJDmDllSD2UXaecf7EtUnVCq1Q0jqm4oVWoGn+JqIiLln8HpdJ7/bGblVHp6OqGhoaSlpRESEuLtckREREru2D/w+VA4uMm132ksdJ4ApTh0wZGbj3Wfq+eJNdH17Miyldr1Cxn8fDDXCPLovWIKtZT6fYrD6XBi3ZdB7vaj5Gw/Rv5JXxp9Iv3xa1wJ/8YRmGuGePQwyU/NI3enK7TJ25XqudqOyYCldih+DSPwaxSOT2XvzBlT0TmdTvJtDqw5+Vhz8skreLbm2E/aP+F8rmd4UvhwlMLEwN7mYzHhH+iLX1DBI/D4s/9J+4VtfM0m8q12kvceHx508J808k6xRHR4tUCq1Qkhqm4Y1eqGElqlbP5/r+8GIlLaFLjoD1URESmvtn0NX42EvHTwj3BNjFu/63ld0ml3YjuU5RGu5B/OhlP9tlAw8SwnrQjjmqi26L5Hm4J930j/gh4swZgq+ZXJL2EA+UdzyNlxjNztx8j7J83Va6eAMcAHv4YRGIPN5P11DFuSZzhjDDEX9GIJx1IvDKNFHYwvtHybnWMHskjem8HhfRmkJWeTl+0ZqjgcpfsrsNHHgK/FVPDwOWG74OFnwtfX5FpJyQFOnDidgPP4xLFOZ+Ex17MTXL3BnAXtHSecczhxFPQYczgKep4VDKXz3Mbd7sTX2PLs5Gblu3qcnQOTr9F1vZMCJ5OvkaoxIUTVDaVa3VCi6oTiF3hheqWVNn03EJHSpr/xRUREypt8Kyx7CtbMdO3XaO9a8jm0eokvZU/Lw7ovg7zEDKz70rHtz/TskVHAFOHnCkZqBGOuGYy5WtAFGf5SVvlU8ie442UEd7wMR24+uX+lkLv9GDk7juHIzif7j+TjjQ1grhmCX6Nw/BpG4FstsMwGScXldBZ+YQeH0zVUzFHwxd7p8Pzyf/zLPpj9TQSEmDFewMmHbVY7R/dncjgxg8OJGSQnZpByIKtYgYrBAGZ/H8x+Pq5nfxMW/8Jt18O972fC1+8UQUrBw1QOl0V2OpxYc/PJybSRm2Uj98TnTBs5WTbyMm1FzjvsTuwFf04EhJhdwUrBI7JGcLn8LERELgQFLiIiIuVJaqJrCNG/6137Vz0I1z0NprP/C7IjN//4qj/70rEmZmA/xco4BovpeLhSELCYgsyl/EbKL6OfDwHNIwloHonT7sS6N52cHUdxZOfjVy8MS/1w1+o8ZYzT6SQvO5+cDCs5GVay022u5wwrOelWcjIK9tOt5GTasNtcc/Q43F0tzo3B4PpSHhhmITDMQlCYhcBwi+d+mAWz39l/LbXm5nNkX0G4ss8VsKQczOJU/bX9An2JrBVMZI1gIqID8Qv0LRKq+FrK7xLNpcFgNGAJ8MVSgnmRnE4ntlw7uVk2MEBwRNntmSYi4m0KXERERMoDpxN2LIKvRkFuKviFQu+3oFGPUzZ35BUsqbw/E9u/GVj/zST/cE7RhgbwjQo83nOlRjA+kQHuyTvlzAwmA5Y6oVjqhJ73tew2B8eSsnDkF/YWceAo6EniHh7icA0PcTgc7l4mhecKtx12Z0GoUjRQKe1hNIUMBtdnYTQcn6zVYABrrh2nw0lWmpWsNCvszTjtNXz9TO7w5cQwJt/mcPdeSU0+9fA2/xAzVWoGE1nTFbBE1gomKNyiIOACMBgM7t4/IiJyZvqTUkREpKzbtxZ+eBr2rnLtR7eGW+MgvBYADqvdvdqPbX9mQbhy6i+mpjAL5suC3OGK72XBWuLXixwOJ//+lcLfvx8i4Y/DWHOKTjha2sz+PgSEmPEP9sU/2ExA8AnbIWb8C/ZNvsYiK+EUBikn758u2HA4XOFPVmoemSl5ZKUef2Se8GzLtWPLtZOSlE1KUtFVbU4UGGZxBSsFjyo1gwkINStcERGRMkeBi4iISFl1eCcsf9bVswXAZMF5xSisDUZi25GHdf9fWPdnkH+af/U3hZrxvSzYFbBUD8L3sqBLamhQvs1OdpqVvJx88vPs2Kx28vMcrmdr4TK8BfuF560O9/K8J54PCDZTo3E4NZpUompM8AWdc8TpdHJoTzp/rz3ErnXJZJ8wrMsS4Oo5YDQaMBZMPGw0GYouAVx4rOD5xADEZDLgF1Q0QAkIMeMfZC61JYCLw2g0EBhqITDUQpVap29nzc33CGGyUvPISnHtG40GKtc4HrAEhFw6/w+LiMilTasUaSZyERG5yJx2B45cO87cfBw5+UW2HanHcCaswXF4Pw5nAA6CcPpVx+EbiT0jH4rOaYsx2Ne1nPJlQfgWPJuCy+cXU6fDSU6mrUhPiKw0z94Rp1p+tjSY/UxUbxRREMBEEBoZUCrXPXYgi7/WJvH32kOkH8l1H7cE+lCvdRXqt6tKdL0wDecS8RJ9NxCR0qYeLiIiIheI0+Ygb28aebtSyUtIw56WhyM3H6f1FIlJEQ0LHgWyAVwBgzHI1yNYMVcPwhRiuQDvoHTZbQ5yMo/PLXJiqFIYqGSm5pGdZi2y1OzpmHyNWAJ88DWb8DGb8LUY8XFvm/A1G/GxFOwXHPMxG084b8JkNpJ6KJt9246xb8cx8rLy+WfjYf7ZeBiAkMp+1GhSiZqNI7isYViJJhhNP5rDrnXJ/PX7IY7+m+k+7mMxUbt5ZRpcUZUajSO0qouIiMglSD1clGKLiEgpcTqc2A5kkrsr1RWy7EmD/NP/NWswmzD6mzBYjBhthzFm7MLgSMNoyMQYGoGxYScMUbUx+vlg9PfB4GfCFGrBFFI25qvIt9rJybQdn6C1IEzJPSlUKXy25dqLf3EDBASbT5pA1UxAqMVjYlVLgE+pfhYOh5PDiRmu8GX7MZIS0jwmmjUYDVSNCaFGkwhqNI445fCj7HQrCRuS+XvtIQ4mpLmPG00Gal5eiQbtqhLTvDK+mjtHpEzRdwMRKW0KXPSHqoiInCOn00n+kRzyElLJ+zuV3IQ0nLmew1yMIWbXUsH1wvCtGojRz+QKTyw+GMiHPz6CFf+DzCTXC6o2dS3zXP9619IvXpZvtZOanO2ezDQ1KYuUQ9mkJedgyytBgFLAaDw+v4h/sC8BoWbPlWlCXc8BoWZMF3AeleKy5uZz4K9UErcfY9+2Y6Qe8pzQ1ezvQ/WGrqFHJh8ju9YdYt+OFJyFIY0BLmsQRoN2UdRpFYlfGVwuWkRc9N1AREqbAhf9oSoicklxOpzYDmaR+3cKeX+lYN2f6eoZEmx2PULMGAu3T9wP8sVQjGEd9gwrebtS3b1Y7Gl5HucNFhOWumHukMUn0r9oDwynE7Z9BT9OhqO7XMfCakKXJ6HZrWC8uEGD0+kkJ8NGSlJWQaiSTcoh13bGsdxTTshbyGgyuMMT/yBf/IIKt4+vfONfELD4BfmWeo+Uiy39aA77t6ewb/vx4UenUqVWMPXbVaVem6oEhZf94V4iou8GIlL6SjyHy88//8yLL77I+vXrOXjwIAsWLKB3797u806nk6effpp3332X1NRUOnbsyMyZM6lfv767zbFjx3jwwQf55ptvMBqN9O3bl9dee42goCB3m82bNzNy5EjWrl1LZGQkDz74IOPGjfOo5fPPP2fixIns2bOH+vXr87///Y8ePXqcw8cgIiLlmT0tj9y/U10hy64UHCd9CXZa7TjSrdjOch1joA+m4BMCmRAzxiAzxgAfbP+6hgrln9TDAZMBS60QLAUBi/myYAymMwQK/6yAH56BA3+49gMqwzWPQtu7wOfCfjHPt9pJP5pLWmGPlUMFPVaSssnLPv0EtJYAH8KjAgmPCiAsKoDwqEDCqvgTEGrB7Gcq1wFKSYVU8qfJ1f40uTq6yPAjW56d2i0qU79tVcKqls5EuyIiIlJ+lThwycrKokWLFgwbNoxbbrmlyPmpU6cyffp0Zs+eTe3atZk4cSKxsbFs27YNPz8/AAYNGsTBgwdZtmwZNpuNu+66i3vvvZe5c+cCrnS5W7dudO3albfeeostW7YwbNgwwsLCuPfeewFYvXo1t99+Oy+88AI33ngjc+fOpXfv3mzYsIGmTZuez2ciIiJlnMNqx7o7zR2ynByCuHuZ1A/DUjsUp82BPcOKPcOKo+DZnn7ivg0cThxZ+a6wJin7NHcGDOBbLRBLvXD86oVhjgnBaC7GXBwHNsLySZDwo2vfHAQdRsFVo8ASfO4fxgmcTifZ6VbSD+eQfiSHtCO5pB9xbacfziErzXr6FxsgpJKfK0yJCiC8aoA7ZPEL8q1QoUpxGQvmc6kaE0LbHjHeLkdERETKmPMaUmQwGDx6uDidTqKjo3nkkUcYO3YsAGlpaVStWpW4uDgGDBjA9u3badKkCWvXrqVt27YALFmyhB49erB//36io6OZOXMmTzzxBElJSZjNriUtH3vsMRYuXMiOHTsA6N+/P1lZWSxatMhdz5VXXknLli156623ilW/ug2KiJQPTocTW1KWa56Uv1PI250GJ65iYwDf6sH41Q/Dr3445prBGEow/4fT4cSRbcORaXMHMfYMK47CUCbLhk9lf1cvlrphmIo7D4fTCbtXwqrXjgctRl9oO8zVqyUosgSfgku+1U56QZCSVhimFAYrh3PIt515BSSzn4nQKgGEVQ0gPOp4qBJaxR8fX03iKiIVl74biEhpK9VloXfv3k1SUhJdu3Z1HwsNDaV9+/bEx8czYMAA4uPjCQsLc4ctAF27dsVoNLJmzRr69OlDfHw811xzjTtsAYiNjeV///sfKSkphIeHEx8fz5gxYzzuHxsby8KFC09bX15eHnl5x8fap6enl8K7FhGR0uZ0OMk/moN1X4Y7ZHFkeg4IMoVa8GsQjqW+a74UYwmW6j2ZwWjAFGTGFGTGNyrwfMsHez5sW+gKWpI2F94EmvaDLo9DRO0zvtzhcJJxNJfUQ9nuR0rBc1Zq3hlfazBAUIQfIZX9Ca3sR0ikv2u74Lm8z6EiIiIiUl6UauCSlORaYaFq1aoex6tWreo+l5SURJUqVTyL8PEhIiLCo03t2rWLXKPwXHh4OElJSWe8z6m88MILTJo06RzemYiIXCj2TCu2pCxsSdnYDmZhO5RF/qFsnCf11DD4GrHUDXMFLPXDTz0ZrbdZs+CPORA/A1ITXcd8/KH1ndDhAQiP8Wiem2VzhSlJx4OV1GTXCkD2/NP3VDH7mQiJ9Ce0sitEcW9H+hEU4VcmVvcRERERqehKNXAp6yZMmODRKyY9PZ0aNWp4sSIRkYrDabNjO5TtClaSstyPk3uuFDL4GvGJCsSvIGSx1Aop1ipCXpF5GH5/B9a+CzkprmMBlchvcz/ZDe4gyxpA1j95pB/ZWzBRrStcyc06/TS+Jh8joVX8CataMPyn4DmsSgCWQPVSERERESnrSjVwiYqKAuDQoUNUq1bNffzQoUO0bNnS3SY5Odnjdfn5+Rw7dsz9+qioKA4dOuTRpnD/bG0Kz5+KxWLBYtHSjCIiF5LT6cSekoftYKZHuJJ/JOfUywsbwCfCD5+oQHzdjwB8KvljMJbNUCHfZic7zUpW4j9krVtM9j9bybIFk2W/g2xTNFm+tclKDyDv83xg+xmvFRRuIbTKCYFKwYS1QRF+GMvo+xcRERGRsyvVwKV27dpERUWxfPlyd8CSnp7OmjVrGDFiBAAdOnQgNTWV9evX06ZNGwB+/PFHHA4H7du3d7d54oknsNls+Pq6xuQvW7aMhg0bEh4e7m6zfPlyRo8e7b7/smXL6NChQ2m+JREROQOn3Un+4Wys/2a6hgMdyMR6IAtn7qmXGDYG+uBbNRDfasfDFZ+qAcVb5ecisdscZKTkknEsl4yjrufMo7lkpeWRlWYlKzXvpCWU2xY8TuZqY/QxEBhqITDUTHAlf4/eKqFV/DH7VajOpiIiIiIVRol/y8vMzGTXrl3u/d27d7Nx40YiIiKoWbMmo0eP5r///S/169d3LwsdHR3tXsmocePGdO/enXvuuYe33noLm83GqFGjGDBgANHR0QAMHDiQSZMmMXz4cMaPH8/WrVt57bXXeOWVV9z3/b//+z+uvfZapk2bRs+ePZk3bx7r1q3jnXfeOc+PRERETsVhtbt6qxzIxHYgC+uBTGxJWZB/im4rJgO+VQNO6LHiClmMZWB5YVue3R2kuEKVnOP7R3PJSreeuifOSUxYCTQdIyDQSWC1aAKqRRMYZikIVywEhJoJDLNokloRERGRCqrEy0KvWLGCLl26FDk+ZMgQ4uLicDqdPP3007zzzjukpqZy9dVX8+abb9KgQQN322PHjjFq1Ci++eYbjEYjffv2Zfr06QQFBbnbbN68mZEjR7J27VoqV67Mgw8+yPjx4z3u+fnnn/Pkk0+yZ88e6tevz9SpU+nRo0ex34uWfhMROTV7ls0zWDmQedohQQaLCd9qgZijg/CNDsI3OhDfKgFen28lL9vGv3+lcnBXKulHj/dWyT3NnDEn8vE1ElzJj+AIP4LCfQi27iLo4FICs7YSYEwh0DcdS/OeGDo+CFWbXIR3IyIiF5q+G4hIaStx4HIp0R+qIlLROB1OHNk27OnWgkceDve2a9+ebj3tRLbGYF+PYMUcHYQp3K9MzLVitzk4+E8a+3ccY/+OFJL3pHO6v+HM/j4ER/i5QpWCYKVwP6SSH36BPhgO/AF/fARb50NeWsELg6HtUGg/AkIvu2jvTURELjx9NxCR0qaB4yIilwinw4n9WC75qXnYM6zY0wrDlLzjgUqGFezFy9lNlfwKwpVAfKODXOFKsPkCv4viczqcHPk3k/3bU9i/4xgH/k4l/6SlpMOjArisQTjh1QIKAhV/giv5YfE/zV9/mcmwebZraefDO44fD60J7YZBm7vAP+zCvSkRERERuWQocBERKYccVjv5h7Jdw30OZhU8MnFaHWd/MWAM8sUUYsYUYil4NmM8Yd8nwg9jGZzMNf1IDvt3pLCvoBfLycODAkLMVG8cTo1GEVRvFE5QuN/ZL2q3wd/LXCHL30vBUTAhro8fNL4JWg2GmE5gLKNLUouIiIhImVT2fpsWEREP9gwrtoNZJ4QrmeQfPs0Syz5GfCIsruAk2Iwp1FzwbDkeqAT7YjCVj/AgN9PG/p2uHiz7dqSQfjjH47yvxcRlDcKo3iiC6o3DiagWWPwJapN3wMY5sGkeZB0+fvyyttBqEDTtC36hpfhuRERERKQiUeAiIlJGOB1O8o/kYDtYMFltwTLLp51PJcjXtbxydBDmgmefSv4YTN6fT+Vs7PkOstNdSyxnp1nJSstz7aflkZVqJTvdtQRzTobnikFGo4GqdUKo3iiCGo3CqVI7BFNJwqPcNNecLH/MgX/XHT8eGAnN+7t6s1RpXHpvVEREREQqLAUuIiJe4Mg7YYnlg65wJT8pC6ftFEOCDOBT2b9IuFKW5lMp5LA7yEqzkpmSR1ZqnitISbOSnebazkqzkp1mJTfr7CsFFYqIDnQNEWocTnT9MMwlHerkcMCeX2Djx7Dta8gv6CVjMEGD7q7eLPW7gcm3ZNcVERERETkDBS4iIheQ0+nEkW5191YpnG8l/+hpllj2NbqClYJQxbdaIL5RgRjNpotf/EmcDifZGVYyj+WRmZJLZkoeGSm5ZKUc389KzTvtykAnM5oMBISYCQyzuJ5DLQSEej4HRVjwDzrHYCnrKGyYDes/gNTE48cjG7l6sjTvD0FVzu3aIiIiIiJnocBFRKSUOO0O8g/neIYrBzJxZOefsr0x2Pz/7d13nBx1/T/w15Tt5WpyyaWHJCSBBAIEUgFpoYhCQlNAmgW+tMAPaSIBQVTaV7+CBo2KDUQFUQmgiAUSOiYhHUgvV3J1+057//6YsjtX9y6X3N7l/YR9zOzM3Ps+uze5233tZz4feKtD8AwPOyGLXBk4aFMsk0FQFR1KWoeS1qBkrFtaRyqmOCFKojmDRJMZphhG92mKKAoIlfqsmxfBEh9CJV4Eo+Z9O1DxBz0H5rHuXQ289xNg7R8BPWtu80XNMVlmXA6MOAYodJwXxhhjjDHGeokDF8YY6yEyCHpLFmpdEmpdClp9CmpdCmptsuMpl0VArgzCUx2Cd7g1zfLwEKTe9tzogKEbaK5LoXF3Aum4agUn1i2j5+5ndNe2Dgfe7YIgAKFSH8JlPoRK/QiX+xAp85v3y8z1QNQL8SCFRg5NATb+xQxadr2b2z78KOD4rwFHnA94gwe3TYwxxhhj7JDGgQtjjHWCDILenIFqBSpaXQpqvRmwdDjWCgDBJzm9VZxwpSoIwdN3lwTpqoHGvQns2xlHw64E9u2Ko3F3AlonbeqOKArwBmR4AxI8fhm+gAx/2INwmQ9hK0yxl6ESL8RimuEoXgt8+DTwwc+BRJ25TfQAR5wHHP9VYORM7s3CGGOMMcb6BQcujLFDnhOs2IFKAcEKJAGeIQHIVSF4hgbhqQqavVbK/H16mYyS0dCwO4GGXXHs2xnHvl0JNO9Ndnhpj+yTMGRkGOEyHzwBGT6/O0Tx+mV4AlJu3W+uSx6x8KmUiwERsOs9szfLhj8DhjUAb7gKOO5q4Ngrgciwfm0iY4wxxhhjHLgwxg45eiyL7I44lJ0xKDvjUPcmuglWgpCrgk6wIlcFIZf3/fTLmYSKfbvi2LcrjgYrXGmpT3V42Y8vJGPIqIh5G23eSoYcvPFf+oWaAdY9D7z3FFCzJrd91Czg+K8AUz4HyMU3cxNjjDHGGDs0ceDC2CFEU3UkW7JQMjo0xYCW1aEqOjRFh5o1t6mKnrfdsLa79+uqgWDUi9KqIEqGBlA61FyWDAlA7sNLZ/oCaQbUmiSyO2JOwKK3ZNsfKHcQrAzt+2BFU3W07kujpS5l3urTaKlNoaU+hUyi46mSQ6U+DBkVRuXoXMASLvMNrF4p+6NlF/DBz4APfwmkm8xtkg+YdqEZtFQf3a/NY4wxxhhjrCMcuDA2iBi6gURzFrHGDGINacStZawhg1hjGqlWpc++V0tdCns/aXFvFIBwmc8KYIIoHRpwltHKACT5wI/9occUKDtjyO6MQdkRh7InAWhteq8IgGdYCN4xUXhHR+AdFYFc0Xe9Q8ggxJszaK1Lo7nODFNa61Jorksh3pTpcqDa6JAAhowKm71WRkVQOSqCYPQQ7LWRqAe2rzB7tGx+GSDrZ1gyCph5DTDjS0Coon/byBhjjDHGWBc4cGFsACEipGJKuyAl1pBBvDGNRFP30/bKHhHegAzZJ8HjFSF7JXh8krn0itZ2677P3G8fY24XIckiEi1ZM0ioT6O13uypoaQ1JJqySDRlsXtTs+v7CgIQqfCbAcwQM4gJRDyQZBGSR3Qt5Tb3zaUASc6NNUJEIMWAVp8yw5WdcSg7Yh32XhGDMryjo/COiZjLkRGIvp71xCEiqBkd2bSGbEpFNqXl3VSk46r1PJjPhd7FALZev4TSqqD7ZvUS8voP0V/LiX3AjhXAtjfNoKVhs3v/uBPN2YYmnQlIh+hzxBhjjDHGBhR+1cpYETEMQrIli3hTBvHGjLlsyiBhrzdmup2JRpQFRMr9iFYGEK0wlxFrGa30wx/yHJBLUYgImYSKFieAMcMYe6lmdTMgashgFwARgEewbwJkIXdfFoQO98kQ4BFz6x11SCEAGVlEyi8jHZCRDXthBCRIHgliYxZyayOkTc1mkCObQQ4AM0hJau0DFeu+ktJAPZhCWZQElAwJtAtVSqvMoOmQuRyoM3bAst267dvU5gABGHYkMO4kYMZlwNAp/dJMxhhjjDHGeosDF8YOIl01nBDFFapYy2Rz9z1UIADhUp8TqESsICVaYS5DJb5+GThVEAT4wx5USQIqIx7oQwIwRivQ4+ZNacxAac5AjysQ0hpEvQfpRRcUg9CkE5o1c9miETQAQAfjtPQBURbgC3rgD8rwBmT4gh74gjL8IY8rYImU+4pr+uT+lmzIhSvbVwD7NrY/pmoaMHaeeRszBwiWH/x2MsYYY4wx1kc4cGGsj9mX/TTXJNFUk0RTTQpNexNorU8jFet+DBVRFBAq8yFS7kekwu9eWjfJc3DfyJNmQE8oMOIq9LgCI6E6QYoeV2DkrUPrOkhxXcgjAIJPhuiXIPplCAFzKfplCPY2nwR4RZBHAsmieZMEGJIITQQEAqp0QqVmQLdvKuXWNQOGZkDXCJqat81ZN9vrDcrwBc3pk+0Qxbx5zG0hc5/sLa5BgYtWoh7Y+XYuYKnf0P6YqiPzApa5HLAwxhhjjLFBhQMXxnqpXbCy1w5YksgmtU6/TvaIToASzg9SrPVQqQ/iQeihQrqRC04SqhmaOEsFelyFYS0p0/nj6YjglyFFPZDCXohRL6SwF1LUCynihRjxQIqY60JA5ktrBoN0M7B3FbDnv+Zy7yogtqf9cUOPcAcsPOgtY4wxxhgbxDhwYawbdrDSVJM0w5VCghUBKKkMoLw6hLLhIZQPD6FsWBCRcj/84f4Zv0NPKEi+W4v02gbosSyMVM9CFEgCpLAHYsQMUMSwxwlRzCDFXvdAKLKpoVkfyiaAmjXA3v/mQpbmbR0cKJjjrjgByzwOWBhjjDHG2CGFAxd2yDIMQjquIBVTkGpVkIplnfVkm/tqVu+4SF6wUj7cCleqQyirChbNpSdqbRLxFXuQWl3f/nIfERDDXkhhs9eJGDYDE/fS3M+9UQ5BagaoW5fXc+W/wL7N6HBe67JxwIhjgOoZQPUxwPCjAF/4oDeZMcYYY4yxYsGBCxuUyCDEGtNo3J1EvDnjDlRiZqCSiSsFzzojCEC0yIOVfGQQMh83I7FiD7KftjjbPSPDCM+phrc6DDHsgRj09MsAu6xIGbo57srGvwI73jLHXTE66AkVHWEFKzPMkGX40Tz+CmOMMcYYY21w4MIGPE3V0bQ3iYZdCTTsiqNhTwINuxNQM530SsknAIGIF6ESL4JR61bic9bN7T6Ey3xFGay0ZSg6Uv+tQ2LlXmj70uZGAQgcWYnw3Gp4x0S5lwpz0zVgx0pgw5/NoCVZ794frHT3XKmeAUSq+qetjDHGGGOMDSAcuLABJR1XzGBldwINu+No2J1Ac20K1MFUypIsorw6hGhlAMGS/FDFh6C1Hgh7BsXUvVpLFsm39yLxXi0obfZIEHwSQjOHITynGnK5v59byIqKrgLb37RClpeAVENun78EmPxZYOLpwIhjgZJRZhcvxhhjjDHGWI9w4MKKEhmE1n1pM1jZFXeWydaOp1X2hz2oHBlG5aiItQyjrCo4KMKUrii74oiv2IP02n2AYW6Tyv0Iz61G6LgqiD7+J84smgJsewPY8CKwaTmQbsrtC5SZIcsR5wFjTwRkb3+1kjHGGGOMsUGD342xfkdESDRnUb89hvodMdRtj2PfzjiUdAdjRwhAyZAAKkdGUDkqjMqRYQwZFUGwxHvIXCpDOiG9vgGJFXug7Iw7273jShCZNwL+KeU8LgszaVlg67+B9S8Cm5cDmdbcvmAlMOWzwNTzzFmEJE8/NZIxxhhjjLHBiQMXdtCl4wrqtsdQvyOO+h0x1G+PIR1X2x0neURUjDB7qwwZGUbFyAgqRoTg9R96py0RQW/JIr22AYm39kJvyZo7JAHBo4YgPHcEvCN4RhgGc2ahLf80e7JsfgXIxnL7QkOBKeeaPVlGzwGkQ+/fEmOMMcYYYwcLv9pmB1Q2rWHfzrjTe6V+exzxpky74wRRQMWIEIaOiWLomAiGjo2ivDoEaZBfEtQZI6VC2Z2AsisOZXccyq44jEQulBJDMkInDEd4djWkCF/+cUgjAuo3mj1Ztv4L2L4SUJO5/eFhwNTPmT1ZRs8CxOIf/JkxxhhjjLHBgAMX1ifMaZgzaK5Joqk2icY9CdRvj6OlLtXh8aVVQQwdG8HQMVFUjY2icmR4QMwCdCCQZkCtSZrhinXTGtLtDxQFeEaEET5+GIJHD4HgOTSfLwYgXmsGLFv+ZS4Tte79kWpg6ufNniwjjwfEQzO4ZIwxxhhjrD9x4MJ6RNcNtNan0VybNMOVmhSaa5NoqU1BU40OvyZc7kPVmCiGjjV7rwwZE4UvcGieemQQtMZ0LlzZnYC6NwHoHcyyVOGHd1QE3pERc1kdhuDhN86HpGwC2PGW2YNly7+AfRvd+2U/MGYOMP4zwPiTgaojOWRhjDHGGGOsnx2a73pZtzRVR0tdCs01KTTVWOFKbQqtdSkYHUzBDACiLKCsKoiy4SGUDw9hyGizB0sweuhe8qInVTNY2RmzQpYEKNN+MGAxJOeClVEReEZGIIV4ENNDlqEDe1dZPVj+Bex6DzDyxzkSgOFHAYdZAcuoWYCHp/5mjDHGGGOsmHDgMkAQEQyDoKsGdNWA1mapa3reOkFXdegamds0e7v1NVr7bfnLVFxFvCEN6jhXgeyTUD7MDFbKhgVRPjyEsmEhRCv9g34a5q44lwbtjCFr9WDRG9uPVwNZhHdE2ApXwvCOjEAq9x8ysyyxTsRqgM0vmwPebn/TPaMQAJSONnuwHPYZc+rmUEX/tJMxxhhjjDFWEA5cikDjngTe/P0nTuBhBid6LhyxgpTOApADxReUrTAl12ulbHgI4VLfIT/tMBFBb85C2RWDstO6PGhvAtDa/5DkoQF4R0VzvVeGBSEcwsEUy9O6B9j4V3NGoZ3vAMg7f/wlwLgTc5cJlY8HOJRjjDHGGGNswODApQioio49m5t79DWSLELymDc5b12SRch56859WYDkkayl6Hy9nLduH+8LyCgbHkIg4uFeFxYjq0HZlXBdHpQ/a5BNDMrwjrbCldHm+CviITpeDetE625gw5/N26533ftGzgQmLTBDluoZPKMQY4wxxhhjAxi/EywCpUODOP2aqZBlKReitA1F8paSJB7yPUx6ggwCKTqMrA7KaOYyq8PI6KCsZi11GFkNlGlzXEaHkdGgt2ZdnQ8AAJIAz/AQvKMi8Fkhi1TBlwaxDjTvADb+BVj/IrDnA/e+UbPM2YSmnAuUjOyP1jHGGGP9hogAXYcg89sSxtjgw7/ZioA/5MGkmcP6uxkDGqkGtMY01H1paA0paPvs9TQo3X6Q2t6QSn1mr5VRUXPJswaxrjRty/Vk2fvfvB2COaPQ1M+bIUu0ut+ayBhjjB0shqJA2b4dytZtULZtRXbLVihbtyK7fTuqH3oI0TMX9HcTGWOsz3HgwgYMIoIRUzoMVfTmTPseKG2JAkS/BMEnQfTJEPwSRJ8EwS9bS2u7T7KOk53j5TI/pMihO9sSK1DjFitkeRGoWZPbLojAmLm5kCXCAStjjLHBSW9pQXarFaZs3WYut22Fums3YBgdfk1265aD3ErGGDs4OHBhRUlryULZGYNWn3JCFW1fGqTonX6N4JMgDwnAMyQIuTIAeUgA8pAgpIgHok8CZPGQuNyHDANGKgUjkXBueiJpricTMJIp80BRBARAEEUzEBAEQBTM50gQO9wviIJ5nCBC8HkhBgIQ/X4IgQBEn89c+v0Q/H4IXm+Pn29SVeitreatpSXvlne/1b0ueDzwjh0L7/hx8I0bB691k4cOPTg/70wrsPoZYPVvgdq1ue2CCIydnwtZwkMPfFsYY4wNemQYIEUBZbPmUlFgZBWQmttmOPtUkNJmW9b8GhABsgRBkiHIknlJT6fr5tJZl2QIHhlGIoHstm1QtpihirJ1G/Smpk7bLobD8B42Hr5x4+EdPx6+w8bDO248vKP4klrG2ODEgQvrd0QErTEDZVsrsttakd0eg97UwXTKACACcpkfcl6o4rGCFTE8OAb5NbJZ6K2tMFpbocdiVgARg97aAiMWh5FMQE8kYFghip6IO+tmqJLs74dgEoS8AMYH0d8mnPH7QdmsKzwxEolefSt1924kV6xwbRODQSuIGQ/vuLG5MGbsWIiBwP4/vrr1wHs/BT76PaBaz7kgmTML2SFLqHL/vw9jjLGDjohAqgpKpWBkMjDSaVAmY27TNDPI0DQz5NA0wN6uqiDVXnZwjGreN6yghFTVCkWU3E113zdUKzixtkPrm0ulDyS5enguVBk/Dt5xZrgiVVYOitdqjDFWKA5c2EFHBkGrT5nhinUz4m1m/BEAT3UYnmEhV6gil/shyANj3BTzEqgYtH37zFtTkxkqxGJmjw0rTDHsHh3Wfcp0Ejb1lCxDCochOrcQpFAYYigIQACRARhkfsJFhjlonUFmd1+i9vvtdcMAkWF+QpZJw0hnYGQzoLT5ghS6bj8BoFQKeirVs3YLAsRoFFJpCaSSUnNZWuped+6XgtIp89O1bduhbNtmdlvevQdGKoXMhg3IbNjQ/qkZPtzVG8Y3aSICRx8N0dvNZWO6ak7j/N5PgZ1v5bYPmQLMvAY4YiEQqujZ42WMsYOADANGMgkjHocej5vLWBxGwlrGY9DjibxlHKTr5u99wPpbkLcOgOxreQnt9tnHEwjQDfNvh2EAum7+fcnf5lrq7fZBEMxekx6PufR6IHjMpejJv+9tc1xuHaIAymRhpFPm36tMBkYmDUqlYWQyub9n6TQobW7r7PKXomI/Nz6f89yIXl9B2wRRBGk6SNcATbPWdZCmAh2uW8fp1teoGgSfzxWq2L1NxWCwv58ZxhgrChy4sAOOdIK6N5ELWLbH2g9kKwnmbD/jSuAbVwLvmAhEX+GnJxHBiMehNTRCb2yA1thorjc1AqIEMRyCGApBCplLMRQyQ4i8+4VeAkO6Dr2pKRektLs1OOukKD19ukyiCCkSgVhaAilaAqmkBFI0CrEkCikcyQUodpgSMpdS2HpckUivLunpC6Sq1ovXjOtTQWdbOvfCVvD7rPAkL0iJRiFIPZsOOThzprsNigJl1y4rgLHCmK1boWzbBr21FVpNDbSaGiTfyoUmQiCA0AknIDRvHsLz58E7ZkyuYKwG+PBp85aotb5AAqZ8Fpj5FWDsPPNSK8ZYUSM7NNZ1s7eBbr2RVFWIwSCkcLi/m+ggIvONfypl3tJpGElrPZV0tlMqBSOVd1wqlQtWEgkz5E+YAYoThrCe8XhyvTU9XsAjm0GO7DGXHo95uY299HoAuc0x9n2PnAuH8oMhJ0gyt4mu7R0c6/FC9HoAz+Do3csYY4OVQHTo/vWNxWIoKSlBa2srotFofzdn0DDSGtSapBWutELZEQMp7k+JBK8I75gofGOtgGVUpN2MP0QEo7U1F540NkBraIDW0AitsQF6Q6O5r7ERemNj78MNm8cDKRh0hTB2KGNk0tD27YO+zwxzevKplxiNQh4yBHJ5OaTSEogleSFKSRRSSYnZo6OkNHc/HDbHTmF9TmtuhrJtm3PLbt2G9EcfQW9ocB3nGTUK4aMmIBTdg6C6EpJk9cIKDQWOuwo49kqeYYix/USK4g4UUikzVEin3IGCK2ywj82FDublHN18Im+td0UMhSAPHwZP1TDIw6rgGTbcWXqGVUEePny/QhkjmzUD+fq8kL6+3h3aNzWCkuZjPBABieDxmH9zIhGIkUhuGY1AjEQhRcLOEtY0vc4b+rZLtN0O577zNaI1BpgkAaJkjgUmSuaYYZIEiKL5906UIEjW+GFttpFhtL/0RlXNS3U6uAzHcN23LsMxDAgBv3l5azAAwW+tB6xLXZ0xyYLmNr8/t83j6fOfAytO/N6AMdbXOHDhX6q9QgZBb86YA9ruS0PbZw1uuy8FI6G2O14IyPCNjTo9WDzVIUAUoDc2Qt29G8qePVB374G6ezfUPXug7NkNbW8NSG1fqytiOAy5ogJSZaW5rCgHdKsbdd5NtwaPNZJJUDrd8ydAECBVVJhBypBKa2ndKq3l0CGQKysh+v09r88OKjIMZDdvRmLFCiT/8x+kVq0yu7TbREJwpB+h+ScifP5X4DviSP5EkbE8dm8MvbkZmj0uU3OLe/Dr5uZ2942eXnJ4oIhiwUG6GApBHjYMnmFtQ5lhEP3+dr0eVSdQaYDR2tq75gWDEIJBiG1vgYC5DAXdxwSCZoAStoMUK1iJRiH6fL1qA2OHAn5vwBjraxy4DMBfqqQZ0JMqjIQKPaHASKgwEgr0hAoYZE5zHDCnNBb9MoSADNFv3Q/IEPyy+QlTAYyMZk2/nHIHK41pQOv81JFKvPCOjsIzzAvBl4CRqIO2JxemqLv3QN2zp6DxSsRoFHJFhStIkSvt9UrIlda+iopehRuk67lZffJDmUQulBF8XneYUlFujtTPBo+GT4D3lwGrn4GeiCNV70WyLoxEQynUJncoJw2pRHjuPITmzUNo7hzIZWX91GjGOmbOVpZuFzYbKWuZTpuBtqZZg3paS83aZg/6qXWw3d6WP+h1S8t+9TIUPJ6uQ4X8QCHQ9piAeYlFRzOpWOuCJJmXeHS0LkkQRBFGMgm1rh5abQ3U2jpodbVQa2qh1tVCq6mFWlfX68DE9Vi91t+ToUPdYb19v6Lc7F1pPT7B7+cej4wdJAP1vQFjrHhx4FIEv1SJCKToMOKqGaTEFfcyL1jR4yoos/+j0ws+CaJfygtnzEBGCMiAQU7I0m4w23wiIAYJoicLogSgNEFP1MJo3gOtfi/UPXu6n3VGECBXVcEzcgS8I0bCM2IEPCNHWvdHQBoypPuBTBnrrcQ+YMs/gTXPAlv/ldtefhgw88vA0V8EAqVQduxA4s0VSK5YgeS777p7RQkC/EceidCsEyCVlUMMmp84C/Ynz4Ggs83+NFoIBPgNFOsQ6bo5+1g8YQ1mGjPD4PwBTu1ZytqGKfm3A3Q5SncEjyc3HlNZWW7ddd8cs0kuKzMvsbTG0BoIjFTKFcZodbVQa+ug1tZAq60DZTKQhlTC0zZMyQtUxGiUe8gxVqSK5b0BY2zw4MClCH6pZj5tRsOydT37IhEQQ15IYQ/EsAdS2GtOiywKMDIajIwOI62BMpp5P62DMhpI7fmI+2SkQJlGGPFa6E07oTfvhpGoBaWaAHR/+kiVlfCMqDYDFStM8YwYAe/IkfAMHz5gXmizQUBXgV3vAZ/+A9jyOlCzJm+nAEw6Ezj+y8D4U8xLDDpgKArS//0vEm++ieSKlchu3tyrpjhjBtghjB3KhOzZpEK5GaZCQfcAyaFQbtDkUMgMcPgN3EHjTBdrDwadzYKyWRiZLChrb1OsdXObvd9IJqHHYzCsWWCc2WKswU37fFp3UXSPSxUKmb1FAsFc7w+PxxwEVJbNAT5lGYJHzvUCcQ36aW/3QPB6nNnCzAClFEIwyOciY2zAKpb3BoyxwYOviSgCUtgMHASvCDFshSghD6SIGaJIIQ/EiDe3LeQxLw0q8LKgfKQZMDIalD31yG7aguzWXVB31kCta4AeS0PwmNP4GYk6GPFaGIk6QGs/xong98NTPRxSeTmkinLIZeWQysshV5RDKjOXnhFmsCIGAvv3BDG2P5q3A5++bvZk2fofQIm79w+bDkw8AzjmcqBsbLflRK8XoVmzEJo1C/j616HW1SO5ciXSH61xBvt0Zg2xBwG1lpQ3XgWl09DTaeh98RhF0Rng2ZypKmLOamUPjFkShRSJQiqJWoNjRt37I5EB3ePGUBRzJpZYHEasFXrc6hli9wqJx60BNq1LZFQVpKm5S2qU/O25JTTVvS+bhWGFKwe694jg80GMRsxZyeylPQ6Ha4a13EDfUrtgJWRejsIBCGOMMcZYv+AeLkWQYuvpDLTdeyFVlEIKh/u0xwcZBpQdO5DduBGZjZuQ2bgRmU2b2s3IYpOHD4fvsMOcMVHk8jJIZVaoUl4OqdzcJgaDfdZGxvqUkgS2r8z1Ymn81L0/WAEcdiow4VTgsFOA8NCD1jQyDGtq7LQz6wql287QkjeGkH3ZSCLhjDGkJ93b++SNvyCY04pHIuYlHpGI2eum3ZSl1rSl+VOWejrfD1ECDB2kGwUu9dyUvboBMszpeo14wuwVErOClFjMDFWsbZTN7v9zsB/PneD3Q/T5zHDD54Xo8+e2+XzmVLI+vxmihEJ5s8OE280KI1r7+FJKxhg7+IrlvQFjbPDgHi5FQNm6BdsXXeDcF/x+iJGw+5PN/E8482ceyJ+BIByG1tyCzMYNyNrhyubNrk/VHaII77hx8E+ZYt0mwzdlCg/+yQYeIqB+Yy5g2fEWoOcN3ilIwKgTgAmnABNOA4Yd1enlQgeaIIrOoKB9wZkZxhXO5F2m0hprH1TE3NsokwGIYFhfg717+6RtB50guGZiMZcRSNESiOGQGWA4l8V4nUtpBI+cd7mMx7xcxuPJXUaTv9/ng+DzQ/R5nUAFHg/3IGGMMcYYYx3iwKUIUDYLMRh0psekTAZ6JgN9X8e9UHpK8PngO/xwJ1jxT5kC36RJfKkPG5iIzF4rO98GdrwNbP03EG8TEpSMNnuwTDgVGHci4C/pl6YeaIIg5AKcXnbUMRTFCWeMuBXItMZAmTQMRQEpinlZjbOumJfXOOtK58cZOgQxNwtMQUtJBERrKYjm7DXRiHlJVDRi9gSxlyXR3FS3odCAviyKMcYYY4wNPhy4FIHgMcfg8P9+CNI0c3aKtjNSWGMQ2AMt6ok4jHb7zKUYDMJn91qZai69Y8fyFMZs4NI1oG6tGa7sfAvY+Q6Q3Oc+Rg4AY+dZIctpQMUEgHsdFET0eiFa064zxhhjjDHG+g6/Cy8igiw7sz0wdshS08DuD6weLG8Bu98HlDbTi0s+YORxwOjZwNi5wOg5gMffP+1ljDHGGGOMsQ5w4MIY61+pJmDXu7lLhPauAgzVfYyvBBh9ghmwjJkDVM8AZF//tJcxxhhjjDHGCsCBC2Ps4Eo1AdvfBLa9YfZgqd/Q/pjI8Fy4Mno2MHRqvw10yxhjjDHGGGO9wYELY+zAysTMYGXbG+atbm37YyomAqNn5QKWsrE8BgtjjDHGGGNsQOPAhTHWt5SUeYmQHbDsXQWQ7j5myBRz9iB7/JXwkP5pK2OMMcYYY4wdIBy4MMb2j6YAez7IBSy73wd0xX1M+XgzYBl3IjB2PhDu5RzGjDHGGGOMMTZAcODCGOsZQwdqVucClp3vAGrKfUx0hDtgKR3VL01ljDHGGGOMsf7S56NQ3nfffRAEwXWbPHmysz+TyeD6669HRUUFwuEwFi1ahLq6OleNnTt34pxzzkEwGMTQoUPx9a9/HZqmuY7597//jWOOOQY+nw8TJkzA008/3dcPhTEGAERAwyfAez8Ffncp8PA44KenAP+4D9jyTzNsCVYCRywEPvt94Mb/AresB85fChz9RQ5bGGOMMcYYY4ekA9LD5YgjjsA//vGP3DeRc9/mlltuwfLly/GHP/wBJSUluOGGG7Bw4UKsXLkSAKDrOs455xwMGzYMb731FmpqavClL30JHo8HDz30EABg27ZtOOecc3Dttdfit7/9LV5//XV8+ctfxvDhw7FgwYID8ZAYO7TEa4Gt/wG2/QfY+m8gtse931cCjJ2X68UydAoPcssYY4wxxhhjeQQior4seN999+HFF1/E6tWr2+1rbW3FkCFD8Mwzz+CCCy4AAGzatAlTpkzB22+/jVmzZuGVV17BZz/7WezduxdVVVUAgKVLl+KOO+7Avn374PV6cccdd2D58uVYt26dU/uSSy5BS0sLXn311YLbGovFUFJSgtbWVkSj0f174IwNZJkYsGOlGa5s/Q+wb6N7v+QFRp0AjD8ZGP8ZYPhRgMRXJDLGGGNs8OD3BoyxvnZA3jF98sknqK6uht/vx+zZs/Gd73wHo0ePxocffghVVXHaaac5x06ePBmjR492Ape3334b06ZNc8IWAFiwYAGuu+46rF+/HjNmzMDbb7/tqmEfs3jx4i7blc1mkc1mnfuxWKxvHjBjA42mmIPbbv232Ytl9wdtZhISgOHTrYDlZGDULMAb7J+2MsYYY4wxxtgA1OeBywknnICnn34ahx9+OGpqanD//fdj/vz5WLduHWpra+H1elFaWur6mqqqKtTW1gIAamtrXWGLvd/e19UxsVgM6XQagUCgw7Z95zvfwf33398XD5OxgUVXgZo1wPYVwPY3gR1vtR/otnw8MO4kM2AZdyIQLO+XpjLGGGOMMcbYYNDngctZZ53lrE+fPh0nnHACxowZg9///vedBiEHy1133YVbb73VuR+LxTBqFA/oyQYhTQH2rrLClZXAzncBNek+JlgJjLcDlpOAsjH90lTGGGOMMcYYG4wO+CAMpaWlmDRpEj799FOcfvrpUBQFLS0trl4udXV1GDZsGABg2LBheO+991w17FmM8o9pO7NRXV0dotFol6GOz+eDz+fri4fFWHHRsuZlQTtWmr1Ydr0HaGn3Mf5SYMxcYOxcM2AZOhUQ+3yiMsYYY4wxxhhjOAiBSyKRwJYtW3D55Zfj2GOPhcfjweuvv45FixYBADZv3oydO3di9uzZAIDZs2fj29/+Nurr6zF06FAAwGuvvYZoNIqpU6c6x7z88suu7/Paa685NRgb9NS0OQbL9pVmyLL7fUDLuI8JVgBj5gBj5pkzCnHAwhhjjDHGGGMHTZ8HLrfddhvOPfdcjBkzBnv37sWSJUsgSRK+8IUvoKSkBNdccw1uvfVWlJeXIxqN4sYbb8Ts2bMxa9YsAMAZZ5yBqVOn4vLLL8fDDz+M2tpa3HPPPbj++uud3inXXnstnnjiCdx+++24+uqr8c9//hO///3vsXz58r5+OIwVBzUD7HrXvERo+0pgzweArriPCQ2xerBYAUvl4RywMMYYY4wxxlg/6fPAZffu3fjCF76AxsZGDBkyBPPmzcM777yDIUOGAAD+93//F6IoYtGiRchms1iwYAF+9KMfOV8vSRJeeuklXHfddZg9ezZCoRCuuOIKfOtb33KOGTduHJYvX45bbrkFP/jBDzBy5EgsW7YMCxYs6OuHw1j/0DWgZnVuFqGd7wJ61n1MeJh5edDYeWYvlsqJgCD0R2sZY4wxxhhjjLUhEBH1dyP6SywWQ0lJCVpbWxGNRvu7OexQRgTUbzTDla3/MS8TyraZtjw8zJw9yO7BUj6eAxbGGGOMsT7C7w0YY33tgI/hwhjrRPN2M1zZ9h9g2xtAcp97v78EGDvfmqr5JKByEgcsjDHGGGOMMTZAcODC2MGSqDeDla3/NpctO9z75QAwZrbZi2XcScDwowBR6pemMsYYY4wxxhjbPxy4MHagpJrMKZq3vwlsexPYt9G9X5SBEceZAcv4k4CRMwGZpy1njDHGGGOMscGAAxfG+kqmFdjxlhmubH8DqF0HoM0QScOmmb1Xxp1k9mbxRfqlqYwxxhhjjDHGDiwOXBjrrWwC2PmOGa5sewOoWQOQ4T6m8nBg3HxzLJax84FQRf+0lTHGGGOMMcbYQcWBC2OFUlLArndzlwjt/S9gaO5jysdbMwlZAUukqn/ayhhjjDHGGGOsX3HgwlhHlBTQ+Amwb7M5XfOud4Hd7wO64j6udDQw9sRcL5aSEf3TXsYYY4wxxhhjRYUDF3Zoy8SAho+BfZusm7XeshPtxl8BgEh1LlwZNx8oG3uwW8wYY4wxxhhjbADgwIUdGlJN7UOVfZuB+N7OvyZQDgyZDAw53JyiedyJ5iVDgnDw2s0YY4wxxhhjbEDiwIUNLtm4eQlQ3XqgfoO5vm8TkNzX+deEh5mhypDJwJBJ1nIyEKo8eO1mjDHGGGOMMTaocODCBiZdBRo+MUMVO1yp2wC07uz8a0pGW8HK4bmApXISECg9aM1mjDHGGGOMMXZo4MCFFTcioHWXGabUr7eWG81xVwy146+JDAeGTgWqpprLoVOAiomAL3xw284YY4wxxhhj7JDFgQsrHvblQLVrgbp1Vs+VjUA21vHx3kheqJIXsATLD267GWOMMcYYY4yxNjhwYQcfEdCyA6i1QpW6teZ687aOjxc95qU/VVZvlaFHmOslo3gAW8YYY4wxxhhjRYkDF3ZgKcn2vVbq1nfeayUyHKg6Aqg60rodAVRMAGTvwW03Y4wxxhhjjDG2HzhwYX1DSQGNn5pjqzR8AuzbaPZaadoKgNofL3nNgWvtYGWYteSZgRhjjDHGDhkGGTDIgCzy2xLG2ODDv9lY4YjM6ZUbPs4FKw0fA/s+7np2oNDQXKBihyuVkwDJc/DazhhjjDHGDjpVV1GbqkVNogY1yRrsTe5FTSK3rEnW4Nvzvo2zxp3V301ljLE+x4ELa0/XgObt7YOVho+BTEvnXxcoAyoPByonmoGKHbKEhx6sljPGGGOMsYMopabMICWx11nmhyr7UvtAHfV2zrM3sfcgtZYxxg4uDlwONZoCJGqBWA0Q35u3zFtv3dP5lMsQgLIxZqBSOckKVw4310MVB/WhMMYYY4wVK4MM6IYOjTTohg6ddKiGiqyeRUbLIKNlkNJS5rqeQVpLI6OZS3s9o7c5ztqmGRqICM5/1GZprdvtyL+ff5zN3mfv70z+cQCQ1JJozbZ2+1x4RS+Gh4djeGg4qsPVruXw0HBUhap69NwyxthAwYHLYGHoQKYVSNSZ4Um8xh2qxPaY25L7CqsnB3I9VZxgZRJQcRjgCRzYx8IYY4wx1geICGktjYSacIKMtJZGWjWXKS3lCjhcx3Rw00l3whPN0Jz7dqhikOGsd9erYzCJeCIYHh6O6lA1hoWGmWGKdb86XI1yfzlEQezvZjLG2EHHgUsxUlJAuglINbVZNpvLdHP7fekWdDg4bUckLxAZBkSqgejw3DJaba6XjASiIwCR/zAyxhhjrHdUQ4WqqxAEAQIEiIIIAQLM//O2CUKXdQwykFSTiCkxxLIxxJQY4krcdT//Fs/GXfc1QztIj7gwPskHv+xHQA7AL1nLvPv2emfb/bIfsiA7z2u7pb3e9n4Hy7ba/izaHtP2vk/2YXhoOCLeSMGPX1NVJBobEG9qQLyxAfGGfRh/7PEYMnps4U8iY4wNEBy4FIM9HwJ/uSkXnmiZ3tfyl1rByfA2YcoIa1s1EKwAunlxwxhjjDGWj4iQUBNoyjSZt3QTGjONaMw0OuvOvkxTQZea5OsslNFIg0HGfrVdFEQnxOjtzS/7IYsyZFGGJEiQRAmy0GZdlJz7HW4XpG4Dpv1BRFCzGaRjrUi1tiIVa0Uq1oJ0LIZka4u5PR5DqrUFABCIRF03fyTSblsgEoXs9Rb0/XVNQ7K5CbHGfYg3NpjBSmMD4tb9eGOD873z+UJhDlwYY4MSBy5FQQDq1rk3iTIQKAeC5XnLsjb3O9jPM/8wxhhjrACqoaI124qWTAtasi3meja3bgcnTpCSboJiKAesPQSCTrp9px2f5EPUG0XUG0XEG0HUF3Xf90YR9eWte6Mo8ZUg4o0gKAcPaNDR13RNhZJOW7eUuczk7qfjMaSt4CQds4OVVqRbW6Gpff8z8vj8HYYxgii6QpVES7M5q2U3ZI8XkcpKRCoqEakYgtJhw/u8zYwxVgw4cCkGlROBy553Byi+CPdCYYwxxlhBFF1xApLmTLMrOGm7bi+TarJX3ysoB1HuL0dFoALl/nLXeoW/wrXdJ/kAuAdqtXur5N+3xzvp6BhZlBH1RZ1aA4Gh62YoEmtFKhZDOt5qhiPxGJR0CtmUGaCo6ZQZpKRSuUAlk4audjZ5QWFkjxeBkhIEo+YtYN3y7wuC4AQ36XgMmXjcdd++kWFAzWagZjOIN3Q/FqAoyYhUVCBSMcQKVMxQJeysV5phDb/OZYwdAjhwKQa+CDDhtP5uBWOMMcaKhKqrrgClMdOI5kwzmrPNrst2mjPNaM40I6EmevV9BAiI+qIo9ZWixFeCUl8pSn2liHqjrhCl3F+O8oAZogTkQ2vwfCKCpirIJhJmL5JYDKl4K9KxVqd3SToWQyrWYoYrsVZkkomCenp0R/b64A0E4PUH4AkE4AsE4Q0E4A+FESgptcKTKIJRcz1YYoYpHp+/TwINIkI2lew0jDF0PReqlFciUjkEwWgJBB4HkDHGAHDgwhhjjDF2UKiGiuZMM/al96Ex3YiGdIPrZm9rzjQjrsZ7XF8WZJT5y8ybr8wJUEp8Ja4wJX894o1AEqUD8GiLBxGZvUqSSWSSCSipFDKpJLLJBLKpFLIpa5lMutaVdBKZZBLZZBKG3ouBdwUB/nAEwUgUwZJSBKLmZTi+UBhef8AMUqwApf19cylK/fuzEQQB/lAY/lCYL/thjLFe4MCFMcYYY6wbuqGbs+7YN12FYijOumZoSKrJdiFKQ7oBDRkzTGnONPdoqmBJkJwApdxfjnJfubNe5i9Dhb/CdT/qPbQu0zB0HcnWZiSbm5FsaUaypclab0KiuRmplmYkWpqQammGru3/TEWCIDqhifsynai1LM1bL4E/EoE4yMMsxhhjXePAhTHGGGMDnkEGUmoKSTWZu2lJJBVrmbc9oSSQ0sxjE2oCKTWFjJ6BqucCFc3QoOiKc39/Z8mxiYKICn8FKgOVqAhUYEhgiLNeGag0L98JmJfxRLwRiMKhd2kGESEdjyHesA+xhnrEGxtdYYoZrjQjFWvt0WU7kscDXzBk3kKhnq0HQ/D6/XypDGOMsR7hwIUxxhhjRcOeOSd/gNe2g722ZlvRquTW7QDlYJJFGR7Rk7tJHgTkACoDlaj0W2FKcIjrfmWgEqW+0kF/CU93NEVBvKnBClT2OcGKvR5v2FfwTDuCKCJUUopQWTlCpWXmrawcodJyhMrKECopQ7isHIGSEni8A2fQXcYYY4MDBy6MMcYYOyCICAk14Rrk1Z5euDnbjKZ0kzODTkyJ7dfMOTZZkBH0BBH2hBH0BBHyhLpfl0Pwy354JW+7EKWz+4fSpTuFIiKomTSSrS1mD5TWFiQaG9qFKqnWloLqhcrKEa0cgkh5ZQeBirkeiEb5sh3GGGNFiwMXxhhjjBVE0RXElBgSSgIxJeaaQcdeb7tNM3o+doYAARFvxDXIa0cDwNrrUU/UCVF8ko/DkD6mZNJmgNLSgpQVpiRbW5BqbUayxVya21ugKdmCaso+H6IVQxCpHILokKG59cohiFQORbi8ArLHc4AfGWOMMXZgceDCGGOMHSLsWXJasi1IKAnElbgZoKjmuh2kxJW4sy3/phiFXebRVlAO5qYV9uWmFy7zlaHUnxeqeEsOmZlzioGaySDR3IhEk3mLNzUi2dxkrjc3ImUFK1q2sBDF5vEHECopRbCkFOGyckSGDEW0cqgVppihij8c4WCMMcbYoMeBC2OMMTZAqYaKlkyL2avEukSnOdtszoiTd9/ucRJXej7VcEcinggi3ki7GXPs9XJ/uXMr85fBL/v75PuywhiGjlRLixOcJJuanGAlP1TJpgq/fEv2+RAqLUOwpBShkjKESs1Axd4WLLEu9ykphcfPP29WOCICESCKHMAxxgYfDlwYY4yxfmaPdWIPBtuabUVMiSGWjTmDxsaUmDNorD0WSkyJ9fh7iYKIEm8Jor4owp4wIt5I7uaJIOw1t0W9Hez3RhDyhA7JmXMOFiKCms0gm0pCSaWQTSWRTSbNpXVfSbffrqSSyKZT5rZ0quDZezw+P8LlFeatrNy1Hio1x0oJlpbC6w8c4EfOOqPqBtKqjoyqI6MYyGg6FM2AqhvQDDKXOkEzDCiaudR0cvZrugFFN5f5xwsC4JNFeGURPllyrZtL0b3fI8IrifB5cscDQCKrIZ7RkMhoiGdVJDJabpuzNLfHMxriWc05xtyv4tvnT8NFx43q52eaMcb6HgcujDHGBiV7tptYNgZREJ0BT72i11mXRXm/wgNVV5HSUkhraXOpptvdd9a1NOJK3B2mWOFKXIlDJ71XbRAFEaW+UlePkjJfmXP5Tn6PkzJ/GUp8JRyY9BMyDKRireZMPI0NiDfuQ6yxwVmPNzYg1dIMQ+/duZBPEESEysrahChtluUV8AYCfGlPHzEMQtwKEOIZDbG0agUMKmLp3Pa0qiOt6MhoBtKKjqxm39eRUdtuM6AbhU99PVDFMz0f64kxxgYCDlwYY4wVPYMMxJU4WrItaM40O+OQNGebnUtq8u83Z5oRVwu7fEYWZHgkT4fT/NrrsihD0RVXeJJW09Cob98k+CU/or6oM56JMyisN+osS32lziU8HKAUDyJCJhHPhScNuRDF3pZoaoSuFXbOCKIIXzAEXzAIr7U074c62B529nuDQfhDYZ69B+bPRNENV68QRTd7hqiauc/uKWLfspoB1eodolr7Fev4rKabAYodqLQJVhKKVmjHol4RBCDgkeD3SPBIAjySCI8kQhYFyJLobJNFaykJkEURXtlcypIAj72UROf5yarm4zZvOrKa+bjt+866qpvHa0a7xxn2yebNLyPiN9ftZdjnQdgvI+rPHWPvj/g9CPtklIe8B+6JY4yxfsSBC2OMsT5jkIGMlkFKSyGlmsFERs+YSy2DjGau29vtbSktZa7ruWMyWgZJNYnmbDNas6296gEiQEDYGwbI7PGiGAoMMlzHaKRBK/BNcGdkUUZADiAoBxGQA+a6J9huW8QbcQUo+cFK1BeFT/LtVztY3yEiZJNJpGKtSMdakYq3It3amrsfy62b92Mw9ALOI0FAuLQMkYohiFRUIlJZmVuvGIJQWTn84TA8Pv8h0fNENwhJRUMqq7uWyayGpKIjldWQUnTnkhpn3Vo6vUWs9ZS9bu3vj84hPllExO9B1C8jEjCXUb/HChhkBLwy/B7RCU/sdZ9HarfN75HglyX4veblPMVwThARVN0Ma4gIIa/M468wxlgnOHBhjLFDXFbPIpaNOTPW2NP+2qFJSku5AhRnW5ulHaQcSCFPyOzhYc1uU+4vd3p82Et7X5mvDFFvtN1sN7qhQzXU3E1X3ffbbNMMDaquwiN5zPDEE3AFKUE5CI/E09cWOzIMZJKJvJAk1nl4Eo8hHWvt1aU9gWiJE56Yy0pEKs31qBWoSHLxv/wiImQ1wxw3RDWXufvmpS5Za5lRdXNdNXtE2MdnNB1pxbDCEzM4cdatYCWjGt03pg9IogCv1QvEK5vhhUcWnV4iXmu7fd8jmeOXOD1JrK+JWr0yogFzGckLU6IBc+mTB3fPIkEQ4JXN54sxxljXiv8vPmOMsW4puuIMrtqqtObCk2zMCVE6W8/qPZvytRCiIDq9OvySH37Zn7sv+13b/JIfAU+g3Ta/7EfQEzQDFF8pSv2lfdIDRBIlSKIEP3gmlYFM11RkEglkEvG84CTWSe+TVqTjMZDR8zf33kAAgWgJgpESBKJRBEtKrftRc1lSimDU2hcthew9sJdG2L0LNCN36Uv+AKn2ZTBp1Qw3UoqORFZDyu4xomhIZnP77PAjkdXMfXavElU/oJfHtCWJAkJeCSGfjGDeMuyT4fdICHrN3h8Br2wtcz1AAs6+NkuPBL+17pE4HGCMMXbwceDCGGNFgoiQ1tKumWpcs9bkDbKaP2tNTIntd88SAYIzM03Ea85UE5JDCHgCCHlCCMpBBD1Bc5m3HvAE3PuspU/yFUXXd1b8NEVBJhG3bgmkEzEnSLG3ZRJxZJJxpJ3tCaiZ3p3z3kDQDEhKSsxlpATBaF54YgUpgai5v68DFCJCa1rF3pYMalrTqGm1li0Z7G1NoyGhOCGKohvmzDI6QbUClv4YQFUSBfhl0brUxZydxmdd9uKXzaXPWrY9JuiV8oIUGSGfhKDXHMMjP1jxycVxuQxjjDHWlzhwYYyxPmaQ4Uzx60zrW0CA0qq0QjN6P5aIKIjmGCFec4yQqC9qLvPW7VCl7b6wJ8wDr7I+Yeg60vEYUq0tSLa2IN3aYvY4yV86663QlP3oYSUI8AdDCESjCERLc8FJfpCS1wMlECmB7Dmwl3/FMipqWzPY22KFKS1p7G3NmNusYCWt7v8sRPnMQVPNAVE9sjloqtNTxCsj6DODjZBXckIP83773iT2/oB1rM+6zIYxxhhjPceBC2OMAdAMDWktjaSadKbztdftMUry9zn38/bl9zhpOzBrT3hET7vBVPNnrHFtz7sf8oQ4NGF9TlMUpBMxpGMxZBJxpOMxpONxpONmYGIGJ83OeiYe6/H3EAQR/nAY/nAE/kgEgXAE/pB1PxyBLxSGHAxB8AVBviB0TwCaJwBF9CKt5i6n0QwDrTqh0SBoBkHXDWitBK2ZoOnN0IwmaLq1L6/HiGaYvUh0g6Ba++zj2h/r3q9bl/HoBpkz1WQLC03LQ14ML/FjeEkA1aW55ZCwDz6P6Mwq45VEyHkzz3ik3Iw0smguuWcIY4wxVpw4cGGMDXiqriKuxpFQErmlEkdciSOhJlzbE2rCGRQ2oZrHJdXkARnHJCAHOp2NptRX2uG0vyW+EvilQ2N2EnZwGYYOJZVGNpVEJplAOh5DJh7LC1DyA5WYtT8ONZvp8fcSBBG+cATecBRyKAoxGAYCYZA/DN0bhuoNISsHkJYCSIl+pEhCSjWQUnSksjpSqoZURkcyZo4zklJ06EYaQBpAY58/N30t6pdRXRowA5XSAKqtYGV4qR/VJQEMK/HD7xncA6syxhhjjAMXxlgf0g3dmakm/5Y/g01aSyOtmlMCZ/WsMxuMoivOtL2qbi3zZotx9uu57YqhIK2l+zQskQQJQU8wN26JPS5JmzFKXOOaWNt4il92oJBhQM1mkE2lkE0lkU2loKSSyKSSUKz72WQib3/etrR5rJLu/Tg/JIggXxCGN2j2LJHNW1oKICkEEBN8iMGPZsOLVviQEf0gu7eVDiBu3VwU69bao7Z4ZdG5NCboNccI8cq5HiGyKEASRecyG3OZf1+ElL/POVa0vjZ3XNv7kijAI1nbXN/PvB/wShhe4kfIxy+vGGOMMcaBC2MDnkEGFF2BYihmGGEFEfnbnJsVZriCC6OD+7p7elzX11nrac0MTfJDFMVQ+vW5CMpBhL1hRDzmoK/2uj0IrLPdEza3WcuQJ+TcPKKHe5ewPkNE0LJZMwBJp6CkU2ZYkk5BSeXW7VAkm05bxyShpFJQ0maPFCWTRl9NGaMKMrKiFxnRj4zkR0b0I20t2963l4roBQr5d5HXaaOzWWdCXtkcP8QnIeDJDaJqhydBe8yRDrYFPRJkHk+EMcYYYwMEBy6MHQBEBMVQkNEyTg8Mez2tpZHRMq6wwrmvprvcntEy7iDFUPZrkNUDRYDgTAEckAMIeALu+7I5s41X8sIreuGRPM7SI5o3r+Rtt5RF2X286IFf9jvhiSRyF33WN3RNg5rNQM1knGU2lUI2bQchubAknUw6N7tniZpOQ8umoWfSwH6M59OuXRChiF4oohdZ66aIPmvpRVb0OfvabrfXDcH8d+KVRPg9ojOFrj29bpksodq1LTf9rt+Tm3bX7xGd8KRtoBL0SfBKPOsMY4wxxg5tHLgwBrOXSFyJO7PGtGRbcjPHZFuRVJNO4JHRM8hqWaT1NLJa1rU9o2WccIVw8KfuBACv6DWDjLygwif5nHUn5BA98EgeV4jhETsOPmRRdoUfdtBhByd2iGJv4ymBWX8gw0A2nUK8tRWtza2ItbQi3tqKRCyObCYNNZ2GYoUnWjYDLZuFrmSgKxkYShakKiA1C6hZCEbfziJjQIAieqBYgYgiePKCkbyb4M07rs0xgheSx4OgT0bEb84wE/Gb0+uG/R4M9ckI+ySEfR6E/TIiPhlhvxmIhH35x8rcU4Qxxhhj7CDgwIUNaJqhQdEVZHSz54cdeNi3jJZBXIm7p97NWoGKYk7L25Jt2e9ZZboiCzL8sh8+yZfr7SGZ4YQdUPglcz0oB9ttbxtk2AGK09PDClDsMISDDlasiAiKbiCjGsiqOjKqgYymI6PqyGRVpDJZpDNZZNJZZDJZZBQFSjqDVDwOJRWHmkxASyehpxOgTArIpiAqaUhqCh41A4+egbifQWfbfz06RKiiDK2jgETIBSNZ0QtN8kHw+CH6/ZB8Qcj+ADyBILyBIAIBPwL21LtWLxG/1YvE7jHikyWnt0nA6lnib7NfEvnfN2OMMcbYQMGBCzug7Etr7Olzk2rSHERVTSGp5ba1m3rXWs/qWWS1rCtEsYMURVegUd9eTuMMfNpmVpmwJ+yEJn7Z7wQkrnVrmX+MTzZ7ljDWlwzDDC5U3ZyaVtUN6z5B0w1kNQMZVUdWM5DVzGDDWao6MpqBrNrBvrylphMIBIMAGAToKkRdgaBlIWpZSFoWoq5Y6wpETYGkZyHpCmTdvq8AhgboGgRDh2BokEh3bnLeendBiYzC/2ApgoysNR6JKvuhewIwZC9I9gGyF4LHC8Hjg+i1b37IXj9kvw8evx8enx9efwC+QAB+nxc+WYRXFhHwygh5zfAjmLce8spWIMKX0DDGGGOMsRwOXBg0Q3NCjPyxRtrOLJM/BkmHs9Co7bel1BR06tuu+Z3ximbPD5/sM5fWLeKNuAKUUl9pu1Cl1F+KqDcKr+Q9KG1l/YuIoBsEVSeoRi60sAMMzTDDCzUvxNAMcgUcqmFtt2qomn2MfZwBxfpa+3j7GMXanzuWXMeo1vdTrHX7GEU3oGlmeCGT5oQWuXUNkr0PBiRDM0MNWMGGYa7bx7cNPSTSEbX2eQwVHkOFl1R4DWW/e4706OcDASRKIEkGSR7AF4TgD0HyhyAFw/AGQ/CGIvCHwwhFowhGo4hEo4iWliBaWopoyI+Al8cQYYwxxhhj/YsDlyKQUBLY3LwZmqFBN3RopEEzzJtOurOukbXf2q4aqnO8vV0xFKdXiD3tbv56/iU39vrBCkTs8T7yp9UNeAIIySH3VLvWuj0uiBOe5AUpfskPr+SFX/Y7l9iIAo9H0BkigmaQEw7o9tLaphkE3TCcY+z7qm4HE9axzv7cfT3vll9H1wk6kes4TTf329t1g0BkdqAg2Ot5S6vt9n2DzIlayNpnUK595mOzQ40Owoy80ETV+yg8IIIIwwwnSINMGmTDWpIVdjjb9Lzt9rE6PKQhQO79ThBi5NWwQxEcmEvfCiV6fBB9fkg+v7UMQPL5IXn9kP0BSL4AZGu7x++Dz+cze4n4fPAHvAj4ffD7fPD7fZA95pgksscDybrJHi9EiQc/ZowxxhhjAx8HLkXg05ZPceWrV/Z3MwCYvUTs8ULazjKTH4J0e2sTpATkwICaQSb/kg2zl4EZMthhgxNeWEGEE0xYx9hhRe5rcr0k2t3Pq5cfHrj35b5PR2GCfYyad79tb41DFpHT+8NDGkJ54YgTlBgqfNDghQY/NHitY31kH6vCY5jHSYZqXjJjqJB0FcIBGvunEKIkQ/Z6IXut4MLrgyzLkL2+XIDh9UKSrVDDXvd6zfuyuc0MPHJLyeOBx+eDNxCA1x+EN2gt/X4IIgebjDHGGGOMFYIDlyIQkAMYGx0LWZQhCZK5FCXIgtxum0f05O5by/x1j+iBTzZ7gNhjidg9QuweIvZ622O8krdfe4nkjz1hjjFhjkGhaIazVHQdWdUcryKbv90aq0Jpd3zuvh2eKE6I0mZf3vZDJaDwSAIkUYAsipAlAbK1LolCx/sk0dpmrQuAJIqQRQGSdYwkCpAEAXLe19tfI+XfBAGiKEAUBIAMa3wQBaSaS2i5pXnLglQVULOAdRypWUBTnWPsbYamwFAUGGoWupI1u8UcYKIkw+PzOQGI7G273n6fp9N9VgDi9UK2ghDZ64PkNXuA2AGLOIBCTMYYY4wxxg41AtFBeCdSpGKxGEpKStDa2opoNNrfzekxyrtcQ9FzY0jYl2rYl1uYS0AzDBgGnMs5nP32JR9krrsvD+nkcpFOLhOxLyXRDDKDEys0yeTNSJLNW9qDdGZUHZpRvKeiHRZ4JHcwkR9EmEtzux1WeKztdighS7lt9rFOuCEAHtIg6qp5WYmuQDQ0c0BSQzMDCUODSDpEw4BAOkQyIJIOWPcFQweM3NK+kaEDugYyDBiaBpABMnSQYZjbdPO+YRgwDGtdN6z9edt13dpv9eoQAAECIAgwh8oQzDEz8rZDEMyZXwTBGU9DsLbrqgo1m4Guqgfl5yjJMjw+P2SfDx6fP2/duu/3w+v3Q/bZA6f6ne0enw8efyDvWPOSGbuOJHN+zRhjjA1kA/29AWOs+PA7hCLwSV0c331lkzWQZm68CdeAm7p7oE37cpfBGpd5ZRE+WYRPlpwZQuylVxLh85hLr3WMN/8YSYBXBHwiwSsQPCLgEQmyAHgEgiyQuYS5LgsEUSB4QJBAEAXDXJIB0VrCCh10TYOh2zfdvGkaDMNcN/db23UNhqo79+1wQc1moWYz0LJZc13JQstkoKkKAMAAoPTv099/BCEXcvjMkENucz83i4wdjPhyx7a57w5XfDw2CGOMMcYYY+yg4cClCMSzGl7fVN8ntQTB7I0hCrnLNiQpd/mGJLgv6xAFWEvrEhDrOLtHR9vLQexjZMGATAYkMiAJuZlOzKUBiXR4BR0yCB5okGGYN3vGFEOHaOgQSDOXuuZMHwtdg65p0DUVhqZCT+tOwKFrmhlw6Dr0DrbZxwFA1roNRLLPB4/XDBdkr92jIjfIqChJkGR7KUOUZIhy+22uZd5+UZIgiCJE0V6KECQJYv426xh7XRRFCKK9tC89Mwe0BZlTCMMa4NbcToBrnay7ZA2ES5A9nlwo4vdD9nh5VhnGGGOMMcbYoMCBSxEYUx7E9xZNg0cSrZuQt+6+L4uALACSYIYaomFAgnlZiWDoMDQVmqKYNzWbW1cKWE9b66oCXTUDD11VoVlLXVXNbZpW0JgYqnVLH/BnsHuCIEKU7FBBckIHURQhyrIZMtj3nX3WNkk0Aw1ru5S3bgcdoiiZS0mGlL8vb90eiLSjnhf5l7bIHi8PTMoYY4wxxhhjAxwHLkXAaKoBvfQjpDUNCae3ht3LQ7N6cKjOerFdRySIojkbipyb2lWS3UvZ0/a+F5JHdrblz46Su++BKNsBhtVDQ/K4gw1Zbt/LQ8r16hAkCZLVU4MxxhhjjDHGGDtYBnzg8uSTT+KRRx5BbW0tjjrqKPzwhz/E8ccf39/N6hEtm8WeTRt6/fW5y0lka8rXzmdK8Tjr1j5Px8e1C0tkGaLcNjiReaYUxhhjjDHGGGOsAwM6cHnuuedw6623YunSpTjhhBPw/e9/HwsWLMDmzZsxdOjQ/m5ewcqGj8C5t95lBiaSGWyY4Yls9vCQPa5ARbT22b06eMwLxhhjjDHGGGOsuAzoaaFPOOEEzJw5E0888QQAwDAMjBo1CjfeeCPuvPPOdsdns1lks7lhVGOxGEaNGsVTvzHGGGOMMXaI42mhGWN9bcAObKEoCj788EOcdtppzjZRFHHaaafh7bff7vBrvvOd76CkpMS5jRo16mA1lzHGGGOMMcYYY4eQARu4NDQ0QNd1VFVVubZXVVWhtra2w6+566670Nra6tx27dp1MJrKGGOMMcYYY4yxQ8yAHsOlp3w+H3w+X383gzHGGGOMMcYYY4PcgO3hUllZCUmSUFdX59peV1eHYcOG9VOrGGOMMcYYY4wxxgZw4OL1enHsscfi9ddfd7YZhoHXX38ds2fP7seWMcYYY4wxxhhj7FA3oC8puvXWW3HFFVfguOOOw/HHH4/vf//7SCaTuOqqq/q7aYwxxhhjjDHGGDuEDejA5eKLL8a+fftw7733ora2FkcffTReffXVdgPpMsYYY4wxxhhjjB1MAhFRfzeiv8RiMZSUlKC1tRXRaLS/m8MYY4wxxhjrJ/zegDHW1wbsGC6MMcYYY4wxxhhjxYoDF8YYY4wxxhhjjLE+xoELY4wxxhhjjDHGWB/jwIUxxhhjjDHGGGOsj3HgwhhjjDHGGGOMMdbHOHBhjDHGGGOMMcYY62McuDDGGGOMMcYYY4z1MQ5cGGOMMcYYY4wxxvoYBy6MMcYYY4wxxhhjfUzu7wb0JyICAMRisX5uCWOMMcYYY6w/2e8J7PcIjDG2vw7pwCUejwMARo0a1c8tYYwxxhhjjBWDeDyOkpKS/m4GY2wQEOgQjnANw8DevXsRiUQgCEK/tiUWi2HUqFHYtWsXotHoIV+jmNrCNYq3LYOpRjG1ZTDVKKa2cI3ibctgqlFMbeEaxduWwVSjLxER4vE4qqurIYo88gJjbP8d0j1cRFHEyJEj+7sZLtFodL//4AymGsXUFq5RvG0ZTDWKqS2DqUYxtYVrFG9bBlONYmoL1yjetgymGn2Fe7YwxvoSR7eMMcYYY4wxxhhjfYwDF8YYY4wxxhhjjLE+xoFLkfD5fFiyZAl8Ph/XKLK2cI3ibctgqlFMbRlMNYqpLVyjeNsymGoUU1u4RvG2ZTDVYIyxYnZID5rLGGOMMcYYY4wxdiBwDxfGGGOMMcYYY4yxPsaBC2OMMcYYY4wxxlgf48CFMcYYY4wxxhhjrI9x4MIYY4wxxhhjjDHWxzhwYYwxxhhjjDHGGOtjHLgwxhhjg0hfTD5oGEa/t6MvHkc2m93vGsVmME0u2RePRdf1PmjJ/uuLfzOZTKbPahXDvz/GGGMcuDBWNG9OGOtOX70A5vPV1Pb5HOhvMOw3nvvzOBoaGgAAoij2+o3sli1b0NzcDEEQet2Obdu24Q9/+ANaW1t7XWPz5s04/fTT8emnn/a6RjKZhKIoaG5uBtB3/3Z68zNq+/PYn7b097muKAqAXCDWm/bU1tYCACRJ2q/Q5ZNPPsHq1at7/fWAec4/8cQT2LdvX69rbNiwAZMnT8aaNWsgir17eR6LxdDc3Iza2loIgtCrc0TTNAC5n0lvz7PB9vuVMcZ6iwOXAaZY/mANhpAikUgAwH69KWhqagKAXr84AoCdO3fio48+AtD/z4mtr84zPl/7Rl+cqwCfr/k2b96MJUuW4Morr8SyZcuwadOmHr9Bqaurw8cff9zj751v27ZtWLp0KW699Va89tprTuDRUx9//DFuu+02LFq0CA8++CC2bdvWqxrjx4/HV7/6VQC9eyO7Zs0aTJw4EX/60596/P1tH330EY4//nisWrXKeQPb03Nt9erVmDVrFlasWNHr83XDhg246KKLcPLJJ2PBggV45513evVvJ/9ce+KJJ7B27VoIgtCj83bjxo248cYbcd555+Huu+/Ghx9+2OO27N69Gx9++CGA3v8u+fTTT/HQQw/hiiuuwLJly7B9+/Ye19i0aRO+9rWvYcGCBfja176GdevW9bg9W7ZsQXV1Nc4++2wAvQ9d1qxZg8MPPxxvv/12j7/W9tFHH+GEE07Ajh07nH+/vTlf58+fj507d+K1117rVY3169fjs5/9LE499VRMnz4df//733t8jmzcuBE33XQTLrzwQtxyyy14++239/uc78/fr4wxVgw4cCly9fX1WLt2Ld577z0AvXuRZL+osz+16I2Wlhbs2LEDmzZtctrR0xcDtbW1eOutt/CXv/wFgPmmr6c1Nm3ahEceeQTJZLJHX9fW6tWrcfnll2PLli29rrFu3TqcfvrpWLZsWa9rrF+/HmPHjsW1114LoHdvhLdv346f//zn+Na3voUtW7b06s1nfX091q1bh5UrV4KIev1inM9Xt744X/viXAX4fM23YcMGnHDCCdiwYQM++eQTLFu2DKeffjpef/11iKJYUJs2btyI448/Ht/85jexfv36Hj8GAFi7di3mzZuHv/zlL3jppZdw44034uc//zkMw+jR87J27VrMmTMHzc3NMAwDr7zyCp599lkQUY/qbNiwAYFAAGvXrsXXvvY1AOYb2ULP+zVr1mDu3Lm4/fbbcfXVVxf8ffPt2rUL5557Lq644gp85zvfwYQJEwDkfh8U0pY1a9Zgzpw5uO2223DhhRfioYceAtCz83XDhg2YN28eJk2ahIULF2Ls2LFYsmQJMplMj57TdevWYfbs2di9ezdaWlqwfPlynHTSSfjb3/5W8Hm7adMmzJo1C6lUCrIs48MPP8TcuXPx61//uuB2bN68Gccddxyuu+46rFixouCva/tY5syZgzVr1uCTTz7BT37yE3zve9/r0e83+1z1+Xw47LDDUFdXh8cffxyqqvboea2vr8fIkSPx6aef4swzzwTQs3MVyJ0nt99+O6677rqCvy5fTU0NFi5ciCuuuAKPPfYYpkyZAqBnl7KtWbMGs2fPxuLFi3HzzTdj6dKl0DSt4N9FgHmOnHTSSZg1axa+/vWv4/zzz8cNN9yAWCwGoLBQev369Zg7dy6ICEOGDEFdXR1OPPFELFu2rEc/42L5/coYY0WDWNFavXo1TZw4kcaNG0dVVVV0zDHH0JtvvknJZLLgGuvWraOzzz6bmpubiYhIVdUet2Pt2rU0b948mjhxIk2YMIEuvfTSHtf46KOP6IgjjqBp06ZRaWkpzZ07t0dfbxgGJRIJGjduHAmCQHfddRdls9ket4PIfF5lWabbbrutw+9TiPXr11NpaSndeuuttHXr1l61Y9WqVRQKhWjevHk0ZcoUeu2113rUBiLzeR0xYgSdeOKJVFVVRSNGjKDdu3f3qB1r1qyhww8/nI466igaM2YMTZ06lZYvX06tra09qsPna05fna99ca4S8fmaT9M0uuyyy1znxapVq+iaa64hSZLopZdeIiIiXdc7rbFnzx6aM2cOHXXUUXT88cfTNddcQ2vXru3R49i+fTtNnDiR7r77blIUhYiI7rzzTpowYQKl0+mC62zZsoXGjBlD3/jGN5xt11xzDd10001E1LN/Qy+//DJNmjSJvvvd79K0adPoa1/7mrMvHo93+bUbN24kWZbpW9/6FhGZz9/rr79OTz31FK1cubLgn/Pvfvc7Ovnkk50a3/jGN+iSSy6hhQsX0uuvv97t169atYq8Xi/deeedRET0z3/+k8aMGUO/+93vCvr+RETpdJrOP/98uu6665xtP/vZz+jSSy8lRVFo3759BdVJJBK0YMEC17/fDz/8kMrKysjn89Hvf/9753F25X/+53/ovPPOc+7X1dXRPffcQ5Ik0Y9+9CMi6vrfYU1NDZ188sk0d+5cOuuss+iMM86gN954o6DHYNu5cydNnTrVeV6JiJ588kkaP3487dmzp6AaW7dupcMOO8x1rt5333109dVXE5H5fBF1/3wYhkFvv/02TZkyhZ555hmaNGkSnX322c7+Qtpjn6/24zEMg55//nl66KGH6Nlnn6XNmzcX9JheffVVmjNnjtPuG2+8kc455xyaOXMm/epXv+r23/KqVatIlmW66667iIho27ZtNGrUKHr44YcL+v5E5r/xL33pS/SlL33J2fbaa6/RwoULqampiXbt2tVtjUwmQ4sWLaIbb7zR2bZ3716aPHkyeb1eeuyxx4io+9/3xfL7lTHGigkHLkWqpqaGxo8fT3fffTetWbOG3n//fTrttNNo+PDhtGzZMorFYt3W2Lp1q/OG79hjj3XexGqaVnA7Nm7cSBUVFXT77bfTa6+9RsuWLaNp06bR//3f/xVcY8OGDVRRUUF33303bdy4kd58802qqqqiFStWFFzDdt1119FXvvIVCgaDdOONN7Z7M9/di4G1a9dSMBike+65x9kWi8Wovr6+4DYoikKXXnqp82bEMAz64IMP6Pnnn6f6+vqC3iytXr2agsEgLVmyhJLJJI0dO5ZuvvnmgttARLR7926aMGECPfDAA87zcNhhh9Fvf/vbgmvs2LGDRo8eTffddx998skntGfPHjr99NNp6NCh9Oijj1JDQ0NBdfh87dj+nK99ca4S8fnalqIodNJJJ7neOBIR1dfX03XXXUd+v5/efvvtLmu8/vrrtGDBAlq9ejU9/fTTdMwxx/ToTYGmafSDH/yALrroIqqpqXHO8draWho9ejR99NFHBddZunQpXX311dTU1OScTzfccAOdcsopdNJJJ9Fll11GK1euLKjerl276Atf+AI1NDTQ448/TtOnT6dbb72VrrrqKlq6dKkTDLWl6zrdf//9JAgCbdiwgYiITjnlFDrqqKOopKSEDjvsMDr11FNpzZo13bbhkUceoc9//vNERDR79mxasGABXXXVVbRo0SISBIF+9rOfEVHH/3YaGxvpuOOOc/1s9+3bRzNmzKDLL7+8oOeAiKi1tZWmT59OTzzxhLPt7rvvptGjR9NRRx1FY8eOpV/84hedtsPW0NBAU6dOpT/+8Y+uYxctWkQnn3wyeb1eeuedd7ptz8KFC+maa65pt/2hhx4iQRBo+fLlXbbl/fffp1NPPZVWrlxJr7zySo9DF8Mw6Je//CWdd955tH37dufNciaTofHjxzvha3eee+45+tKXvkR1dXXOtltvvZWmT59Oxx9/PM2bN49effXVLh+LLZlM0qJFi2jPnj30pz/9iSZMmEDnn38+XXXVVc7vqa4sXbqUBEGgl156iXRdp5NOOolmzpxJo0ePpmnTptFhhx1Gb731VreP6be//S2deOKJREQ0f/58OvPMM+nuu++mG264gQRBoCVLlnT6eGKxGJ1zzjmu8zUWi9G5555LZ511Vrff25ZOp2n+/Pl03333OduWLFlCZWVldOSRR1JJSQndd999lMlkOq0Rj8dp+vTptHTpUiLKBbXXXHMNnX322c5z1Z1i+P3KGGPFhgOXIvXBBx/QhAkTaNOmTa7tV111FY0ePZqeeeaZLl+QJJNJuummm2jRokX03HPP0axZs2j69Ok9ehPb2tpKn//85+n66693ttmfghT64rWxsZFmzZpF/+///T9nm6qqdMopp9Bzzz1Hv/jFL6impqbbOvYLvMsuu4wef/xx+sc//kEej8epu2zZsm4/xamrq6OSkhL6zGc+42y79tprafbs2TR58mQ655xznDezXT236XSaZs6cSc8//zwREZ166qk0ffp0CofDNHr0aPr2t7/tekHZ1scff0yCILg+5Vu6dClVVlbSu+++280zkfO3v/2NjjnmGNcnx+eeey49+OCDdMMNN9DLL7/cZTuIiJ5//nk6+eSTKR6PO+fEiy++SH6/nw4//HBatmwZEXX/4pfPV7f9PV/76lwl4vO1I9dffz3Nnj2bmpqaXNt37txJixYtorPPPrvLHjPpdNr1ZuznP/+586YgPyzpqh1PP/00/eAHP3Btq6uro9LSUvrXv/7VZfvzbdmyhdatW+fcv//++8nv99NDDz1E9957L1188cU0fvz4gno2JZNJmj59Oq1atYqSyST95Cc/oYqKChIEwXlcnf1brK2tpa9+9avk8/noyCOPpIULF9Lq1atJURR64YUX6IwzzqALL7yw254yv/3tb6mqqoqWLVtGZ599NjU2Njr7vv3tb5Msy67H29Z7773nrNttfeGFF8jv99O///3vbp8DIvPn9oUvfIGmTZtGf/zjH+m2226jYDBITz/9NC1fvpweeughEkWx28Civr6eZs+eTQ8++KATbG7dupWqq6vp+eefpzPPPJMuvfRS0jSty3Plvvvuo1GjRjk9N+xjFUWha6+9lqZMmdLt76XVq1c768uXL3dCl//85z/Odvv3Vke9D5YvX+68GbfbEI/HacSIEfSHP/yhy+9ta25udv2NePjhh8nv99P3v/99Wrp0KV133XXk9XoLChwzmQzNmDHDCQH++c9/Umlpqetc7a5313333UeSJNFhhx1GixYtos2bN5OmafTee+/RhRdeSMcdd1y3v5NeeeUV8vv99Mtf/pIWLlzoOv5Xv/oVCYLQZVif35PGft5XrFhBgiA4QV0hbrrpJopEIvTkk0/S9ddfT4FAgJ599llatWoV/fa3vyVBEOiFF17o9OsVRaFzzz2XrrnmGud33/bt26myspL+/ve/05VXXklz584tqMdqMfx+ZYyxYsKBS5H65z//SZWVlbRlyxYiItcfuS984Qs0fPjwbt9wPfXUU/TMM88QkfkHvKdvYuvq6uiqq65yatgvBn7605/SSSedRIZhuD7x7Kwdjz76qOuF6QMPPEBer5dmzpxJEydOpKqqKucT2M5q2N/7mWeecT45eemll8jr9dLEiRPp8MMPpx07dnT5eIiILrjgAjrmmGNo2bJldMIJJ9Bpp51Gjz/+OD355JM0bdo0mjJlitOtubO2pNNpOv300+mFF16gb3zjG7RgwQJav349JZNJuuuuu+jII4+kn//8565253vnnXecbuC2NWvW0NSpU+nRRx8losIChl/+8pcUiUScFyCPPvooeTweuuyyy2ju3Lk0YcIEevjhh7us9b3vfY+qq6td2/7+97/T1VdfTZ/73Odo2LBhzvPRlX/961/7fb7+5Cc/KYrz9bHHHtvv89Xevj/n64UXXrjf5yqR+cakGM7XX/3qV/t9vj788MN9cr4+99xzdPTRR9Njjz3WrvfV008/TdXV1bRz584ua7R9zjv6JPb+++8vqFeHXSudTtPkyZNdQdaf//zngtuSyWTo7LPPdn0S/eabb9LQoUPp73//e5c1FEUhVVXpjDPOoDfffJOIiC6++GKKRqM0ceJE5xKlrtifYh933HFOTxfb//7v/9KwYcO6vbRo+/btdO6559Kxxx7rurSIyPw3PnHiRHruuee6rNH2Z7Nt2zY69thj6Zvf/KarXldef/11uuiii+i8886jCRMm0FNPPeXsy2azdMQRRzi9F7qyePFimj59On3xi1+khx9+mMLhsBMKP/LII3TEEUd0eM7nt/Hdd9+luXPn0g033OC8obf3/+Mf/6Dq6mpatWpVlzXaevnll+nMM8+kBQsWOL/vbr755nY9bjpqW/7ze+yxx9Kf//xn5/4vf/nLdpfjdFQjm83SV77yFdd5aYdRv/rVr7p8LPb3v+KKK+hPf/oTEZl/Z8rLy2n06NGuy6/aatuWBx98kKZNm9bu+fvDH/5AFRUVHYY/+W3RdZ0uueQSGjdunPM7WdM055gZM2bQ448/3q5GZ73FDMOgWCxGn/vc5+jyyy+nVCrV6c8xf/uWLVvo+uuvp8suu4yOOeYYeuSRR1zHzp07l6699toua3z/+9+nWbNm0fz58+muu+6iUCjkfM2zzz5LY8eOpZaWlg7bku+5556jGTNmFM3vV8YY628cuBQpwzBoypQprhcO+d1Bp0yZ4rrWtqs6ROaLjDfeeKPdm9hUKkVbt27t8A96JpOhDz/8sF2tp556imbNmuXaVqjly5fTmDFj6M9//rPzyeXJJ5/s+iS/K3/+859pxowZTns/85nPkCRJdMkllxTcli9+8YskSRJ9/vOfd12esWfPHhozZoyrd0NnFi5cSMcccwxdddVV9Jvf/Ma176qrrqIZM2Z0+rUdvXAkMj+hKvQNo+3YY4+l8vJyWrBgAXm9XteL11tuuYXGjRvX7lOmfBs3bqQxY8bQLbfcQnV1dfT+++9TKBRyrtceP368641GV49p6tSpvTpfO3ox3pvzNZVK0QcffODc7+n52tGnob05X/O/R2/O1/wX4vt7rtrfY3/O1/znpTfna/7XHHfccb06X+0aGzZs6PH5um3bNvrJT35Cy5Ytcy5XIDIvu5k0aRL96Ec/cvWiWL9+PU2YMIHWr1/fbQ0i9/lrvyn48pe/TBdddBGJoujUya/xyiuvdPj4stksTZ061emlcdddd9GwYcNc4VxXbSFq30th/fr1NG3aNNe/jfwaf/vb31xff8cdd9AvfvELuvzyy2n48OH0n//8h5544gkaOXIk3Xrrrd22o76+nlauXOmMWWQ/P3/9619pypQprvO4sxrf//73qbKykkpLS109c5LJJM2cOZNefPHFgh5L/rn3jW98gyoqKjrssdDVz6ahoYEmT57shFiGYVAymaTZs2e7eny0rfPyyy8727/97W/T2WefTZ/5zGfoe9/7nrP9Jz/5CR133HGuf2P277r8546I6Lvf/S4dc8wx9PWvf90VWu3evZsmTpzo6kWRX6Pt78r858S+vOjMM8+k8847jwRBoP/+97/tanTVUyT/53H33XdTJBKhjz/+uMvHYreh7blqB2P5Pby6eiwPP/wwLVmyhC699FIaNmwYvfPOO7R8+XIqLy+niy66yHVsZ20hMscYsXsg2d9j5cqVNHnyZPr000+7bcvvf/97mjFjBvn9flcAoOs6zZ8/37n8rLvHk+///u//KBQK0SeffEJE7p9bV48lnU7T8ccfT7/+9a+d/XYvzfxzr7Of7y9/+Uu64ooraNGiRfT973/f2f7CCy/Q9OnT2wUue/bsob/+9a/0/PPP0/vvv+9sv+6662jy5MkF/X7Nr9H2b3j+c9TV71fGGCtmHLgUifr6evrggw9ozZo1zicCf/3rX2ns2LGuTxbtF7GXXHKJa4C0tjXyu23bf5ANw6D//Oc/zpvYuro6uuGGG2jevHlOj4T6+np6//33na7gtvw/ek899RTNnDnTub948WI6//zzO2xH2zdjmzdvdv5A2i8g7rjjjnZvYPNr2G0zDIPWrVtHZ555JhERXX311TRixAh6/PHHKRQK0TXXXNNuYNL8OvldWL/5zW+2G0RR0zQ66aST6Ktf/WqnNeyfzY4dO2jq1KkkCIIzPoj9eH73u9/RrFmzXIFD/vPatktu/hujCRMm0A9/+ENXve4ey/Lly+nXv/41nXzyyZRIJCiVShGR+Qnm5MmTXZeu5NdIpVKkKAr93//9H40ZM4aqqqooGo3S4sWLnedjypQp9J3vfIfaSiaTpOu6a/yPl156iUaPHl3w+dpRDaLci79Czle7hv2Y29Yg6v587awdRIWfrx3VMAyDPvroo4LP187a8Y1vfKPgc7WzOjt27KDJkycXfL529rzmvwDu7nzt7PG89NJLBZ+vbWukUin64Q9/SKNGjSrofP3oo4+ooqKCZs2aRYcddhiFw2G68sornX/H11xzDR155JG0ePFi+vTTT2nfvn10++2306RJk5zxYDqq8eUvf5n27t3r+nnYfvazn5HH46GSkhLnU/NCahCZb4KGDBlCK1eupAceeID8fr/rTUxP20JkDsQ7c+ZMZ6DXzmrYb+IfeOABEgSBxo0b5wTuzc3N9KMf/cjpwdZRjauvvppqa2upMzfffDOdfvrpzt+EjmpcddVVzhvBRx99lIYNG0bTp0+nd955h9auXUv33nsvjR071vl0vCfPx65du+joo4+m++67z/X3rLPHkl/j/PPPp1tvvZVqamoonU7TvffeS6NHj3aFQR3VueKKK1xvUNt+2n/11VfTokWLnN8DGzZsoHHjxjk9cYjcAey9995LJ5xwAp177rm0evVq+uSTT+jOO++kMWPGOJcUdVSjq9Dlr3/9K5WVlVFpaalz2VEhNYjMN/fjx4+nP/3pT/Td736X/H6/84a5p+0gMgObo446quDHsmzZMhIEgSZOnOicq5lMhpYvX+4EFZ3V6a5X3v/7f/+P5syZ45yPHdXI/zvz61//mg4//HCKRqP04osv0j/+8Q+65557aOTIkc550pPnxDAMmjNnDl1++eWuc6CQx3LNNdfQOeecQ9u2baOGhgZasmQJjRgxwnlOOqrR9rVT2x441157LZ1xxhmuvwkfffQRjR8/no4//niqrKyk4447jp599lln/5VXXknTpk3r9vdr2xptL1HLf446+v3KGGPFjgOXIvDRRx/RlClTaNq0aSQIgjNIZnNzMz366KM0adIk+spXvuL6mksuuYS+8pWvkK7rzhu7tjXyX8zk/xF/4403aO7cuSTLMoVCIaf7ekc1OnqR9eyzz9Lxxx9PROYnsMFg0BkErbMaXfUsuOKKK+jGG28s6LGoqkqnnXYaTZo0iaqqqpwXWb///e+pqqrK9YK/ozr5LyraDiCnqip97nOfc7ridtYWXdcpm83SH//4Rxo3bhwdffTRtG7dOqf2TTfdRAsWLHDeJBb6vKqqSgsWLKDTTjut3b7uHsuvfvUrmj59uutrFi9eTPPmzXPCmbY17DE50uk07dmzh1577TVXd/JYLEannXaa8wLK/hmsXbuWTjvtNDr55JOdHgK7d+8mTdPoscceowkTJnR7vrat8eMf/5i2bdvmHJ8fEnZ2vnZXw25vV+drdzU60vZ87aqGpml0yimndHu+dlTD/pSYiDoMlNqeq909nueff57Gjh3b7fla6PPa1fna0TmS/wbo6aef7vZ8bVvjySefdHon7N27l/72t791eb7GYjGaPXu207OqpqaGXnnlFSovL6dTTz3VqXX//ffT/PnzncGahw0b5nzKH4/HO61x5plnuj791nWdNE2jm266icrKypxxRnpSIx6P04wZM+jkk092vXntaR0iM2T7+te/TmVlZc6n7l3VOOOMM2jv3r2kqipdd911Ti+btr0RuqqxYMECJ5TJb8dtt91G5eXlzuUZXdU47bTTnLDjN7/5DZ155pkkCAIdccQRNGHChF79bOz2n3HGGXTyySc7536hNR588EGaOXMmDR06lE455RSqrq522tFdndNPP71dW1avXk0333wzlZSUOJdH7Ny5k44++miaOHEiHXnkkXT//fc7x+f/rv/FL35BZ511FgmCQEceeSSNGTPGaUtXNTp6Y6/rOi1evJgikUhB7WhbQ9d1mjdvHh1xxBEUDAadcLAnNYiINm3aRLfccguVlZU5oU9XNfIDhjvuuMP176StQuvYNm7cSIsXL3b9uyn0Z/Pmm2/SFVdcQeFwmKZOnUrTp0/v1c/G9pWvfIVOOOEEJ6QstMZvfvMbOumkk8jr9dKsWbNo9OjRBbWjo96MK1eupOuvv56i0air986nn35KI0eOpNtvv51aWlrogw8+oCuuuIKuvvpq12urrn6/dlWj7bhGhmF0+PuVMcYGAg5c+tmnn35KVVVVdMcdd9D27dvpySefJEEQnC7kDQ0N9OMf/5iGDx9OM2bMoOuuu44uvfRSCgaDzh+cjmqIothuUE77xUU6naZzzjmHysvLe1yDyHxzf+qpp9K9995LXq/XeRPZkxpE5h/3e+65h4YOHeoMpNddjUQiQZdddhkdd9xxrsudiNzTlva0LZqm0T333EPV1dXOG4bOfjb2p6upVIpeffVVmjBhAo0aNYpOO+00WrhwIZWWljovTApth/1C57///S+Jouj6lKiQGrt27aLy8nI666yz6IknnqCvfe1rVF5e3mU78h9LW+l0mu666y6qrq6m7du3O9s//vhjGjJkCC1evJj+8Ic/0H333UeCIND5559Pa9asIUVR6Mc//jFVV1d3er52VmPRokWugfLsF5Adna+F1iDq/HztSQ37Z9T2fO2qht3F/7LLLqOZM2d2er4WUiNfR+dqV3UWLlzovCF59dVXaeLEiZ2er4U+J/bvko7O165q2GPf7Nq1iyoqKjo9X7t6LB39bDo6X9PpNB1zzDHtegdt3ryZKisr6bOf/ayzra6ujl555RVasWKF699VdzXOO+8815u29957jwRBcPVK6UmNpqYmGjNmDJWXl7sGOe1pnXfeeYf+53/+h4466ihXnZ48J53pSTveeustuvrqq2ny5MmuT6O7q3Huuec62wzDoA8//JA++eQT1+VAPWmH/ft1586drvFFuqvxuc99ztm2fPly+t73vkdLly5tNwBxd3XOP/985/dZS0sL/frXv6YZM2Y4z4lhGPS9732Pzj77bPr73/9OS5YsocmTJ3f6xp7IHNdl/fr1Tm+QQmq0DRjsadrt3w89raGqKs2ZM8cVTvS0xrp165xeWD2pUcjsaj1ty0cffUS33HILTZs2zfl305ufzSeffEK1tbXOpTS9+dkQmQPB27/jC6mR3ytl7dq19LOf/Yyef/555/VkT9uh6zr9+c9/ptmzZ7t+j2SzWbr11lvpoosucj32n/3sZ1RRUdFutriGhoZ2v197WoOo49+vjDE2EHDg0s/uueeedi9yzzrrLFqxYgWtWLHC+QR869atdMUVV9CFF15IX/rSl1zT43VWY+XKlfTWW2+5Pp1WFIW++93vktfrdb0A7kkNezrFkpIS1ydLPanxr3/9i774xS/S8OHDXZ8UdlVjxYoV1NzcTPF4vNsBR3vSltdff50uuOACGjp0aEFtsX82dhf8bDZL9913H918881055130saNG3vVDsMwaNeuXXTRRRe5XtAXWuO1116jGTNm0IwZM+izn/1sj86R/O/33nvvOdfE5z8fROZlAZdccolr25VXXkl+v58WLlzoDJS5ZcsWuvLKKzs8XzurEQgE6IILLnCdU5qmdXi+9qTGU0891eH52pMa//73vzs8X7uqsXDhQvr000+pvr7eFVq11V078oOaf/7znx2eq13VsX829puZTCZD3/rWtzo8X3vynBBRh+droTX+/ve/07HHHtvh+dpdjfwX3B988EGH52sikaARI0Z0+IZkzZo1FAqFXNOodqSQGg888IDra/LHRuhNje985zuun0lv66xcubLdJUuF1PjWt77VxTPS83b861//ajdQbn/8bDrqZVlIjUIGxu1pW1KpVLvzpKamhp5++mkiMgNA+81w/vPQ2UCrPanRtjdF29lielrj5z//uav3Wm9qrFu3rt3YOoXUKGSw7p62ZdWqVe1mfCqkRmdjXfW2HR2Nm9Nf50jbS+HS6TQ9/vjj9NOf/tT1eO0x4eznr6sxagqt0VbbfzeMMTYQcODSz26++WY666yznIEi7evnZ86cSVVVVe2mbSRq/yKjqxrDhg2jBQsWuGr84he/aDeDRCE17Ck13333XZo9e7brDVJPa7zzzjt01113tXtj0d3zcfrpp3c5xWJv2rJy5UpavHhxu8HXCvnZvP766/vdjrY/37aXjxTSjvxZc2KxWI9qdHaOtH0RTWTO8mTPsGG/CHvwwQfpjDPOoEmTJtHdd9/d7mvanq9d1Tj88MOdS53sF2Adna+F1iDq/HwttEY6ne70fO3u+bjrrrtcj6UjPWlHZ+dqT5+T/W1L/gvptudadzXyz5HOzteePpbOztfHHnuMRo4cSX/961+dbfYbkgcffJBOOOEEamxs7PKNQaE18sce6k2N/MFk96ct9lgt+/t4ujpn++LxHKx29EWNhoYG5xzpanazQuoUOrj73r17O3wz/OKLLxYUNHRXw25bd+3prIY9zfz+tKMvarz44osFzTpVbG05kDX+9Kc/7fc50l2N/JDdPodqampowoQJrp6zbT8Y2N8aPBU0Y2wg4sCln/34xz+mUChEF1xwAV166aXk8XjohRdeoEQiQW+//TbNnz+f7rzzTtc4KG3/4BRao6s/VIXWIDLfAHX0KUNPaui63uEnOD2p0RfPK5EZCHT0qVBPntfOXoz39DnpzWOZN2+ec47s7/PR3Qu9W265hYYPH+5cU15TU0NlZWX02muv0Y9//GMKBALtLpdq+5x0VyMYDHZ66VdvaiQSiQ7P10Jq5L/o6+h8PViPxW5H26mt97ct/fGzCQQC3U4J2pt27N27l95991169dVXnTcK27ZtowsvvJDmz5/fbgabpUuX0pQpU1yDWBdLjWJqC9c4eD8bInL9rd+zZ4/zZnjJkiW0ePFiEgSB9uzZwzU6qFFMbRlMNfLrvPLKK67XCfk1N23aRBUVFc7v929+85tUVlbmBI19UYMxxgYiDlyKwA9/+EP67ne/SxdccAFde+21rn1XXnklzZ8/v9s3wt3VmDdvXp/U6Gp6yEJrdPfJS188lmJqy2CqsWPHDpozZw75fD4688wzKRgMOgPkNjQ00IgRI7rtgcQ1+r5GMbWlP2qsWbOGxowZQ5MmTaKSkhI6/PDD6dlnnyVFUej999+nz372szRz5kxnrBlFUej222+nk046yelBUyw1iqktXOPg/GwmT55MzzzzjDPmR/6b4b1799K9995LgiBQWVmZc0ke13DXKKa2DKYahdSxa2zevJmGDBlCTU1N9MADD1AgECi4LYXUYIyxgYoDl4No06ZNdOedd9Jll11GjzzySLuBv+wxFYhyf3yuvPJKuvbaa52gg2u4axRTWwZTjY7q5M908t3vfpceeugh+s1vfuMc/9///pcmTpzounSHa/R9jWJqSzHUqK+vp8mTJ9Pdd99NW7ZsoT179tDFF19MkyZNovvvv58ymQytXr2arr32WpJlmY466iiaNWsWlZWVOeMCFUuNYmoL1zi4P5spU6bQkiVLnEux8j/Nv/zyyykajTqXEnINd41iastgqtGTOkTmmDAzZsygiy++mLxerxOU9EUNxhgbyDhwOUjWr19PpaWldOGFF9K1115Lo0aNomOOOYaefPJJ55hvfetbFAqF6I033qC33nqLlixZQuXl5c4fP67hrlFMbRlMNTqrc/TRR9PSpUudY9r2hrn99tvp6KOPdsaQ4Bp9X6OY2lJMNcaOHdvuhfkdd9xBRxxxBD366KNkGIZz+dwDDzxAS5cudY35Uiw1iqktXOPg/2ymTZtGDz/8sOvSo2XLllFpaalrHAuuUdpubJBiactgqtHTOhs2bCBBECgQCLiCyr6owRhjAxkHLgdBPB6nBQsW0O233+5s2717N1VUVFBVVZUze4Gu63TxxReTKIo0adIkOvroo52p+LiGu0YxtWUw1ehJHdsbb7xBN954I0UiEecFEtfo+xrF1JZiqUFEtHr1aho5ciS98cYbROQexPemm26iMWPGOL1mOlMsNYqpLVyjf9oybtw4V43a2tp201BzDXeNYmrLYKrR0zo1NTV0/fXXtxtcvi9qMMbYQMaBy0GQTCZp5syZ9Mwzzzj3iYguvPBCOvXUU2n27Nn08ssvO8e/8cYbtHbtWtc0iVxjbbtpI4ulLYOpRiF15syZ46qzYsUKuu6662jdunVc4wDWKKa2FEsN28yZM+kzn/mMcz+TyTjrxx13XLsppjtSLDWKqS1co3/b0tUYY1yjeNsymGr0pA6ROZvegarBGGMDlQh2QBEREokE9uzZgz179gAAgsEgdu/ejfXr1+NLX/oSkskknn/+eedr5s+fjyOPPBJDhw7lGh3UKKa2DKYahdZJJBJ44YUXnK+ZO3cuHn/8cRxxxBFc4wDVKKa29HeNsWPHIh6PIxaLOfueeuoprF+/Hl/84hcBAD6fD5qmAQBOPPFEJJNJ5Esmk0VRo5jawjWK72cjSRLX6KBGMbVlMNXY3zoA4Pf7+6QGY4wNKgc33zl0tP3E4IknniBBEOjqq6+me+65h8LhsDPrxh/+8AcaO3YsNTQ0dDpVHtcorrYMphr7Uyd/kF2u0fc1iqktxVBj/fr1dMYZZ9CMGTOourraGUw3nU7Ts88+S5WVlXTBBReQoijOOX7ZZZfRJZdcQqqqkmEYRVNjsD2ewVSDfzbFW4N/NoP/eWWMscGGA5cDYPPmzfToo4/S3r17nW26rtPTTz9NM2fOpDPPPJO+973vOft++MMf0owZM1x/aLjGjHZ/eIulLYOpRjG1hWvwz6arGuvXr6eKigq65ZZb6Le//S3deuut5PF4nEEek8kk/eUvf6GRI0fS5MmT6bzzzqOLLrqIQqGQM6NRsdQoprZwDf7ZDJQaxdSWwVSj2NrCGGODDQcufeyTTz6h8vJyEgSB7rrrLtfsIkRmyp9/7SoR0Q033EAXXHABpdNpMgyDa7Spwc8rP6+HWg0i/tnk12hoaKAzzjiDbrrpJtcxJ598Mt14442ubbFYjG6//Xb68pe/TDfccIMz+1ZjY2NR1CimtnAN/tkMlBrF1JbBVKPY2sIYY4MRBy59KJFI0NVXX01XXnklPfnkkyQIAn396193vbnI/8R348aNtHjxYopEIvTRRx9xjQ5qFFNbBlONYmoL1+CfTXc1amtr6fjjj3dmubC7ol911VV06aWXOjXaXiqXf79YahRTW7gG/2wGSo1iastgqlFsbWGMscFI7u8xZAYTURRx7LHHoqKiAhdffDEqKytxySWXAABuv/12VFZWQhAEAEA8Hsdrr72GVatW4Y033sC0adO4Rgc1iqktg6lGMbWFa/DPprsaVVVV+M1vfoOJEycCAHRdhyiKGDFiBHbs2AEAEAQBgiAgFoshGo0622zFUqOY2sI1+GczUGoUU1sGU41iawtjjA1K/Z34DDaJRMJ1/3e/+x0JgkC33XYbNTQ0EJE5cGRdXR2pqkpNTU1co5saxdSWwVSjmNrCNdorlrYUSw1b/iei3/jGN2jBggXO/Yceeogee+yxdgMPF2uNYmoL1yjetnCN4m3LYKpRbG1hjLHBgnu49LFQKAQgl+5ffPHFICJ88YtfhCAIWLx4MR599FFs27YNzzzzDMrKyrhGNzWKqS2DqUYxtYVr8M+mkOcEMHvMEJHzyagoigCAe++9Fw8++CBWrVoFWe76T1ux1CimtnCN4m0L1yjetgymGsXWFsYYGzQOVJLD3Ner/u53vyOPx0OHH344ybLsjNrONXpWo5jaMphqFFNbuEbxtqVYathfv2TJEvrqV79KjzzyCPl8Pvrwww8L+vpiqlFMbeEaxdsWrlG8bRlMNYqtLYwxNhhw4HKAGYbhDAh5yimnUHl5uWtwTK7R8xrF1JbBVKOY2sI1irctxVKDiOjBBx8kQRCopKSE3n///R5/fTHVKKa2cI3ibQvXKN62DKYaxdYWxhgbyDhwOQg0TaNbbrmFBEGgNWvWcI0+qFFMbRlMNYqpLVyjeNtSLDXef/99EgRhv6YVLZYaxdQWrlG8beEaxduWwVSj2NrCGGMDmUBE1N+XNQ12uq7j6aefxrHHHoujjz6aa/RBjWJqy2CqUUxt4RrF25ZiqQEAyWTSGSNmoNcoprZwjeJtC9co3rYMphrF1hbGGBuoOHA5SChvADGu0Tc1iqktg6lGMbWFaxRvW4qlBmOMMcYYY8WKAxfGGGOMMcYYY4yxPib2dwMYY4wxxhhjjDHGBhsOXBhjjDHGGGOMMcb6GAcujDHGGGOMMcYYY32MAxfGGGOMMcYYY4yxPsaBC2OMMcYYY4wxxlgf48CFMcYYY4wxxhhjrI9x4MIYY4wxxhhjjDHWxzhwYYwxxhhjjDHGGOtjHLgwxhhjjDHGGGOM9bH/D3veI0nz09H2AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Guardar el dataframe agrupado\n", + "df_grouped.to_csv('global_electricity_statistics_by_region.csv')" + ], + "metadata": { + "id": "3HyCu76yuvpS" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Supongamos que 'df_grouped' es tu DataFrame y quieres predecir la columna '2021'\n", + "X = df_grouped.drop('2021', axis=1)\n", + "y = df_grouped['2021']\n", + "\n", + "# Dividir los datos en conjuntos de entrenamiento y prueba\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.42, random_state=45) # Puedes cambiar 'test_size' y 'random_state'\n", + "\n", + "# Crear la red LSTM\n", + "model = Sequential()\n", + "model.add(LSTM(150, activation='relu',kernel_regularizer=l2(0.1), input_shape=(X_train.shape[1], 1))) # Puedes cambiar el número de neuronas (50 aquí) y la función de activación ('relu' aquí)\n", + "model.add(Dense(1))\n", + "\n", + "# Compilar el modelo\n", + "model.compile(optimizer='adam', loss=MeanSquaredError()) # Puedes cambiar el optimizador ('adam' aquí) y la función de pérdida (MeanSquaredError aquí)\n", + "\n", + "# Ajustar el modelo a los datos de entrenamiento\n", + "history = model.fit(X_train, y_train, epochs=500, verbose=8) # Puedes cambiar el número de épocas (200 aquí)\n", + "\n", + "for i in range(len(history.history['loss'])):\n", + " print(f\"Epoch {i+1}: Loss = {history.history['loss'][i]}\")\n", + "\n", + "# Graficar la pérdida durante el entrenamiento\n", + "plt.plot(history.history['loss'])\n", + "plt.title('Model loss')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Epoch')\n", + "plt.legend(['Train'], loc='upper right')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "nfJrQD1i4qys", + "outputId": "0109bd7f-ecfe-485d-f633-dccdc80ec34b" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/500\n", + "Epoch 2/500\n", + "Epoch 3/500\n", + "Epoch 4/500\n", + "Epoch 5/500\n", + "Epoch 6/500\n", + "Epoch 7/500\n", + "Epoch 8/500\n", + "Epoch 9/500\n", + "Epoch 10/500\n", + "Epoch 11/500\n", + "Epoch 12/500\n", + "Epoch 13/500\n", + "Epoch 14/500\n", + "Epoch 15/500\n", + "Epoch 16/500\n", + "Epoch 17/500\n", + "Epoch 18/500\n", + "Epoch 19/500\n", + "Epoch 20/500\n", + "Epoch 21/500\n", + "Epoch 22/500\n", + "Epoch 23/500\n", + "Epoch 24/500\n", + "Epoch 25/500\n", + "Epoch 26/500\n", + "Epoch 27/500\n", + "Epoch 28/500\n", + "Epoch 29/500\n", + "Epoch 30/500\n", + "Epoch 31/500\n", + "Epoch 32/500\n", + "Epoch 33/500\n", + "Epoch 34/500\n", + "Epoch 35/500\n", + "Epoch 36/500\n", + "Epoch 37/500\n", + "Epoch 38/500\n", + "Epoch 39/500\n", + "Epoch 40/500\n", + "Epoch 41/500\n", + "Epoch 42/500\n", + "Epoch 43/500\n", + "Epoch 44/500\n", + "Epoch 45/500\n", + "Epoch 46/500\n", + "Epoch 47/500\n", + "Epoch 48/500\n", + "Epoch 49/500\n", + "Epoch 50/500\n", + "Epoch 51/500\n", + "Epoch 52/500\n", + "Epoch 53/500\n", + "Epoch 54/500\n", + "Epoch 55/500\n", + "Epoch 56/500\n", + "Epoch 57/500\n", + "Epoch 58/500\n", + "Epoch 59/500\n", + "Epoch 60/500\n", + "Epoch 61/500\n", + "Epoch 62/500\n", + "Epoch 63/500\n", + "Epoch 64/500\n", + "Epoch 65/500\n", + "Epoch 66/500\n", + "Epoch 67/500\n", + "Epoch 68/500\n", + "Epoch 69/500\n", + "Epoch 70/500\n", + "Epoch 71/500\n", + "Epoch 72/500\n", + "Epoch 73/500\n", + "Epoch 74/500\n", + "Epoch 75/500\n", + "Epoch 76/500\n", + "Epoch 77/500\n", + "Epoch 78/500\n", + "Epoch 79/500\n", + "Epoch 80/500\n", + "Epoch 81/500\n", + "Epoch 82/500\n", + "Epoch 83/500\n", + "Epoch 84/500\n", + "Epoch 85/500\n", + "Epoch 86/500\n", + "Epoch 87/500\n", + "Epoch 88/500\n", + "Epoch 89/500\n", + "Epoch 90/500\n", + "Epoch 91/500\n", + "Epoch 92/500\n", + "Epoch 93/500\n", + "Epoch 94/500\n", + "Epoch 95/500\n", + "Epoch 96/500\n", + "Epoch 97/500\n", + "Epoch 98/500\n", + "Epoch 99/500\n", + "Epoch 100/500\n", + "Epoch 101/500\n", + "Epoch 102/500\n", + "Epoch 103/500\n", + "Epoch 104/500\n", + "Epoch 105/500\n", + "Epoch 106/500\n", + "Epoch 107/500\n", + "Epoch 108/500\n", + "Epoch 109/500\n", + "Epoch 110/500\n", + "Epoch 111/500\n", + "Epoch 112/500\n", + "Epoch 113/500\n", + "Epoch 114/500\n", + "Epoch 115/500\n", + "Epoch 116/500\n", + "Epoch 117/500\n", + "Epoch 118/500\n", + "Epoch 119/500\n", + "Epoch 120/500\n", + "Epoch 121/500\n", + "Epoch 122/500\n", + "Epoch 123/500\n", + "Epoch 124/500\n", + "Epoch 125/500\n", + "Epoch 126/500\n", + "Epoch 127/500\n", + "Epoch 128/500\n", + "Epoch 129/500\n", + "Epoch 130/500\n", + "Epoch 131/500\n", + "Epoch 132/500\n", + "Epoch 133/500\n", + "Epoch 134/500\n", + "Epoch 135/500\n", + "Epoch 136/500\n", + "Epoch 137/500\n", + "Epoch 138/500\n", + "Epoch 139/500\n", + "Epoch 140/500\n", + "Epoch 141/500\n", + "Epoch 142/500\n", + "Epoch 143/500\n", + "Epoch 144/500\n", + "Epoch 145/500\n", + "Epoch 146/500\n", + "Epoch 147/500\n", + "Epoch 148/500\n", + "Epoch 149/500\n", + "Epoch 150/500\n", + "Epoch 151/500\n", + "Epoch 152/500\n", + "Epoch 153/500\n", + "Epoch 154/500\n", + "Epoch 155/500\n", + "Epoch 156/500\n", + "Epoch 157/500\n", + "Epoch 158/500\n", + "Epoch 159/500\n", + "Epoch 160/500\n", + "Epoch 161/500\n", + "Epoch 162/500\n", + "Epoch 163/500\n", + "Epoch 164/500\n", + "Epoch 165/500\n", + "Epoch 166/500\n", + "Epoch 167/500\n", + "Epoch 168/500\n", + "Epoch 169/500\n", + "Epoch 170/500\n", + "Epoch 171/500\n", + "Epoch 172/500\n", + "Epoch 173/500\n", + "Epoch 174/500\n", + "Epoch 175/500\n", + "Epoch 176/500\n", + "Epoch 177/500\n", + "Epoch 178/500\n", + "Epoch 179/500\n", + "Epoch 180/500\n", + "Epoch 181/500\n", + "Epoch 182/500\n", + "Epoch 183/500\n", + "Epoch 184/500\n", + "Epoch 185/500\n", + "Epoch 186/500\n", + "Epoch 187/500\n", + "Epoch 188/500\n", + "Epoch 189/500\n", + "Epoch 190/500\n", + "Epoch 191/500\n", + "Epoch 192/500\n", + "Epoch 193/500\n", + "Epoch 194/500\n", + "Epoch 195/500\n", + "Epoch 196/500\n", + "Epoch 197/500\n", + "Epoch 198/500\n", + "Epoch 199/500\n", + "Epoch 200/500\n", + "Epoch 201/500\n", + "Epoch 202/500\n", + "Epoch 203/500\n", + "Epoch 204/500\n", + "Epoch 205/500\n", + "Epoch 206/500\n", + "Epoch 207/500\n", + "Epoch 208/500\n", + "Epoch 209/500\n", + "Epoch 210/500\n", + "Epoch 211/500\n", + "Epoch 212/500\n", + "Epoch 213/500\n", + "Epoch 214/500\n", + "Epoch 215/500\n", + "Epoch 216/500\n", + "Epoch 217/500\n", + "Epoch 218/500\n", + "Epoch 219/500\n", + "Epoch 220/500\n", + "Epoch 221/500\n", + "Epoch 222/500\n", + "Epoch 223/500\n", + "Epoch 224/500\n", + "Epoch 225/500\n", + "Epoch 226/500\n", + "Epoch 227/500\n", + "Epoch 228/500\n", + "Epoch 229/500\n", + "Epoch 230/500\n", + "Epoch 231/500\n", + "Epoch 232/500\n", + "Epoch 233/500\n", + "Epoch 234/500\n", + "Epoch 235/500\n", + "Epoch 236/500\n", + "Epoch 237/500\n", + "Epoch 238/500\n", + "Epoch 239/500\n", + "Epoch 240/500\n", + "Epoch 241/500\n", + "Epoch 242/500\n", + "Epoch 243/500\n", + "Epoch 244/500\n", + "Epoch 245/500\n", + "Epoch 246/500\n", + "Epoch 247/500\n", + "Epoch 248/500\n", + "Epoch 249/500\n", + "Epoch 250/500\n", + "Epoch 251/500\n", + "Epoch 252/500\n", + "Epoch 253/500\n", + "Epoch 254/500\n", + "Epoch 255/500\n", + "Epoch 256/500\n", + "Epoch 257/500\n", + "Epoch 258/500\n", + "Epoch 259/500\n", + "Epoch 260/500\n", + "Epoch 261/500\n", + "Epoch 262/500\n", + "Epoch 263/500\n", + "Epoch 264/500\n", + "Epoch 265/500\n", + "Epoch 266/500\n", + "Epoch 267/500\n", + "Epoch 268/500\n", + "Epoch 269/500\n", + "Epoch 270/500\n", + "Epoch 271/500\n", + "Epoch 272/500\n", + "Epoch 273/500\n", + "Epoch 274/500\n", + "Epoch 275/500\n", + "Epoch 276/500\n", + "Epoch 277/500\n", + "Epoch 278/500\n", + "Epoch 279/500\n", + "Epoch 280/500\n", + "Epoch 281/500\n", + "Epoch 282/500\n", + "Epoch 283/500\n", + "Epoch 284/500\n", + "Epoch 285/500\n", + "Epoch 286/500\n", + "Epoch 287/500\n", + "Epoch 288/500\n", + "Epoch 289/500\n", + "Epoch 290/500\n", + "Epoch 291/500\n", + "Epoch 292/500\n", + "Epoch 293/500\n", + "Epoch 294/500\n", + "Epoch 295/500\n", + "Epoch 296/500\n", + "Epoch 297/500\n", + "Epoch 298/500\n", + "Epoch 299/500\n", + "Epoch 300/500\n", + "Epoch 301/500\n", + "Epoch 302/500\n", + "Epoch 303/500\n", + "Epoch 304/500\n", + "Epoch 305/500\n", + "Epoch 306/500\n", + "Epoch 307/500\n", + "Epoch 308/500\n", + "Epoch 309/500\n", + "Epoch 310/500\n", + "Epoch 311/500\n", + "Epoch 312/500\n", + "Epoch 313/500\n", + "Epoch 314/500\n", + "Epoch 315/500\n", + "Epoch 316/500\n", + "Epoch 317/500\n", + "Epoch 318/500\n", + "Epoch 319/500\n", + "Epoch 320/500\n", + "Epoch 321/500\n", + "Epoch 322/500\n", + "Epoch 323/500\n", + "Epoch 324/500\n", + "Epoch 325/500\n", + "Epoch 326/500\n", + "Epoch 327/500\n", + "Epoch 328/500\n", + "Epoch 329/500\n", + "Epoch 330/500\n", + "Epoch 331/500\n", + "Epoch 332/500\n", + "Epoch 333/500\n", + "Epoch 334/500\n", + "Epoch 335/500\n", + "Epoch 336/500\n", + "Epoch 337/500\n", + "Epoch 338/500\n", + "Epoch 339/500\n", + "Epoch 340/500\n", + "Epoch 341/500\n", + "Epoch 342/500\n", + "Epoch 343/500\n", + "Epoch 344/500\n", + "Epoch 345/500\n", + "Epoch 346/500\n", + "Epoch 347/500\n", + "Epoch 348/500\n", + "Epoch 349/500\n", + "Epoch 350/500\n", + "Epoch 351/500\n", + "Epoch 352/500\n", + "Epoch 353/500\n", + "Epoch 354/500\n", + "Epoch 355/500\n", + "Epoch 356/500\n", + "Epoch 357/500\n", + "Epoch 358/500\n", + "Epoch 359/500\n", + "Epoch 360/500\n", + "Epoch 361/500\n", + "Epoch 362/500\n", + "Epoch 363/500\n", + "Epoch 364/500\n", + "Epoch 365/500\n", + "Epoch 366/500\n", + "Epoch 367/500\n", + "Epoch 368/500\n", + "Epoch 369/500\n", + "Epoch 370/500\n", + "Epoch 371/500\n", + "Epoch 372/500\n", + "Epoch 373/500\n", + "Epoch 374/500\n", + "Epoch 375/500\n", + "Epoch 376/500\n", + "Epoch 377/500\n", + "Epoch 378/500\n", + "Epoch 379/500\n", + "Epoch 380/500\n", + "Epoch 381/500\n", + "Epoch 382/500\n", + "Epoch 383/500\n", + "Epoch 384/500\n", + "Epoch 385/500\n", + "Epoch 386/500\n", + "Epoch 387/500\n", + "Epoch 388/500\n", + "Epoch 389/500\n", + "Epoch 390/500\n", + "Epoch 391/500\n", + "Epoch 392/500\n", + "Epoch 393/500\n", + "Epoch 394/500\n", + "Epoch 395/500\n", + "Epoch 396/500\n", + "Epoch 397/500\n", + "Epoch 398/500\n", + "Epoch 399/500\n", + "Epoch 400/500\n", + "Epoch 401/500\n", + "Epoch 402/500\n", + "Epoch 403/500\n", + "Epoch 404/500\n", + "Epoch 405/500\n", + "Epoch 406/500\n", + "Epoch 407/500\n", + "Epoch 408/500\n", + "Epoch 409/500\n", + "Epoch 410/500\n", + "Epoch 411/500\n", + "Epoch 412/500\n", + "Epoch 413/500\n", + "Epoch 414/500\n", + "Epoch 415/500\n", + "Epoch 416/500\n", + "Epoch 417/500\n", + "Epoch 418/500\n", + "Epoch 419/500\n", + "Epoch 420/500\n", + "Epoch 421/500\n", + "Epoch 422/500\n", + "Epoch 423/500\n", + "Epoch 424/500\n", + "Epoch 425/500\n", + "Epoch 426/500\n", + "Epoch 427/500\n", + "Epoch 428/500\n", + "Epoch 429/500\n", + "Epoch 430/500\n", + "Epoch 431/500\n", + "Epoch 432/500\n", + "Epoch 433/500\n", + "Epoch 434/500\n", + "Epoch 435/500\n", + "Epoch 436/500\n", + "Epoch 437/500\n", + "Epoch 438/500\n", + "Epoch 439/500\n", + "Epoch 440/500\n", + "Epoch 441/500\n", + "Epoch 442/500\n", + "Epoch 443/500\n", + "Epoch 444/500\n", + "Epoch 445/500\n", + "Epoch 446/500\n", + "Epoch 447/500\n", + "Epoch 448/500\n", + "Epoch 449/500\n", + "Epoch 450/500\n", + "Epoch 451/500\n", + "Epoch 452/500\n", + "Epoch 453/500\n", + "Epoch 454/500\n", + "Epoch 455/500\n", + "Epoch 456/500\n", + "Epoch 457/500\n", + "Epoch 458/500\n", + "Epoch 459/500\n", + "Epoch 460/500\n", + "Epoch 461/500\n", + "Epoch 462/500\n", + "Epoch 463/500\n", + "Epoch 464/500\n", + "Epoch 465/500\n", + "Epoch 466/500\n", + "Epoch 467/500\n", + "Epoch 468/500\n", + "Epoch 469/500\n", + "Epoch 470/500\n", + "Epoch 471/500\n", + "Epoch 472/500\n", + "Epoch 473/500\n", + "Epoch 474/500\n", + "Epoch 475/500\n", + "Epoch 476/500\n", + "Epoch 477/500\n", + "Epoch 478/500\n", + "Epoch 479/500\n", + "Epoch 480/500\n", + "Epoch 481/500\n", + "Epoch 482/500\n", + "Epoch 483/500\n", + "Epoch 484/500\n", + "Epoch 485/500\n", + "Epoch 486/500\n", + "Epoch 487/500\n", + "Epoch 488/500\n", + "Epoch 489/500\n", + "Epoch 490/500\n", + "Epoch 491/500\n", + "Epoch 492/500\n", + "Epoch 493/500\n", + "Epoch 494/500\n", + "Epoch 495/500\n", + "Epoch 496/500\n", + "Epoch 497/500\n", + "Epoch 498/500\n", + "Epoch 499/500\n", + "Epoch 500/500\n", + "Epoch 1: Loss = 102832000.0\n", + "Epoch 2: Loss = 28581594.0\n", + "Epoch 3: Loss = 38466356.0\n", + "Epoch 4: Loss = 11858119.0\n", + "Epoch 5: Loss = 28559066.0\n", + "Epoch 6: Loss = 8444905.0\n", + "Epoch 7: Loss = 20377050.0\n", + "Epoch 8: Loss = 9812851.0\n", + "Epoch 9: Loss = 29177000.0\n", + "Epoch 10: Loss = 8028653.5\n", + "Epoch 11: Loss = 13237634.0\n", + "Epoch 12: Loss = 22082724.0\n", + "Epoch 13: Loss = 124183480.0\n", + "Epoch 14: Loss = 139594432.0\n", + "Epoch 15: Loss = 28150334.0\n", + "Epoch 16: Loss = 62225272.0\n", + "Epoch 17: Loss = 58199332.0\n", + "Epoch 18: Loss = 65592624.0\n", + "Epoch 19: Loss = 43185248.0\n", + "Epoch 20: Loss = 1464006.5\n", + "Epoch 21: Loss = 48347900.0\n", + "Epoch 22: Loss = 64234732.0\n", + "Epoch 23: Loss = 52944504.0\n", + "Epoch 24: Loss = 28143280.0\n", + "Epoch 25: Loss = 107148008.0\n", + "Epoch 26: Loss = 246287232.0\n", + "Epoch 27: Loss = 362880256.0\n", + "Epoch 28: Loss = 94853680.0\n", + "Epoch 29: Loss = 360159104.0\n", + "Epoch 30: Loss = 323046208.0\n", + "Epoch 31: Loss = 451675040.0\n", + "Epoch 32: Loss = 464746720.0\n", + "Epoch 33: Loss = 181614256.0\n", + "Epoch 34: Loss = 1016295040.0\n", + "Epoch 35: Loss = 48944064.0\n", + "Epoch 36: Loss = 537670912.0\n", + "Epoch 37: Loss = 183015648.0\n", + "Epoch 38: Loss = 36896788.0\n", + "Epoch 39: Loss = 208437264.0\n", + "Epoch 40: Loss = 404825856.0\n", + "Epoch 41: Loss = 145038928.0\n", + "Epoch 42: Loss = 90906088.0\n", + "Epoch 43: Loss = 317433088.0\n", + "Epoch 44: Loss = 207606352.0\n", + "Epoch 45: Loss = 67569608.0\n", + "Epoch 46: Loss = 248813776.0\n", + "Epoch 47: Loss = 28989996.0\n", + "Epoch 48: Loss = 152745104.0\n", + "Epoch 49: Loss = 378671104.0\n", + "Epoch 50: Loss = 67719336.0\n", + "Epoch 51: Loss = 58827168.0\n", + "Epoch 52: Loss = 44643036.0\n", + "Epoch 53: Loss = 17336574.0\n", + "Epoch 54: Loss = 44304728.0\n", + "Epoch 55: Loss = 62798080.0\n", + "Epoch 56: Loss = 16528823.0\n", + "Epoch 57: Loss = 7602400.0\n", + "Epoch 58: Loss = 27509160.0\n", + "Epoch 59: Loss = 45870420.0\n", + "Epoch 60: Loss = 3016445.25\n", + "Epoch 61: Loss = 37617712.0\n", + "Epoch 62: Loss = 539786.4375\n", + "Epoch 63: Loss = 6469420.5\n", + "Epoch 64: Loss = 5883493.0\n", + "Epoch 65: Loss = 9921310.0\n", + "Epoch 66: Loss = 40837956.0\n", + "Epoch 67: Loss = 28660466.0\n", + "Epoch 68: Loss = 25806316.0\n", + "Epoch 69: Loss = 1407943.875\n", + "Epoch 70: Loss = 26945542.0\n", + "Epoch 71: Loss = 65294368.0\n", + "Epoch 72: Loss = 41522256.0\n", + "Epoch 73: Loss = 50687172.0\n", + "Epoch 74: Loss = 10233583.0\n", + "Epoch 75: Loss = 50585760.0\n", + "Epoch 76: Loss = 5199648.5\n", + "Epoch 77: Loss = 28636404.0\n", + "Epoch 78: Loss = 5874281.5\n", + "Epoch 79: Loss = 20629022.0\n", + "Epoch 80: Loss = 13411407.0\n", + "Epoch 81: Loss = 6462674.0\n", + "Epoch 82: Loss = 36192340.0\n", + "Epoch 83: Loss = 39421420.0\n", + "Epoch 84: Loss = 11029152.0\n", + "Epoch 85: Loss = 13814310.0\n", + "Epoch 86: Loss = 2058303.625\n", + "Epoch 87: Loss = 21444492.0\n", + "Epoch 88: Loss = 60458524.0\n", + "Epoch 89: Loss = 946386.125\n", + "Epoch 90: Loss = 727960.6875\n", + "Epoch 91: Loss = 4561388.0\n", + "Epoch 92: Loss = 11874139.0\n", + "Epoch 93: Loss = 32916434.0\n", + "Epoch 94: Loss = 58273708.0\n", + "Epoch 95: Loss = 170226112.0\n", + "Epoch 96: Loss = 25728500.0\n", + "Epoch 97: Loss = 14353096.0\n", + "Epoch 98: Loss = 29355582.0\n", + "Epoch 99: Loss = 9882171.0\n", + "Epoch 100: Loss = 21905370.0\n", + "Epoch 101: Loss = 9851736.0\n", + "Epoch 102: Loss = 41945844.0\n", + "Epoch 103: Loss = 7750540.0\n", + "Epoch 104: Loss = 14483188.0\n", + "Epoch 105: Loss = 24603462.0\n", + "Epoch 106: Loss = 10265312.0\n", + "Epoch 107: Loss = 14629091.0\n", + "Epoch 108: Loss = 13545599.0\n", + "Epoch 109: Loss = 89341056.0\n", + "Epoch 110: Loss = 131173144.0\n", + "Epoch 111: Loss = 124960984.0\n", + "Epoch 112: Loss = 10596631.0\n", + "Epoch 113: Loss = 31328620.0\n", + "Epoch 114: Loss = 23911078.0\n", + "Epoch 115: Loss = 508030592.0\n", + "Epoch 116: Loss = 4951201.5\n", + "Epoch 117: Loss = 161397488.0\n", + "Epoch 118: Loss = 165640304.0\n", + "Epoch 119: Loss = 1637081600.0\n", + "Epoch 120: Loss = 4162158592.0\n", + "Epoch 121: Loss = 103552992.0\n", + "Epoch 122: Loss = 1941750784.0\n", + "Epoch 123: Loss = 939500736.0\n", + "Epoch 124: Loss = 2160167936.0\n", + "Epoch 125: Loss = 504996992.0\n", + "Epoch 126: Loss = 1218859776.0\n", + "Epoch 127: Loss = 188687232.0\n", + "Epoch 128: Loss = 1326811264.0\n", + "Epoch 129: Loss = 546000000.0\n", + "Epoch 130: Loss = 652817216.0\n", + "Epoch 131: Loss = 798477184.0\n", + "Epoch 132: Loss = 385249184.0\n", + "Epoch 133: Loss = 293815104.0\n", + "Epoch 134: Loss = 876512448.0\n", + "Epoch 135: Loss = 2855535104.0\n", + "Epoch 136: Loss = 554518656.0\n", + "Epoch 137: Loss = 176193920.0\n", + "Epoch 138: Loss = 455097728.0\n", + "Epoch 139: Loss = 38599364.0\n", + "Epoch 140: Loss = 24551452.0\n", + "Epoch 141: Loss = 110513104.0\n", + "Epoch 142: Loss = 110353048.0\n", + "Epoch 143: Loss = 460856768.0\n", + "Epoch 144: Loss = 292320032.0\n", + "Epoch 145: Loss = 447717472.0\n", + "Epoch 146: Loss = 517735072.0\n", + "Epoch 147: Loss = 230246288.0\n", + "Epoch 148: Loss = 74563280.0\n", + "Epoch 149: Loss = 223070800.0\n", + "Epoch 150: Loss = 143589808.0\n", + "Epoch 151: Loss = 138108752.0\n", + "Epoch 152: Loss = 24285336.0\n", + "Epoch 153: Loss = 109380440.0\n", + "Epoch 154: Loss = 59204900.0\n", + "Epoch 155: Loss = 45474664.0\n", + "Epoch 156: Loss = 21519894.0\n", + "Epoch 157: Loss = 9749383.0\n", + "Epoch 158: Loss = 98707960.0\n", + "Epoch 159: Loss = 38516540.0\n", + "Epoch 160: Loss = 117907128.0\n", + "Epoch 161: Loss = 18668372.0\n", + "Epoch 162: Loss = 23324586.0\n", + "Epoch 163: Loss = 16186311.0\n", + "Epoch 164: Loss = 132299872.0\n", + "Epoch 165: Loss = 4137220.5\n", + "Epoch 166: Loss = 32669248.0\n", + "Epoch 167: Loss = 9175897.0\n", + "Epoch 168: Loss = 34163052.0\n", + "Epoch 169: Loss = 23097474.0\n", + "Epoch 170: Loss = 51617992.0\n", + "Epoch 171: Loss = 11813448.0\n", + "Epoch 172: Loss = 41611636.0\n", + "Epoch 173: Loss = 30317978.0\n", + "Epoch 174: Loss = 17387690.0\n", + "Epoch 175: Loss = 3900669.75\n", + "Epoch 176: Loss = 3561742.25\n", + "Epoch 177: Loss = 5969533.0\n", + "Epoch 178: Loss = 117700544.0\n", + "Epoch 179: Loss = 5149296.0\n", + "Epoch 180: Loss = 9947249.0\n", + "Epoch 181: Loss = 46528292.0\n", + "Epoch 182: Loss = 39733124.0\n", + "Epoch 183: Loss = 19441794.0\n", + "Epoch 184: Loss = 8988196.0\n", + "Epoch 185: Loss = 18157304.0\n", + "Epoch 186: Loss = 7252877.5\n", + "Epoch 187: Loss = 41503044.0\n", + "Epoch 188: Loss = 26564140.0\n", + "Epoch 189: Loss = 33145384.0\n", + "Epoch 190: Loss = 24849360.0\n", + "Epoch 191: Loss = 19266568.0\n", + "Epoch 192: Loss = 18558142.0\n", + "Epoch 193: Loss = 68987280.0\n", + "Epoch 194: Loss = 41996672.0\n", + "Epoch 195: Loss = 93667328.0\n", + "Epoch 196: Loss = 893685.625\n", + "Epoch 197: Loss = 67667520.0\n", + "Epoch 198: Loss = 66997572.0\n", + "Epoch 199: Loss = 71625176.0\n", + "Epoch 200: Loss = 95644632.0\n", + "Epoch 201: Loss = 50191872.0\n", + "Epoch 202: Loss = 34075780.0\n", + "Epoch 203: Loss = 73167832.0\n", + "Epoch 204: Loss = 27575636.0\n", + "Epoch 205: Loss = 35330876.0\n", + "Epoch 206: Loss = 22916410.0\n", + "Epoch 207: Loss = 24282562.0\n", + "Epoch 208: Loss = 49295748.0\n", + "Epoch 209: Loss = 47714040.0\n", + "Epoch 210: Loss = 45224276.0\n", + "Epoch 211: Loss = 101702608.0\n", + "Epoch 212: Loss = 60757964.0\n", + "Epoch 213: Loss = 99960848.0\n", + "Epoch 214: Loss = 14283336.0\n", + "Epoch 215: Loss = 16283412.0\n", + "Epoch 216: Loss = 9840116.0\n", + "Epoch 217: Loss = 14328882.0\n", + "Epoch 218: Loss = 118184336.0\n", + "Epoch 219: Loss = 84319664.0\n", + "Epoch 220: Loss = 45551916.0\n", + "Epoch 221: Loss = 235838464.0\n", + "Epoch 222: Loss = 172541184.0\n", + "Epoch 223: Loss = 7404227.5\n", + "Epoch 224: Loss = 6032476.0\n", + "Epoch 225: Loss = 33620356.0\n", + "Epoch 226: Loss = 58161032.0\n", + "Epoch 227: Loss = 6120454.0\n", + "Epoch 228: Loss = 2004220.875\n", + "Epoch 229: Loss = 657080.8125\n", + "Epoch 230: Loss = 5642705.0\n", + "Epoch 231: Loss = 4763228.0\n", + "Epoch 232: Loss = 31776292.0\n", + "Epoch 233: Loss = 65007488.0\n", + "Epoch 234: Loss = 77484584.0\n", + "Epoch 235: Loss = 3585655.25\n", + "Epoch 236: Loss = 17067364.0\n", + "Epoch 237: Loss = 9166650.0\n", + "Epoch 238: Loss = 8339791.0\n", + "Epoch 239: Loss = 14555955.0\n", + "Epoch 240: Loss = 40074312.0\n", + "Epoch 241: Loss = 23534336.0\n", + "Epoch 242: Loss = 4477015.0\n", + "Epoch 243: Loss = 31477884.0\n", + "Epoch 244: Loss = 10155824.0\n", + "Epoch 245: Loss = 11160846.0\n", + "Epoch 246: Loss = 13042034.0\n", + "Epoch 247: Loss = 2841601.75\n", + "Epoch 248: Loss = 43013616.0\n", + "Epoch 249: Loss = 7460937.0\n", + "Epoch 250: Loss = 30927802.0\n", + "Epoch 251: Loss = 12506443.0\n", + "Epoch 252: Loss = 15761238.0\n", + "Epoch 253: Loss = 9420556.0\n", + "Epoch 254: Loss = 10614524.0\n", + "Epoch 255: Loss = 41148184.0\n", + "Epoch 256: Loss = 9866906.0\n", + "Epoch 257: Loss = 6530872.0\n", + "Epoch 258: Loss = 5475881.5\n", + "Epoch 259: Loss = 4417406.5\n", + "Epoch 260: Loss = 8015231.5\n", + "Epoch 261: Loss = 19830106.0\n", + "Epoch 262: Loss = 34233740.0\n", + "Epoch 263: Loss = 33586196.0\n", + "Epoch 264: Loss = 56163200.0\n", + "Epoch 265: Loss = 72808664.0\n", + "Epoch 266: Loss = 37919452.0\n", + "Epoch 267: Loss = 90733528.0\n", + "Epoch 268: Loss = 3429886.25\n", + "Epoch 269: Loss = 44704472.0\n", + "Epoch 270: Loss = 15747013.0\n", + "Epoch 271: Loss = 28768746.0\n", + "Epoch 272: Loss = 32492992.0\n", + "Epoch 273: Loss = 27031230.0\n", + "Epoch 274: Loss = 21846418.0\n", + "Epoch 275: Loss = 4649849.0\n", + "Epoch 276: Loss = 7733873.5\n", + "Epoch 277: Loss = 13470125.0\n", + "Epoch 278: Loss = 10613280.0\n", + "Epoch 279: Loss = 36575448.0\n", + "Epoch 280: Loss = 19551678.0\n", + "Epoch 281: Loss = 17854220.0\n", + "Epoch 282: Loss = 15834977.0\n", + "Epoch 283: Loss = 32908400.0\n", + "Epoch 284: Loss = 13467092.0\n", + "Epoch 285: Loss = 14299426.0\n", + "Epoch 286: Loss = 10788824.0\n", + "Epoch 287: Loss = 10841810.0\n", + "Epoch 288: Loss = 58854748.0\n", + "Epoch 289: Loss = 60941764.0\n", + "Epoch 290: Loss = 61065320.0\n", + "Epoch 291: Loss = 33045146.0\n", + "Epoch 292: Loss = 32921238.0\n", + "Epoch 293: Loss = 34047964.0\n", + "Epoch 294: Loss = 35546632.0\n", + "Epoch 295: Loss = 33580868.0\n", + "Epoch 296: Loss = 31460306.0\n", + "Epoch 297: Loss = 48280976.0\n", + "Epoch 298: Loss = 12115497.0\n", + "Epoch 299: Loss = 7208291.5\n", + "Epoch 300: Loss = 1766983.0\n", + "Epoch 301: Loss = 6763603.0\n", + "Epoch 302: Loss = 11206675.0\n", + "Epoch 303: Loss = 9650744.0\n", + "Epoch 304: Loss = 25572510.0\n", + "Epoch 305: Loss = 9444142.0\n", + "Epoch 306: Loss = 11093033.0\n", + "Epoch 307: Loss = 10070954.0\n", + "Epoch 308: Loss = 59487976.0\n", + "Epoch 309: Loss = 41377592.0\n", + "Epoch 310: Loss = 27515682.0\n", + "Epoch 311: Loss = 63783832.0\n", + "Epoch 312: Loss = 19595784.0\n", + "Epoch 313: Loss = 4278891.5\n", + "Epoch 314: Loss = 7336858.5\n", + "Epoch 315: Loss = 124383816.0\n", + "Epoch 316: Loss = 21640474.0\n", + "Epoch 317: Loss = 176682096.0\n", + "Epoch 318: Loss = 169359104.0\n", + "Epoch 319: Loss = 217748176.0\n", + "Epoch 320: Loss = 213649504.0\n", + "Epoch 321: Loss = 11420248.0\n", + "Epoch 322: Loss = 20710246.0\n", + "Epoch 323: Loss = 28334560.0\n", + "Epoch 324: Loss = 31568188.0\n", + "Epoch 325: Loss = 82415568.0\n", + "Epoch 326: Loss = 105856440.0\n", + "Epoch 327: Loss = 43879480.0\n", + "Epoch 328: Loss = 27950824.0\n", + "Epoch 329: Loss = 10049555.0\n", + "Epoch 330: Loss = 17207532.0\n", + "Epoch 331: Loss = 15334850.0\n", + "Epoch 332: Loss = 75185920.0\n", + "Epoch 333: Loss = 2053800.125\n", + "Epoch 334: Loss = 3618750.25\n", + "Epoch 335: Loss = 27956748.0\n", + "Epoch 336: Loss = 12379736.0\n", + "Epoch 337: Loss = 12098196.0\n", + "Epoch 338: Loss = 7388391.5\n", + "Epoch 339: Loss = 6162855.5\n", + "Epoch 340: Loss = 5634845.0\n", + "Epoch 341: Loss = 3414655.0\n", + "Epoch 342: Loss = 2931523.0\n", + "Epoch 343: Loss = 17941050.0\n", + "Epoch 344: Loss = 25871864.0\n", + "Epoch 345: Loss = 37890684.0\n", + "Epoch 346: Loss = 13986114.0\n", + "Epoch 347: Loss = 13123363.0\n", + "Epoch 348: Loss = 11382073.0\n", + "Epoch 349: Loss = 31477172.0\n", + "Epoch 350: Loss = 7196466.0\n", + "Epoch 351: Loss = 18594956.0\n", + "Epoch 352: Loss = 23716518.0\n", + "Epoch 353: Loss = 16498504.0\n", + "Epoch 354: Loss = 30585646.0\n", + "Epoch 355: Loss = 37859912.0\n", + "Epoch 356: Loss = 8174270.0\n", + "Epoch 357: Loss = 18000748.0\n", + "Epoch 358: Loss = 6179393.5\n", + "Epoch 359: Loss = 9815300.0\n", + "Epoch 360: Loss = 13170956.0\n", + "Epoch 361: Loss = 34797720.0\n", + "Epoch 362: Loss = 14839481.0\n", + "Epoch 363: Loss = 11062543.0\n", + "Epoch 364: Loss = 1226162.125\n", + "Epoch 365: Loss = 1730673.0\n", + "Epoch 366: Loss = 2638962.25\n", + "Epoch 367: Loss = 3740686.5\n", + "Epoch 368: Loss = 2295863.0\n", + "Epoch 369: Loss = 7822918.5\n", + "Epoch 370: Loss = 6592415.5\n", + "Epoch 371: Loss = 5863917.0\n", + "Epoch 372: Loss = 3220520.25\n", + "Epoch 373: Loss = 3901127.75\n", + "Epoch 374: Loss = 7227896.5\n", + "Epoch 375: Loss = 4244708.0\n", + "Epoch 376: Loss = 1960855.5\n", + "Epoch 377: Loss = 44605084.0\n", + "Epoch 378: Loss = 37953028.0\n", + "Epoch 379: Loss = 38479128.0\n", + "Epoch 380: Loss = 1646036.25\n", + "Epoch 381: Loss = 1956850.375\n", + "Epoch 382: Loss = 1022255.125\n", + "Epoch 383: Loss = 17024442.0\n", + "Epoch 384: Loss = 18889852.0\n", + "Epoch 385: Loss = 13461972.0\n", + "Epoch 386: Loss = 82066912.0\n", + "Epoch 387: Loss = 6709552.0\n", + "Epoch 388: Loss = 23933834.0\n", + "Epoch 389: Loss = 14408879.0\n", + "Epoch 390: Loss = 21427828.0\n", + "Epoch 391: Loss = 40592940.0\n", + "Epoch 392: Loss = 27474848.0\n", + "Epoch 393: Loss = 18541048.0\n", + "Epoch 394: Loss = 6633277.5\n", + "Epoch 395: Loss = 7380019.5\n", + "Epoch 396: Loss = 12679058.0\n", + "Epoch 397: Loss = 25765614.0\n", + "Epoch 398: Loss = 24309706.0\n", + "Epoch 399: Loss = 8185821.0\n", + "Epoch 400: Loss = 13782796.0\n", + "Epoch 401: Loss = 20877706.0\n", + "Epoch 402: Loss = 10918741.0\n", + "Epoch 403: Loss = 12428180.0\n", + "Epoch 404: Loss = 12314490.0\n", + "Epoch 405: Loss = 9034409.0\n", + "Epoch 406: Loss = 11179762.0\n", + "Epoch 407: Loss = 1332685.75\n", + "Epoch 408: Loss = 8724377.0\n", + "Epoch 409: Loss = 4092440.5\n", + "Epoch 410: Loss = 7746171.0\n", + "Epoch 411: Loss = 3990658.0\n", + "Epoch 412: Loss = 9052532.0\n", + "Epoch 413: Loss = 5382648.5\n", + "Epoch 414: Loss = 6087593.0\n", + "Epoch 415: Loss = 10909400.0\n", + "Epoch 416: Loss = 13880742.0\n", + "Epoch 417: Loss = 10404677.0\n", + "Epoch 418: Loss = 22503978.0\n", + "Epoch 419: Loss = 30100348.0\n", + "Epoch 420: Loss = 4746040.5\n", + "Epoch 421: Loss = 5709309.0\n", + "Epoch 422: Loss = 5332604.0\n", + "Epoch 423: Loss = 6832333.0\n", + "Epoch 424: Loss = 7631865.0\n", + "Epoch 425: Loss = 3771762.75\n", + "Epoch 426: Loss = 18801092.0\n", + "Epoch 427: Loss = 55575752.0\n", + "Epoch 428: Loss = 97920264.0\n", + "Epoch 429: Loss = 61876276.0\n", + "Epoch 430: Loss = 29736144.0\n", + "Epoch 431: Loss = 40055184.0\n", + "Epoch 432: Loss = 28055472.0\n", + "Epoch 433: Loss = 12496342.0\n", + "Epoch 434: Loss = 18982382.0\n", + "Epoch 435: Loss = 10846186.0\n", + "Epoch 436: Loss = 14282407.0\n", + "Epoch 437: Loss = 37909076.0\n", + "Epoch 438: Loss = 20137116.0\n", + "Epoch 439: Loss = 9262172.0\n", + "Epoch 440: Loss = 3640067.0\n", + "Epoch 441: Loss = 10816868.0\n", + "Epoch 442: Loss = 18398186.0\n", + "Epoch 443: Loss = 3821556.5\n", + "Epoch 444: Loss = 12209163.0\n", + "Epoch 445: Loss = 9349880.0\n", + "Epoch 446: Loss = 5125670.5\n", + "Epoch 447: Loss = 37675156.0\n", + "Epoch 448: Loss = 18691106.0\n", + "Epoch 449: Loss = 9890120.0\n", + "Epoch 450: Loss = 8104408.0\n", + "Epoch 451: Loss = 10571805.0\n", + "Epoch 452: Loss = 4060703.75\n", + "Epoch 453: Loss = 6327300.0\n", + "Epoch 454: Loss = 5932917.0\n", + "Epoch 455: Loss = 11192619.0\n", + "Epoch 456: Loss = 14876193.0\n", + "Epoch 457: Loss = 10281366.0\n", + "Epoch 458: Loss = 5453881.0\n", + "Epoch 459: Loss = 13143906.0\n", + "Epoch 460: Loss = 20262672.0\n", + "Epoch 461: Loss = 7708167.0\n", + "Epoch 462: Loss = 17447026.0\n", + "Epoch 463: Loss = 1170099.125\n", + "Epoch 464: Loss = 14493766.0\n", + "Epoch 465: Loss = 3540527.75\n", + "Epoch 466: Loss = 4028082.0\n", + "Epoch 467: Loss = 8608558.0\n", + "Epoch 468: Loss = 10065666.0\n", + "Epoch 469: Loss = 8405355.0\n", + "Epoch 470: Loss = 12151652.0\n", + "Epoch 471: Loss = 16991180.0\n", + "Epoch 472: Loss = 9371812.0\n", + "Epoch 473: Loss = 19665128.0\n", + "Epoch 474: Loss = 5872520.0\n", + "Epoch 475: Loss = 13190856.0\n", + "Epoch 476: Loss = 7332938.0\n", + "Epoch 477: Loss = 6324096.5\n", + "Epoch 478: Loss = 6623219.0\n", + "Epoch 479: Loss = 6425566.0\n", + "Epoch 480: Loss = 9061003.0\n", + "Epoch 481: Loss = 3552659.5\n", + "Epoch 482: Loss = 4545801.5\n", + "Epoch 483: Loss = 2553218.75\n", + "Epoch 484: Loss = 821733.375\n", + "Epoch 485: Loss = 8598632.0\n", + "Epoch 486: Loss = 8665224.0\n", + "Epoch 487: Loss = 4746739.5\n", + "Epoch 488: Loss = 1781845.375\n", + "Epoch 489: Loss = 1323368.0\n", + "Epoch 490: Loss = 829634.375\n", + "Epoch 491: Loss = 1419806.125\n", + "Epoch 492: Loss = 20782330.0\n", + "Epoch 493: Loss = 11469326.0\n", + "Epoch 494: Loss = 14554182.0\n", + "Epoch 495: Loss = 12838631.0\n", + "Epoch 496: Loss = 11325082.0\n", + "Epoch 497: Loss = 13525978.0\n", + "Epoch 498: Loss = 27821814.0\n", + "Epoch 499: Loss = 9435000.0\n", + "Epoch 500: Loss = 20394206.0\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVqElEQVR4nO3deXhTVf4/8HeatuneAt2h7MgqiyylriAomwiIoyKOiNtPBUdc5jswjgiOCuioqCjuoI4IgoAMspd9p0DZKVtLC93pvqVtcn5/tLnkpmla0rS5N7xfz9PH5ube25NLbd4553PO1QghBIiIiIgUyM3ZDSAiIiKqDYMKERERKRaDChERESkWgwoREREpFoMKERERKRaDChERESkWgwoREREpFoMKERERKRaDChERESkWgwoRNRmNRoNZs2bd8HFJSUnQaDRYvHixzf22b98OjUaD7du329U+IlIeBhWim8zixYuh0Wig0Wiwe/fuGs8LIRAVFQWNRoMHHnjACS0kIrqOQYXoJuXl5YUlS5bU2L5jxw5cuXIFOp3OCa0iIpJjUCG6SY0cORLLly9HZWWlbPuSJUvQt29fhIeHO6llRETXMagQ3aQmTJiAa9euYfPmzdK28vJyrFixAo8//rjVY4qLi/H6668jKioKOp0OnTt3xn/+8x9Y3oRdr9fj1VdfRUhICPz9/fHggw/iypUrVs959epVPP300wgLC4NOp0P37t3xww8/OO6FAli+fDn69u0Lb29vBAcH44knnsDVq1dl+6Snp2Py5Mlo1aoVdDodIiIiMGbMGCQlJUn7xMXFYdiwYQgODoa3tzfatWuHp59+2qFtJSI5d2c3gIico23btoiJicGvv/6KESNGAADWr1+P/Px8PPbYY/jss89k+wsh8OCDD2Lbtm145pln0Lt3b2zcuBF///vfcfXqVXzyySfSvs8++yz++9//4vHHH8ftt9+OrVu3YtSoUTXakJGRgYEDB0Kj0WDq1KkICQnB+vXr8cwzz6CgoADTpk1r8OtcvHgxJk+ejP79+2POnDnIyMjAp59+ij179uDo0aMICgoCAIwfPx6nTp3Cyy+/jLZt2yIzMxObN29GcnKy9Pj+++9HSEgIpk+fjqCgICQlJWHlypUNbiMR2SCI6KayaNEiAUAcOnRILFiwQPj7+4uSkhIhhBB/+ctfxODBg4UQQrRp00aMGjVKOm716tUCgHj33Xdl53v44YeFRqMRFy5cEEIIER8fLwCIl156Sbbf448/LgCIt99+W9r2zDPPiIiICJGdnS3b97HHHhOBgYFSuxITEwUAsWjRIpuvbdu2bQKA2LZtmxBCiPLychEaGip69OghSktLpf3Wrl0rAIiZM2cKIYTIzc0VAMSHH35Y67lXrVolXTciajoc+iG6iT3yyCMoLS3F2rVrUVhYiLVr19Y67LNu3TpotVr87W9/k21//fXXIYTA+vXrpf0A1NjPsndECIHff/8do0ePhhAC2dnZ0tewYcOQn5+PI0eONOj1xcXFITMzEy+99BK8vLyk7aNGjUKXLl3w559/AgC8vb3h6emJ7du3Izc31+q5TD0va9euRUVFRYPaRUT15zJBZefOnRg9ejQiIyOh0WiwevXqGz7Hb7/9ht69e8PHxwdt2rTBhx9+6PiGEilISEgIhg4diiVLlmDlypUwGAx4+OGHre57+fJlREZGwt/fX7a9a9eu0vOm/7q5uaFDhw6y/Tp37ix7nJWVhby8PHzzzTcICQmRfU2ePBkAkJmZ2aDXZ2qT5c8GgC5dukjP63Q6zJs3D+vXr0dYWBjuvvtufPDBB0hPT5f2v+eeezB+/HjMnj0bwcHBGDNmDBYtWgS9Xt+gNhKRbS5To1JcXIxevXrh6aefxkMPPXTDx69fvx4TJ07E559/jvvvvx9nzpzBc889B29vb0ydOrURWkykDI8//jiee+45pKenY8SIEVLPQWMzGo0AgCeeeAKTJk2yuk/Pnj2bpC1AVY/P6NGjsXr1amzcuBFvvfUW5syZg61bt6JPnz7QaDRYsWIF9u/fj//973/YuHEjnn76aXz00UfYv38//Pz8mqytRDcTl+lRGTFiBN59912MGzfO6vN6vR5vvPEGWrZsCV9fX0RHR8tWr/z5558xduxYvPDCC2jfvj1GjRqFGTNmYN68eTVmNBC5knHjxsHNzQ379++vddgHANq0aYPU1FQUFhbKtp89e1Z63vRfo9GIixcvyvZLSEiQPTbNCDIYDBg6dKjVr9DQ0Aa9NlObLH+2aZvpeZMOHTrg9ddfx6ZNm3Dy5EmUl5fjo48+ku0zcOBAvPfee4iLi8Mvv/yCU6dOYenSpQ1qJxHVzmWCSl2mTp2Kffv2YenSpTh+/Dj+8pe/YPjw4Th//jyAqiBjPoYNVI1bX7lyReoeJnJFfn5+WLhwIWbNmoXRo0fXut/IkSNhMBiwYMEC2fZPPvkEGo1Gmjlk+q/lrKH58+fLHmu1WowfPx6///47Tp48WePnZWVl2fNyZPr164fQ0FB89dVXsiGa9evX48yZM9JMpJKSEpSVlcmO7dChA/z9/aXjcnNza3xo6d27NwBw+IeoEbnM0I8tycnJWLRoEZKTkxEZGQkAeOONN7BhwwYsWrQI77//PoYNG4ZXX30VTz31FAYPHowLFy5In6TS0tLQtm1bJ74CosZV29CLudGjR2Pw4MF48803kZSUhF69emHTpk34448/MG3aNKkmpXfv3pgwYQK+/PJL5Ofn4/bbb0dsbCwuXLhQ45xz587Ftm3bEB0djeeeew7dunVDTk4Ojhw5gi1btiAnJ6dBr8vDwwPz5s3D5MmTcc8992DChAnS9OS2bdvi1VdfBQCcO3cOQ4YMwSOPPIJu3brB3d0dq1atQkZGBh577DEAwI8//ogvv/wS48aNQ4cOHVBYWIhvv/0WAQEBGDlyZIPaSUS1uymCyokTJ2AwGHDLLbfItuv1erRo0QIA8Nxzz+HixYt44IEHUFFRgYCAALzyyiuYNWsW3Nxumo4nolq5ublhzZo1mDlzJpYtW4ZFixahbdu2+PDDD/H666/L9v3hhx8QEhKCX375BatXr8a9996LP//8E1FRUbL9wsLCcPDgQbzzzjtYuXIlvvzyS7Ro0QLdu3fHvHnzHNLup556Cj4+Ppg7dy7+8Y9/wNfXF+PGjcO8efOkepyoqChMmDABsbGx+Pnnn+Hu7o4uXbrgt99+w/jx4wFUFdMePHgQS5cuRUZGBgIDAzFgwAD88ssvaNeunUPaSkQ1aYQLFmBoNBqsWrUKY8eOBQAsW7YMEydOxKlTp6DVamX7+vn5yZYKNxgMSE9PR0hICGJjYzFy5EhkZmYiJCSkKV8CERER4SbpUenTpw8MBgMyMzNx11132dxXq9WiZcuWAIBff/0VMTExDClERERO4jJBpaioSDYGnpiYiPj4eDRv3hy33HILJk6ciCeffBIfffQR+vTpg6ysLMTGxqJnz54YNWoUsrOzsWLFCgwaNAhlZWVYtGgRli9fjh07djjxVREREd3cXGboZ/v27Rg8eHCN7ZMmTcLixYtRUVGBd999Fz/99BOuXr2K4OBgDBw4ELNnz8att96K7OxsjB49GidOnIAQAjExMXjvvfcQHR3thFdDREREgAsFFSIiInI9nM5CREREisWgQkRERIql6mJao9GI1NRU+Pv7Q6PROLs5REREVA9CCBQWFiIyMrLOtcpUHVRSU1NrLCBFRERE6pCSkoJWrVrZ3EfVQcV0u/mUlBQEBAQ4uTVERERUHwUFBYiKipLex21RdVAxDfcEBAQwqBAREalMfco2WExLREREisWgQkRERIrFoEJERESKpeoaFSIiosZgNBpRXl7u7GaoloeHB7RarUPOxaBCRERkpry8HImJiTAajc5uiqoFBQUhPDy8weucMagQERFVE0IgLS0NWq0WUVFRdS5GRjUJIVBSUoLMzEwAQERERIPOx6BCRERUrbKyEiUlJYiMjISPj4+zm6Na3t7eAIDMzEyEhoY2aBiIUZGIiKiawWAAAHh6ejq5JepnCnoVFRUNOg+DChERkQXeP67hHHUNGVSIiIhIsRhUiIiIqIa2bdti/vz5zm4GgwoREZGaaTQam1+zZs2y67yHDh3C888/79jG2oGzfkj1hBDQVxrh5eGYxYWIiNQkLS1N+n7ZsmWYOXMmEhISpG1+fn7S90IIGAwGuLvX/fYfEhLi2IbaiT0qpHpTlxxFl7c2IPlaibObQkTU5MLDw6WvwMBAaDQa6fHZs2fh7++P9evXo2/fvtDpdNi9ezcuXryIMWPGICwsDH5+fujfvz+2bNkiO6/l0I9Go8F3332HcePGwcfHB506dcKaNWsa/fUxqJDq/Xmi6tPELwcvO7klRORqhBAoKa90ypcQwmGvY/r06Zg7dy7OnDmDnj17oqioCCNHjkRsbCyOHj2K4cOHY/To0UhOTrZ5ntmzZ+ORRx7B8ePHMXLkSEycOBE5OTkOa6c1HPohl6EBpxMSkWOVVhjQbeZGp/zs0+8Mg4+nY96m33nnHdx3333S4+bNm6NXr17S43//+99YtWoV1qxZg6lTp9Z6nqeeegoTJkwAALz//vv47LPPcPDgQQwfPtwh7bSGPSpEREQurl+/frLHRUVFeOONN9C1a1cEBQXBz88PZ86cqbNHpWfPntL3vr6+CAgIkJbKbyzsUSEiIqqFt4cWp98Z5rSf7Si+vr6yx2+88QY2b96M//znP+jYsSO8vb3x8MMP13nHaA8PD9ljjUbT6DdvZFAhl8GFJInI0TQajcOGX5Rkz549eOqppzBu3DgAVT0sSUlJzm1ULTj0Q0REdJPp1KkTVq5cifj4eBw7dgyPP/54o/eM2ItBhYiI6Cbz8ccfo1mzZrj99tsxevRoDBs2DLfddpuzm2WVRjhy/lMTKygoQGBgIPLz8xEQEODs5pCTtJ3+JwDgpUEd8H/Duzi5NUSkZmVlZUhMTES7du3g5eXl7Oaomq1reSPv3+xRIZfBGhUiItejmKAyd+5caDQaTJs2zdlNISIiIoVQRFA5dOgQvv76a9n8bCIiIiKnB5WioiJMnDgR3377LZo1a+bs5pCKcWVaIiLX4/SgMmXKFIwaNQpDhw6tc1+9Xo+CggLZFxERkaOpeJ6JYjjqGjp1FZulS5fiyJEjOHToUL32nzNnDmbPnt3IrSIiopuVVlu1Gmx5eTm8vb2d3Bp1KympuqO95Wq2N8ppQSUlJQWvvPIKNm/eXO8pYDNmzMBrr70mPS4oKEBUVFRjNZFUhrN+iKih3N3d4ePjg6ysLHh4eMDNzekDD6ojhEBJSQkyMzMRFBQkhT97OS2oHD58GJmZmbIFZgwGA3bu3IkFCxZAr9fXeHE6nQ46na6pm0oqwZxCRA2l0WgQERGBxMREXL582dnNUbWgoCCEh4c3+DxOCypDhgzBiRMnZNsmT56MLl264B//+EeDExgREZE9PD090alTpzpv0Ee18/DwcNj7uNOCir+/P3r06CHb5uvrixYtWtTYTkRE1JTc3Ny4Mq1CcPCNXAeLVIiIXI6i7l29fft2ZzeBiIiIFIQ9KkRERKRYDCrkMjjwQ0TkehhUyGWwRIWIyPUwqBAREZFiMagQERGRYjGokMvg3ZOJiFwPgwoREREpFoMKERERKRaDCrkMzvohInI9DCpERESkWAwq5DLYoUJE5HoYVIiIiEixGFTIZbBGhYjI9TCoEBERkWIxqBAREZFiMaiQy9Bw7IeIyOUwqBAREZFiMagQERGRYjGokMvgyA8RkethUCEiIiLFYlAhIiIixWJQISIiIsViUCFVE0JI32t4tx8iIpfDoEKqZpZTiIjIBTGokKqZ5xTO+iEicj0MKqRqRtnQDxERuRoGFVI1Dv0QEbk2BhVSNQEmFSIiV8agQqrGHhUiItfGoEIug8W0RESuh0GFVI09KkREro1BhVTNvEaFC74REbkeBhVSNaNZjwqHfoiIXA+DCqma4NgPEZFLY1AhVWNMISJybQwqpGrsUCEicm0MKqRuDCpERC6NQYVUjSvTEhG5NgYVUjUO/RARuTYGFVI185yi4fxkIiKXw6BCqmZklwoRkUtjUCFVY04hInJtDCqkaubFtFz8jYjI9TCokLoxmxARuTQGFVI185zCDhUiItfDoEKqxnBCROTaGFRI1WQ1KhwHIiJyOQwqpGpGs2zC3hUiItfDoEKqxpk+RESujUGFVM08pzCyEBG5HgYVchnsXCEicj0MKqRq8h4VJhUiIlfDoEKqxnBCROTaGFRI1QRn/RARuTQGFVI1ZhMiItfGoEKqZmQ3ChGRS2NQIVWTD/0wtBARuRoGFVI5syX0mVOIiFwOgwqpGsMJEZFrY1AhVRO1fE9ERK6BQYVUjdOTiYhcG4MKqZr5gm9c/I2IyPUwqJCqGY3ObgERETUmBhVSNcFZP0RELo1BhVRNflNCIiJyNQwqREREpFgMKqRqsuEejv0QEbkcBhVSNfmsHyIicjUMKqRqXEeFiMi1OTWoLFy4ED179kRAQAACAgIQExOD9evXO7NJpDLMJkRErs2pQaVVq1aYO3cuDh8+jLi4ONx7770YM2YMTp065cxmkYoYBRd8IyJyZe7O/OGjR4+WPX7vvfewcOFC7N+/H927d3dSq0hNOPRDROTanBpUzBkMBixfvhzFxcWIiYlxdnNINZhOiIhcmdODyokTJxATE4OysjL4+flh1apV6Natm9V99Xo99Hq99LigoKCpmkkKxQXfiIhcm9Nn/XTu3Bnx8fE4cOAAXnzxRUyaNAmnT5+2uu+cOXMQGBgofUVFRTVxa0lpuIwKEZFrc3pQ8fT0RMeOHdG3b1/MmTMHvXr1wqeffmp13xkzZiA/P1/6SklJaeLWktLIe1SYVIiIXI3Th34sGY1G2fCOOZ1OB51O18QtIiUT7EYhInJpTg0qM2bMwIgRI9C6dWsUFhZiyZIl2L59OzZu3OjMZpGKGGVjP05rBhERNRKnBpXMzEw8+eSTSEtLQ2BgIHr27ImNGzfivvvuc2azSEW4hD4RkWtzalD5/vvvnfnjyRUwnRARuTSnF9MSNYR81g9TCxGRq2FQIVXjyrRERK6NQYVUjVOSiYhcG4MKqRpXpiUicm0MKqRq9q5MazAKfBZ7HvsvXXN4m4iIyHEUt+Ab0Y0wCvPpyfVPKiuPXMHHm88BAJLmjnJ4u4iIyDHYo0LqZud4T2J2sWPbQUREjYJBhVRNtuAbi1SIiFwOgwqpGsMJEZFrY1AhVWNQISJybQwqpGr2rkzLfENEpA4MKqRqQvCmhEREroxBhVTN3nVUNA5vCRERNQYGFVI1e29EyN4XIiJ1YFAhVZMvoc/4QUTkahhUSNXsHfohIiJ1YFAhVWM4ISJybQwqpGqylWlv5DgGHCIiVWBQIVWT1agwfBARuRwGFVI1YeMRERGpH4MKqZq905OJiEgdGFRI1Tj0Q0Tk2hhUSNVkxbQ3EFS45goRkTowqJCqsReFiMi1MaiQqnFlWiIi18agQqrGlWmJiFwbgwqpmt2zfhhqiIhUgUGFVE3U8j0REbkGBhVSNfMeFQ79EBG5HgYVUjUW0xIRuTYGFVI1RhMiItfGoEKqJlikQkTk0hhUSNVkK9M6sR1ERNQ4GFRI1Tg7mYjItTGokKrJF3xj/CAicjUMKqRqsunJTmwHERE1DgYVUjXZ9GQmFSIil8OgQqpm73APh4mIiNSBQYVUjbOTiYhcG4MKqZp86Kf+UYUdKkRE6sCgQqrGvEFE5NoYVEjV7J31o9E4vi1EROR4DCrkOm4gqdg7ZERERE2LQYVUzSjrUbF3BpCjWkNERI7GoEKq5oiQYWRSISJSLAYVUjX5EvoNPwcRESkLgwqpmr0r0zoi4BARUeNjUCFVs7cuxdHnICKixsGgQqom61FhMS0RkcthUCGXYXeNCoMKEZFiMaiQqhmNHPohInJlDCqkavbelNDeIlwiImpaDCqkao4IHFxHhYhIuRhUSNWE3X0qDT2KiIiaAoMKqZojOkPYoUJEpFwMKqRq9i7cJuuJYVAhIlIsu4JKSkoKrly5Ij0+ePAgpk2bhm+++cZhDSOqF9lNCe3DGhUiIuWyK6g8/vjj2LZtGwAgPT0d9913Hw4ePIg333wT77zzjkMbSGSLIyIGYwoRkXLZFVROnjyJAQMGAAB+++039OjRA3v37sUvv/yCxYsXO7J9RDaZ94YIO3tG7D2OiIgan11BpaKiAjqdDgCwZcsWPPjggwCALl26IC0tzXGtI6qDsLPUxN7jiIioadkVVLp3746vvvoKu3btwubNmzF8+HAAQGpqKlq0aOHQBhLZYq2Ydv2JNJxOLaj3OVijQkSkXHYFlXnz5uHrr7/GoEGDMGHCBPTq1QsAsGbNGmlIiKgpWGaMw5dz8OIvRzDys102jzOyS4WISBXc7Tlo0KBByM7ORkFBAZo1ayZtf/755+Hj4+OwxhHVxXyasQBwJq2wfscxpxARqYJdPSqlpaXQ6/VSSLl8+TLmz5+PhIQEhIaGOrSBRDbJltCvf+SQF+E6skFERORIdgWVMWPG4KeffgIA5OXlITo6Gh999BHGjh2LhQsXOrSBRLZYZoz6Zg7z/VijQkSkXHYFlSNHjuCuu+4CAKxYsQJhYWG4fPkyfvrpJ3z22WcObSCRLUajRcioZ+gQDlgojoiIGp9dQaWkpAT+/v4AgE2bNuGhhx6Cm5sbBg4ciMuXLzu0gUS22L2Evp1DRkRE1LTsCiodO3bE6tWrkZKSgo0bN+L+++8HAGRmZiIgIMChDSSyRV4UK+rdO8IaFSIidbArqMycORNvvPEG2rZtiwEDBiAmJgZAVe9Knz59HNpAIlsso0l9Q4e8R8WBDSIiIoeya3ryww8/jDvvvBNpaWnSGioAMGTIEIwbN85hjSOqi72BQzZkxCoVIiLFsqtHBQDCw8PRp08fpKamSndSHjBgALp06VLvc8yZMwf9+/eHv78/QkNDMXbsWCQkJNjbJLrJCVH/ehMO/RARqYNdQcVoNOKdd95BYGAg2rRpgzZt2iAoKAj//ve/YTQa632eHTt2YMqUKdi/fz82b96MiooK3H///SguLranWXQTsrsQlgu+ERGpgl1DP2+++Sa+//57zJ07F3fccQcAYPfu3Zg1axbKysrw3nvv1es8GzZskD1evHgxQkNDcfjwYdx99932NI1uMpZDOPYU03IdFSIi5bIrqPz444/47rvvpLsmA0DPnj3RsmVLvPTSS/UOKpby8/MBAM2bN7f6vF6vh16vlx4XFNT/xnPkmiyHcOpdTGv+PXMKEZFi2TX0k5OTY7UWpUuXLsjJybGrIUajEdOmTcMdd9yBHj16WN1nzpw5CAwMlL6ioqLs+lnkOuwNGfJ14phUiIiUyq6g0qtXLyxYsKDG9gULFqBnz552NWTKlCk4efIkli5dWus+M2bMQH5+vvSVkpJi188i1yFq+b7O41hMS0SkCnYN/XzwwQcYNWoUtmzZIq2hsm/fPqSkpGDdunU3fL6pU6di7dq12LlzJ1q1alXrfjqdDjqdzp4mk4sSFkml3vf6MdvRchV+IiJSDrt6VO655x6cO3cO48aNQ15eHvLy8vDQQw/h1KlT+Pnnn+t9HiEEpk6dilWrVmHr1q1o166dPc2hm5r5PXtEvWcBCYvjiIhImezqUQGAyMjIGkWzx44dw/fff49vvvmmXueYMmUKlixZgj/++AP+/v5IT08HAAQGBsLb29veptFNxDyXHErKxaGkXLPnBDQaTZ3HceiHiEi57F7wzREWLlyI/Px8DBo0CBEREdLXsmXLnNksUhFbIcPWc1zwjYhIHezuUXEE3rWWGsrWGii2frvkNSr8PSQiUiqn9qgQNZStiGErgLCAlohIHW6oR+Whhx6y+XxeXl5D2kJ0w+o7vGPlyHqdg4iInOuGgkpgYGCdzz/55JMNahDRjbA1Y8d2iKnfOYiIyLluKKgsWrSosdpBZB87i2mF7F4/DmwPERE5FGtUSNUcUaPCom4iIuViUCFVsxUy6jsjiDGFiEi5GFRI1epXLmvlOa6jQkSkCgwqpGq26kuE0cZzHPohIlIFBhVSNfuHfszv9UNERErFoEKqZncxrVlvCztUiIiUi0GF1M3W0I/Nw8xrVJhUiIiUikGFVM3WYm31nZ7MdVSIiJSLQYVUzd67J5vnG65MS0SkXAwqpGr23utH9hxzChGRYjGokKrZnNlTz/oV5hQiIuViUCFVs3fWj/xeP4wqRERKxaBCqmZvjYr8Xj+Oaw8RETkWgwqpHO/1Q0TkyhhUSNXs7VGR3+uHUYWISKkYVEjV7K9Rsf49EREpC4MKqZrte/3Ufpx5iOE6KkREysWgQqpmO2KwR4WISO0YVEjVbPea2HrOvEbFgQ0iIiKHYlAhVbM99FO/BMJ1VIiIlItBhVTN5lopxvodx5hCRKRcDCqkarbXSqlfbws7VIiIlItBhVTNEff6YZ8KEZFyMaiQqtW3YNbWc7bOQUREzsWgQqpm7zoq4PRkIiJVYFAhVbMVRuo7I4gLvhERKReDCqma7eGd2o+T3ZSQOYWISLEYVEjVHNGjwnVUiIiUi0GF1M3m9GS7DiMiIgVhUCFVsznrx8aTvNcPEZE6MKiQqtldo8JiWiIiVWBQIVWzt0bF/BlbS+0TEZFzMaiQqtU3jFiST08mIiKlYlAhVavv6rOW5DUqjCpERErFoEKqZnsJ/fo9x5hCRKRcDCqkavb2qJjHE/aoEBEpF4MKqVo9s0gNRk5PJiJSBQYVUjX7a1RYTEtEpAYMKqRq9q6jwh4VIiJ1YFAhVbO1BorNqcu81w8RkSowqJCq2b7xoI3javmeiIiUhUGFVM3ulWlFbQ+IiEhJGFRI1eqqURFCILOgrMZzLKYlIlIHBhVSNdvDOwIfbz6HAe/H4se9SbUeZ+suy0RE5FwMKqRqddWofL71AgDg7TWn5MeBPSpERGrAoEKqVt+1UmoeZ76fI1tERESOxKBCqmZ7rZT6TfthTiEiUi4GFVK1+t4h2dZxvNcPEZFyMaiQqtkOIzaOq+c5iIjIuRhUSNUcc68fJhUiIqViUCFV492TiYhcG4MKqZqtXpPf4lKsbresSeEyKkREysWgQqpmqzck7nJuvY7h0A8RkXIxqJCq2XPnY8sjOPRDRKRcDCqkavYEFXuOISIi52BQIVWzp77EMqfwXj9ERMrFoEKqZe9CbZY9KowpRETKxaBCquWojhCOBBERKReDCqmWvbUmnPVDRKQeDCqkWvYGFcvjWKJCRKRcDCqkWvYO2dQ4jGM/RESKxaBCquWoHhXGFCIi5WJQIdWyd8imRo0KkwoRkWIxqJBq2V9Ma1mjwqRCRKRUDCqkWsJo53E1Zv0QEZFSMaiQajmsRoVJhYhIsZwaVHbu3InRo0cjMjISGo0Gq1evdmZzSGXsHvqp8ZhJhYhIqZwaVIqLi9GrVy988cUXzmyGopSUVzq7CarBYloiItfn7swfPmLECIwYMcKZTVCUFYev4I3lx/Du2B54YmAbZzdH8ey914/lcfaeh4iIGp+qalT0ej0KCgpkX67kjeXHAAD/Wn3SyS1RB7t7VCwfM6cQESmWqoLKnDlzEBgYKH1FRUU5u0nkRFzwjYjI9akqqMyYMQP5+fnSV0pKirObRE5kb8CwzDdcR4WISLmcWqNyo3Q6HXQ6nbObQQphtHPsh9OTiYjUQ1U9KkTm7L4pIYMJEZFqOLVHpaioCBcuXJAeJyYmIj4+Hs2bN0fr1q2d2DJSA/uX0Ld8zORCRKRUTg0qcXFxGDx4sPT4tddeAwBMmjQJixcvdlKrSC3sX/DN8l4/jmgNERE1BqcGlUGDBvHTLNnNWsB4pF8rBPl44pudl2o9rua9fvg7SESkVKxRIdWyFnJ9PN3hqbX9a81iWiIi9WBQIdWqbchGo7F9XM17/RARkVIxqJBqmXpG3MyCiZtGA00tScU0nZlL6BMRqQeDCqnW9aByPZhoNPLgYq6yOqgYjPLtzClERMrFoEKqZQoYsqBi8dicoTqoVBrlSYVBhYhIuRhUSLWkHhWz32KNpiqsWGOo3r/SYHmvHyYVIiKlYlAh1TJa61HRaOBWy9iPwWC9R4XrqBARKReDCqmWqUdFazHUU9usH1NAqbDsUWFQISJSLFXdlJDInJCGfuQ1KppaBn/iLucit7gcrZr5yM/DoR8iIsViUCHVMg3ZaM2HemzM+vl/Px8GALxwTwf5E8wpRESKxaEfUi3TuijynKKpddaPSVJ2sfw8HPshIlIsBhVSLWvFtEDdK9PqPOS/9owpRETKxaBCqmWqUTEf+nHToNaVaa/vI3+eHSpERMrFoEKqZX16cu01KiYl5ZWyx8wpRETKxaBCqmVtwbf6KCk3WD0PEREpD4MKqZYpXmhlS+hr6hzKKdbLe1TYpUJEpFwMKqRaRmvrqGjq7iGx7FHhOipERMrFoEKqJazdPRl1B5ViyxoV5hQiIsViUCHVMt2yx3IJ/bru3VOiZ40KEZFaMKiQalkf+tGwR4WIyIUwqJBqXZ+efH2bRnN9xdralFUYZccxpxARKReDCqmWtRoVoO6hHxMPrVv1eRzaLCIiciAGFVItqUfFTT49ub41J57upqDCpEJEpFQMKqRaUo2K5dBPPXOHp6lHxdENIyIih2FQIdUyBRWt5fTkeiYVd23VcexRISJSLgYVUi1hbeinHgu+mXiwR4WISPEYVEi1rPaoaDT1H/qprlGp7/5ERNT0GFQUgsMPN+56Ma3l9noW02pZTEtEpHQMKgph4Mf6G2asbXpyPa+laeiHiIiUi3+pFaLS4s11eVwKKgxGJ7VGHUw9IdoaNSr1O15XPfRTaWBIJCJSKgYVhbAcrvj7iuP4bleik1qjDtdXpq17HZUu4f7458gusm0+OncAQDkDIRGRYjGoKIRljwoA7Dqf5YSWKF95ZVWwsDb0U9usnw3T7sYtYf6ybX46rex81lwr0uPhhXvx26GUBrebiIhuHIOKQlirq+BdfWu6kFmIbjM34N21p6UeFfNSEw1qv26mWT4mvp5VPSr6SoO13QEA7687i7jLufi/3483qN1ERGQfBhWFsFZMa+SIRA2fbD6PSqPAd7sTa61RGX9bK6vH6iyDimnox0aPyqnU/IY2mYiIGoBBRSGsBRUDe1RsMvVCaSxm/fRp3Qx7p99bY39PrVb22Ld66EdvI6hczSttaDOJiKgB3J3dAAKK9ZX4bOv5Gts59GNbbcW0ABAZ5F1jf8uhHx9p6KdmUMkoKIMQQGFZpaOaS0REdmBQcTKjUWD057txKbu45nPMKTUIswXvTd9Z3pSwNjVrVKp6VHKKy/HX7w9g+ogu6B4ZiEqDEdHvxzqqyURE1AAc+nGyY1fyrIYUgCum1kXUsuBbbWoEFd31nL7rfDae+O4AAKCkomZxrYe2fj+DiIgci0HFydLyy2p9jkM/tpmuj3mEsKxXMeeprT2oAEBuSQUA68W1FQaBSq63QkTU5BhUnOxakb7W5zjrxzbT0JhGVqNSO1s9KuZqK64ts1F0S0REjYNBxcmyi8prfc7UY/D+ujP4ZufFpmqSalxf8O36Nps1KpY9Kp5aq/uVWRn6AYDS8trXWyEiosbBYlony7bVoyIEzmUU4pudlwAAz93V3ubQxs1GWJn1Y4tlj4q3pxYazfXzmOgraulRqSXAEBFR42GPipNds9mjAhSUVkiPaxuS+CP+Kr7bdcnhbVM60zoqbhYr09ZG66aBu1n3i4fWrUYvC1D7SrWlDCpERE2OPSpOkJ5fhpTcEvSIDERqfu0LihmFkN0DqKTcAC8P+XCFEAKvLI0HANzbJRTtQ/wapc1KYd77YbVGpY7elWa+nsgqrOrFcnfTQOfuJgVA0wq3tQVCDv0QETU9BhUnGDinfmt0CAGUlF9fcKykvBLNfT1l+5i/qRbcZIuTVVZXG9e3RgUAWgZ5S0HFQ+sGT3ctgKrrptXUEVTYo0JE1OQ49KNgRiFkK6Na+0RfYrbN7SYrXzFNI65vjQoAtGp2fcVad61Gdv8f0xBSrcW0DCpERE2OQaWJ3UhBZqVBHlRKrASVYv315ytugnU+zId+9FaCinwYqObxLc2DipsbdB7X/xeoq0eljEM/RERNjkGliZmGHeqj3GBEkVkQScsvxYyVJ3D4co60zfz5slpmq7gS8yX0TUWv5oGkrr6V8AAv6Xt3N42smFaqUbEIk6Zj2KNCRNT0GFSaWGZhzZVon7+7vdV99RUGFJZdn/Xzzv9O49eDyRi/cJ+0zbyG5WaYPmveaWStR6UusqCi1cimLNdWTBsRxKBCROQsDCpNzLJHpX2wL/45sqvVffWVRhSZDf2kWlluv0h//c3zZngjNR/euh5Urj9fV2YJC7weVDy0brLbFNQWVKQeFQ79EBE1OQaVJpZpEVS8a1kdFah6w6xrJk/xTTb0IwsqFVZqVGB7Of1bwvyl7z21brLbFJjOY9kzFeDlYXU7ERE1Pk5PbmKZBfKg4mMjqADAtWLrC8LpKw3QuWstgorrv5GaB5Xy6u/rKqA156dzx97p90LrpoGbm0bWo2Jas8bUo9I1IgCfT+iN/+5PBnBzBEEiIqVhUGlilkM/3p62/wlqu2lhZoEe/l7uN11QKTeYFdNWv94bnZYdGXR95o/BbEE903RnU5HuHR1aoGOov7TI3s0wtEZEpDQMKk3MspjWx8N2j0pt9wKa+utRHEvJQ0z7FtK22qbVupKKSms1KvW7e7I15j0qUlCp7jkxTV32ZlCRKauouUIyEVFjYY1KE7McyjHVqGhr6Rao7V5Ax1LyAAD7Ll2Ttt0MxZ6yoR87imktmXWooNxghBBCCkA696p/G2/Pqv9NysoNN8VaNbasPnoV3WZuwKqjV5zdFCK6STCoNDHL4GEKKtZujgdAdq+futwMQz/yWT+mdVRqKaatR2oxWFzfcoNRGlIyrVprGp5befQqus/ciO0JmXa2Xv2mLYuHUQCvLjvm7Ka4rNVHr2LehrO4lFXk7KYQKQKDShPLsehRMQ39mK/nYa+yWu7660oqzGpUrhfTmu1wgz0qNYJKpdGsR6Xq3yTI20P2M5/9Me7GfogLCTS7FuR4BWUVmLYsHgu3X8T4hXshRP0/qBC5KgaVJlRabqhR52Ca9eNRS4/KjbgZZqVYH/qxv0bF8o2gKqhU96hUh8ggH/mb8430crka80Jk/U0QjJvakcu50ve5JRU3xf/TRHVhUGlCOSU16028qoOKzhE9Kjfd0I+1GpXrD9oH+9Z5PsvMUW643qPiVV1M28zH0/Kwm5af7noR7YVMDk04Uk5xOb7acVG2zXxlaqKbFYNKE8q1siaKaehn0u1tGnx+JQeV1LxSPPnDQWxrYH2H+dBPXknVH/HaalG+fbIfRvQIx5qpd9R6vtYtfOTnrxTXZ/1UF9NaG+6wHDK6WZjfJDMhvdCJLXE905bFY/+lHNm2Qr3tBR+JbgYMKk3I2uJtPtWFms/c2R6//b+YBp1fyd3EM/84iZ3nsjB50aEGnafcyqwb894o88jSNtgXC5/oi56tgmo930d/6YXh3cPNzm+Qan1M523mW7NHJTWv9AZb7hrMg0qalVs6kP2OX8mrsa2ojpWpiW4GDCoOUF5pxP5L1+qcuppTXLUmSoTZ/WbMpycPaNe8Qe1Qco/KpaziBp9DCFHjGru7aTCmd0vp8Y1OT45q7oOv/toXof46AFXDSZY9Kr5WVg9efzLtxn6QiygwG4rIL+WwhCMZq3vpPn2sN24J8wMgvzs60c2KQaWBhBCY8O1+PPbNfqw4bHttiZziqj/sLc0KEutaQh+QBxtblDzrx1pPSH3sPJeFeRvOIiWnBAajgOUkiH8M74KQ6pAB3HhQMTHNupIX07pVn7PmSd9fdxZn0grqde6PNyXgs9jz9jVMQYxGIXvjzC9hUHGUIn2ldF+vOzsGw09X1dNayB4VIgaVhlpzLBWHqyv1D5gtvmaNqUelZbPrQcW9HrN9etkYujCn5AXfKg03XtNhNAq8Wj1Vc9B/tteY2g0AgRYzcjQ3PO+nimkdG2vTky25V1fv1lajcSGzCPO3nENhWQWyCvX4bOsFfLz5XL0LI4v1lfhi2wVcVMg6GkIIfLvzEnaez5IFRfaoOMbP+5LQ4+2N0uNAbw/4V98Ikz0qRAwqVl3JLcHKI1cQeyajzn2PJudJ39e1hL2pR6WVWVCpz9tqM1/PevW8KLlGxXzIpr6ru55JL5DqegxGgXMZNd+4gywKXRvaozLrf6el2ovalol/oGcEgKrix1eWHpUV1hqNAmO/2IP5W87jo03ncK34+i0Qaltl2NLHm8/hw40JePDz3Xa9FntVGow4k1YAg1HIph5vS8jEe+vO4CmL+qK80vq9HrLtrT9OSd/769zhrnWDn1dVj0qRWbi9kFmEDzeeld3fi+hmwKBixd4L1/Dab8eweG9Snfum5V8vqswosF1cmFn9fESgt839LAV6e6BDiF+d+yl5XQvz+pm8eg4Z7LmQLXt8Na+kxj6Wha6h/vUbJrNkCirmwznmgVL2MwKu/4w/4lMRX307gz0XstFz9ibpU/D+S9dkd8s2Dy227D5f9bqL7ewhW3owGb8eTJYen00vwNOLD+Hk1Xybx3298xJGfLoLHf65DrfO2oTE7Kq6otQ867/X+aXKfcNMSC+UejrVJMi3Knj7Vw/9mH6XhBAY+vEOfLHtIhbtSXRa+24mh5JycPucWGw6le7sptz0GFSsaBdStf5GfQpA081mPmQW2n4jSrpWdb42ZlNibwnzr/NnBHi7Y0jX0FqfN633odQelZLyStmbbq6V9WSs2XtRPpR2NbfmTBtTj8o3f+2Lvw/rjIHt7StItryFQdy/hkozsiyFmtXEAJACwIyVJ2Rd9Z7ubrLfiex69qg0RGZhGaavPIEZK09Iha9jv9iDrWcz8eaqEzaP/XBjgvR9eaURy+NSANRcTdkkvx7/jvklFVKQayqVBiOGzd+J8Qv31npTT6UK8q4K3pY1KlvPXp/Wb3k9i/SVUiGuGmUWlOEfK47XGaSb2mu/xSM1vwzP/3zY2U256TGoWGFaKOxqXmmdM2nMp2hmFuhRYTDiQmaRrH7h8rVi6CsNSMmpeqNt28IXe6bfi/Wv3IXwehTKBnp74KVBHfHsne2w5NnoGs83r16QrLTCIFtptaCswq4luC9kFiElp2bvhb3MexWA2t/4LJ2vHuoxzYC4Yi2oVL/2+7uHY8rgjvW6v4815rcw8PdyR7CfPIyYwiAAWfEuABxJrvrkbjmk5abRyO6Wbc+b5o28Ae06n4Xnfrr+R/WDDWfx2rJ4KcAeu5KPjzefw7BPdiLLIlRb+zmmLZbTkE2f9uuqUcksKMPQT3Zg7Bd7rE69bQwfbUpAxzfXS4+Tshs+28zEkcvZZxXqUVJeWeOcplWQTUM/pnVU1h6/PsvMvIfrSm4J+r27GVOWHHFY25ram6tPYllcCh75ep+zmyIxGoX09xqous7kPAwqVjT39URA9R+KRBt/6CoMRmSZvfmUG4zo9OZ6DP14B0Z/vhsXs4rw68Fk3PPhdsTM2YpygxEeWg0ig7zRMsgbXSMC6tWeAC8PeLq74V8PdMPtHYPRzeK4kAAveGrdYDAKvPXHSQgh8N2uS+g5axNWHrl6Q6/9WpEeDy7YjQc+342k7GIYjOKGAs/P+y9j2Cc7cdVsnRHLnqa8enwSL6swILV6WC26XQsAwBUra5c46t4z5kGldXOfGs//8FR/hAd44dsn+9UYXopLykWlwVijjiirUC8LBOY1KgajqPV3y2h2ra2tZmyNEAJ//f6gdFdtAPjv/mSsPCr/9/8s9jwSMgrx3/2Xr/88o0DitZptMYXV9Hz5dddXB7Li6rtJf7L5HD7ZfK7G8W+vOSW9/qboVdmekInPt16QbbvqgPVuZq05hZ6zNqLdjHV4dVm83ef5cONZPPtjHE6nFuDuD7bh+Z8O1xjeM/0+m3pUTOuomMIwUPVBwhSK/7s/GWUVRqw/ma7a+wLtr+45LVHQZICEDHmh/IaTHP5xJgYVKzQaDdpX14Tsu3it1j8AmYV6CFE1bKB1k3+SLzcY8c+VJzD7f1WFcqZehKjmPjX2tUa2iJnF7osm98c/R3aRHgf7euJfD3SFm6bqD9d7f57Bu3+eAQB8sa3qD/fXOy5i5h8nUV5plH16LtZXYltCpvSHb1tCFkrKDcgvrcCg/2xH17c2oOesTVi0J6lGGw1GgYT0Qmk2ixACb60+iYSMQunnAlWf9M2ZiopNDibm1Hgju3ytBEJU9W50iagaHrM29OOImzkC8qGfqGY1g8rtHYKx/59DcF+3MIQFyHtUruaV4sONCTUW9EsvKJPVLV0zC7UfbDiLwf/Zji+2XcCmU/I3GfMep2WHUjDph4M1xsljz2TIer1svSHPf7Q3+rZpJtt2oXpG0YXMIvR6ZxNGfLqrxnFSULHoESs3KxrfnpCFT2PP49PY87L2FJRVIPbM9eEKy2HUo8m5tc5S+9+xVBxMzKmxPS2/FPtrmVlnMAr8e+3pGtv/b8Vx/O9YqtVj6iOjoAyL9yZJU4dXHb0qu3WAEAL/WHEcIz7dZTOAF+kr8cW2i9hyJgMjP9uF0goDdl/IrjFzzBRS/b2u16hcK9Lj8rXr17bcYJRCrvlMMstestrkl9b9wcORazJdyS3BrDWnsPl0hlSnZ67SohgdqPrdO3HFeUNBO8/J/2Ytj7uC06k1lyMorMeHuDKLnm66cYoIKl988QXatm0LLy8vREdH4+DBg85uEtpVD/+8s/Y0Pt58DjvOZUm/bAcuXcOp1HykVb85hAXqZDM/PpvQp2q/xJwadSNe7rZn73zwcE/46dzx49MDpG2WU27DArzw/N0dpMfenlo8GdMWb47qBgD4bvf1YrvMQj32XszGnPVn8dO+y7jlX+vx6Df7pNfy3rozmLzoEJ77KQ5p+aXYdla+xL1p/ZN31p7G1rMZ0h+SIn0lHlywG8Pm78TTi6tmg5w1+6Nr+qNdVmHALweqCjtNf3wT0guw+uhVVBqMuJJbgke+3oexX+xBfmmFdB0Ts6veDNoH+0o9GI74dFwb88AT1dx2sbN5MW3/tlUB4Oudl2oUCRuMAqfM/rj9uO8yPo89j9Gf78bXOy8BqKoLef7nw5i7/iyAqhBgHng+3JiAHeey8PzPh6VZaLvOZ+GZH+Nw1wfb8PDCvdhwMg1HzGafmXvhng4Y26clxvVpKdv+5/E0PPHdAcxdfxaFZZVS+HhxUAesfflOAEBKdTA09aiM6R0pndP0b/lp7PWelKNmYXPL6QzZ2jmXzHqP/oi/inFf7sVTiw4iIb0Q/9mYINXTnLyaj5d/PYpHvt6H+VvOSW8OQghMXnQIj32zH3svyous45Jy0OPtjbhopaZMX2nEy78exbc7L+GN5cewPC5FNkRXUFaB+z7egSe+O4AKgxHnMwoxdckRqag6LqmqJyPYzxMD2lbVP0364SCGfLQdt/17M0Z8ugvL4lJwJq0A607U/NRt+v/gWC09SmuPy0OUKbyZpifnl1ZItUMdQ/0QXb0o5M/7qnrEzEPTuYwi7L2YjUobs+o+3XIevWZvwre7qn7/tp3NxDc7L0r/X5eUV+K1ZfHo8tYGfFe9D1D1uzxt6dEas9zqY96GBCzem4TnforDwDmxsgBiMArZ70l6QRnySyow9os9GL1gN9adkC+smJZfipJyxxRxJ2UXY+nBZKuTEEwh+6VBVX9nEzIKMfKzXfhy+/UPYPsvXUOfdzZj+u+1136dSs1Hz9mb8PcVxx3S5qZ08mo+sov0sg8mzmK9WrAJLVu2DK+99hq++uorREdHY/78+Rg2bBgSEhIQGlp7AWlj6xh6fZaNqTu5c5g/fHVaHEnOg4+nFs/e2Q4AEBHgjdziChTpKzGocwge7BWJ+VvOSZ8iXxnSCZ9WL/jVro4b5T3SLwoP39YKbm4aPNSnJY4k52JwlxCbx3SLrBoKeur2tliw9Txyzd4wi/SVePzbA7L9DyXlIiGjEG2a+2JJdYjYnpCFO+ZulW7SN6JHONZbdHc+vTgOnUL90Kd1EEL9vaQ34UNJuVh7PFX2qc/0B/SnfUnIKS5Hq2beGNEjHN/uSsSP+y7jx32XMc2iG33qkiOIT87D6N6RUl1Lu2DfGsWrjWFw51CpDsB8QT5rTN3yAPBw31bQuWux22yGUreIAJyufqMzvyYA8JGVIRKgKugE+XjiweowYM17687gWlE53l9/RtoWdzkXcWazW1o184aXh1a6/qb6nscHtMbGU+nYdf56O83b/NmEPvD3csfAdi1QYaz6w5RTXI4NJ9Ol36fZD3bHM3e2wy1h/lh7PBWFZZU4efV6EItPzsODvara//uRqsUP7+jYAnsuXMPOc1nYeS4Ld3UKxvwtVf8vHEjMwbD5OwFUfeqePaaHrBdm/pbzmL/lPL56oi8CvN2lILx4TxJu7xAMoOpWBi/897B0V/K/D+uMgtIKKQiaXzsAWHH4CuZvOY8fnuqPNi188M2OSzifWYTzmUV4ZelRxCXlIrNQjy1nMrDihdtxMLGqB2fUrREY0jUMT/5wUBaYzXu/Np9Ox+PRraXHX26/gA82JGDGiC61Ll2wJl4eVEwfbEy/Y4cv50qzl/q3bY5Rt0bgwPcH8PP+y/DzcscBs56nqb8eQV5JBUb0CMf8x3pLKysDVcPUs9ackj40zF1/FtHtWmBy9YeMDSfTkZ5fhlSzeqR3/zwDjUaDR/q1wtazmVhd3dbeUUGYfEc7q6/HktEoZLP3jKIqqN7aKhDbEjKx5ECyLPjcPner7PhXlh5FYVkFHu3fGp9sPodPY8/D20OL2WO6IzG7GFmFerxxf2fo3N0Q6O0Btzp6q41GgZTcEsSn5OH/VhyHvtKIxGvFmDGiq7RPTnE54i5XXdeJA9vgYGKO9P/YBxsSsCMhCw/0isSPe5NQaRRYFpeCod3CcF+3MGxPyERKTgke7d8a7m4aLN6ThPJKI1YcvoJRt0ZgcJfQGu1JyChEC19PhAZ4YVtCJv48noahXcNQbjDink4hqDAaa9TMnUkrwIkr+dC6aZCYXYxn7mwHnYdbrRMAbDmYmIMlBy5jTJ+WaObjidbNfbDpVDqmr6wKYKH+Oswb37NG25uSRji5Tyo6Ohr9+/fHggULAABGoxFRUVF4+eWXMX36dJvHFhQUIDAwEPn5+QgIqF+9R31lFpZh7vqz9arxeP7u9hjWPQwrDl/B9OFdEejjgZl/nMRP1Z96ljwbjdAAL3y5/QJeHXoLoqzUQNRGCFFrgei+i9cQeyYDfx/eWfqj9PGmBHy29QL8dO7o37YZtiVkWT0WAG5rHSR9EvfXuUuFe1HNvbH9jcF46Ms9ONaA7te5D92K99adQWFZJT54uCfaBfviL1/dWMHcq0NvwSP9WyFmzlarzyfNHWV3+8wJIfDvtWfwR/xV/P7i7WhbR6CctvQoDiXlYv20u3Dyar4UBpv5eODozPvx5A8Ha3Qf10evVoE1rnnPVoG4kltqtQg52M8T14rLpYXYvnj8NmjdNHjhv1VFtWtfvhM9WgYCqHqzunytBDvPZeG3uBTpjf++bmH49sl+svP2fmeTrIfIy8MNZ94ZLv0uPvD5LimkeLq7obzSiAAvd3z7ZD/8FncFvx+5AjcNsOqlOzDmiz3SeYJ8POo9Pd2Wvw5sg+a+nvj9yBVcyS1FRKAX3n/oVtzTKQRubhocTMypUZw5rHsYjiTnSUMkfjr3ei+o9vmEPhjdKxIHE3OQX1oBX08tArw9cCm7GKdS8/H1jkvw0Grw4j0dUFBWieVxKVanl/9zZBckZpfgbHqBbA0mk2+f7If7uoXhSHIuHvpyL4Cq1aufjGmL5+5qhxZ+OsxYeUI2/bw2Q7uGok0LX4QF6HAmrRCrjt5YvZpJyyBvZBfpZWFrRI9wvDSoIyqMVbecOJKcixNX8tHM1wMtfHUI9PZA4rViaTja20OLeQ/3xN9+PYo2LXzwwj0dMGOl7VlowX6e0ky59sG+sl45a/x17vDy1EIDoFOYHyIDvVFpFCirqKqlCg/0wubTGciwGMr093LHhAGtUVBagYKyCqlnrHtkAP782104m16AdcfTcDmnBH/EWx9G9NBqEBHojWSz4U9/L3dUGoQUorVuGnQK9UOFwVh9uxQN9lzIRnJOCbRuGvRoGWi1581T64bHo1sjOacEF7OKUGkQVnuXfT21uKtTCPy83GEUAql5pejXpjnCAnQIDfDC7vPZOJWaj8ggb9zXLUyqxXv+58N1Dhve2jIQf0y5o84geCNu5P3bqUGlvLwcPj4+WLFiBcaOHSttnzRpEvLy8vDHH3/I9tfr9dDrr1/QgoICREVFNUpQMVm8JxHvrztb6xLwj/WPwqwHu9dYHGz10atSj8GZd4ZL9/RpbGUVBnyz8xKGdg1DpdGIST8cRG5JBf7f3e1rfMo0+deorrirU4j06fZfo7ri2bva41BSDh79eh8se3rDAnTIKNDDQ6vBlxP74oX/HpY+FbUM8kZBaYXsrq+9o4Lw+4u3Q+umwYaTafh5/2UcT8mvcWdYNw3goXWDvvpNLyzACwufuA3tgv1w38c7YBACf0y5A/M2nMWvB1Pg7qbBhfdHOvDq2Q6GloxGIf2Pa/r0PCmmDWaP6YHkayXYfi4TidnFyCgokw0L3N8tDB8+3As/7kvCD3sS8etzA7Hi8BV8bzZkZ+7Tx3ojPMALz/wYJ72xhgXosHf6EGjdNLiUVYQtZzLg7aHF49FtEJeUg0e/2Q/A9u9eYVkFSssNCPHX1XjN3+26hN/iUqThlOfuao/pI67XRb3w82FsqK6b+cfwLpi34WyN8w/tGopvn+yHdjPWyba7u2nw5qiu+G5XYp3DeQFeVQHa1l+pyEAv/PZCDFqZ1Ral55dh4JxYAMDgziEY3SsSD93WClmFetz3yQ5ZWGrVzBszRnTF4cu5uJpXgua+OuxIyEReaQVKyg0I8HLHtjcGoYWf9Z49IQQmLTpUZzD10Gqw+dV70DbYFwajwMTv9kt3S37+7vZ4pF+U1JNbUFaBe/+zAyH+Onw+oY+sh7ewrAIPLtiDK7kl6NkqCMX6Stmwqyk4WrPg8T7w9tBi5h+nkJpfKruuk2LaQAC4u1MIDl3Owdc75H8verQMQHiAF2LPZtr897DmnltC8MXE23DbO5tlf0u7hPvDXatBbnGF9LswoF1zvDSoA+65JQTv/XlGNpT9t3s7Yuf5bMSn5MHXU2v3WkNAVS/Z8at5stk9JhoN8PPT0bizU7C0TV9pwLM/xlXf103A20OL1+67BQcSc7CleljWTYMafy99PLWIad8CsRbD6g1h7ec4gikcat008PHQolBfia4RAfjvMwNq/f23l2qCSmpqKlq2bIm9e/ciJub6nYP/7//+Dzt27MCBA/Ihi1mzZmH27Nk1ztOYQQWo+kOUU1yOq3mluCXMH/pKIy5fK4afzl0qurVUVmHA3349iq4RAXj1vlsarW11ySwsw4XMIsS0b4Evt1/EtaJyHEnOha9Oiz5RzdC/XXPc3SkYGo0G8zacxenUAnw58Tb4Vnc955WUo7TCgOVxVxDdrjkSMgrxaP8o7L14Df46d/Rr2xyl5QYcSLyGH/YkYdrQTth9Phvf705EkI8HHurTCv/vnvY1glxZhQG5JeXw1VV96kjNK4WPpxbtQ/yQUVCGYD+drOi40mBEpVHAy0OL/NIK/LA7EQ/2jqzXQnhNJTWvFGEBXlaLpb/deQkRQV7oGhGAyEDvGuHBYBRYsPUC4lNyER7ohQd6RmLfxWuIbt8cd3WqGvrLKtSjrMKApGvFiAj0QsdQ62vwVBiM+Ov3B9A+xA/vj7u1Qa+psKyqbsg0Ddwks7AM/zuWBh9PLR7rH4Xfj1zFkgOXcflaCbpGBKB9iC+evbM9WrfwweqjV3Hiaj4mDIhCYnYJuoT7I6q5D5KvlWDR3kQ8c2c7VBgEgrw9MH/LOfh5uePOjiFo3cIHLYO8oa80ICG9EOEBXvDy1GLzqQxcyCpCdqEeUc198NiAKKsL/X294yK8PLSYdHtb2faDiTlYfzIN0e1aIKZ9C+g83KyuQlxeaUR6fhla+HlK/z/UxmAU2HAyHUsPJcNP546H+7ZCeKAXOoT44XxGEXx1Wvh7ecimtmcV6vFZ7Hm0auaNiQPbyIYUgap/R3c3jdXgXFJeiQqDQKC3B3KKyzF1yRFoNFU9kH1aN8Pp1AIcSLyGzEI9MgvKkFWkx+DOoXj2rvay8xuMAhcyi1BYVomYDi2k58oqDIhLykWQjwf2X7qGOzoGo0u4PzQaDQ5fzsFbq08ht6QcHlo3eGg1aObjiUGdQ2AUVdPwrxWXI9jXE4X6SiRlF+Pvw7ogpkMLfLrlPJYdSoa+0ojeUUFY+ERfeLq7obCsAptPZ2B4j3DZ8IUQAptOZyAtrxR3dgpGx1B/FOsrcexKHga0bQ43jQaFZZXw9tTidFoB4pJy8PuRqwgP0CEswAteHloYjALNfDxQWmFAz1ZBuL97GHKKyxEe4IVjV/KxPC4FPp5aBHh5wNuzati0b5tm+Eu/KJv/3pVGI3TuWlQaqoZ29l+6hqfvbIeTVwtw+VoxBnZogfjkPNzeoQUGtGuOk1cLcCW3BJdzSnApqwih/l5o1cwbY3q3RHJOCdadSMM9nUPQMdQPR5PzsPdiNo5ezkO7YF9kF+nRPTIAd3QMRkmFAb1aBcHHU4vUvFJkFOiRnFOM5r46pOSUoKzSACGqPkidTM2HwShwKasYfl7ueLR/FK7mlmLHuSzkl1bAaBTwcHfDnIduxW2tm8HLQ4vScgM0mqqVua/mlSLMX1evW73cKJcNKs7oUSEiIiLHupGg4tRi2uDgYGi1WmRkyO+pk5GRgfDw8Br763Q66HSNX1hJREREyuDU6cmenp7o27cvYmNjpW1GoxGxsbGyHhYiIiK6OTl9evJrr72GSZMmoV+/fhgwYADmz5+P4uJiTJ482dlNIyIiIidzelB59NFHkZWVhZkzZyI9PR29e/fGhg0bEBYW5uymERERkZM5fR2VhmjMdVSIiIiocdzI+7ciltAnIiIisoZBhYiIiBSLQYWIiIgUi0GFiIiIFItBhYiIiBSLQYWIiIgUi0GFiIiIFItBhYiIiBSLQYWIiIgUy+lL6DeEaVHdgoICJ7eEiIiI6sv0vl2fxfFVHVQKCwsBAFFRUU5uCREREd2owsJCBAYG2txH1ff6MRqNSE1Nhb+/PzQajUPPXVBQgKioKKSkpPA+Qo2I17lp8Do3HV7rpsHr3HQa41oLIVBYWIjIyEi4udmuQlF1j4qbmxtatWrVqD8jICCA/xM0AV7npsHr3HR4rZsGr3PTcfS1rqsnxYTFtERERKRYDCpERESkWAwqtdDpdHj77beh0+mc3RSXxuvcNHidmw6vddPgdW46zr7Wqi6mJSIiItfGHhUiIiJSLAYVIiIiUiwGFSIiIlIsBhUiIiJSLAYVK7744gu0bdsWXl5eiI6OxsGDB53dJFXZuXMnRo8ejcjISGg0GqxevVr2vBACM2fOREREBLy9vTF06FCcP39etk9OTg4mTpyIgIAABAUF4ZlnnkFRUVETvgrlmzNnDvr37w9/f3+EhoZi7NixSEhIkO1TVlaGKVOmoEWLFvDz88P48eORkZEh2yc5ORmjRo2Cj48PQkND8fe//x2VlZVN+VIUb+HChejZs6e04FVMTAzWr18vPc/r3Djmzp0LjUaDadOmSdt4rRtu1qxZ0Gg0sq8uXbpIzyvuGguSWbp0qfD09BQ//PCDOHXqlHjuuedEUFCQyMjIcHbTVGPdunXizTffFCtXrhQAxKpVq2TPz507VwQGBorVq1eLY8eOiQcffFC0a9dOlJaWSvsMHz5c9OrVS+zfv1/s2rVLdOzYUUyYMKGJX4myDRs2TCxatEicPHlSxMfHi5EjR4rWrVuLoqIiaZ8XXnhBREVFidjYWBEXFycGDhwobr/9dun5yspK0aNHDzF06FBx9OhRsW7dOhEcHCxmzJjhjJekWGvWrBF//vmnOHfunEhISBD//Oc/hYeHhzh58qQQgte5MRw8eFC0bdtW9OzZU7zyyivSdl7rhnv77bdF9+7dRVpamvSVlZUlPa+0a8ygYmHAgAFiypQp0mODwSAiIyPFnDlznNgq9bIMKkajUYSHh4sPP/xQ2paXlyd0Op349ddfhRBCnD59WgAQhw4dkvZZv3690Gg04urVq03WdrXJzMwUAMSOHTuEEFXX1cPDQyxfvlza58yZMwKA2LdvnxCiKlS6ubmJ9PR0aZ+FCxeKgIAAodfrm/YFqEyzZs3Ed999x+vcCAoLC0WnTp3E5s2bxT333CMFFV5rx3j77bdFr169rD6nxGvMoR8z5eXlOHz4MIYOHSptc3Nzw9ChQ7Fv3z4ntsx1JCYmIj09XXaNAwMDER0dLV3jffv2ISgoCP369ZP2GTp0KNzc3HDgwIEmb7Na5OfnAwCaN28OADh8+DAqKipk17pLly5o3bq17FrfeuutCAsLk/YZNmwYCgoKcOrUqSZsvXoYDAYsXboUxcXFiImJ4XVuBFOmTMGoUaNk1xTg77QjnT9/HpGRkWjfvj0mTpyI5ORkAMq8xqq+KaGjZWdnw2AwyC4+AISFheHs2bNOapVrSU9PBwCr19j0XHp6OkJDQ2XPu7u7o3nz5tI+JGc0GjFt2jTccccd6NGjB4Cq6+jp6YmgoCDZvpbX2tq/hek5uu7EiROIiYlBWVkZ/Pz8sGrVKnTr1g3x8fG8zg60dOlSHDlyBIcOHarxHH+nHSM6OhqLFy9G586dkZaWhtmzZ+Ouu+7CyZMnFXmNGVSIXMCUKVNw8uRJ7N6929lNcVmdO3dGfHw88vPzsWLFCkyaNAk7duxwdrNcSkpKCl555RVs3rwZXl5ezm6OyxoxYoT0fc+ePREdHY02bdrgt99+g7e3txNbZh2HfswEBwdDq9XWqG7OyMhAeHi4k1rlWkzX0dY1Dg8PR2Zmpuz5yspK5OTk8N/BiqlTp2Lt2rXYtm0bWrVqJW0PDw9HeXk58vLyZPtbXmtr/xam5+g6T09PdOzYEX379sWcOXPQq1cvfPrpp7zODnT48GFkZmbitttug7u7O9zd3bFjxw589tlncHd3R1hYGK91IwgKCsItt9yCCxcuKPL3mUHFjKenJ/r27YvY2Fhpm9FoRGxsLGJiYpzYMtfRrl07hIeHy65xQUEBDhw4IF3jmJgY5OXl4fDhw9I+W7duhdFoRHR0dJO3WamEEJg6dSpWrVqFrVu3ol27drLn+/btCw8PD9m1TkhIQHJysuxanzhxQhYMN2/ejICAAHTr1q1pXohKGY1G6PV6XmcHGjJkCE6cOIH4+Hjpq1+/fpg4caL0Pa+14xUVFeHixYuIiIhQ5u+zw8tzVW7p0qVCp9OJxYsXi9OnT4vnn39eBAUFyaqbybbCwkJx9OhRcfToUQFAfPzxx+Lo0aPi8uXLQoiq6clBQUHijz/+EMePHxdjxoyxOj25T58+4sCBA2L37t2iU6dOnJ5s4cUXXxSBgYFi+/btsmmGJSUl0j4vvPCCaN26tdi6dauIi4sTMTExIiYmRnreNM3w/vvvF/Hx8WLDhg0iJCSEUzktTJ8+XezYsUMkJiaK48ePi+nTpwuNRiM2bdokhOB1bkzms36E4LV2hNdff11s375dJCYmij179oihQ4eK4OBgkZmZKYRQ3jVmULHi888/F61btxaenp5iwIABYv/+/c5ukqps27ZNAKjxNWnSJCFE1RTlt956S4SFhQmdTieGDBkiEhISZOe4du2amDBhgvDz8xMBAQFi8uTJorCw0AmvRrmsXWMAYtGiRdI+paWl4qWXXhLNmjUTPj4+Yty4cSItLU12nqSkJDFixAjh7e0tgoODxeuvvy4qKiqa+NUo29NPPy3atGkjPD09RUhIiBgyZIgUUoTgdW5MlkGF17rhHn30URERESE8PT1Fy5YtxaOPPiouXLggPa+0a6wRQgjH99MQERERNRxrVIiIiEixGFSIiIhIsRhUiIiISLEYVIiIiEixGFSIiIhIsRhUiIiISLEYVIiIiEixGFSIyKVoNBqsXr3a2c0gIgdhUCEih3nqqaeg0WhqfA0fPtzZTSMilXJ3dgOIyLUMHz4cixYtkm3T6XROag0RqR17VIjIoXQ6HcLDw2VfzZo1A1A1LLNw4UKMGDEC3t7eaN++PVasWCE7/sSJE7j33nvh7e2NFi1a4Pnnn0dRUZFsnx9++AHdu3eHTqdDREQEpk6dKns+Ozsb48aNg4+PDzp16oQ1a9Y07osmokbDoEJETeqtt97C+PHjcezYMUycOBGPPfYYzpw5AwAoLi7GsGHD0KxZMxw6dAjLly/Hli1bZEFk4cKFmDJlCp5//nmcOHECa9asQceOHWU/Y/bs2XjkkUdw/PhxjBw5EhMnTkROTk6Tvk4icpBGudUhEd2UJk2aJLRarfD19ZV9vffee0KIqjs+v/DCC7JjoqOjxYsvviiEEOKbb74RzZo1E0VFRdLzf/75p3BzcxPp6elCCCEiIyPFm2++WWsbAIh//etf0uOioiIBQKxfv95hr5OImg5rVIjIoQYPHoyFCxfKtjVv3lz6PiYmRvZcTEwM4uPjAQBnzpxBr1694OvrKz1/xx13wGg0IiEhARqNBqmpqRgyZIjNNvTs2VP63tfXFwEBAcjMzLT3JRGREzGoEJFD+fr61hiKcRRvb+967efh4SF7rNFoYDQaG6NJRNTIWKNCRE1q//79NR537doVANC1a1ccO3YMxcXF0vN79uyBm5sbOnfuDH9/f7Rt2xaxsbFN2mYich72qBCRQ+n1eqSnp8u2ubu7Izg4GACwfPly9OvXD3feeSd++eUXHDx4EN9//z0AYOLEiXj77bcxadIkzJo1C1lZWXj55Zfx17/+FWFhYQCAWbNm4YUXXkBoaChGjBiBwsJC7NmzBy+//HLTvlAiahIMKkTkUBs2bEBERIRsW+fOnXH27FkAVTNyli5dipdeegkRERH49ddf0a1bNwCAj48PNm7ciFdeeQX9+/eHj48Pxo8fj48//lg616RJk1BWVoZPPvkEb7zxBoKDg/Hwww833QskoialEUIIZzeCiG4OGo0Gq1atwtixY53dFCJSCdaoEBERkWIxqBAREZFisUaFiJoMR5qJ6EaxR4WIiIgUi0GFiIiIFItBhYiIiBSLQYWIiIgUi0GFiIiIFItBhYiIiBSLQYWIiIgUi0GFiIiIFItBhYiIiBTr/wP3XVry2YrjfAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "loss_values = history.history['loss']\n", + "print(loss_values)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "My8by2_2DI_X", + "outputId": "f696d0f4-2591-4271-e7ce-719f7e48a721" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[13978865.0, 13661791.0, 13745915.0, 14039383.0, 14036662.0, 13992389.0, 14043848.0, 13798370.0, 13376729.0, 13109994.0, 13637852.0, 13281099.0, 12732879.0, 11649245.0, 12006907.0, 10077946.0, 6745423.5, 8057920.0, 7560234.0, 10751578.0, 7243948.5, 7888572.0, 8588810.0, 8419626.0, 9516969.0, 7365000.0, 7175318.0, 9339095.0, 8668128.0, 7203061.5, 8713561.0, 9448430.0, 9513725.0, 6670869.5, 10145086.0, 6996037.5, 8719094.0, 9057428.0, 7909514.0, 10276208.0, 9739874.0, 10149930.0, 8913145.0, 10026408.0, 8749553.0, 9029780.0, 9004435.0, 9100776.0, 10185200.0, 10122906.0, 8880246.0, 8821126.0, 8521718.0, 8372325.5, 8121804.5, 8525467.0, 8518840.0, 8578520.0, 8065098.5, 7953030.5, 7886762.5, 7736829.5, 7885539.5, 8038061.0, 7792236.5, 7960796.0, 7895030.0, 7796317.5, 7477304.0, 8136023.0, 8435440.0, 8509963.0, 9771523.0, 10068050.0, 10016277.0, 10018746.0, 9927969.0, 9876155.0, 9829617.0, 9834552.0, 9743723.0, 9708187.0, 9673909.0, 9640575.0, 9607001.0, 9573277.0, 9538612.0, 9519751.0, 9463637.0, 9405359.0, 9351933.0, 9333471.0, 9251945.0, 9175816.0, 9133273.0, 9092211.0, 9026029.0, 8972206.0, 8917377.0, 8855146.0, 8817475.0, 8767893.0, 8704868.0, 8672368.0, 8623803.0, 8594071.0, 8551559.0, 8497334.0, 8350219.5, 8291855.0, 8181426.0, 8152970.0, 9679971.0, 9600615.0, 9520171.0, 8666106.0, 7868696.0, 8550929.0, 8475719.0, 8423616.0, 7516146.0, 8298322.0, 8117534.5, 8174611.5, 8131674.5, 8084244.5, 8049593.5, 7999823.5, 7967148.5, 7924028.0, 7876899.5, 7842282.0, 7801153.5, 7763562.5, 7723649.0, 7688537.5, 7653228.5, 7620349.5, 7590787.5, 7560942.0, 7530991.0, 7501377.0, 7471123.0, 7446005.5, 7411576.0, 7382610.0, 7355635.5, 7322470.5, 7322630.5, 7260817.0, 7230733.0, 7197820.0, 7166958.0, 7129025.5, 7092078.0, 7065559.0, 7030418.0, 6997822.5, 7857188.0, 6936069.0, 6907201.0, 6877264.5, 6851487.0, 6826318.0, 6801646.5, 6775227.5, 6749586.0, 6723898.5, 6692865.5, 6664151.0, 6631443.0, 6594502.5, 6556715.5, 6509205.5, 6480022.5, 6434694.0, 6394368.0, 6357692.5, 6316935.5, 6289429.5, 6248276.0, 6222152.5, 6186493.0, 6155007.5, 6119027.5, 6094129.0, 6062169.5, 6032828.5, 6004689.5, 5974583.5, 5951585.0, 5917849.5, 5894174.0, 5858341.0, 5828297.0, 5789473.5, 5757150.5, 5716894.5, 5683586.5, 5637409.5]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Escalar los datos entre 0 y 1scaler_X = MinMaxScaler(feature_range=(0, 1))\n", + "scaler_X = MinMaxScaler(feature_range=(0, 1))\n", + "scaler_y = MinMaxScaler(feature_range=(0, 1))\n", + "train_X_scaled = scaler_X.fit_transform(train_X)\n", + "test_X_scaled = scaler_X.transform(test_X)\n", + "train_y_scaled = scaler_y.fit_transform(train_y.values.reshape(-1, 1))\n", + "test_y_scaled = scaler_y.transform(test_y.values.reshape(-1, 1))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 303 + }, + "id": "ji9qjt_SCrvY", + "outputId": "7610dff1-9cc5-4bba-92ea-a0b93fdf3a09" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mscaler_X\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mMinMaxScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_range\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mscaler_y\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mMinMaxScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_range\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mtrain_X_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_X\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_X\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mtest_X_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_X\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_X\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mtrain_y_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_y\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_y\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/utils/_set_output.py\u001b[0m in \u001b[0;36mwrapped\u001b[0;34m(self, X, *args, **kwargs)\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mwraps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mwrapped\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 140\u001b[0;31m \u001b[0mdata_to_wrap\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 141\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_to_wrap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 142\u001b[0m \u001b[0;31m# only wrap the first output for cross decomposition\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/base.py\u001b[0m in \u001b[0;36mfit_transform\u001b[0;34m(self, X, y, **fit_params)\u001b[0m\n\u001b[1;32m 876\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0my\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 877\u001b[0m \u001b[0;31m# fit method of arity 1 (unsupervised transformation)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 878\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mfit_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 879\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 880\u001b[0m \u001b[0;31m# fit method of arity 2 (supervised transformation)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_data.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 425\u001b[0m \u001b[0;31m# Reset internal state before fitting\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 426\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 427\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpartial_fit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 428\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 429\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mpartial_fit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_data.py\u001b[0m in \u001b[0;36mpartial_fit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 464\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 465\u001b[0m \u001b[0mfirst_pass\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"n_samples_seen_\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 466\u001b[0;31m X = self._validate_data(\n\u001b[0m\u001b[1;32m 467\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 468\u001b[0m \u001b[0mreset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfirst_pass\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/base.py\u001b[0m in \u001b[0;36m_validate_data\u001b[0;34m(self, X, y, reset, validate_separately, **check_params)\u001b[0m\n\u001b[1;32m 563\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Validation should be done on X, y or both.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 564\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mno_val_X\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mno_val_y\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 565\u001b[0;31m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcheck_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_name\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"X\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mcheck_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 566\u001b[0m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 567\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mno_val_X\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mno_val_y\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py\u001b[0m in \u001b[0;36mcheck_array\u001b[0;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)\u001b[0m\n\u001b[1;32m 776\u001b[0m )\n\u001b[1;32m 777\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype_iter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdtype_iter\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdtypes_orig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 778\u001b[0;31m \u001b[0mdtype_orig\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mdtypes_orig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 779\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 780\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"iloc\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"dtype\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/overrides.py\u001b[0m in \u001b[0;36mresult_type\u001b[0;34m(*args, **kwargs)\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: at least one array or dtype is required" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Definir el modelo LSTM\n", + "model_lstm = Sequential()\n", + "model_lstm.add(LSTM(50, activation='relu', input_shape=(train_scaled.shape[1], 1)))\n", + "model_lstm.add(Dense(1))\n", + "model_lstm.compile(optimizer='adam', loss='mse')\n", + "\n", + "#/ Definir el modelo GRU\n", + "#model_gru = Sequential()\n", + "#model_gru.add(GRU(50, activation='relu', input_shape=(train_scaled.shape[1], 1)))\n", + "#model_gru.add(Dense(1))\n", + "#model_gru.compile(optimizer='adam', loss='mse')\n", + "#" + ], + "metadata": { + "id": "CaTJQmj33IvW" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "model_lstm.fit(train_X, train_y, epochs=10, verbose=0)\n", + "#model_gru.fit(train_X, train_y, epochs=10, verbose=0)\n", + "\n", + "# Evaluar los modelos\n", + "mse_lstm = model_lstm.evaluate(test_X, test_y)\n", + "#mse_gru = model_gru.evaluate(test_X, test_y)\n", + "\n", + "print(f'Test MSE LSTM: {mse_lstm}')\n", + "#print(f'Test MSE GRU: {mse_gru}')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 245 + }, + "id": "3wBcalVC41ED", + "outputId": "671dcbb9-7d07-4da9-b9e3-1c52a5f16ef9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_X\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_y\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m#model_gru.fit(train_X, train_y, epochs=10, verbose=0)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Evaluar los modelos\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mmse_lstm\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_X\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_y\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'train_X' is not defined" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "hasta aca\n" + ], + "metadata": { + "id": "keXYd4TrurKV" + } + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Convertir los datos a un formato largo usando melt de pandas\n", + "new_data = pd.melt(data, id_vars=['Country', 'Latitude', 'Longitude', 'Features', 'Region'], var_name='Year', value_name='Value')\n", + "\n", + "# Convertir las columnas al tipo de datos correcto\n", + "new_data['Year'] = new_data['Year'].astype(int)\n", + "new_data['Latitude'] = pd.to_numeric(new_data['Latitude'])\n", + "new_data['Longitude'] = pd.to_numeric(new_data['Longitude'])" + ], + "metadata": { + "id": "Xd6En43Apl_Z", + "outputId": "ff66b8ad-695e-4976-8859-ea466bc350cc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 303 + } + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/lib.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.maybe_convert_numeric\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unable to parse string \" -24.653257\"", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Convertir las columnas al tipo de datos correcto\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Latitude'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numeric\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Latitude'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Longitude'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numeric\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Longitude'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/tools/numeric.py\u001b[0m in \u001b[0;36mto_numeric\u001b[0;34m(arg, errors, downcast)\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0mcoerce_numeric\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0merrors\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m\"ignore\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"raise\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 184\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 185\u001b[0;31m values, _ = lib.maybe_convert_numeric(\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcoerce_numeric\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcoerce_numeric\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m )\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/lib.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.maybe_convert_numeric\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unable to parse string \" -24.653257\" at position 161" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Reordenar los niveles de 'Features' en la secuencia deseada\n", + "feature_order = [\"imports\", \"exports\", \"net imports\", \"installed capacity\", \"net generation\", \"net consumption\", \"distribution losses\"]\n", + "new_data['Features'] = pd.Categorical(new_data['Features'], categories=feature_order, ordered=True)\n", + "\n", + "custom_palette = [\"red\", \"blue\", \"green\",\"purple\", \"#FF7F00\", \"cyan\", \"brown\"]\n", + "\n", + "# Agrupar los datos por 'Year' y 'Region' y calcular la suma de valores\n", + "region_features = new_data.groupby(['Year', 'Region', 'Features']).agg(Total_Value=('Value', 'sum')).reset_index()\n", + "\n", + "# Establecer el estilo de los gráficos en Seaborn a \"whitegrid\"\n", + "sns.set_style(\"whitegrid\")\n", + "\n", + "# Crear el gráfico de líneas con la paleta de colores personalizada\n", + "sns.lineplot(data=region_features, x='Year', y='Total_Value', hue='Region')\n", + "plt.title('Total Values by Region Over Time')\n", + "plt.xlabel('Year')\n", + "plt.ylabel('Total')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 390 + }, + "id": "cYzGOiNeVfY7", + "outputId": "d3044941-773c-479f-a4bf-7e86be3e6785" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# Agrupar los datos por 'Year' y 'Region' y calcular la suma de valores\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mregion_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Region'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Features'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0magg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mTotal_Value\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Value'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sum'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;31m# Establecer el estilo de los gráficos en Seaborn a \"whitegrid\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mgroupby\u001b[0;34m(self, by, axis, level, as_index, sort, group_keys, squeeze, observed, dropna)\u001b[0m\n\u001b[1;32m 8400\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_axis_number\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8401\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 8402\u001b[0;31m return DataFrameGroupBy(\n\u001b[0m\u001b[1;32m 8403\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8404\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mby\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort, group_keys, squeeze, observed, mutated, dropna)\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mpandas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrouper\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_grouper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 965\u001b[0;31m grouper, exclusions, obj = get_grouper(\n\u001b[0m\u001b[1;32m 966\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 967\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/grouper.py\u001b[0m in \u001b[0;36mget_grouper\u001b[0;34m(obj, key, axis, level, sort, observed, mutated, validate, dropna)\u001b[0m\n\u001b[1;32m 886\u001b[0m \u001b[0min_axis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 888\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgpr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 889\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgpr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mGrouper\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mgpr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkey\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 890\u001b[0m \u001b[0;31m# Add key to exclusions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "custom_palette = [\"#E41A1C\", \"#377EB8\", \"#4DAF4A\", \"#984EA3\", \"#FF7F00\", \"#FFFF33\", \"#A65628\"]\n", + "\n", + "# Filter the data for the past five years and 'exports'\n", + "export_data = new_data[(new_data['Features'] == \"exports\") & (new_data['Year'] >= (new_data['Year'].max() - 4))]\n", + "\n", + "# Group by 'Country' and calculate the total export value\n", + "top_exporting_countries = export_data.groupby('Country')['Value'].sum().reset_index().sort_values(by='Value', ascending=False).head(10)\n", + "\n", + "# Plotting\n", + "plt.figure(figsize=(10,6))\n", + "sns.barplot(x='Value', y='Country', data=top_exporting_countries, palette=custom_palette)\n", + "print(top_exporting_countries)\n", + "\n", + "plt.xlabel('Total Exports')\n", + "plt.ylabel('Country')\n", + "plt.title('Exports - Last 5 Years - Top Ten Countries')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 512 + }, + "id": "pEGfENwGVhHK", + "outputId": "2dc0d837-10ef-4939-a46a-d36246f692a7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3801\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3802\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m# Filter the data for the past five years and 'exports'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mexport_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Features'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"exports\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;31m# Group by 'Country' and calculate the total export value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3805\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3806\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3807\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3808\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3809\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3802\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3804\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3805\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3806\u001b[0m \u001b[0;31m# If we have a listlike key, _check_indexing_error will raise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'" + ] + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "RQfTp3HSXLqQ" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file From c0dbe9b55add206ff18277eba73f7dfce6960d82 Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Sat, 28 Oct 2023 13:56:50 -0300 Subject: [PATCH 10/16] Creado mediante Colaboratory --- proyectoIAPrediccion1CNNPrediccion.ipynb | 2789 ++++++++++++++++++++++ 1 file changed, 2789 insertions(+) create mode 100644 proyectoIAPrediccion1CNNPrediccion.ipynb diff --git a/proyectoIAPrediccion1CNNPrediccion.ipynb b/proyectoIAPrediccion1CNNPrediccion.ipynb new file mode 100644 index 0000000..f234ddb --- /dev/null +++ b/proyectoIAPrediccion1CNNPrediccion.ipynb @@ -0,0 +1,2789 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.colors as mcolors\n", + "import matplotlib.cm as cm\n", + "import matplotlib\n", + "import seaborn as sns\n", + "import plotly.express as px\n", + "from wordcloud import WordCloud\n", + "import geopandas as gpd\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from keras.models import Sequential\n", + "from keras.layers import LSTM, GRU, Conv1D, MaxPooling1D, Flatten, Dense\n", + "from keras.losses import MeanSquaredError\n", + "from keras.regularizers import l2\n", + "from sklearn.metrics import mean_squared_error\n", + "\n" + ], + "metadata": { + "id": "H7kZjC_GUZZd" + }, + "execution_count": 161, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": { + "id": "9_FId2wvQAgd" + }, + "outputs": [], + "source": [ + "# Leer los datos\n", + "GES_Data = \"global_electricity_statistics_cleaned.csv\"\n", + "df = pd.read_csv(GES_Data)" + ] + }, + { + "cell_type": "code", + "source": [ + "# Ver los primeros datos\n", + "print(df.head())\n", + "df[\"Features\"].value_counts()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "lWY6qwmkQ2PL", + "outputId": "147427ad-532e-4c0d-8dcd-0e3aa47375fe" + }, + "execution_count": 163, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Country Features Region 1980 1981 1982 1983 \\\n", + "0 Algeria net generation Africa 6.683 7.65 8.824 9.615 \n", + "1 Angola net generation Africa 0.905 0.906 0.995 1.028 \n", + "2 Benin net generation Africa 0.005 0.005 0.005 0.005 \n", + "3 Botswana net generation Africa 0.443 0.502 0.489 0.434 \n", + "4 Burkina Faso net generation Africa 0.098 0.108 0.115 0.117 \n", + "\n", + " 1984 1985 1986 ... 2012 2013 2014 2015 \\\n", + "0 10.537 11.569 12.214 ... 53.9845 56.3134 60.39972 64.68244 \n", + "1 1.028 1.028 1.088 ... 6.03408 7.97606 9.21666 9.30914 \n", + "2 0.005 0.005 0.005 ... 0.04612 0.08848 0.22666 0.31056 \n", + "3 0.445 0.456 0.538 ... 0.33 0.86868 2.17628 2.79104 \n", + "4 0.113 0.115 0.122 ... 0.86834 0.98268 1.11808 1.43986 \n", + "\n", + " 2016 2017 2018 2019 2020 2021 \n", + "0 66.75504 71.49546 72.10903 76.685 72.73591277 77.53072719 \n", + "1 10.203511 10.67604 12.83194 15.4 16.6 16.429392 \n", + "2 0.26004 0.3115 0.19028 0.2017 0.22608 0.24109728 \n", + "3 2.52984 2.8438 2.97076 3.0469 2.05144 2.18234816 \n", + "4 1.5509 1.64602 1.6464 1.72552 1.647133174 1.761209666 \n", + "\n", + "[5 rows x 45 columns]\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "net generation 230\n", + "net consumption 230\n", + "imports 230\n", + "exports 230\n", + "net imports 230\n", + "installed capacity 230\n", + "distribution losses 230\n", + "Name: Features, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 163 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Convertir las columnas de los años a numéricas\n", + "cols = [str(year) for year in range(1980, 2022)]\n", + "df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')\n", + "\n", + "# Calcular el promedio de cada fila (ignorando los valores NaN)\n", + "df['avg'] = df.loc[:, '1980':'2021'].mean(axis=1)\n", + "\n", + "# Rellenar los valores NaN con el promedio de la fila correspondiente\n", + "for col in cols:\n", + " df[col].fillna(df['avg'], inplace=True)\n", + "\n", + "# Eliminar la columna 'avg' ya que ya no es necesaria\n", + "df.drop('avg', axis=1, inplace=True)\n", + "\n", + "# Agregar la columna 'Total' que es la suma de las columnas desde 1980 hasta 2021\n", + "df['Total'] = df.loc[:, '1980':'2021'].sum(axis=1)\n", + "\n", + "# Agrupar por 'Region' y obtener la suma de los valores\n", + "df_grouped = df.groupby('Region', as_index=False).sum(numeric_only=True)\n" + ], + "metadata": { + "id": "9MZcbtw9t95l" + }, + "execution_count": 164, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df_grouped.describe().columns" + ], + "metadata": { + "id": "xegG-hIr9XGK", + "outputId": "599e12e1-fd76-445a-9d9f-14043e1fb785", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 165, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988',\n", + " '1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',\n", + " '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006',\n", + " '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',\n", + " '2016', '2017', '2018', '2019', '2020', '2021', 'Total'],\n", + " dtype='object')" + ] + }, + "metadata": {}, + "execution_count": 165 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "base de datos lista con regiones y caracteristicas 1980 al 2021 abajo listo falta red neuronal y entrenamiento\n", + "\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "_28HoIcVTX5H" + } + }, + { + "cell_type": "code", + "source": [ + "print(df_grouped)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6wZ4FIMSDhZH", + "outputId": "594e8826-4ecb-48f7-9bf5-e7b9ddd29ff1" + }, + "execution_count": 166, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Region 1980 1981 1982 \\\n", + "0 Africa 442.751613 470.995013 486.609413 \n", + "1 Asia & Oceania 2864.920423 2957.954923 3091.071601 \n", + "2 Central & South America 701.439239 723.419959 767.169799 \n", + "3 Eurasia 5956.246909 5880.536405 6119.223111 \n", + "4 Europe 7098.639233 7138.275233 7175.265233 \n", + "5 Middle East 228.045912 256.978912 301.258912 \n", + "6 North America 6172.234030 6282.965270 6205.586413 \n", + "\n", + " 1983 1984 1985 1986 1987 \\\n", + "0 505.565813 548.573213 584.582613 617.340013 640.229413 \n", + "1 3288.175590 3517.547039 3737.678238 3942.409483 4262.148408 \n", + "2 821.105839 882.052239 924.217679 1014.448560 1061.394480 \n", + "3 6224.347107 6384.761865 6497.913049 6433.159219 6555.257483 \n", + "4 7379.304233 7639.238233 7874.046233 7993.154233 8202.475233 \n", + "5 335.294912 370.548912 395.965912 416.267912 439.324912 \n", + "6 6399.484193 6703.205738 6894.759863 6963.126923 7235.631195 \n", + "\n", + " 1988 ... 2013 2014 2015 2016 \\\n", + "0 662.405813 ... 1677.718947 1737.628313 1787.300928 1817.971412 \n", + "1 4589.761222 ... 21303.566369 22255.187389 23001.975032 24277.047884 \n", + "2 1111.898820 ... 2880.299637 2874.232050 2956.475857 3010.131036 \n", + "3 6641.334325 ... 6588.899485 6601.562889 6568.729219 6619.157366 \n", + "4 8354.649233 ... 10857.743749 10724.724561 10972.003012 11045.824989 \n", + "5 491.155912 ... 2244.918531 2393.003912 2514.613376 2591.011451 \n", + "6 7502.085307 ... 11431.326082 11512.482997 11530.195877 11571.996896 \n", + "\n", + " 2017 2018 2019 2020 2021 \\\n", + "0 1893.433230 1939.653262 1964.909527 1927.467376 1997.010181 \n", + "1 25762.027981 27169.634214 28150.420606 28902.810243 30933.492914 \n", + "2 3029.476889 3080.027553 3085.916507 3087.128325 3238.838636 \n", + "3 6646.263342 6679.715937 6715.974792 6694.895904 6892.277529 \n", + "4 11104.506712 11096.788734 11080.544037 10985.140560 11273.946852 \n", + "5 2694.789331 2759.997855 2864.975233 2768.263372 2909.974107 \n", + "6 11504.857796 11858.463840 11735.104936 11547.486151 11829.410197 \n", + "\n", + " Total \n", + "0 47384.899885 \n", + "1 517723.280867 \n", + "2 80349.864723 \n", + "3 268660.517049 \n", + "4 396571.073559 \n", + "5 54238.932786 \n", + "6 404741.539017 \n", + "\n", + "[7 rows x 44 columns]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(df_grouped.columns)" + ], + "metadata": { + "id": "y9YU2bOl_Cf6", + "outputId": "5ba173bb-6ae2-48e7-e236-10fac3cd12be", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 167, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Index(['Region', '1980', '1981', '1982', '1983', '1984', '1985', '1986',\n", + " '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995',\n", + " '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004',\n", + " '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',\n", + " '2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021',\n", + " 'Total'],\n", + " dtype='object')\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Asegúrate de que 'Region' sea el índice del DataFrame\n", + "df_grouped.set_index('Region', inplace=True)\n", + "\n", + "# Elimina la columna 'Total'\n", + "df_groupedGraf = df_grouped.drop(columns=['Total'])\n", + "\n", + "# Convierte las columnas a un tipo numérico y maneja los NaNs\n", + "df_groupedGraf = df_groupedGraf.apply(pd.to_numeric, errors='coerce')\n", + "df_groupedGraf = df_groupedGraf.replace(np.nan, 0)\n", + "\n", + "# Transpone el DataFrame para que los años sean las filas y las regiones sean las columnas\n", + "df_groupedGraf = df_groupedGraf.transpose()\n", + "\n", + "# Crea el gráfico\n", + "plt.figure(figsize=(15, 10))\n", + "for region in df_groupedGraf.columns:\n", + " plt.plot(df_groupedGraf.index, df_groupedGraf[region], label=region)\n", + "\n", + "plt.xlabel('Año')\n", + "plt.ylabel('Valor')\n", + "plt.title('Valor por año por Contiente')\n", + "plt.legend()\n", + "\n", + "# Rota las etiquetas del eje x para evitar la superposición\n", + "plt.xticks(rotation=45)\n", + "\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 455 + }, + "id": "UAOFyFDLLMo-", + "outputId": "ab682b8d-f6b9-4736-8139-f8f85e6647fc" + }, + "execution_count": 168, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOcAAANsCAYAAAAQsswkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZhO9eP/8ec9Y2aMZcZuyL4nVJaERCVDloikVGgv6iMtUilLi4/2UtqEFmnVJmRJi5TShxAqWSpE9rGOmfv3x/zc3ybbEM4Yz8d13Vdned/nvO7bjCuv633OCYXD4TCSJEmSJEmSjrqooANIkiRJkiRJxyvLOUmSJEmSJCkglnOSJEmSJElSQCznJEmSJEmSpIBYzkmSJEmSJEkBsZyTJEmSJEmSAmI5J0mSJEmSJAXEck6SJEmSJEkKiOWcJEmSJEmSFBDLOUmSlKMtXbqUUCjEyJEjg46SLXXo0IHExEQGDRrE77//TmJiYtCRjhv+bEqSJLCckyRJ2Ujbtm3JkycPmzdv3ueYLl26EBsby9q1a49ispxp/vz5TJ8+nXvuuYeXXnqJMmXK0L1796BjHTFjx46lZcuWFClShNjYWEqWLEmnTp2YOnXqET3v6NGjefzxx4/oOfbnmWeesQCUJCkbC4XD4XDQISRJkgDeeOMNOnfuzKhRo7j88sv32L9161aKFSvG2WefzQcffJClYy5dupTy5cszYsQIunXrdpgTH9u2b9/O2rVrOeGEE9i1axdr1qyhRIkSQcc67MLhMFdccQUjR47k1FNPpWPHjiQlJbFy5UrGjh3LrFmzmD59Og0bNjwi52/dujXz5s1j6dKle+TasWMHMTExREdHH5FzA9SoUYMiRYowbdq0I3YOSZJ06HIFHUCSJGm3tm3bkj9/fkaPHr3Xcu79999ny5YtdOnSJYB0GbZs2ULevHkDOz9klJR58uT518fJnTs3J5xwAgC5cuU6Zou59PR0du7cSe7cufe6/5FHHmHkyJH06tWLRx99lFAoFNl311138corr5Ar19H/3+JQKLTPzJIk6fjhZa2SJCnbiI+P54ILLmDKlCmsXr16j/2jR48mf/78tG3blnXr1nHrrbdSs2ZN8uXLR0JCAi1btmTOnDlZOtfUqVNp3LgxefPmpUCBApx//vksWLAg05j+/fsTCoX48ccfueSSSyhYsCBnnHHGPo85cuRIQqEQn3/+Oddeey2FCxcmISGByy+/nPXr1+8x/plnnuGkk04iLi6OkiVL0qNHDzZs2JBpTNOmTalRowazZs3izDPPJE+ePNx55537zPDDDz/QrVs3KlSoQO7cuUlKSuKKK67Y4zLg3Z/tl19+oVu3bhQoUIDExES6d+/O1q1bM43dtWsXgwYNomLFisTFxVGuXDnuvPNOduzYsc8cu3Xr1o18+fLx66+/kpycTN68eSlZsiQDBw7knxdwbNmyhVtuuYXSpUsTFxdH1apVefjhh/cYFwqF6NmzJ6+99lrk+5swYcJez79t2zYefPBBqlWrxsMPP5ypmNvtsssu47TTTous//rrr1x44YUUKlSIPHnycPrppzNu3LhM75k2bRqhUIg333yT+++/n1KlSpE7d27OOeccfvnll8i4pk2bMm7cOJYtW0YoFCIUClGuXDlg3/ecW7hwIR07dqRQoULkzp2bunXr7jFTdPfP2vTp0+nduzdFixYlb968tG/fnjVr1kTGlStXjvnz5/PZZ59Fzt+0adPI/g0bNtCrV6/Id16pUiX++9//kp6evtfvU5IkHX7OnJMkSdlKly5dGDVqFG+++SY9e/aMbF+3bh0TJ07k4osvJj4+nvnz5/Pee+9x4YUXUr58ef7880+ee+45mjRpwo8//kjJkiX3eY7JkyfTsmVLKlSoQP/+/dm2bRtPPfUUjRo14vvvv4+UJ7tdeOGFVK5cmQceeGCPomhvevbsSYECBejfvz+LFi1i2LBhLFu2LFLoQEY5NmDAAJo1a8b1118fGfftt98yffp0YmJiIsdbu3YtLVu2pHPnzlx66aUUL158n+eeNGkSv/76K927dycpKYn58+fz/PPPM3/+fL7++us9yqlOnTpRvnx5HnzwQb7//ntefPFFihUrxn//+9/ImKuuuopRo0bRsWNHbrnlFr755hsefPBBFixYwNixYw/4faSlpdGiRQtOP/10hgwZwoQJE7j33nvZtWsXAwcOBDIu8Wzbti2ffvopV155JaeccgoTJ07ktttu448//uCxxx7LdMypU6dGfkaKFCmyx5/Zbl9++SXr1q2jV69eWbp09M8//6Rhw4Zs3bqVm266icKFCzNq1Cjatm3L22+/Tfv27TONHzx4MFFRUdx6661s3LiRIUOG0KVLF7755hsgY2bexo0b+f333yOfIV++fPs8//z582nUqBEnnHACd9xxB3nz5uXNN9+kXbt2vPPOO3uc/8Ybb6RgwYLce++9LF26lMcff5yePXvyxhtvAPD4449z4403ki9fPu666y6AyM/P1q1badKkCX/88QfXXnstZcqU4auvvqJv376sXLky0PvkSZJ0XAlLkiRlI7t27QqXKFEi3KBBg0zbn3322TAQnjhxYjgcDoe3b98eTktLyzRmyZIl4bi4uPDAgQMzbQPCI0aMiGw75ZRTwsWKFQuvXbs2sm3OnDnhqKio8OWXXx7Zdu+994aB8MUXX5yl7CNGjAgD4Tp16oR37twZ2T5kyJAwEH7//ffD4XA4vHr16nBsbGy4efPmmT7D0KFDw0D4pZdeimxr0qRJGAg/++yzWcqwdevWPba9/vrrYSD8+eef7/HZrrjiikxj27dvHy5cuHBkffbs2WEgfNVVV2Uad+utt4aB8NSpU/ebp2vXrmEgfOONN0a2paenh1u1ahWOjY0Nr1mzJhwOh8PvvfdeGAjfd999md7fsWPHcCgUCv/yyy+RbUA4KioqPH/+/P2eOxwOh5944okwEB47duwBx4bD4XCvXr3CQPiLL76IbNu8eXO4fPny4XLlykX+vD799NMwED7xxBPDO3bs2ON8c+fOjWxr1apVuGzZsnuca28/m+ecc064Zs2a4e3bt0e2paenhxs2bBiuXLlyZNvun7VmzZqF09PTI9tvvvnmcHR0dHjDhg2RbSeddFK4SZMme5x/0KBB4bx584Z/+umnTNvvuOOOcHR0dHj58uX7+aYkSdLh4mWtkiQpW4mOjqZz587MmDEj0w30R48eTfHixTnnnHMAiIuLIyoq439l0tLSWLt2Lfny5aNq1ap8//33+zz+ypUrmT17Nt26daNQoUKR7bVq1eLcc8/l448/3uM911133UF9hmuuuSbTzLfrr7+eXLlyRY49efJkdu7cSa9evSKfAeDqq68mISFhj0so4+LisvwU1fj4+Mjy9u3b+euvvzj99NMB9vq9/POzNW7cmLVr17Jp0yaASObevXtnGnfLLbcA7JF1X/4+C3L3Zak7d+5k8uTJkfNER0dz00037XGecDjM+PHjM21v0qQJ1atXP+B5d3+O/PnzZynnxx9/zGmnnZbp8uV8+fJxzTXXsHTpUn788cdM47t3705sbGxkvXHjxkDGpbEHa926dUydOpVOnTqxefNm/vrrL/766y/Wrl1LcnIyP//8M3/88Uem91xzzTWZZkM2btyYtLQ0li1bdsDzvfXWWzRu3JiCBQtGzvXXX3/RrFkz0tLS+Pzzzw/6M0iSpINnOSdJkrKd3Q98GD16NAC///47X3zxBZ07d45cmpiens5jjz1G5cqViYuLo0iRIhQtWpQffviBjRs37vPYu0uLqlWr7rHvxBNP5K+//mLLli2ZtpcvX/6g8leuXDnTer58+ShRokSkbNxXhtjYWCpUqLBHsXLCCSdkKoD2Z926dfznP/+hePHixMfHU7Ro0Uj+vX0vZcqUybResGBBgMg98pYtW0ZUVBSVKlXKNC4pKYkCBQpkqQSKioqiQoUKmbZVqVIFINN3UrJkyT1KtBNPPDGy/++y+meSkJAAwObNm7M0ftmyZfv82dhbjgN9fwfjl19+IRwO069fP4oWLZrpde+99wLscS/Gf3P+n3/+mQkTJuxxrmbNmu31XJIk6cjwnnOSJCnbqVOnDtWqVeP111/nzjvv5PXXXyccDmd6SusDDzxAv379uOKKKxg0aBCFChUiKiqKXr16Hfab2f99NloQDub8nTp14quvvuK2227jlFNOIV++fKSnp9OiRYu9fi/7ug9beC8PYchOsvqdVKtWDYC5c+fSrl27w54jq99fVuz+87n11ltJTk7e65h/lqT/5vzp6emce+653H777Xvdv7tAlSRJR5blnCRJypa6dOlCv379+OGHHxg9ejSVK1emXr16kf1vv/02Z511FsOHD8/0vg0bNlCkSJF9Hrds2bIALFq0aI99CxcupEiRIuTNm/dfZf/5558566yzIuspKSmsXLmS8847b48Mf59RtnPnTpYsWRKZuXSw1q9fz5QpUxgwYAD33HNPpjyHqmzZsqSnp/Pzzz9HZo9BxoMTNmzYEPks+5Oens6vv/6aqez56aefACIPcihbtiyTJ09m8+bNmWbPLVy4MLL/UJxxxhkULFgwUvQe6KEQZcuW3efPxqHmyGqxuftnISYm5pB/Bg7m/BUrViQlJeWwnkuSJB08L2uVJEnZ0u5Zcvfccw+zZ8/ONGsOMmYM/XN20FtvvbXHPbn+qUSJEpxyyimMGjWKDRs2RLbPmzePTz75JFKg/RvPP/88qampkfVhw4axa9cuWrZsCUCzZs2IjY3lySefzPQZhg8fzsaNG2nVqtUhnXd38fTP7+XfPHVz9/fxz2M8+uijAFnOOnTo0MhyOBxm6NChxMTERO4heN5555GWlpZpHMBjjz1GKBSKfHcHK0+ePPTp04cFCxbQp0+fvc4oe/XVV5k5c2Ykx8yZM5kxY0Zk/5YtW3j++ecpV65clu5z90958+bd76XWuxUrVoymTZvy3HPPsXLlyj32r1mz5qDPvfv8f/9Z361Tp07MmDGDiRMn7rFvw4YN7Nq165DOJ0mSDo4z5yRJUrZUvnx5GjZsyPvvvw+wRznXunVrBg4cSPfu3WnYsCFz587ltdde2+PeZnvz0EMP0bJlSxo0aMCVV17Jtm3beOqpp0hMTKR///7/OvvOnTs555xz6NSpE4sWLeKZZ57hjDPOoG3btgAULVqUvn37MmDAAFq0aEHbtm0j4+rVq8ell156SOdNSEjgzDPPZMiQIaSmpnLCCSfwySefsGTJkkP+LCeffDJdu3bl+eefZ8OGDTRp0oSZM2cyatQo2rVrl2mG4L7kzp2bCRMm0LVrV+rXr8/48eMZN24cd955J0WLFgWgTZs2nHXWWdx1110sXbqUk08+mU8++YT333+fXr16UbFixUP+DLfddhvz58/nkUce4dNPP6Vjx44kJSWxatUq3nvvPWbOnMlXX30FwB133MHrr79Oy5YtuemmmyhUqBCjRo1iyZIlvPPOO5ke4JFVderU4Y033qB3797Uq1ePfPny0aZNm72OffrppznjjDOoWbMmV199NRUqVODPP/9kxowZ/P7778yZM+eQzj9s2DDuu+8+KlWqRLFixTj77LO57bbb+OCDD2jdujXdunWjTp06bNmyhblz5/L222+zdOnS/c5ClSRJh0lAT4mVJEk6oKeffjoMhE877bQ99m3fvj18yy23hEuUKBGOj48PN2rUKDxjxoxwkyZNwk2aNImMW7JkSRgIjxgxItP7J0+eHG7UqFE4Pj4+nJCQEG7Tpk34xx9/zDTm3nvvDQPhNWvWZCnviBEjwkD4s88+C19zzTXhggULhvPlyxfu0qVLeO3atXuMHzp0aLhatWrhmJiYcPHixcPXX399eP369ZnGNGnSJHzSSSdl6fzhcDj8+++/h9u3bx8uUKBAODExMXzhhReGV6xYEQbC99577wE/2+7PsGTJksi21NTU8IABA8Lly5cPx8TEhEuXLh3u27dvePv27QfM07Vr13DevHnDixcvDjdv3jycJ0+ecPHixcP33ntvOC0tLdPYzZs3h2+++eZwyZIlwzExMeHKlSuHH3rooXB6enqmcUC4R48eWf5Odnv77bfDzZs3DxcqVCicK1eucIkSJcIXXXRReNq0aZnGLV68ONyxY8dwgQIFwrlz5w6fdtpp4Y8++ijTmE8//TQMhN96661M2/f285aSkhK+5JJLwgUKFAgD4bJly+5z7O7zX3755eGkpKRwTExM+IQTTgi3bt06/Pbbb0fG7P5z+vbbb/ea69NPP41sW7VqVbhVq1bh/Pnzh4FMvx+bN28O9+3bN1ypUqVwbGxsuEiRIuGGDRuGH3744fDOnTuz+M1KkqR/IxQOH8LdaiVJkrSHkSNH0r17d7799lvq1q0bdJxsoVu3brz99tukpKQEHUWSJClb8p5zkiRJkiRJUkAs5yRJkiRJkqSAWM5JkiRJkiRJAfGec5IkSZIkSVJAnDknSZIkSZIkBcRyTpIkSZIkSQpIrqAD5BTp6emsWLGC/PnzEwqFgo4jSZIkSZKkAIXDYTZv3kzJkiWJitr3/DjLucNkxYoVlC5dOugYkiRJkiRJykZ+++03SpUqtc/9lnOHSf78+YGMLzwhISHgNJIkSZIkSQrSpk2bKF26dKQz2hfLucNk96WsCQkJlnOSJEmSJEkCOODtz3wghCRJkiRJkhQQyzlJkiRJkiQpIJZzkiRJkiRJUkC859xRFA6H2bVrF2lpaUFHkXK8mJgYoqOjg44hSZIkSdJ+Wc4dJTt37mTlypVs3bo16CjScSEUClGqVCny5csXdBRJkiRJkvbJcu4oSE9PZ8mSJURHR1OyZEliY2MP+KQOSYcuHA6zZs0afv/9dypXruwMOkmSJElStmU5dxTs3LmT9PR0SpcuTZ48eYKOIx0XihYtytKlS0lNTbWckyRJkiRlWz4Q4iiKivLrlo4WZ6dKkiRJko4FtkWSJEmSJElSQCznJEmSJEmSpIBYzulfCYfDXHPNNRQqVIhQKMTs2bP3OTYUCvHee+8dtWySJEmSJEnZneWcsmTGjBlER0fTqlWrTNsnTJjAyJEj+eijj1i5ciU1atTY5zFWrlxJy5Ytj3RUSZIkSZKkY4blnLJk+PDh3HjjjXz++eesWLEisn3x4sWUKFGChg0bkpSURK5cez4AeOfOnQAkJSURFxd31DJLkiRJkiRld5ZzAQmHw2zdueuov8Lh8EFnTUlJ4Y033uD666+nVatWjBw5EoBu3bpx4403snz5ckKhEOXKlQOgadOm9OzZk169elGkSBGSk5OBPS9r/f3337n44ospVKgQefPmpW7dunzzzTdARul3/vnnU7x4cfLly0e9evWYPHnyv/rOJUmSJEmSsps9pznpqNiWmkb1eyYe9fP+ODCZPLEH98f+5ptvUq1aNapWrcqll15Kr1696Nu3L0888QQVK1bk+eef59tvvyU6OjrynlGjRnH99dczffr0vR4zJSWFJk2acMIJJ/DBBx+QlJTE999/T3p6emT/eeedx/33309cXBwvv/wybdq0YdGiRZQpU+bQvwBJkiRJkqRsxHJOBzR8+HAuvfRSAFq0aMHGjRv57LPPaNq0Kfnz5yc6OpqkpKRM76lcuTJDhgzZ5zFHjx7NmjVr+PbbbylUqBAAlSpViuw/+eSTOfnkkyPrgwYNYuzYsXzwwQf07NnzcH48SZIkSZKkwFjOBSQ+JpofByYHct6DsWjRImbOnMnYsWMByJUrFxdddBHDhw+nadOm+3xfnTp19nvc2bNnc+qpp0aKuX9KSUmhf//+jBs3jpUrV7Jr1y62bdvG8uXLDyq/JEmSJElSdmY5F5BQKHTQl5cGYfjw4ezatYuSJUtGtoXDYeLi4hg6dOg+35c3b979Hjc+Pn6/+2+99VYmTZrEww8/TKVKlYiPj6djx46Rh0tIkiRJkiTlBNm/HVJgdu3axcsvv8wjjzxC8+bNM+1r164dr7/++iEfu1atWrz44ousW7dur7Pnpk+fTrdu3Wjfvj2QMZNu6dKlh3w+SZIkSZKk7MintWqfPvroI9avX8+VV15JjRo1Mr06dOjA8OHDD/nYF198MUlJSbRr147p06fz66+/8s477zBjxgwg45517777LrNnz2bOnDlccsklkYdFSJIkSZIk5RSWc9qn4cOH06xZMxITE/fY16FDB7777js2bdp0SMeOjY3lk08+oVixYpx33nnUrFmTwYMHR574+uijj1KwYEEaNmxImzZtSE5Opnbt2v/q80iSJEmSJGU3oXA4HA46RE6wadMmEhMT2bhxIwkJCZn2bd++nSVLllC+fHly584dUELp+OLvnSRJkiQpSPvriv7OmXOSJEmSJElSQCznJEmSJEmSpIBYzkmSJEmSJEkBsZyTJEmSJEmSAmI5J0mSJEmSJAXEck6SJEmSJEkKiOWcJEmSJEmSFBDLOUmSJEmSJCkglnOSJEmSJEkK1vQnYf2yoFMEwnJOR9TSpUsJhULMnj076CjHjKZNm9KrV6+gY0iSJEmSdHT8Og0m9YNhDWHbhqDTHHWWc8qSGTNmEB0dTatWrQ7qfaVLl2blypXUqFHjX50/PT2dPn36ULJkSeLj46lVqxbvv/9+lt//0Ucf0aRJE/Lnz0+ePHmoV68eI0eO/FeZjpR3332XQYMGBR1DkiRJkqQjLz0NPrk7Y/mULhBfINA4QbCcU5YMHz6cG2+8kc8//5wVK1Zk+X3R0dEkJSWRK1euf3X+V199lccee4xHH32UBQsW8Oijj5I3b94svfepp57i/PPPp1GjRnzzzTf88MMPdO7cmeuuu45bb731X+U6EgoVKkT+/PmDjiFJkiRJ0pH3wxuwai7EJUKTPkGnCYTlXFDCYdi55ei/wuGDjpqSksIbb7zB9ddfT6tWrfaYcbZ+/Xq6dOlC0aJFiY+Pp3LlyowYMQLY87LWtLQ0rrzySsqXL098fDxVq1bliSeeOGCGqKgoihYtSufOnSlXrhzNmjWjWbNmB3zfb7/9xi233EKvXr144IEHqF69OpUqVeKWW27hoYce4pFHHuGbb76JjJ8/fz6tW7cmISGB/Pnz07hxYxYvXhzZ/+KLL3LiiSeSO3duqlWrxjPPPJPpfH369KFKlSrkyZOHChUq0K9fP1JTUyP7+/fvzymnnMIrr7xCuXLlSExMpHPnzmzevDky5p+Xtb7yyivUrVuX/Pnzk5SUxCWXXMLq1asP+NklSZIkScrWdm6FKf//yrEzb4G8hYPNE5B/N51Jhy51KzxQ8uif984VEJu1GWe7vfnmm1SrVo2qVaty6aWX0qtXL/r27UsoFAKgX79+/Pjjj4wfP54iRYrwyy+/sG3btr0eKz09nVKlSvHWW29RuHBhvvrqK6655hpKlChBp06d9pnhnHPOYePGjfTr1++gLvl8++23SU1N3esMuWuvvZY777yT119/nfr16/PHH39w5pln0rRpU6ZOnUpCQgLTp09n165dALz22mvcc889DB06lFNPPZX//e9/XH311eTNm5euXbsCkD9/fkaOHEnJkiWZO3cuV199Nfnz5+f222+PnHfx4sW89957fPTRR6xfv55OnToxePBg7r///r1+htTUVAYNGkTVqlVZvXo1vXv3plu3bnz88cdZ/h4kSZIkScp2ZjwNm1dAgTJw2rVBpwmM5ZwOaPjw4Vx66aUAtGjRgo0bN/LZZ5/RtGlTAJYvX86pp55K3bp1AShXrtw+jxUTE8OAAQMi6+XLl2fGjBm8+eab+yzntm7dyrnnnssll1zCpEmT2LZtGw899FCkHExISOCll16iY8eOe7z3p59+IjExkRIlSuyxLzY2lgoVKvDTTz8B8PTTT5OYmMiYMWOIiYkBoEqVKpHx9957L4888ggXXHBBJPuPP/7Ic889Fynn7r777sj4cuXKceuttzJmzJhM5Vx6ejojR46MXLp62WWXMWXKlH2Wc1dccUVkuUKFCjz55JPUq1ePlJQU8uXLt9f3SJIkSZKUrW3+E758LGP5nHshJneweQJkOReUmDwZs9iCOO9BWLRoETNnzmTs2LEA5MqVi4suuojhw4dHyrnrr7+eDh068P3339O8eXPatWtHw4YN93nMp59+mpdeeonly5ezbds2du7cySmnnLLP8SNHjmTDhg08/fTTpKSk0LRpU7p3786LL77I77//TkpKCo0aNTqoz7U3s2fPpnHjxpFi7u+2bNnC4sWLufLKK7n66qsj23ft2kViYmJk/Y033uDJJ59k8eLFpKSksGvXLhISEjIdq1y5cpnuKVeiRIn9XqY6a9Ys+vfvz5w5c1i/fj3p6elARilavXr1Q/68kiRJkiQFZtoDkLoFTqgLNToEnSZQlnNBCYUO+vLSIAwfPpxdu3ZRsuT/XYIbDoeJi4tj6NChJCYm0rJlS5YtW8bHH3/MpEmTOOecc+jRowcPP/zwHscbM2YMt956K4888ggNGjQgf/78PPTQQ5nu+/ZPP/zwAyeddBIxMTEULFiQSZMm0bhxY9q3b0/lypVp0aLFXmfGQcbMt40bN7JixYpMnwFg586dLF68mLPOOguA+Pj4fWZISUkB4IUXXqB+/fqZ9kVHRwMZT7Tt0qULAwYMIDk5OTIL75FHHsk0/p/lXygUihRu/7RlyxaSk5NJTk7mtddeo2jRoixfvpzk5GR27ty5z7ySJEmSJGVbf/4I37+csZx8f0ZHchzzgRDap127dvHyyy/zyCOPMHv27Mhrzpw5lCxZktdffz0ytmjRonTt2pVXX32Vxx9/nOeff36vx5w+fToNGzbkhhtu4NRTT6VSpUqZHriwNyeccAKzZ8+OPDShWLFiTJ48mblz5/LYY49x33337fO9HTp0ICYmZo+CDODZZ59ly5YtXHzxxQDUqlWLL774ItMDHHYrXrw4JUuW5Ndff6VSpUqZXuXLlwfgq6++omzZstx1113UrVuXypUrs2zZsv1+tgNZuHAha9euZfDgwTRu3Jhq1ar5MAhJkiRJ0rFtUj8Ip8OJbaHM6UGnCZzlnPZp9wMLrrzySmrUqJHp1aFDB4YPHw7APffcw/vvv88vv/zC/Pnz+eijjzjxxBP3eszKlSvz3XffMXHiRH766Sf69evHt99+u98cV155JWlpabRt25avvvqKRYsWMXHiRFJSUsiTJ08kx96UKVOGIUOG8Pjjj3PXXXexcOFCFi9ezKOPPsrtt9/OLbfcEpkJ17NnTzZt2kTnzp357rvv+Pnnn3nllVdYtGgRAAMGDODBBx/kySef5KeffmLu3LmMGDGCRx99NPLZli9fzpgxY1i8eDFPPvlk5HLgQ1WmTBliY2N56qmn+PXXX/nggw8O6oEYkiRJkiRlK79MgV8mQ1QMNOsfdJpswXJO+zR8+HCaNWuW6Z5qu3Xo0IHvvvuOH374gdjYWPr27UutWrU488wziY6OZsyYMXs95rXXXssFF1zARRddRP369Vm7di033HDDfnOULFmSmTNnUqRIES644AJOPfVUXn75ZV5++WXGjRvH888/HynI9qZXr16MHTuWL774grp161KjRg1Gjx7NsGHDMl16W7hwYaZOnUpKSgpNmjShTp06vPDCC5HLUK+66ipefPFFRowYQc2aNWnSpAkjR46MzJxr27YtN998Mz179uSUU07hq6++ol+/fgf8nvenaNGijBw5krfeeovq1aszePDgvV4uLEmSJElStpeeBp/8/38nn3Y1FK4YbJ5sIhQOh8NBh8gJNm3aRGJiIhs3btzjAQDbt29nyZIllC9fnty5j9+nj0hHk793kiRJkpTNfP8KfNATcifCTbMhT6GgEx1R++uK/s6Zc5IkSZIkSTqydqTA1P9/z/gzb8/xxdzBsJyTJEmSJEnSkTVjKKSsgoLlMi5pVYTlnCRJkiRJko6cTSth+hMZy836Q664QONkN5ZzkiRJkiRJOnI+vR9St0Kp06B6u6DTZDuWc5IkSZIkSToyVs2D/72asZx8P4RCwebJhiznJEmSJEmSdGRM6geE4aT2UPq0oNNkS4GWc8OGDaNWrVokJCSQkJBAgwYNGD9+fGT/9u3b6dGjB4ULFyZfvnx06NCBP//8M9Mxli9fTqtWrciTJw/FihXjtttuY9euXZnGTJs2jdq1axMXF0elSpUYOXLkHlmefvppypUrR+7cualfvz4zZ848Ip9ZkiRJkiTpuPDzZFg8FaJj4Zx7g06TbQVazpUqVYrBgwcza9YsvvvuO84++2zOP/985s+fD8DNN9/Mhx9+yFtvvcVnn33GihUruOCCCyLvT0tLo1WrVuzcuZOvvvqKUaNGMXLkSO65557ImCVLltCqVSvOOussZs+eTa9evbjqqquYOHFiZMwbb7xB7969uffee/n+++85+eSTSU5OZvXq1Ufvy5AkSZIkScop0nbBJ3dnLJ92DRQqH2yebCwUDofDQYf4u0KFCvHQQw/RsWNHihYtyujRo+nYsSMACxcu5MQTT2TGjBmcfvrpjB8/ntatW7NixQqKFy8OwLPPPkufPn1Ys2YNsbGx9OnTh3HjxjFv3rzIOTp37syGDRuYMGECAPXr16devXoMHToUgPT0dEqXLs2NN97IHXfckaXcmzZtIjExkY0bN5KQkJBp3/bt21myZAnly5cnd+7c//o7knRg/t5JkiRJUoBmjYQP/wPxBeGm/2X89zizv67o77LNPefS0tIYM2YMW7ZsoUGDBsyaNYvU1FSaNWsWGVOtWjXKlCnDjBkzAJgxYwY1a9aMFHMAycnJbNq0KTL7bsaMGZmOsXvM7mPs3LmTWbNmZRoTFRVFs2bNImP2ZseOHWzatCnTS9lLuXLlePzxx4OOcUSEQiHee++9oGP8a926daNdu3ZBx5AkSZIkHU47NsPU+zOWm/Q5Lou5gxF4OTd37lzy5ctHXFwc1113HWPHjqV69eqsWrWK2NhYChQokGl88eLFWbVqFQCrVq3KVMzt3r973/7GbNq0iW3btvHXX3+Rlpa21zG7j7E3Dz74IImJiZFX6dKlD+nzHwtWrVrFjTfeSIUKFYiLi6N06dK0adOGKVOmHNbzNG3alF69eh3WYx7IL7/8QnJyMgkJCRQqVIiWLVuyZs2aA74vLS2NwYMHU61aNeLj4ylUqBD169fnxRdfPKz5+vfvzymnnHJYj/n6668THR1Njx49DutxD8UTTzyx13tASpIkSZKOYdOfhC2roVAFqHtl0GmyvVxBB6hatSqzZ89m48aNvP3223Tt2pXPPvss6FgH1LdvX3r37h1Z37RpU44s6JYuXUqjRo0oUKAADz30EDVr1iQ1NZWJEyfSo0cPFi5ceFTzhMNh0tLSyJXr8PzoXnPNNWzcuJHPPvuMPHnyMGPGDLJypfeAAQN47rnnGDp0KHXr1mXTpk189913rF+//rDkOpKGDx/O7bffznPPPccjjzwSyCWfaWlphEIhEhMTj/q5JUmSJElH0MY/4KunMpabDYBcscHmOQYEPnMuNjaWSpUqUadOHR588EFOPvlknnjiCZKSkti5cycbNmzINP7PP/8kKSkJgKSkpD2e3rp7/UBjEhISiI+Pp0iRIkRHR+91zO5j7E1cXFzkKbO7XwcjHA6zNXXrUX8d7C0Gb7jhBkKhEDNnzqRDhw5UqVKFk046id69e/P1119Hxm3YsIGrrrqKokWLkpCQwNlnn82cOXMi+3fPAHvllVcoV64ciYmJdO7cmc2bNwMZlzd+9tlnPPHEE4RCIUKhEEuXLmXatGmEQiHGjx9PnTp1iIuL48svv2Tx4sWcf/75FC9enHz58lGvXj0mT558UJ8NMi5hTk5O5tRTT6Vq1ap069aNYsWKHfB9H3zwATfccAMXXngh5cuX5+STT+bKK6/k1ltvjYzZsWMHN910E8WKFSN37tycccYZfPvtt5H9I0eO3GNm6HvvvUcoFIrsHzBgAHPmzIl8J3+fZfbXX3/Rvn178uTJQ+XKlfnggw8OmHvJkiV89dVX3HHHHVSpUoV333030/7dmT766COqVq1Knjx56NixI1u3bmXUqFGUK1eOggULctNNN5GWlpbps956662ccMIJ5M2bl/r16zNt2rQ9jvvBBx9QvXp14uLiWL58+R6XtaanpzNkyBAqVapEXFwcZcqU4f7774/s79OnD1WqVCFPnjxUqFCBfv36kZqaesDPLUmSJEk6Sj69H3ZtgzIN4MQ2Qac5JgQ+c+6f0tPT2bFjB3Xq1CEmJoYpU6bQoUMHABYtWsTy5ctp0KABAA0aNOD+++9n9erVkUJl0qRJJCQkUL169ciYjz/+ONM5Jk2aFDlGbGwsderUYcqUKZGSID09nSlTptCzZ88j9jm37dpG/dH1j9jx9+WbS74hT0yeLI1dt24dEyZM4P777ydv3rx77P97sXThhRcSHx/P+PHjSUxM5LnnnuOcc87hp59+olChQgAsXryY9957j48++oj169fTqVMnBg8ezP33388TTzzBTz/9RI0aNRg4cCAARYsWZenSpQDccccdPPzww1SoUIGCBQvy22+/cd5553H//fcTFxfHyy+/TJs2bVi0aBFlypTJ8vdx/vnn069fPzp27Ejt2rWz/L6kpCSmTp3KDTfcQNGiRfc65vbbb+edd95h1KhRlC1bliFDhpCcnMwvv/wS+U7256KLLmLevHlMmDAhUjz+fabZgAEDGDJkCA899BBPPfUUXbp0YdmyZfs99ogRI2jVqhWJiYlceumlDB8+nEsuuSTTmK1bt/Lkk08yZswYNm/ezAUXXED79u0pUKAAH3/8Mb/++isdOnSgUaNGXHTRRQD07NmTH3/8kTFjxlCyZEnGjh1LixYtmDt3LpUrV44c97///S8vvvgihQsX3msJ2rdvX1544QUee+wxzjjjDFauXJlpdmb+/PkZOXIkJUuWZO7cuVx99dXkz5+f22+//YDfpyRJkiTpCFv5A8wenbHc/H74/5NPtH+Bzpzr27cvn3/+OUuXLmXu3Ln07duXadOm0aVLFxITE7nyyivp3bs3n376KbNmzaJ79+40aNCA008/HYDmzZtTvXp1LrvsMubMmcPEiRO5++676dGjB3FxcQBcd911/Prrr9x+++0sXLiQZ555hjfffJObb745kqN379688MILjBo1igULFnD99dezZcsWunfvHsj3kl388ssvhMNhqlWrtt9xX375JTNnzuStt96ibt26VK5cmYcffpgCBQrw9ttvR8alp6czcuRIatSoQePGjbnssssi961LTEwkNjaWPHnykJSURFJSEtHR0ZH3Dhw4kHPPPZeKFStSqFAhTj75ZK699lpq1KhB5cqVGTRoEBUrVszS7LHdpk6dyh133MHdd99N69at+eKLLyL73nnnHfLnz7/P9z766KOsWbOGpKQkatWqxXXXXcf48eMj+7ds2cKwYcN46KGHaNmyJdWrV+eFF14gPj6e4cOHZylffHw8+fLlI1euXJHvJD4+PrK/W7duXHzxxVSqVIkHHniAlJQUZs6cuc/j7f7+L730UiDjqcVffvklS5YsyTQuNTWVYcOGceqpp3LmmWfSsWNHvvzyS4YPH0716tVp3bo1Z511Fp9++ikAy5cvZ8SIEbz11ls0btyYihUrcuutt3LGGWcwYsSITMd95plnaNiwYWRW3t9t3ryZJ554giFDhtC1a1cqVqzIGWecwVVXXRUZc/fdd9OwYUPKlStHmzZtuPXWW3nzzTez9H1KkiRJko6gcBg+uQsIQ42OUKpO0ImOGYHOnFu9ejWXX345K1euJDExkVq1ajFx4kTOPfdcAB577DGioqLo0KEDO3bsIDk5mWeeeSby/ujoaD766COuv/56GjRoQN68eenatWtk5hVA+fLlGTduHDfffDNPPPEEpUqV4sUXXyQ5OTky5qKLLmLNmjXcc889rFq1ilNOOYUJEybs8ZCIwyk+VzzfXPLNETv+/s6bVVm9BHbOnDmkpKRQuHDhTNu3bdvG4sWLI+vlypXLVHiVKFGC1atXZ+kcdevWzbSekpJC//79GTduHCtXrmTXrl1s27aN5cuXZ+l4kDEbr0ePHtx6662cdNJJtGnThldeeYU2bdowd+5czjjjjH2+t3r16sybN49Zs2Yxffp0Pv/8c9q0aUO3bt148cUXWbx4MampqTRq1CjynpiYGE477TQWLFiQ5Yz7U6tWrchy3rx5SUhI2O/3OWnSJLZs2cJ5550HQJEiRTj33HN56aWXGDRoUGRcnjx5qFixYmS9ePHilCtXjnz58mXatvtcc+fOJS0tjSpVqmQ6344dOzL9TMTGxmbK/E8LFixgx44dnHPOOfsc88Ybb/Dkk0+yePFiUlJS2LVr10FfUi5JkiRJOgJ+/gSWfA7RcXDOPUGnOaYEWs4daAZR7ty5efrpp3n66af3OaZs2bJ7XLb6T02bNuV///vffsf07NnziF7G+k+hUCjLl5cGpXLlyoRCoQM+9CElJYUSJUpkusfYbn+/9DUmJibTvlAoRHp6epay/POy2ltvvZVJkybx8MMPU6lSJeLj4+nYsSM7d+7M0vEAfvjhh8gMypYtWzJ8+HAuvPBChg4dysiRIxkyZMh+3x8VFUW9evWoV68evXr14tVXX+Wyyy7jrrvuytL5o6Ki9ihAD+b+aQf7fQ4fPpx169Zlmn2Xnp7ODz/8wIABA4iKitrncfd3rpSUFKKjo5k1a1am2Y5ApkIvPj4+cj+9vfl7rr2ZMWMGXbp0YcCAASQnJ5OYmMiYMWN45JFH9vs+SZIkSdIRlrYLPumXsXz6dVCwbLB5jjHZ7p5zyj4KFSpEcnIyTz/9NDfddNMeBdmGDRsoUKAAtWvXZtWqVeTKlYty5cod8vliY2MzPWRgf6ZPn063bt1o3749kFEQ7b4/XVadcMIJfP7551x88cUAdOjQgZSUFLp3706tWrW48MILD+p4u+9zuGXLFipWrEhsbCzTp0+nbNmMv5RSU1P59ttv6dWrF5BxT73NmzezZcuWyHc7e/bsTMc8mO9kf9auXcv777/PmDFjOOmkkyLb09LSOOOMM/jkk09o0aLFIR371FNPJS0tjdWrV9O4ceNDzli5cmXi4+OZMmVKpktZd/vqq68oW7ZspvJz2bJlh3w+SZIkSdJh8v0o+GsRxBeCM3oHneaYYzmn/Xr66adp1KgRp512GgMHDqRWrVrs2rWLSZMmMWzYMBYsWECzZs1o0KAB7dq1Y8iQIVSpUoUVK1Ywbtw42rdvv8clqftSrlw5vvnmG5YuXUq+fPn2+2CDypUr8+6779KmTRtCoRD9+vXL8iy83W6//XZuuOEGkpKSuOiii9i4cSMzZswgT548LFy4kOnTp+/z0taOHTvSqFEjGjZsSFJSEkuWLKFv375UqVKFatWqkStXLq6//npuu+02ChUqRJkyZRgyZAhbt27lyiuvBKB+/frkyZOHO++8k5tuuolvvvkm09NYd38nS5YsYfbs2ZQqVYr8+fNH7qd4MF555RUKFy5Mp06d9pi9dt555zF8+PBDLueqVKlCly5duPzyy3nkkUc49dRTWbNmDVOmTKFWrVq0atUqS8fJnTs3ffr04fbbbyc2NpZGjRqxZs0a5s+fz5VXXknlypVZvnw5Y8aMoV69eowbN46xY8ceUmZJkiRJ0mGyfRN8+kDGctO+EF8g0DjHokAfCKHsr0KFCnz//fecddZZ3HLLLdSoUYNzzz2XKVOmMGzYMCDjEsePP/6YM888k+7du1OlShU6d+7MsmXLDuq+fbfeeivR0dFUr16dokWL7vf+cY8++igFCxakYcOGtGnThuTk5IN62irAtddeyxtvvMGHH35InTp1aNu2LTt37mThwoVcdtlltGvXjp9//nmv701OTubDDz+kTZs2VKlSha5du1KtWjU++eQTcuXK6LwHDx5Mhw4duOyyy6hduza//PILEydOpGDBgkDGzMRXX32Vjz/+mJo1a/L666/Tv3//TOfp0KEDLVq04KyzzqJo0aK8/vrrB/UZd3vppZdo3779Xi8r7dChAx988AF//fXXIR0bMp4Ce/nll3PLLbdQtWpV2rVrx7fffntQT84F6NevH7fccgv33HMPJ554IhdddFHk3nZt27bl5ptvpmfPnpxyyil89dVX9OvX75AzS5IkSZIOg+mPw9a/oHAlqHt8P1jzUIXCWb3rv/Zr06ZNJCYmsnHjxj1uUL99+3aWLFlC+fLlyZ07d0AJpeOLv3eSJEmSdIRt/B2eqgO7tkPn0VAta1dOHS/21xX9nTPnJEmSJEmSdPCmDMoo5sqeAVXPCzrNMctyTpIkSZIkSQdnxf/ghzEZy80HwV5uo6SssZyTJEmSJElS1oXD8Mn/vwd4rYvghIO7B7wys5yTJEmSJElS1i0aD0u/gFy54Wwf1PdvWc5JkiRJkiQpa9JSYdI9Gcun3wAFSgebJwewnJMkSZIkSVLWzBoJa3+GPEXgjJuDTpMjWM5JkiRJkiTpwLZvhGkPZiyf1RdyJwSbJ4ewnJMkSZIkSdKBffEobF0LRapA7W5Bp8kxLOckSZIkSZK0f+uXwdfDMpbPHQTRuYLNk4NYzumY1LRpU3r16hV0DEmSJEmSjg9TB0HaDih/JlRJDjpNjmI5p/3q1q0boVBoj1eLFi0CzfXuu+8yaNCgQDNIkiRJknRc+H0WzH0LCEHz+yAUCjpRjuIcRB1QixYtGDFiRKZtcXFxh3SscDhMWloauXL9ux+9QoUK/av3S5IkSZKkLAiH4ZO7M5ZPvhhKnBxsnhzImXMBCYfDpG/detRf4XD4oLPGxcWRlJSU6VWwYEGWLl1KKBRi9uzZkbEbNmwgFAoxbdo0AKZNm0YoFGL8+PHUqVOHuLg4vvzySxYvXsz5559P8eLFyZcvH/Xq1WPy5MmZzvvMM89QuXJlcufOTfHixenYsWNk3z8va33llVeoW7cu+fPnJykpiUsuuYTVq1cf9GeVJEmSJEl/s/AjWP4V5IqHs+8OOk2O5My5gIS3bWNR7TpH/bxVv59FKE+eo37eO+64g4cffpgKFSpQsGBBfvvtN8477zzuv/9+4uLiePnll2nTpg2LFi2iTJkyfPfdd9x000288sorNGzYkHXr1vHFF1/s8/ipqakMGjSIqlWrsnr1anr37k23bt34+OOPj+KnlCRJkiQpB1n+NYzvk7HcsCcknhBsnhzKck4H9NFHH5EvX75M2+68804uueSSLB9j4MCBnHvuuZH1QoUKcfLJ/zcVdtCgQYwdO5YPPviAnj17snz5cvLmzUvr1q3Jnz8/ZcuW5dRTT93n8a+44orIcoUKFXjyySepV68eKSkpe2SXJEmSJEn7sXMrTL0Pvn4GCEPBctDoP0GnyrEs5wISio+n6vezAjnvwTrrrLMYNmxYpm2FChVi06ZNWT5G3bp1M62npKTQv39/xo0bx8qVK9m1axfbtm1j+fLlAJx77rmULVuWChUq0KJFC1q0aEH79u3Js49Zf7NmzaJ///7MmTOH9evXk56eDsDy5cupXr36wXxcSZIkSZKOX8tmwPs9YN3ijPVTukDy/RCXP9hcOZjlXEBCoVAgl5ceirx581KpUqU9tqekpABkuo9damrqPo/xd7feeiuTJk3i4YcfplKlSsTHx9OxY0d27twJQP78+fn++++ZNm0an3zyCffccw/9+/fn22+/pUCBApmOtWXLFpKTk0lOTua1116jaNGiLF++nOTk5MjxJEmSJEnSfuzcClMHwdfDgDDkLwFtnoQqzYNOluP5QAgdsqJFiwKwcuXKyLa/Pxxif6ZPn063bt1o3749NWvWJCkpiaVLl2YakytXLpo1a8aQIUP44YcfWLp0KVOnTt3jWAsXLmTt2rUMHjyYxo0bU61aNR8GIUmSJElSVi2bAc82+r/LWE+5FG742mLuKHHmnA5ox44drFq1KtO2XLlyUaRIEU4//XQGDx5M+fLlWb16NXffnbUnt1SuXJl3332XNm3aEAqF6NevX+RSVMi4z92vv/7KmWeeScGCBfn4449JT0+natWqexyrTJkyxMbG8tRTT3Hdddcxb948Bg0a9O8+tCRJkiRJOd3OrTBlIHzzLBmz5UpC2yeh8rkHfKsOH2fO6YAmTJhAiRIlMr3OOOMMAF566SV27dpFnTp16NWrF/fdd1+Wjvnoo49SsGBBGjZsSJs2bUhOTqZ27dqR/QUKFODdd9/l7LPP5sQTT+TZZ5/l9ddf56STTtrjWEWLFmXkyJG89dZbVK9encGDB/Pwww8fng8vSZIkSVJOtOwrGNYQvvn/l7Geein0+NpiLgCh8N9vGKZDtmnTJhITE9m4cSMJCQmZ9m3fvp0lS5ZQvnx5cufOHVBC6fji750kSZIk7cXOLTBl0P/Nlks4IePecpWbBZ0sx9lfV/R3XtYqSZIkSZJ0PFg6PeNJrOuXZKyfelnGk1hzJwab6zhnOSdJkiRJkpST7dzyt3vLkTFbru2TUMnZctmB5ZwkSZIkSVJO9c/ZcrUvh+b3OVsuG7GckyRJkiRJyml2boHJA2DmcxnrCaX+/2y5c4LNpT1YzkmSJEmSJOUkS7/8/7Pllmas1+4KzQc5Wy6bspyTJEmSJEnKCXakwJQBMPP5jHVnyx0TLOckSZIkSZKOdUu+yJgtt2FZxnqdbnDuIMidEGgsHZjlnCRJkiRJ0rFqRwpM7g/fvpCxnlga2j4FFc8KNJayznJOkiRJkiTpWLTkc3i/599my3XPuLdcXP5gc+mgWM5JkiRJkiQdS9LTYPK98NVTGeuJZTLuLedsuWNSVNABlL1169aNUCi0x6tFixZBR5MkSZIk6fizcyu8efn/FXN1r4AbvrKYO4Y5c04H1KJFC0aMGJFpW1xc3CEdKxwOk5aWRq5c/uhJkiRJknRQUlbD653hj1kQHQfth0GNDkGn0r/kzLmAhMNhUnekHfVXOBw+6KxxcXEkJSVlehUsWJClS5cSCoWYPXt2ZOyGDRsIhUJMmzYNgGnTphEKhRg/fjx16tQhLi6OL7/8kh07dnDTTTdRrFgxcufOzRlnnMG3334bOc7u940bN45atWqRO3duTj/9dObNm5cp25dffknjxo2Jj4+ndOnS3HTTTWzZsuWQ/kwkSZIkScq21vwELzbLKObiC8Ll71vM5RBOXwrIrp3pPP+fz476ea95ogkxcdFH/bx33HEHDz/8MBUqVKBgwYLcfvvtvPPOO4waNYqyZcsyZMgQkpOT+eWXXyhUqFDkfbfddhtPPPEESUlJ3HnnnbRp04affvqJmJgYFi9eTIsWLbjvvvt46aWXWLNmDT179qRnz557zPSTJEmSJOmYtfRLGHMJbN8IBcvDpe9A4YpBp9Jh4sw5HdBHH31Evnz5Mr0eeOCBgzrGwIEDOffcc6lYsSJxcXEMGzaMhx56iJYtW1K9enVeeOEF4uPjGT58eKb33XvvvZx77rnUrFmTUaNG8eeffzJ27FgAHnzwQbp06UKvXr2oXLkyDRs25Mknn+Tll19m+/bth+3zS5IkSZIUmB/ehJfbZRRzpU6DqyZbzOUwzpwLSK7YKK55okkg5z1YZ511FsOGDcu0rVChQmzatCnLx6hbt25kefHixaSmptKoUaPItpiYGE477TQWLFiQ6X0NGjTIdM6qVatGxsyZM4cffviB1157LTImHA6Tnp7OkiVLOPHEE7OcT5IkSZKkbCUchs8fhk/vy1iv3g7aPwsx8YHG0uFnOReQUCgUyOWlhyJv3rxUqlRpj+0pKSkAme5jl5qaus9jHG4pKSlce+213HTTTXvsK1OmzGE/nyRJkiRJR0VaKnzYC2a/mrHe8CZoNgCivAAyJ/JPVYesaNGiAKxcuTKy7e8Ph9iXihUrEhsby/Tp0yPbUlNT+fbbb6levXqmsV9//XVkef369fz000+RGXG1a9fmxx9/pFKlSnu8YmNj/81HkyRJkiQpGNs3wmsdM4q5UBS0egSaD7KYy8GcOacD2rFjB6tWrcq0LVeuXBQpUoTTTz+dwYMHU758eVavXs3dd999wOPlzZuX66+/nttuu41ChQpRpkwZhgwZwtatW7nyyiszjR04cCCFCxemePHi3HXXXRQpUoR27doB0KdPH04//XR69uzJVVddRd68efnxxx+ZNGkSQ4cOPWyfX5IkSZKko2LDb/DahbBmAcTkhQtHQpXmQafSEWY5pwOaMGECJUqUyLStatWqLFy4kJdeeokrr7ySOnXqULVqVYYMGULz5gf+i2Pw4MGkp6dz2WWXsXnzZurWrcvEiRMpWLDgHuP+85//8PPPP3PKKafw4YcfRmbF1apVi88++4y77rqLxo0bEw6HqVixIhdddNHh+/CSJEmSJB0NK2bD6E6Q8ifkS4Iub0KJk4NOpaMgFP77DcN0yDZt2kRiYiIbN24kISEh077t27ezZMkSypcvT+7cuQNKeGyZNm0aZ511FuvXr6dAgQJBx9ExyN87SZIkSceMRRPg7SsgdQsUOymjmEssFXQq/Uv764r+zplzkiRJkiRJQZn5Aoy/HcLpUOEs6PQy5N53kaOcx3JOkiRJkiTpaEtPh0n9YMb/v2f6qZdB68cgOibYXDrqLOeULTVt2hSvuJYkSZIk5Uip2+Dda2DBBxnrZ/eDxrdAKBRsLgXCck6SJEmSJOloSVkDYy6G37+F6Fg4/xmodWHQqRQgyzlJkiRJkqSj4a+f4bWOsH4p5C4AnUdDuUZBp1LALOckSZIkSZKOtGVfwesXw/YNUKAsXPoOFKkcdCplA5ZzkiRJkiRJR9Lct+G96yFtJ5xQFy4eA/mKBp1K2YTlnCRJkiRJ0pEQDsOXj8KUgRnr1VrDBS9AbJ5gcylbsZyTJEmSJEk63NJSYVxv+P7ljPUGPeHcgRAVHWwuZTtRQQdQztK0aVN69eq13zHlypXj8ccf3++YUCjEe++9B8DSpUsJhULMnj37sGSUJEmSJOmI2r4JRnfKKOZCUXDew5B8v8Wc9spyTvvVrVs3QqEQ11133R77evToQSgUolu3bpFt7777LoMGDTqKCbNm2rRphEKhvb5WrVp1WM6RldJRkiRJkpTDbVoJL7WAxVMhJg90fh1OuzroVMrGLOd0QKVLl2bMmDFs27Ytsm379u2MHj2aMmXKZBpbqFAh8ufPf7QjZtmiRYtYuXJlplexYsWCjiVJkiRJyglSt8HrF8Hq+ZCvOHT/GKq2CDqVsjnLuYCEw2FSt28/6q9wOHzQWWvXrk3p0qV59913I9veffddypQpw6mnnppp7D8va129ejVt2rQhPj6e8uXL89prr+1x/J9//pkzzzyT3LlzU716dSZNmnTATPPmzaNly5bky5eP4sWLc9lll/HXX38d8H3FihUjKSkp0ysqKuPX4Ntvv+Xcc8+lSJEiJCYm0qRJE77//vvIe8PhMP3796dMmTLExcVRsmRJbrrppsjnXrZsGTfffHNkRp4kSZIk6TgSDsOH/4GVcyBPYbhiIpQ89cDv03HPB0IEZNeOHTzZteNRP+9No94mJnfug37fFVdcwYgRI+jSpQsAL730Et27d2fatGn7fV+3bt1YsWIFn376KTExMdx0002sXr06sj89PZ0LLriA4sWL880337Bx48YD3rNuw4YNnH322Vx11VU89thjbNu2jT59+tCpUyemTp160J9tt82bN9O1a1eeeuopwuEwjzzyCOeddx4///wz+fPn55133uGxxx5jzJgxnHTSSaxatYo5c+YAGWXlySefzDXXXMPVVztdWZIkSZKOO18/Az+8AaFouHAUFCofdCIdIyznlCWXXnopffv2ZdmyZQBMnz6dMWPG7Lec++mnnxg/fjwzZ86kXr16AAwfPpwTTzwxMmby5MksXLiQiRMnUrJkSQAeeOABWrZsuc/jDh06lFNPPZUHHnggsu2ll16idOnS/PTTT1SpUmWf7y1VqlSm9bJlyzJ//nwAzj777Ez7nn/+eQoUKMBnn31G69atWb58OUlJSTRr1oyYmBjKlCnDaaedBmRczhsdHU3+/PlJSkra5/klSZIkSTnQr9Pgk34Zy8kPQPnGgcbRscVyLiC54uK4adTbgZz3UBQtWpRWrVoxcuRIwuEwrVq1okiRIvt9z4IFC8iVKxd16tSJbKtWrRoFChTINKZ06dKRYg6gQYMG+z3unDlz+PTTT8mXL98e+xYvXrzfcu6LL77IdE+8mJiYyPKff/7J3XffzbRp01i9ejVpaWls3bqV5cuXA3DhhRfy+OOPU6FCBVq0aMF5551HmzZtyJXLXyNJkiRJOm6tXwZvdYdwGpx8CdS/NuhEOsbYKgQkFAod0uWlQbriiivo2bMnAE8//XRgOVJSUmjTpg3//e9/99hXokSJ/b63fPnymcrBv+vatStr167liSeeoGzZssTFxdGgQQN27twJZDwYY9GiRUyePJlJkyZxww038NBDD/HZZ59lKvkkSZIkSceJnVthTBfYti7j/nKtHwPvQa6DZDmnLGvRogU7d+4kFAqRnJx8wPHVqlVj165dzJo1K3JZ66JFi9iwYUNkzIknnshvv/3GypUrI8Xa119/vd/j1q5dm3feeYdy5cod1llr06dP55lnnuG8884D4LffftvjIRPx8fG0adOGNm3a0KNHD6pVq8bcuXOpXbs2sbGxpKWlHbY8kiRJkqRsLByGD3rCn3Mhb1G46FWIObYm4Sh78GmtyrLo6GgWLFjAjz/+SHR09AHHV61alRYtWnDttdfyzTffMGvWLK666iri4+MjY5o1a0aVKlXo2rUrc+bM4YsvvuCuu+7a73F79OjBunXruPjii/n2229ZvHgxEydOpHv37gcsx1avXs2qVasyvVJTUwGoXLkyr7zyCgsWLOCbb76hS5cumbKOHDmS4cOHM2/ePH799VdeffVV4uPjKVu2LADlypXj888/548//sjSk2MlSZIkScewr56Eee9AVC7o9DIkljrwe6S9sJzTQUlISCAhISHL40eMGEHJkiVp0qQJF1xwAddccw3FihWL7I+KimLs2LFs27aN0047jauuuor7779/v8csWbIk06dPJy0tjebNm1OzZk169epFgQIFiIra/4901apVKVGiRKbXrFmzgIyHVaxfv57atWtz2WWXcdNNN2XKWqBAAV544QUaNWpErVq1mDx5Mh9++CGFCxcGYODAgSxdupSKFStStGjRLH9HkiRJkqRjzC9TYHL/jOUWg6Fsw0Dj6NgWCofD4aBD5ASbNm0iMTGRjRs37lFebd++nSVLllC+fHlyH2P3mZOOVf7eSZIkSToi1v0Kz58F2zfAqZdB26e8z5z2an9d0d85c06SJEmSJCkrdqRkPABi+wY4oS60esRiTv+a5ZwkSZIkSdKBhMPw/g2w+kfIVxwuegVyxQWdSjmA5ZwkSZIkSdKBfPko/Pg+RMVAp1cgoWTQiZRDWM5JkiRJkiTtz0+fwJRBGcvnPQRl6gebRzmK5ZwkSZIkSdK+rF0M71wFhKFOd6jbPehEymEs5yRJkiRJkvZmx2Z4/WLYsRFKnw4thwSdSDmQ5ZwkSZIkSdI/pafD2Ovgr0WQvwR0ehlyxQadSjmQ5ZwkSZIkSdI/ffEwLPwIomPholchf/GgEymHspxTttStWzfatWsXdIx/bdq0aYRCITZs2BB0FEmSJElSVi38GD69P2O59WNQqm6weZSjWc5pv7p160YoFGLw4MGZtr/33nuEQqF/ffylS5cSCoWYPXv2vz7Wbtu2baNQoUIUKVKEHTt2HLbjHoqGDRuycuVKEhMTA80hSZIkScqiNT/Bu9dkLNe7Gk69NNg8yvEs53RAuXPn5r///S/r168/rMfduXPnYT3ebu+88w4nnXQS1apV47333jsi58iK1NRUYmNjSUpKOixFpiRJkiTpCNu+EcZcAjs3Q9lG0OLBoBPpOGA5pwNq1qwZSUlJPPjg/v9S2l2KxcXFUa5cOR555JFM+8uVK8egQYO4/PLLSUhI4JprrqF8+fIAnHrqqYRCIZo2bZrpPQ8//DAlSpSgcOHC9OjRg9TU1APmHT58OJdeeimXXnopw4cP32N/KBTiueeeo3Xr1uTJk4cTTzyRGTNm8Msvv9C0aVPy5s1Lw4YNWbx4cab3vf/++9SuXZvcuXNToUIFBgwYwK5duzIdd9iwYbRt25a8efNy//337/Wy1unTp9O0aVPy5MlDwYIFSU5OjhSfEyZM4IwzzqBAgQIULlyY1q1b75FDkiRJknQEpKdnzJhb+zMknAAXjoLomKBT6ThgOReQcDhM+s60o/4Kh8MHnTU6OpoHHniAp556it9//32vY2bNmkWnTp3o3Lkzc+fOpX///vTr14+RI0dmGvfwww9z8skn87///Y9+/foxc+ZMACZPnszKlSt59913I2M//fRTFi9ezKeffsqoUaMYOXLkHsf7p8WLFzNjxgw6depEp06d+OKLL1i2bNke43aXhLNnz6ZatWpccsklXHvttfTt25fvvvuOcDhMz549I+O/+OILLr/8cv7zn//w448/8txzzzFy5Ejuv//+TMft378/7du3Z+7cuVxxxRV7nHf27Nmcc845VK9enRkzZvDll1/Spk0b0tLSANiyZQu9e/fmu+++Y8qUKURFRdG+fXvS09P3+7klSZIkSf/StAfhpwkQHZfxAIh8RYNOpONErqADHK/CqemsuOero37ekgMbEoqNPuj3tW/fnlNOOYV77713r7PRHn30Uc455xz69esHQJUqVfjxxx956KGH6NatW2Tc2WefzS233BJZj47OyFK4cGGSkpIyHbNgwYIMHTqU6OhoqlWrRqtWrZgyZQpXX331PnO+9NJLtGzZkoIFCwKQnJzMiBEj6N+/f6Zx3bt3p1OnTgD06dOHBg0a0K9fP5KTkwH4z3/+Q/fu3SPjBwwYwB133EHXrl0BqFChAoMGDeL222/n3nvvjYy75JJLMr3v119/zXTeIUOGULduXZ555pnItpNOOimy3KFDhz0+T9GiRfnxxx+pUaPGPj+3JEmSJOlfWPAhfD4kY7nNE3BC7WDz6LjizDll2X//+19GjRrFggUL9ti3YMECGjVqlGlbo0aN+PnnnyOzwgDq1s36E25OOumkSHkHUKJECVavXr3P8WlpaYwaNYpLL/2/m3VeeumljBw5co+ZZ7Vq1YosFy+e8TjsmjVrZtq2fft2Nm3aBMCcOXMYOHAg+fLli7yuvvpqVq5cydatW7P8+XbPnNuXn3/+mYsvvpgKFSqQkJBAuXLlAFi+fPl+jytJkiRJOkSrF8DY6zKW618Pp1wcbB4dd5w5F5BQTBQlBzYM5LyH6swzzyQ5OZm+fftmmg13MPLmzZvlsTExma/tD4VC+728c+LEifzxxx9cdNFFmbanpaUxZcoUzj333L0ee/fDGva2bff5UlJSGDBgABdccMEe582dO3dk+UCfLz4+fr/727RpQ9myZXnhhRcoWbIk6enp1KhR44g9PEOSJEmSjmvb1v//B0CkQLnG0HxQ0Il0HLKcC0goFDqky0uDNnjwYE455RSqVq2aafuJJ57I9OnTM22bPn06VapUyTT77Z9iY2MBMs2uO1TDhw+nc+fO3HXXXZm233///QwfPjxTOXewateuzaJFi6hUqdK/ylirVi2mTJnCgAED9ti3du1aFi1axAsvvEDjxo0B+PLLL//V+SRJkiRJ+5CeBu9cDet+hcQycOFIHwChQFjO6aDUrFmTLl268OSTT2bafsstt1CvXj0GDRrERRddxIwZMxg6dGime6vtTbFixYiPj2fChAmUKlWK3Llzk5iYeNC51qxZw4cffsgHH3ywx73ZLr/8ctq3b8+6desoVKjQQR8b4J577qF169aUKVOGjh07EhUVxZw5c5g3bx733Xdflo/Tt29fatasyQ033MB1111HbGwsn376KRdeeCGFChWicOHCPP/885QoUYLly5dzxx13HFJeSZIkSdIBTL0PfpkEueKh86uQt0jQiXSc8p5zOmgDBw7c4/LS2rVr8+abbzJmzBhq1KjBPffcw8CBAw94+WuuXLl48sknee655yhZsiTnn3/+IWV6+eWXyZs3717v53bOOecQHx/Pq6++ekjHhowHS3z00Ud88skn1KtXj9NPP53HHnuMsmXLHtRxqlSpwieffMKcOXM47bTTaNCgAe+//z65cuUiKiqKMWPGMGvWLGrUqMHNN9/MQw89dMiZJUmSJEn7MH8sfPloxnLbp6DEycHm0XEtFA6Hw0GHyAk2bdpEYmIiGzduJCEhIdO+7du3s2TJEsqXL5/p/mSSjhx/7yRJkiTt1ap5MPxcSN0KDW+E5lm/Gko6GPvriv7OmXOSJEmSJOn4sHVdxgMgUrdChaZwTv+gE0mWc5IkSZIk6TiQngZvXwEblkGBstBxBER7K34Fz3JOkiRJkiTlfJ/eD79+CjF5oPNoyHNoDwyUDjfLOUmSJEmSlLP99Al88UjGctunIKlGsHmkv7GckyRJkiRJOdeG32DsNRnL9a6Cmh2DzSP9g+XcUZSenh50BOm44YOoJUmSJLFrJ7zVDbath5KnQvIDQSeS9uCdD4+C2NhYoqKiWLFiBUWLFiU2NpZQKBR0LCnHCofDrFmzhlAoRExMTNBxJEmSJAVl0j3wx3eQOxEuHAm54oJOJO3Bcu4oiIqKonz58qxcuZIVK1YEHUc6LoRCIUqVKkV0dHTQUSRJkiQFYf578M2wjOX2z0HBckGmkfbJcu4oiY2NpUyZMuzatYu0tLSg40g5XkxMjMWcJEmSdLxauxje75mx3Og/ULVlsHmk/bCcO4p2X2LnZXaSJEmSJB0hqdvgzcth52Yo0xDOvifoRNJ++UAISZIkSZKUc3x8G/w5D/IUgY4vQbTzkpS9Wc5JkiRJkqScYfZo+N8rQAg6vAgJJYJOJB2Q5ZwkSZIkSTr2/TkfPuqdsdy0L1Q8K9g8UhZZzkmSJEmSpGPbjs3wZlfYtQ0qng1n3hZ0IinLLOckSZIkSdKxKxyGD26CtT9D/pJwwQsQZd2hY4c/rZIkSZIk6dj17Ysw/12IygUXjoS8RYJOJB2UQMu5Bx98kHr16pE/f36KFStGu3btWLRoUaYxTZs2JRQKZXpdd911mcYsX76cVq1akSdPHooVK8Ztt93Grl27Mo2ZNm0atWvXJi4ujkqVKjFy5Mg98jz99NOUK1eO3LlzU79+fWbOnHnYP7MkSZIkSTpM/pgFE/pmLDcbAGXqB5tHOgSBlnOfffYZPXr04Ouvv2bSpEmkpqbSvHlztmzZkmnc1VdfzcqVKyOvIUOGRPalpaXRqlUrdu7cyVdffcWoUaMYOXIk99xzT2TMkiVLaNWqFWeddRazZ8+mV69eXHXVVUycODEy5o033qB3797ce++9fP/995x88skkJyezevXqI/9FSJIkSZKkg7NtPbzVDdJToVpraNAj6ETSIQmFw+Fw0CF2W7NmDcWKFeOzzz7jzDPPBDJmzp1yyik8/vjje33P+PHjad26NStWrKB48eIAPPvss/Tp04c1a9YQGxtLnz59GDduHPPmzYu8r3PnzmzYsIEJEyYAUL9+ferVq8fQoUMBSE9Pp3Tp0tx4443ccccdB8y+adMmEhMT2bhxIwkJCf/ma5AkSZIkSfuTng5jLoGfxkPBcnDNZxBfIOhUUiZZ7Yqy1T3nNm7cCEChQoUybX/ttdcoUqQINWrUoG/fvmzdujWyb8aMGdSsWTNSzAEkJyezadMm5s+fHxnTrFmzTMdMTk5mxowZAOzcuZNZs2ZlGhMVFUWzZs0iY/5px44dbNq0KdNLkiRJkiQdBV89mVHMRcfBhaMs5nRMyxV0gN3S09Pp1asXjRo1okaNGpHtl1xyCWXLlqVkyZL88MMP9OnTh0WLFvHuu+8CsGrVqkzFHBBZX7Vq1X7HbNq0iW3btrF+/XrS0tL2OmbhwoV7zfvggw8yYMCAf/ehJUmSJEnSwVk6HaYMzFhuORhKnhJoHOnfyjblXI8ePZg3bx5ffvllpu3XXHNNZLlmzZqUKFGCc845h8WLF1OxYsWjHTOib9++9O7dO7K+adMmSpcuHVgeSZIkSZJyvJTV8PYVEE6Dmp2gTvegE0n/WrYo53r27MlHH33E559/TqlSpfY7tn79jCev/PLLL1SsWJGkpKQ9nqr6559/ApCUlBT57+5tfx+TkJBAfHw80dHRREdH73XM7mP8U1xcHHFxcVn/kJIkSZIk6dClp8E7V0LKKihSFVo/BqFQ0Kmkfy3Qe86Fw2F69uzJ2LFjmTp1KuXLlz/ge2bPng1AiRIlAGjQoAFz587N9FTVSZMmkZCQQPXq1SNjpkyZkuk4kyZNokGDBgDExsZSp06dTGPS09OZMmVKZIwkSZIkSQrQtMGw5HOIyQOdXoa4fEEnkg6LQGfO9ejRg9GjR/P++++TP3/+yD3iEhMTiY+PZ/HixYwePZrzzjuPwoUL88MPP3DzzTdz5plnUqtWLQCaN29O9erVueyyyxgyZAirVq3i7rvvpkePHpGZbddddx1Dhw7l9ttv54orrmDq1Km8+eabjBs3LpKld+/edO3albp163Laaafx+OOPs2XLFrp3d4qsJEmSJEmB+mUyfP5QxnKbJ6BYtWDzSIdRKBwOhwM7+T6mn44YMYJu3brx22+/cemllzJv3jy2bNlC6dKlad++PXfffXemR9AuW7aM66+/nmnTppE3b166du3K4MGDyZXr/7rHadOmcfPNN/Pjjz9SqlQp+vXrR7du3TKdd+jQoTz00EOsWrWKU045hSeffDJyGe2BZPXxuJIkSZIk6SBs/B2ebQzb1mXcY67N40EnkrIkq11RoOVcTmI5J0mSJEnSYZaWCiPOg99nQomT4YpPICZ30KmkLMlqVxToPeckSZIkSZL2adK9GcVcXCJcOMpiTjmS5ZwkSZIkScp+FnwIXz+dsdzuGSh04IdISsciyzlJkiRJkpS9rPsV3rshY7lBTzixdbB5pCPIck6SJEmSJGUfqdvhza6wYxOUrg/N+gedSDqiLOckSZIkSVL2MaEPrPoB8hSGjiMgOiboRNIRZTknSZIkSZKyhzlvwKyRQAgueAESTwg6kXTEWc5JkiRJkqTgrV4AH/XKWG5yO1Q6J9A40tFiOSdJkiRJkoK1IyXjPnOpW6FCU2jSJ+hE0lFjOSdJkiRJkoITDmfMmPtrEeQvARe8CFHRQaeSjhrLOUmSJEmSFJzPhsDctyAUnfEAiHxFg04kHVWWc5IkSZIkKRjfvwLTHshYbvlfKNsg2DxSACznJEmSJEnS0ffzJPjwPxnLZ9wMp10dbB4pIJZzkiRJkiTp6Prj+4wHQITToFZnOOfeoBNJgbGckyRJkiRJR8+6JTC6E6RuyXgya9unIBQKOpUUGMs5SZIkSZJ0dGxZC692gC1rIKkmdHoFcsUGnUoKlOWcJEmSJEk68nZuhdcvgnWLIbE0XPIW5E4IOpUUOMs5SZIkSZJ0ZKWnwTtXwe/fQu4CcOk7kFAi6FRStmA5J0mSJEmSjpxwGD6+DRaNg+g4uHgMFK0adCop27CckyRJkiRJR86Xj8J3w4EQdHgByjYIOpGUrVjOSZIkSZKkI2POGJgyMGO5xWCofn6weaRsyHJOkiRJkiQdfounwvs9MpYb3ginXxdsHimbspyTJEmSJEmH18of4I3LIX0X1OgAzQYGnUjKtiznJEmSJEnS4bNhObzWEXZuhnKNod0wiLJ+kPbF3w5JkiRJknR4bF0Hr3aAlD+hWHW46FXIFRd0Kilbs5yTJEmSJEn/Xup2GHMJ/PUTJJwAXd6G+AJBp5KyPcs5SZIkSZL076SnwbtXw/IZEJeYUcwlnhB0KumYYDknSZIkSZIOXTgME++EBR9AdCx0fg2KVw86lXTMsJyTJEmSJEmH7qun4JtnM5bbDYPyjYPNIx1jLOckSZIkSdKhmfs2TOqXsdz8PqjZMdg80jHIck6SJEmSJB28JZ/D2Osylk+/ARr0DDaPdIyynJMkSZIkSQfnz/kwpgukp0L1dtD8fgiFgk4lHZMs5yRJkiRJUtZt/B1e7Qg7NkHZRtD+OYiyXpAOlb89kiRJkiQpa7ZtyCjmNq+AotUynswakzvoVNIxzXJOkiRJkiQd2K4dGZeyrlkA+UtAl7chvmDQqaRjnuWcJEmSJEnav/T0jIc/LPsSYvNDl7egQOmgU0k5guWcJEmSJEnav0n9YP67EBUDnV+FpJpBJ5JyDMs5SZIkSZK0b18PgxlDM5bbPQMVmgYaR8ppLOckSZIkSdLezX0bJvTNWG7WH2p1CjSOlBPlCjqAJEmSJEnKZrath4l3wezXMtbrXQ2NegUaScqpLOckSZIkSdL/WTQePuwFKauAEDToAecOhFAo6GRSjmQ5J0mSJEmSYOs6GN8H5r6ZsV64Epz/DJSpH2wuKYeznJMkSZIk6Xj34wcw7hbYshpCUdCgJ5x1J8TEB51MyvEs5yRJkiRJOl5t+Qs+vhXmj81YL1oNzn8aStUNNpd0HLGckyRJkiTpeBMOw/x34ePbYOtaCEXDGb2gSR/IFRd0Oum4YjknSZIkSdLxZPOfMK43LPwoY73YSdDuaSh5arC5pOOU5ZwkSZIkSceDcBjmvgXjb4dt6yEqFzS+FRrfArlig04nHbcs5yRJkiRJyuk2rYSPboafxmesJ9XKuLdciVrB5pJkOSdJkiRJUo4VDsPs12DCnbBjI0TFZNxX7oxeEB0TdDpJWM5JkiRJkpQzbfwdPvwP/DI5Y73kqXD+M1C8erC5JGViOSdJkiRJUk4SDsP3o2Di3bBzM0THwVl9ocGNEG0NIGU3/lZKkiRJkpRTrF8GH94Ev07LWC9VL2O2XNEqgcaStG+Wc5IkSZIkHevS0+G74TDpXkjdArlyw9n94PTrISo66HSS9sNyTpIkSZKkY9m6X+GDm2DpFxnrZRpkPIm1cMVgc0nKEss5SZIkSZKORenpMPM5mDIQUrdCTB5o1h/qXQ1RUUGnk5RFlnOSJEmSJB1r1i2BsdfBb19nrJdrDG2fgkLlg80l6aBZzkmSJEmSdCxZ+iW8cSlsWw+x+eDcAVDnCmfLSccoyzlJkiRJko4V378CH90M6alQsjZcOBIKlg06laR/wXJOkiRJkqTsLj0NJveHr57MWD+pPbQbBjHxgcaS9O9ZzkmSJEmSlJ3tSIF3r4FF4zLWm/SBJnd4GauUQ1jOSZIkSZKUXW38HUZ3hj/nQnQcnP801Low6FSSDiPLOUmSJEmSsqPfZ8GYiyHlT8hbFDqPhtKnBZ1K0mFmOSdJkiRJUnYz711473rYtR2KVYdL3oACZYJOJekIsJyTJEmSJCm7CIfh84fg0/sz1isnQ8fhEJc/2FySjhjLOUmSJEmSsoPU7fBBT5j7Vsb66T2g+SCIig42l6QjynJOkiRJkqSgpayGMV3g95kQlQtaPQJ1ugWdStJRYDknSZIkSVKQ/pwPoy+Cjb9B7kTo9ApUaBJ0KklHieWcJEmSJElB+WkivH0F7EyBQhXhkjehSKWgU0k6iiznJEmSJEk62sJh+HoYfHIXhNOhXGPo9DLkKRR0MklHmeWcJEmSJElHU1oqfHwbzBqRsV77cjjvEcgVG2wuSYGwnJMkSZIk6WjZth7e7ApLPgNC0Pw+aNADQqGgk0kKiOWcJEmSJElHw9rFMLoTrP0FYvNBhxehasugU0kKmOWcJEmSJElH2pIv4I1LYfsGSCwNF4+BpBpBp5KUDVjOSZIkSZJ0JM0aBeN6Q/ouOKEudB4N+YsHnUpSNmE5J0mSJEnSkZCeBpPugRlDM9ZrdIDzn4aY+GBzScpWLOckSZIkSTrcdqTAO1fBT+Mz1pv2hSZ9fPCDpD1YzkmSJEmSdDht+A1evxj+nAu5cmfMlqvZMehUkrIpyzlJkiRJkg6XVfPglfawZTXkLQYXvw6l6gadSlI2ZjknSZIkSdLhsG4JvHpBRjFXvEbGE1kLlA46laRsznJOkiRJkqR/a/OfGTPmUv7MKOa6jYP4AkGnknQMiAo6gCRJkiRJx7TtG+HVDrB+CRQsB5e+YzEnKcss5yRJkiRJOlSp2//v4Q95i8FlYyF/UtCpJB1DLOckSZIkSToUabvg7Stg2XSIS8iYMVeoQtCpJB1jLOckSZIkSTpY4TB89B9YNA6i4zKeylqiVtCpJB2DLOckSZIkSTpYk/vD/16FUBR0fAnKnRF0IknHKMs5SZIkSZIOxldPwfTHM5bbPAkntg40jqRjm+WcJEmSJElZNft1+OTujOVm/aH2ZYHGkXTss5yTJEmSJCkrFk2A93tkLDfoCY16BRpHUs5gOSdJkiRJ0oEsmwFvdYVwGpx8MZw7CEKhoFNJygEs5yRJkiRJ2p9V82D0RbBrO1RpAW2fgij/OS3p8PBvE0mSJEmS9mX9Uni1A+zYCGUaQMcREB0TdCpJOYjlnCRJkiRJe5OyGl5pDymroNhJcPHrEJsn6FSSchjLOUmSJEmS/mn7xowZc+t+hQJl4NJ3IL5g0Kkk5UCWc5IkSZIk/V3qdhjTBVb9AHmLwmXvQUKJoFNJyqEs5yRJkiRJ2i1tF7xzJSz9AmLzZ8yYK1wx6FSScjDLOUmSJEmSAMJhGHczLPwIomMz7jFX4uSgU0nK4SznJEmSJEkCmDIQvn8ZQlHQ8SUo3zjoRJKOA5ZzkiRJkiTNeBq+fDRjufXjcGKbQONIOn5YzkmSJEmSjm9zxsDEOzOWz7kH6nQNNo+k44rlnCRJkiTp+PXTRHjvhozl03vAGb2DzSPpuGM5J0mSJEk6Pi3/Gt7sCuE0qHURNL8PQqGgU0k6zljOSZIkSZKOP3/Oh9GdYNc2qNwczn8aovwnsqSjz795JEmSJEnHl/XL4JULYPtGKF0fLhwF0TFBp5J0nLKckyRJkiQdP1LWwCvtIGUVFKsOl7wBsXmCTiXpOBZoOffggw9Sr1498ufPT7FixWjXrh2LFi3KNGb79u306NGDwoULky9fPjp06MCff/6Zaczy5ctp1aoVefLkoVixYtx2223s2rUr05hp06ZRu3Zt4uLiqFSpEiNHjtwjz9NPP025cuXInTs39evXZ+bMmYf9M0uSJEmSArJ9E7zWAdb9Coll4NJ3IL5g0KkkHecCLec+++wzevTowddff82kSZNITU2lefPmbNmyJTLm5ptv5sMPP+Stt97is88+Y8WKFVxwwQWR/WlpabRq1YqdO3fy1VdfMWrUKEaOHMk999wTGbNkyRJatWrFWWedxezZs+nVqxdXXXUVEydOjIx544036N27N/feey/ff/89J598MsnJyaxevfrofBmSJEmSpCNnRwqMuQRWzoE8ReCysZBQMuhUkkQoHA6Hgw6x25o1ayhWrBifffYZZ555Jhs3bqRo0aKMHj2ajh07ArBw4UJOPPFEZsyYwemnn8748eNp3bo1K1asoHjx4gA8++yz9OnThzVr1hAbG0ufPn0YN24c8+bNi5yrc+fObNiwgQkTJgBQv3596tWrx9ChQwFIT0+ndOnS3Hjjjdxxxx0HzL5p0yYSExPZuHEjCQkJh/urkSRJkiQdqg3L4fWL4c95EJsfun0IJU8NOpWkHC6rXVG2uufcxo0bAShUqBAAs2bNIjU1lWbNmkXGVKtWjTJlyjBjxgwAZsyYQc2aNSPFHEBycjKbNm1i/vz5kTF/P8buMbuPsXPnTmbNmpVpTFRUFM2aNYuM+acdO3awadOmTC9JkiRJUjaz/Bt44eyMYi5v0YwZcxZzkrKRbFPOpaen06tXLxo1akSNGjUAWLVqFbGxsRQoUCDT2OLFi7Nq1arImL8Xc7v37963vzGbNm1i27Zt/PXXX6Slpe11zO5j/NODDz5IYmJi5FW6dOlD++CSJEmSpCNj9uswqjVsWQPFa8LVn0LpekGnkqRMsk0516NHD+bNm8eYMWOCjpIlffv2ZePGjZHXb7/9FnQkSZIkSRJAehpMugfeuw7SdkK11nDFBCjgpApJ2U+uoAMA9OzZk48++ojPP/+cUqVKRbYnJSWxc+dONmzYkGn23J9//klSUlJkzD+fqrr7aa5/H/PPJ7z++eefJCQkEB8fT3R0NNHR0Xsds/sY/xQXF0dcXNyhfWBJkiRJ0pGxYzO8czX8ND5jvfGtcNZdEJVt5qZIUiaB/u0UDofp2bMnY8eOZerUqZQvXz7T/jp16hATE8OUKVMi2xYtWsTy5ctp0KABAA0aNGDu3LmZnqo6adIkEhISqF69emTM34+xe8zuY8TGxlKnTp1MY9LT05kyZUpkjCRJkiQpm1u/DIY3zyjmouPgghfhnH4Wc5KytUBnzvXo0YPRo0fz/vvvkz9//sj93RITE4mPjycxMZErr7yS3r17U6hQIRISErjxxhtp0KABp59+OgDNmzenevXqXHbZZQwZMoRVq1Zx991306NHj8jMtuuuu46hQ4dy++23c8UVVzB16lTefPNNxo0bF8nSu3dvunbtSt26dTnttNN4/PHH2bJlC927dz/6X4wkSZIk6eAsmwFvdIGtayFfceg8GkrVDTqVJB1QKBwOhwM7eSi01+0jRoygW7duAGzfvp1bbrmF119/nR07dpCcnMwzzzyT6XLTZcuWcf311zNt2jTy5s1L165dGTx4MLly/V/3OG3aNG6++WZ+/PFHSpUqRb9+/SLn2G3o0KE89NBDrFq1ilNOOYUnn3yS+vXrZ+mzZPXxuJIkSZKkw+x/r8KHvSA9FUqcDJ1fh8QTgk4l6TiX1a4o0HIuJ7GckyRJkqSjbPeDH2YMzVivfj60GwaxeYPNJUlkvSvKFg+EkCRJkiTpoGzfBO9cCT9/krHepA80ucP7y0k65ljOSZIkSZKOLeuWwOudYc1CyJUb2j0DNToEnUqSDonlnCRJkiTp2LH0S3jjMti2DvKXyHjwwwm1g04lSYfMck6SJEmSdGyYNRLG3QLpu6DkqRnFXELJoFNJ0r9iOSdJkiRJyt7SdsEnd8M3wzLWT7oAzn8aYvMEm0uSDgPLOUmSJElS9rV9I7zVHRZPyVg/6y448zYIhYLNJUmHieWcJEmSJCl7Wrs448EPf/0EueKh/bNwUrugU0nSYWU5J0mSJEnKfn79DN68HLZvgPwl4eLXoeQpQaeSpMPOck6SJEmSlL18OxzG357x4IcT6mQ8+CF/UtCpJOmIsJyTJEmSJGUPabtgYl+Y+XzGes0Loe1TEBMfbC5JOoIs5yRJkiRJwdu2Ht7qBr9Oy1g/ux80vsUHP0jK8SznJEmSJEnB+usXeP0iWPsLxOSBC56HE9sEnUqSjgrLOUmSJElScDb+ASNawJY1kFAq48EPJWoFnUqSjhrLOUmSJElSMHbtgDcvyyjmiteAS9+F/MWDTiVJR1VU0AEkSZIkScep8X3gj1mQuwB0fs1iTtJxyXJOkiRJknT0/e9VmDUCCEGH4VCwXNCJJCkQlnOSJEmSpKNrxf/go94Zy2fdCZWbBZtHkgJkOSdJkiRJOnq2roM3Loe0HVClJTS+NehEkhQoyzlJkiRJ0tGRngZvXwEbl0OhCtD+WYjyn6WSjm/+LShJkiRJOjo+vR9+/RRi8sBFr0J8gaATSVLgLOckSZIkSUfewnHwxSMZy22fguInBZtHkrIJyzlJkiRJ0pH11y8w9rqM5frXQ82OweaRpGzEck6SJEmSdOTsSIE3usCOTVCmITQfFHQiScpWLOckSZIkSUdGOAwf9IQ1CyFfElw4EqJjgk4lSdmK5ZwkSZIk6ciY8TTMHwtRuaDTy5C/eNCJJCnbsZyTJEmSJB1+S76ASfdkLCc/CGXqB5tHkrIpyzlJkiRJ0uG18Q94uzuE06DWRXDa1UEnkqRsy3JOkiRJknT47NoBb3WFLWugeE1o/TiEQkGnkqRsy3JOkiRJknT4TOgLv38LuRPhopchNk/QiSQpW7OckyRJkiQdHrNHw3fDgRBc8CIUqhB0IknK9iznJEmSJEn/3so58NHNGctN74AqzYPNI0nHCMs5SZIkSdK/s3UdvHEp7NoOlZPhzNuDTiRJxwzLOUmSJEnSoUtPg3eugg3LoWA5uOA5iPKfmpKUVf6NKUmSJEk6dNMehMVTIFc8XPQaxBcMOpEkHVMs5yRJkiRJh2bhx/D5QxnLbZ+EpBrB5pGkY5DlnCRJkiTp4K1dDGOvzVg+7Vqo1SnYPJJ0jLKckyRJkiQdnJ1bMh4AsWMTlD4dmt8XdCJJOmZZzkmSJEmSsi4chg9uhNU/Qr7i0GkU5IoNOpUkHbMs5yRJkiRJWff1MJj3DkTlggtHQf6koBNJ0jHNck6SJEmSlDVLp8Mnd2csN78fyjYINo8k5QCWc5IkSZKkA9u0Et7qBuE0qHkh1L826ESSlCNYzkmSJEmS9m/XTnjzctiyGoqdBG2egFAo6FSSlCNYzkmSJEmS9m/infD7TIhLhItegdi8QSeSpBzDck6SJEmStG9zxsC3L2QsX/A8FK4YbB5JymEs5yRJkiRJe7fyB/jwPxnLTfpA1RbB5pGkHMhyTpIkSZK0p51b4e3usGs7VDoXmtwRdCJJypEs5yRJkiRJe5rcH9b+AvlLZFzOGuU/HyXpSPBvV0mSJElSZos/hZnPZSyf/zTkKRRsHknKwSznJEmSJEn/Z9sGeL9HxnK9q6DSOYHGkaScznJOkiRJkvR/xveBTX9AoQpw7sCg00hSjmc5J0mSJEnK8OP78MMYCEVB++cgNm/QiSQpx7OckyRJkiRBymr4sFfGcqNeUPq0INNI0nHDck6SJEmSjnfhMHxwE2xbB8VrQtO+QSeSpOOG5ZwkSZIkHe9mvwY/jYfoWGj/LOSKDTqRJB03LOckSZIk6Xi2fhmMvyNj+ay7IKlGsHkk6ThjOSdJkiRJx6v0dHjvBti5GUqfDg1vDDqRJB13LOckSZIk6Xj1zTBY9iXE5IX2wyAqOuhEknTcsZyTJEmSpOPR6oUweUDGcvJ9UKhCsHkk6ThlOSdJkiRJx5u0VBh7DaTtgErNoE73oBNJ0nHLck6SJEmSjjefPwwr50DuAtB2KIRCQSeSpOOW5ZwkSZIkHU/+mAWfP5Sx3PpRSCgRbB5JOs5ZzkmSJEnS8SJ1G7x7LYTT4KQLoEaHoBNJ0nHPck6SJEmSjheTB8DanyFfErR6JOg0kiQs5yRJkiTp+PDrZ/DNsIzl84dCnkLB5pEkAZZzkiRJkpTzbd8I792QsVynO1Q+N9g8kqQIyzlJkiRJyukm9IVNv0PBctD8vqDTSJL+xnJOkiRJknKyBR/B7NeAELR/DuLyBZ1IkvQ3lnOSJEmSlFOlrIEP/5Ox3OgmKHN6sHkkSXuwnJMkSZKknCgczijmtv4FxarDWXcFnUiStBeWc5IkSZKUE815HRaNg6iYjMtZc8UFnUiStBeWc5IkSZKU02z4Dcb3yVg+qy+UqBVsHknSPlnOSZIkSVJOkp4O798AOzZBqdOg4X+CTiRJ2g/LOUmSJEnKSWY+D0s+h5g80P5ZiM4VdCJJ0n5YzkmSJElSTrHmJ5h8b8byuQOhcMVg80iSDshyTpIkSZJygrRUGHsN7NoOFc6CelcFnUiSlAWWc5IkSZKUE3zxKKz4H+ROhPOfhlAo6ESSpCywnJMkSZKkY92K/8HnQzKWz3sEEk8INo8kKcss5yRJkiTpWJa6Dd69FtJ3QfXzoWbHoBNJkg7CQZVz4XCY5cuXs3379iOVR5IkSZJ0MKbeB38tgrzFoNVjXs4qSceYgy7nKlWqxG+//Xak8kiSJEmSsmrJFzDj6Yzltk9B3sLB5pEkHbSDKueioqKoXLkya9euPVJ5JEmSJElZsX0TvHcDEIbal0PVFkEnkiQdgoO+59zgwYO57bbbmDdv3pHII0mSJEnKiol9YeNyKFAGkh8IOo0k6RDlOtg3XH755WzdupWTTz6Z2NhY4uPjM+1ft27dYQsnSZIkSfqH9HSY+Rz871UgBO2ehbj8QaeSJB2igy7nHn/88SMQQ5IkSZJ0QOuWwAc3wtIvMtYb3gjlGgWbSZL0rxx0Ode1a9cjkUOSJEmStC/p6fDtCzC5P6RuhZg8cM69cNo1QSeTJP1LB13OAaSlpfHee++xYMECAE466STatm1LdHT0YQ0nSZIkSce9tYvh/Z6w/KuM9XKNoe2TUKhCsLkkSYfFQZdzv/zyC+eddx5//PEHVatWBeDBBx+kdOnSjBs3jooVKx72kJIkSZJ03ElPg2+ehSmDYNc2iMkL5w6AuldC1EE/20/S/2PvvuMju+t7/7/OOdM1RXWl7bv27rru2lQ3TLPBxjbEwRBseiC0awjlJhAC+RHf3NByEwJJwJckhBQIMQHMpWNsjAEbY5uy6769S1q1GU2fOef8/viOZjSStlqrUXk//TiP074z8x15dzV66/P9fkXmKcv3ff9kHnDNNdfg+z5f+tKX6OzsBGB4eJjXvva12LbNd77zndPS0fkuk8mQSqVIp9Mkk8lWd0dERERERBayoe1w+/+AA7805+ufBy/7O+hY29p+iYjICTvRrOikK+d+8pOf8Itf/KIezAF0dXXx8Y9/nMsu00SkIiIiIiIip8xz4b6/h7v+EtwShBLw4r+AZ7wRLKvVvRMRkdPgpMO5cDjM+Pj4tOvZbJZQKDQrnRIREREREVlyBh+Hb/4POPiQOT/zCnjpp6F9dWv7JSIip9VJT1Rw3XXX8da3vpX7778f3/fxfZ9f/OIXvP3tb+dlL3vZ6eijiIiIiIjI4uVW4ad/Df/3chPMhVPwsr+H135NwZyIyBJw0pVzn/nMZ3jDG97AJZdcQjAYBKBarfKyl72MT3/607PeQRERERERkUVr4BEzt9zh35jzjVfBS/8Wkita2SsREZlDJx3Otbe3881vfpPt27fz+OOPA3DOOeewYcOGWe+ciIiIiIjIouRW4Gefgp98ErwKRNrhJZ+ALa/S3HIiIkvMSYdzEzZu3MjGjRtnsy8iIiIiIiKL3+GtZm65/m3m/Kxr4bq/gURfa/slIiItcULh3Pve974TfsK/+Zu/OeXOiIiIiIiILFrVMvz0/5j55bwqRDvhmr+C829QtZyIyBJ2QuHcr3/96xN6MkvfUERERERERKY79Gu4/WYYfMScn/MyuPavIb6stf0SEZGWO6Fw7sc//vHp7oeIiIiIiMjiUy3BTz4BP/tb8F2IdZlQ7rzfbXXPRERknjjlOedERERERETkGA48ZOaWO2IW0uO8l5thrG3dre2XiIjMK6cUzj344IPcdttt7Nu3j3K53HTv61//+qx0TEREREREZEGqFODHH4X7/h58D9p64Nq/gXNf1uqeiYjIPGSf7AO+8pWvcOmll/LYY4/xjW98g0qlwiOPPMJdd91FKpU6HX0UERERERGZ/6ol+PWX4NbnwL2fMcHc5t+Dm3+pYE5ERI7qpCvnPvrRj/KpT32Km2++mUQiwac//WnWr1/P2972NpYvX346+igiIiIiIjJ/ZQfhwS/AA/8EuSPmWrwPXvq3cNZLWto1ERGZ/046nNu5cyfXXnstAKFQiFwuh2VZvPe97+WFL3wht9xyy6x3UkREREREZN7p3wa/uBW23QZubbqf5Ep49lvhGW+EaHsreyciIgvESYdzHR0djI+PA7By5UoefvhhNm/ezNjYGPl8ftY7KCIiIiIiMm94Hjz5ffjFZ2HPTxvXVz4TLvkfcM7LwAm2rn8iIrLgnPCccw8//DAAz33uc7njjjsAeOUrX8m73/1u3vKWt3DTTTdxxRVXnNSL33PPPbz0pS9lxYoVWJbF7bff3nT/jW98I5ZlNW1XX311U5uRkRFe85rXkEwmaW9v581vfjPZbLapzdatW7n88suJRCKsXr2aT37yk9P68tWvfpWzzz6bSCTC5s2b+e53v3tS70VERERERBax0jjc/3/h758BX7nJBHOWY1ZgffOP4C13wvk3KJgTEZGTdsKVc1u2bOFZz3oW119/Pa985SsB+NCHPkQwGOTee+/lhhtu4MMf/vBJvXgul+OCCy7gTW96Ey9/+ctnbHP11VfzL//yL/XzcDjcdP81r3kNhw8f5o477qBSqfD7v//7vPWtb+XLX/4yAJlMhhe/+MVceeWV3HrrrWzbto03velNtLe389a3vhWAe++9l5tuuomPfexjXHfddXz5y1/m+uuv51e/+hXnn3/+Sb0nERERERFZREb3wi8/D7/6dyilzbVIygxbfdZboH11S7snIiILn+X7vn8iDX/605/yL//yL/z3f/83nudxww038Ad/8Adcfvnls9MRy+Ib3/gG119/ff3aG9/4RsbGxqZV1E147LHHOPfcc3nggQd45jOfCcD3v/99rrnmGg4cOMCKFSv43Oc+x4c+9CH6+/sJhUIA/Mmf/Am33347jz/+OACvetWryOVyfPvb364/98UXX8yFF17IrbfeekL9z2QypFIp0uk0yWTyFL4CIiIiIiIyL/g+7L8f7vsHePzbZtVVgK4NcNHb4cJXQ6ittX0UEZF570SzohMe1nr55ZfzhS98gcOHD/N3f/d37Nmzh+c973ls2rSJT3ziE/T3989Kx6e6++67WbZsGWeddRbveMc7GB4ert+77777aG9vrwdzAFdeeSW2bXP//ffX2zz3uc+tB3MAV111FU888QSjo6P1NldeeWXT61511VXcd999R+1XqVQik8k0bSIiIiIisoBVy7D1NvjHF8AXroLH/p8J5s54Prz6q3DzA/DstyiYExGRWXXC4dyEtrY2fv/3f5+f/OQnPPnkk7zyla/kH/7hH1izZg0ve9nLZrVzV199Nf/2b//GnXfeySc+8Ql+8pOf8JKXvATXdQHo7+9n2bJlTY8JBAJ0dnbWw8L+/n56e3ub2kycH6/NsQLHj33sY6RSqfq2erXK2UVEREREFqTcMNzzf+DTW+Drb4FDvwYnDE9/PbzjPnj9N2HTi8E+6R+fREREjuukV2udbMOGDfzpn/4pa9eu5YMf/CDf+c53ZqtfANx44431482bN7NlyxbOPPNM7r777pNefGK2ffCDH+R973tf/TyTySigExERERFZSAYfN6uubv0vqBbNtXivmUvumb8Pbd2t7Z+IiCwJpxzO3XPPPXzhC1/ga1/7GrZt83u/93u8+c1vns2+TXPGGWfQ3d3Njh07uOKKK+jr62NwcLCpTbVaZWRkhL6+PgD6+voYGBhoajNxfrw2E/dnEg6Hpy1OISIiIiIi85znwc674Bf/YPYT+rbAJTeb1VcDoaM/XkREZJadVF32oUOH+OhHP8qmTZt4/vOfz44dO/jMZz7DoUOH+Md//Ecuvvji09VPAA4cOMDw8DDLly8H4JJLLmFsbIyHHnqo3uauu+7C8zwuuuiiept77rmHSqVSb3PHHXdw1lln0dHRUW9z5513Nr3WHXfcwSWXXHJa34+IiIiIiMyh3/4XfPYi+NINtWDOgrOvg9//HrztHrjgRgVzIiIy5064cu4lL3kJP/rRj+ju7ub1r389b3rTmzjrrLOe0otns1l27NhRP9+9eze/+c1v6OzspLOzk1tuuYUbbriBvr4+du7cyfvf/342bNjAVVddBcA555zD1VdfzVve8hZuvfVWKpUK73znO7nxxhtZsWIFAK9+9au55ZZbePOb38wHPvABHn74YT796U/zqU99qv667373u3ne857HX//1X3Pttdfyla98hQcffJDPf/7zT+n9iYiIiIjIPHHv38EPP2yOQwkzn9yz3wKd61vbLxERWfIs3/f9E2n4spe9jDe/+c1cd911OI4zKy9+991384IXvGDa9Te84Q187nOf4/rrr+fXv/41Y2NjrFixghe/+MX8xV/8RdPiDSMjI7zzne/kW9/6FrZtc8MNN/CZz3yGeDxeb7N161ZuvvlmHnjgAbq7u3nXu97FBz7wgabX/OpXv8qHP/xh9uzZw8aNG/nkJz/JNddcc8Lv5USXxxURERERkTn24L/At99jji97N1z+RxDRZ3YRETm9TjQrOuFwTo5N4ZyIiIiIyDy07b/ha38A+PCc98KVf97qHomIyBJxolmR1gIXEREREZHF6YnvwTfeBvjwrD+AKz7S6h6JiIhMo3BOREREREQWn10/gdveAF4VttwIL/krsKxW90pERGQahXMiIiIiIrK47H8A/vMmcEtmNdbf+Qew9aOPiIjMT/oOJSIiIiIii0f/w/ClG6CSgzNeAK/4AjiBVvdKRETkqBTOiYiIiIjI4jC0A/79eiimYfVFcOOXIBBuda9ERESOSeGciIiIiIgsfGP74N9+B3JHoG8LvPo2CLW1ulciIiLHpXBOREREREQWtvEBE8xlDkD3JnjdNyDa3upeiYiInBCFcyIiIiIisnDlR+DffxdGdkH7Gnjd7dDW3epeiYiInDCFcyIiIiIisjCVxuFLr4DBRyDeB6//JqRWtrpXIiIiJ0XhnIiIiIiILDyVAvznTXDwIYh2wutvh84zWt0rERGRk6ZwTkREREREFpZqGW57A+z5KYQS8Lqvw7JzWt0rERGRU6JwTkREREREFg7PhW+8Dbb/AAJReM1tsOJpre6ViIjIKVM4JyIiIiIiC4Pvw7feDY98HewgvOo/YO2lre6ViIjIU6JwTkRERERE5j/fhx/8Kfz638Gy4RX/DBuvbHWvREREnjKFcyIiIiIiMv/d/XH4xWfN8cv+Hs79ndb2R0REZJYonBMRERERkfnt3r+Hn3zcHL/kk/C017S2PyIiIrNI4ZyIiIiIiMxfD30Rfvghc/zCD8NFb2tpd0RERGabwjkREREREZmftv03fOs95viyd8Plf9TS7oiIiJwOCudERERERGT+eeL78I23AT48801w5S1gWa3ulYiIyKxTOCciIiIiIvPL7nvgtteDV4XNvwfX/LWCORERWbQUzomIiIiIyPyx/wH48o3gluCsa+H6z4KtH1tERGTx0nc5ERERERGZH/ofhi/dAJUcnPF8eMUXwAm2ulciIiKnlcI5ERERERFpvaEd8O/XQzENq54NN34ZgpFW90pEROS0UzgnIiIiIiKtNbYf/u13IHcE+jbDa74KobZW90pERGROKJwTEREREZHWGdsP//pSyByAro3w2m9AtL3VvRIREZkzgVZ3QERERERElqjRPSaYG9sH7Wvh9d+EeE+reyUiIjKnFM6JiIiIiMjcG95Zq5g7CJ1nwhv+H6RWtrpXIiIic07hnIiIiIiIzK0jT8C/vgyy/dC9Cd7wLUj0tbpXIiIiLaFwTkRERERE5s7Ao/BvLzOLPyw7tzaUdVmreyUiItIyCudERERERGRuHN5qVmUtjJhVWV/3TWjranWvREREWkrhnIiIiIiInH4HfwX//rtQHIMVT4PXfh1ina3ulYiISMspnBMRERERkdNr/y/hP26AUgZWPRte+98QSbW6VyIiIvOCwjkRERERETl99t4LX3ollLOw5lJ4zW0QTrS6VyIiIvOGwjkRERERETk9dv0E/vNGqORh/XPhpq9AqK3VvRIREZlX7FZ3QEREREREFqEdP4Iv/54J5s68Al59m4I5ERGRGahyTkREREREZtcT34fbXgduGTZdDa/8VwhGWt0rERGReUmVcyIiIiIiMnse+xb812tNMHf2dfB7/65gTkRE5BgUzomIiIiIyOx4+Otw2xvAq8B5L4dXfhECoVb3SkREZF5TOCciIiIiIk/db/8LvvZm8F3YciO8/B/BCba6VyIiIvOewjkREREREXlqfv0f8I23ge/B014L138WHE1vLSIiciIUzomIiIiIyKl78AvwzZsBH575Jnjp34HttLpXIiIiC4bCOREREREROTX3/1/49nvN8UVvh2v/Bmz9iCEiInIy9J1TRERERERO3r1/B997vzm+9A/h6o+DZbW2TyIiIguQJoIQEREREZGTc8//gbv+whxf/kfwwg8rmBMRETlFCudEREREROTE+D7c/XH4ycfN+Qs+BM97f2v7JCIissApnBMRERERkePzfbjzf8HP/sacX/nn8Jz3trRLIiIii4HCOREREREROTbfhx9+GO77e3N+1Ufhkptb2ycREZFFQuGciIiIiIgcnefB9z8Av/y8Ob/m/8Cz39LaPomIiCwiCudERERERGRmngffeS889EXAgpf+LTzjja3tk4iIyCKjcE5ERERERKbLj8D/exc8/m2wbPidf4ALX93qXomIiCw6CudERERERKTZ7p/C198K44fADsLv3gqbX9HqXomIiCxKCudERERERMRwK3D3x+Gnfw340LUBbvhnWHFhq3smIiKyaCmcExERERERGN0DX/sDOPCAOX/aa+HqT0A43tJuiYiILHYK50RERERElrpt/w3ffi+UMhBOmYUfzn95q3slIiKyJCicExERERFZqkpZ+N774TdfMuerL4KX/yN0rG1tv0RERJYQhXMiIiIiIkvRwV+ZYawjO81qrM/9Y3ju+8HRjwgiIiJzSd95RURERESWEs+D+/4O7vwL8CqQXGmq5dZd1uqeiYiILEkK50RERERElorxfvjG22HXj835OS+Fl34GYp2t7ZeIiMgSpnBORERERGQpePKHcPs7ID8EgShc/TF4xhvBslrdMxERkSVN4ZyIiIiIyGJWLcEdH4H7P2fOe8+HG/4Zlp3d2n6JiIgIoHBORERERGTxOvIE/PebYWCbOb/o7XDlLRCMtLZfIiIiUqdwTkRERERksfF9+NW/wvf+BKoFiHXB73wWzrq61T0TERGRKRTOiYiIiIgsJoVR+Na74dFvmvMzng+/+38h0dfSbomIiMjMFM6JiIiIiCwWe++Dr/0BZA6AHYAX/hlc+odg263umYjIkuD7PpUDWUr7MtixIE4yRCAVxkmFsIJOq7s37/m+j7UEFypSOCciIiIistC5Vbjnr+CeT4LvQcd6eMU/w8pntLpnIiKLnl/1KO1OU3hkmOKjw7iZ8ozt7FgAJ2mCOicVrm3Nx3Z4acU0XtmlvC9DaVea0q40TjxI12vPbXW35tzS+r8uIiIiIrLYjO2Dr70F9v/CnF9wE1zzVxBOtLZfIiKLmFeqUnxilMKjwxQfH8EvuvV7VsghfEYKv+rhpku4YyX8ioeXr+Llq1T6c0d9XivszBjaOamwqcBLhrCigQVbXTY1jCvvHwfXr9+3wg6+52PZC/P9nSqFcyIiIiIiC9XDX4dvvQdKaQgl4LpPwZZXtrpXIiKLkjtepvjYCIVHhijuGGsKlex4kOi5XUTO6yJyZjtWoDGdgO/7+EXXBHXpEm66THXiOFOuX/OLVfySS3UwT3Uwf9R+WEHbhHbJEE5HhOCyKIFlMYK9bTjt4XkVbHlll/LeSWHcgeYwDsBJhgifkSJ8RjvhM1Iwf7o/ZxTOiYiIiIgsNOU8fO/98Ot/N+crnwE3/DN0rm9tv0REFpnqUIHCo8MUHhmmvC8Dk3KlQFeEyHndRM/rIrQ6cdRQzLIsrGgAOxog2Nd21NfySi5uphHgTQ7zTJBXwstV8Sse1aEC1aECkG5+raBtgrplMQK9Zh/sjeF0ROYktDvhMO7M9logl8LpjCzYSsDZonBORERERGQhyRyGr9wEh34NWHD5++D5HwQn2OqeiYgseL7vUzmYpfDIMIVHh6kONFewBVfFiZ7XRfTcLgLLYrMaKtlhB7snRrAndvT+VbxagFfGzZSoDhepDOapDuSpHMnjVzwqB7NUDmabHne6QrtpYdz+cfCmhHGpUL0qTmHczBTOiYiIiIgsFId+A/95E4wfgmgnvPJf4Iznt7pXIiILmu96lHalzfxxjw7jpict6GBbhM9MmSGr53YRSIVb11FqIVtXlEBXdNo93/WpjhRMUDeYP6HQjoBNcFm0Ftq1NUK7zplDO680KYzbfbQwLlwP4hTGnRiFcyIiIiIiC8Fj34KvvxUqeejeBK/+L+g8o9W9EpElwPd9qHpmUYOK2ZvNbT4ue/jVKfcmrpXdSfdq28S1sodfdcG2sCMBrEgAO+JgRwK1c6dp33zsYEcDWOEAlnPiAZBXcik+OULxkWEKj4/iF6v1e1bIJnJWJ9Hzuoic1YkdXRjRieVYBGuVd5OjO9/zqY4Ua6FdzuwH8lSOFKDqUTmUo3IoBxxpPChgE+yJ1qvs/LJHadcY5QPZmcO4M1P1eeOcjrDCuJO0MP6EiYiIiIgsVb4PP/sU3HmLOT/zhfCKf4Foe0u7JSKnn+96eIVqbZXPSn21T69QOy5WwfPxXd8EJp6PX9/TfO564FE/x53ctnk/+Tn9Wtu54o1XTvmxVsiuBXsmtJsc8lnR2jXHprQrTXHHKFSnLOhwzqQFHYL2MV5pYbFsi2B3lGB3lOh5XfXrvufjjphhsZUBswhFZSBHZbAW2h3OUTmcozDl+Zz2yZVxCuNmg8I5EREREZH5qlqCb70bfvuf5vxZb4GrPw6OPsaLLCS+6zcCtcJRgrZ8ZVoQ55fcVnd9OhusoIMVtGvb5ONjn9sT5yEbK2BjhZza3tz3XR+/WMUrunjFKn6hdlyq4teueYVJx0XXrHBa8QBMBV65jJcpH+dNGE5XpD5/XGhNcl6tcjoXLNsi0B0l0B0leu6U0G60aKrrakNjsS3C600gF+iMtLDXi5O+q4uIiIiIzEe5Ifiv18K++8By4CWfgGe/pdW9EpEa3/PxsmXcTLk+Ob+bqZ2Pl/FytbAtV3nKIZsVCWC3mdU+7VgQO1Y7jgawHBtsywRLtoVlA4415VrzHufo96zaY6deq4dtzvyrKPNdrx7UTQv2itXm62WXYG8b0fNnf0GHxcKyrfq8dpNDOzl9FM6JiIiIiMw3g4/Bl18FY3shnIRXfhE2XNHqXomcMr/q1UKS5oqnyeEJ1EKo8JThiOHGfGNW0D7tYYrv+/hFtxG2pcu44xOrYzZCOG+8DCc52tOKOM3h2kzHU69FA0uuoutkWY6N02ZDm1atloVJ4ZyIiIiIyHyy/Ufw378PpQx0rINX3wY9Z7W6VwuS7/lUhwqU92Qo7c1Q3pvBK1RN1ZBjmQogxzLD6pxaNZEzcWzX2tSOA5Pa1x9nNaqWAs3PF1oZn3E1xYXIr7h4hYlQrRawlY4RtJXcKUFctWlur6fEtsy8YZMCOzvcPL/YRMA3NdibOPdLbnOV26QQzqsdTwyTPC4L7EQIJxnCSYZre7PZbcEpVW7Bk1qwQESWDoVzIiIiIiLzge/DLz8P3/8T8D1Ycym86j+gTUOKTpRfcSkfyJogbk+G8r4MXr56/AeeJsFVcWKbu4lu7llQczT5vk+lP0/h4SEKDw+Z+aZmiRVypgdpteAMi0bQV5oc+Ln4paqpUvN88/80X8WlNGv9mrGv0cCksK0WvKVCOImw2SdD2PGQqtpEZkkuXaIwXqZ7VaLVXZlzCudERERERFrNrcD3PgAP/rM5v/A1cN2nIBBubb/mOTdbbqqKKx/MTltV0graBFclCK9LElqbJNAeNpPOu55ZrdL1zKqUk69VZ7hf9fAnVrCsNj9m8jXfMxPal/ePUzmQJX0gS/p7e0xQt6WH6OZuAh3zL6jzfZ/KgSz5h4coPjxEdbjY3MCiXoXWCNUaFWmmmm3SUNT6vnl46qkGWb7vm8n+a8Hd5Mq8iUq+yRV8fmnmSj6/4kHAmlLlNj14sxMh7JAzC19ZETmaQrbMwSfGOPjEKAefHGW0P0/v+iSv+MAzW921OadwTkRERESklQpj8NU3wK67AQtedAtc+oegScqb+J5P9Ui+URW3NzM9QALsRJDw2iShtSnC65IEV7S1ZAJ7N1um8Mgwha1HKO1KN4K67+4mtDpBdEu3CeraWxfU+Z5PeU+GwiNDFB4exk1PqkQLWEQ2dhA9v5vIWR3YsWBLK8Qsy8IKOxB2eCqRme/6ZrVR/f0SmXOlfIWDT45x8MlRDj4xyvDBXHMDq7bQiuthz8OFR04ny/f9WRr8v7RlMhlSqRTpdJpkMtnq7oiIiIjIQjC80yz8MLwdgjG44Z/g7Gtb3at5wa+4lPdn61Vxpb0Z/MKUIaoWBJbF6lVx4bVJnM7IvAte3GyZwsO1oG53umkRgdCaBNHNtYq69tNfKem7HqVdaTNk9ZFhvGylfs8K2UTO7qwFcp3YYVWOicipKxerHN6R5sATJowb2j/O1ASqc0UbK8/qYNVZHazY2E5kkS3qcaJZkcK5WaJwTkREREROyp6fwX+9FgqjkFwJN30Flm9pda9axh0vmxCuVhVXPjTzENXQ6gShtUlC65KE1ySxowtrMJA7Xqbw8BD5rUOU90wJ6tYmiW7uJra5Gyc1e0GdX/Eobh81gdxjI00hpxUJED23FshtbMcKKpCTxcPzfColl3KhSqXoUi5VqZRc8DAVlNSqMm3Assy5bZlh3JjrllU7tyYfWzOeN44bj7UdC8u2sGubZZvXmG+/RJgNlbJL/840B58Y5cATowzuHcf3mv8db++NsfKsDlZuamflpg5iyVCLejs3FM7NMYVzIiIiInLCfvXv8O33gleBlc+AG78Mib5W96qJmylR2p2h0p9rzL/m+dP3E/OweX5zO29SO3fKuTfz801lJ0JNVXGtGqJ6uriZWlC37QjlPZnmoG7dpKAuefJBnVdyKT4xQuGRYYqPjeCX3fo9Ox4kem4X0fO7CZ+Rwgosnq+pLHxu1TNBWrFaD9bKJbdxbcq+XHQbAVyp+V61fIKr7raAVQvq6qGdMxHeNe8nwr2Zr4MTcIgmgkTjQaKJUG2rHceDRJMhgqdp/kS34jGwJ82Bx0c5+OQY/bvTeFNWZk52R1i5qaMWyHUQ71hac6kqnJtjCudERERE5Lg8F370Ebj378z5eS+H6z8LwWhLu+X7Pu5wkdKeNKXdGUp70rgzzOd2WlkQ7I3VquJSZohqR3hRVpfMxM2UKGwbIr9tyAR1EyxTURfb0kP0/G6cY1SZeIUqhcdHKGwbovjkKFQbwYSTChE9r5vo+V2E1qW0wqicNr7nUy5WKeXNVsxXKM9wXMpXzL7QOC8XXNzq7AdqtmMRigQIRhyCEwuT+D6+bxbKbhz7jXMPfHzwzXvy/Vp+PnGvFqXU79Ua1J+ndn0+CISdSeHdpOAuESKWCBJJhIglQkTiQaKJIIGjVNC6rseRveP1Yar9O9NUK83/v9raw6w6q4OVZ5nKuGR3a7+/tZrCuTmmcE5EREREjqmUha+/BZ74rjl/3p/A8/+kJQs/+J5PZSBPeU+a0m4TyHnj5eZGFgSXtxFancAKB8wPs7UKjvq+Vu0x4962p7ef8XE22BZ21MEOL6whqqeLmy6R3zZEYdsQ5b1Tgrp1KWJbuk1QlwjhZssUHx0h//AQpZ1jTRWITmeE6Pm1QG5VQoGcnDTf98kMFRgbLNRCtQrFWrhWroVrxXqwVq2HbcxCyhAI2iZMiwQIRZx6uFbfh49xL+IQDAcIRR1C4QBOsDXVoRNhn+/6eLXqYc/z8Vwf36/tvUn3Jl33alXJTece9esTj6mUXYrZCoXxMoXxCoVsbV87P5WwMxhxmgK8aCJIbqzM4R1jZljwJNFEsD5n3MpNHaSWRZfML1VOhMK5OaZwTkRERESOamw//OdNMLANnLCpltv8ijl7eb/qUT6Upbx7ojIug1+csriCYxFalSC8PkVovRlGakcUlrVadaxk5orbeoTyvvHGjdpiGNXBfFMQElgWI3q+GbIaXN6mH5LlpJQLVQb2ZhjYlWFgd5r+3RmKkxYNORmBkE04GiDcFiQcC5jjmDkOxQJEaseNLUgoGiAYNuHaUlut83TwfZ9K0a0HdvlMmWK2Qn68THHc7AvjZQq1cK84XsHzjh0RhdsCZpjqJhPIdSyP6d+ZYzjRrEjfbUVERERETqcDD5pgLjcIbcvgpv+EVc88rS/plV3K+zKUdmco70lT3jeOP2XokRWyzVxu61ImkFsd12IA81CgPUziOStJPGcl1bEihW1DFLYOUd4/TnUgD0BwZdwEcud1E1wWa3GPZaHwPZ+R/hwDuzMM7DJB3Mjh3LSqNztg0dHbRiTeCNcmB20TwVrTcbR11WrSYFkWoWiAUDRAquf47X3fp5SvNgV2E1V4oUiAFZva6V4ZVxXuaaBwTkRERETkdNn233D7/wC3BL3nmxVZ21fP+st4+QqlPbWVTnenKR/MwpTqBzsWMHO5rU8SXp8iuDxuhpbKghFoj5C4fBWJy1dRHS1S3j9OaFWCQGek1V2b13zPp5CtkM+UyKfLVMte0xDDyfvGMcdpUxuq6E+5V7uGD9FkiERHhERnhHhnmERnhEg82LIqo0K2bIK43Rn6d6UZ3JOhXHSntUt2R+hdn6J3fZK+9Sm6V8UVtC0RlmURaQsSaQvS0erOLDEK50REREREZpvvw90fh5983Jxvegnc8I8QTszK01fHSpT3moUbyrvTVAby06pdnFTYDE9dnyK8LkmgJ6Zqh0Uk0BEh0LG0Qzm36pHPlMmlTejWdJwukavt8+MVsyLwPOAEbRKdERKdYeKdteCuo3Ee7wgfdTL+k+G6HsMHsiaI251mYFeG9JHCtHaBsEPvugS961P0rU/Suz5F7BiLjojI6aFwTkRERERkNlUKplruka+b80v/EK78c7BP7Qfu+nxxe8cp78tQ3pvBzZSntQv0RM3w1HUmkFvqwY0sXOVitRa2TQRskwO4xrVi7iTmQrMgGg8SS4YJhh1sx8KywbbNIiWWbdWPm/cc417zc9iOhWWZve9DPlMmO1JkvLbl02XcisfYQJ6x2pDkmUSToeYA7wSq77KjpfoccQO70wzuHcetTF8IoKMvRu8ZjSCuc0UbtkJ7kZZTOCciIiIiMlsGHoFvvhMO/QrsAFz3t/D0153UU7jjZVMVty9jArmD41CdOgkUBJfHCa9LmqGq65I4CVW7yOwbG8jTvzuNV51YZdKrrxxZX2nSbV5dst6udu66zatUmsc1P4/n+pQLVfKZ8rTVII/FdixiyRCxVJi2lNnHkqH6cVsqRCwZJpoM4rR4gQG34pEdK5nAbrRo9sNFxkdL9RCvWvYoZMoUMmUG98z8PJOr7wIhhyP7xsmOlqa1C8cCpiLujCS965P0rksSjgVP75sUkVOicE5ERERE5KkqjJlhrL/8PPguRDvgVf8B655zzIf5rk+lP2cWb9ibobxvHHekOK2dHQsQWpsktCZJeG2C4KoEdkiLN8jpUSm77PzVII/+7BCHd6Rb0odA2KEtGSKWCtGWCjfvk2YfS4WIxIILZri2E7RJ9URJ9URnvO/7PqVctV5pNz5SC/BGSmRHj119Z9kWXSvb6FufovcMM1dcallUq2iKLBAK50RERERETpXnwW//E370EcgdMdfOeRlc9dEZF35wcxUzNHXfOOW9Gcr7p6+iigXB3lg9jAutTRLoiuiH7HnOrXpUSi6Vkku17JLoiszK3GFzxfd9juwb59GfHWL7AwP1hQIsC/rOTBGOBZuGb9qOGdo5sbccC9uxG9ecxvDP5vb2tOeYOA9FHGK14C0UWXo/qlqWRSQeJBIP0rNm5vkpTfVdLbAbKVIqVOlZHadnTZJgeOH8eRORZkvvXzwRERERkdlw6Dfw3T+GA780510b4SWfgA1XAGaFyOpgvl4RV96boTo0fUJ2K+KYirg1CRPIrU5gL8FgYq74nk+l7NaDtHqgVpp+rVJyqRRdKqVq47w8ca1589zmoceBsMOaczpZt6WLted3z9tJ9ou5Ck/+sp9Hf3aY4YPZ+vVkd4RzLl3O2ZcsJ675C+cNU30XI9UTa3VXRGQW6bu+iIiIiMhJ8HPD+Hd8HO/Xt+P5cTzn2XjnvhZv1RX4B33c7bupHMpS3jeOP8PcWYGeaG14apLQ2oRWUZ1FnuuRS5fNcMDRItmRUu24VB8iWMpXT2sf7ICpDquWXHb95gi7fnMELOhbn2Ldli7Wb+mhY3mspZWQvudz4MlRHvv5YXb9+ghu1VRvOgGbM57Ww7mXLWflpg79uRQRmSOW7/vzY03pBS6TyZBKpUin0ySTyVZ3R0RERESOw6+4eIUqXr5q9k3HlaZrfqGKl6/gjWfxyhZwYsPHrJBNaHWiPjw1vCaBrQnZT4nv+5Ty1XrINjlwm5iTKzdW4oR/urEgGHaOswWOfT/SfB4IOziOje/7DO3Psvu3R9izbZgj+8abXjrZHWH9lh7WXdDN8g2pOVuoIDta5PH7DvPYvYfJDDXmNuxaFefcy5az6dl9RNr051NEZLacaFakcG6WKJwTERERmZ/c8TLFx0coPjFCZbBQD92oesd/8LE4YMdC2NEAdixg9rUt0B0ltDZJsLcNy1H10YmoVlyy9VUrS7XKt+krWR6P7VjEO8LEOyIkOiPmuLN23BkmGg8RjDgEgvacVa+NjxTZu22I3VuHOfDECN6k1XfDsQBrzuti/ZZu1pzXOeurabqux56tQzz288Pse2S4Hl6GIg4bn93HuZctp2dNQnMaioicBgrn5pjCOREREZH5wfd8KgezFB4fofj4CJVJ82hNY1ML1ILY0QDWRMA2EbY5Jeyd38Le/0NsK4sd8rEvexP2Ja/HioTn7k0tUJ7rUchWyGfK5DNlCrX99K1EKXdiw02jiWAtdDNh29TjWCI0r4djlotV9j82wp6tQ+zZNkwxW6nfs22L5RvbWb+lm3Vbuo+6queJGO3P8ejPD/PELw5TGG+8xoqN7Zxz2XLOfPoyglrxV0TktFI4N8cUzomIiIi0jlesUtw+SvHxUYpPjOBNCjwAgqviRM/uJLQ2iR0L1gM4K+zMXDHkVuHBf4a7/hJKaXPtwtfAlX8O8WWn/w3NY57nU6wFboVasJbPVMx+vEw+XaYwXgvjshU4iZ82AiG7VuEWIVGreDMVcBPH4QW1AurxeJ7PwO4Me7YeYfdvhxjtzzfd71zRxrrN3ay/oJtl65LYxwkdKyWXHQ8N8tjPD3F4Z7p+PZoMcc4lfZxz6Qrae7WQgIjIXFE4N8cUzomIiIjMHd/3qQ4VKD5mquNKezLgNT7WWmGHyMZ2Imd3EjmrEydxEitl7vm5WYV18BFzvvwCuOb/wOpnz/K7mJ98z2d8pMjwoRwjh7KM9edNdduk4O1kfoKwLIgmQkSTIdqSZh+btE2ct6XChGOBJT28cmwwX6uoG+LQ9jT+pD/T0USQtZu7Wb+lm9XndBIMm5DS930G94zz6L2H2P7AAJWiWYTEsmDt5m7OuXQ5azd3zdm8diIi0qBwbo4pnBMREZHFyPf9eROW+FWP0q40xcdHKDwxgjtcbLof6I6aMO7sTsLrkliBkwwjMofhjv8Ptt1mziPtcMX/B894I9iLp1prssJ4meGDWRPETewP5ajMsMpsEwui8SDRxPSgrS0ZIpYM10O3SDx43Iovma6Yq7DvkWH2bB1i7yMjlAuNYb9OwGbV2R30rEmw6zdHGDmUq99L9kQ597LlnH3xctraNfRaRKSVFM7NMYVzIiIislhUhgoUHx2m8Ngw5b3j2NEATjKEkwrjpEI4yXDjuLa3w4HT0hc3U6L4+CiFx0co7RjFn7wggGMRPiNF5KxOomd3Eug+xfm5qmW4/1b4ySegnAUseMYb4IX/H7R1zcr7aLVyscrIYRO8DR/M1veT5yKbzHYsOvra6FzRRufyNtraw8RSIWKJELFUiGg8iK1KrDnjuh6Ht4+xe+sQe7YONa20CuAEbc58Wg/nXraCFRvb5/WceyIiS4nCuTmmcE5EREQWKt/zKe/LUHh0hOJjw1SPFE76Oayw0wjrkpODu3A92LNPYMii7/mUD4yb1VUfH6EyqSIIwE6EiJzVQfTsTsIb2596KLjzx/C998PQk+Z85TPhmr+ClU9/as/bIq7rMdafr4dvE0NTp4Y5dRYku6N0rWija2WczhVtdK2Ik+qNahjkPOX7PiOHc+zZOsSRfVlWbmpn47N6ibTN7iqvIiLy1J1oVnR6fsUpIiIiIvOaV3IpbR+l8OiwWUBh8kqZtYq06DldhDe241d93HTJbJnytGO/6OKXXKqDBaqDxwj2AlZTWDdxHEiF8V2P4hOjFJ8YxctNquayILgqQfSsDiLndBFc3jY7VUFj++EHfwqP/T9zHuuGF90CF7wa7PkfSnmeT7Y2L9zkSrixgTyeO/Pv3mPJkAnfJkK4lXE6l7fV5y6ThcGyLLpWxOlaEW91V0REZJa0NJy75557+Ku/+iseeughDh8+zDe+8Q2uv/76+n3f9/nIRz7CP/7jPzI2NsZll13G5z73OTZu3FhvMzIywrve9S6+9a1vYds2N9xwA5/+9KeJxxvfrLZu3crNN9/MAw88QE9PD+9617t4//vf39SXr371q/zZn/0Ze/bsYePGjXziE5/gmmuuOe1fAxEREZG54qZLFB4z1XHFHWMwKcSxIgGiZ3cQObeLyKYO7MiUj4nL2476vF7Jxc3UArt0ecYQz8tWoOrjDhenzRU3lRV2iGzqqC3m0IETP4nFHI6nUoT7/g7u+WuoFsCy4VlvgRd8EKIds/c6s8D3fQrjFcYG8owN5s1+IM/YYIHMkQJu1ZvxccGIQ9eKNjpXxk1F3Io4nSvbiM7m11FERERmTUvDuVwuxwUXXMCb3vQmXv7yl0+7/8lPfpLPfOYz/Ou//ivr16/nz/7sz7jqqqt49NFHiUQiALzmNa/h8OHD3HHHHVQqFX7/93+ft771rXz5y18GTAnhi1/8Yq688kpuvfVWtm3bxpve9Cba29t561vfCsC9997LTTfdxMc+9jGuu+46vvzlL3P99dfzq1/9ivPPP3/uviAiIiIis8j3fSqHc7X540aoHMw23Xe6IkTP6SJyTm0BhVMcxmiHHeyeGMGe2NH7UvVMYHeUEM+veoTPbG8s5jDbQyp9H574nqmWG91trq251Axh7Wvt571yoWrCt8E8YwMFxgbypGthXLl49IUZ7IBFR28bXSvbmiriEp2RebOIh4iIiBzfvJlzzrKspso53/dZsWIF//N//k/+6I/+CIB0Ok1vby9f/OIXufHGG3nsscc499xzeeCBB3jmM58JwPe//32uueYaDhw4wIoVK/jc5z7Hhz70Ifr7+wmFzG8L/+RP/oTbb7+dxx9/HIBXvepV5HI5vv3tb9f7c/HFF3PhhRdy6623nlD/NeeciIiIzAcTK5oWHhum+OgIbrrUuGlBaE2SyDmdRM/pJLAstvhDHN+HnXfCjz8KBx8y1+J98OL/DZtfAXP0/t2KR3qoUK+CS9cq4MYG8uQz5aM/0IJEZ4T23hjty2K090Zr+xjxzohWQRUREZnHFvycc7t376a/v58rr7yyfi2VSnHRRRdx3333ceONN3LffffR3t5eD+YArrzySmzb5v777+d3f/d3ue+++3juc59bD+YArrrqKj7xiU8wOjpKR0cH9913H+973/uaXv+qq67i9ttvP2r/SqUSpVLjw24mk5mFdy0iIiJy8txcheITIxQfG6H4xCh+uVFtZQVtwhs7iJ7bSeTsztkdIjrf7b4H7vpL2P8Lcx6IwkVvg8v/J0Rm/5epvu+TT5cZOZRjtCmEyzM+XORYvxKPJkO0L4tOCuHMPtkTIRDUnHAiIiKL2bwN5/r7+wHo7e1tut7b21u/19/fz7Jly5ruBwIBOjs7m9qsX79+2nNM3Ovo6KC/v/+YrzOTj33sY9xyyy2n8M5EREREnhrf86kOFSg+PkLhsWHKezIwKfixEyGi53Sa+ePOTGEttXBn733w47+EPT81504YnvVmuOw9kOg95kNPhO/75DNlRg7nGDmUY+RwjtHavpSvHvVxwYhDR2+MVD18M2FcalmMcHTefiwXERGR00yfAk7RBz/4waZqu0wmw+rVq1vYIxEREVmMJoK4ysEs5dpWOZTFLzXPRRbsayNybifRc7oIrozPzoqmC82BB00ot/Muc24H4RlvhMvfB8kVp/SUhfFyPYAbOZRj+FDWhHC5mUM4y7ZI9UTp6KsFcJMq4aKJ4OIfRiwiIiInbd6Gc319fQAMDAywfPny+vWBgQEuvPDCepvBwcGmx1WrVUZGRuqP7+vrY2BgoKnNxPnx2kzcn0k4HCYcDp/COxMRERGZme/6VI/kTQA3EcQdzuKXZ1iVM2ARXpcyFXLndBHojMx9h+eLQ78xc8pt/4E5twNw4WvguX8M7Sf2y9NitsLI4awJ4ibCuMM5CuOVmR9gQao7SueKtsa2PE5HbwwnOMuLWYiIiMiiNm/DufXr19PX18edd95ZD+MymQz3338/73jHOwC45JJLGBsb46GHHuIZz3gGAHfddRee53HRRRfV23zoQx+iUqkQDAYBuOOOOzjrrLPo6Oiot7nzzjt5z3veU3/9O+64g0suuWSO3q2IiIgsNX7VozKQp3Io2wjjDuegOj2Is4I2wRVxgivaCK1MEFwZJ7gsOvsrmi40/Q/D3R+Dx2uLelk2XHCTCeU618/4kFK+0lQJN7E/1qIMye4InSvidC6fCOHa6OiLEQgtseHCIiIiclq0NJzLZrPs2LGjfr57925+85vf0NnZyZo1a3jPe97D//7f/5uNGzeyfv16/uzP/owVK1bUV3Q955xzuPrqq3nLW97CrbfeSqVS4Z3vfCc33ngjK1aYoQuvfvWrueWWW3jzm9/MBz7wAR5++GE+/elP86lPfar+uu9+97t53vOex1//9V9z7bXX8pWvfIUHH3yQz3/+83P69RAREZHFya94VPpz9SGp5YNZKv05cKevEGCFHRPCrYgTXJUgtKKNQE9saQ5TPZojT5hQ7pFv1C5YsPmVVC/9Y7LOKrJHSuSePEx2rER2pGT2o0WyoyWK2aNUwmFWRZ0I3yaq4Tr62giGFcKJiIjI6WP5/rHWjTq97r77bl7wghdMu/6GN7yBL37xi/i+z0c+8hE+//nPMzY2xnOe8xw++9nPsmnTpnrbkZER3vnOd/Ktb30L27a54YYb+MxnPkM8Hq+32bp1KzfffDMPPPAA3d3dvOtd7+IDH/hA02t+9atf5cMf/jB79uxh48aNfPKTn+Saa6454fdyosvjioiIyOLmlV0qh3ONYamHslQG8uDNEMRFAoRWthFcGSe0Mk5wRZxAV1RB3AyqZZfs7u1kf/of5LY/zLjbSc7tIhs7n2xwPdmsdczgbbJ4R9hUv00O4pa3EYrM20ElIiIisgCdaFbU0nBuMVE4JyIisvT4nk91ME95/3h9qwzkYIYp4uxYoBbCJQiuNJVxTmdECwQAbsVjfKRoqtvGSmRHzZYbLTI+WiI3kqeYn+GLOoNA0CbeGaGtPUyiI0xbR5h4R4R4R5h4R5hEV1Qro4qIiMicONGsSJ9MRERERE6A7/u46XJzEHdwfMbFGux40FTCTVTErYzjpMJLOogr5ipkhgqkj5gtc6RQP8+OleAEfl0coEQ8WiDe1028t7sewsUnBXDhWGBJf51FRERk4VE4JyIiIjIDr1g1IdyBccr7s5T3Z/BmWLnTCjmEVsUJrk4QXp0guDqBkwwtuYDI83xyY6V68JaeFL5lhgqU8tVjPj4QshsVbnGPePpB4kd+TJs1QNweJr7hXMJXvA9rzbPn6B2JiIiIzA2FcyIiIrLk+dXagg2TquKqRwrTG9oQ7GsjtDpBaFWC0JrEklqsoVp2SQ9NDt+K9fAtM1zAqx67/C2WDJHqiZLsjpLsiZKqbcnuKNFEECt3BH72t/DgP0O1CBFg3eXwgr+EtZfOyXsUERERmWsK50RERGRJ8X2f6nCRyqQgrnwoO+PKqU5npBHErTYLNtihpbFyZyFbZt8jIxx4YpT0YJ70kQL5dPmYj7Edi0RXpB64Td0fddXT7BH40d/BL/8RKnlzbfVF8IIPwRnPm+V3JiIiIjK/KJwTERGRRcf3fLxshepYETddwh0r444VqRwpUN4/jl+YPsTSjgUIrkqYMG51gtCqOE481ILet4bv+wwfzLFn2xB7tw3Tvzs94zxwoWigFrZND+HinRHsk6kiPPiQCeQe/hq4teBv5TPgBX8KZ14BS2xosIiIiCxNCudERERkQfF9H79QpZo2gZsJ38xWnTjOlGeshKsLWIRWxBtB3OrEklw5tVJ2Ofj4KHseHmbvtiGyo6Wm+12r4qw9v4vulfF6CBdue4oLLlRL8Mjt8Mv/a8K5CSueDs/7AGy6SqGciIiILCkK50RERGRe8Ssu1VrYNhG8VSeOa+czrZA6jQVOMoTTHsFJmX2gM2IWb+hrwwrYp//NzEPjI0X2bhtiz7ZhDjwxiltpfC0DQZtV53Sy9vwu1p7fRaIzMnsvnD4ID/0LPPRFyB0x15wQnPdyePZbYdUzZu+1RERERBYQhXMiIiLSEu54ub4aaqU/b6rgxkp4x1nVc4LdFsBJhevhW6A9gtMealxLhLAcVWB5ns/ArjR7tg2z9+Ehhg/mmu7HO8Os29zNus3drNzUTmA259Tzfdh7r6mSe+zb4LvmemIFPOtN8PQ3Qrxn9l5PREREZAFSOCciIiKnnVesUj4wTvlAlvL+cSoHxnGPsbiAFbJx2sM4qbAJ3WqVb/XwLRVeMgsznIpirsK+R4fZu22YvY8MU8o1Ak/Lgr4zU6zb3M3a87voXNE2+8N5yznYepuZT27wkcb1tc+BZ78Fzr4WnODsvqaIiIjIAqVwTkRERGaVX3EpH8rVQ7jygSzVocL0hhYEemKEVsUJrYzjdEbM0NNUCCv6FOc1W2J832fkcI6924bZs22I/l0ZfK8x5144FmDNeV2s29zFmnO7iMRPUzA2sgse+Gf49b9DMW2uBWOw5ffgWW+BvvNPz+uKiIiILGAK50REROSU+a5HZSBvhqZOVMUN5GCGKeGcjjChVY2VUIMr49hhfRQ5VdWKy8Enx9i7dYg9Dw8zPlxsut+5oo11m7tYe343fWcksZ3TNMee58HOu+CXn4ftP6S+xGvHelMld+GrIdpxel5bREREZBHQJ2IRERE5Ib7nUx0uUD6QpVKbK658KAfV6UmcHQ+aIG5VnODqhKmMi4da0OuFyXU98uky2dES2dEiubFS7bhEbqxo9ulyU3WcE7BZeVZHLZDrItkdPb2dLKbhN182Q1dHdjaub7gSnv02s7eX5qIbIiIiIidD4ZyIiIhM4/s+brpcG5ZamyvuwDh+0Z3W1go7ZmjqqgTBVQlCq+M4qbCGpR6FW/HIpWth20TQNloiWwvgcqNF8pkyvn/852pLhVi7xSzmsOqsDoLhOZiHb/AxE8j99itQqS0uEU7Cha8xlXJdZ57+PoiIiIgsIgrnREREBDdXMUNT9zeCOC9bmd4wYBFaUQviasNTA11RLFtBHIBb9RgfKdZDtmxTxZupgiuMz/B1nYHtWMQ7wrS1h4l3RIi3h2nrCBPvCBNvj9DWHqatPTQ3IahbhSe/Z4au7r6ncb3nHBPIbXkVhOOnvx8iIiIii5DCORERkSXGK1XN0NRaCFc+MI47Wpre0IZgb1utIq4WyPXFsE7X3GULwET4Nj5stsxwYdJxkVy6VJ9y7VicoE283QRtbbWwrRHEmTAuGg+2PvTMj8BDX4QHvwDp/eaaZcNZ18BFb4N1l5vlX0VERETklCmcExERWcT8qkflsFk5dSKIqx4pzBggBbqj9RAutDpBcHkbdmgOhknOI7MRvgVCtql062gEbY3QzQRx4bZ5vhpt5jDc9/cmmCtnzbVYFzz9DfDMN0H76pZ2T0RERGQxUTgnIiKySPieT3UwPymIy1Lpz4E7PU1yUiEzP1xt0YbQqgR2dPF/LJit8C3RFSXZFSFR25Jd0do+QiQenN/B27EM74Sf/62ZT84tm2u958MlN8N5L4dgpKXdExEREVmMFv+ncBERkUXI933c4WLTYg2Vg1n8ygwrp8YCtSCuURXnJBbmyqm+51MuuZTyFcqFKuVClVK+Sqm2n3xezlcpFSqUC6b9RJslHb4dzeHfws8+BY9+E/zan6E1l8Bz3gcbX6ShqyIiIiKnkcI5ERGRec6veFQG81QOZc0Q1cM5Kodz+MXqtLZWyCG4Mk5odS2IW5XA6Zi/K6e6rsfIwRzDB7MmVKuFaOWJgK0wJXgrHD9cO55A0CbRvcTCt5n4Puz9Ofz0b2DnnY3rG6+C57wX1l7Sur6JiIiILCEK50REROYRN1umcjhH5VCOyuEs5cM5qkfyML0gDhyL4Ip4oyJuVZxAT6z1iwgche/7jI8UGdidYWBPhsHdGY7sG6c6Q7Xf8dgBi3AsSDgaIBwLEI4GCNX24ViAUHTytWD9WqQtSDSxRMK3o/E82P4DE8od+KW5Ztlw/g1w2Xug7/yWdk9ERERkqVE4JyIi0gK+61Mdypsgrl4Nl8Ubr8zY3o4FCPa1EVzeRnB5nOCKNoLLYliB+btyarlQZXCvCeL6d5l9IVOe1i4cC9C9OkEsESQ0KXALzRi8BQlFHQLBpbVQxaxwq/Dw18yccoOPmmtOGJ72Grj0D6FzfUu7JyIiIrJUKZwTERE5zbxitR7CmSAuS6U/D9UZKsYsCHRFayFcI4xzUqF5Xe3luR4jh3OmKq5WGTdyODdtCKptW3StitO7Pmm2dUnal83far9FoVKAX/8H3PsZGNtnroUS8Kw3w8X/AxK9re2fiIiIyBKncE5ERGQWuemSWZzhcI7yoRyV/hzuSHHGtlbInl4N19uGHZ7/VWHZ0WJTEDe4N0O1PD1sTHRGGkHc+hQ9q+MEQvP//S0KxTQ88E/wi89B7oi5FuuGi98Bz/oDiLa3tHsiIiIiYiicExEReQqqYyVKu8Yo7UpT3p2mOjxzEOekwiaEW9EI4wKdkQVRMVYuVjmyb7wexA3sSpNLTx+eGoo4LFtnquEmwrhYcmGuCrugZQfhvn+AB78ApYy5lloDl/0hXPgaCMVa2z8RERERaaJwTkRkCfI9n2rFo1JyqZSqZl90zb7sNs7LLrFkiI6+Njr6YoQi+rZRHSlS2p2mtCtNaXd6elWchamGWxGvD0sNLW/DjgVb0+GT4LkemaEiI4dyjByubYeyjBzK4U8ZnmrZFl0r2xpB3LoUHX0antpSo3vg558xQ1jdkrnWc7ZZefX8G8CZ/38GRURERJYi/ZQlIrKA+L5PMVchPVigkK2YYG0iVJu0Vaecl6feL7vT5gI7EfGOMB3LTVDX0ddG53KzjyYWZ3WU7/u4I8V6EFfalcYdKzU3siG4MkH4jBTh9SnC65LY8zzE9FyP9JECI4dzjB7O1cK4PGMDedyZ5sHD/L/vXZdk2fokfetT9KxJEFwAw2+XhIFH4Gd/axZ78F1zbdWz4Dnvg01Xgz1/Fw0REREREYVzIiLzju/7lHJVxgbzpAfzjB0pkB4skB7Mkz5SoJSvzurrBcNOY4vU9iGzd0I2udESI/15Cpky2dES2dES+x8daXqOSFuQjuUxOpa30VmrsutY3ka8IzyvFzGYyvd9qsNFyrvSZqjq7jTu1OGbtkVoVdyEcWe0E1qbwA7Pz2+nruuROVJoqoQbPZxjdCCPV505nQ2E7Frw2kbnijY6lrexbE2CtvbwHPdejsnzYP8v4Oefhie/37h+5gtNKLfuObCA/u6JiIiILGXz86cJEZEloJitMHYkT3qwUAviTjyAi3eEiSVDBCOB6cFaeFLA1nQt0Hw/7BAI2ic8DLGYq5hgpz/PSH+O0cN5RvtzjA8XKeYqHN6R5vCOdNNjAmGHjt4YncvbTHhXC+5SPVFsp/XVPL7vUx0qmMq42uaNTwnjHIvQqlpl3BkpQmuT2PNsQQPX9UgPFkwVXL0SLsfYQB7PPXoIZ/6/1IK4WhiXWCDz4C1J4wOw8y7YeafZ54drNyw493fM8NUVF7ayhyIiIiJyChTOiYicRsVcpSl4GxsskD5ijk8kgEv1REktM2FW+7IYqWVRkj1Rgi0IhyJtQZZvaGf5hvam65WSy9hA3lRl9ZvwbvRwjvRggWrJ5ci+cY7sG296jO1YpJbF6sNi23tjhKMBnKCNE7QJ1PfOpGMbJ3DiYeJMfN+nOphvzBm3K42XrTQ3cixCaxJmiOoZKUJrWhfGua5HKVellK9QzFYo5qsUs5X6+cTQ1GOGcGGHzr5aQLqiEcQphFsAqmXYfz/s+JEJ5Pq3Nd8PJeC86+Gy90D3hlb0UERERERmgcI5EZGnwPd98pky6SMFMkMFMkdM+GZCuDyl3LEDuLb2MO3LovUQrtUB3KkIhh161iToWZNoul6v5ppUZTdyOMdYf55qxTNVeIdzwJGTej0nYNdCPItwwCYSsAkHLMKORdC2CNkWQSBoQcCHgO/jeOB4Hk7Jxak0z6nm2xZ+TxSrrw1nZdxs0QAEbaoBG7/s4ng+gaB9ytV+nutRylcp5ipmn61QrAVsE9eLuQqlXIVirlo/LhfdE36NYNipVcHF6Fwep2N5zFTCdSiEW1BGdsGOO82256dQzjbfX34BbLgSzrwCVj9bizyIiIiILAIK50REjqNacRkfLtYDOLMv1sO4amXmCfQntLWHa5VvtSq4ZaYKbiEFcKfCcex6lRZPa1z3PZ/xkaKpsOvPMXYwS34wD0UX2/WwKh626+O4PrbnE/A8gpZF0IKQRf04aPlYngdlD8pH78dUVd9ntOozVPUZrvqMuj7eSBmeSB/3sZZtmSq+ekBoqvkmqvomKvw8z68FbSZsKxee2jyB4ViAcFuQSCxAJB4kHAsSaQuS6IzU5oWLKYRbqEpZE8LtuNNUx43sar7f1mPmkTvzCrOP97SmnyIiIiJy2iicE5Elz/d9M0SwFrZNDuDSRwrkpq7OOYVlQbwzQqonSrJ7ogouSqrHDEddqita+r6PX6jiZsq46RJuuoybKdXPI+kyyzIluo82vNcBHKt2cAyOhR9y8IO22QI2nmPhOjaubVG1LKoWVDEZXj5gU3V93IpHtOIRqnq4FY9qxezdqtkmzicPF/U9n2ptNdxTEYoGiLQFiLQFTdhWC9zqx22Tj80WigWwFbotHr4PAw/XquN+BPt+Ad6kodV2AFZfDBtqgVzfFq22KiIiIrLIKZwTkSXB83xT6TYx9HSoWNuba5XjDB8Mhh2SPdGmAC7ZHSHZHSXRFcGZB4sbzCXf8/HGy5OCt0boNnnvH6eqcIIVtLFjAexoACsawI6Y48mbFQua44hTu2bOreDp/dp7nm8Cu8r0EM8cu7hVE/ZVqy5uxcOyrEkBXC2MiwXmxSIY0gK5Ydj140Z1XHag+X77WjNUdcMVsO5yiCRb008RERERaQmFcyKy6JSLVYYP5hjaP87QwSzDB7IMH8xSLR87KIp3hEl2m/neUt0RkhNBXHeUSDyIZS2N6iWvVKt2y5TxMrVqt/SU4C1bhhPL3bBjAZxUGCcZat5POrYizrz9+tq2hR1yFvUQZJllbhUOPmgq43bcCYd+DUxasCMYMyHcRCDXeYYpwRURERGRJUnhnIgsWL7vkx0tMXQgy9D+cYYPZBk6kCV9pDBjeydoNyrfuqMkeyL1KrhEV4RAcHGHL37FNeHaRMVbPYArNV33T3TIpg1OIoyTCk0K3ibOG9etRf51FaGYhgMPwL77zeqqBx+avpBD7/lmzrgNV8KaiyEQbk1fRURERGTeUTgnIguCW/EYOZwzQdyBRhBXOsp8ZW2pEF2rEnSvjtO9ymypZbFFOXeX73q44xXcTMlUuk0ebjopiPNPYlECK+yYwC0xUeUWmhK8hbHjQS1AIEuP78Po7kYQt/9+GHyMpso4gGhH80IOyeUt6a6IiIiIzH8K50Rk3imMl2shXCOIGz2cx/P8aW1t26JjeYyuVXG6VyXqQVw0EWpBz+dGZTDP+D0HqBzM4o6X8XKVabnAUQVsE7AlatVuydrQ0tpmJ8M4iRD2El3EQmSaagkO/aYRxO3/JeQGp7frWG8q4lY/G1ZfBD1ng62/RyIiIiJyfArnRKQl3IpHLl0iO1YiO1qszRGXZfjAOLl0ecbHhGMBulfFm4K4zuVtOKd5QYD5otKfI3PXPgrbhqaHcY7VCNwSIewZgjcnOb/ndhOZF7JHJgVx95v54twp/yY5IVh+Iay5yARxqy+C+LKWdFdEREREFj6FcyIyq3zfp5Srkh0rkattMx0Xs5VjPk+yJ0pPPYiL0706QbwjvCSDpfLBLJm79lF8ZLh+LXJuF23P7MVpNwGcHdMQU5GT5nlw5PFGRdz+X8DIruntYt0mgJsI45ZfCMHInHdXRERERBYnhXMicsImV7vNFLyZrYxbPbFlPO2ARbw9TFt7mI6+tvqQ1K5VcUIR/fNU2pdh/K79FB8fMRcsiJ7fTeKFawgtb2tt50QWokqhFsLVgrj9D0ApPb1dzznNVXFaTVVERERETiP99CsiTXzPZ3Qgz+DeDIN7x8kcKZxwtdtkkXiQtvawCd9SIdpqIVxbe5h4h9lH2oJLshLueEq702Tu2kdp+5i5YEH0gh6SL1hNsFehnMhJ8TzYdy/89ivw6DehlGm+H4zBymfU5ou7CFY90yzmICIiIiIyRxTOiSxhvu8zPlJkcM84g3syJpDbN06l6B71MU7Apq19Stg29TgVXjLzwM0W3/cp7Uwzftc+SrtqlTw2xJ7WS+IFqwl2R1vbQZGFZmgHbP0K/Pa/IL2vcT2xHNZe2qiK6z0fHH0cEhEREZHW0adRkSUknymbAG6PqYob3JuhMD69Gi4QsulZk2DZuiSdfW214C2karfTwPd9Sk+OkrlrP+W9tYoex6LtGb0knr+aQKfmtRI5YfkRePhrpkru4ION66EEnHc9XHAjrLkUbP3yQERERETmD4VzIotUuVBlcF+tIm5PhoG9GbIjpWntbNuia1WcZeuSLFuboHddko6+GLajH15PJ9/3KT42QuaufVQOZM3FgEXbs/pIPG81gfZwazsoslBUS7D9hyaQe/IH4NV+4WA5sOEK2PIqOOsaCMVa208RERERkaNQOCeyCFQrLkP7s7WqOFMRNzqQB39KQws6emO1IC7JsnUJulfFCQSdlvR7KfI9n8IjQ4zftZ/K4RwAVtCm7aLlJJ67CicZanEPRRYA34cDD8Jv/9NUyhXHGvf6NsMFN8H5r4BEb8u6KCIiIiJyohTOiSwwvuczcjjHwJ7G8NThA1k8b2oSB/HOML31IC7JsjUJQlH9tW8F3/MpbD1C5sf7qQ7kAbBCDvFLlxN/zkqcuEI5keMa3QNbbzNVciM7G9fjfbDl98yw1d7zWtY9EREREZFToZ/SRea5SsllcE+GwzvTHN6ZZmB3mlK+Oq1dJB6sBXGJemVcTFVYLee7HvnfHGH8x/upDhUAsCIO8UtXEL9sJU5bsMU9FJnniml45HbY+l+w9+eN68EYnPNSE8itfx7YqgAWERERkYVJ4ZzIPJMbK9WCuDH6d6YZ2j+9Ki4Qslm2NmnCuFogl+iKaKGGecSveuR+NcD43QdwR4oA2LEA8ctWEr90BbYqGEWOzq3AzrtMhdwT34VqsXbDgvXPNcNWz7kOwomWdlNEREREZDbop0ORFvI8n5FDOfp3jtUr48aHi9PataVC9J3ZzvIzUyzfkKJrVRxHCzbMS17ZJf9QLZRLmwU47LYgieeupO3i5dhh/bMrMiPfh8O/NRVy274KuSONez1nmwq5zb8HqZWt66OIiIiIyGmgnxJF5lC5WGVgT4b+iSGqu9KUi25TG8uCzpVxE8SdmaLvzBSJTlXFzVdurkJ5T4bS3jTlPRnKB7PgmkpHOxEi8bxVtD27DzukIXci03geHP6NWWX10W/Ckcca92LdsPmVcMGrYPmF5h9HEREREZFFSOGcyGk0PlKkf5cJ4vp3phk6kMWfMkQ1GHboXZ+shXHt9K5PatGGecr3fdzREqXdacp7M5T2pKkOFqa1czojJC5fSdsz+7CCqnAUaVLOwa674cnvw5M/hGx/454ThrOvgS03woYrwNGcjCIiIiKy+CkBEJkl5WKVkUM5BveO14epZkdL09rFO8Msrw1R7TsjRdfKNmwNUZ2XfM+n0p8zlXF70pT2ZPAy5WntAstihNclCa1LEl6XwukIq9JRZLKx/bD9B/DE92H3PeBO+rcxFIczXwCbroazr4Noe8u6KSIiIiLSCgrnRE6S7/lkhgsMH8gxdGCc4YM5hg5myRyZXkFl2Rbdq+L01YaoLj8zRbwj0oJey4nwKy7l/eOU9mQo7clQ3pvBLzUPO8axCK2ME1qXMoHc2qRWXBWZyvPg4EO16rjvw8DDzffb18Cml8Cmq2DdcyAQbk0/RURERETmAYVzIsdQKlQZPphl+ECWodp++FCO6tTApqYtFaJrVYK+M8ww1WXrkoQi+ms2X7m5Sm14aobynnTTfHETrLBDaG2S8Nok4fVJgqsSmj9OZCalcdj5YxPGbf9h84IOlg2rnm3CuLNeYhZ4UHWpiIiIiAigcE4EMKumpgfzDB/MMXwwy9ABE8SNj0xfORXACdh0rmija1Wc7pVxulaa42g8NMc9lxNVny9urwniSrszVAfz09rZiRDh9SaMC61LEVzehmUrRBCZ0eges5jDE9+DPT8Dr9K4F06aeeM2XQ0bXgRtXS3rpoiIiIjIfKZwTpacYq7SqISrVcONHMpRrXgzto93hmsBXJyuVWbfviyqeeLmOd/3qR4pUNqdNgs47E7jpmeYL64nSnhdqjZfXBJHK+OKHJ3nwoEHTBj35A+aV1cF6DyjMVx1zSUQ0C8sRERERESOR+GczEue61GteLhVj2rZw518XHWpViaOG3u34lGtmHvmuPa42vVy0WXkUI7c2PRFGgACIdsEcLWte1UbnSviRDSf2ILguz6Vw1kzX9zuNOU9abxctbmRPTFfXLIxX5yqHUWOrZiGHXfWhqveAYWRxj3LMSHcWVebCrmuDRquKiIiIiJykhTOyXH5nm/CsIpbD8omjk1I5tbDsGp5UjhWO65WPNxJx+Y5GgFbteI2h28VD8/zj9+xpyDZHalXwk1UxSV7otgavrhg+FWP8oHxWmXcURZvCNiE1yQIrU8RXp8ktCap+eJETkS1ZOaN++1XTIXc5OGqkXbY+KLacNUrINrRsm6KiIiIiCwGCudkRsVchX//8H1UKy5e9fQGZcdjBywCARsn5Jh90CYQsnECNoGgjRN0ant7hr1TPw+EbNp72+ha0UYoqj/6C41XcinvyzSGqe4fhyl/Nq2IY+aKW58ivD5FaGUcK6DhxyInxPfhwIOw9Svw8NegMNq4173JhHGbrobVF4Gjf0NFRERERGaLPl3LjJygTblQnXbdDlgEamFYINQIxuphWGjS+aTjprahSaFZ7djcrz0u0Dh3Araq2ZYoL1+pD1Et7U5TOZSFKdMC2vGgGZ5aC+OCfVq8QeSkje6FrbfBb/8TRnY2rieWw5bfgy03Qu+5reufiIiIiMgip3BOZhQI2rzmloubAjQnqKBMTh83U6K0uxHGVQemr6TqtIdNRdz6JOH1KQLdUS3eIHIqihl49Jtm2OrenzWuB2Nwzkvhghth/fPA1jBwEREREZHTTeGczMiyLNp7Y63uhiwwvuvjl6p4hSpe0cUrVvGLVbzCpOOii1eYOK6dZyu46ekLdQR6ooQnhqiuTxJoj7TgXYksEm4Vdt1tKuQe/zZUi7UbFqx/rgnkznkphBOt7KWIiIiIyJKjcE5EpvF9Hy9boTKYx8uWjxGu1a7Xwji/7B7/yY/GguDytkYYt04rqYrMiv5tpkJu622QG2xc794EF9xkhq6mVrWufyIiIiKy5Hn5PKUdO/AKRdouenaruzPnFM6JLHFurkJ1IE9lMEelP09lIE91MIeXmz7n4ImygjZWNIAdcbAjAaxIAHva+aTjiEOwrw07on+SRGbFeD9s+6oJ5QYeblyPdcH5rzBVciueBhoWLiIiIiJzyK9UKO/dS+nJJylu307pye2UnnySyoED4PuEzzqLM755e6u7Oef0k7DIEuEVq1QG8lQGciaMqx1745WZH2BBoDOCkwrXgjYTopkwbXq4Zkcbx5ajFVJF5lw5D0981wxb3XkX+LUVVJyQWWX1gptgw5UQUEWqiIiIiJxevu9TPXyY4pNPUpoUwpV37cKvzPwzqNPdTbCvD9/3l9zc4grnRBYZr+RSHTTBW6UWwlUHcrjp8lEf43SECfa2EeiNEeyNmeOeKHZIk8GLzGueB3t/birkHv0mlMcb91ZfZCrkzvtdiHa0ro8iIiIisqi5Y2PTQrjS9u142eyM7e1YjPDGjYQ3bWrsN20k0Nk5xz2fPxTOiSxQfsWlMliYVgnnjk5fWGGCkwwR6GsjuKwWwvW1EVgWxQ7rn4KFxK9UcLNZ/HIFy7bAtsG2zW+XbNsMVbTs5ntQP8ayFs1vonzfx8vlcUdHcEdHqY6M4I6M4o6OmOPRMdyREaqj5rpfqRBav47who2EN26o753EAlsEITsID/wT/ObLkN7fuN6+pjaP3Kug68zW9U9EREREZo1freKXSnilEn5t80pl/HIJv1LFCjhYgQAEAliTNgIBrGAQy3Ea14LBU/5ZwCsWKe3YWQvhnqyHcNXBwZkfEAgQXr9+Sgi3ieCK5Vi2RltNpp/IRRYIr+xS3p2muH2M0o4xKgM58Gdua8eDjQq4SdVwdlR/5VvN9338YhF3fBxvfBw3k8HLZs1+fNxcz4zjZmv78QzeeNbsM+MmlMvnn3pHJgV59VBvIuCbcm6Fw9jRKFYsih2JYkej2LEoVjSKHY2Ze9FI/diORWvXJu5HzHGsdj8axYpEZvyG7HsebjqNOzpqQrWJgG0ibBupXR8brR/75aNXhc6k2t9P/r5fNF0L9PWZDwwbNpj9xg2EzzwTOzbPVq0e2QX3/h38+kvg1oL4cBLOu96EcqsvNv/vRERERGRW+L4P1aoJwyrlejjml8u1gKwWkpVKeOUy/tRrpTJ+sYhfrh2XSvil4qTjEl65hF+cdFy7NxHG4T6Fhfdm4jj1wI5g0AR39fMAVqBxbeLcHR6mvG+fGbkxg+DKlU0BXHjjRsLr12GFNKXKidBP6iLzlO/5VA5mKe4Yo7R9lNLeDLjNaZwdC9TCt7ZaABcj0NuG0xZsUa+XDr9cpjo2ZoKjsTETJo3VjtPpepjmZcdxm0K2cTjKHAsnzXHA94/6DfLYb8Cvf5Of/KfqKHnvaWFFIo2wLhTCHR/HHRs7pQ8fViSC09lBoKMTp6OjcdzZWTvuwOnsxLJtSjt3Udqxw/zGb8cOqv399S33059OelKr8SFjIrDbuJHQ+vXY4fDsfSFOxOHfws/+Fh69vTGX3MpnwsXvgLOvhWB0bvsjIiIiMst8zzOhVqXS2E/eypOPZ7hfKU9pO1Ob2mPLlXrA5pdKeJVyPRDzy2UTkE20KZXMZ+d5wgoGscLh2hbCcgL4bhUqVXzXNVV21SpUKviuO/PPCq5r2p7kL7kBnPb2RgC3aWP9s7ITj8/Cu1u6LN+fR3/KFrBMJkMqlSKdTpNMJlvdHVmgqsMFE8btGKO0cwwv37xiqpMKE97YTmRjO+H1KexEaNEMT2wlr1RqhGu1fbV+PiV8q+29XO6pvahtYycSOIkEdjKBE6/tE0nsRBwnkcRJJrCnXk8mzWPicfObrRp/IqTzPPD9pvP6se/j1/Z4XuO4fu6b4Kd+D/Bc8xu7QgGvUMDLF/AKefxisXFcv17AKxbwJ44Ltfv5Al6xiFco4BcKJ/blSSSaA7aOdgKdnTgdtbCtsxbCdXQS6Ox4ShVubiZTC+sagV1p+3bc4eGj/r8LrV3bXGW3cSOhtWuxgrMYjPs+7P6JCeV2/bhxfcOL4DnvgbWXabVVERGR45iYAsPLpM0vUDPjZjL6+o/BfuN44jNU7Xjidv3Xl36jbVO7+lP5TW191wPfMwGJ6+F7zXtzzwPPnbSf1Mbzp9ybsq99XjNhTQg7FMIKhbFCIRPchILY4dp5/fpEu4k2E/cmtw2ZiqmjfU3LZbx8vvF5L5fHK+Tx8pM+F07cz+dq1/KNz4v5fO0zYvM1v1ichf/jcyAYbP4azvS1n3wtEq59bRuBmh2OTDoON7erndvhkBltMnE88f/nGP9vZuJ7XiOsq9YCvEoVqs3nfrUCtWDPr7rTzu14G5FNm3C6u/Uz6Ek40axI4dwsUTgnp8LLVyjuTFPaMUpx+xjuSPM3JCvsED6zFsZtaCfQHdU/hCfIy+epDAxQrW2V/gGqg4ON8G2sEb6daGA0jW3jpFImJGpvr+1TOKl2nGQjTKuHcImEOY8nsNtiS/L/pe95JtirfZibCP38Ugk7mcRp7yDQ0T4vyt+rIyMmsNuxfVJotwMvnZ75AcEg4XXrCG/cQOS884m/8AWE168/+Rf2XHjsW/Dzv4VDvzbXLAfOfzlc9m7o23zK70lERGSh8opF3HQGNz2Gl8ngZjK4Y2ncTNqcj6XNtVoI56VrbTIZqFaP/wLSLBDACjWCPCyrHqLN2dczGDTBYzCIFZp0HAxiBUPN56EZrjXdn3QvEGgO0CbCsVDIhGDHvBbSXGlyUhTOzTGFc3Ii/KpHaW+G0o4xittHqRzMNo8jtC1CaxJENrQT3thBaFUCy5n7AMcrl6kOHqF6ZBB8cBJx7Fq1lh2LtfQbku/7eOk0lYFBqgP9VPr7qQ4MUhkw+2p/P5WBAbxM5uSe2HHq4VqgvQOnox2nfXLo1l671m6GSLa3YyeT+ua8xPi+T3XwyJTAbjvl7TvMh9UpQmecQeKKK0hc8UIiW7Yc+89LpQi//U8zp9zITnMtEIWnvw4uuRk61p2eNyUiInIaTcy36+VyZp7dXM4c53Km4mriOJs1c+5OhGrpWvCWNsenMvxuMisYxG5P4SRTjV8CWhO7iQOrUZU+eT9Tu6O2n9TOccC2sGwHHLu2d8zngYm9bWM5NjS1mbS3am1rbabuwSwWVh+iWSmbUQ+Th21OHaZ5lGsnO1WKFQxixWKNeYVreys2cTz5nrlm5iFuq89R3LhWaxeJmJEIT2HRApH5ROHcHFM4JzPxfZ/qQJ7i9lEzVHVXGr/S/E0vsCxKZEMH4Y3thM9IndaVU71SieqRIaqDg2Y7cmTKfpDq4BHco1UGAViWCenicZz4RGjXZoZlThwnEtht8drwzCnHtcfNVBnluy7V4eHmarcBE7ZV+wfqAdyJlrzbsRiBvj4CvcsI9vYRWLasMf9YU+jWYYaJ6gOAnCLf96keOkRpxw6KTz5J/hf3k7v//qbfLDs93SRe8EISV15B7OKLsSf+DhTT8OAX4Befg+yAuRZph2e/FS56G7R1z/0bEhFZhHzfN8PoanNVMTE307ThXLX5miafT7SpD/+a8phKFd+d/DgXp7OD4IoVhFauJLBiBYHu7gX3Sz2/XKYyeAR3eAg3m20EavXjSVve7N1sbtq9U5ofdya2bab4SKWwU6n6sZNKmgr82ugFJ1Vrk0zVj61IRJ/1jqO+Imi5XA/wJuZk833fhG1tkxb4ms3pPEQWKYVzc0zhnExwM6X6iqrFHaN4482T/9vxoKmMqwVygdRTn1jehG5HTLXbqYZuU1jhMIGeHlPCns3iZrOzt5ABmBLxRMIEdbGYGWo6OHjCiwE47e0E+voI9vYS6O0l0NdrArjeXoJ9vQT6+jQpqbSUOz5O9p57yN55J9mf3NM0T6Edi9F2ybNIrCwQL9+FQ63SM7nKVMk9/fUQ1p9fERGvXJ4eAh1lM+FR/uht8vmWTupuhUIEly8nuHJlbVth9ivMPtDTc9JzST0VXqlkRhxM/DK0f6A+AmFi7w4Nzepr2rEYdlub2eLxxnFbG3ZbrDYXby1wmxSsTYRsdlvbggs4RWRpUzg3xxTOLT1e2aU6mKfSn6cykKMykKc6kMNNN5fcW0Gb0PpUfahqsO/k5xrz8nnK+/ZR3ruP8r69VPbto3Lw0KmFbqEQgWXLzNbTM2nfQ3DSNTuZbOqn7/vmN2lZs+Kol802jsezeLmpx1m88XEzPCGbqx1n8WcY+tfEtk0fentN8NbXR7B3GYHePhO69faa/kUiJ/U1FGklr1wmf/8vGb/rTrJ3/JDq0EjjpuUTWxkgceWLSLzmvQRXr2ldR0VEThOvWMQdGaE6PII7OkJ1ZAR34nh4BHdkxMwTNjlsy+dn9ReDTSzLLKw0Mf9UbSPgYAWmXAsGsJwp54EgluOYa8GAmZ+r/jgHbIfq8BCVg4eoHDpEdWDg+NVjgYAJ71Y0h3b1fV9v02JQx+Ll882h28RUIP0D9fDNHR09sS9VMEigp2d6mBZvHDtNIdvENqV9LKpgTUSWHIVzc0zh3OLlVz2qQwUTwPXnqQyYMM4dKTbPFzfBguDKeGOo6tokVuD4H0TcbI7K/loAt3evCeFqx9UjR477+HroNhG4TQrdAj214G2G0G2u+a5bC/VMiOeNj+PlcqYSrrfXDPk4wQ+eIgvKwYfgZ3+L/+i3KI4EGD8YITvYSWmo+QfP8Lnn1Oapu4LwWWdpCI6IzEv1sG1ktBawDeOOjOKODJtrI7UArrY/7i/njsOKRJoCISc2Uxg0dYvNGB5Zkcich0R+pUJlYIDKgYNUDh2icnDKvr//+JPs27YZKTB5qGxPD+7oaKMC7iTn3rUiEYJ9fY3RCH0Tvwzta4xE6OjQ9yIRkVOkcG6OKZw7OV7JxR0v42XKuNkylmNhRwPYsSB2NIAVDWAF7Tn9IOB7PtWRItX+XD2Aq/TnqQ4VzDLmM7DjQYK9MYK9bQT6zD7YG8OOzBwuudks5b2m8q0RwplqOPfIsYcNOKkUwXVrCa1ZS2jNGjP8oXdZvdrNTqX0wUlkvvF92HmXWXl19z2N65uuhsveA2svobx3L+N33sX4nXdS+NWvmoZcBVeuJH7FC0lccSWxZzxdwbWINPErldoE8JXavGeV5uPyxHmlfo/J7SqTjyceV57WziuWTMg2OmICuOHhGRfBOR4rGMTp7MTp7CQwZe901uaBnSlki8UW/b9/vutSHRycHtodPFivvvNPsorQjscb035M3vf11cO3Vv/SVkRksVM4N8cUztWGPRaquOPl2lYx4dvEeaaMV9v75ROYVyxQC+yiwVpwF6idBxpBXswEeU3XIoFjrnDq+z5uumSCt4HGkNTKQB6qMw83sCJOPXgL9sYI9JljJz59UQN3fJzy3n1U9u014dvefbUhqXtxh4eP+Zadjg5Ca9YQWreW4Jo1Johbt5bQ6tU47e3H/5qJyPzgVuHR2+Hnn4b+reaaHYDNr4RL/xB6z53xYdXhYbJ33834nXeR+/nP8Uul+j0nlSL+/OcTv+KFxJ/zHOxYbA7eiIicDr7rNlannFRJ7mazzVNFZCetYFmbImJiHlgvm236N6IlgkGzyFJXl9l3dhLo6sTp6MTpqgVvHbVrnZ1afOkp8D2P6tDQpNDuEJVDB6kODRHo6GwO3ZabOXg1966ISOspnJtjizmc8z0fL19pCtcmArem8G28ctRwayZWyMZJhLATIfB8vHwVr1DFK1TgKS7oZIWd5kAvFsQK2FSHC1QG8vilmcNBK2gTWGYCuGAtgAv0tWFHML8xHhoyq50OD+FOHA/VtuEh3CNDx/1NstPVZQK4tWsJrV1jQri16witWY2zyP7siCw5I7vg8e/AA/8Eo3vMtWAMnv4Gs9BD++oTfiovnyd3772M/+hOsnffjTs2Vr9nhcO0XXIJkXPPqVeVTK0ymXo8l5OMiyx2fqWCm8ngpjN4mXT92M2k8SaOs7V5WCeHa9nadA5PcYjn0VjBYH1j0rGZF23mc4KT7gWCM7cLhcxq552dOJ1dBDpNEGcnEgrbREREjkHh3BxbbOGcmy0z9MVHasNOK0cd1jkTKxLASQZxEiETviXN3qnt7dqxHZ55eILv+/hltxHWTQrt/KbzifuV+rWjhW7T2BaB7giBjgB2zAU7D9VR3PEBvOEhqkPDjdBtaAjvJBZcAHB6uuvDT5tDuLX6LabIYuL7cOjX8MR3TSg3+GjjXrQTLno7PPstEOt8ai9TrZL/1a/I1oa/Vg4cOOnnsCKRY4R4MexY8/xME/eciRX14gmcZAI7kcAOP/VVpkVa7YQCtkztvH6cwU2nn/L8aROsUMj8/UrEcdri5u9XPI4Tj9f+3sVxEvH630E73mZWs5xo09aGFQ6bkM1xFJSJiIjMMwrn5thiC+f8isfBP/t50zW7LWhCtcTMYZsJ44JYwdZVZ/iuj1esBXaFKm6mQHnHPkp7DlLtH8LN9OMO7aFyeAfu8JHjr5o1WTBIoLubQFeX2fd043R3166Z80Dt3G5rO31vUkRaq1qGPT+tBXLfhfFDjXuWA+sug3N/By64CUKz/2+B7/uUntxO9u67qQ704+XyePmJ1Q3NsZvL4efyp22lQysYNCFCIo4TN4Gdk4hjJ5K1IKF2L5EwoV4iXmtTC/cSCezQ9GkBRCbUVwgvFBr7YhGvWDT7QhG/ZPZesYBfKOKVimY/0aZYxC8WTNvauVcsmL8n6fSsVK/ZiQROMomdSuIkUzjJJE4qiZ1M4iSSxwzX7Hhcfw9EREQWOYVzc2yxhXMAhcdHcNqCpvItHsRy5vfS577nUd69m8LWbRS2/pbi1m0Un3zy2D+YWpaZH6W7EazVQ7epgZsWXBBZuopp2H6HCeS23wGlSavgBdtgwxVw9nWw8UVPuUputnnlciO4y9VCvPzJHU8enscsfWywQiETbMRrwV0ygZ1K4aRSOKl2MzF8KoXTPnEtZa4lk1gKNE4r3/fN//exNG56DC+TaSw6MHUrz3BtWpujPLa+lRvPVSjglUr4hcKcvV87Hq8FbLVwbSJsS6VM4JaqXWs6NnsNFxcREZFjOdGsaHEveyRPSfTs+fUD5lSVgQEKW7dS3LqNwrZtFLdtw8vlprVzOjuJbt5MZPNmgitWNAVuTkfHol/9S0ROUfqgCeOe+C7s/il4k4L+tmVw1ktMILf+uRCMtK6fx2GHQqY6p6PjKT+X73kmtBsfx82M42XHzaT149nacW1S+/EM3ni2EerVJ7o3k9kD+OUy7vDwcRfKmfE9xWLY7alGgJdqbw7wZgj17FRqyVUp+a6Lm8ngpdO4k7exxrGXaT6f2HBPcJqIuRAMYkci2JGIGZ4diWBFo9jhMFY0gh2JYkXC2JEodjSCFY6Y/bRz81g7FsNJpWrVbQl9DhAREZGW06cRWRDc8XGKDz9squK2mUCuOjg4rZ0VjRI571yim7cQ3bKZyOYtBFeuUMWbiByf78PgY2buuCe+Y+aSm6x7E5x1DZx9Lax8Jtjzu5r4dLBsG6c211Vw+fJTeo76KpWTAjsT8I1PD4nGxmrHY3hjZk4wfN8EhPk81UOHT67/sRhOPG7m6AqHTPVeKDzzeSiEFQ6ZACgYam4TDmOFppzX25lzLAvfdcHzzN518V0PPHf6edWtXT/6ue+54HpmXz93zdcwPXPA5mUyx/+iHOvrFQ7XQqwEdjjSvFBAMIgVmjgOTTqeYTGCpi008/WQuTc5RLMiUexIWOGZiIiILHr6tCMz8qtVnrzoYvNb5dSUOVRqwzoax5OGeaRST/m30F65TOmJJ5qq4sq7dk1v6DiEN240VXFbNhPdsoXwmWfqQ7yInDjPhX2/qM0f9+3GCqsAWLD62Y1Arntjq3q5qFiOUx86GDzJx/qua0K8qQHe2NRAz4R63sT1TMaEZPk81dO0SuZ8Zre1mZCtPTW90nBKlaFdv5/EjszfilARERGRxUQphszIHR+vzzVUPXxylQlgfhAw87W0N8/fMnWy5FQ7TryN8t69taq4bZQeewx/hnnigqtW1avhols2EznnHOxYbDberogsJeU87LyrNmT1e1AYadxzwnDG800Yd9ZLIL6sZd2U6SzHMcNW29tP6nG+5zVCvfFxMwdaqYxfLuGXy2aOs1LZXC+Xms9LJbxaO79kzv1y2Vyb6bxcxi8W8TGVhpbjgOOAY2PZTv3csm0IBMx+pvNJj8GxsZxA4zkCDtgOlmNjt8Xr4VrznH2p+i/XrODJxqAiIiIiMpcUzsmMnESCM7//PdxMBjedwc2Y4THmOFOfILp+nknjpTP1Od/qwd5JDjmqv357u6mGqw9P3Uygc37PgSci85Tvw8gu2HU37PgR7PwxVCdNNh9ph01Xm0DuzBdCON6qnsppYtl2vTJMRERERGS+UTgnM7ICAULr1p304/xKBbdWneBlMs3hXjo9Lcxza22CfX0mhNuyheiWLQRXrdI8cSJy6rKDsPse2PVj2HUPpPc1329fA2ddC2dfA2suBUffDkVEREREpDX004jMKisYJNDZqSo3EZlbpXHYey/s+ompkBt8pPm+HTTzx53xfDNctfd80C8ARERERERkHlA4JyIiC49bgQMPmiBu191w8EHwqs1t+jabMG7982HtJRBqm/NuioiIiIiIHI/CORERmf88DwYfhd21yrg9P4dKrrlNxzpY/7xaIPdcaOtuQUdFREREREROjsI5ERGZn0b3NsK43fdA7kjz/VhXI4w743kmnBMREREREVlgFM6JiMj8kB+phXG1QG50d/P9YAzWXmaCuDOeD8vOA9tuRU9FRERERERmjcI5ERFpDbcKB34J2++AnXfC4a2A37hvObDqmbXKuOfDymdCINSizoqIiIiIiJweCudERGTujPfDjh+ZQG7Xj6GYbr6/7NzanHHPg7WXQiTZkm6KiIiIiIjMFYVzIiJy+rhVOPAA7LjDBHL9W5vvRztgw5Ww4UUmlEv0tqSbIiIiIiIiraJwTkREZtf4gKmO23EH7LxrenXciqfDxheZQG7l08F2WtNPERERERGReUDhnIiIPDVuFQ4+aCrjtv9w5uq4M68wgdyZV0C8pzX9FBERERERmYcUzomIyMnLDtbmjvsh7PwxFMea7694mqmM2/giWPkMVceJiIiIiIgchcI5ERE5Ps+FAw+aMG7HHXD4t833I+2w4QrY+GJVx4mIiIiIiJwEhXMiIjKz7JFJ1XF3Ta+OW36hqYzb+GJVx4mIiIiIiJwihXMiImL4vqmI2/5DePIHcPAhwG/cj7TDmS80YdyGKyC+rFU9FRERERERWTQUzomILGWlLOy6G7b/AJ78IWT7m+/3bTFh3ER1nKNvGyIiIiIiIrPJbnUHjuXP//zPsSyraTv77LPr94vFIjfffDNdXV3E43FuuOEGBgYGmp5j3759XHvttcRiMZYtW8Yf//EfU61Wm9rcfffdPP3pTyccDrNhwwa++MUvzsXbExFpjeGd8IvPwb9dD59cD//1GvjVv5lgLtgGZ18HL/0MvO9xePtP4Yo/gzUXKZgTERERERE5Deb9T1rnnXceP/rRj+rngUCjy+9973v5zne+w1e/+lVSqRTvfOc7efnLX87Pf/5zAFzX5dprr6Wvr497772Xw4cP8/rXv55gMMhHP/pRAHbv3s21117L29/+dr70pS9x55138gd/8AcsX76cq666am7frIjI6VAtw777GsNVh7c33+9YD5uuMtVx654DgXBr+ikiIiIiIrIEWb7v+8dv1hp//ud/zu23385vfvObaffS6TQ9PT18+ctf5hWveAUAjz/+OOeccw733XcfF198Md/73ve47rrrOHToEL29vQDceuutfOADH+DIkSOEQiE+8IEP8J3vfIeHH364/tw33ngjY2NjfP/73z/hvmYyGVKpFOl0mmQy+dTeuIjIU5UdhO13mOGqO+6C8njjnh2ANZeYQG7T1dC1ASyrdX0VERERERFZhE40K5r3lXPbt29nxYoVRCIRLrnkEj72sY+xZs0aHnroISqVCldeeWW97dlnn82aNWvq4dx9993H5s2b68EcwFVXXcU73vEOHnnkEZ72tKdx3333NT3HRJv3vOc9x+xXqVSiVCrVzzOZzOy8YRGRU+F50P9bUxn35A/g0K+a77f1NOaOO/MFEEm1pp8iIiIiIiLSZF6HcxdddBFf/OIXOeusszh8+DC33HILl19+OQ8//DD9/f2EQiHa29ubHtPb20t/v5nQvL+/vymYm7g/ce9YbTKZDIVCgWg0OmPfPvaxj3HLLbfMxtsUETk1pXHY+WNTHbf9Dsg2z7nJ8gtrw1WvghVPA3teTzMqIiIiIiKyJM3rcO4lL3lJ/XjLli1cdNFFrF27lttuu+2oodlc+eAHP8j73ve++nkmk2H16tUt7JGILHqeBwMPw867zLb3XvAqjfuhOJzx/Mb8cYm+lnVVRERERERETsy8Duemam9vZ9OmTezYsYMXvehFlMtlxsbGmqrnBgYG6OszP5D29fXxy1/+suk5JlZzndxm6gqvAwMDJJPJYwaA4XCYcFiTpovIaTY+ALt+XAvkfgy5web7nWeYeeM2vhjWXqrFHERERERERBaYBRXOZbNZdu7cyete9zqe8YxnEAwGufPOO7nhhhsAeOKJJ9i3bx+XXHIJAJdccgl/+Zd/yeDgIMuWLQPgjjvuIJlMcu6559bbfPe73216nTvuuKP+HCIic6pSNCur7rzThHEDDzffD7bB+svhzBfCmVdA94bW9FNERERERERmxbwO5/7oj/6Il770paxdu5ZDhw7xkY98BMdxuOmmm0ilUrz5zW/mfe97H52dnSSTSd71rndxySWXcPHFFwPw4he/mHPPPZfXve51fPKTn6S/v58Pf/jD3HzzzfWqt7e//e38/d//Pe9///t505vexF133cVtt93Gd77znVa+dRFZKnwfBh+bNFT151AtNrdZfmEtjHshrL4IAqGWdFVERERERERm37wO5w4cOMBNN93E8PAwPT09POc5z+EXv/gFPT09AHzqU5/Ctm1uuOEGSqUSV111FZ/97Gfrj3cch29/+9u84x3v4JJLLqGtrY03vOEN/K//9b/qbdavX893vvMd3vve9/LpT3+aVatW8U//9E9cddVVc/5+RWSJyA3Brrsbgdz44eb7ieWNMO6M50Nbdyt6KSIiIiIiInPA8n3fb3UnFoNMJkMqlSKdTpNMJlvdHRGZT6pl2H9/bajqXXD4t833A1FYd1kjkOs5GyyrNX0VERERERGRWXGiWdG8rpwTEVmQfB+Gtjcq4/b8DCq55ja9m+HMF5gwbs0lEIy0pq8iIiIiIiLSUgrnRERmQykLu38CT/7ABHLp/c3323qah6om+lrSTREREREREZlfFM6JiJwK34fhHbD9h2bbey+45cZ9J2Qq4iYCud7zwbZb118RERERERGZlxTOiYicqEoB9vy8EciN7m6+37EONl4FG18Eay+DUKwl3RQREREREZGFQ+GciMixjO2rhXF3wK6fQLXQuGcHzUIOG19stq4NWshBRERERERETorCORGRydwK7LuvEcgdebz5fnKlqYzb+GJY/1wIJ1rTTxEREREREVkUFM6JiIz3myBu+w9h54+hPN64Zzmw+qJGINd7nqrjREREREREZNYonBORpcdz4eBDJox78gfQv7X5fqy7Ecad+QKIdrSmnyIiIiIiIrLoKZwTkaUhNww774LtP4AdP4LC6KSbFqx8em3uuBfB8qdpZVURERERERGZEwrnRGRx8lw4+CvYcYcJ4w7+CvAb9yMpOPMK2HSV2cd7WtZVERERERERWboUzonI4jE+ADvvNPPH7bwLimPN93s3N4arrnoWOPonUERERERERFpLP5mKyMLlVmD/L01l3I4fTZ87LpKCM18IG6401XHJ5a3pp4iIiIiIiMhRKJwTkYUlfaARxu36CZQyzfdXPA02vMgEciufoeo4ERERERERmdf0U6uIzG/VEuy7z4Rx238ERx5rvh/rMlVxG640VXKaO05EREREREQWEIVzIjL/jOyuVcfdCbvvgUqucc+yYeUzzdxxG67QyqoiIiIiIiKyoCmcE5HWqxRgz88bK6sO72i+H+81lXEbroAzXgCxztb0U0RERERERGSWKZwTkbmVPQIDD9e2R8z+yBPglhttLAfWXFwL5K6E3vNVHSciIiIiIiKLksI5ETk9qmUYerI5iOt/GHKDM7dPrmyEcWc8z6y0KiIiIiIiIrLIKZwTkafG9yE7OKUa7hFTDedVZniABZ1nQN/5piKu9zyzta8Fy5rz7ouIiIiIiIi0ksI5ETlx1ZIJ3SYPSe1/GPJDM7cPp0zw1jcRwm2GZWdDqG1u+y0iIiIiIiIyTymcE5GZZY/A4d/CwLbGkNShJ8F3p7e1bOg8c1IIV6uKS61SNZyIiIiIiIjIMSicE1nqfB8yB00Qd3hrbf9bGD80c/tIuwne+iYNSe05B0KxOe22iIiIiIiIyGKgcE5kKfE8GN0N/ZNCuMO/hfzwDI0t6NoAfZsnzQ93PiRXqBpOREREREREZJYonBNZrDwXhrY3h3D9W6GUmd7WcmDZObD8gsbWez6E43PfbxEREREREZElROGcyGJQLcORx6YEcQ9DtTC9rRM2Q1HrQdwWWHYeBCNz328RERERERGRJU7hnMhCUymaVVIP/boRxA0+Bl5lettgmwnfll8AfbV9z1ngBOe+3yIiIiIiIiIyjcI5kfmsWoLBR00QN7ENPgZedXrbSHujEm75hea48wywnbnutYiIiIiIiIicIIVzIvOFWzHB2+QgbuCRmSviYt2w4sJGCLf8Amhfo4UaRERERERERBYYhXMireBWYejJ5iCufxu4peltox2w4mnNW3KlgjgRERERERGRRUDhnMjp5nkwvGNKELcVKvnpbcMpUxG34mmNfftaBXEiIiIiIiIii5TCOZHZ5Hkwurs5iDv8Wyhnp7cNxc2w1HoY9zToWA+2Pde9FhEREREREZEWUTgncqqyg2axhoFHYfARM1/c4ONQyU1vG4yZ1VInD03t2qAgTkRERERERKSm5JYIO+FWd2POKZwTOZ5SFo48bhZnGHy0Ecjlh2ZuH4hA32YTwC2/0Oy7N4Gjv24iIiIiIiKydFW9KgP5AQ6MH2D/+P7GPnuAA+MHWJtcy5ev/XKruznnlBaITHArZm64egj3mDke23uUB1jQuR6WnQu958Gyc2DZedB5hoI4ERERERERWZJylVw9eJsavh3KHqLqV4/62APjB+awp/OHEgRZenwfxvbVhqHWhqMOPGpWT/UqMz8m3jslhDsXes6GUGxu+y4iIiIiIiLSQp7vMZgfnFb5dnD8IPvH9zNaGj3m44N2kJXxlaxKrGJVfBWrE6vNce18KVI4J4uTW4Hxw5A+YLaxfaYCbvBxE8aVx2d+XChhwrfec00AN7G1dc1t/0VERERERGTe8n2fslcmX8lTqBbq+0K1QL6ap1gt4vkeHh6+75vH4OP5jXPP9/An/vNr20QbJrXxJ7Wh0WaiH/U+4U/rY9M5R287/bS5bbqUrgdxB7MHqRytsKWmI9xRD9tWJRoB3OrEanqiPTi2c8zHLzUK52Th8X0ophvBW3p/bTvQ2MYPQ+0fqxnZQTMP3OQQrvdcSK0Gy5q79yIiIiIiIiJPie/7uL6L67tUvWp9c30X16td8xvXitViI1SrTgrVplw7XhvvWD9zLnIBK8Dy+HITuk0J4FbGV5IIJVrdxQVF4ZzMPzNVvU0O3tIHjl75NpkTguRKSK0yoVv76logd55ZKdUJnv73IiIiIiIiskRUvEo9wMpX8uSrzftcNVc/L1QKjeuVHPlqnrJbpupXcb1jBG3+zNdaKWSHiAajxAIxogGzDwfCBKwAWGBhYVs2ljnBxsayLCysxn6izdTrk/YTjwPqzzdx/2isKcUnk9tOfdzUtpO1Bduaqt96Y70EbEVKs0VfSZkbvg/lnFnhNDdc2w/V9kcgc+jEq94mxLoawdtM+7YesO3T/95EREREREQWMN/3KVQLpEtp0uU0Y6UxxkpjZEoZxkpjjJfHp4dtE8eTrpe9cqvfShPHcsxmOwTsAAErgGM7RJzItDCt6Txo9vV7k67N1EYhlTxV+hMkp2ZiaGl+eFLINnSU8K12Xi2e+PNPrXpLrTKVbxPnyZVajEFERERERGSKslsmXZoesE2EbulSun5/4jhdSs9qsBa0g8SCMWKB2haMNc6nXq/to4EokUAEx2oO0urndqB+7NgOAatxzbEdgnaw6b5jOdiWijXmu1I+R+bIIOnBATJHBnCCQS540TWt7tacUzgnMyvnYOt/zRy05Y6YUO44E0DOKBCBWLdZYCHWDW3dZp9cXgve1qjqTUTk/2/vzsOcKs/+gd9nzTpJZgYYQAURUFwAUVEEfaWK4FKtgoJWFIFa5VUBqbVuFVxqq6Jt32rFCmpt1VqrtrUudan9qah1Kbu4Ie6ss2Wyn+X+/XFyTk5mBpjMZBYO38915TprcueZSc4k33nOeQAAAKBH002datO1tD29nbaltxWmKWtal6kjk80WpywSUeunLtrbm50C2dopj85jkEAGGxTPxYvCtrSebne7ZFGmmC9GMV+Mor4oRdUoxfwxqlAqKKSECr3HlCCF5FDLwC0/VXAJoU5hmgal43FKNtRTqqGeko0NpGUyFIhEKBiJUjAao0AkSv5wmMQeMuBCNpWi+LYt1LhtK8W3WQFc49atFM8vZ5KJov0r+/VHOAfgMDSif1yx6/2UUMugLdRs3h3GqSEMuAAAAAAAAD1SWk87AVtR8JYqXq7P1Lcc7bIHEQWRImqkELL5ohTzxZx1zdfb04Ac2Ol1x6D8mJkyyYQVtuVvqcYGZ969nI7HidtwCShBEF2BXZQCkRgFo1EK5qeBSGE+GImRGmj/7z2bSlF8e6Hn267Ct9YEKiIU6V1D0d59qLL/Xu16Hrs7hHPQOn+UaNh3iQKVOw7aQr2IlEB3P1MAAAAAAIAd0gyN6rP1VJ+pp7pMHW1Pby8K2tzhW0LbdZBgkwSJqv3V1CvYi3oHelOvQC/qHexNvfy9qDpQTbIoEzOTSSYRE5lkEjMTEztTk82iZWZ2RgBtsb2V+wiC0GrgVqFW4JTObsTMlEunKdVo9W4rBG8N1rr8fLKxnlINDWQaJQxoIQgUjEQpFKukYDRGis9P6aY4peKNlI43UibRRMwmpRobKNXYQPTVrh9SUhRXWFfogWfPByNRMk0jH7ptsU5DzU8ziV0P1uiviFC0dx+K9q6hSJ8aitjzvftQpHcfUv3IFRDOQesEgeicR7r7WQAAAAAAABTJ6BkraMvWUX2mELrVZ+qpPuuaz9+atF2HB25+yV8I2gKF4M1eZy9X+isRgHmQaRiUTacol0pRNpW0pun8NL+uaHvavZ89n25TDzc3fyhMwVglhfK3YDTmzIeiMWdboCJCorTjU1YNXbfCusYGK7DLT63lOKXiDZRubKRUvIFSjY2kZTNkaBo11W6jptpt7fqZ2eGbFbbV5OdrnHVqANeL3xWEcwAAAAAAANBtMnqGajO1VJeuaxGu1WXqWgRv7bmmmiiIFPPFqMpf1bK3W6A39Q72pupANfUO9KawEsapnR5gmgZlmpqsXmp277V8b7JMIlEcqjkhW4q0bAkDGe6C4g9QKBajYLSSQrF82BatpGDRvBXEyUp5rtMnyTKFK6soXFnVpv21TMYK7/JhXTre6ArzGp0eeIIoOr3don1qEL6VGcI5AAAAAAAAKCvd1J1TSO2BE2oztc5ppM66dG3JPduIrIELqnxVVOmvdG5V/iqq9Lnm7fW+Kor4Iujl5gFsmpRONDnXYNvZNNXYWHLvNTdZUUkNBskXDJEvGCQ1YM3b66zlVuaDQfIFguQLhUjx+cvY+s6h+P0U9fsp2qemu5/KHg3hHAAAAAAAAOySySY1ZhuLgjY7ZHNCt0wt1aZrSx4wQRVVqgpUOaGaO3hrLXRD7zbv0HM5yiSaKJNMUDreWDwggrvHW0M9peKNZBpG2x9cEChQESmcFhqNUTAaI3+4oihQaxm+BUmSMeIsdB2EcwAAAAAAAHswZqZ4Lk5bUltoa2orbUttc+a3prY6AyfUpetI57ZfuF4UROsU0oA1QII9b9+qA4VtFUoFwrbdmKHrlE0mKJNMOEFbNpGgdCLhrM8mE5RONFnLiYSzj67lSq7nD1c412RrPnVfny0Yie70+mwAPQXCOQAAAAAAAI/KGTnalt5GW1NbrcAtudUJ3bamC/NZI9vmx4z5Ylao5q92AjZ34GaHcDFfjCQRwcjuhpkpm0xSom47NdXVUqKullKNDc2CtSbKJhKUSSYpk0yQlin9OoBugiCSLxSyernFKp1ebq2Fb8FoFL3awHMQzgEAAAAAAOwmmJl01kkzNErradqe3k5bUltoW8oVwKUKoVt9tr7Njx3zxah3sDf1CfahmmAN9Qn2oT7BPtaACYHeTvCmSAhGdlemaVCqsZESdbXUVLedEnW1lKjdnl+uddbr2baHtW6+YIh8oTD5Q2Hyh62pL2wvV1jLrm3+sLVe9QdIEHFNQNhzIZwDAAAAAABoh6yRpaZcEyVyCUpoCWrKNVFSS1JTrolyRo5yZs6ZaoZGmqkVLbunOSNHmqm1WG5tWsq13Iis67n1DvYuCtxau/kkXyf9pKAr6JpGyfp8yNZK4JaoraVkQ12br9nmD1dQuKqaKqqqKRirdMK1FsGbHboFQziFFKCdEM4BAAAAAMAehZkpracpoSUokUtQk1YI2NxBmzNtFr7Z85qpdXdTqMpfVRyyBYoDt5pgDUV9UVzPzQNy6RQ1bt2Sv222ptu2UKLWCt/S8cY2PY4giBSKxShc3YvCldVUUd3LCeHCVdX59VW7xUijAF6BcA4AAAAAAHZbzEwpPUV1mTpqyDRQfbae6jJ1VJ+pp/psvTV1zcdzcUrkEmRwCSM+7kJYCVNYDVvT/Lxf8pMiKaSKqjNVJZUUUSma2utlUS5atvdx39d+LPd9cU037zB0nZpqt+eDt3z4tmUzNW6zpumm+C4fQ1IUqqiywjb7VgjfrGkoVokebgA9DMI5AAAAAADoMQzToMZcIzVkGqyQrVnA1jyEa8g0UM4sfbRHIms00bASpgq1gkJKyJm3g7YKtaJo6gRwapgqFGu/kBIiUcC1smDXmJnSTXErcMuHbw1bNlN822Zq2LKFmmq3EZvmTh/DXxGhWJ8aivTpa01711BFr0IPOH8Yo94C7I4QzgEAAAAAQKcyTIPqs/VUm66l7entRbfadC1tS2+j2kwtNWQaqCHbUPI11YiI/JKfKv2V1s1XucP5qC/qBG4BOYAgA8rGNA1Kx+PWIAv1tS1PQd2ymbRsZqePISkKRXvXULSmL0X71FC0j3val3zBYBe1BgC6EsI5AAAAAAAoGTNTUksWgrbM9lbDt+3p7VSXqSOTd94jqLmIGqEqfxXFfDGq9Fe2Ol/lr6JKfyXFfDEKKggtoHOwaVI60USJulpK1tdRor6OEvX2fD0l62spUV9HyYb6XfZ8I0GgcFU1RXvXUKymL0XyUzuEC8UqMWopwB4I4RwAAAAAADhhWzwXp3guTo3ZRorn4tSQbXBCN7uXmz2fMXbeC8hNIIGq/FXUK9CLegV6UXWg2pnvFehF1f5qp4db1BclRVQ6sbUA1ms+k0xQsq4QriXs+XwAZ83Xk2nobXpMQRApGItRKFZZ6AHn9ITr02m7jAAAXRRJREFUS5HefUhW8NoGgGII5wAAAAAAPMIehbR5wBbPNlu2b9niaXsGSQgr4R2Gbe7lSn8lySK+fkDXsK/v1rR9G8Vrt1nT7duoqXZ7vgecFbwZWttH3A1EohSurKJwZRWFKqspXOWaz68PRmMYbAEASoa/jgAAAAAAPZTJJjVmGwvXZ8vUFvVia8g2FAVtjblG0s229fDZEVVUKeqLUkSNUMQXoagabRG8ucO4gBwoU2sB2k7LZqipdjs1bd9O8dqtReFb03YrjNO1tg0U4g9X5EO2KgrnQ7dQZRWFY/lpVRWFYpUkyejxBgCdA+EcAAAAAEAXYmZKaInC9dny12prfr222nQt1WXqSOfSwzZZkCniizgBW0S1bk7o5p73FS/7ZX8ntBqg7UzToGRDfYvAzZq3grd0U7xNjxWMxijSqzdV9OptTat7U7iql9XTraqKQrEqklW1k1sEALBzCOcAAAAAADrIZJOack1Un6m3rtGWKQ7batO1RQMmZI1sSY8f88Wc00TtHmvVgWqK+WKthm4YhRR6CtM0KJtMUiaZcE0TlEkknHl7fbKhnppqt1GirpZMY9enWCs+P0V696GK6l5W+FZthXAV1VYQF67uheu7AfQAmmFSU0aneFqjeEajeFqnpkxh3ppq1JTRKRZU6YbTDurup9zlEM4BAAAAALjYQVtjtpHqs/XUkGlwpg1Z62aHcPXZemrMNlJDtqHk0UhDSsi5Nlurp43m11f7q0mREDBA9zF03QrU8qGaPW+Hau7ALZtMUCaVdJZz6VS7agqiSOGqaqe3W3H41osivfqQLxRCCA3dRjNMSmsGZXIGpXIGpTVrmtEKy5pukm6alDOYNN0kzTBJN5ly+Xnrxs68bjDlWllfmHet003STCZmJp8skU8WyadYU78ikk+W2jz17Wy7IpFfFslgdoK05kGbta5l0GZvT2ttv57pwOogwjkAAAAAAC9gZsqZOUpqSUppKUpqSWeghKJwLT9tyDY4IVxjtrFdAyMQWYGb3cvN3cOtl79wnTY7cAsqwTK3GqB9tFyW4tu2UnzrFmrctpXi2/LTrZupcdtWSscbO1xD8fnJFwqRPxQmXyhM/nDYmfcFQ+QPhykQiVKkl9UTLlxZhYEVoCx0w6R4RqfGtObcUlm9KExL5wxK5afpFkGbTmnNpHSu+D6awd3dtN1O2CdTxC9ThV+hSECmiF+hSEApWte7wtfdT7NbIJwDAAAA2IPZo3vWpmutUzEz1nXO7OudNWYbSRIkUiSFFFEhVVKdqSqqpEoqyaJctOzez9k3v10RFVIkpcV+AgmU1tOU0lNFgVpKTxXN29vsefc+KS1FSd1al9bS7bpWm1tQDlKlv5Jivph188eo0mctV/orKeqLWsv59VFflFQJ166CnkfP5Si+fZsVum3d4grftlDjti2Uamxo0+OogSD5w/lwLRhyQjZfyArarLCttQAuhMEUoENaC9jsWzytUUMq12y91bOrMa1RItuxvwW7IgpEQVUmvyJRUJUooEgUUK1eZ6oskSoJJIsiKbJIiiSQKokkSwIpklg033y5+TbFvZ+cf0xJJEEgyukmZTSDsjuZZu1pG/ZtPs3pJgkCUYVPzodphXCtedBW4ZeLtkfz68I+mWRJ7NTfxe4M4RwAAACAx5hsUkO2gerSdS3CttpMbYv1GSPT3U+ZBBKIqXN6IQTkAAXlIAWVIIWVsBO4OVNfJUX90aLgLeaLIWiD3YauadRUu43iW7dS47bNFN+2NR/CbaXGbVsoWV+3y8dQ/AGK9qmhSO8+FO1TQ9He1nykdw1VVPcifyiMnmxQRDdMyhlWcJPLhz7u5Z1u04386ZvshD853aREtvMCtrBPpmjACpDCPqlZmCZTwF52BWzuaVB13UeVKKjI5FetEM3rp1ebpvX3WRS93c7uhHAOAAAAoIexT8lMaSlK62mrR5l7Xrfm6zP1LcO3dC3VZ+tLvv6ZX/JTdaCaqvxVVO2vpqqANY36os7zyRk50kzNmdrzznozR5rhWt9s2b1eN4u/aNnBnEAChZSQE6YFlSCFlBCF5BAFlIAzb68PyPl1+fuElPx+csjZLokIFGD3pGsapRobKNVQT8nGeko22PPWNNFQT/FtWyhRX0fEOw+37cETrACuhqK9+1DEDuH61JA/FPZ8wLAnMUy2TsfMXw/NuunOfFrLz2fz2zRr32TWtc11n0zOCtOy+Wul5XSTzG44q9MdsEUD1rx9iwXV/PqWt4gfvbY6AqFc50M4BwAAANABmqFRUktSQksUn2KZD9DSWiFMay1g29H6UsO11kR9USto81e1GrzZ67vj+mfMXBTaGWxQUA5ilFHwPEPXKR1vpGRDPaUaGyjpCtvc61KNDZRJJtr8uLLqc3q+2eGbHcRFevehQEUE760ezDCZkjmdklmdEhmdElnrlszq1JRxzWfd+xiUyGqtBnBZveN/Q0ohCkSqbPUis0/lVGWxcJPseYlUSSRfi/XWLaRKrvCtWfCGgA08DOEcAAAA7FGYmbJG1rl2mTtUS+QSlNSbrd/FvGZqnfp8fZKPAnLAOTUzIAcooFjL7oEHmgdvMX+MFLHnXuNJEATnWnQAuzvTNCgdj7cI14oCuPx8uile0mOLkkzBWIxC0UoKxWIULJpWUqR3b4r2rqFAJIrwrQswM2kGW6N05gcQyOiFQQQymkEZzaRUzrBCNFfI5g7dnFvG2pbMtW8Qml0RBKKgIlHQJzuncAZViUI+92mcMoXUwnwwPx/Mz9undbqDNl+z4A2hGUDHIJwDAACA3RIzU1JLUkO2gRqzjc6Im43Zxh0ux3NxSmmpDg8U0Bq/5HdOtbRPyXQHavZy85DNmW9lH7/sJ1nExzWA7sCmSelEU9FppMkdBG/peJy4hN6ugihSMGoFbnbw1nwaisUoGKvE6abtYOZ7oSV20AutEKyZrkDNCtfskC2rWduKtue3debpnLIoUDh/8Xz7FvLJFPbLVGHP2ze/FZ6F7ECtlQDOJ3v/emgAXoBPewAAANDtckZup+Faa+vj2XhZRuO0r1fmXLcsP2hAi3k5SGE1XHS9s7ASduYRogH0fMxM2WSSko31xaFbswAu1VBPqXgjmUYJvZkEgYKRKAWjMSt4i1k925x5O3iLVVIgXEGCiJ5GbobJlNEMSuQDtGTz3mW54tM7u6MXWnOSKFBAsQYJCKiiM2/frDBNorDPGoAg7C+EaxV+mUKqXBTEIUwD2HPhUyQAAACUlWZq1JhtpPpMPTVkG1pMG7INVJ+tp4ZMg7M+pafaXc8v+Snqi1LUF6WYL+ZM7Xn3ckSNFIVwooAvxwC7My2XpXQ8TummOKXjjdbUvsXjxcv5daZRWqjvr4hQKBpr9ZTSUNTq3RaKVVKgIuKZ0UyZmbYlsvR1fZq+rk/TtqYsaYZJWn4wAM1kZz5nsLXOsAcKYNLN/LLO+RE57RsXz+dH8NSMzhlcwO6FFlKtMMwOwOzeZX57NE5FIr8i5kM2qRC4OcFbYR/3/RScygkAZYJwDgAAAHbIMA1qzDVSQ6YQqNVnW4ZujdlGZ3uT1tSuWqIgUlQtDtmaB22tTf2yv8ytBoDuYOg6ZRJNLUK2lL3cStimZ7PtquULhZoFbbGinm32fDASJUnuuddubC9mpu2JHH1dn3ICOHv+q/oUfVOf7vIBBWyiQPmeZUq+15kVqLl7mlW4TvVsfvpnhat3GnqhAcDuAuEcAADAHsJkk5pyTS17tDUL3Zwebdl6imfjxFR6dwaBBCtU88eo0ldJUV+UKv2VFPNZy/Z69/YKtQI92QA8hpkpl05Ror6OkvX1lGysp2R9nTNAgns+k2hnsC/JFIxEKFARoUAkQv6KqDVfUVgXrIhSIFJYJ6veHoiEmak2maOv6lqGb/Z0V+GbIBD1i/hp78og9Yn4yCdLpMoCKZLo3FRJINlZtkbnVFzL7nlVEkmRi5dl9zZJJF++ZxoCNQDY0yCcAwAA2A3ZgyHsrDdb81NJG7INZJZwwXK3iBppNVwrCt1c2yvUCpJEb5zeBQAtmaZBqcbGfLCWD952MK9ruTY/riCI5A+HKRCJFoVrzcM2az5KwUiEFH/AU2EOM5NuMumGdXqobjBp+alhWqeF2tvTmkGbGpuHb9Z8Rmt7+LZ3ZSB/CzrTvlE/qTL+YQIA0BUQzgEAAHQhzdAooSUoqSUpqSWL5ltbl8glKKknKZmz1qe0lLPd4PZd8DqkhHbYg82Z5sM2+9RRDHYA4H2mYVinkTY2UCreaJ1OGm90RiRN1tdRosEaSCHV2FjS6KS+YMgZICFUWdXqfDAaI384TGIZg3171M5k1nAGEsjqJun566bp+WufOSGYE3xZ6w2zEIzt+D4t768ZrjDNtc0wuWi7bhbf195eDoJA1Dfibxa6Feb7RQMI3wAAegh80gYAAGgj+7TQeC7uTOPZuDW112Xj1KQ1OcFaSk9ZAVs+bMuZbe9B0hY+yUeV/konUNtV2BbzxUiVvH06FwBY2DQpnb+GmxW4xSkVb6BUYz50izdQOl4I40o9rVQQRApGoxSKVVGoMh+2NZsPV1qhm+Jr27UhTZOpKaNRKlcI06ypkR+F016XX85vd+/v3p7WumbUzq6gSALJokiyJJAsWqeTqpJI/aJWALdPVRDhGwDAbgrhHAAA7FE0U6OmXJMTpNnBmh2qNV/nzOfilMgl2nX9tdb4Jb8zamhICVFYDVNIDlFIDVFYCVNQCVJYCRe2N5sPKkGK+qIUkANleT4A0LNZ125LUzaZoEwyQZlEgrLJRL6Hmztws4I4ewCFUnq3ERGRIFCgIkLBSJSCkSgFojEKRiKthG5VFIhESBQl0g3T6pmW0ymRscKyzfnQLPGlRsnsJmt9frsdniWymhO6NeVDtVSuc8I0SRQopFqDC/gViWRJIEkU84GX4Fz7TBbFohBMkcQW293hmFK0reV+iiSSJArN7pvf1uyxZDFfr5V1okCeOnUXAACKIZwDAIAuZ5gGpfU0pfQUJbUkpfU05YwcZY0s5Ywc5cwcaYZmLZs5a51928W2nc1n9Ayl9FSHn79f8lNEjVCFWkERX4Qiav7ms9aFlTBVqBVOwNZa2IbTRAH2PDsK2DL5Wza/LpNoKiwnE5RJJimbTBCb7btmpD8UzodsUfKFI6SEK0gKRkgMhon8YTJ9ITJ8IdKUEOUkP6V1k1KaQbU5g1L5WzKrU+ILnRIf65TMfkuJ7JdOr7VdXdusPUSBnBE3Q/ZNlVzr8vOqvV1y9gv78qN6+mQK5kf7xKidAADQk+GbAQAA7JRu6laQpqUoqScprVmhWkpLFU2TWtJZtve3l5N6smh9xsh0d7MopIScUK1CrXDCtdaW3eFbRI3gtFCAPZiuaZRNJiibSlI2H5plUknKpVJWoJZfXxSuJZo6HLDZBEkm0R8k8gXJVAJk+oKkKUHSlBBllCBlRD8lRT8lBD/FyU+NpFBKI0rlDErnDOJaIqp1P6JBRPH8rWNUSaSwPx+UqTJV+AvBWoWvtXnJ2keVrfuphXDNryBMAwCAPQfCOQCAHsgwDacXmXuaNYvXNe8ZppkaaYZW6DWW72XWfJ/mvdCa9zJzr9NMrdPaKQkSBeUgBZQA+SQfqaJKquS6iW2Yb8M2n+QjRVLIL/mpQq2gCrUCPdcA9lB6LkfZlB2eJfNhWiK/zrWcTFI2nSrM50O3UkYe3SFJJsEXJFPxk6EESJN8lJX8lBZUSgkqJUyF4qxQoylTVvRRRvRRNn/TBdm60r+bSUTZ/K0IE1Hrz9cnixRUJQqqMgVUiYKqRAFFarlOlSiouIK0ZgFb2NW7Ddc3AwAAaB98MwEAaANmpoyRKfT+0q2p3RPMWaelKWNkWg/W2rguZ+RIZ727m9yCJEgUVIIUUkIUlIPWTQk64VpQzm/Lr2u+3bmfUtimiip6RgBASUoK1+xebK59DK3j/3BgEogVHxmyn3TZZ4Vroo8yokoZUilFCjWxQmlBtUI1qQ0B206okkiRgEx9/ApF/DJV+BWq8Fs904KqnA/UJAq455XikM0J2lSZAopEkohjLwAAQE+BcA4APIOZKWtkKaNnnOAsbaSdwMwdpLnDNDto21nwltbTZRsIoFSyIJMqWb2/3FN3LzFFUgo9xux1olK0X9E++e2t3q/ZuoAcoKASJEVUEKQBQLsxM2nZDOXSacql06Rl0pRLpyiXSTvrdhW0ZZJJMsrQc80kgTRRdQK1rKhSzgnPVMrlt2Wdqa+wTlIpJ6htDtdEgajCr1AkIFNfnxWqRQL5abOwzV5f0Wy9X5E63GYAAADouRDOAUC3MEyDGnONVJ+pp4ZsAyW1pBOqtRaupfVCwFa0PX/L6BnKGBkySx2Vrh0CcqDoFlSChXnZmvdJvhZh2s7WKZJCPrHldlVScfolAHQb0zQok0hQLmWHaCnSMpmiQC2XSVEunaZMKmXd0inKpdKUy1gBnJbJkJFNk5HLEnF5/snBRM3Cs+JwrXhdofeaHby1Fq4pkuD0NrN7mVWoEvVRZQoq7p5nrfdQc28P5gcuiPgVCqoS/rEBAAAAO4VvfADQYcxMaT1N9dl6qs/kb/n5hmxDq+sas42d2hNNFVUKKFZg5pf8hTBNKQRo7mBtZ+vcp236ZT+JAq6pAwC7H90wqbEpRfV1ddRQV0+N9Q2UaGykZGMjpZsaKZtoIi0RJz2VIDOdIMokSMhlSCjzsZqJKCeopIkK5USFNEG1pqLinPq5q55rpuSjkF8pGrXTGkxAomj+GmhBVaZwsxE87dCstWurKRKO7QAAANA9EM4BABEVTgnNGllK62nn9NB4Ll4UrjVkG6guU0cNmYaisC1rtLgKdZtE1AhV+isppISsEE0JUEAq9Erzy/6ieTsws9e7tzv7SX6SRJwCBAC7H9NkyujWqJppzaCMZlA6Z7ayzqBUTqNUU4JS8UbKxOOUTcZJTzaRkU4Qp5NEmQRJuSTJuTSpeor8RoaUNl7PsnlMpQlyiyBtRwGbJqrEskqk+klQfCSqfhJVP0l+P8k+P6k+P/kUybrJIvkViUL5adgnU0gtBGpWqOYO36wAzifjGA8AAADegXAOYDdg90xL6SlK5BKU1JLOddHsEC1jZCijZwrhmp51TgNtbZ/Wljvak00VVar0V1KVv4pivhhV+iup0l9JMV+seJ3PWh/1RXHKJgCUFTNTzjApo5mU1ewwy7QCLc0gzTDJZCKTmSg/tZeZrfs7y2QvM5mm1ePL2s/ah7mwbJgmcS5rnb6ZSZOWy1I2m6NcJkO5bI60XI70XI50zboZOY0MXSNT14i1HLGhE+kaCaZOEhskszW15t3LOsmu9UREEhGF8re2MEikrBygnBIkXQmS6QsS+cMkBkIkBStICVWQLxyhQEWEApEIhaNRCvgU8ssS+RTRmfpkifz5qU+xwjWfLJIqiTiNEwAAAKAE+FYM0Ik0U6OUlqKElqBELlEUriU0a+qe39m2rriWmk0WZPLLfvJJPqpQK4oCtVbDtvz2gBzAFzIAINO0ArKcYZKm21OmnGFQTmfSXNuyrn0ymklpzaCs3TvMFawVpobTiyyjWT3KMjmDMnohgCv1smYCm+Qzc6S6bj4zSyprhfmibc32ZWva2tFPzd86Eyt+okCYpECY5FCY1FCEfOEKCkajFIxEKRKLUSQWo8qqSqqqrqRwRRjHagAAAIAeBOEcQJ67d5o9gqfdQy2lpXY4de+T1tNOoJbSUpQxMmV9jgIJFFbCFFJDRddS80k+8st+8kt+J1SzT/lsvq35Ps72/Daf7CNFVMr6vAGgPJiZNMMKt5yAy2DS9GbL7lDMvb9utry/KyzL5R9Hy9/PDtDc+2ZbrHPf17qPYZbnGmUCm/leYrrTe0xu1rNMZp3CrFPU3cPMtKYKGeQTDFLJJJUMUgSDFFMn2cjmbzmS9SxJplaW50tExIJIpuInllUSJIUEWSZRVkhUVJJkhSRVIVlRSVZVUlQfqT6VVFUl1ecjn18lv89HgYCf/H4/KT6VJEUlWbHuI6kKyaqPZEWx1qsq+YJBkmQcswEAAAB2ZwjnYLfBzJQzc0UjetqnZTpTe5t72Ug787sK2jprgAKf5KOQErKCNSVEYTVMITlEIdW1TglTUAlSWAk7AVzzdeiZBlBeuwq72hyE7ST40k17e+vzVo8y01rOB2WaWRya6fnH1csUerXzh0UimfmAzA7HdFJYJ5V1CuTXFW6FME0VDFLJuilskEI6KVzYXzKtx5JMg0RTI9HUSTB0ErqwxzARkaz6yBcMkhoMkS8QsKbBIPmCIVIDwcJ8MEi+QLDV7bLqw3EaAAAAAEqCcA5aZbJJW1NbSTf1wo0L85qpkcFG8fb8+ub7ttjeyrbm10CzAzb3ddPKcU20tgrKQQoqQQopocKInUqQgnJ+XX7ePaqne70dwNnhGnqiQXeyAygrDGLS8yGPlg99dNNadgdARdsMJsNka59my0Z+X/ey/fg726fFfUwuurZX8fW+CtcFo2bLnL9OmJm/b/4yYs6yaeb3ya8zTHL1DLN+Hrs7VRZJFQXyiyb5BYP8gkEBweox5iODVNKtGxuk5MMwhXWSTc0KxfJT0dRI1HMkGJp10zUiI0ek5Yh1jVjXiLo4LHOTZJlk1UeSku89pqpODzQ536OstW12DzOnt5rP54RqVqBWmJdkfCwCAAAAgK6HT6HQqqSWpBP/cmJ3P40dUkSlcJpm/haQAkWnZzqjebr2C8gBJ3BzB2whOUQBxQrZ/LKfRKH5OHWwJ2PmQniVD6d0wyQtH0RprhDLHW7Zvax006ScuzeW6e6ZVdzbqvm81WuqsD6nFx4/pxcCLneYpjV7ft3Z2Wp3pOYvaK9IAimSSIokkipby7IokiKLpLq2WduLl4vum5+XnfWCdaqmniXZ1EjUsyTqOSJ7qmWJtaw1zWWJtQwZ2QyZuQwZ2Szp2TTp2SxpmTTp2QxpuSzp2faNlrwjnL/tjOzzOUGYYodfrnXWzUdKs2VZtfcrLCuKWnQ/yb1//pROQcRxGQAAAAC8CeEctEoWZZJFmRRRIVmw5iVRstbnl53tYmHZva3FPq1ss9fb1z2zr5O2s3DNJ/kwwuduyA64sroVKmV1g3LOfCGMah56afbpfgY74ZMdULmDMWffVpZb6w3mDtTs0wbdtYuCOA+mW5IokCzaoZE1L4vWvCKJ1rIzFUgRRes+kpC/r7VNct/XtSzlH9uu09qy/fiSKJAkWFNBIBKFwlQUiARBsNYRkSgWlkXBug5jYZ+WU/dj2VMrMBNJkd0BmhWcWc+hcEoimyZpuSxpmQzlMmnSMpn8LU25bIa0TLKwLZshLZ0mLZOlXCZtrUunrdE6M2nS0ilKZzIUz2SIO7EHmiTLpPj8JPt8pOTDspbLrnWqz5kqfr+z3Zn63AGbL98bTcGpmwAAAAAAZYKEA1oVkAO04vwV3f00oEyYrQAqq5uU1axgLJsf2bD5OmvZGvkwm9+ey1/wPauZlDOM/NR0pu6wLesK3Kz5/GMYZskjKPZkgkCkiIVgqxByWSGPKostelnJUnGPK1kS8qFQy95WimwFYookkCK3sl1qGaY1fw6yJJLiCsKc+4gCiaL3ghVD110hWtoJ03JpezlTmGZd8/llJ3zLZpzHKXePtOYUf4BUv5/UQIAUX8Ca+v2k+u35/NTnJzUQJNXvJyUQsLb7A1bI1ixQEyWpU58zAAAAAACUF8I5gG5g5nuQpTWD0ppBGc2gdM6aZjTX+pxBGd3aZq/Laqa1r244oVqmebjmbCsEcD2Nkg+mVNk+ZbA4dLLDJTt0csImdyglWiFW8zBKLnqsVu5X9Lj2uraFXbKrB1hPw8zEpkmmYZBpGtbUMIh1k8ycQbphhaumaRK7t5uma3+zeNk0iMjqoUb53mdEAgmiUFhHZKWVgr2OSBBEa1/XusK81TtNEPL7Wo+QD8gK4ZodkFnhWsYJ3JyQLZ127qOlU2Toeuf9cAXBCsj8flL8flL8gaJl1R8g2b3dZwVuVsgWdPaxwzY1vw9O1QQAAAAAAIRzsNuwLwxv5C8gbzCTYVhT3TTJNKloau+jG9aF4QsXq89fkN40yTAKF7m3t9kXx7cuWs9k2MsGk2YWlgsXxS+c+miY+R5q+SDNCtVcy/l13R2W+RWRfLJEPlkkn2ver+TXydY6VRbJr+QDNEkin2Kd/udMXfv58iGbvVy8Lj91Pcbu3nPL0PUWPawKPa+yZOoaGbru3NzLpmGv18jQtPz2Heyru/bVi/c1Dd0K2uxQrRsv1t+TSLJc3OPMH8j3NiuEZorT6yy/vtXlQtiGETgBAAAAAKCzIJyDVumGSeu+jVPOMEnTC6cuWheoN0jT2bXOdC5OnzO4lXWFeS2/vXhdIQyzb7rJZNojOXJhvRepskh+WaSAKlFAkcifvwUUyVnnU0Rr2d6mNgvTmoVqPkUkf37qXufLX+jeyyEDM+d7gNkBlkFmfqprmhWoZV3XDcvseLlwjbE0ae7wLZPu3F5anUCUZBJFkQRJIlESSRQlEiWJBFEkUZJIFCVrmyi69pMKPbvyw6AyMZE9KiqbResoPyqqtd26udcR2eus+7DpWkfkhGGF8KxZsOa3T+fMh2f+Qu80q2dakBS/jyQZoyMDAAAAAMDuA+EctCqlGfS9e5Z399NoM0Eg6zpaguBcT8u50Hz+YvWiSIWL1ucvbO9e3tnF662L4Bcujm/t03LZPo0yoLYM2fyyRAFVLFrvV6QecXokm2aLXl1mvreWfeqjaRjWetMgUzfyvbby82YhACu+6WS45lvb7r6/HaYZRiFUc3qI2cvOtDh4c+/XlURJck5zVH3W1L5gviTLJMkyibJCcn5aWCeTlF8W8+ske52iFK+TWr+vKEtOyOYEbaIVvhWCNgmnTgIAAAAAAPRgCOegVaok0l6xgHMBevuaYGq+55W1LLSyzr2fUHQ/e0TE4nXWdcdkSXRGa5SKQrVmQZtgjQZZtK+w+1zc3urVpZOe08jIpCnZlLPmtRzpWo6MnEa6liNdy6/L5cjQ8utc89b+hdMfrXCqcMpj4bRJvcU6s9l6w9CJTW+fDimIYj7gkl3XBLN7W1mnOjo9sVpbzu9f6LFVOP0RvbQAAAAAAACgIxDOQav8ikTLrz6+u59GWdmnOxpO+JUPunLNll3zdmBm6BrpuUJo5t7XCdI0zXosXXNCtqL1+fvsDkOWFsIsyeqxJVmnPEqS3UvLOkVSlGWn15Youed3tE5u/bHy85IsW8tyfl/Xsh2uSfZ9ZMnqPWY/biv3ceqh5xgAAAAAAAD0UAjnoEcwDYP0XJa0bLYwzWZJyzWbure3Y7+edsF8WVFJUhVrqqgkKwpJqjW1tuXXKSrJikqyqjj7uU9zLARScrNTHwunRFphlutUSikfbrnub93POlUSAAAAAAAAADofwjlolaFr9NmK96zTHvOjSTpT1wiTzgiSrn1MXbd6j7nmzR3d3x6p0uj6i+tLsmxdF8wdfMn55fy8fe0wKzwrBGPudbKqFu0rKQopTrBW2Kdof0UlSZY9PTADAAAAAAAAAOwawjlolZ7L0d8X/6xbass+Hymqz5r6/KT4fCSrvuKpex9n351t9xcCMlUhWVZwqiMAAAAAAAAAdDuEc9AqSVGp3/7Dik6DtEaftHuXFUaVlJyRI+X86ZbWsjPv2qfl41jrZFUl2ecjWVHRmwwAAAAAAAAA9hgI55q555576I477qDNmzfTyJEj6Te/+Q0deeSR3f20upysKPT9mxd399MAAAAAAAAAAPA0nNfn8vjjj9OCBQto4cKF9N///pdGjhxJkyZNoq1bt3b3UwMAAAAAAAAAAA9COOdy11130UUXXUQzZ86kgw46iJYsWULBYJAeeOCB7n5qAAAAAAAAAADgQQjn8nK5HL3//vs0YcIEZ50oijRhwgR66623WuyfzWYpHo8X3QAAAAAAAAAAAEqBcC5v+/btZBgG1dTUFK2vqamhzZs3t9j/5z//OUWjUee2zz77dNVTBQAAAAAAAAAAj0A4107XXHMNNTY2Orevvvqqu58SAAAAAAAAAADsZjBaa16vXr1IkiTasmVL0fotW7ZQ3759W+zv8/nI5/N11dMDAAAAAAAAAAAPQs+5PFVV6fDDD6dXXnnFWWeaJr3yyit09NFHd+MzAwAAAAAAAAAAr0LPOZcFCxbQjBkz6IgjjqAjjzySfvWrX1EymaSZM2d291MDAAAAAAAAAAAPQjjnMm3aNNq2bRvdcMMNtHnzZjr00EPphRdeaDFIBAAAAAAAAAAAQDkIzMzd/SS8IB6PUzQapcbGRopEIt39dAAAAAAAAAAAoBu1NSvCNecAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAbiJ39xPwCmYmIqJ4PN7NzwQAAAAAAAAAALqbnRHZmdGOIJwrk6amJiIi2meffbr5mQAAAAAAAAAAQE/R1NRE0Wh0h9sF3lV8B21imiZ9++23VFFRQYIgdPfTKYt4PE777LMPffXVVxSJRFCnh9RAnZ5bA3V6dh0vtcVrdbzUFtTpuTVQp+fWQJ2eWwN1enYdL7XFa3W81BYv1ulKzExNTU3Uv39/EsUdX1kOPefKRBRF2nvvvbv7aXSKSCTSJW8ML9XxUlu8VsdLbUGdnlsDdXpuDdTp2XW81Bav1fFSW7xWx0ttQZ2eWwN1em4N1On5dtZjzoYBIQAAAAAAAAAAALoJwjkAAAAAAAAAAIBugnAOdsjn89HChQvJ5/OhTg+qgTo9twbq9Ow6XmqL1+p4qS2o03NroE7PrYE6PbcG6vTsOl5qi9fqeKktXqzTE2FACAAAAAAAAAAAgG6CnnMAAAAAAAAAAADdBOEcAAAAAAAAAABAN0E4BwAAAAAAAAAA0E0QzgEAAAAAAAAAAHQThHMAAAAAAAAAAADdBOEcAHRIVwz4bJpmp9cAgPbDcQCgNF3xniHquvdNV7SnK2pks9lOr+FVXfWa9pKu+pkZhtEldTpbVx3PMplMl9bzyvETOg7hHHSYl97sXvuw3JkSiQQREQmC0Gk16urqiIhIFDv3UPXll1/S6tWricgbvxu3rnpN4zhQOi+81nAc2D101mu6+eN66TjQWewvyZ39s9q+fTsRWe+bzvxivmHDBqqvr+/UYwAR0caNG+mJJ56gxsbGTqvx0Ucf0Yknnkiffvppp9UgIkomk5TL5ai+vp6Idv8AoPnrqzPb45VjTC6XI6JCGNxZ7dq8eTMREUmS1KnHgU8++YRWrlzZaY9PZB1r7r77btq2bVun1vnggw9o2LBhtGrVqk793BGPx6m+vp42b95MgiB02vtG13UiKrzGOqMOPguUD8I5KNnWrVtpzZo19M477xBR530ps9/Y9kGlMzQ0NNAXX3xBH374IRFRpx0cN2/eTG+++Sb9/e9/JyLrw3Jn1Pnwww/pjjvuoGQyWfbHdlu5ciWdf/75tGHDhk6rsXbtWjrxxBNp6dKlnVaDiGjdunW077770iWXXEJEnRcAfP755/TAAw/QTTfdRBs2bOi0P1xbt26ltWvX0vLly4mZO+392RXHga44BhDhONBeOA6UzkvHgY8++ogWLlxIF154IS1dupQ+/PDDTnnvbNmyhT7++OOyPmZrNm7cSEuWLKEFCxbQSy+95IRb5fTxxx/TlVdeSVOmTKFbbrmFNm7cWPYadp399tuPfvjDHxJR530xX7VqFQ0dOpSefvrpsj+22+rVq+nII4+kFStWOF/My/06W7lyJY0ZM4beeOONTg3pP/jgA5o6dSqNHz+eJk2aRG+//XanHG/c78+7776b1qxZQ4IglP2Ys379err88svpjDPOoGuvvZbef//9srfn66+/pvfff5+IOvcfQZ9++indeuutNGPGDFq6dCl9/vnnnVLnww8/pIsvvpgmTZpEF198Ma1du7ZT2rVhwwbq378/nXLKKUTUuceBAw44gN56662yP7Zt9erVdNRRR9EXX3zhHJs74/25cuVKOvbYY+nLL7+kl156qdPqrFu3jr773e/SCSecQCNGjKAXX3yxU44D69evp7lz59LZZ59NV1xxBb311ltlr+O1zwLdjgFKsHLlSh46dCgPGjSIa2pq+LDDDuPXX3+dk8lkWeusXbuWTznlFK6vr2dmZk3Tyvr4zMxr1qzhY445hocOHcpDhgzh8847r+w1mJlXr17NBx98MA8fPpxjsRiPGzeu7DVM0+REIsGDBg1iQRD4mmuu4Ww2W/Y6zNZrQJZlvvLKK1t9HuWwbt06jsVivGDBAv7ss8/K8pitWbFiBYdCIT7mmGP4wAMP5JdeeomZy9cO2+rVq3mvvfbi//mf/+Gamhrea6+9+Ouvvy5rDWbmVatW8QEHHMAjR47kgQMH8kEHHcTPPvssNzY2lrVOVxwHuuIYwIzjQHvhOFA6Lx0H1q1bx9FolKdMmcJjx47lo446ivfee29++eWXmbl8P7sPPviABwwYwFOnTuW1a9eW5TFbs3r1au7fvz+ffPLJPHToUD7ggAP4tttuY8MwytaW1atXc3V1Nc+YMYPPOOMMHjNmDP/sZz9j0zTL/lp7+umnuU+fPjxmzBj+4Q9/6Kw3DKNsNVauXMmhUIh/8pOflO0xW/Pll1/ygAED+Ec/+lHRevvYVo42rVy5kgOBAN9yyy08depUPvzwwzv8mK1Zt24dV1ZW8vz58/mOO+7gs88+mydOnMjpdLqsr4E1a9ZwZWUlz5o1i7/3ve/xSSedxJWVlfzCCy+UrQYz8/r16zkSifCMGTN4ypQpfOKJJ7LP5+OHH364bDU+/PBDrqmp4dGjR/Prr79etsdtbs2aNdy7d2+eOnUqH3300Tx69Gi+5JJLOJFIlLXO6tWrubKyki+++GKeM2cOT5o0iWfOnMm5XK7sx4E333yT99lnHx46dChPmjTJWV/u40AwGOzU48C3337LgwcP5gULFhStT6VSZa2zcuVK9vv9fNNNN/H8+fN58ODBzmfPcv5u1q9fz9XV1fzjH/+YH330Uf7hD3/IQ4cOdf5Gl6vW2rVrubKyki+55BKeM2cOT5s2jWVZ5vvvv79sr2uvfRboCRDOQZtt2rSJ99tvP7722mt51apV/O677/KECRO4X79+vHTpUo7H42Wp89lnnzlfLg8//HDny7mu62V5fObCgfGqq67il156iZcuXcrDhw/n//u//ytbDWbrYFJdXc3XXnstr1+/nl9//XWuqanhN954o6x1bHPmzOGLLrqIg8EgX3755S3Cko4eJNesWcPBYJCvv/56Z108HuetW7d26HHdcrkcn3feeXzxxRczs/Wc33vvPX7yySd569atnE6ny1LH/kCxcOFCTiaTvO+++/K8efPK8thuX3/9NQ8ZMoRvvvlm5/cxePBgfuSRR8pa54svvuABAwbwokWL+JNPPuFvvvmGTzzxRO7Tpw8vXryYt2/fXpY6XXEc6IpjADOOA+2F40DpvHQc0HWdp0+fXhRkr1ixgmfPns2SJPE//vEPZu74F8BvvvmGx44dyyNHjuQjjzySZ8+ezWvWrOnQY7bm888/56FDh/K1117LuVyOmZmvvvpqHjJkSNleZxs2bOCBAwfydddd56ybPXs2z507l5nL/8+H5557jvfff3/+xS9+wcOHD3feR8zMTU1NHX789evXsyzLfNNNNzGz9bt+5ZVX+L777uPly5eXNXT+05/+xOPHj3fqXHfddXzOOefw5MmT+ZVXXunw469YsYJVVeWrr76amZn/9a9/8cCBA/lPf/pThx/bLZ1O85lnnslz5sxx1i1btozPO+88zuVyvG3btrLUSSQSPGnSpKJ/nLz//vtcWVnJPp+P//znPzNzeQKa//3f/+UzzjjDWd6yZQtff/31LEkS//a3v2Xmjv292bRpE48fP57HjRvHJ598Mk+cOJFfe+21Dj/v5r788ks+6KCDnNcAM/M999zD++23H3/zzTdlq/PZZ5/x4MGDi44DixYt4lmzZjEzO4FJOX43pmnyW2+9xQceeCA/+uijvP/++/Mpp5zibC9Hu+zjgP1zM02Tn3zySb711lv5scce448++qjDNZiZX3jhBR47diwzWz+byy+/nE899VQePXo0P/zww2U5Tq9YsYJlWeZrrrmGmZk3btzI++yzD99+++0dfmw3TdP4ggsu4AsuuMBZ99JLL/HkyZO5rq6Ov/rqq7LUyWQyPGXKFL788suddd9++y0PGzaMVVXlO++8k5k79v702meBngLhHLTZe++9x0OGDOEPP/ywaP3MmTN5wIAB/Oijj3b4S18ymeS5c+fylClT+PHHH+cxY8bwiBEjyvrlvLGxkb/3ve/xpZde6qyzD2Lnn39+hx/fVltby2PGjCn6b6+maXz88cfz448/zg8++CBv2rSpLLXsA9/06dP5rrvu4pdffpkVRXFqL126tMMH/C1btnA0GuXvfOc7zrpLLrmEjz76aB42bBifeuqpzpfzjrwO0uk0jx49mp988klmZj7hhBN4xIgRHA6HecCAAfyzn/2Mt2zZ0qG2fPzxxywIQtEHpCVLlnCvXr34P//5T4ceu7l//vOffNhhhxV9WTnttNP4lltu4csuu4yfe+65DreHmfnJJ5/k8ePHc1NTk/M++etf/8p+v58POOAAXrp0KTN3PJjp7ONAVxwDmHEcaC8cB9rHS8eBXC7Hxx13XNEXWWbmrVu38pw5c9jv9/Nbb73V/kbkvfLKKzxp0iReuXIlP/TQQ3zYYYeV/UO5ruv861//mqdOncqbNm1yfmabN2/mAQMG8OrVq8tSY8mSJTxr1iyuq6tzfvaXXXYZH3/88Xzcccfx9OnTefny5R2uZfvqq6/43HPP5e3bt/Ndd93FI0aM4AULFvDMmTN5yZIlTgjZHoZh8I033siCIPAHH3zAzMzHH388jxw5kqPRKA8ePJhPOOEEXrVqVVnacscdd/D3vvc9ZmY++uijnZ5GU6ZMYUEQeNmyZczcvtd0bW0tH3HEEUWv5W3btvGoUaPK+neA2fqbM2LECL777ruddddeey0PGDCAR44cyfvuuy8/+OCDzNyx9+f27dv5oIMO4r/85S9FjzVlyhQeP348q6rKb7/9dvsb4jJ58mSePXt2i/W33norC4LAzz77bNFzKNW7777LJ5xwAi9fvpyff/75TgnoTNPk3//+93zGGWfw559/7vwdzWQyvN9++zk9qcvh8ccf5wsuuKDoWL9gwQIeMWIEH3nkkXzMMcc4vRvL0eMomUzylClT+JtvvuGnn36ahwwZwmeeeSbPnDnT+YdURyxZsoQFQeB//OMfbBgGH3fccTx69GgeMGAADx8+nAcPHsxvvvlmh9vxyCOP8P/8z/8wM/Oxxx7LJ510El977bV82WWXsSAIvHDhQmZu/88sHo/zqaeeWnQciMfjfNppp/HJJ5/c4efvlk6n+dhjj+VFixY56xYuXMiVlZV8yCGHcDQa5UWLFnEmk+lQnaamJh4xYgQvWbKEmQv/AJo9ezafcsopzu+tI7z0WaAnQTgHbfavf/2Le/XqxRs2bGBmLjqon3vuudyvX7+yfCm77777+NFHH2Vm5jfeeKPsX863bNnCM2fOdGrYf4jvv/9+Pu6449g0zaIPrh1py+LFi4s+RNx8882sqiqPHj2ahw4dyjU1Nc4H8o7Usdvw6KOPOgfJf/zjH6yqqnOKzhdffNHux7edddZZfNhhh/HSpUv5qKOO4gkTJvBdd93F99xzDw8fPpwPPPBA5z9/7W1POp3mE088kZ966im+7rrreNKkSbxu3TpOJpN8zTXX8CGHHMIPPPBAUbtL9fbbbzv/1bWtWrWKDzroIF68eDEzly8E+v3vf88VFRXOl7zFixezoig8ffp0HjduHA8ZMoRvv/32Dte77bbbuH///kXrXnzxRZ41axaffvrp3Ldv37J0Y3/11Vc7/Tjwu9/9rlOPAcxdexy48847u+Q4YN+3s48DZ599dqcfBzKZjKeOAw8//HCXHAduv/32LjkOXHrppXz00UdzXV1d0fovv/ySp0yZwqecckqHT6NNp9NFX+weeOAB50O5OzTr6JfYhx56iH/9618XrduyZQvHYjF+9dVXO/TYtg0bNhSdinPjjTey3+/nW2+9lW+44QaeNm0a77fffmU7fTuZTPKIESN4xYoVnEwm+Xe/+x1XV1ezIAjOz64jr7XNmzfzD3/4Q/b5fHzIIYfw5MmTeeXKlZzL5fipp57iiRMn8tlnn12WXnqPPPII19TU8NKlS/mUU07h2tpaZ9vPfvYzlmW5Q6c5vfPOO868/TN56qmn2O/387///e/2P/FmTNPkc889l4cPH85/+ctf+Morr+RgMMgPPfQQP/vss3zrrbeyKIodDp62bt3KRx99NN9yyy1Oj6LPPvuM+/fvz08++SSfdNJJfN5557Gu6x1+7yxatIj32WcfpxeW/Xi5XI4vueQSPvDAAzv8z6eVK1c6888++6wT0P2///f/nPX234D2/i149tlnnRCD2WpHU1MT77XXXvzEE0+085m3VF9fX/SPzdtvv539fj//6le/4iVLlvCcOXNYVdWy/FOA2fo7OmrUKCeE+de//sWxWKzoONDRXruLFi1iSZJ48ODBPGXKFP7oo49Y13V+5513+Oyzz+Yjjjiiw/94ev7559nv9/Pvf/97njx5ctHjPfzwwywIQofPRHD38rNfR2+88QYLguAE3eUyd+5crqio4HvuuYcvvfRSDgQC/Nhjj/GKFSv4kUceYUEQ+KmnnupQjVwux6eddhrPnj3b+Vv8+eefc69evfjFF1/kCy+8kMeNG9fhgNZLnwV6CoRz0GamafKBBx5Y1IXdnewfeOCBRd1nO1qL2fqg9Nprr7X4cp5Kpfizzz5r1x/iTCbD77//fota9913H48ZM6ZoXTk9++yzPHDgQP7b3/7mfLgcP358UQ+Ujvrb3/7Go0aNcn4u3/nOd1iSJD7nnHPK1qbvf//7LEkSf+973ys6je2bb77hgQMHtrguTHtMnjyZDzvsMJ45cyb/8Y9/LNo2c+ZMHjVqVIce3/26cf9c5s6dW7Yvr26HH344V1VV8aRJk1hVVX7xxRedbVdccQUPGjSoxR+2Uq1fv54HDhzIV1xxBW/ZsoXfffddDoVCTtf1/fbbj++7774O1WC2fnYHHXRQpxwHWvuy2BnHAPv+7733nrPcGceB1j70dtZxwP1cO+s44A4rO/M4YD/Hzj4OuH8/nXUccD/uEUcc0WnHAbvOBx980CXHgccff5wPPfRQvvPOO1ucyv7QQw9x//79+csvv+xwneav19b+a37jjTeWrZeWXS+dTvOwYcOKelD+7W9/61Cb7MfOZDJ8yimnFPVaeP3117lPnz5Fr4n2yuVyrGkaT5w40blG17Rp0zgSifDQoUOdU2k7yu4dccQRRzg96Gy//OUvuW/fvmU5vfXzzz/n0047jQ8//PCi01uZrRB16NCh/Pjjj3eoRvPX2caNG/nwww/nn/70p0X1OuqVV17hqVOn8hlnnMFDhgwpei9ms1k++OCDnV5AHTF//nweMWIEf//73+fbb7+dw+Gw00v8jjvu4IMPPrjd4az7Z/Gf//yHx40bx5dddpkTmNjbX375Ze7fvz+vWLGiQzWae+655/ikk07iSZMmOUHmvHnz2tUbsLWfgfu1cPjhh/Pf/vY3Z/n3v/99u07VbK1ONpvliy66qOg9b4eo7b1mX2ufbWfMmMFPP/00M1v/QK2qquIBAwYUfYYrVfP23HLLLTx8+PAWv+snnniCq6ur2xU2uttiGAafc845PGjQIOeff7quO/uMGjWK77rrrtIbwrzDXsSmaXI8HufTTz+dzz//fE6lUh06Drjvu2HDBr700kt5+vTpfNhhh/Edd9xRtO+4ceP4kksu6XCdX/3qVzxmzBg+9thj+ZprruFQKOQ87mOPPcb77rsvNzQ0tKuO7fHHH+dRo0Z57rNAd8JorbBD27Zto/fff59Wr15NTU1NJAgC3X777bRy5UqaN28eERH5fD5nOPCRI0e2a4h7d51EIkFE1mhMhmGQJEl0zDHH0G233UbBYJCOO+442rp1K1111VV0wQUXUCaTaXON9957zxkW+7DDDiMiawQe9whJ9ihGgiDQFVdcQZMnT253W5qPlDhkyBB67rnn6PTTT6fKykoiIjrqqKNKevzW6qRSKSKyRrYcPHgw1dTUkCiKNHv2bPr444/pjjvuoGeeeYYuuugi53fVnjrxeJyIiB555BG69tpr6dxzz6XevXs7+9bU1NC+++5LTU1N7a5h3/eXv/wlZTIZeuihh6iurs5pHxHRpEmTyOfzOcPPl1LHfg24XzfuEYUuvvhiCofD9OCDDxbVbG977J/Ze++9R3/4wx9o+vTpNHbsWBo7diyl02kiIjrxxBPJ5/OVPLKmu046nabBgwfTj370I3rqqadoxIgRdMIJJ9BFF11ECxYsIMMwyOfzOT/LUqRSKTJN0/mZiaJIt99+O/33v/8t23HArqFpWtF6XdfLdgxw10mn0xQIBOjwww936pTzOGDXaW2U2XIeB9y/G/v5MzMNGjSorMcBu457lLdHHnmErr766rIdB1pryy9/+UtKpVJlPQ64XwOyLBdtK+dxwK7jfn7vvvsuPfzww2U9DjSvs++++9KVV15Jf/nLX8p2HPj888/p/vvvp2XLltE///lPIiKaOnUqHXPMMXTffffRH//4x6LHHD16NAWDwZJfA63VsV8L9mtvxowZNHfuXFqxYgX9+te/pmnTptGNN97Y4nfZ1jovvPBCq/uIokiiKDr1r732Wrr44ovb/FrYWVt8Ph8988wzdOqppzqvuaqqKqqpqaGqqqo2t6N5nRdffJGIiBRFIVmWadSoUfTpp5/SBRdcQK+99ho988wzNG/ePHrqqafoRz/6Ubvr2O3p3bs33XjjjfTrX/+aBg8eTESF39OQIUOosrKSVFXtcJ2BAwfSCSecQF988QWtXLmSNm7c6Iw2GA6HKRaLkc/na1cN+2fmPn4SWe+jk046iX7729/S1q1b2zW6YWuvs+OPP54ef/xxWrp0KcmyTHvttZdTV9d1ikQi1K9fv3bXef7554nIOnZOmzaNGhoa6Pnnn6ef/vSndPfddxMRUTQapUAgUPJxraGhgYis94b9ez7yyCPptNNOozfffJMWL15M33zzjfOzGjZsGIVCoZKOae4azUd6tJ/vySefTPPmzSNRFOnWW2+lM888k/7v//6vpNeaXUeSpBZ/p92fBURRdOped911dNlll5U0qqq7jvvvJzOTqqq0ZMkSOvHEE522CoJA/fr1o3322afNNdx13D83+3kefPDBtHLlSpo+fTq9+uqr9Nxzz9G9995Lr732Gk2bNq1ddZq357rrrqOHH36Yhg0bRkSFv6X9+/en3r17UzAY7FBbRFGkyZMnUywWo40bN9KGDRtIkiRnn3A47HyeKrWOoiitjioqCAJVVFTQhAkT6KmnnnJe2+V43+y3335099130/3330+yLFPfvn2JyDp+6rpOPp+PBg0a1O469mt63rx5NGfOHNpvv/3o448/pp/97Gd07733EpH1dygSiZRU49tvv6V//OMf9NRTT9F7771HRNZngTFjxtD9999fts8C7jruUZqZ2fldleOzQI/VDYEg7AZWr17NBx54IA8fPpwFQXAu/F1fX8+LFy/m/fffny+66KKi+5xzzjl80UUXlTS6WWt13Pe1503T5Ndee43HjRvHsixzKBRq8zWBWqvR2n8/HnvsMT7yyCOZmfmaa67hYDBY0rnyO6qzs5/FjBkz+PLLLy/bz0zTNJ4wYQLvv//+XFNT4/QQ/POf/8w1NTW8efPmDrXHPfJj8+shaJrGp59+uvMfoLa0Z0c/s2w2y3/5y1940KBBfOihh/LatWud2nPnzuVJkyaVdAHYtr4GNE3jSZMm8YQJE9r82Luq4/6ZPfzwwzxixIii+8yfP5+POeaYkrp9N69jXzMrnU7zN998wy+99FLRf5Hj8ThPmDCBH3vsMWZue4+wNWvW8IQJE3j8+PG8//77829/+1v++uuvWdd1vvPOO3nIkCEdPg40r3Hvvffyxo0bne32f2g7cgxoSx37uXb0OLCrOq1pz3FgZ3V0Xefjjz++LMeB1up8/PHHzvbmo6W15ziws7Y8+eSTvO+++5blONDW10BHjwOtvW8++eQTZ/tDDz1UluNA8zr33HOP03vl22+/5X/+858dPg7YI4yOGTOGBw8ezOFwmC+88ELnP+SzZ8/mQw45hOfPn8+ffvopb9u2ja+66iref//9Sxp8orU6P/jBD/jbb7919nH31li2bBkrisLRaLSknjltqcNsfdbp3bs3L1++nG+++Wb2+/387rvvdkpbmK0BKEaPHl3SoAA7qmP3Vrv55ptZEAQeNGiQcwyor6/n3/72t85lCdpbZ9asWTs9jsybN49PPPHEknqftlZn5syZTm/pxYsXc9++fXnEiBH89ttv85o1a/iGG27gfffdt809M0r53Xz11Vd86KGH8qJFi0ruMbOjn5m7zplnnskLFizgTZs2cTqd5htuuIEHDBhQ0qnNrdWZMWNGUW+Y5r1ZZs2axVOmTClpJO8PPviABw0a5PQkZC7ucXTDDTfwUUcdxaeddhqvXLmSP/nkE7766qt54MCBbT6ttbUazX/u7mPWM888w5WVlRyLxYpOfS1HHWbr89R+++3HTz/9NP/iF79gv99f1Nu+3O1htq5BOHLkyJJOBd5VnaVLl7IgCDx06FDnOJDJZPjZZ58t+rvUnjq76n35ox/9iMeOHeu8h9tTw93D/Q9/+AMfcMABHIlE+K9//Su//PLLfP311/Pee+9d0vumlN+NaZo8duxYPv/880u+VmdbfmazZ8/mU089lTdu3Mjbt2/nhQsX8l577dXh303z93fz537JJZfwxIkT2zzi7erVq3m//fbjI488knv16sVHHHGE81mCmfnCCy/k4cOHl+WzQPM6zU8td/+u2vtZoCdDOActfPrpp1xTU8M/+clP+PPPP+d77rmHBUFwrlW0fft2vvfee7lfv348atQonjNnDp933nkcDAZLuu5Ha3VEUWxxwXL7QJZOp/nUU0/lqqqqNtdpaw1mKzg54YQT+IYbbmBVVYtOfS1nHWbrj83111/Pffr0aXFh/Y7USSQSPH36dD7iiCNaPP9Srv1Sant0Xefrr7+e+/fv3+YP/Tt6ndkfslOpFL/wwgs8ZMgQ3meffXjChAk8efJkjsViJXVbbmtb7A8A//3vf1kUxaI/OuWq89VXX3FVVRWffPLJfPfdd/PFF1/MVVVVHW6P++fWXDqd5muuuYb79+/Pn3/+eZvrfPzxx9y7d2+eP38+P/HEE7xo0SIWBIHPPPNMXrVqFedyOb733nu5f//+7T4O7KjGlClTiq4vYf8hbs8xoJQ6zB07DpRSh7n9x4Gd1bGvuzJ9+nQePXp0h44Dbanj1p7jwI5qTJ482fki9MILL/DQoUM7dBxo6+/G/nvT3uPAzurY1xX86quvuLq6ukPHgZ393Fp7rbXnONDU1MRHH320c5r6pk2b+Pnnn+eqqio+4YQTnCDwxhtv5GOPPdYZXblv37783//+t81t2Vmdk046iT/99FNnX8MwWNd1njt3LldWVpZ0HCilTlNTE48aNYrHjx9f0pfyUmowW6Pr/vjHP+bKysqSfv87qzNx4kT+9ttvWdM0njNnjnNNNfvLZilB087qTJo0qcX7/IsvvuArr7ySq6qqSjqVbWd1JkyY4IRaf/zjH/mkk05iQRD44IMP5iFDhrT5tVbq78YwDJ44cSKPHz++pCCrrXVuueUWHj16NPfp04ePP/547t+/f9neNyeeeGKL9qxcuZLnzZvH0Wi0pAupf/nll3zooYfy0KFD+ZBDDuEbb7zR2eb+uTz44IN88sknsyAIfMghh/DAgQPb3J6d1WgtNDEMg+fPn88VFRVla0vzOoZh8DHHHMMHH3wwB4PBNofzpdZhZv7www/5iiuu4MrKypKCxp3VcYdAP/nJT0oKFttbx7Z+/XqeP39+Sce1tr7OXn/9dZ4xYwaHw2E+6KCDeMSIESW9b0r93TAzX3TRRXzUUUeV9M+Gttb54x//yMcddxyrqspjxozhAQMGlK09rV26Y/ny5XzppZdyJBJp8+/m008/5b333puvuuoqbmho4Pfee49nzJjBs2bNKuqo0dHPAjur0/wamaZptvuzQE+HcA5auP766/m73/1u0bqTTz6Z33jjDX7jjTec/5Z+9tlnPGPGDD777LP5ggsuKHnUlB3VWb58Ob/55ptFPRpyuRz/4he/YFVVS0rGS6lhjzoUjUZL/iNWSp1XX32Vv//973O/fv1KOmjtqs4bb7zB9fX13NTU1OGLvpfSnldeeYXPOuss7tOnT0nt2dXrzP7vfzab5UWLFvG8efP46quv5vXr13daW0zT5K+++oqnTp1a8oW521rnpZde4lGjRvGoUaP4u9/9btnfN+7n/c477/B5551X8h9IZqvnwznnnFO07sILL2S/38+TJ092rjG0YcMGvvDCC9t1HNhRjUAgwGeddVbR+1DX9XYdA0qtc99997X7OFBKnX//+9/tPg7srM7kyZP5008/5a1bt5YUxpZa56yzzioK/v71r3+16ziwq9eZ/eExk8nwTTfd1O7jQCm/G2Zu93GgrXVefPFFPvzww9t9HNhVHfcXyffee69dx4F0Os2HHXYY/+lPfypa/9FHH3GvXr2KjkNbtmzh559/nt94442SRwTeVZ0zzjij6AvgO++8w4IglPRludQ6dXV1PHDgQK6qqirpy3IpNd5++23+3//9Xx45cmRJNdpSp/nfiPYqpT1vvvkmz5o1i4cNG1byMXpXdU477TRnnWma/P777/Mnn3xS0oXmS2mL/aX2yy+/LPkaY7uqc/rppzvrnn32Wb7tttt4yZIlJR9rdlXnzDPPdEKAhoYG/sMf/sCjRo0q6XdjmibfdtttfMopp/CLL77ICxcu5GHDhu0wOGG2rkO3bt26Nvf+akuN5gHQ6tWrea+99irpb3SpdTRN47Fjx5YcnJdaZ+3atU7P2XLXKaVnebnas3r1ar7iiit4+PDhbT6uted19sknn/DmzZuLBogpd1tsjY2NJfU2bksdd0+2NWvW8LJly/jJJ58s6ftbqe0xDIP/9re/8dFHH93m3002m+UFCxbw1KlTi34Hy5Yt4+rq6ha94rZv396uzwKl1mFu/2eBng7hHLQwb948Pvnkk50LU9unRowePZprampajJLE3L5Rv3ZWp2/fvjxp0qSiOg8++GCLiw6Xo4Y9Gtd//vMfPvroo9s1NHMpdd5++22+5pprSv5yuas6NTU1fOKJJ3Z4xKJS27N8+XKeP38+r1u3rqxtmThxIr/yyitd0pbmr+e2dvMutT3uETnj8XjZ6+zofVNK93jbWWed5VxA2j4t5pZbbuGJEyfy/vvvz9dee22L+5R6HNhZjQMOOMA5Xdf+b1l7jgGl1GHu2HGgrXXS6XSHjgO7+t1cc801zNzxAS1KaU97jwOl/G66oi3u/2i35/25qzru901HjgOl/tzacxxIJBK81157tfqFYtWqVRwKhXjRokUlP/f21Ln55puL7tPW06Q6UufnP/95ye/PUmssX768xSm15apz0003lfy47anjbs+rr77arkEguuK1Vmpb2nv8bEudcgz6UGp7UqlUu943mzZt4oceeoiZrRDeDgDcv49ST/drT43mvZraMwJkqXUeeOCBdn1+KrXO2rVr2zWiaVvqlGPE8VLbs2LFipJH6W1LjR0N4tSZbWnvaLZd8b5pa53m753mp7rvTDqd5rvuuovvv/9+Zi783O1B6Ozfc0cHzWlrnebac0zr6RDOQQv33nsvh0IhPuuss/i8885jRVH4qaee4kQiwW+99RYfe+yxfPXVVxddH6k9B8m21unIF8y21mC2DlbtfZOXUscwjHYf7Eup0xGl1NF1vV1/YEr5/dsH/c58nTF37I/Lruocc8wxzvumI0p5f3bEFVdcwf369XO68W/atIkrKyv5pZde4nvvvZcDgUCL/4qV+vvZVY1gMFhyL5yO1kkkEu0+DrSljvv04/YeB3rSz81uj2ma7ToOtKct7TkO9JSfWSAQKMvIZV3VnjvvvJP33ntvfuaZZ5x19u/5lltu4aOOOopra2s7fLxpax37PdPezwVtqeMefbizapRybbmO1Kmtre1wSN8VP7O21uloe3rSz2z79u0d+mxTSp2Otsft22+/bTUA+Otf/1qWIGhXNez2laNNO6rz5JNPdvixe1Kdv/71r2UbcXhndcrZnu5uS1fVefrpp8v2vumsOu5evfb7btOmTTxkyJCizzOlngVSjjrlPLb1FAjnoFW/+c1v+Be/+AWfddZZLYZzvvDCC/nYY48ty0FrV3WOOeaYDtdpS432fkkutU45DsBd8TNra52OtqcntQV1in3xxRc8duxY9vl8fNJJJ3EwGHQGf9i+fTvvtddeHe6l2RU1UKdn1/FSW3b3Ot9++y3/5z//4RdeeME5tm/cuJHPPvtsPvbYY/mf//xn0f5LlizhAw88kJPJ5B5bx0tt8VodL7Wlu+swc9E/5L/55hsnAFi4cCHPnz+fBUHgb775psfUQJ2eXcdLbfFaHbvG888/X/Rdwl3vww8/5Orqaic0++lPf8qVlZUl/TOgq+rsbjww3ix0xEcffUQPPfQQff311zRy5EgaP348HXHEEXTZZZcREdH8+fMpEAgQkTX0t3tobtM02zy8fHvrHHLIIW2u05EapehIHS5hCO6u+Jl1VXt2h7agTqHOxIkTacSIEfTPf/6T7rnnHjJNk6ZPn07nnXceERF9+eWXFAwGKRqNtunxu6oG6vTsOl5qi9fqrF69mk4//XTy+Xy0ZcsW6tu3Ly1atIimTJlCV111Fd144410/fXXU11dHZ1zzjmkaRp99tln1KdPHzIMY4+s46W2eK2Ol9rSnXX69etHN9xwA02aNImqqqrINE0iIurfvz9dfPHFxMx00003USwWo3fffZf69+/fI2qgTs+u46W2eK3OrmrY3zUEQSBRFCkcDtMtt9xCixcvptdff52qq6vL0pZy1dktdV0OCD3NunXrOBaL8dlnn82XXHIJ77PPPnzYYYfxPffc4+xz0003cSgU4tdee43ffPNNXrhwIVdVVZV0XaGuqOOltnitjpfasqfUOfTQQ3nJkiXOPs174V111VV86KGHtvnUrK6ogTo9u46X2uK1Olu3buVhw4bxtddeyxs2bOBvvvmGp02bxvvvvz/feOONnMlkeOXKlXzJJZewLMs8cuRIHjNmDFdWVpZ0cXkv1fFSW7xWx0tt6Ql1DjzwQF64cKFz6rK7t8r555/PkUikzZ85uqIG6vTsOl5qi9fqtLUGs3V9u1GjRvG0adNYVdWSBmfpqjq7K4Rze6impiaeNGkSX3XVVc66r7/+mqurq7mmpsa5iKxhGDxt2jQWRZH3339/PvTQQ0saVawr6nipLV6r46W27Ml1bK+99hpffvnlXFFR0eYP/V1RA3V6dh0vtcWLddatW8f77rtviw+9P/nJT/jggw/mxYsXs2maznUtb775Zl6yZEnJF0r3Uh0vtcVrdbzUlp5SZ/jw4Xz77bcXnSK7dOlSjsViJV1nqitqoE7PruOltnitTik1PvjgAxYEgQOBQMmjc3dVnd0Vwrk9VDKZ5NGjR/Ojjz7qLDMzn3322XzCCSfw0Ucfzc8995yz/2uvvcZr1qwpeTShrqjjpbZ4rY6X2rIn1hk7dmxRnTfeeIPnzJnDa9eu7VE1UKdn1/FSW7xYZ+XKlbz33nvza6+9xszFo9TOnTuXBw4cyKtWrSrpMb1ex0tt8VodL7WlJ9UZNGhQUZ3NmzcXXcC9p9RAnZ5dx0tt8VqdUmps2rSJL7300pJHNO/KOrsrhHN7INM0ecuWLdy/f3++4447nPVfffUVH3TQQfz73/+eR4wYwbNnz+7xdbzUFq/V8VJb9uQ6P/jBD4rul06ne1QN1OnZdbzUFi/WsY0ePZq/853vOMuZTMaZP+KII/icc85p1+N6uY6X2uK1Ol5qS0+s05HBwLqiBur07DpeaovX6pRyrGnv542urLM7Qji3B2n+Zr377rtZEASeNWsWX3/99RwOh53R3p544gned999i4Z670l1vNQWr9XxUltQp1CnlBGNu6IG6vTsOl5qi9fqJBIJjsfj3NjY6Kz773//y3369OFzzz3XWWc/5oIFC/i0004rqR1eq+Oltnitjpfa4rU6XmoL6uA14LU6XmqLlyCc20N89NFHvHjxYv7222+ddYZh8EMPPcSjR4/mk046iW+77TZn229+8xseNWpUycMUd0UdL7XFa3W81BbUwWsAdfAa8FqddevW8cSJE3nUqFHcv39//uMf/8jM1n+mH3vsMe7VqxefddZZnMvlnOB/+vTpfM4557CmaW2u5aU6XmqL1+p4qS1eq+OltqAOXgNeq+OltngNwrk9wCeffMJVVVUsCAJfc801LUZwS6fTRd1JmZkvu+wyPuusszidTrf5jdEVdbzUFq/V8VJbUKd9dbzUFtRpXx0vtcVrddatW8fV1dV8xRVX8COPPMILFixgRVGcC0Ynk0n++9//znvvvTcPGzaMzzjjDJ46dSqHQiFes2ZNm9rhtTpeaovX6nipLV6r46W2oA5eA16r46W2eBHCOY9LJBI8a9YsvvDCC/mee+5hQRD4xz/+cdEHf/eH+vXr1/P8+fO5oqKCV69e3aPqeKktXqvjpbagDl4DqIPXgNfq1NbW8sSJE3nu3LlF68ePH8+XX3550bp4PM5XXXUV/+AHP+DLLruM161b1+a2eKmOl9ritTpeaovX6nipLaiD14DX6nipLV4lE3iaKIp0+OGHU3V1NU2bNo169epF55xzDhERXXXVVdSrVy8SBIGIiJqamuill16iFStW0GuvvUbDhw/vUXW81Bav1fFSW1AHrwHUwWvAa3U0TaOGhgY666yziIjINE0SRZEGDRpEdXV1RETE1j9sqaKigm677bai/drKS3W81Bav1fFSW7xWx0ttQR28BrxWx0tt8azOyfygJ0kkEkXLf/rTn1gQBL7yyit5+/btzGxdhHrLli2saRrX1dX12DpeaovX6nipLaiD1wDq4DXgtToff/yxM5/L5ZiZ+frrr+fzzz+/aD/3RZvbc70XL9XxUlu8VsdLbfFaHS+1BXXaV8dLbfFaHS+1xYvQc24PEAqFiIjIMAwSRZGmTZtGzEzf//73SRAEmj9/Pi1evJg2btxIjz76KFVWVvbYOl5qi9fqeKktqIPXAOrgNeC1OkOHDiUi6z/TiqIQkfWf661btzr7/PznPyefz0dz584lWZadHnt7ah0vtcVrdbzUFq/V8VJbUAevAa/V8VJbPKmzUj/omUzTdEZD+dOf/sSKovABBxzAsiw7F2jcXep4qS1eq+OltqBOz62BOj27jpfa4rU69n+nr7vuOj755JOZmfmnP/0pC4LAK1euLEsNr9XxUlu8VsdLbfFaHS+1BXV6bg3U6bk1urKOFyCc2wOZpum8SY4//niuqqoq6eLVPamOl9ritTpeagvq9NwaqNOz63ipLV6qY4d/Cxcu5B/+8Id8xx13sM/n4/fff79sNbxWx0tt8VodL7XFa3W81BbU6bk1UKfn1ujKOl6AcG4Ppes6X3HFFSwIAq9atWq3ruOltnitjpfagjo9twbq9Ow6XmqL1+rccsstLAgCR6NRfvfddzulhtfqeKktXqvjpbZ4rY6X2oI6PbcG6vTcGl1ZZ3eGcG4Ppes6L126lFesWLHb1/FSW7xWx0ttQZ2eWwN1enYdL7XFa3XeffddFgSB161b12k1vFbHS23xWh0vtcVrdbzUFtTpuTVQp+fW6Mo6uzOBmbm7r3sH3YOZu+TCi11Rx0tt8VodL7UFdXpuDdTp2XW81Bav1Ukmk86AFKjTc2qgTs+tgTo9twbq9Ow6XmqL1+p4qS27M4RzAAAAAAAAAAAA3UTs7icAAAAAAAAAAACwp0I4BwAAAAAAAAAA0E0QzgEAAAAAAAAAAHQThHMAAAAAAAAAAADdBOEcAAAAAAAAAABAN0E4BwAAAAAAAAAA0E0QzgEAAABAhzEzTZgwgYYOHUqrV6+mCRMm0MaNG7v7aQEAAAD0eAjnAAAAAKBN3nrrLZIkiU499dQW2z7//HOSJInuvvtuOv/88ykWi9GgQYO64VkCAAAA7F4EZubufhIAAAAA0PP94Ac/oHA4TMuWLaOPPvqI+vfv391PCQAAAGC3h55zAAAAALBLiUSCHn/8cZozZw6deuqp9NBDDznb/v3vf5MgCPTKK6/QEUccQcFgkMaOHUsfffRR0WPce++9NHjwYFJVlQ444AD6wx/+0MWtAAAAAOh5EM4BAAAAwC79+c9/pmHDhtEBBxxA06dPpwceeICan4Bx3XXX0Z133knvvfceybJMs2bNcrY9/fTTNG/ePPrRj35Ea9eupYsvvphmzpxJr776alc3BQAAAKBHwWmtAAAAALBL48aNo6lTp9K8efNI13Xq168fPfHEEzR+/Hj697//Td/5znfo5ZdfphNOOIGIiJ577jk69dRTKZ1Ok9/vp3HjxtHBBx9Mv/vd75zHnDp1KiWTSXr22We7q1kAAAAA3Q495wAAAABgpz766CN655136NxzzyUiIlmWadq0abRs2bKi/UaMGOHM9+vXj4iItm7dSkRE69evp3HjxhXtP27cOFq/fn1nPnUAAACAHk/u7icAAAAAAD3bsmXLSNf1ogEgmJl8Ph/dfffdzjpFUZx5QRCIiMg0za57ogAAAAC7IfScAwAAAIAd0nWdHn74Ybrzzjtp5cqVzm3VqlXUv39/euyxx9r0OAceeCAtX768aN3y5cvpoIMO6oynDQAAALDbQM85AAAAANihf/zjH1RfX0+zZ8+maDRatG3KlCm0bNkyuuOOO3b5OD/+8Y9p6tSpNGrUKJowYQI988wz9NRTT9HLL7/cWU8dAAAAYLeAnnMAAAAAsEPLli2jCRMmtAjmiKxw7r333qPVq1fv8nHOOOMM+vWvf02LFy+mgw8+mO677z568MEHafz48Z3wrAEAAAB2HxitFQAAAAAAAAAAoJug5xwAAAAAAAAAAEA3QTgHAAAAAAAAAADQTRDOAQAAAAAAAAAAdBOEcwAAAAAAAAAAAN0E4RwAAAAAAAAAAEA3QTgHAAAAAAAAAADQTRDOAQAAAAAAAAAAdBOEcwAAAAAAAAAAAN0E4RwAAAAAAAAAAEA3QTgHAAAAAAAAAADQTRDOAQAAAAAAAAAAdJP/D4BDMnCceEu8AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Guardar el dataframe agrupado\n", + "df_grouped.to_csv('global_electricity_statistics_by_region.csv')" + ], + "metadata": { + "id": "3HyCu76yuvpS" + }, + "execution_count": 169, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Supongamos que 'df_grouped' es tu DataFrame y quieres predecir la columna '2021'\n", + "df = df_grouped.drop('Total', axis=1) # Eliminar la columna 'Total'\n", + "\n", + "# Limpiar los datos: reemplazar los valores 'NaN' e infinitos por cero\n", + "df = df.replace([np.inf, -np.inf], np.nan).fillna(0)\n", + "\n", + "X = df.drop('2021', axis=1)\n", + "y = df['2021']\n", + "\n", + "# Dividir los datos en conjuntos de entrenamiento y prueba\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.42, random_state=45)\n", + "\n", + "# Convertir y_pred en una serie de pandas\n", + "y_pred_series = pd.Series(y_pred.flatten(), index=X_test.index)\n", + "\n", + "\n", + "# Guardar el índice de X_test antes de cambiar su forma\n", + "X_test_index = X_test.index\n", + "\n", + "# Cambiar la forma de los datos para que sean compatibles con CNN\n", + "X_train = np.expand_dims(X_train, axis=2)\n", + "X_test = np.expand_dims(X_test, axis=2)\n", + "\n", + "# Crear la red CNN\n", + "model = Sequential()\n", + "model.add(Conv1D(filters=64, kernel_size=9, activation='relu', input_shape=(X_train.shape[1], 1))) # Puedes cambiar el número de filtros (64 aquí), el tamaño del kernel (3 aquí) y la función de activación ('relu' aquí)\n", + "model.add(MaxPooling1D(pool_size=2)) # Puedes cambiar el tamaño del pool (2 aquí)\n", + "model.add(Flatten())\n", + "model.add(Dense(90, activation='relu')) # Puedes cambiar el número de neuronas (50 aquí) y la función de activación ('relu' aquí)\n", + "model.add(Dense(1))\n", + "\n", + "# Compilar el modelo\n", + "model.compile(optimizer='adam', loss=MeanSquaredError()) # Puedes cambiar el optimizador ('adam' aquí) y la función de pérdida (MeanSquaredError aquí)\n", + "\n", + "# Ajustar el modelo a los datos de entrenamiento\n", + "history = model.fit(X_train, y_train, epochs=2000, verbose=4) # Puedes cambiar el número de épocas (200 aquí)\n", + "\n", + "# Graficar la pérdida durante el entrenamiento\n", + "plt.plot(history.history['loss'])\n", + "plt.title('Model loss')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Epoch')\n", + "plt.legend(['Train'], loc='upper right')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "nfJrQD1i4qys", + "outputId": "d1713afc-7891-4e28-ed48-88397b52d758" + }, + "execution_count": 188, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/2000\n", + "Epoch 2/2000\n", + "Epoch 3/2000\n", + "Epoch 4/2000\n", + "Epoch 5/2000\n", + "Epoch 6/2000\n", + "Epoch 7/2000\n", + "Epoch 8/2000\n", + "Epoch 9/2000\n", + "Epoch 10/2000\n", + "Epoch 11/2000\n", + "Epoch 12/2000\n", + "Epoch 13/2000\n", + "Epoch 14/2000\n", + "Epoch 15/2000\n", + "Epoch 16/2000\n", + "Epoch 17/2000\n", + "Epoch 18/2000\n", + "Epoch 19/2000\n", + "Epoch 20/2000\n", + "Epoch 21/2000\n", + "Epoch 22/2000\n", + "Epoch 23/2000\n", + "Epoch 24/2000\n", + "Epoch 25/2000\n", + "Epoch 26/2000\n", + "Epoch 27/2000\n", + "Epoch 28/2000\n", + "Epoch 29/2000\n", + "Epoch 30/2000\n", + "Epoch 31/2000\n", + "Epoch 32/2000\n", + "Epoch 33/2000\n", + "Epoch 34/2000\n", + "Epoch 35/2000\n", + "Epoch 36/2000\n", + "Epoch 37/2000\n", + "Epoch 38/2000\n", + "Epoch 39/2000\n", + "Epoch 40/2000\n", + "Epoch 41/2000\n", + "Epoch 42/2000\n", + "Epoch 43/2000\n", + "Epoch 44/2000\n", + "Epoch 45/2000\n", + "Epoch 46/2000\n", + "Epoch 47/2000\n", + "Epoch 48/2000\n", + "Epoch 49/2000\n", + "Epoch 50/2000\n", + "Epoch 51/2000\n", + "Epoch 52/2000\n", + "Epoch 53/2000\n", + "Epoch 54/2000\n", + "Epoch 55/2000\n", + "Epoch 56/2000\n", + "Epoch 57/2000\n", + "Epoch 58/2000\n", + "Epoch 59/2000\n", + "Epoch 60/2000\n", + "Epoch 61/2000\n", + "Epoch 62/2000\n", + "Epoch 63/2000\n", + "Epoch 64/2000\n", + "Epoch 65/2000\n", + "Epoch 66/2000\n", + "Epoch 67/2000\n", + "Epoch 68/2000\n", + "Epoch 69/2000\n", + "Epoch 70/2000\n", + "Epoch 71/2000\n", + "Epoch 72/2000\n", + "Epoch 73/2000\n", + "Epoch 74/2000\n", + "Epoch 75/2000\n", + "Epoch 76/2000\n", + "Epoch 77/2000\n", + "Epoch 78/2000\n", + "Epoch 79/2000\n", + "Epoch 80/2000\n", + "Epoch 81/2000\n", + "Epoch 82/2000\n", + "Epoch 83/2000\n", + "Epoch 84/2000\n", + "Epoch 85/2000\n", + "Epoch 86/2000\n", + "Epoch 87/2000\n", + "Epoch 88/2000\n", + "Epoch 89/2000\n", + "Epoch 90/2000\n", + "Epoch 91/2000\n", + "Epoch 92/2000\n", + "Epoch 93/2000\n", + "Epoch 94/2000\n", + "Epoch 95/2000\n", + "Epoch 96/2000\n", + "Epoch 97/2000\n", + "Epoch 98/2000\n", + "Epoch 99/2000\n", + "Epoch 100/2000\n", + "Epoch 101/2000\n", + "Epoch 102/2000\n", + "Epoch 103/2000\n", + "Epoch 104/2000\n", + "Epoch 105/2000\n", + "Epoch 106/2000\n", + "Epoch 107/2000\n", + "Epoch 108/2000\n", + "Epoch 109/2000\n", + "Epoch 110/2000\n", + "Epoch 111/2000\n", + "Epoch 112/2000\n", + "Epoch 113/2000\n", + "Epoch 114/2000\n", + "Epoch 115/2000\n", + "Epoch 116/2000\n", + "Epoch 117/2000\n", + "Epoch 118/2000\n", + "Epoch 119/2000\n", + "Epoch 120/2000\n", + "Epoch 121/2000\n", + "Epoch 122/2000\n", + "Epoch 123/2000\n", + "Epoch 124/2000\n", + "Epoch 125/2000\n", + "Epoch 126/2000\n", + "Epoch 127/2000\n", + "Epoch 128/2000\n", + "Epoch 129/2000\n", + "Epoch 130/2000\n", + "Epoch 131/2000\n", + "Epoch 132/2000\n", + "Epoch 133/2000\n", + "Epoch 134/2000\n", + "Epoch 135/2000\n", + "Epoch 136/2000\n", + "Epoch 137/2000\n", + "Epoch 138/2000\n", + "Epoch 139/2000\n", + "Epoch 140/2000\n", + "Epoch 141/2000\n", + "Epoch 142/2000\n", + "Epoch 143/2000\n", + "Epoch 144/2000\n", + "Epoch 145/2000\n", + "Epoch 146/2000\n", + "Epoch 147/2000\n", + "Epoch 148/2000\n", + "Epoch 149/2000\n", + "Epoch 150/2000\n", + "Epoch 151/2000\n", + "Epoch 152/2000\n", + "Epoch 153/2000\n", + "Epoch 154/2000\n", + "Epoch 155/2000\n", + "Epoch 156/2000\n", + "Epoch 157/2000\n", + "Epoch 158/2000\n", + "Epoch 159/2000\n", + "Epoch 160/2000\n", + "Epoch 161/2000\n", + "Epoch 162/2000\n", + "Epoch 163/2000\n", + "Epoch 164/2000\n", + "Epoch 165/2000\n", + "Epoch 166/2000\n", + "Epoch 167/2000\n", + "Epoch 168/2000\n", + "Epoch 169/2000\n", + "Epoch 170/2000\n", + "Epoch 171/2000\n", + "Epoch 172/2000\n", + "Epoch 173/2000\n", + "Epoch 174/2000\n", + "Epoch 175/2000\n", + "Epoch 176/2000\n", + "Epoch 177/2000\n", + "Epoch 178/2000\n", + "Epoch 179/2000\n", + "Epoch 180/2000\n", + "Epoch 181/2000\n", + "Epoch 182/2000\n", + "Epoch 183/2000\n", + "Epoch 184/2000\n", + "Epoch 185/2000\n", + "Epoch 186/2000\n", + "Epoch 187/2000\n", + "Epoch 188/2000\n", + "Epoch 189/2000\n", + "Epoch 190/2000\n", + "Epoch 191/2000\n", + "Epoch 192/2000\n", + "Epoch 193/2000\n", + "Epoch 194/2000\n", + "Epoch 195/2000\n", + "Epoch 196/2000\n", + "Epoch 197/2000\n", + "Epoch 198/2000\n", + "Epoch 199/2000\n", + "Epoch 200/2000\n", + "Epoch 201/2000\n", + "Epoch 202/2000\n", + "Epoch 203/2000\n", + "Epoch 204/2000\n", + "Epoch 205/2000\n", + "Epoch 206/2000\n", + "Epoch 207/2000\n", + "Epoch 208/2000\n", + "Epoch 209/2000\n", + "Epoch 210/2000\n", + "Epoch 211/2000\n", + "Epoch 212/2000\n", + "Epoch 213/2000\n", + "Epoch 214/2000\n", + "Epoch 215/2000\n", + "Epoch 216/2000\n", + "Epoch 217/2000\n", + "Epoch 218/2000\n", + "Epoch 219/2000\n", + "Epoch 220/2000\n", + "Epoch 221/2000\n", + "Epoch 222/2000\n", + "Epoch 223/2000\n", + "Epoch 224/2000\n", + "Epoch 225/2000\n", + "Epoch 226/2000\n", + "Epoch 227/2000\n", + "Epoch 228/2000\n", + "Epoch 229/2000\n", + "Epoch 230/2000\n", + "Epoch 231/2000\n", + "Epoch 232/2000\n", + "Epoch 233/2000\n", + "Epoch 234/2000\n", + "Epoch 235/2000\n", + "Epoch 236/2000\n", + "Epoch 237/2000\n", + "Epoch 238/2000\n", + "Epoch 239/2000\n", + "Epoch 240/2000\n", + "Epoch 241/2000\n", + "Epoch 242/2000\n", + "Epoch 243/2000\n", + "Epoch 244/2000\n", + "Epoch 245/2000\n", + "Epoch 246/2000\n", + "Epoch 247/2000\n", + "Epoch 248/2000\n", + "Epoch 249/2000\n", + "Epoch 250/2000\n", + "Epoch 251/2000\n", + "Epoch 252/2000\n", + "Epoch 253/2000\n", + "Epoch 254/2000\n", + "Epoch 255/2000\n", + "Epoch 256/2000\n", + "Epoch 257/2000\n", + "Epoch 258/2000\n", + "Epoch 259/2000\n", + "Epoch 260/2000\n", + "Epoch 261/2000\n", + "Epoch 262/2000\n", + "Epoch 263/2000\n", + "Epoch 264/2000\n", + "Epoch 265/2000\n", + "Epoch 266/2000\n", + "Epoch 267/2000\n", + "Epoch 268/2000\n", + "Epoch 269/2000\n", + "Epoch 270/2000\n", + "Epoch 271/2000\n", + "Epoch 272/2000\n", + "Epoch 273/2000\n", + "Epoch 274/2000\n", + "Epoch 275/2000\n", + "Epoch 276/2000\n", + "Epoch 277/2000\n", + "Epoch 278/2000\n", + "Epoch 279/2000\n", + "Epoch 280/2000\n", + "Epoch 281/2000\n", + "Epoch 282/2000\n", + "Epoch 283/2000\n", + "Epoch 284/2000\n", + "Epoch 285/2000\n", + "Epoch 286/2000\n", + "Epoch 287/2000\n", + "Epoch 288/2000\n", + "Epoch 289/2000\n", + "Epoch 290/2000\n", + "Epoch 291/2000\n", + "Epoch 292/2000\n", + "Epoch 293/2000\n", + "Epoch 294/2000\n", + "Epoch 295/2000\n", + "Epoch 296/2000\n", + "Epoch 297/2000\n", + "Epoch 298/2000\n", + "Epoch 299/2000\n", + "Epoch 300/2000\n", + "Epoch 301/2000\n", + "Epoch 302/2000\n", + "Epoch 303/2000\n", + "Epoch 304/2000\n", + "Epoch 305/2000\n", + "Epoch 306/2000\n", + "Epoch 307/2000\n", + "Epoch 308/2000\n", + "Epoch 309/2000\n", + "Epoch 310/2000\n", + "Epoch 311/2000\n", + "Epoch 312/2000\n", + "Epoch 313/2000\n", + "Epoch 314/2000\n", + "Epoch 315/2000\n", + "Epoch 316/2000\n", + "Epoch 317/2000\n", + "Epoch 318/2000\n", + "Epoch 319/2000\n", + "Epoch 320/2000\n", + "Epoch 321/2000\n", + "Epoch 322/2000\n", + "Epoch 323/2000\n", + "Epoch 324/2000\n", + "Epoch 325/2000\n", + "Epoch 326/2000\n", + "Epoch 327/2000\n", + "Epoch 328/2000\n", + "Epoch 329/2000\n", + "Epoch 330/2000\n", + "Epoch 331/2000\n", + "Epoch 332/2000\n", + "Epoch 333/2000\n", + "Epoch 334/2000\n", + "Epoch 335/2000\n", + "Epoch 336/2000\n", + "Epoch 337/2000\n", + "Epoch 338/2000\n", + "Epoch 339/2000\n", + "Epoch 340/2000\n", + "Epoch 341/2000\n", + "Epoch 342/2000\n", + "Epoch 343/2000\n", + "Epoch 344/2000\n", + "Epoch 345/2000\n", + "Epoch 346/2000\n", + "Epoch 347/2000\n", + "Epoch 348/2000\n", + "Epoch 349/2000\n", + "Epoch 350/2000\n", + "Epoch 351/2000\n", + "Epoch 352/2000\n", + "Epoch 353/2000\n", + "Epoch 354/2000\n", + "Epoch 355/2000\n", + "Epoch 356/2000\n", + "Epoch 357/2000\n", + "Epoch 358/2000\n", + "Epoch 359/2000\n", + "Epoch 360/2000\n", + "Epoch 361/2000\n", + "Epoch 362/2000\n", + "Epoch 363/2000\n", + "Epoch 364/2000\n", + "Epoch 365/2000\n", + "Epoch 366/2000\n", + "Epoch 367/2000\n", + "Epoch 368/2000\n", + "Epoch 369/2000\n", + "Epoch 370/2000\n", + "Epoch 371/2000\n", + "Epoch 372/2000\n", + "Epoch 373/2000\n", + "Epoch 374/2000\n", + "Epoch 375/2000\n", + "Epoch 376/2000\n", + "Epoch 377/2000\n", + "Epoch 378/2000\n", + "Epoch 379/2000\n", + "Epoch 380/2000\n", + "Epoch 381/2000\n", + "Epoch 382/2000\n", + "Epoch 383/2000\n", + "Epoch 384/2000\n", + "Epoch 385/2000\n", + "Epoch 386/2000\n", + "Epoch 387/2000\n", + "Epoch 388/2000\n", + "Epoch 389/2000\n", + "Epoch 390/2000\n", + "Epoch 391/2000\n", + "Epoch 392/2000\n", + "Epoch 393/2000\n", + "Epoch 394/2000\n", + "Epoch 395/2000\n", + "Epoch 396/2000\n", + "Epoch 397/2000\n", + "Epoch 398/2000\n", + "Epoch 399/2000\n", + "Epoch 400/2000\n", + "Epoch 401/2000\n", + "Epoch 402/2000\n", + "Epoch 403/2000\n", + "Epoch 404/2000\n", + "Epoch 405/2000\n", + "Epoch 406/2000\n", + "Epoch 407/2000\n", + "Epoch 408/2000\n", + "Epoch 409/2000\n", + "Epoch 410/2000\n", + "Epoch 411/2000\n", + "Epoch 412/2000\n", + "Epoch 413/2000\n", + "Epoch 414/2000\n", + "Epoch 415/2000\n", + "Epoch 416/2000\n", + "Epoch 417/2000\n", + "Epoch 418/2000\n", + "Epoch 419/2000\n", + "Epoch 420/2000\n", + "Epoch 421/2000\n", + "Epoch 422/2000\n", + "Epoch 423/2000\n", + "Epoch 424/2000\n", + "Epoch 425/2000\n", + "Epoch 426/2000\n", + "Epoch 427/2000\n", + "Epoch 428/2000\n", + "Epoch 429/2000\n", + "Epoch 430/2000\n", + "Epoch 431/2000\n", + "Epoch 432/2000\n", + "Epoch 433/2000\n", + "Epoch 434/2000\n", + "Epoch 435/2000\n", + "Epoch 436/2000\n", + "Epoch 437/2000\n", + "Epoch 438/2000\n", + "Epoch 439/2000\n", + "Epoch 440/2000\n", + "Epoch 441/2000\n", + "Epoch 442/2000\n", + "Epoch 443/2000\n", + "Epoch 444/2000\n", + "Epoch 445/2000\n", + "Epoch 446/2000\n", + "Epoch 447/2000\n", + "Epoch 448/2000\n", + "Epoch 449/2000\n", + "Epoch 450/2000\n", + "Epoch 451/2000\n", + "Epoch 452/2000\n", + "Epoch 453/2000\n", + "Epoch 454/2000\n", + "Epoch 455/2000\n", + "Epoch 456/2000\n", + "Epoch 457/2000\n", + "Epoch 458/2000\n", + "Epoch 459/2000\n", + "Epoch 460/2000\n", + "Epoch 461/2000\n", + "Epoch 462/2000\n", + "Epoch 463/2000\n", + "Epoch 464/2000\n", + "Epoch 465/2000\n", + "Epoch 466/2000\n", + "Epoch 467/2000\n", + "Epoch 468/2000\n", + "Epoch 469/2000\n", + "Epoch 470/2000\n", + "Epoch 471/2000\n", + "Epoch 472/2000\n", + "Epoch 473/2000\n", + "Epoch 474/2000\n", + "Epoch 475/2000\n", + "Epoch 476/2000\n", + "Epoch 477/2000\n", + "Epoch 478/2000\n", + "Epoch 479/2000\n", + "Epoch 480/2000\n", + "Epoch 481/2000\n", + "Epoch 482/2000\n", + "Epoch 483/2000\n", + "Epoch 484/2000\n", + "Epoch 485/2000\n", + "Epoch 486/2000\n", + "Epoch 487/2000\n", + "Epoch 488/2000\n", + "Epoch 489/2000\n", + "Epoch 490/2000\n", + "Epoch 491/2000\n", + "Epoch 492/2000\n", + "Epoch 493/2000\n", + "Epoch 494/2000\n", + "Epoch 495/2000\n", + "Epoch 496/2000\n", + "Epoch 497/2000\n", + "Epoch 498/2000\n", + "Epoch 499/2000\n", + "Epoch 500/2000\n", + "Epoch 501/2000\n", + "Epoch 502/2000\n", + "Epoch 503/2000\n", + "Epoch 504/2000\n", + "Epoch 505/2000\n", + "Epoch 506/2000\n", + "Epoch 507/2000\n", + "Epoch 508/2000\n", + "Epoch 509/2000\n", + "Epoch 510/2000\n", + "Epoch 511/2000\n", + "Epoch 512/2000\n", + "Epoch 513/2000\n", + "Epoch 514/2000\n", + "Epoch 515/2000\n", + "Epoch 516/2000\n", + "Epoch 517/2000\n", + "Epoch 518/2000\n", + "Epoch 519/2000\n", + "Epoch 520/2000\n", + "Epoch 521/2000\n", + "Epoch 522/2000\n", + "Epoch 523/2000\n", + "Epoch 524/2000\n", + "Epoch 525/2000\n", + "Epoch 526/2000\n", + "Epoch 527/2000\n", + "Epoch 528/2000\n", + "Epoch 529/2000\n", + "Epoch 530/2000\n", + "Epoch 531/2000\n", + "Epoch 532/2000\n", + "Epoch 533/2000\n", + "Epoch 534/2000\n", + "Epoch 535/2000\n", + "Epoch 536/2000\n", + "Epoch 537/2000\n", + "Epoch 538/2000\n", + "Epoch 539/2000\n", + "Epoch 540/2000\n", + "Epoch 541/2000\n", + "Epoch 542/2000\n", + "Epoch 543/2000\n", + "Epoch 544/2000\n", + "Epoch 545/2000\n", + "Epoch 546/2000\n", + "Epoch 547/2000\n", + "Epoch 548/2000\n", + "Epoch 549/2000\n", + "Epoch 550/2000\n", + "Epoch 551/2000\n", + "Epoch 552/2000\n", + "Epoch 553/2000\n", + "Epoch 554/2000\n", + "Epoch 555/2000\n", + "Epoch 556/2000\n", + "Epoch 557/2000\n", + "Epoch 558/2000\n", + "Epoch 559/2000\n", + "Epoch 560/2000\n", + "Epoch 561/2000\n", + "Epoch 562/2000\n", + "Epoch 563/2000\n", + "Epoch 564/2000\n", + "Epoch 565/2000\n", + "Epoch 566/2000\n", + "Epoch 567/2000\n", + "Epoch 568/2000\n", + "Epoch 569/2000\n", + "Epoch 570/2000\n", + "Epoch 571/2000\n", + "Epoch 572/2000\n", + "Epoch 573/2000\n", + "Epoch 574/2000\n", + "Epoch 575/2000\n", + "Epoch 576/2000\n", + "Epoch 577/2000\n", + "Epoch 578/2000\n", + "Epoch 579/2000\n", + "Epoch 580/2000\n", + "Epoch 581/2000\n", + "Epoch 582/2000\n", + "Epoch 583/2000\n", + "Epoch 584/2000\n", + "Epoch 585/2000\n", + "Epoch 586/2000\n", + "Epoch 587/2000\n", + "Epoch 588/2000\n", + "Epoch 589/2000\n", + "Epoch 590/2000\n", + "Epoch 591/2000\n", + "Epoch 592/2000\n", + "Epoch 593/2000\n", + "Epoch 594/2000\n", + "Epoch 595/2000\n", + "Epoch 596/2000\n", + "Epoch 597/2000\n", + "Epoch 598/2000\n", + "Epoch 599/2000\n", + "Epoch 600/2000\n", + "Epoch 601/2000\n", + "Epoch 602/2000\n", + "Epoch 603/2000\n", + "Epoch 604/2000\n", + "Epoch 605/2000\n", + "Epoch 606/2000\n", + "Epoch 607/2000\n", + "Epoch 608/2000\n", + "Epoch 609/2000\n", + "Epoch 610/2000\n", + "Epoch 611/2000\n", + "Epoch 612/2000\n", + "Epoch 613/2000\n", + "Epoch 614/2000\n", + "Epoch 615/2000\n", + "Epoch 616/2000\n", + "Epoch 617/2000\n", + "Epoch 618/2000\n", + "Epoch 619/2000\n", + "Epoch 620/2000\n", + "Epoch 621/2000\n", + "Epoch 622/2000\n", + "Epoch 623/2000\n", + "Epoch 624/2000\n", + "Epoch 625/2000\n", + "Epoch 626/2000\n", + "Epoch 627/2000\n", + "Epoch 628/2000\n", + "Epoch 629/2000\n", + "Epoch 630/2000\n", + "Epoch 631/2000\n", + "Epoch 632/2000\n", + "Epoch 633/2000\n", + "Epoch 634/2000\n", + "Epoch 635/2000\n", + "Epoch 636/2000\n", + "Epoch 637/2000\n", + "Epoch 638/2000\n", + "Epoch 639/2000\n", + "Epoch 640/2000\n", + "Epoch 641/2000\n", + "Epoch 642/2000\n", + "Epoch 643/2000\n", + "Epoch 644/2000\n", + "Epoch 645/2000\n", + "Epoch 646/2000\n", + "Epoch 647/2000\n", + "Epoch 648/2000\n", + "Epoch 649/2000\n", + "Epoch 650/2000\n", + "Epoch 651/2000\n", + "Epoch 652/2000\n", + "Epoch 653/2000\n", + "Epoch 654/2000\n", + "Epoch 655/2000\n", + "Epoch 656/2000\n", + "Epoch 657/2000\n", + "Epoch 658/2000\n", + "Epoch 659/2000\n", + "Epoch 660/2000\n", + "Epoch 661/2000\n", + "Epoch 662/2000\n", + "Epoch 663/2000\n", + "Epoch 664/2000\n", + "Epoch 665/2000\n", + "Epoch 666/2000\n", + "Epoch 667/2000\n", + "Epoch 668/2000\n", + "Epoch 669/2000\n", + "Epoch 670/2000\n", + "Epoch 671/2000\n", + "Epoch 672/2000\n", + "Epoch 673/2000\n", + "Epoch 674/2000\n", + "Epoch 675/2000\n", + "Epoch 676/2000\n", + "Epoch 677/2000\n", + "Epoch 678/2000\n", + "Epoch 679/2000\n", + "Epoch 680/2000\n", + "Epoch 681/2000\n", + "Epoch 682/2000\n", + "Epoch 683/2000\n", + "Epoch 684/2000\n", + "Epoch 685/2000\n", + "Epoch 686/2000\n", + "Epoch 687/2000\n", + "Epoch 688/2000\n", + "Epoch 689/2000\n", + "Epoch 690/2000\n", + "Epoch 691/2000\n", + "Epoch 692/2000\n", + "Epoch 693/2000\n", + "Epoch 694/2000\n", + "Epoch 695/2000\n", + "Epoch 696/2000\n", + "Epoch 697/2000\n", + "Epoch 698/2000\n", + "Epoch 699/2000\n", + "Epoch 700/2000\n", + "Epoch 701/2000\n", + "Epoch 702/2000\n", + "Epoch 703/2000\n", + "Epoch 704/2000\n", + "Epoch 705/2000\n", + "Epoch 706/2000\n", + "Epoch 707/2000\n", + "Epoch 708/2000\n", + "Epoch 709/2000\n", + "Epoch 710/2000\n", + "Epoch 711/2000\n", + "Epoch 712/2000\n", + "Epoch 713/2000\n", + "Epoch 714/2000\n", + "Epoch 715/2000\n", + "Epoch 716/2000\n", + "Epoch 717/2000\n", + "Epoch 718/2000\n", + "Epoch 719/2000\n", + "Epoch 720/2000\n", + "Epoch 721/2000\n", + "Epoch 722/2000\n", + "Epoch 723/2000\n", + "Epoch 724/2000\n", + "Epoch 725/2000\n", + "Epoch 726/2000\n", + "Epoch 727/2000\n", + "Epoch 728/2000\n", + "Epoch 729/2000\n", + "Epoch 730/2000\n", + "Epoch 731/2000\n", + "Epoch 732/2000\n", + "Epoch 733/2000\n", + "Epoch 734/2000\n", + "Epoch 735/2000\n", + "Epoch 736/2000\n", + "Epoch 737/2000\n", + "Epoch 738/2000\n", + "Epoch 739/2000\n", + "Epoch 740/2000\n", + "Epoch 741/2000\n", + "Epoch 742/2000\n", + "Epoch 743/2000\n", + "Epoch 744/2000\n", + "Epoch 745/2000\n", + "Epoch 746/2000\n", + "Epoch 747/2000\n", + "Epoch 748/2000\n", + "Epoch 749/2000\n", + "Epoch 750/2000\n", + "Epoch 751/2000\n", + "Epoch 752/2000\n", + "Epoch 753/2000\n", + "Epoch 754/2000\n", + "Epoch 755/2000\n", + "Epoch 756/2000\n", + "Epoch 757/2000\n", + "Epoch 758/2000\n", + "Epoch 759/2000\n", + "Epoch 760/2000\n", + "Epoch 761/2000\n", + "Epoch 762/2000\n", + "Epoch 763/2000\n", + "Epoch 764/2000\n", + "Epoch 765/2000\n", + "Epoch 766/2000\n", + "Epoch 767/2000\n", + "Epoch 768/2000\n", + "Epoch 769/2000\n", + "Epoch 770/2000\n", + "Epoch 771/2000\n", + "Epoch 772/2000\n", + "Epoch 773/2000\n", + "Epoch 774/2000\n", + "Epoch 775/2000\n", + "Epoch 776/2000\n", + "Epoch 777/2000\n", + "Epoch 778/2000\n", + "Epoch 779/2000\n", + "Epoch 780/2000\n", + "Epoch 781/2000\n", + "Epoch 782/2000\n", + "Epoch 783/2000\n", + "Epoch 784/2000\n", + "Epoch 785/2000\n", + "Epoch 786/2000\n", + "Epoch 787/2000\n", + "Epoch 788/2000\n", + "Epoch 789/2000\n", + "Epoch 790/2000\n", + "Epoch 791/2000\n", + "Epoch 792/2000\n", + "Epoch 793/2000\n", + "Epoch 794/2000\n", + "Epoch 795/2000\n", + "Epoch 796/2000\n", + "Epoch 797/2000\n", + "Epoch 798/2000\n", + "Epoch 799/2000\n", + "Epoch 800/2000\n", + "Epoch 801/2000\n", + "Epoch 802/2000\n", + "Epoch 803/2000\n", + "Epoch 804/2000\n", + "Epoch 805/2000\n", + "Epoch 806/2000\n", + "Epoch 807/2000\n", + "Epoch 808/2000\n", + "Epoch 809/2000\n", + "Epoch 810/2000\n", + "Epoch 811/2000\n", + "Epoch 812/2000\n", + "Epoch 813/2000\n", + "Epoch 814/2000\n", + "Epoch 815/2000\n", + "Epoch 816/2000\n", + "Epoch 817/2000\n", + "Epoch 818/2000\n", + "Epoch 819/2000\n", + "Epoch 820/2000\n", + "Epoch 821/2000\n", + "Epoch 822/2000\n", + "Epoch 823/2000\n", + "Epoch 824/2000\n", + "Epoch 825/2000\n", + "Epoch 826/2000\n", + "Epoch 827/2000\n", + "Epoch 828/2000\n", + "Epoch 829/2000\n", + "Epoch 830/2000\n", + "Epoch 831/2000\n", + "Epoch 832/2000\n", + "Epoch 833/2000\n", + "Epoch 834/2000\n", + "Epoch 835/2000\n", + "Epoch 836/2000\n", + "Epoch 837/2000\n", + "Epoch 838/2000\n", + "Epoch 839/2000\n", + "Epoch 840/2000\n", + "Epoch 841/2000\n", + "Epoch 842/2000\n", + "Epoch 843/2000\n", + "Epoch 844/2000\n", + "Epoch 845/2000\n", + "Epoch 846/2000\n", + "Epoch 847/2000\n", + "Epoch 848/2000\n", + "Epoch 849/2000\n", + "Epoch 850/2000\n", + "Epoch 851/2000\n", + "Epoch 852/2000\n", + "Epoch 853/2000\n", + "Epoch 854/2000\n", + "Epoch 855/2000\n", + "Epoch 856/2000\n", + "Epoch 857/2000\n", + "Epoch 858/2000\n", + "Epoch 859/2000\n", + "Epoch 860/2000\n", + "Epoch 861/2000\n", + "Epoch 862/2000\n", + "Epoch 863/2000\n", + "Epoch 864/2000\n", + "Epoch 865/2000\n", + "Epoch 866/2000\n", + "Epoch 867/2000\n", + "Epoch 868/2000\n", + "Epoch 869/2000\n", + "Epoch 870/2000\n", + "Epoch 871/2000\n", + "Epoch 872/2000\n", + "Epoch 873/2000\n", + "Epoch 874/2000\n", + "Epoch 875/2000\n", + "Epoch 876/2000\n", + "Epoch 877/2000\n", + "Epoch 878/2000\n", + "Epoch 879/2000\n", + "Epoch 880/2000\n", + "Epoch 881/2000\n", + "Epoch 882/2000\n", + "Epoch 883/2000\n", + "Epoch 884/2000\n", + "Epoch 885/2000\n", + "Epoch 886/2000\n", + "Epoch 887/2000\n", + "Epoch 888/2000\n", + "Epoch 889/2000\n", + "Epoch 890/2000\n", + "Epoch 891/2000\n", + "Epoch 892/2000\n", + "Epoch 893/2000\n", + "Epoch 894/2000\n", + "Epoch 895/2000\n", + "Epoch 896/2000\n", + "Epoch 897/2000\n", + "Epoch 898/2000\n", + "Epoch 899/2000\n", + "Epoch 900/2000\n", + "Epoch 901/2000\n", + "Epoch 902/2000\n", + "Epoch 903/2000\n", + "Epoch 904/2000\n", + "Epoch 905/2000\n", + "Epoch 906/2000\n", + "Epoch 907/2000\n", + "Epoch 908/2000\n", + "Epoch 909/2000\n", + "Epoch 910/2000\n", + "Epoch 911/2000\n", + "Epoch 912/2000\n", + "Epoch 913/2000\n", + "Epoch 914/2000\n", + "Epoch 915/2000\n", + "Epoch 916/2000\n", + "Epoch 917/2000\n", + "Epoch 918/2000\n", + "Epoch 919/2000\n", + "Epoch 920/2000\n", + "Epoch 921/2000\n", + "Epoch 922/2000\n", + "Epoch 923/2000\n", + "Epoch 924/2000\n", + "Epoch 925/2000\n", + "Epoch 926/2000\n", + "Epoch 927/2000\n", + "Epoch 928/2000\n", + "Epoch 929/2000\n", + "Epoch 930/2000\n", + "Epoch 931/2000\n", + "Epoch 932/2000\n", + "Epoch 933/2000\n", + "Epoch 934/2000\n", + "Epoch 935/2000\n", + "Epoch 936/2000\n", + "Epoch 937/2000\n", + "Epoch 938/2000\n", + "Epoch 939/2000\n", + "Epoch 940/2000\n", + "Epoch 941/2000\n", + "Epoch 942/2000\n", + "Epoch 943/2000\n", + "Epoch 944/2000\n", + "Epoch 945/2000\n", + "Epoch 946/2000\n", + "Epoch 947/2000\n", + "Epoch 948/2000\n", + "Epoch 949/2000\n", + "Epoch 950/2000\n", + "Epoch 951/2000\n", + "Epoch 952/2000\n", + "Epoch 953/2000\n", + "Epoch 954/2000\n", + "Epoch 955/2000\n", + "Epoch 956/2000\n", + "Epoch 957/2000\n", + "Epoch 958/2000\n", + "Epoch 959/2000\n", + "Epoch 960/2000\n", + "Epoch 961/2000\n", + "Epoch 962/2000\n", + "Epoch 963/2000\n", + "Epoch 964/2000\n", + "Epoch 965/2000\n", + "Epoch 966/2000\n", + "Epoch 967/2000\n", + "Epoch 968/2000\n", + "Epoch 969/2000\n", + "Epoch 970/2000\n", + "Epoch 971/2000\n", + "Epoch 972/2000\n", + "Epoch 973/2000\n", + "Epoch 974/2000\n", + "Epoch 975/2000\n", + "Epoch 976/2000\n", + "Epoch 977/2000\n", + "Epoch 978/2000\n", + "Epoch 979/2000\n", + "Epoch 980/2000\n", + "Epoch 981/2000\n", + "Epoch 982/2000\n", + "Epoch 983/2000\n", + "Epoch 984/2000\n", + "Epoch 985/2000\n", + "Epoch 986/2000\n", + "Epoch 987/2000\n", + "Epoch 988/2000\n", + "Epoch 989/2000\n", + "Epoch 990/2000\n", + "Epoch 991/2000\n", + "Epoch 992/2000\n", + "Epoch 993/2000\n", + "Epoch 994/2000\n", + "Epoch 995/2000\n", + "Epoch 996/2000\n", + "Epoch 997/2000\n", + "Epoch 998/2000\n", + "Epoch 999/2000\n", + "Epoch 1000/2000\n", + "Epoch 1001/2000\n", + "Epoch 1002/2000\n", + "Epoch 1003/2000\n", + "Epoch 1004/2000\n", + "Epoch 1005/2000\n", + "Epoch 1006/2000\n", + "Epoch 1007/2000\n", + "Epoch 1008/2000\n", + "Epoch 1009/2000\n", + "Epoch 1010/2000\n", + "Epoch 1011/2000\n", + "Epoch 1012/2000\n", + "Epoch 1013/2000\n", + "Epoch 1014/2000\n", + "Epoch 1015/2000\n", + "Epoch 1016/2000\n", + "Epoch 1017/2000\n", + "Epoch 1018/2000\n", + "Epoch 1019/2000\n", + "Epoch 1020/2000\n", + "Epoch 1021/2000\n", + "Epoch 1022/2000\n", + "Epoch 1023/2000\n", + "Epoch 1024/2000\n", + "Epoch 1025/2000\n", + "Epoch 1026/2000\n", + "Epoch 1027/2000\n", + "Epoch 1028/2000\n", + "Epoch 1029/2000\n", + "Epoch 1030/2000\n", + "Epoch 1031/2000\n", + "Epoch 1032/2000\n", + "Epoch 1033/2000\n", + "Epoch 1034/2000\n", + "Epoch 1035/2000\n", + "Epoch 1036/2000\n", + "Epoch 1037/2000\n", + "Epoch 1038/2000\n", + "Epoch 1039/2000\n", + "Epoch 1040/2000\n", + "Epoch 1041/2000\n", + "Epoch 1042/2000\n", + "Epoch 1043/2000\n", + "Epoch 1044/2000\n", + "Epoch 1045/2000\n", + "Epoch 1046/2000\n", + "Epoch 1047/2000\n", + "Epoch 1048/2000\n", + "Epoch 1049/2000\n", + "Epoch 1050/2000\n", + "Epoch 1051/2000\n", + "Epoch 1052/2000\n", + "Epoch 1053/2000\n", + "Epoch 1054/2000\n", + "Epoch 1055/2000\n", + "Epoch 1056/2000\n", + "Epoch 1057/2000\n", + "Epoch 1058/2000\n", + "Epoch 1059/2000\n", + "Epoch 1060/2000\n", + "Epoch 1061/2000\n", + "Epoch 1062/2000\n", + "Epoch 1063/2000\n", + "Epoch 1064/2000\n", + "Epoch 1065/2000\n", + "Epoch 1066/2000\n", + "Epoch 1067/2000\n", + "Epoch 1068/2000\n", + "Epoch 1069/2000\n", + "Epoch 1070/2000\n", + "Epoch 1071/2000\n", + "Epoch 1072/2000\n", + "Epoch 1073/2000\n", + "Epoch 1074/2000\n", + "Epoch 1075/2000\n", + "Epoch 1076/2000\n", + "Epoch 1077/2000\n", + "Epoch 1078/2000\n", + "Epoch 1079/2000\n", + "Epoch 1080/2000\n", + "Epoch 1081/2000\n", + "Epoch 1082/2000\n", + "Epoch 1083/2000\n", + "Epoch 1084/2000\n", + "Epoch 1085/2000\n", + "Epoch 1086/2000\n", + "Epoch 1087/2000\n", + "Epoch 1088/2000\n", + "Epoch 1089/2000\n", + "Epoch 1090/2000\n", + "Epoch 1091/2000\n", + "Epoch 1092/2000\n", + "Epoch 1093/2000\n", + "Epoch 1094/2000\n", + "Epoch 1095/2000\n", + "Epoch 1096/2000\n", + "Epoch 1097/2000\n", + "Epoch 1098/2000\n", + "Epoch 1099/2000\n", + "Epoch 1100/2000\n", + "Epoch 1101/2000\n", + "Epoch 1102/2000\n", + "Epoch 1103/2000\n", + "Epoch 1104/2000\n", + "Epoch 1105/2000\n", + "Epoch 1106/2000\n", + "Epoch 1107/2000\n", + "Epoch 1108/2000\n", + "Epoch 1109/2000\n", + "Epoch 1110/2000\n", + "Epoch 1111/2000\n", + "Epoch 1112/2000\n", + "Epoch 1113/2000\n", + "Epoch 1114/2000\n", + "Epoch 1115/2000\n", + "Epoch 1116/2000\n", + "Epoch 1117/2000\n", + "Epoch 1118/2000\n", + "Epoch 1119/2000\n", + "Epoch 1120/2000\n", + "Epoch 1121/2000\n", + "Epoch 1122/2000\n", + "Epoch 1123/2000\n", + "Epoch 1124/2000\n", + "Epoch 1125/2000\n", + "Epoch 1126/2000\n", + "Epoch 1127/2000\n", + "Epoch 1128/2000\n", + "Epoch 1129/2000\n", + "Epoch 1130/2000\n", + "Epoch 1131/2000\n", + "Epoch 1132/2000\n", + "Epoch 1133/2000\n", + "Epoch 1134/2000\n", + "Epoch 1135/2000\n", + "Epoch 1136/2000\n", + "Epoch 1137/2000\n", + "Epoch 1138/2000\n", + "Epoch 1139/2000\n", + "Epoch 1140/2000\n", + "Epoch 1141/2000\n", + "Epoch 1142/2000\n", + "Epoch 1143/2000\n", + "Epoch 1144/2000\n", + "Epoch 1145/2000\n", + "Epoch 1146/2000\n", + "Epoch 1147/2000\n", + "Epoch 1148/2000\n", + "Epoch 1149/2000\n", + "Epoch 1150/2000\n", + "Epoch 1151/2000\n", + "Epoch 1152/2000\n", + "Epoch 1153/2000\n", + "Epoch 1154/2000\n", + "Epoch 1155/2000\n", + "Epoch 1156/2000\n", + "Epoch 1157/2000\n", + "Epoch 1158/2000\n", + "Epoch 1159/2000\n", + "Epoch 1160/2000\n", + "Epoch 1161/2000\n", + "Epoch 1162/2000\n", + "Epoch 1163/2000\n", + "Epoch 1164/2000\n", + "Epoch 1165/2000\n", + "Epoch 1166/2000\n", + "Epoch 1167/2000\n", + "Epoch 1168/2000\n", + "Epoch 1169/2000\n", + "Epoch 1170/2000\n", + "Epoch 1171/2000\n", + "Epoch 1172/2000\n", + "Epoch 1173/2000\n", + "Epoch 1174/2000\n", + "Epoch 1175/2000\n", + "Epoch 1176/2000\n", + "Epoch 1177/2000\n", + "Epoch 1178/2000\n", + "Epoch 1179/2000\n", + "Epoch 1180/2000\n", + "Epoch 1181/2000\n", + "Epoch 1182/2000\n", + "Epoch 1183/2000\n", + "Epoch 1184/2000\n", + "Epoch 1185/2000\n", + "Epoch 1186/2000\n", + "Epoch 1187/2000\n", + "Epoch 1188/2000\n", + "Epoch 1189/2000\n", + "Epoch 1190/2000\n", + "Epoch 1191/2000\n", + "Epoch 1192/2000\n", + "Epoch 1193/2000\n", + "Epoch 1194/2000\n", + "Epoch 1195/2000\n", + "Epoch 1196/2000\n", + "Epoch 1197/2000\n", + "Epoch 1198/2000\n", + "Epoch 1199/2000\n", + "Epoch 1200/2000\n", + "Epoch 1201/2000\n", + "Epoch 1202/2000\n", + "Epoch 1203/2000\n", + "Epoch 1204/2000\n", + "Epoch 1205/2000\n", + "Epoch 1206/2000\n", + "Epoch 1207/2000\n", + "Epoch 1208/2000\n", + "Epoch 1209/2000\n", + "Epoch 1210/2000\n", + "Epoch 1211/2000\n", + "Epoch 1212/2000\n", + "Epoch 1213/2000\n", + "Epoch 1214/2000\n", + "Epoch 1215/2000\n", + "Epoch 1216/2000\n", + "Epoch 1217/2000\n", + "Epoch 1218/2000\n", + "Epoch 1219/2000\n", + "Epoch 1220/2000\n", + "Epoch 1221/2000\n", + "Epoch 1222/2000\n", + "Epoch 1223/2000\n", + "Epoch 1224/2000\n", + "Epoch 1225/2000\n", + "Epoch 1226/2000\n", + "Epoch 1227/2000\n", + "Epoch 1228/2000\n", + "Epoch 1229/2000\n", + "Epoch 1230/2000\n", + "Epoch 1231/2000\n", + "Epoch 1232/2000\n", + "Epoch 1233/2000\n", + "Epoch 1234/2000\n", + "Epoch 1235/2000\n", + "Epoch 1236/2000\n", + "Epoch 1237/2000\n", + "Epoch 1238/2000\n", + "Epoch 1239/2000\n", + "Epoch 1240/2000\n", + "Epoch 1241/2000\n", + "Epoch 1242/2000\n", + "Epoch 1243/2000\n", + "Epoch 1244/2000\n", + "Epoch 1245/2000\n", + "Epoch 1246/2000\n", + "Epoch 1247/2000\n", + "Epoch 1248/2000\n", + "Epoch 1249/2000\n", + "Epoch 1250/2000\n", + "Epoch 1251/2000\n", + "Epoch 1252/2000\n", + "Epoch 1253/2000\n", + "Epoch 1254/2000\n", + "Epoch 1255/2000\n", + "Epoch 1256/2000\n", + "Epoch 1257/2000\n", + "Epoch 1258/2000\n", + "Epoch 1259/2000\n", + "Epoch 1260/2000\n", + "Epoch 1261/2000\n", + "Epoch 1262/2000\n", + "Epoch 1263/2000\n", + "Epoch 1264/2000\n", + "Epoch 1265/2000\n", + "Epoch 1266/2000\n", + "Epoch 1267/2000\n", + "Epoch 1268/2000\n", + "Epoch 1269/2000\n", + "Epoch 1270/2000\n", + "Epoch 1271/2000\n", + "Epoch 1272/2000\n", + "Epoch 1273/2000\n", + "Epoch 1274/2000\n", + "Epoch 1275/2000\n", + "Epoch 1276/2000\n", + "Epoch 1277/2000\n", + "Epoch 1278/2000\n", + "Epoch 1279/2000\n", + "Epoch 1280/2000\n", + "Epoch 1281/2000\n", + "Epoch 1282/2000\n", + "Epoch 1283/2000\n", + "Epoch 1284/2000\n", + "Epoch 1285/2000\n", + "Epoch 1286/2000\n", + "Epoch 1287/2000\n", + "Epoch 1288/2000\n", + "Epoch 1289/2000\n", + "Epoch 1290/2000\n", + "Epoch 1291/2000\n", + "Epoch 1292/2000\n", + "Epoch 1293/2000\n", + "Epoch 1294/2000\n", + "Epoch 1295/2000\n", + "Epoch 1296/2000\n", + "Epoch 1297/2000\n", + "Epoch 1298/2000\n", + "Epoch 1299/2000\n", + "Epoch 1300/2000\n", + "Epoch 1301/2000\n", + "Epoch 1302/2000\n", + "Epoch 1303/2000\n", + "Epoch 1304/2000\n", + "Epoch 1305/2000\n", + "Epoch 1306/2000\n", + "Epoch 1307/2000\n", + "Epoch 1308/2000\n", + "Epoch 1309/2000\n", + "Epoch 1310/2000\n", + "Epoch 1311/2000\n", + "Epoch 1312/2000\n", + "Epoch 1313/2000\n", + "Epoch 1314/2000\n", + "Epoch 1315/2000\n", + "Epoch 1316/2000\n", + "Epoch 1317/2000\n", + "Epoch 1318/2000\n", + "Epoch 1319/2000\n", + "Epoch 1320/2000\n", + "Epoch 1321/2000\n", + "Epoch 1322/2000\n", + "Epoch 1323/2000\n", + "Epoch 1324/2000\n", + "Epoch 1325/2000\n", + "Epoch 1326/2000\n", + "Epoch 1327/2000\n", + "Epoch 1328/2000\n", + "Epoch 1329/2000\n", + "Epoch 1330/2000\n", + "Epoch 1331/2000\n", + "Epoch 1332/2000\n", + "Epoch 1333/2000\n", + "Epoch 1334/2000\n", + "Epoch 1335/2000\n", + "Epoch 1336/2000\n", + "Epoch 1337/2000\n", + "Epoch 1338/2000\n", + "Epoch 1339/2000\n", + "Epoch 1340/2000\n", + "Epoch 1341/2000\n", + "Epoch 1342/2000\n", + "Epoch 1343/2000\n", + "Epoch 1344/2000\n", + "Epoch 1345/2000\n", + "Epoch 1346/2000\n", + "Epoch 1347/2000\n", + "Epoch 1348/2000\n", + "Epoch 1349/2000\n", + "Epoch 1350/2000\n", + "Epoch 1351/2000\n", + "Epoch 1352/2000\n", + "Epoch 1353/2000\n", + "Epoch 1354/2000\n", + "Epoch 1355/2000\n", + "Epoch 1356/2000\n", + "Epoch 1357/2000\n", + "Epoch 1358/2000\n", + "Epoch 1359/2000\n", + "Epoch 1360/2000\n", + "Epoch 1361/2000\n", + "Epoch 1362/2000\n", + "Epoch 1363/2000\n", + "Epoch 1364/2000\n", + "Epoch 1365/2000\n", + "Epoch 1366/2000\n", + "Epoch 1367/2000\n", + "Epoch 1368/2000\n", + "Epoch 1369/2000\n", + "Epoch 1370/2000\n", + "Epoch 1371/2000\n", + "Epoch 1372/2000\n", + "Epoch 1373/2000\n", + "Epoch 1374/2000\n", + "Epoch 1375/2000\n", + "Epoch 1376/2000\n", + "Epoch 1377/2000\n", + "Epoch 1378/2000\n", + "Epoch 1379/2000\n", + "Epoch 1380/2000\n", + "Epoch 1381/2000\n", + "Epoch 1382/2000\n", + "Epoch 1383/2000\n", + "Epoch 1384/2000\n", + "Epoch 1385/2000\n", + "Epoch 1386/2000\n", + "Epoch 1387/2000\n", + "Epoch 1388/2000\n", + "Epoch 1389/2000\n", + "Epoch 1390/2000\n", + "Epoch 1391/2000\n", + "Epoch 1392/2000\n", + "Epoch 1393/2000\n", + "Epoch 1394/2000\n", + "Epoch 1395/2000\n", + "Epoch 1396/2000\n", + "Epoch 1397/2000\n", + "Epoch 1398/2000\n", + "Epoch 1399/2000\n", + "Epoch 1400/2000\n", + "Epoch 1401/2000\n", + "Epoch 1402/2000\n", + "Epoch 1403/2000\n", + "Epoch 1404/2000\n", + "Epoch 1405/2000\n", + "Epoch 1406/2000\n", + "Epoch 1407/2000\n", + "Epoch 1408/2000\n", + "Epoch 1409/2000\n", + "Epoch 1410/2000\n", + "Epoch 1411/2000\n", + "Epoch 1412/2000\n", + "Epoch 1413/2000\n", + "Epoch 1414/2000\n", + "Epoch 1415/2000\n", + "Epoch 1416/2000\n", + "Epoch 1417/2000\n", + "Epoch 1418/2000\n", + "Epoch 1419/2000\n", + "Epoch 1420/2000\n", + "Epoch 1421/2000\n", + "Epoch 1422/2000\n", + "Epoch 1423/2000\n", + "Epoch 1424/2000\n", + "Epoch 1425/2000\n", + "Epoch 1426/2000\n", + "Epoch 1427/2000\n", + "Epoch 1428/2000\n", + "Epoch 1429/2000\n", + "Epoch 1430/2000\n", + "Epoch 1431/2000\n", + "Epoch 1432/2000\n", + "Epoch 1433/2000\n", + "Epoch 1434/2000\n", + "Epoch 1435/2000\n", + "Epoch 1436/2000\n", + "Epoch 1437/2000\n", + "Epoch 1438/2000\n", + "Epoch 1439/2000\n", + "Epoch 1440/2000\n", + "Epoch 1441/2000\n", + "Epoch 1442/2000\n", + "Epoch 1443/2000\n", + "Epoch 1444/2000\n", + "Epoch 1445/2000\n", + "Epoch 1446/2000\n", + "Epoch 1447/2000\n", + "Epoch 1448/2000\n", + "Epoch 1449/2000\n", + "Epoch 1450/2000\n", + "Epoch 1451/2000\n", + "Epoch 1452/2000\n", + "Epoch 1453/2000\n", + "Epoch 1454/2000\n", + "Epoch 1455/2000\n", + "Epoch 1456/2000\n", + "Epoch 1457/2000\n", + "Epoch 1458/2000\n", + "Epoch 1459/2000\n", + "Epoch 1460/2000\n", + "Epoch 1461/2000\n", + "Epoch 1462/2000\n", + "Epoch 1463/2000\n", + "Epoch 1464/2000\n", + "Epoch 1465/2000\n", + "Epoch 1466/2000\n", + "Epoch 1467/2000\n", + "Epoch 1468/2000\n", + "Epoch 1469/2000\n", + "Epoch 1470/2000\n", + "Epoch 1471/2000\n", + "Epoch 1472/2000\n", + "Epoch 1473/2000\n", + "Epoch 1474/2000\n", + "Epoch 1475/2000\n", + "Epoch 1476/2000\n", + "Epoch 1477/2000\n", + "Epoch 1478/2000\n", + "Epoch 1479/2000\n", + "Epoch 1480/2000\n", + "Epoch 1481/2000\n", + "Epoch 1482/2000\n", + "Epoch 1483/2000\n", + "Epoch 1484/2000\n", + "Epoch 1485/2000\n", + "Epoch 1486/2000\n", + "Epoch 1487/2000\n", + "Epoch 1488/2000\n", + "Epoch 1489/2000\n", + "Epoch 1490/2000\n", + "Epoch 1491/2000\n", + "Epoch 1492/2000\n", + "Epoch 1493/2000\n", + "Epoch 1494/2000\n", + "Epoch 1495/2000\n", + "Epoch 1496/2000\n", + "Epoch 1497/2000\n", + "Epoch 1498/2000\n", + "Epoch 1499/2000\n", + "Epoch 1500/2000\n", + "Epoch 1501/2000\n", + "Epoch 1502/2000\n", + "Epoch 1503/2000\n", + "Epoch 1504/2000\n", + "Epoch 1505/2000\n", + "Epoch 1506/2000\n", + "Epoch 1507/2000\n", + "Epoch 1508/2000\n", + "Epoch 1509/2000\n", + "Epoch 1510/2000\n", + "Epoch 1511/2000\n", + "Epoch 1512/2000\n", + "Epoch 1513/2000\n", + "Epoch 1514/2000\n", + "Epoch 1515/2000\n", + "Epoch 1516/2000\n", + "Epoch 1517/2000\n", + "Epoch 1518/2000\n", + "Epoch 1519/2000\n", + "Epoch 1520/2000\n", + "Epoch 1521/2000\n", + "Epoch 1522/2000\n", + "Epoch 1523/2000\n", + "Epoch 1524/2000\n", + "Epoch 1525/2000\n", + "Epoch 1526/2000\n", + "Epoch 1527/2000\n", + "Epoch 1528/2000\n", + "Epoch 1529/2000\n", + "Epoch 1530/2000\n", + "Epoch 1531/2000\n", + "Epoch 1532/2000\n", + "Epoch 1533/2000\n", + "Epoch 1534/2000\n", + "Epoch 1535/2000\n", + "Epoch 1536/2000\n", + "Epoch 1537/2000\n", + "Epoch 1538/2000\n", + "Epoch 1539/2000\n", + "Epoch 1540/2000\n", + "Epoch 1541/2000\n", + "Epoch 1542/2000\n", + "Epoch 1543/2000\n", + "Epoch 1544/2000\n", + "Epoch 1545/2000\n", + "Epoch 1546/2000\n", + "Epoch 1547/2000\n", + "Epoch 1548/2000\n", + "Epoch 1549/2000\n", + "Epoch 1550/2000\n", + "Epoch 1551/2000\n", + "Epoch 1552/2000\n", + "Epoch 1553/2000\n", + "Epoch 1554/2000\n", + "Epoch 1555/2000\n", + "Epoch 1556/2000\n", + "Epoch 1557/2000\n", + "Epoch 1558/2000\n", + "Epoch 1559/2000\n", + "Epoch 1560/2000\n", + "Epoch 1561/2000\n", + "Epoch 1562/2000\n", + "Epoch 1563/2000\n", + "Epoch 1564/2000\n", + "Epoch 1565/2000\n", + "Epoch 1566/2000\n", + "Epoch 1567/2000\n", + "Epoch 1568/2000\n", + "Epoch 1569/2000\n", + "Epoch 1570/2000\n", + "Epoch 1571/2000\n", + "Epoch 1572/2000\n", + "Epoch 1573/2000\n", + "Epoch 1574/2000\n", + "Epoch 1575/2000\n", + "Epoch 1576/2000\n", + "Epoch 1577/2000\n", + "Epoch 1578/2000\n", + "Epoch 1579/2000\n", + "Epoch 1580/2000\n", + "Epoch 1581/2000\n", + "Epoch 1582/2000\n", + "Epoch 1583/2000\n", + "Epoch 1584/2000\n", + "Epoch 1585/2000\n", + "Epoch 1586/2000\n", + "Epoch 1587/2000\n", + "Epoch 1588/2000\n", + "Epoch 1589/2000\n", + "Epoch 1590/2000\n", + "Epoch 1591/2000\n", + "Epoch 1592/2000\n", + "Epoch 1593/2000\n", + "Epoch 1594/2000\n", + "Epoch 1595/2000\n", + "Epoch 1596/2000\n", + "Epoch 1597/2000\n", + "Epoch 1598/2000\n", + "Epoch 1599/2000\n", + "Epoch 1600/2000\n", + "Epoch 1601/2000\n", + "Epoch 1602/2000\n", + "Epoch 1603/2000\n", + "Epoch 1604/2000\n", + "Epoch 1605/2000\n", + "Epoch 1606/2000\n", + "Epoch 1607/2000\n", + "Epoch 1608/2000\n", + "Epoch 1609/2000\n", + "Epoch 1610/2000\n", + "Epoch 1611/2000\n", + "Epoch 1612/2000\n", + "Epoch 1613/2000\n", + "Epoch 1614/2000\n", + "Epoch 1615/2000\n", + "Epoch 1616/2000\n", + "Epoch 1617/2000\n", + "Epoch 1618/2000\n", + "Epoch 1619/2000\n", + "Epoch 1620/2000\n", + "Epoch 1621/2000\n", + "Epoch 1622/2000\n", + "Epoch 1623/2000\n", + "Epoch 1624/2000\n", + "Epoch 1625/2000\n", + "Epoch 1626/2000\n", + "Epoch 1627/2000\n", + "Epoch 1628/2000\n", + "Epoch 1629/2000\n", + "Epoch 1630/2000\n", + "Epoch 1631/2000\n", + "Epoch 1632/2000\n", + "Epoch 1633/2000\n", + "Epoch 1634/2000\n", + "Epoch 1635/2000\n", + "Epoch 1636/2000\n", + "Epoch 1637/2000\n", + "Epoch 1638/2000\n", + "Epoch 1639/2000\n", + "Epoch 1640/2000\n", + "Epoch 1641/2000\n", + "Epoch 1642/2000\n", + "Epoch 1643/2000\n", + "Epoch 1644/2000\n", + "Epoch 1645/2000\n", + "Epoch 1646/2000\n", + "Epoch 1647/2000\n", + "Epoch 1648/2000\n", + "Epoch 1649/2000\n", + "Epoch 1650/2000\n", + "Epoch 1651/2000\n", + "Epoch 1652/2000\n", + "Epoch 1653/2000\n", + "Epoch 1654/2000\n", + "Epoch 1655/2000\n", + "Epoch 1656/2000\n", + "Epoch 1657/2000\n", + "Epoch 1658/2000\n", + "Epoch 1659/2000\n", + "Epoch 1660/2000\n", + "Epoch 1661/2000\n", + "Epoch 1662/2000\n", + "Epoch 1663/2000\n", + "Epoch 1664/2000\n", + "Epoch 1665/2000\n", + "Epoch 1666/2000\n", + "Epoch 1667/2000\n", + "Epoch 1668/2000\n", + "Epoch 1669/2000\n", + "Epoch 1670/2000\n", + "Epoch 1671/2000\n", + "Epoch 1672/2000\n", + "Epoch 1673/2000\n", + "Epoch 1674/2000\n", + "Epoch 1675/2000\n", + "Epoch 1676/2000\n", + "Epoch 1677/2000\n", + "Epoch 1678/2000\n", + "Epoch 1679/2000\n", + "Epoch 1680/2000\n", + "Epoch 1681/2000\n", + "Epoch 1682/2000\n", + "Epoch 1683/2000\n", + "Epoch 1684/2000\n", + "Epoch 1685/2000\n", + "Epoch 1686/2000\n", + "Epoch 1687/2000\n", + "Epoch 1688/2000\n", + "Epoch 1689/2000\n", + "Epoch 1690/2000\n", + "Epoch 1691/2000\n", + "Epoch 1692/2000\n", + "Epoch 1693/2000\n", + "Epoch 1694/2000\n", + "Epoch 1695/2000\n", + "Epoch 1696/2000\n", + "Epoch 1697/2000\n", + "Epoch 1698/2000\n", + "Epoch 1699/2000\n", + "Epoch 1700/2000\n", + "Epoch 1701/2000\n", + "Epoch 1702/2000\n", + "Epoch 1703/2000\n", + "Epoch 1704/2000\n", + "Epoch 1705/2000\n", + "Epoch 1706/2000\n", + "Epoch 1707/2000\n", + "Epoch 1708/2000\n", + "Epoch 1709/2000\n", + "Epoch 1710/2000\n", + "Epoch 1711/2000\n", + "Epoch 1712/2000\n", + "Epoch 1713/2000\n", + "Epoch 1714/2000\n", + "Epoch 1715/2000\n", + "Epoch 1716/2000\n", + "Epoch 1717/2000\n", + "Epoch 1718/2000\n", + "Epoch 1719/2000\n", + "Epoch 1720/2000\n", + "Epoch 1721/2000\n", + "Epoch 1722/2000\n", + "Epoch 1723/2000\n", + "Epoch 1724/2000\n", + "Epoch 1725/2000\n", + "Epoch 1726/2000\n", + "Epoch 1727/2000\n", + "Epoch 1728/2000\n", + "Epoch 1729/2000\n", + "Epoch 1730/2000\n", + "Epoch 1731/2000\n", + "Epoch 1732/2000\n", + "Epoch 1733/2000\n", + "Epoch 1734/2000\n", + "Epoch 1735/2000\n", + "Epoch 1736/2000\n", + "Epoch 1737/2000\n", + "Epoch 1738/2000\n", + "Epoch 1739/2000\n", + "Epoch 1740/2000\n", + "Epoch 1741/2000\n", + "Epoch 1742/2000\n", + "Epoch 1743/2000\n", + "Epoch 1744/2000\n", + "Epoch 1745/2000\n", + "Epoch 1746/2000\n", + "Epoch 1747/2000\n", + "Epoch 1748/2000\n", + "Epoch 1749/2000\n", + "Epoch 1750/2000\n", + "Epoch 1751/2000\n", + "Epoch 1752/2000\n", + "Epoch 1753/2000\n", + "Epoch 1754/2000\n", + "Epoch 1755/2000\n", + "Epoch 1756/2000\n", + "Epoch 1757/2000\n", + "Epoch 1758/2000\n", + "Epoch 1759/2000\n", + "Epoch 1760/2000\n", + "Epoch 1761/2000\n", + "Epoch 1762/2000\n", + "Epoch 1763/2000\n", + "Epoch 1764/2000\n", + "Epoch 1765/2000\n", + "Epoch 1766/2000\n", + "Epoch 1767/2000\n", + "Epoch 1768/2000\n", + "Epoch 1769/2000\n", + "Epoch 1770/2000\n", + "Epoch 1771/2000\n", + "Epoch 1772/2000\n", + "Epoch 1773/2000\n", + "Epoch 1774/2000\n", + "Epoch 1775/2000\n", + "Epoch 1776/2000\n", + "Epoch 1777/2000\n", + "Epoch 1778/2000\n", + "Epoch 1779/2000\n", + "Epoch 1780/2000\n", + "Epoch 1781/2000\n", + "Epoch 1782/2000\n", + "Epoch 1783/2000\n", + "Epoch 1784/2000\n", + "Epoch 1785/2000\n", + "Epoch 1786/2000\n", + "Epoch 1787/2000\n", + "Epoch 1788/2000\n", + "Epoch 1789/2000\n", + "Epoch 1790/2000\n", + "Epoch 1791/2000\n", + "Epoch 1792/2000\n", + "Epoch 1793/2000\n", + "Epoch 1794/2000\n", + "Epoch 1795/2000\n", + "Epoch 1796/2000\n", + "Epoch 1797/2000\n", + "Epoch 1798/2000\n", + "Epoch 1799/2000\n", + "Epoch 1800/2000\n", + "Epoch 1801/2000\n", + "Epoch 1802/2000\n", + "Epoch 1803/2000\n", + "Epoch 1804/2000\n", + "Epoch 1805/2000\n", + "Epoch 1806/2000\n", + "Epoch 1807/2000\n", + "Epoch 1808/2000\n", + "Epoch 1809/2000\n", + "Epoch 1810/2000\n", + "Epoch 1811/2000\n", + "Epoch 1812/2000\n", + "Epoch 1813/2000\n", + "Epoch 1814/2000\n", + "Epoch 1815/2000\n", + "Epoch 1816/2000\n", + "Epoch 1817/2000\n", + "Epoch 1818/2000\n", + "Epoch 1819/2000\n", + "Epoch 1820/2000\n", + "Epoch 1821/2000\n", + "Epoch 1822/2000\n", + "Epoch 1823/2000\n", + "Epoch 1824/2000\n", + "Epoch 1825/2000\n", + "Epoch 1826/2000\n", + "Epoch 1827/2000\n", + "Epoch 1828/2000\n", + "Epoch 1829/2000\n", + "Epoch 1830/2000\n", + "Epoch 1831/2000\n", + "Epoch 1832/2000\n", + "Epoch 1833/2000\n", + "Epoch 1834/2000\n", + "Epoch 1835/2000\n", + "Epoch 1836/2000\n", + "Epoch 1837/2000\n", + "Epoch 1838/2000\n", + "Epoch 1839/2000\n", + "Epoch 1840/2000\n", + "Epoch 1841/2000\n", + "Epoch 1842/2000\n", + "Epoch 1843/2000\n", + "Epoch 1844/2000\n", + "Epoch 1845/2000\n", + "Epoch 1846/2000\n", + "Epoch 1847/2000\n", + "Epoch 1848/2000\n", + "Epoch 1849/2000\n", + "Epoch 1850/2000\n", + "Epoch 1851/2000\n", + "Epoch 1852/2000\n", + "Epoch 1853/2000\n", + "Epoch 1854/2000\n", + "Epoch 1855/2000\n", + "Epoch 1856/2000\n", + "Epoch 1857/2000\n", + "Epoch 1858/2000\n", + "Epoch 1859/2000\n", + "Epoch 1860/2000\n", + "Epoch 1861/2000\n", + "Epoch 1862/2000\n", + "Epoch 1863/2000\n", + "Epoch 1864/2000\n", + "Epoch 1865/2000\n", + "Epoch 1866/2000\n", + "Epoch 1867/2000\n", + "Epoch 1868/2000\n", + "Epoch 1869/2000\n", + "Epoch 1870/2000\n", + "Epoch 1871/2000\n", + "Epoch 1872/2000\n", + "Epoch 1873/2000\n", + "Epoch 1874/2000\n", + "Epoch 1875/2000\n", + "Epoch 1876/2000\n", + "Epoch 1877/2000\n", + "Epoch 1878/2000\n", + "Epoch 1879/2000\n", + "Epoch 1880/2000\n", + "Epoch 1881/2000\n", + "Epoch 1882/2000\n", + "Epoch 1883/2000\n", + "Epoch 1884/2000\n", + "Epoch 1885/2000\n", + "Epoch 1886/2000\n", + "Epoch 1887/2000\n", + "Epoch 1888/2000\n", + "Epoch 1889/2000\n", + "Epoch 1890/2000\n", + "Epoch 1891/2000\n", + "Epoch 1892/2000\n", + "Epoch 1893/2000\n", + "Epoch 1894/2000\n", + "Epoch 1895/2000\n", + "Epoch 1896/2000\n", + "Epoch 1897/2000\n", + "Epoch 1898/2000\n", + "Epoch 1899/2000\n", + "Epoch 1900/2000\n", + "Epoch 1901/2000\n", + "Epoch 1902/2000\n", + "Epoch 1903/2000\n", + "Epoch 1904/2000\n", + "Epoch 1905/2000\n", + "Epoch 1906/2000\n", + "Epoch 1907/2000\n", + "Epoch 1908/2000\n", + "Epoch 1909/2000\n", + "Epoch 1910/2000\n", + "Epoch 1911/2000\n", + "Epoch 1912/2000\n", + "Epoch 1913/2000\n", + "Epoch 1914/2000\n", + "Epoch 1915/2000\n", + "Epoch 1916/2000\n", + "Epoch 1917/2000\n", + "Epoch 1918/2000\n", + "Epoch 1919/2000\n", + "Epoch 1920/2000\n", + "Epoch 1921/2000\n", + "Epoch 1922/2000\n", + "Epoch 1923/2000\n", + "Epoch 1924/2000\n", + "Epoch 1925/2000\n", + "Epoch 1926/2000\n", + "Epoch 1927/2000\n", + "Epoch 1928/2000\n", + "Epoch 1929/2000\n", + "Epoch 1930/2000\n", + "Epoch 1931/2000\n", + "Epoch 1932/2000\n", + "Epoch 1933/2000\n", + "Epoch 1934/2000\n", + "Epoch 1935/2000\n", + "Epoch 1936/2000\n", + "Epoch 1937/2000\n", + "Epoch 1938/2000\n", + "Epoch 1939/2000\n", + "Epoch 1940/2000\n", + "Epoch 1941/2000\n", + "Epoch 1942/2000\n", + "Epoch 1943/2000\n", + "Epoch 1944/2000\n", + "Epoch 1945/2000\n", + "Epoch 1946/2000\n", + "Epoch 1947/2000\n", + "Epoch 1948/2000\n", + "Epoch 1949/2000\n", + "Epoch 1950/2000\n", + "Epoch 1951/2000\n", + "Epoch 1952/2000\n", + "Epoch 1953/2000\n", + "Epoch 1954/2000\n", + "Epoch 1955/2000\n", + "Epoch 1956/2000\n", + "Epoch 1957/2000\n", + "Epoch 1958/2000\n", + "Epoch 1959/2000\n", + "Epoch 1960/2000\n", + "Epoch 1961/2000\n", + "Epoch 1962/2000\n", + "Epoch 1963/2000\n", + "Epoch 1964/2000\n", + "Epoch 1965/2000\n", + "Epoch 1966/2000\n", + "Epoch 1967/2000\n", + "Epoch 1968/2000\n", + "Epoch 1969/2000\n", + "Epoch 1970/2000\n", + "Epoch 1971/2000\n", + "Epoch 1972/2000\n", + "Epoch 1973/2000\n", + "Epoch 1974/2000\n", + "Epoch 1975/2000\n", + "Epoch 1976/2000\n", + "Epoch 1977/2000\n", + "Epoch 1978/2000\n", + "Epoch 1979/2000\n", + "Epoch 1980/2000\n", + "Epoch 1981/2000\n", + "Epoch 1982/2000\n", + "Epoch 1983/2000\n", + "Epoch 1984/2000\n", + "Epoch 1985/2000\n", + "Epoch 1986/2000\n", + "Epoch 1987/2000\n", + "Epoch 1988/2000\n", + "Epoch 1989/2000\n", + "Epoch 1990/2000\n", + "Epoch 1991/2000\n", + "Epoch 1992/2000\n", + "Epoch 1993/2000\n", + "Epoch 1994/2000\n", + "Epoch 1995/2000\n", + "Epoch 1996/2000\n", + "Epoch 1997/2000\n", + "Epoch 1998/2000\n", + "Epoch 1999/2000\n", + "Epoch 2000/2000\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBTElEQVR4nO3deVyVZf7/8fc5KAdQwQUBMRSzUstE00TaFwrNr5XVZOqkWdlU2lRkY07l1oJt5sxkOi1qTYtWo9Yvt5R02mjMhcpGLc0tFdSMRUxQuH5/GCePgCLeh+sAr+djziPOfV/3fT4Xt3rec93Xfd8uY4wRAABALeG2XQAAAICTCDcAAKBWIdwAAIBahXADAABqFcINAACoVQg3AACgViHcAACAWoVwAwAAahXCDQAAqFUINwACnsvl0tixY094u82bN8vlcmnGjBnHbLds2TK5XC4tW7asSvUBCCyEGwCVMmPGDLlcLrlcLn322Wdl1htjFBcXJ5fLpf/7v/+zUCEAHEa4AXBCQkJC9NZbb5VZ/p///Ec//fSTPB6PhaoA4HeEGwAn5KqrrtK7776rQ4cO+Sx/66231LVrV8XExFiqDAAOI9wAOCH9+/fXzz//rMWLF3uXFRUV6b333tOAAQPK3aagoEAPPPCA4uLi5PF41K5dOz377LMyxvi0Kyws1P3336/mzZurUaNGuvrqq/XTTz+Vu8/t27fr1ltvVXR0tDwej8466yxNmzbNuY5Kevfdd9W1a1eFhoYqMjJSf/zjH7V9+3afNllZWRoyZIhOOeUUeTwetWjRQtdcc402b97sbbNixQqlpKQoMjJSoaGhatOmjW699VZHawXwu3q2CwBQs8THxyspKUlvv/22evXqJUlasGCBcnNzddNNN+nvf/+7T3tjjK6++motXbpUt912mzp37qxFixbpwQcf1Pbt2/X88897295+++164403NGDAAJ133nn6+OOP1bt37zI1ZGdnq0ePHnK5XBo+fLiaN2+uBQsW6LbbblNeXp7uu+++k+7njBkzNGTIEJ177rlKS0tTdna2/va3v+nzzz/X6tWr1bhxY0nS9ddfr++++0733HOP4uPjtWvXLi1evFhbt271vr/yyivVvHlzPfTQQ2rcuLE2b96s2bNnn3SNACpgAKASpk+fbiSZr776yrzwwgumUaNGZv/+/cYYY/7whz+YSy+91BhjTOvWrU3v3r29282dO9dIMo8//rjP/m644QbjcrnMhg0bjDHGZGZmGknm7rvv9mk3YMAAI8mMGTPGu+y2224zLVq0MHv27PFpe9NNN5mIiAhvXZs2bTKSzPTp04/Zt6VLlxpJZunSpcYYY4qKikxUVJTp2LGj+fXXX73tPvzwQyPJjB492hhjzC+//GIkmWeeeabCfc+ZM8f7ewNQPTgtBeCE3Xjjjfr111/14YcfKj8/Xx9++GGFp6Tmz5+voKAg/fnPf/ZZ/sADD8gYowULFnjbSSrT7uhRGGOM/v3vf6tPnz4yxmjPnj3eV0pKinJzc7Vq1aqT6t+KFSu0a9cu3X333QoJCfEu7927t9q3b6958+ZJkkJDQxUcHKxly5bpl19+KXdfpSM8H374oQ4ePHhSdQGonDodbj755BP16dNHsbGxcrlcmjt37gnvY9GiRerRo4caNWqk5s2b6/rrr/c51w7URs2bN1dycrLeeustzZ49W8XFxbrhhhvKbbtlyxbFxsaqUaNGPss7dOjgXV/6X7fbrbZt2/q0a9eunc/73bt3KycnRy+99JKaN2/u8xoyZIgkadeuXSfVv9Kajv5sSWrfvr13vcfj0VNPPaUFCxYoOjpaF110kZ5++mllZWV521988cW6/vrrNW7cOEVGRuqaa67R9OnTVVhYeFI1AqhYnQ43BQUFSkhI0OTJk6u0/aZNm3TNNdfosssuU2ZmphYtWqQ9e/bouuuuc7hSIPAMGDBACxYs0NSpU9WrVy/vCIW/lZSUSJL++Mc/avHixeW+zj///GqpRTo8svT9998rLS1NISEhevTRR9WhQwetXr1a0uEbEL733nvKyMjQ8OHDvROhu3btqn379lVbnUBdUqfDTa9evfT444+rb9++5a4vLCzUiBEj1LJlSzVo0ECJiYk+dzBduXKliouL9fjjj6tt27Y655xzNGLECGVmZjL8jFqvb9++crvd+vLLLys8JSVJrVu31o4dO5Sfn++zfN26dd71pf8tKSnRxo0bfdqtX7/e533plVTFxcVKTk4u9xUVFXVSfSut6ejPLl1Wur5U27Zt9cADD+ijjz7SmjVrVFRUpOeee86nTY8ePfTEE09oxYoVevPNN/Xdd99p5syZJ1UngPLV6XBzPMOHD1dGRoZmzpypb775Rn/4wx/Us2dP/fDDD5Kkrl27yu12a/r06SouLlZubq7+9a9/KTk5WfXr17dcPeBfDRs21JQpUzR27Fj16dOnwnZXXXWViouL9cILL/gsf/755+VyubxXXJX+9+irrSZNmuTzPigoSNdff73+/e9/a82aNWU+b/fu3VXpjo9u3bopKipKU6dO9Tl9tGDBAq1du9Z7Bdf+/ft14MABn23btm2rRo0aebf75Zdfylzy3rlzZ0ni1BTgJ1wKXoGtW7dq+vTp2rp1q2JjYyVJI0aM0MKFCzV9+nQ9+eSTatOmjT766CPdeOON+tOf/qTi4mIlJSV5J0YCtd3gwYOP26ZPnz669NJL9fDDD2vz5s1KSEjQRx99pPfff1/33Xefd45N586d1b9/f7344ovKzc3Veeedp/T0dG3YsKHMPidMmKClS5cqMTFRQ4cO1Zlnnqm9e/dq1apVWrJkifbu3XtS/apfv76eeuopDRkyRBdffLH69+/vvRQ8Pj5e999/vyTp+++/1+WXX64bb7xRZ555purVq6c5c+YoOztbN910kyTptdde04svvqi+ffuqbdu2ys/P18svv6zw8HBdddVVJ1UngPIRbirw7bffqri4WGeccYbP8sLCQjVr1kzS4Zt3DR06VIMHD1b//v2Vn5+v0aNH64YbbtDixYvlcrlslA4EFLfbrQ8++ECjR4/WrFmzNH36dMXHx+uZZ57RAw884NN22rRpat68ud58803NnTtXl112mebNm6e4uDifdtHR0Vq+fLnGjx+v2bNn68UXX1SzZs101lln6amnnnKk7ltuuUVhYWGaMGGCRo4cqQYNGqhv37566qmnvPOL4uLi1L9/f6Wnp+tf//qX6tWrp/bt2+udd97R9ddfL+nwhOLly5dr5syZys7OVkREhLp3764333xTbdq0caRWAL5c5ujx0jrK5XJpzpw5uvbaayVJs2bN0sCBA/Xdd98pKCjIp23Dhg0VExOjRx99VAsXLtRXX33lXffTTz8pLi5OGRkZ6tGjR3V2AQAAiJGbCnXp0kXFxcXatWuXLrzwwnLb7N+/X26377Sl0iBUekUHAACoXnV6QvG+ffuUmZmpzMxMSYcv7c7MzNTWrVt1xhlnaODAgRo0aJBmz56tTZs2afny5UpLS/PewKt379766quvNH78eP3www9atWqVhgwZotatW6tLly4WewYAQN1Vp09LLVu2TJdeemmZ5YMHD9aMGTN08OBBPf7443r99de1fft2RUZGqkePHho3bpzOPvtsSdLMmTP19NNP6/vvv1dYWJiSkpL01FNPqX379tXdHQAAoDoebgAAQO1Tp09LAQCA2odwAwAAapU6d7VUSUmJduzYoUaNGnEfGgAAaghjjPLz8xUbG1vmSuWj1blws2PHjjI3BAMAADXDtm3bdMoppxyzTZ0LN40aNZJ0+JcTHh5uuRoAAFAZeXl5iouL836PH0udCzelp6LCw8MJNwAA1DCVmVJidULxJ598oj59+ig2NlYul0tz586t9Laff/656tWr5326LgAAgGQ53BQUFCghIUGTJ08+oe1ycnI0aNAgXX755X6qDAAA1FRWT0v16tVLvXr1OuHt7rzzTg0YMEBBQUEnNNoDAABqvxo352b69On68ccf9cYbb+jxxx8/bvvCwkIVFhZ63+fl5fmzPABAHVZcXKyDBw/aLqPGCg4OPu5l3pVRo8LNDz/8oIceekiffvqp6tWrXOlpaWkaN26cnysDANRlxhhlZWUpJyfHdik1mtvtVps2bRQcHHxS+6kx4aa4uFgDBgzQuHHjdMYZZ1R6u1GjRik1NdX7vvRSMgAAnFIabKKiohQWFsZNYqug9Ca7O3fuVKtWrU7qd1hjwk1+fr5WrFih1atXa/jw4ZIO/yKMMapXr54++ugjXXbZZWW283g88ng81V0uAKCOKC4u9gabZs2a2S6nRmvevLl27NihQ4cOqX79+lXeT40JN+Hh4fr22299lr344ov6+OOP9d5776lNmzaWKgMA1GWlc2zCwsIsV1LzlZ6OKi4urrnhZt++fdqwYYP3/aZNm5SZmammTZuqVatWGjVqlLZv367XX39dbrdbHTt29Nk+KipKISEhZZYDAFDdOBV18pz6HVoNNytWrNCll17qfV86N2bw4MGaMWOGdu7cqa1bt9oqDwAA1EAuY4yxXUR1ysvLU0REhHJzc3n8AgDgpB04cECbNm1SmzZtFBISYrscq+Lj43Xffffpvvvuq9L2x/pdnsj3t9U7FAMAgOrncrmO+Ro7dmyV9vvVV1/pjjvucLbYKqgxE4oDXeGhYu3OL1Q9t1sxEXU7uQMAAtvOnTu9P8+aNUujR4/W+vXrvcsaNmzo/dkYo+Li4krdX6558+bOFlpFjNw45LsdebrgqaW68Z8ZtksBAOCYYmJivK+IiAi5XC7v+3Xr1qlRo0ZasGCBunbtKo/Ho88++0wbN27UNddco+joaDVs2FDnnnuulixZ4rPf+Ph4TZo0yfve5XLplVdeUd++fRUWFqbTTz9dH3zwgd/7R7hxmFGdmsIEADiKMUb7iw5ZeTk5jfahhx7ShAkTtHbtWnXq1En79u3TVVddpfT0dK1evVo9e/ZUnz59jnvhz7hx43TjjTfqm2++0VVXXaWBAwdq7969jtVZHk5LOYQLAAEAkvTrwWKdOXqRlc/+3/gUhQU789U+fvx4XXHFFd73TZs2VUJCgvf9Y489pjlz5uiDDz7w3ly3PLfccov69+8vSXryySf197//XcuXL1fPnj0dqbM8jNw4rG5dewYAqK26devm837fvn0aMWKEOnTooMaNG6thw4Zau3btcUduOnXq5P25QYMGCg8P165du/xScylGbhzCzZsAAJIUWj9I/xufYu2zndKgQQOf9yNGjNDixYv17LPP6rTTTlNoaKhuuOEGFRUVHXM/R99p2OVyqaSkxLE6y0O4cRgjNwBQt7lcLsdODQWSzz//XLfccov69u0r6fBIzubNm+0WVQFOSzmEcRsAQG12+umna/bs2crMzNTXX3+tAQMG+H0EpqoINwAA4LgmTpyoJk2a6LzzzlOfPn2UkpKic845x3ZZ5eLxCw755qccXf3C52rZOFSfP3SZY/sFAAQ2Hr/gHB6/EKDqWFYEACDgEG4c4mLWDQAAAYFw4zDGbQAAsItw4xBucwMAQGAg3DiMKTcAUDcx5/LkOfU7JNw4jAdnAkDdUnoH3v3791uupOYrvdtxUNDJ3Wm59t1C0RJOSwFA3RQUFKTGjRt7n5cUFhbGI3mqoKSkRLt371ZYWJjq1Tu5eEK4cRijkgBQ98TExEiS3x8IWdu53W61atXqpMMh4cYhXAoOAHWXy+VSixYtFBUVpYMHD9oup8YKDg6W233yM2YINw5j4AYA6q6goKCTni+Ck8eEYodwehUAgMBAuHEYc24AALCLcOMQRm4AAAgMhBvHMXQDAIBNhBuHcLUUAACBgXDjMObcAABgF+HGIcy5AQAgMBBuHMbADQAAdhFuHMLADQAAgYFw4zAeeQ8AgF2EG4cw5wYAgMBAuHEY4zYAANhFuHHM4aEbzkoBAGAX4cYhnJYCACAwEG4cxoRiAADsItw4hIEbAAACA+HGYYzbAABgl9Vw88knn6hPnz6KjY2Vy+XS3Llzj9l+9uzZuuKKK9S8eXOFh4crKSlJixYtqp5ij8PFpBsAAAKC1XBTUFCghIQETZ48uVLtP/nkE11xxRWaP3++Vq5cqUsvvVR9+vTR6tWr/VzpCWDoBgAAq+rZ/PBevXqpV69elW4/adIkn/dPPvmk3n//ff2///f/1KVLF4erOzGM2wAAEBhq9JybkpIS5efnq2nTprZL8WLgBgAAu6yO3JysZ599Vvv27dONN95YYZvCwkIVFhZ63+fl5fmlFqbcAAAQGGrsyM1bb72lcePG6Z133lFUVFSF7dLS0hQREeF9xcXF+bUu7nMDAIBdNTLczJw5U7fffrveeecdJScnH7PtqFGjlJub631t27bNLzW5mHUDAEBAqHGnpd5++23deuutmjlzpnr37n3c9h6PRx6PpxoqO4xxGwAA7LIabvbt26cNGzZ432/atEmZmZlq2rSpWrVqpVGjRmn79u16/fXXJR0+FTV48GD97W9/U2JiorKysiRJoaGhioiIsNKHUsy5AQAgMFg9LbVixQp16dLFexl3amqqunTpotGjR0uSdu7cqa1bt3rbv/TSSzp06JCGDRumFi1aeF/33nuvlfrLw5QbAADssjpyc8kllxxzAu6MGTN83i9btsy/BTnAcGIKAACrauSE4kDEaSkAAAID4cZhnJYCAMAuwo1DeHAmAACBgXDjMAZuAACwi3DjEMZtAAAIDIQbpzF0AwCAVYQbhzDlBgCAwEC4cRj3uQEAwC7CjUN4cCYAAIGBcOMw7nMDAIBdhBuHMOcGAIDAQLhxGAM3AADYRbhxCAM3AAAEBsKNw471lHMAAOB/hBunMHQDAEBAINw4jHEbAADsItw4pPQ+N5yVAgDALsKNQ7gUHACAwEC4AQAAtQrhxiEM3AAAEBgIN37A5eAAANhDuHGIi0k3AAAEBMKNHzBwAwCAPYQbhzBuAwBAYCDc+AEDNwAA2EO4cQhTbgAACAyEGz/gaikAAOwh3DjExawbAAACAuHGDxi3AQDAHsKNUxi4AQAgIBBu/IApNwAA2EO4cciRV0sZTkwBAGAN4cYhnJUCACAwEG78gNNSAADYQ7hxCA/OBAAgMBBuAABArUK4cQjjNgAABAbCjR8w5wYAAHsINw5hyg0AAIHBarj55JNP1KdPH8XGxsrlcmnu3LnH3WbZsmU655xz5PF4dNppp2nGjBl+r/NEcZ8bAADssRpuCgoKlJCQoMmTJ1eq/aZNm9S7d29deumlyszM1H333afbb79dixYt8nOlx8eDMwEACAz1bH54r1691KtXr0q3nzp1qtq0aaPnnntOktShQwd99tlnev7555WSkuKvMk8Yc24AALCnRs25ycjIUHJyss+ylJQUZWRkVLhNYWGh8vLyfF7+wJwbAAACQ40KN1lZWYqOjvZZFh0drby8PP3666/lbpOWlqaIiAjvKy4uzu91MnADAIA9NSrcVMWoUaOUm5vrfW3bts12SQAAwI+szrk5UTExMcrOzvZZlp2drfDwcIWGhpa7jcfjkcfjqY7yvAyTbgAAsKZGjdwkJSUpPT3dZ9nixYuVlJRkqaLfMecGAIDAYDXc7Nu3T5mZmcrMzJR0+FLvzMxMbd26VdLhU0qDBg3ytr/zzjv1448/6i9/+YvWrVunF198Ue+8847uv/9+G+VXiHEbAADssRpuVqxYoS5duqhLly6SpNTUVHXp0kWjR4+WJO3cudMbdCSpTZs2mjdvnhYvXqyEhAQ999xzeuWVVwLiMvAj73PDWSkAAOyxOufmkksuOeb8lPLuPnzJJZdo9erVfqyqajgtBQBAYKhRc25qDEZuAACwhnDjEAZuAAAIDIQbP+DBmQAA2EO4cYiLSTcAAAQEwo0fcLUUAAD2EG4cwrgNAACBgXDjBwzcAABgD+HGIUy5AQAgMBBu/IAHZwIAYA/hxiFcLQUAQGAg3PgB4zYAANhDuAEAALUK4cYPmHIDAIA9hBsHMe0GAAD7CDd+wLOlAACwh3DjIO/ADdkGAABrCDcO4nJwAADsI9z4AQM3AADYQ7hxEOM2AADYR7jxAy4FBwDAHsKNg5hyAwCAfYQbP+BScAAA7CHcOMjFrBsAAKwj3PgBc24AALCHcOMkBm4AALCOcOMHDNwAAGAP4cZBDNwAAGAf4cYPDJNuAACwhnDjIO5zAwCAfYQbP2DgBgAAewg3DuI+NwAA2Ee4cRCnpQAAsI9w4weclgIAwB7CjYMYuAEAwD7CjR/w4EwAAOwh3DjIxaQbAACsI9z4AXNuAACwh3DjIMZtAACwz3q4mTx5suLj4xUSEqLExEQtX778mO0nTZqkdu3aKTQ0VHFxcbr//vt14MCBaqq2chi4AQDAHqvhZtasWUpNTdWYMWO0atUqJSQkKCUlRbt27Sq3/VtvvaWHHnpIY8aM0dq1a/Xqq69q1qxZ+utf/1rNlVeAoRsAAKyzGm4mTpyooUOHasiQITrzzDM1depUhYWFadq0aeW2/+KLL3T++edrwIABio+P15VXXqn+/fsfd7SnuvHgTAAA7LEWboqKirRy5UolJyf/XozbreTkZGVkZJS7zXnnnaeVK1d6w8yPP/6o+fPn66qrrqrwcwoLC5WXl+fz8hcGbgAAsK+erQ/es2ePiouLFR0d7bM8Ojpa69atK3ebAQMGaM+ePbrgggtkjNGhQ4d05513HvO0VFpamsaNG+do7cfDuA0AAPZYn1B8IpYtW6Ynn3xSL774olatWqXZs2dr3rx5euyxxyrcZtSoUcrNzfW+tm3b5rf6uM8NAAD2WRu5iYyMVFBQkLKzs32WZ2dnKyYmptxtHn30Ud188826/fbbJUlnn322CgoKdMcdd+jhhx+W2102q3k8Hnk8Huc7cAxMuQEAwB5rIzfBwcHq2rWr0tPTvctKSkqUnp6upKSkcrfZv39/mQATFBQkKTAm8TJwAwCAfdZGbiQpNTVVgwcPVrdu3dS9e3dNmjRJBQUFGjJkiCRp0KBBatmypdLS0iRJffr00cSJE9WlSxclJiZqw4YNevTRR9WnTx9vyAkM9oMWAAB1ldVw069fP+3evVujR49WVlaWOnfurIULF3onGW/dutVnpOaRRx6Ry+XSI488ou3bt6t58+bq06ePnnjiCVtd8FE6cBMAg0gAANRZLhMI53OqUV5eniIiIpSbm6vw8HBH933OY4u1t6BIi++/SKdHN3J03wAA1GUn8v1do66WqinqVFoEACDAEG4cxHxiAADsI9z4Qd060QcAQGAh3DiIS8EBALCPcOMHhlk3AABYQ7hxFEM3AADYRrjxA+bcAABgD+HGQcy5AQDAPsKNHzByAwCAPYQbBzFwAwCAfYQbP+BqKQAA7KlSuNm2bZt++ukn7/vly5frvvvu00svveRYYTURc24AALCvSuFmwIABWrp0qSQpKytLV1xxhZYvX66HH35Y48ePd7TAmog5NwAA2FOlcLNmzRp1795dkvTOO++oY8eO+uKLL/Tmm29qxowZTtZXo7iYdQMAgHVVCjcHDx6Ux+ORJC1ZskRXX321JKl9+/bauXOnc9XVMJyWAgDAviqFm7POOktTp07Vp59+qsWLF6tnz56SpB07dqhZs2aOFlgTcVoKAAB7qhRunnrqKf3zn//UJZdcov79+yshIUGS9MEHH3hPV9VFDNwAAGBfvapsdMkll2jPnj3Ky8tTkyZNvMvvuOMOhYWFOVZcTcWl4AAA2FOlkZtff/1VhYWF3mCzZcsWTZo0SevXr1dUVJSjBdYkLibdAABgXZXCzTXXXKPXX39dkpSTk6PExEQ999xzuvbaazVlyhRHC6yJmHMDAIA9VQo3q1at0oUXXihJeu+99xQdHa0tW7bo9ddf19///ndHCwQAADgRVQo3+/fvV6NGjSRJH330ka677jq53W716NFDW7ZscbTAmoiBGwAA7KlSuDnttNM0d+5cbdu2TYsWLdKVV14pSdq1a5fCw8MdLbAmYcoNAAD2VSncjB49WiNGjFB8fLy6d++upKQkSYdHcbp06eJogTWRYdINAADWVOlS8BtuuEEXXHCBdu7c6b3HjSRdfvnl6tu3r2PF1TSM3AAAYF+Vwo0kxcTEKCYmxvt08FNOOaVO38DvSIzbAABgT5VOS5WUlGj8+PGKiIhQ69at1bp1azVu3FiPPfaYSkpKnK6xxuDBmQAA2FelkZuHH35Yr776qiZMmKDzzz9fkvTZZ59p7NixOnDggJ544glHi6xpmHIDAIA9VQo3r732ml555RXv08AlqVOnTmrZsqXuvvvuOhtumHMDAIB9VTottXfvXrVv377M8vbt22vv3r0nXVTNx9ANAAC2VCncJCQk6IUXXiiz/IUXXlCnTp1OuqiaqnTghtNSAADYU6XTUk8//bR69+6tJUuWeO9xk5GRoW3btmn+/PmOFliT8OBMAADsq9LIzcUXX6zvv/9effv2VU5OjnJycnTdddfpu+++07/+9S+na6xxGLgBAMCeKt/nJjY2tszE4a+//lqvvvqqXnrppZMurCZi3AYAAPuqNHKDY2PODQAA9hBunMTQDQAA1hFu/IAHZwIAYM8Jzbm57rrrjrk+JyfnZGqp8Ri4AQDAvhMauYmIiDjmq3Xr1ho0aNAJFTB58mTFx8crJCREiYmJWr58+THb5+TkaNiwYWrRooU8Ho/OOOOMgLv8nHEbAADsOaGRm+nTpzv64bNmzVJqaqqmTp2qxMRETZo0SSkpKVq/fr2ioqLKtC8qKtIVV1yhqKgovffee2rZsqW2bNmixo0bO1pXVXGfGwAA7KvypeBOmDhxooYOHaohQ4ZIkqZOnap58+Zp2rRpeuihh8q0nzZtmvbu3asvvvhC9evXlyTFx8dXZ8mVwpQbAADssTahuKioSCtXrlRycvLvxbjdSk5OVkZGRrnbfPDBB0pKStKwYcMUHR2tjh076sknn1RxcXF1lX1MjNsAAGCftZGbPXv2qLi4WNHR0T7Lo6OjtW7dunK3+fHHH/Xxxx9r4MCBmj9/vjZs2KC7775bBw8e1JgxY8rdprCwUIWFhd73eXl5znWiAoZZNwAAWFOjLgUvKSlRVFSUXnrpJXXt2lX9+vXTww8/rKlTp1a4TVpams+k57i4OL/Vx5QbAADssxZuIiMjFRQUpOzsbJ/l2dnZiomJKXebFi1a6IwzzlBQUJB3WYcOHZSVlaWioqJytxk1apRyc3O9r23btjnXiYowcAMAgDXWwk1wcLC6du2q9PR077KSkhKlp6d7nzR+tPPPP18bNmxQSUmJd9n333+vFi1aKDg4uNxtPB6PwsPDfV7+4mLWDQAA1lk9LZWamqqXX35Zr732mtauXau77rpLBQUF3qunBg0apFGjRnnb33XXXdq7d6/uvfdeff/995o3b56efPJJDRs2zFYXysXADQAA9li9FLxfv37avXu3Ro8eraysLHXu3FkLFy70TjLeunWr3O7f81dcXJwWLVqk+++/X506dVLLli117733auTIkba64KN0zg2XggMAYI/L1LEHIeXl5SkiIkK5ubmOn6LqOekTrcvK1xu3JeqC0yMd3TcAAHXZiXx/16irpWoKLgUHAMAewo2DePwCAAD2EW78oG6d6AMAILAQbhzEuA0AAPYRbvyAgRsAAOwh3DiIKTcAANhHuPGDOnZ1PQAAAYVw4yBGbgAAsI9w4weM2wAAYA/hxkE8OBMAAPsIN/7A0A0AANYQbhzEnBsAAOwj3PgBz5YCAMAewo2DSgduuBIcAAB7CDdO4rwUAADWEW78gJEbAADsIdw4iHEbAADsI9z4AQM3AADYQ7hxEFNuAACwj3DjBzw4EwAAewg3DmLgBgAA+wg3fsC4DQAA9hBuHORi0g0AANYRbvyAKTcAANhDuHGQ2ztwQ7oBAMAWwo2DSk9LlZBtAACwhnDjoNKBmxLOSwEAYA3hxkHu30ZuyDYAANhDuHFQ6cVSjNwAAGAP4cZBbi4FBwDAOsKNgxi5AQDAPsKNg1zMuQEAwDrCjYN+v1rKahkAANRphBsHld7Ej6eCAwBgD+HGQZyWAgDAPsKNg7wjNzx+AQAAawg3DuLxCwAA2Ee4cRCPXwAAwD7CjYN4/AIAAPYFRLiZPHmy4uPjFRISosTERC1fvrxS282cOVMul0vXXnutfwusJBdXSwEAYJ31cDNr1iylpqZqzJgxWrVqlRISEpSSkqJdu3Ydc7vNmzdrxIgRuvDCC6up0uPzjtxYrgMAgLrMeriZOHGihg4dqiFDhujMM8/U1KlTFRYWpmnTplW4TXFxsQYOHKhx48bp1FNPrcZqj6P08QvMKAYAwBqr4aaoqEgrV65UcnKyd5nb7VZycrIyMjIq3G78+PGKiorSbbfddtzPKCwsVF5ens/LXxi5AQDAPqvhZs+ePSouLlZ0dLTP8ujoaGVlZZW7zWeffaZXX31VL7/8cqU+Iy0tTREREd5XXFzcSdddER6/AACAfdZPS52I/Px83XzzzXr55ZcVGRlZqW1GjRql3Nxc72vbtm1+q4/HLwAAYF89mx8eGRmpoKAgZWdn+yzPzs5WTExMmfYbN27U5s2b1adPH++ykpISSVK9evW0fv16tW3b1mcbj8cjj8fjh+rL4vELAADYZ3XkJjg4WF27dlV6erp3WUlJidLT05WUlFSmffv27fXtt98qMzPT+7r66qt16aWXKjMz06+nnCrDxeMXAACwzurIjSSlpqZq8ODB6tatm7p3765JkyapoKBAQ4YMkSQNGjRILVu2VFpamkJCQtSxY0ef7Rs3bixJZZbb4ObxCwAAWGc93PTr10+7d+/W6NGjlZWVpc6dO2vhwoXeScZbt26V210zpgbx+AUAAOyzHm4kafjw4Ro+fHi565YtW3bMbWfMmOF8QVXE4xcAALCvZgyJ1BA8fgEAAPsINw7iaikAAOwj3DiodOSGCcUAANhDuHGQm0vBAQCwjnDjIJe4FBwAANsINw4qHblh0g0AAPYQbhzk4iZ+AABYR7hxEI9fAADAPsKNg3j8AgAA9hFuHMTjFwAAsI9w4yD379eCAwAASwg3DmLkBgAA+wg3DuLxCwAA2Ee4cRCPXwAAwD7CjYN4/AIAAPYRbhxU+vgFTksBAGAP4cZB3pEb0g0AANYQbpzETfwAALCOcOMg5twAAGAf4cZBpXNuGLkBAMAewo2DmHMDAIB9hBsHlT5+gWwDAIA9hBs/4PELAADYQ7hxkJvHLwAAYB3hxkE8fgEAAPsINw7iUnAAAOwj3DiIxy8AAGAf4cZBLi4FBwDAOsKNg1w8fgEAAOsINw76fc4NAACwhXDjoN+yDfe5AQDAIsKNg36/QzHhBgAAWwg3DnJxEz8AAKwj3DiI01IAANhHuHEQj18AAMA+wo2DePwCAAD2EW4cVHopOBeDAwBgD+HGQaWPX2DkBgAAewIi3EyePFnx8fEKCQlRYmKili9fXmHbl19+WRdeeKGaNGmiJk2aKDk5+ZjtqxOPXwAAwD7r4WbWrFlKTU3VmDFjtGrVKiUkJCglJUW7du0qt/2yZcvUv39/LV26VBkZGYqLi9OVV16p7du3V3PlZfH4BQAA7LMebiZOnKihQ4dqyJAhOvPMMzV16lSFhYVp2rRp5bZ/8803dffdd6tz585q3769XnnlFZWUlCg9Pb2aKy+Lxy8AAGCf1XBTVFSklStXKjk52bvM7XYrOTlZGRkZldrH/v37dfDgQTVt2tRfZVYap6UAALCvns0P37Nnj4qLixUdHe2zPDo6WuvWravUPkaOHKnY2FifgHSkwsJCFRYWet/n5eVVveDj4D43AADYZ/201MmYMGGCZs6cqTlz5igkJKTcNmlpaYqIiPC+4uLi/FbP73NuSDcAANhiNdxERkYqKChI2dnZPsuzs7MVExNzzG2fffZZTZgwQR999JE6depUYbtRo0YpNzfX+9q2bZsjtZeHxy8AAGCf1XATHBysrl27+kwGLp0cnJSUVOF2Tz/9tB577DEtXLhQ3bp1O+ZneDwehYeH+7z8hdNSAADYZ3XOjSSlpqZq8ODB6tatm7p3765JkyapoKBAQ4YMkSQNGjRILVu2VFpamiTpqaee0ujRo/XWW28pPj5eWVlZkqSGDRuqYcOG1vohHTmh2GoZAADUadbDTb9+/bR7926NHj1aWVlZ6ty5sxYuXOidZLx161a53b8PME2ZMkVFRUW64YYbfPYzZswYjR07tjpLL8PtfbYU6QYAAFushxtJGj58uIYPH17uumXLlvm837x5s/8LqiImFAMAYF+Nvloq0NT7beimmGwDAIA1hBsHuUvDTUmJ5UoAAKi7CDcOCnKVhhvLhQAAUIcRbhxUelqqhCdnAgBgDeHGQaWnpQ5xWgoAAGsINw4KKh25YeAGAABrCDcOCvJOKCbdAABgC+HGQb9PKCbcAABgC+HGQYzcAABgH+HGQd5wwx2KAQCwhnDjIEZuAACwj3DjIDdzbgAAsI5w4yBu4gcAgH2EGwcFeW/iR7gBAMAWwo2D3EwoBgDAOsKNgzgtBQCAfYQbB5VOKOa0FAAA9hBuHFQ650Zi9AYAAFsINw46Mtww7wYAADsINw7yCTeM3AAAYAXhxkGlD86UpNte+0prtudarAYAgLqJcOMg9xG/zc83/Kz/+8dn9ooBAKCOItw4qJ6bXycAALbxbeygI6bcAAAASwg3DnK5XAQcAAAsI9w47OhTU1w1BQBA9SLcOOzoaTcFRYfsFAIAQB1FuHHYkZeDS1L+AcINAADViXDjsKCjJt3sI9wAAFCtCDcOOzrc5B84aKkSAADqJsKNw8qM3BQycgMAQHUi3DjMfdScm4LCYkuVAABQNxFuHHb0hd8FjNwAAFCtCDcOO1Rc4vM+n3ADAEC1Itw47Oh79jFyAwBA9SLcOKzE+KYbwg0AANWLcOO0o0ZuZq3Ypi7jP9KLyzbYqQcAgDqGcOOwoycU5+w/qF/2H9TTC9er6FBJudsAAADnEG4cdrC44gDz9U851VcIAAB1VECEm8mTJys+Pl4hISFKTEzU8uXLj9n+3XffVfv27RUSEqKzzz5b8+fPr6ZKj+/QMZ4C/sWGn5V34KBKeFI4AAB+Yz3czJo1S6mpqRozZoxWrVqlhIQEpaSkaNeuXeW2/+KLL9S/f3/ddtttWr16ta699lpde+21WrNmTTVXXr7iYwSX55d8r05jP9If/pmhPfsKtTP3VxlD0AEAwEkuY/nbNTExUeeee65eeOEFSVJJSYni4uJ0zz336KGHHirTvl+/fiooKNCHH37oXdajRw917txZU6dOPe7n5eXlKSIiQrm5uQoPD3euI79Jnvgfbdi1z2dZr44xWrAmq9z2MeEhimwUrIOHjMJD6ymkfpBcLpeCXIfvdux2u+R2HX6sg8vlOrzst3Wu0jbe97//7HbJ2z7Ifez1Lpfkkg7/1/v+qOWl712uI5bJu0/5LC+t7fDPOqJtaZvSz1V5y3/7WUfU4K3TVeZXePgzyi6szCK5ytlh+e0q97nltytvh+UtPLl9ltuXIxYZIxUeKlY9d/n/n6a8z6nosyr6vKrtp4IVFWxRcfsq1HqCNZX7Z+04NTmx/5P5vBNq64/Pr2y7E/odVr5xZfd7Ih9f0Z+nk9mv7eN0Iiqz3+B6bkU1CnH0c0/k+7ueo598goqKirRy5UqNGjXKu8ztdis5OVkZGRnlbpORkaHU1FSfZSkpKZo7d2657QsLC1VYWOh9n5eXd/KFH8PLg7rpvpmrddclp+nv6T9ow659ujf5dO0tKNJ/N+1Vt9ZNtPnnAu3ZVyRJyso7oKy8A36tCQCA6nROq8aafff51j7farjZs2ePiouLFR0d7bM8Ojpa69atK3ebrKyscttnZZU/MpKWlqZx48Y5U3AltIlsoPeHXyBJuviM5tpfdEjNGnr0xu2J+uanHHWOa6K9BUXa8nOBzowN11ebf1FJiVH9ILdyfz2oouJiFZccvl+OMUYl5vCprtKfS3777+H3RywrOfZ689t+Sn8u+W394fnPh5cZIxmVrj/882//kzFGRvLu2xze7Ij2v+1Dh/ejI5dLR6w7PFDou83v28pnm/K3PVp5i02Z69bKb1fx9uW1q/wgZ2VrOpHPr6iGcttWsIPS0bGT+bxjta9ohVP7r/AYVlzRCR33Y/F3rZWt50TKPrE+Vq7xieyzsk1P6O9W5T++8r9TP31+ZRufWJ8qeZxOaJ8n0LaSew6uZ3fWi9VwUx1GjRrlM9KTl5enuLi4avns0OAghQYHSZLqB7nVtXVTSVLzRh41b+SRdDgAAQAA51gNN5GRkQoKClJ2drbP8uzsbMXExJS7TUxMzAm193g88ng8zhQMAAACntVxo+DgYHXt2lXp6eneZSUlJUpPT1dSUlK52yQlJfm0l6TFixdX2B4AANQt1k9LpaamavDgwerWrZu6d++uSZMmqaCgQEOGDJEkDRo0SC1btlRaWpok6d5779XFF1+s5557Tr1799bMmTO1YsUKvfTSSza7AQAAAoT1cNOvXz/t3r1bo0ePVlZWljp37qyFCxd6Jw1v3bpV7iMuXT3vvPP01ltv6ZFHHtFf//pXnX766Zo7d646duxoqwsAACCAWL/PTXXz931uAACA807k+9v6HYoBAACcRLgBAAC1CuEGAADUKoQbAABQqxBuAABArUK4AQAAtQrhBgAA1CqEGwAAUKsQbgAAQK1i/fEL1a30hsx5eXmWKwEAAJVV+r1dmQcr1Llwk5+fL0mKi4uzXAkAADhR+fn5ioiIOGabOvdsqZKSEu3YsUONGjWSy+VydN95eXmKi4vTtm3bauVzq2p7/6Ta30f6V/PV9j7W9v5Jtb+P/uqfMUb5+fmKjY31eaB2eercyI3b7dYpp5zi188IDw+vlX9gS9X2/km1v4/0r+ar7X2s7f2Tan8f/dG/443YlGJCMQAAqFUINwAAoFYh3DjI4/FozJgx8ng8tkvxi9reP6n295H+1Xy1vY+1vX9S7e9jIPSvzk0oBgAAtRsjNwAAoFYh3AAAgFqFcAMAAGoVwg0AAKhVCDcOmTx5suLj4xUSEqLExEQtX77cdkmVkpaWpnPPPVeNGjVSVFSUrr32Wq1fv96nzSWXXCKXy+XzuvPOO33abN26Vb1791ZYWJiioqL04IMP6tChQ9XZlQqNHTu2TP3t27f3rj9w4ICGDRumZs2aqWHDhrr++uuVnZ3ts49A7l98fHyZ/rlcLg0bNkxSzTt+n3zyifr06aPY2Fi5XC7NnTvXZ70xRqNHj1aLFi0UGhqq5ORk/fDDDz5t9u7dq4EDByo8PFyNGzfWbbfdpn379vm0+eabb3ThhRcqJCREcXFxevrpp/3dNa9j9fHgwYMaOXKkzj77bDVo0ECxsbEaNGiQduzY4bOP8o77hAkTfNrY6uPxjuEtt9xSpvaePXv6tKnJx1BSuX8nXS6XnnnmGW+bQD2GlflecOrfzWXLlumcc86Rx+PRaaedphkzZjjTCYOTNnPmTBMcHGymTZtmvvvuOzN06FDTuHFjk52dbbu040pJSTHTp083a9asMZmZmeaqq64yrVq1Mvv27fO2ufjii83QoUPNzp07va/c3Fzv+kOHDpmOHTua5ORks3r1ajN//nwTGRlpRo0aZaNLZYwZM8acddZZPvXv3r3bu/7OO+80cXFxJj093axYscL06NHDnHfeed71gd6/Xbt2+fRt8eLFRpJZunSpMabmHb/58+ebhx9+2MyePdtIMnPmzPFZP2HCBBMREWHmzp1rvv76a3P11VebNm3amF9//dXbpmfPniYhIcF8+eWX5tNPPzWnnXaa6d+/v3d9bm6uiY6ONgMHDjRr1qwxb7/9tgkNDTX//Oc/rfcxJyfHJCcnm1mzZpl169aZjIwM0717d9O1a1effbRu3dqMHz/e57ge+ffWZh+PdwwHDx5sevbs6VP73r17fdrU5GNojPHp286dO820adOMy+UyGzdu9LYJ1GNYme8FJ/7d/PHHH01YWJhJTU01//vf/8w//vEPExQUZBYuXHjSfSDcOKB79+5m2LBh3vfFxcUmNjbWpKWlWayqanbt2mUkmf/85z/eZRdffLG59957K9xm/vz5xu12m6ysLO+yKVOmmPDwcFNYWOjPcitlzJgxJiEhodx1OTk5pn79+ubdd9/1Llu7dq2RZDIyMowxgd+/o917772mbdu2pqSkxBhTs4/f0V8aJSUlJiYmxjzzzDPeZTk5Ocbj8Zi3337bGGPM//73PyPJfPXVV942CxYsMC6Xy2zfvt0YY8yLL75omjRp4tO/kSNHmnbt2vm5R2WV98V4tOXLlxtJZsuWLd5lrVu3Ns8//3yF2wRKHysKN9dcc02F29TGY3jNNdeYyy67zGdZTTmGR38vOPXv5l/+8hdz1lln+XxWv379TEpKyknXzGmpk1RUVKSVK1cqOTnZu8ztdis5OVkZGRkWK6ua3NxcSVLTpk19lr/55puKjIxUx44dNWrUKO3fv9+7LiMjQ2effbaio6O9y1JSUpSXl6fvvvuuego/jh9++EGxsbE69dRTNXDgQG3dulWStHLlSh08eNDn+LVv316tWrXyHr+a0L9SRUVFeuONN3Trrbf6PBi2ph+/Ups2bVJWVpbP8YqIiFBiYqLP8WrcuLG6devmbZOcnCy3263//ve/3jYXXXSRgoODvW1SUlK0fv16/fLLL9XUm8rLzc2Vy+VS48aNfZZPmDBBzZo1U5cuXfTMM8/4DPkHeh+XLVumqKgotWvXTnfddZd+/vln77radgyzs7M1b9483XbbbWXW1YRjePT3glP/bmZkZPjso7SNE9+dde7BmU7bs2ePiouLfQ6gJEVHR2vdunWWqqqakpIS3XfffTr//PPVsWNH7/IBAwaodevWio2N1TfffKORI0dq/fr1mj17tiQpKyur3P6XrrMtMTFRM2bMULt27bRz506NGzdOF154odasWaOsrCwFBweX+dKIjo721h7o/TvS3LlzlZOTo1tuucW7rKYfvyOV1lNevUcer6ioKJ/19erVU9OmTX3atGnTpsw+Stc1adLEL/VXxYEDBzRy5Ej179/f5yGEf/7zn3XOOeeoadOm+uKLLzRq1Cjt3LlTEydOlBTYfezZs6euu+46tWnTRhs3btRf//pX9erVSxkZGQoKCqp1x/C1115To0aNdN111/ksrwnHsLzvBaf+3ayoTV5enn799VeFhoZWuW7CDbyGDRumNWvW6LPPPvNZfscdd3h/Pvvss9WiRQtdfvnl2rhxo9q2bVvdZZ6wXr16eX/u1KmTEhMT1bp1a73zzjsn9ZcnEL366qvq1auXYmNjvctq+vGryw4ePKgbb7xRxhhNmTLFZ11qaqr3506dOik4OFh/+tOflJaWFvC39b/pppu8P5999tnq1KmT2rZtq2XLlunyyy+3WJl/TJs2TQMHDlRISIjP8ppwDCv6Xgh0nJY6SZGRkQoKCiozSzw7O1sxMTGWqjpxw4cP14cffqilS5fqlFNOOWbbxMRESdKGDRskSTExMeX2v3RdoGncuLHOOOMMbdiwQTExMSoqKlJOTo5PmyOPX03p35YtW7RkyRLdfvvtx2xXk49faT3H+vsWExOjXbt2+aw/dOiQ9u7dW6OOaWmw2bJlixYvXuwzalOexMREHTp0SJs3b5ZUM/pY6tRTT1VkZKTPn8nacAwl6dNPP9X69euP+/dSCrxjWNH3glP/blbUJjw8/KT/jyfh5iQFBwera9euSk9P9y4rKSlRenq6kpKSLFZWOcYYDR8+XHPmzNHHH39cZgi0PJmZmZKkFi1aSJKSkpL07bff+vxjVPqP8ZlnnumXuk/Gvn37tHHjRrVo0UJdu3ZV/fr1fY7f+vXrtXXrVu/xqyn9mz59uqKiotS7d+9jtqvJx69NmzaKiYnxOV55eXn673//63O8cnJytHLlSm+bjz/+WCUlJd5gl5SUpE8++UQHDx70tlm8eLHatWsXEKczSoPNDz/8oCVLlqhZs2bH3SYzM1Nut9t7OifQ+3ikn376ST///LPPn8mafgxLvfrqq+ratasSEhKO2zZQjuHxvhec+nczKSnJZx+lbRz57jzpKckwM2fONB6Px8yYMcP873//M3fccYdp3LixzyzxQHXXXXeZiIgIs2zZMp/LEffv32+MMWbDhg1m/PjxZsWKFWbTpk3m/fffN6eeeqq56KKLvPsoveTvyiuvNJmZmWbhwoWmefPmAXOp9AMPPGCWLVtmNm3aZD7//HOTnJxsIiMjza5du4wxhy9pbNWqlfn444/NihUrTFJSkklKSvJuH+j9M+bwFXqtWrUyI0eO9FleE49ffn6+Wb16tVm9erWRZCZOnGhWr17tvVJowoQJpnHjxub9998333zzjbnmmmvKvRS8S5cu5r///a/57LPPzOmnn+5zGXFOTo6Jjo42N998s1mzZo2ZOXOmCQsLq7bLiI/Vx6KiInP11VebU045xWRmZvr8vSy9yuSLL74wzz//vMnMzDQbN240b7zxhmnevLkZNGhQQPTxWP3Lz883I0aMMBkZGWbTpk1myZIl5pxzzjGnn366OXDggHcfNfkYlsrNzTVhYWFmypQpZbYP5GN4vO8FY5z5d7P0UvAHH3zQrF271kyePJlLwQPNP/7xD9OqVSsTHBxsunfvbr788kvbJVWKpHJf06dPN8YYs3XrVnPRRReZpk2bGo/HY0477TTz4IMP+twnxRhjNm/ebHr16mVCQ0NNZGSkeeCBB8zBgwct9Kisfv36mRYtWpjg4GDTsmVL069fP7Nhwwbv+l9//dXcfffdpkmTJiYsLMz07dvX7Ny502cfgdw/Y4xZtGiRkWTWr1/vs7wmHr+lS5eW+2dy8ODBxpjDl4M/+uijJjo62ng8HnP55ZeX6ffPP/9s+vfvbxo2bGjCw8PNkCFDTH5+vk+br7/+2lxwwQXG4/GYli1bmgkTJlRXF4/Zx02bNlX497L03kUrV640iYmJJiIiwoSEhJgOHTqYJ5980icc2Ozjsfq3f/9+c+WVV5rmzZub+vXrm9atW5uhQ4eW+T+DNfkYlvrnP/9pQkNDTU5OTpntA/kYHu97wRjn/t1cunSp6dy5swkODjannnqqz2ecDNdvHQEAAKgVmHMDAABqFcINAACoVQg3AACgViHcAACAWoVwAwAAahXCDQAAqFUINwAAoFYh3ACo81wul+bOnWu7DAAOIdwAsOqWW26Ry+Uq8+rZs6ft0gDUUPVsFwAAPXv21PTp032WeTweS9UAqOkYuQFgncfjUUxMjM+r9KnHLpdLU6ZMUa9evRQaGqpTTz1V7733ns/23377rS677DKFhoaqWbNmuuOOO7Rv3z6fNtOmTdNZZ50lj8ejFi1aaPjw4T7r9+zZo759+yosLEynn366PvjgA/92GoDfEG4ABLxHH31U119/vb7++msNHDhQN910k9auXStJKigoUEpKipo0aaKvvvpK7777rpYsWeITXqZMmaJhw4bpjjvu0LfffqsPPvhAp512ms9njBs3TjfeeKO++eYbXXXVVRo4cKD27t1brf0E4BBHHr8JAFU0ePBgExQUZBo0aODzeuKJJ4wxh59QfOedd/psk5iYaO666y5jjDEvvfSSadKkidm3b593/bx584zb7fY+aTo2NtY8/PDDFdYgyTzyyCPe9/v27TOSzIIFCxzrJ4Dqw5wbANZdeumlmjJlis+ypk2ben9OSkryWZeUlKTMzExJ0tq1a5WQkKAGDRp4159//vkqKSnR+vXr5XK5tGPHDl1++eXHrKFTp07enxs0aKDw8HDt2rWrql0CYBHhBoB1DRo0KHOayCmhoaGVale/fn2f9y6XSyUlJf4oCYCfMecGQMD78ssvy7zv0KGDJKlDhw76+uuvVVBQ4F3/+eefy+12q127dmrUqJHi4+OVnp5erTUDsIeRGwDWFRYWKisry2dZvXr1FBkZKUl699131a1bN11wwQV68803tXz5cr366quSpIEDB2rMmDEaPHiwxo4dq927d+uee+7RzTffrOjoaEnS2LFjdeeddyoqKkq9evVSfn6+Pv/8c91zzz3V21EA1YJwA8C6hQsXqkWLFj7L2rVrp3Xr1kk6fCXTzJkzdffdd6tFixZ6++23deaZZ0qSwsLCtGjRIt17770699xzFRYWpuuvv14TJ0707mvw4ME6cOCAnn/+eY0YMUKRkZG64YYbqq+DAKqVyxhjbBcBABVxuVyaM2eOrr32WtulAKghmHMDAABqFcINAACoVZhzAyCgceYcwIli5AYAANQqhBsAAFCrEG4AAECtQrgBAAC1CuEGAADUKoQbAABQqxBuAABArUK4AQAAtQrhBgAA1Cr/Hz+v/bNJRoSGAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(df_grouped.columns)" + ], + "metadata": { + "id": "qIb-HBQV3mri", + "outputId": "fd886769-a0f8-487e-dfe6-7957f3c4df6e", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 189, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Index(['1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988',\n", + " '1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',\n", + " '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006',\n", + " '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',\n", + " '2016', '2017', '2018', '2019', '2020', '2021', 'Total'],\n", + " dtype='object')\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Convertir X_test en un DataFrame de pandas\n", + "X_test_df = pd.DataFrame(X_test, columns=df.columns[:-1])\n", + "\n", + "# Supongamos que 'region' es la columna con la información de la región\n", + "X_test_with_region = X_test_df.copy()\n", + "\n", + "# Convertir y_pred en una serie de pandas\n", + "y_pred_series = pd.Series(y_pred.flatten(), index=X_test_df.index)\n", + "\n", + "X_test_with_region['Predicciones'] = y_pred_series\n", + "X_test_with_region['Real'] = y_test\n", + "\n", + "# Ahora puedes graficar los resultados por región\n", + "regiones = X_test_with_region['Region'].unique()\n", + "\n", + "for region in regiones:\n", + " data_region = X_test_with_region[X_test_with_region['Region'] == region]\n", + " plt.figure(figsize=(10,6))\n", + " plt.plot(data_region['Real'], color='blue', label='Real')\n", + " plt.plot(data_region['Predicciones'], color='red', label='Predicho')\n", + " plt.title(f'Valores reales vs predichos para {region}')\n", + " plt.xlabel('Observaciones')\n", + " plt.ylabel('Valor')\n", + " plt.legend()\n", + " plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 685 + }, + "id": "My8by2_2DI_X", + "outputId": "f19d7910-aca2-4805-afbe-ff191d55535d" + }, + "execution_count": 192, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Convertir X_test en un DataFrame de pandas\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mX_test_df\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolumns\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Supongamos que 'region' es la columna con la información de la región\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mX_test_with_region\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX_test_df\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, data, index, columns, dtype, copy)\u001b[0m\n\u001b[1;32m 720\u001b[0m )\n\u001b[1;32m 721\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 722\u001b[0;31m mgr = ndarray_to_mgr(\n\u001b[0m\u001b[1;32m 723\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 724\u001b[0m \u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/internals/construction.py\u001b[0m in \u001b[0;36mndarray_to_mgr\u001b[0;34m(values, index, columns, dtype, copy, typ)\u001b[0m\n\u001b[1;32m 327\u001b[0m \u001b[0;31m# by definition an array here\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[0;31m# the dtypes will be coerced to a single dtype\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 329\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_prep_ndarraylike\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcopy_on_sanitize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 330\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdtype\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mis_dtype_equal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/internals/construction.py\u001b[0m in \u001b[0;36m_prep_ndarraylike\u001b[0;34m(values, copy)\u001b[0m\n\u001b[1;32m 581\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 582\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 583\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"Must pass 2-d input. shape={values.shape}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 584\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 585\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Must pass 2-d input. shape=(3, 41, 1)" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "2\n", + "# Escalar los datos entre 0 y 1scaler_X = MinMaxScaler(feature_range=(0, 1))\n", + "scaler_X = MinMaxScaler(feature_range=(0, 1))\n", + "scaler_y = MinMaxScaler(feature_range=(0, 1))\n", + "train_X_scaled = scaler_X.fit_transform(train_X)\n", + "test_X_scaled = scaler_X.transform(test_X)\n", + "train_y_scaled = scaler_y.fit_transform(train_y.values.reshape(-1, 1))\n", + "test_y_scaled = scaler_y.transform(test_y.values.reshape(-1, 1))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 303 + }, + "id": "ji9qjt_SCrvY", + "outputId": "7610dff1-9cc5-4bba-92ea-a0b93fdf3a09" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mscaler_X\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mMinMaxScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_range\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mscaler_y\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mMinMaxScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_range\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mtrain_X_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_X\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_X\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mtest_X_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_X\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_X\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mtrain_y_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_y\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_y\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/utils/_set_output.py\u001b[0m in \u001b[0;36mwrapped\u001b[0;34m(self, X, *args, **kwargs)\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mwraps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mwrapped\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 140\u001b[0;31m \u001b[0mdata_to_wrap\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 141\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_to_wrap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 142\u001b[0m \u001b[0;31m# only wrap the first output for cross decomposition\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/base.py\u001b[0m in \u001b[0;36mfit_transform\u001b[0;34m(self, X, y, **fit_params)\u001b[0m\n\u001b[1;32m 876\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0my\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 877\u001b[0m \u001b[0;31m# fit method of arity 1 (unsupervised transformation)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 878\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mfit_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 879\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 880\u001b[0m \u001b[0;31m# fit method of arity 2 (supervised transformation)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_data.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 425\u001b[0m \u001b[0;31m# Reset internal state before fitting\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 426\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 427\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpartial_fit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 428\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 429\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mpartial_fit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_data.py\u001b[0m in \u001b[0;36mpartial_fit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 464\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 465\u001b[0m \u001b[0mfirst_pass\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"n_samples_seen_\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 466\u001b[0;31m X = self._validate_data(\n\u001b[0m\u001b[1;32m 467\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 468\u001b[0m \u001b[0mreset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfirst_pass\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/base.py\u001b[0m in \u001b[0;36m_validate_data\u001b[0;34m(self, X, y, reset, validate_separately, **check_params)\u001b[0m\n\u001b[1;32m 563\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Validation should be done on X, y or both.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 564\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mno_val_X\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mno_val_y\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 565\u001b[0;31m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcheck_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_name\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"X\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mcheck_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 566\u001b[0m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 567\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mno_val_X\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mno_val_y\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py\u001b[0m in \u001b[0;36mcheck_array\u001b[0;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)\u001b[0m\n\u001b[1;32m 776\u001b[0m )\n\u001b[1;32m 777\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype_iter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdtype_iter\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdtypes_orig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 778\u001b[0;31m \u001b[0mdtype_orig\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mdtypes_orig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 779\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 780\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"iloc\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"dtype\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/overrides.py\u001b[0m in \u001b[0;36mresult_type\u001b[0;34m(*args, **kwargs)\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: at least one array or dtype is required" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Definir el modelo LSTM\n", + "model_lstm = Sequential()\n", + "model_lstm.add(LSTM(50, activation='relu', input_shape=(train_scaled.shape[1], 1)))\n", + "model_lstm.add(Dense(1))\n", + "model_lstm.compile(optimizer='adam', loss='mse')\n", + "\n", + "#/ Definir el modelo GRU\n", + "#model_gru = Sequential()\n", + "#model_gru.add(GRU(50, activation='relu', input_shape=(train_scaled.shape[1], 1)))\n", + "#model_gru.add(Dense(1))\n", + "#model_gru.compile(optimizer='adam', loss='mse')\n", + "#" + ], + "metadata": { + "id": "CaTJQmj33IvW" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "model_lstm.fit(train_X, train_y, epochs=10, verbose=0)\n", + "#model_gru.fit(train_X, train_y, epochs=10, verbose=0)\n", + "\n", + "# Evaluar los modelos\n", + "mse_lstm = model_lstm.evaluate(test_X, test_y)\n", + "#mse_gru = model_gru.evaluate(test_X, test_y)\n", + "\n", + "print(f'Test MSE LSTM: {mse_lstm}')\n", + "#print(f'Test MSE GRU: {mse_gru}')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 245 + }, + "id": "3wBcalVC41ED", + "outputId": "671dcbb9-7d07-4da9-b9e3-1c52a5f16ef9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_X\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_y\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m#model_gru.fit(train_X, train_y, epochs=10, verbose=0)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Evaluar los modelos\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mmse_lstm\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_X\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_y\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'train_X' is not defined" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "hasta aca\n" + ], + "metadata": { + "id": "keXYd4TrurKV" + } + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Convertir los datos a un formato largo usando melt de pandas\n", + "new_data = pd.melt(data, id_vars=['Country', 'Latitude', 'Longitude', 'Features', 'Region'], var_name='Year', value_name='Value')\n", + "\n", + "# Convertir las columnas al tipo de datos correcto\n", + "new_data['Year'] = new_data['Year'].astype(int)\n", + "new_data['Latitude'] = pd.to_numeric(new_data['Latitude'])\n", + "new_data['Longitude'] = pd.to_numeric(new_data['Longitude'])" + ], + "metadata": { + "id": "Xd6En43Apl_Z", + "outputId": "ff66b8ad-695e-4976-8859-ea466bc350cc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 303 + } + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/lib.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.maybe_convert_numeric\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unable to parse string \" -24.653257\"", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Convertir las columnas al tipo de datos correcto\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Latitude'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numeric\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Latitude'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Longitude'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numeric\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Longitude'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/tools/numeric.py\u001b[0m in \u001b[0;36mto_numeric\u001b[0;34m(arg, errors, downcast)\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0mcoerce_numeric\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0merrors\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m\"ignore\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"raise\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 184\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 185\u001b[0;31m values, _ = lib.maybe_convert_numeric(\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcoerce_numeric\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcoerce_numeric\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m )\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/lib.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.maybe_convert_numeric\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unable to parse string \" -24.653257\" at position 161" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Reordenar los niveles de 'Features' en la secuencia deseada\n", + "feature_order = [\"imports\", \"exports\", \"net imports\", \"installed capacity\", \"net generation\", \"net consumption\", \"distribution losses\"]\n", + "new_data['Features'] = pd.Categorical(new_data['Features'], categories=feature_order, ordered=True)\n", + "\n", + "custom_palette = [\"red\", \"blue\", \"green\",\"purple\", \"#FF7F00\", \"cyan\", \"brown\"]\n", + "\n", + "# Agrupar los datos por 'Year' y 'Region' y calcular la suma de valores\n", + "region_features = new_data.groupby(['Year', 'Region', 'Features']).agg(Total_Value=('Value', 'sum')).reset_index()\n", + "\n", + "# Establecer el estilo de los gráficos en Seaborn a \"whitegrid\"\n", + "sns.set_style(\"whitegrid\")\n", + "\n", + "# Crear el gráfico de líneas con la paleta de colores personalizada\n", + "sns.lineplot(data=region_features, x='Year', y='Total_Value', hue='Region')\n", + "plt.title('Total Values by Region Over Time')\n", + "plt.xlabel('Year')\n", + "plt.ylabel('Total')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 390 + }, + "id": "cYzGOiNeVfY7", + "outputId": "d3044941-773c-479f-a4bf-7e86be3e6785" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# Agrupar los datos por 'Year' y 'Region' y calcular la suma de valores\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mregion_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Region'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Features'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0magg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mTotal_Value\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Value'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sum'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;31m# Establecer el estilo de los gráficos en Seaborn a \"whitegrid\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mgroupby\u001b[0;34m(self, by, axis, level, as_index, sort, group_keys, squeeze, observed, dropna)\u001b[0m\n\u001b[1;32m 8400\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_axis_number\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8401\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 8402\u001b[0;31m return DataFrameGroupBy(\n\u001b[0m\u001b[1;32m 8403\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8404\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mby\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort, group_keys, squeeze, observed, mutated, dropna)\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mpandas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrouper\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_grouper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 965\u001b[0;31m grouper, exclusions, obj = get_grouper(\n\u001b[0m\u001b[1;32m 966\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 967\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/grouper.py\u001b[0m in \u001b[0;36mget_grouper\u001b[0;34m(obj, key, axis, level, sort, observed, mutated, validate, dropna)\u001b[0m\n\u001b[1;32m 886\u001b[0m \u001b[0min_axis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 888\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgpr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 889\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgpr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mGrouper\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mgpr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkey\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 890\u001b[0m \u001b[0;31m# Add key to exclusions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "custom_palette = [\"#E41A1C\", \"#377EB8\", \"#4DAF4A\", \"#984EA3\", \"#FF7F00\", \"#FFFF33\", \"#A65628\"]\n", + "\n", + "# Filter the data for the past five years and 'exports'\n", + "export_data = new_data[(new_data['Features'] == \"exports\") & (new_data['Year'] >= (new_data['Year'].max() - 4))]\n", + "\n", + "# Group by 'Country' and calculate the total export value\n", + "top_exporting_countries = export_data.groupby('Country')['Value'].sum().reset_index().sort_values(by='Value', ascending=False).head(10)\n", + "\n", + "# Plotting\n", + "plt.figure(figsize=(10,6))\n", + "sns.barplot(x='Value', y='Country', data=top_exporting_countries, palette=custom_palette)\n", + "print(top_exporting_countries)\n", + "\n", + "plt.xlabel('Total Exports')\n", + "plt.ylabel('Country')\n", + "plt.title('Exports - Last 5 Years - Top Ten Countries')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 512 + }, + "id": "pEGfENwGVhHK", + "outputId": "2dc0d837-10ef-4939-a46a-d36246f692a7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3801\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3802\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m# Filter the data for the past five years and 'exports'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mexport_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Features'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"exports\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;31m# Group by 'Country' and calculate the total export value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3805\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3806\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3807\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3808\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3809\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3802\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3804\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3805\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3806\u001b[0m \u001b[0;31m# If we have a listlike key, _check_indexing_error will raise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'" + ] + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "RQfTp3HSXLqQ" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file From 4d5e5fe7ff86c573dd550861e437b7dabb7092d5 Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Sat, 28 Oct 2023 14:48:17 -0300 Subject: [PATCH 11/16] Creado mediante Colaboratory --- proyectoIAPrediccion1CNNPrediccion0.1.ipynb | 2834 +++++++++++++++++++ 1 file changed, 2834 insertions(+) create mode 100644 proyectoIAPrediccion1CNNPrediccion0.1.ipynb diff --git a/proyectoIAPrediccion1CNNPrediccion0.1.ipynb b/proyectoIAPrediccion1CNNPrediccion0.1.ipynb new file mode 100644 index 0000000..12b1e0a --- /dev/null +++ b/proyectoIAPrediccion1CNNPrediccion0.1.ipynb @@ -0,0 +1,2834 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.colors as mcolors\n", + "import matplotlib.cm as cm\n", + "import matplotlib\n", + "import seaborn as sns\n", + "import plotly.express as px\n", + "from wordcloud import WordCloud\n", + "import geopandas as gpd\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from keras.models import Sequential\n", + "from keras.layers import LSTM, GRU, Conv1D, MaxPooling1D, Flatten, Dense\n", + "from keras.losses import MeanSquaredError\n", + "from keras.regularizers import l2\n", + "from sklearn.metrics import mean_squared_error\n", + "\n" + ], + "metadata": { + "id": "H7kZjC_GUZZd" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "9_FId2wvQAgd" + }, + "outputs": [], + "source": [ + "# Leer los datos\n", + "GES_Data = \"global_electricity_statistics_cleaned.csv\"\n", + "df = pd.read_csv(GES_Data)" + ] + }, + { + "cell_type": "code", + "source": [ + "# Ver los primeros datos\n", + "print(df.head())\n", + "df[\"Features\"].value_counts()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "lWY6qwmkQ2PL", + "outputId": "134f9d98-a4a0-40d7-e4bf-b88f779b17c7" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Country Features Region 1980 1981 1982 1983 \\\n", + "0 Algeria net generation Africa 6.683 7.65 8.824 9.615 \n", + "1 Angola net generation Africa 0.905 0.906 0.995 1.028 \n", + "2 Benin net generation Africa 0.005 0.005 0.005 0.005 \n", + "3 Botswana net generation Africa 0.443 0.502 0.489 0.434 \n", + "4 Burkina Faso net generation Africa 0.098 0.108 0.115 0.117 \n", + "\n", + " 1984 1985 1986 ... 2012 2013 2014 2015 \\\n", + "0 10.537 11.569 12.214 ... 53.9845 56.3134 60.39972 64.68244 \n", + "1 1.028 1.028 1.088 ... 6.03408 7.97606 9.21666 9.30914 \n", + "2 0.005 0.005 0.005 ... 0.04612 0.08848 0.22666 0.31056 \n", + "3 0.445 0.456 0.538 ... 0.33 0.86868 2.17628 2.79104 \n", + "4 0.113 0.115 0.122 ... 0.86834 0.98268 1.11808 1.43986 \n", + "\n", + " 2016 2017 2018 2019 2020 2021 \n", + "0 66.75504 71.49546 72.10903 76.685 72.73591277 77.53072719 \n", + "1 10.203511 10.67604 12.83194 15.4 16.6 16.429392 \n", + "2 0.26004 0.3115 0.19028 0.2017 0.22608 0.24109728 \n", + "3 2.52984 2.8438 2.97076 3.0469 2.05144 2.18234816 \n", + "4 1.5509 1.64602 1.6464 1.72552 1.647133174 1.761209666 \n", + "\n", + "[5 rows x 45 columns]\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "net generation 230\n", + "net consumption 230\n", + "imports 230\n", + "exports 230\n", + "net imports 230\n", + "installed capacity 230\n", + "distribution losses 230\n", + "Name: Features, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Convertir las columnas de los años a numéricas\n", + "cols = [str(year) for year in range(1980, 2022)]\n", + "df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')\n", + "\n", + "# Calcular el promedio de cada fila (ignorando los valores NaN)\n", + "df['avg'] = df.loc[:, '1980':'2021'].mean(axis=1)\n", + "\n", + "# Rellenar los valores NaN con el promedio de la fila correspondiente\n", + "for col in cols:\n", + " df[col].fillna(df['avg'], inplace=True)\n", + "\n", + "# Eliminar la columna 'avg' ya que ya no es necesaria\n", + "df.drop('avg', axis=1, inplace=True)\n", + "\n", + "# Agregar la columna 'Total' que es la suma de las columnas desde 1980 hasta 2021\n", + "df['Total'] = df.loc[:, '1980':'2021'].sum(axis=1)\n", + "\n", + "# Agrupar por 'Region' y obtener la suma de los valores\n", + "df_grouped = df.groupby('Region', as_index=False).sum(numeric_only=True)\n" + ], + "metadata": { + "id": "9MZcbtw9t95l" + }, + "execution_count": 4, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df_grouped.describe().columns" + ], + "metadata": { + "id": "xegG-hIr9XGK", + "outputId": "82ffec0b-5f60-47c2-9bc8-4c0170520cc3", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988',\n", + " '1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',\n", + " '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006',\n", + " '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',\n", + " '2016', '2017', '2018', '2019', '2020', '2021', 'Total'],\n", + " dtype='object')" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "base de datos lista con regiones y caracteristicas 1980 al 2021 abajo listo falta red neuronal y entrenamiento\n", + "\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "_28HoIcVTX5H" + } + }, + { + "cell_type": "code", + "source": [ + "print(df_grouped)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6wZ4FIMSDhZH", + "outputId": "9a522fdb-e17f-4fbe-c4dc-cc36a816664d" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Region 1980 1981 1982 \\\n", + "0 Africa 442.751613 470.995013 486.609413 \n", + "1 Asia & Oceania 2864.920423 2957.954923 3091.071601 \n", + "2 Central & South America 701.439239 723.419959 767.169799 \n", + "3 Eurasia 5956.246909 5880.536405 6119.223111 \n", + "4 Europe 7098.639233 7138.275233 7175.265233 \n", + "5 Middle East 228.045912 256.978912 301.258912 \n", + "6 North America 6172.234030 6282.965270 6205.586413 \n", + "\n", + " 1983 1984 1985 1986 1987 \\\n", + "0 505.565813 548.573213 584.582613 617.340013 640.229413 \n", + "1 3288.175590 3517.547039 3737.678238 3942.409483 4262.148408 \n", + "2 821.105839 882.052239 924.217679 1014.448560 1061.394480 \n", + "3 6224.347107 6384.761865 6497.913049 6433.159219 6555.257483 \n", + "4 7379.304233 7639.238233 7874.046233 7993.154233 8202.475233 \n", + "5 335.294912 370.548912 395.965912 416.267912 439.324912 \n", + "6 6399.484193 6703.205738 6894.759863 6963.126923 7235.631195 \n", + "\n", + " 1988 ... 2013 2014 2015 2016 \\\n", + "0 662.405813 ... 1677.718947 1737.628313 1787.300928 1817.971412 \n", + "1 4589.761222 ... 21303.566369 22255.187389 23001.975032 24277.047884 \n", + "2 1111.898820 ... 2880.299637 2874.232050 2956.475857 3010.131036 \n", + "3 6641.334325 ... 6588.899485 6601.562889 6568.729219 6619.157366 \n", + "4 8354.649233 ... 10857.743749 10724.724561 10972.003012 11045.824989 \n", + "5 491.155912 ... 2244.918531 2393.003912 2514.613376 2591.011451 \n", + "6 7502.085307 ... 11431.326082 11512.482997 11530.195877 11571.996896 \n", + "\n", + " 2017 2018 2019 2020 2021 \\\n", + "0 1893.433230 1939.653262 1964.909527 1927.467376 1997.010181 \n", + "1 25762.027981 27169.634214 28150.420606 28902.810243 30933.492914 \n", + "2 3029.476889 3080.027553 3085.916507 3087.128325 3238.838636 \n", + "3 6646.263342 6679.715937 6715.974792 6694.895904 6892.277529 \n", + "4 11104.506712 11096.788734 11080.544037 10985.140560 11273.946852 \n", + "5 2694.789331 2759.997855 2864.975233 2768.263372 2909.974107 \n", + "6 11504.857796 11858.463840 11735.104936 11547.486151 11829.410197 \n", + "\n", + " Total \n", + "0 47384.899885 \n", + "1 517723.280867 \n", + "2 80349.864723 \n", + "3 268660.517049 \n", + "4 396571.073559 \n", + "5 54238.932786 \n", + "6 404741.539017 \n", + "\n", + "[7 rows x 44 columns]\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(df_grouped.columns)" + ], + "metadata": { + "id": "y9YU2bOl_Cf6", + "outputId": "3793db9d-5025-4bec-8d5b-f45fe53d755a", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Index(['Region', '1980', '1981', '1982', '1983', '1984', '1985', '1986',\n", + " '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995',\n", + " '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004',\n", + " '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',\n", + " '2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021',\n", + " 'Total'],\n", + " dtype='object')\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Asegúrate de que 'Region' sea el índice del DataFrame\n", + "df_grouped.set_index('Region', inplace=True)\n", + "\n", + "# Elimina la columna 'Total'\n", + "df_groupedGraf = df_grouped.drop(columns=['Total'])\n", + "\n", + "# Convierte las columnas a un tipo numérico y maneja los NaNs\n", + "df_groupedGraf = df_groupedGraf.apply(pd.to_numeric, errors='coerce')\n", + "df_groupedGraf = df_groupedGraf.replace(np.nan, 0)\n", + "\n", + "# Transpone el DataFrame para que los años sean las filas y las regiones sean las columnas\n", + "df_groupedGraf = df_groupedGraf.transpose()\n", + "\n", + "# Crea el gráfico\n", + "plt.figure(figsize=(15, 10))\n", + "for region in df_groupedGraf.columns:\n", + " plt.plot(df_groupedGraf.index, df_groupedGraf[region], label=region)\n", + "\n", + "plt.xlabel('Año')\n", + "plt.ylabel('Valor')\n", + "plt.title('Valor por año por Contiente')\n", + "plt.legend()\n", + "\n", + "# Rota las etiquetas del eje x para evitar la superposición\n", + "plt.xticks(rotation=45)\n", + "\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 893 + }, + "id": "UAOFyFDLLMo-", + "outputId": "fd4fa822-1db5-4d47-946e-8953ea205c03" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOcAAANsCAYAAAAQsswkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZhO9eP/8ec9Y2aMZcZuyL4nVJaERCVDloikVGgv6iMtUilLi4/2UtqEFmnVJmRJi5TShxAqWSpE9rGOmfv3x/zc3ybbEM4Yz8d13Vdned/nvO7bjCuv633OCYXD4TCSJEmSJEmSjrqooANIkiRJkiRJxyvLOUmSJEmSJCkglnOSJEmSJElSQCznJEmSJEmSpIBYzkmSJEmSJEkBsZyTJEmSJEmSAmI5J0mSJEmSJAXEck6SJEmSJEkKiOWcJEmSJEmSFBDLOUmSlKMtXbqUUCjEyJEjg46SLXXo0IHExEQGDRrE77//TmJiYtCRjhv+bEqSJLCckyRJ2Ujbtm3JkycPmzdv3ueYLl26EBsby9q1a49ispxp/vz5TJ8+nXvuuYeXXnqJMmXK0L1796BjHTFjx46lZcuWFClShNjYWEqWLEmnTp2YOnXqET3v6NGjefzxx4/oOfbnmWeesQCUJCkbC4XD4XDQISRJkgDeeOMNOnfuzKhRo7j88sv32L9161aKFSvG2WefzQcffJClYy5dupTy5cszYsQIunXrdpgTH9u2b9/O2rVrOeGEE9i1axdr1qyhRIkSQcc67MLhMFdccQUjR47k1FNPpWPHjiQlJbFy5UrGjh3LrFmzmD59Og0bNjwi52/dujXz5s1j6dKle+TasWMHMTExREdHH5FzA9SoUYMiRYowbdq0I3YOSZJ06HIFHUCSJGm3tm3bkj9/fkaPHr3Xcu79999ny5YtdOnSJYB0GbZs2ULevHkDOz9klJR58uT518fJnTs3J5xwAgC5cuU6Zou59PR0du7cSe7cufe6/5FHHmHkyJH06tWLRx99lFAoFNl311138corr5Ar19H/3+JQKLTPzJIk6fjhZa2SJCnbiI+P54ILLmDKlCmsXr16j/2jR48mf/78tG3blnXr1nHrrbdSs2ZN8uXLR0JCAi1btmTOnDlZOtfUqVNp3LgxefPmpUCBApx//vksWLAg05j+/fsTCoX48ccfueSSSyhYsCBnnHHGPo85cuRIQqEQn3/+Oddeey2FCxcmISGByy+/nPXr1+8x/plnnuGkk04iLi6OkiVL0qNHDzZs2JBpTNOmTalRowazZs3izDPPJE+ePNx55537zPDDDz/QrVs3KlSoQO7cuUlKSuKKK67Y4zLg3Z/tl19+oVu3bhQoUIDExES6d+/O1q1bM43dtWsXgwYNomLFisTFxVGuXDnuvPNOduzYsc8cu3Xr1o18+fLx66+/kpycTN68eSlZsiQDBw7knxdwbNmyhVtuuYXSpUsTFxdH1apVefjhh/cYFwqF6NmzJ6+99lrk+5swYcJez79t2zYefPBBqlWrxsMPP5ypmNvtsssu47TTTous//rrr1x44YUUKlSIPHnycPrppzNu3LhM75k2bRqhUIg333yT+++/n1KlSpE7d27OOeccfvnll8i4pk2bMm7cOJYtW0YoFCIUClGuXDlg3/ecW7hwIR07dqRQoULkzp2bunXr7jFTdPfP2vTp0+nduzdFixYlb968tG/fnjVr1kTGlStXjvnz5/PZZ59Fzt+0adPI/g0bNtCrV6/Id16pUiX++9//kp6evtfvU5IkHX7OnJMkSdlKly5dGDVqFG+++SY9e/aMbF+3bh0TJ07k4osvJj4+nvnz5/Pee+9x4YUXUr58ef7880+ee+45mjRpwo8//kjJkiX3eY7JkyfTsmVLKlSoQP/+/dm2bRtPPfUUjRo14vvvv4+UJ7tdeOGFVK5cmQceeGCPomhvevbsSYECBejfvz+LFi1i2LBhLFu2LFLoQEY5NmDAAJo1a8b1118fGfftt98yffp0YmJiIsdbu3YtLVu2pHPnzlx66aUUL158n+eeNGkSv/76K927dycpKYn58+fz/PPPM3/+fL7++us9yqlOnTpRvnx5HnzwQb7//ntefPFFihUrxn//+9/ImKuuuopRo0bRsWNHbrnlFr755hsefPBBFixYwNixYw/4faSlpdGiRQtOP/10hgwZwoQJE7j33nvZtWsXAwcOBDIu8Wzbti2ffvopV155JaeccgoTJ07ktttu448//uCxxx7LdMypU6dGfkaKFCmyx5/Zbl9++SXr1q2jV69eWbp09M8//6Rhw4Zs3bqVm266icKFCzNq1Cjatm3L22+/Tfv27TONHzx4MFFRUdx6661s3LiRIUOG0KVLF7755hsgY2bexo0b+f333yOfIV++fPs8//z582nUqBEnnHACd9xxB3nz5uXNN9+kXbt2vPPOO3uc/8Ybb6RgwYLce++9LF26lMcff5yePXvyxhtvAPD4449z4403ki9fPu666y6AyM/P1q1badKkCX/88QfXXnstZcqU4auvvqJv376sXLky0PvkSZJ0XAlLkiRlI7t27QqXKFEi3KBBg0zbn3322TAQnjhxYjgcDoe3b98eTktLyzRmyZIl4bi4uPDAgQMzbQPCI0aMiGw75ZRTwsWKFQuvXbs2sm3OnDnhqKio8OWXXx7Zdu+994aB8MUXX5yl7CNGjAgD4Tp16oR37twZ2T5kyJAwEH7//ffD4XA4vHr16nBsbGy4efPmmT7D0KFDw0D4pZdeimxr0qRJGAg/++yzWcqwdevWPba9/vrrYSD8+eef7/HZrrjiikxj27dvHy5cuHBkffbs2WEgfNVVV2Uad+utt4aB8NSpU/ebp2vXrmEgfOONN0a2paenh1u1ahWOjY0Nr1mzJhwOh8PvvfdeGAjfd999md7fsWPHcCgUCv/yyy+RbUA4KioqPH/+/P2eOxwOh5944okwEB47duwBx4bD4XCvXr3CQPiLL76IbNu8eXO4fPny4XLlykX+vD799NMwED7xxBPDO3bs2ON8c+fOjWxr1apVuGzZsnuca28/m+ecc064Zs2a4e3bt0e2paenhxs2bBiuXLlyZNvun7VmzZqF09PTI9tvvvnmcHR0dHjDhg2RbSeddFK4SZMme5x/0KBB4bx584Z/+umnTNvvuOOOcHR0dHj58uX7+aYkSdLh4mWtkiQpW4mOjqZz587MmDEj0w30R48eTfHixTnnnHMAiIuLIyoq439l0tLSWLt2Lfny5aNq1ap8//33+zz+ypUrmT17Nt26daNQoUKR7bVq1eLcc8/l448/3uM911133UF9hmuuuSbTzLfrr7+eXLlyRY49efJkdu7cSa9evSKfAeDqq68mISFhj0so4+LisvwU1fj4+Mjy9u3b+euvvzj99NMB9vq9/POzNW7cmLVr17Jp0yaASObevXtnGnfLLbcA7JF1X/4+C3L3Zak7d+5k8uTJkfNER0dz00037XGecDjM+PHjM21v0qQJ1atXP+B5d3+O/PnzZynnxx9/zGmnnZbp8uV8+fJxzTXXsHTpUn788cdM47t3705sbGxkvXHjxkDGpbEHa926dUydOpVOnTqxefNm/vrrL/766y/Wrl1LcnIyP//8M3/88Uem91xzzTWZZkM2btyYtLQ0li1bdsDzvfXWWzRu3JiCBQtGzvXXX3/RrFkz0tLS+Pzzzw/6M0iSpINnOSdJkrKd3Q98GD16NAC///47X3zxBZ07d45cmpiens5jjz1G5cqViYuLo0iRIhQtWpQffviBjRs37vPYu0uLqlWr7rHvxBNP5K+//mLLli2ZtpcvX/6g8leuXDnTer58+ShRokSkbNxXhtjYWCpUqLBHsXLCCSdkKoD2Z926dfznP/+hePHixMfHU7Ro0Uj+vX0vZcqUybResGBBgMg98pYtW0ZUVBSVKlXKNC4pKYkCBQpkqQSKioqiQoUKmbZVqVIFINN3UrJkyT1KtBNPPDGy/++y+meSkJAAwObNm7M0ftmyZfv82dhbjgN9fwfjl19+IRwO069fP4oWLZrpde+99wLscS/Gf3P+n3/+mQkTJuxxrmbNmu31XJIk6cjwnnOSJCnbqVOnDtWqVeP111/nzjvv5PXXXyccDmd6SusDDzxAv379uOKKKxg0aBCFChUiKiqKXr16Hfab2f99NloQDub8nTp14quvvuK2227jlFNOIV++fKSnp9OiRYu9fi/7ug9beC8PYchOsvqdVKtWDYC5c+fSrl27w54jq99fVuz+87n11ltJTk7e65h/lqT/5vzp6emce+653H777Xvdv7tAlSRJR5blnCRJypa6dOlCv379+OGHHxg9ejSVK1emXr16kf1vv/02Z511FsOHD8/0vg0bNlCkSJF9Hrds2bIALFq0aI99CxcupEiRIuTNm/dfZf/5558566yzIuspKSmsXLmS8847b48Mf59RtnPnTpYsWRKZuXSw1q9fz5QpUxgwYAD33HNPpjyHqmzZsqSnp/Pzzz9HZo9BxoMTNmzYEPks+5Oens6vv/6aqez56aefACIPcihbtiyTJ09m8+bNmWbPLVy4MLL/UJxxxhkULFgwUvQe6KEQZcuW3efPxqHmyGqxuftnISYm5pB/Bg7m/BUrViQlJeWwnkuSJB08L2uVJEnZ0u5Zcvfccw+zZ8/ONGsOMmYM/XN20FtvvbXHPbn+qUSJEpxyyimMGjWKDRs2RLbPmzePTz75JFKg/RvPP/88qampkfVhw4axa9cuWrZsCUCzZs2IjY3lySefzPQZhg8fzsaNG2nVqtUhnXd38fTP7+XfPHVz9/fxz2M8+uijAFnOOnTo0MhyOBxm6NChxMTERO4heN5555GWlpZpHMBjjz1GKBSKfHcHK0+ePPTp04cFCxbQp0+fvc4oe/XVV5k5c2Ykx8yZM5kxY0Zk/5YtW3j++ecpV65clu5z90958+bd76XWuxUrVoymTZvy3HPPsXLlyj32r1mz5qDPvfv8f/9Z361Tp07MmDGDiRMn7rFvw4YN7Nq165DOJ0mSDo4z5yRJUrZUvnx5GjZsyPvvvw+wRznXunVrBg4cSPfu3WnYsCFz587ltdde2+PeZnvz0EMP0bJlSxo0aMCVV17Jtm3beOqpp0hMTKR///7/OvvOnTs555xz6NSpE4sWLeKZZ57hjDPOoG3btgAULVqUvn37MmDAAFq0aEHbtm0j4+rVq8ell156SOdNSEjgzDPPZMiQIaSmpnLCCSfwySefsGTJkkP+LCeffDJdu3bl+eefZ8OGDTRp0oSZM2cyatQo2rVrl2mG4L7kzp2bCRMm0LVrV+rXr8/48eMZN24cd955J0WLFgWgTZs2nHXWWdx1110sXbqUk08+mU8++YT333+fXr16UbFixUP+DLfddhvz58/nkUce4dNPP6Vjx44kJSWxatUq3nvvPWbOnMlXX30FwB133MHrr79Oy5YtuemmmyhUqBCjRo1iyZIlvPPOO5ke4JFVderU4Y033qB3797Uq1ePfPny0aZNm72OffrppznjjDOoWbMmV199NRUqVODPP/9kxowZ/P7778yZM+eQzj9s2DDuu+8+KlWqRLFixTj77LO57bbb+OCDD2jdujXdunWjTp06bNmyhblz5/L222+zdOnS/c5ClSRJh0lAT4mVJEk6oKeffjoMhE877bQ99m3fvj18yy23hEuUKBGOj48PN2rUKDxjxoxwkyZNwk2aNImMW7JkSRgIjxgxItP7J0+eHG7UqFE4Pj4+nJCQEG7Tpk34xx9/zDTm3nvvDQPhNWvWZCnviBEjwkD4s88+C19zzTXhggULhvPlyxfu0qVLeO3atXuMHzp0aLhatWrhmJiYcPHixcPXX399eP369ZnGNGnSJHzSSSdl6fzhcDj8+++/h9u3bx8uUKBAODExMXzhhReGV6xYEQbC99577wE/2+7PsGTJksi21NTU8IABA8Lly5cPx8TEhEuXLh3u27dvePv27QfM07Vr13DevHnDixcvDjdv3jycJ0+ecPHixcP33ntvOC0tLdPYzZs3h2+++eZwyZIlwzExMeHKlSuHH3rooXB6enqmcUC4R48eWf5Odnv77bfDzZs3DxcqVCicK1eucIkSJcIXXXRReNq0aZnGLV68ONyxY8dwgQIFwrlz5w6fdtpp4Y8++ijTmE8//TQMhN96661M2/f285aSkhK+5JJLwgUKFAgD4bJly+5z7O7zX3755eGkpKRwTExM+IQTTgi3bt06/Pbbb0fG7P5z+vbbb/ea69NPP41sW7VqVbhVq1bh/Pnzh4FMvx+bN28O9+3bN1ypUqVwbGxsuEiRIuGGDRuGH3744fDOnTuz+M1KkqR/IxQOH8LdaiVJkrSHkSNH0r17d7799lvq1q0bdJxsoVu3brz99tukpKQEHUWSJClb8p5zkiRJkiRJUkAs5yRJkiRJkqSAWM5JkiRJkiRJAfGec5IkSZIkSVJAnDknSZIkSZIkBcRyTpIkSZIkSQpIrqAD5BTp6emsWLGC/PnzEwqFgo4jSZIkSZKkAIXDYTZv3kzJkiWJitr3/DjLucNkxYoVlC5dOugYkiRJkiRJykZ+++03SpUqtc/9lnOHSf78+YGMLzwhISHgNJIkSZIkSQrSpk2bKF26dKQz2hfLucNk96WsCQkJlnOSJEmSJEkCOODtz3wghCRJkiRJkhQQyzlJkiRJkiQpIJZzkiRJkiRJUkC859xRFA6H2bVrF2lpaUFHkXK8mJgYoqOjg44hSZIkSdJ+Wc4dJTt37mTlypVs3bo16CjScSEUClGqVCny5csXdBRJkiRJkvbJcu4oSE9PZ8mSJURHR1OyZEliY2MP+KQOSYcuHA6zZs0afv/9dypXruwMOkmSJElStmU5dxTs3LmT9PR0SpcuTZ48eYKOIx0XihYtytKlS0lNTbWckyRJkiRlWz4Q4iiKivLrlo4WZ6dKkiRJko4FtkWSJEmSJElSQCznJEmSJEmSpIBYzulfCYfDXHPNNRQqVIhQKMTs2bP3OTYUCvHee+8dtWySJEmSJEnZneWcsmTGjBlER0fTqlWrTNsnTJjAyJEj+eijj1i5ciU1atTY5zFWrlxJy5Ytj3RUSZIkSZKkY4blnLJk+PDh3HjjjXz++eesWLEisn3x4sWUKFGChg0bkpSURK5cez4AeOfOnQAkJSURFxd31DJLkiRJkiRld5ZzAQmHw2zdueuov8Lh8EFnTUlJ4Y033uD666+nVatWjBw5EoBu3bpx4403snz5ckKhEOXKlQOgadOm9OzZk169elGkSBGSk5OBPS9r/f3337n44ospVKgQefPmpW7dunzzzTdARul3/vnnU7x4cfLly0e9evWYPHnyv/rOJUmSJEmSsps9pznpqNiWmkb1eyYe9fP+ODCZPLEH98f+5ptvUq1aNapWrcqll15Kr1696Nu3L0888QQVK1bk+eef59tvvyU6OjrynlGjRnH99dczffr0vR4zJSWFJk2acMIJJ/DBBx+QlJTE999/T3p6emT/eeedx/33309cXBwvv/wybdq0YdGiRZQpU+bQvwBJkiRJkqRsxHJOBzR8+HAuvfRSAFq0aMHGjRv57LPPaNq0Kfnz5yc6OpqkpKRM76lcuTJDhgzZ5zFHjx7NmjVr+PbbbylUqBAAlSpViuw/+eSTOfnkkyPrgwYNYuzYsXzwwQf07NnzcH48SZIkSZKkwFjOBSQ+JpofByYHct6DsWjRImbOnMnYsWMByJUrFxdddBHDhw+nadOm+3xfnTp19nvc2bNnc+qpp0aKuX9KSUmhf//+jBs3jpUrV7Jr1y62bdvG8uXLDyq/JEmSJElSdmY5F5BQKHTQl5cGYfjw4ezatYuSJUtGtoXDYeLi4hg6dOg+35c3b979Hjc+Pn6/+2+99VYmTZrEww8/TKVKlYiPj6djx46Rh0tIkiRJkiTlBNm/HVJgdu3axcsvv8wjjzxC8+bNM+1r164dr7/++iEfu1atWrz44ousW7dur7Pnpk+fTrdu3Wjfvj2QMZNu6dKlh3w+SZIkSZKk7MintWqfPvroI9avX8+VV15JjRo1Mr06dOjA8OHDD/nYF198MUlJSbRr147p06fz66+/8s477zBjxgwg45517777LrNnz2bOnDlccsklkYdFSJIkSZIk5RSWc9qn4cOH06xZMxITE/fY16FDB7777js2bdp0SMeOjY3lk08+oVixYpx33nnUrFmTwYMHR574+uijj1KwYEEaNmxImzZtSE5Opnbt2v/q80iSJEmSJGU3oXA4HA46RE6wadMmEhMT2bhxIwkJCZn2bd++nSVLllC+fHly584dUELp+OLvnSRJkiQpSPvriv7OmXOSJEmSJElSQCznJEmSJEmSpIBYzkmSJEmSJEkBsZyTJEmSJEmSAmI5J0mSJEmSJAXEck6SJEmSJEkKiOWcJEmSJEmSFBDLOUmSJEmSJCkglnOSJEmSJEkK1vQnYf2yoFMEwnJOR9TSpUsJhULMnj076CjHjKZNm9KrV6+gY0iSJEmSdHT8Og0m9YNhDWHbhqDTHHWWc8qSGTNmEB0dTatWrQ7qfaVLl2blypXUqFHjX50/PT2dPn36ULJkSeLj46lVqxbvv/9+lt//0Ucf0aRJE/Lnz0+ePHmoV68eI0eO/FeZjpR3332XQYMGBR1DkiRJkqQjLz0NPrk7Y/mULhBfINA4QbCcU5YMHz6cG2+8kc8//5wVK1Zk+X3R0dEkJSWRK1euf3X+V199lccee4xHH32UBQsW8Oijj5I3b94svfepp57i/PPPp1GjRnzzzTf88MMPdO7cmeuuu45bb731X+U6EgoVKkT+/PmDjiFJkiRJ0pH3wxuwai7EJUKTPkGnCYTlXFDCYdi55ei/wuGDjpqSksIbb7zB9ddfT6tWrfaYcbZ+/Xq6dOlC0aJFiY+Pp3LlyowYMQLY87LWtLQ0rrzySsqXL098fDxVq1bliSeeOGCGqKgoihYtSufOnSlXrhzNmjWjWbNmB3zfb7/9xi233EKvXr144IEHqF69OpUqVeKWW27hoYce4pFHHuGbb76JjJ8/fz6tW7cmISGB/Pnz07hxYxYvXhzZ/+KLL3LiiSeSO3duqlWrxjPPPJPpfH369KFKlSrkyZOHChUq0K9fP1JTUyP7+/fvzymnnMIrr7xCuXLlSExMpHPnzmzevDky5p+Xtb7yyivUrVuX/Pnzk5SUxCWXXMLq1asP+NklSZIkScrWdm6FKf//yrEzb4G8hYPNE5B/N51Jhy51KzxQ8uif984VEJu1GWe7vfnmm1SrVo2qVaty6aWX0qtXL/r27UsoFAKgX79+/Pjjj4wfP54iRYrwyy+/sG3btr0eKz09nVKlSvHWW29RuHBhvvrqK6655hpKlChBp06d9pnhnHPOYePGjfTr1++gLvl8++23SU1N3esMuWuvvZY777yT119/nfr16/PHH39w5pln0rRpU6ZOnUpCQgLTp09n165dALz22mvcc889DB06lFNPPZX//e9/XH311eTNm5euXbsCkD9/fkaOHEnJkiWZO3cuV199Nfnz5+f222+PnHfx4sW89957fPTRR6xfv55OnToxePBg7r///r1+htTUVAYNGkTVqlVZvXo1vXv3plu3bnz88cdZ/h4kSZIkScp2ZjwNm1dAgTJw2rVBpwmM5ZwOaPjw4Vx66aUAtGjRgo0bN/LZZ5/RtGlTAJYvX86pp55K3bp1AShXrtw+jxUTE8OAAQMi6+XLl2fGjBm8+eab+yzntm7dyrnnnssll1zCpEmT2LZtGw899FCkHExISOCll16iY8eOe7z3p59+IjExkRIlSuyxLzY2lgoVKvDTTz8B8PTTT5OYmMiYMWOIiYkBoEqVKpHx9957L4888ggXXHBBJPuPP/7Ic889Fynn7r777sj4cuXKceuttzJmzJhM5Vx6ejojR46MXLp62WWXMWXKlH2Wc1dccUVkuUKFCjz55JPUq1ePlJQU8uXLt9f3SJIkSZKUrW3+E758LGP5nHshJneweQJkOReUmDwZs9iCOO9BWLRoETNnzmTs2LEA5MqVi4suuojhw4dHyrnrr7+eDh068P3339O8eXPatWtHw4YN93nMp59+mpdeeonly5ezbds2du7cySmnnLLP8SNHjmTDhg08/fTTpKSk0LRpU7p3786LL77I77//TkpKCo0aNTqoz7U3s2fPpnHjxpFi7u+2bNnC4sWLufLKK7n66qsj23ft2kViYmJk/Y033uDJJ59k8eLFpKSksGvXLhISEjIdq1y5cpnuKVeiRIn9XqY6a9Ys+vfvz5w5c1i/fj3p6elARilavXr1Q/68kiRJkiQFZtoDkLoFTqgLNToEnSZQlnNBCYUO+vLSIAwfPpxdu3ZRsuT/XYIbDoeJi4tj6NChJCYm0rJlS5YtW8bHH3/MpEmTOOecc+jRowcPP/zwHscbM2YMt956K4888ggNGjQgf/78PPTQQ5nu+/ZPP/zwAyeddBIxMTEULFiQSZMm0bhxY9q3b0/lypVp0aLFXmfGQcbMt40bN7JixYpMnwFg586dLF68mLPOOguA+Pj4fWZISUkB4IUXXqB+/fqZ9kVHRwMZT7Tt0qULAwYMIDk5OTIL75FHHsk0/p/lXygUihRu/7RlyxaSk5NJTk7mtddeo2jRoixfvpzk5GR27ty5z7ySJEmSJGVbf/4I37+csZx8f0ZHchzzgRDap127dvHyyy/zyCOPMHv27Mhrzpw5lCxZktdffz0ytmjRonTt2pVXX32Vxx9/nOeff36vx5w+fToNGzbkhhtu4NRTT6VSpUqZHriwNyeccAKzZ8+OPDShWLFiTJ48mblz5/LYY49x33337fO9HTp0ICYmZo+CDODZZ59ly5YtXHzxxQDUqlWLL774ItMDHHYrXrw4JUuW5Ndff6VSpUqZXuXLlwfgq6++omzZstx1113UrVuXypUrs2zZsv1+tgNZuHAha9euZfDgwTRu3Jhq1ar5MAhJkiRJ0rFtUj8Ip8OJbaHM6UGnCZzlnPZp9wMLrrzySmrUqJHp1aFDB4YPHw7APffcw/vvv88vv/zC/Pnz+eijjzjxxBP3eszKlSvz3XffMXHiRH766Sf69evHt99+u98cV155JWlpabRt25avvvqKRYsWMXHiRFJSUsiTJ08kx96UKVOGIUOG8Pjjj3PXXXexcOFCFi9ezKOPPsrtt9/OLbfcEpkJ17NnTzZt2kTnzp357rvv+Pnnn3nllVdYtGgRAAMGDODBBx/kySef5KeffmLu3LmMGDGCRx99NPLZli9fzpgxY1i8eDFPPvlk5HLgQ1WmTBliY2N56qmn+PXXX/nggw8O6oEYkiRJkiRlK79MgV8mQ1QMNOsfdJpswXJO+zR8+HCaNWuW6Z5qu3Xo0IHvvvuOH374gdjYWPr27UutWrU488wziY6OZsyYMXs95rXXXssFF1zARRddRP369Vm7di033HDDfnOULFmSmTNnUqRIES644AJOPfVUXn75ZV5++WXGjRvH888/HynI9qZXr16MHTuWL774grp161KjRg1Gjx7NsGHDMl16W7hwYaZOnUpKSgpNmjShTp06vPDCC5HLUK+66ipefPFFRowYQc2aNWnSpAkjR46MzJxr27YtN998Mz179uSUU07hq6++ol+/fgf8nvenaNGijBw5krfeeovq1aszePDgvV4uLEmSJElStpeeBp/8/38nn3Y1FK4YbJ5sIhQOh8NBh8gJNm3aRGJiIhs3btzjAQDbt29nyZIllC9fnty5j9+nj0hHk793kiRJkpTNfP8KfNATcifCTbMhT6GgEx1R++uK/s6Zc5IkSZIkSTqydqTA1P9/z/gzb8/xxdzBsJyTJEmSJEnSkTVjKKSsgoLlMi5pVYTlnCRJkiRJko6cTSth+hMZy836Q664QONkN5ZzkiRJkiRJOnI+vR9St0Kp06B6u6DTZDuWc5IkSZIkSToyVs2D/72asZx8P4RCwebJhiznJEmSJEmSdGRM6geE4aT2UPq0oNNkS4GWc8OGDaNWrVokJCSQkJBAgwYNGD9+fGT/9u3b6dGjB4ULFyZfvnx06NCBP//8M9Mxli9fTqtWrciTJw/FihXjtttuY9euXZnGTJs2jdq1axMXF0elSpUYOXLkHlmefvppypUrR+7cualfvz4zZ848Ip9ZkiRJkiTpuPDzZFg8FaJj4Zx7g06TbQVazpUqVYrBgwcza9YsvvvuO84++2zOP/985s+fD8DNN9/Mhx9+yFtvvcVnn33GihUruOCCCyLvT0tLo1WrVuzcuZOvvvqKUaNGMXLkSO65557ImCVLltCqVSvOOussZs+eTa9evbjqqquYOHFiZMwbb7xB7969uffee/n+++85+eSTSU5OZvXq1Ufvy5AkSZIkScop0nbBJ3dnLJ92DRQqH2yebCwUDofDQYf4u0KFCvHQQw/RsWNHihYtyujRo+nYsSMACxcu5MQTT2TGjBmcfvrpjB8/ntatW7NixQqKFy8OwLPPPkufPn1Ys2YNsbGx9OnTh3HjxjFv3rzIOTp37syGDRuYMGECAPXr16devXoMHToUgPT0dEqXLs2NN97IHXfckaXcmzZtIjExkY0bN5KQkJBp3/bt21myZAnly5cnd+7c//o7knRg/t5JkiRJUoBmjYQP/wPxBeGm/2X89zizv67o77LNPefS0tIYM2YMW7ZsoUGDBsyaNYvU1FSaNWsWGVOtWjXKlCnDjBkzAJgxYwY1a9aMFHMAycnJbNq0KTL7bsaMGZmOsXvM7mPs3LmTWbNmZRoTFRVFs2bNImP2ZseOHWzatCnTS9lLuXLlePzxx4OOcUSEQiHee++9oGP8a926daNdu3ZBx5AkSZIkHU47NsPU+zOWm/Q5Lou5gxF4OTd37lzy5ctHXFwc1113HWPHjqV69eqsWrWK2NhYChQokGl88eLFWbVqFQCrVq3KVMzt3r973/7GbNq0iW3btvHXX3+Rlpa21zG7j7E3Dz74IImJiZFX6dKlD+nzHwtWrVrFjTfeSIUKFYiLi6N06dK0adOGKVOmHNbzNG3alF69eh3WYx7IL7/8QnJyMgkJCRQqVIiWLVuyZs2aA74vLS2NwYMHU61aNeLj4ylUqBD169fnxRdfPKz5+vfvzymnnHJYj/n6668THR1Njx49DutxD8UTTzyx13tASpIkSZKOYdOfhC2roVAFqHtl0GmyvVxBB6hatSqzZ89m48aNvP3223Tt2pXPPvss6FgH1LdvX3r37h1Z37RpU44s6JYuXUqjRo0oUKAADz30EDVr1iQ1NZWJEyfSo0cPFi5ceFTzhMNh0tLSyJXr8PzoXnPNNWzcuJHPPvuMPHnyMGPGDLJypfeAAQN47rnnGDp0KHXr1mXTpk189913rF+//rDkOpKGDx/O7bffznPPPccjjzwSyCWfaWlphEIhEhMTj/q5JUmSJElH0MY/4KunMpabDYBcscHmOQYEPnMuNjaWSpUqUadOHR588EFOPvlknnjiCZKSkti5cycbNmzINP7PP/8kKSkJgKSkpD2e3rp7/UBjEhISiI+Pp0iRIkRHR+91zO5j7E1cXFzkKbO7XwcjHA6zNXXrUX8d7C0Gb7jhBkKhEDNnzqRDhw5UqVKFk046id69e/P1119Hxm3YsIGrrrqKokWLkpCQwNlnn82cOXMi+3fPAHvllVcoV64ciYmJdO7cmc2bNwMZlzd+9tlnPPHEE4RCIUKhEEuXLmXatGmEQiHGjx9PnTp1iIuL48svv2Tx4sWcf/75FC9enHz58lGvXj0mT558UJ8NMi5hTk5O5tRTT6Vq1ap069aNYsWKHfB9H3zwATfccAMXXngh5cuX5+STT+bKK6/k1ltvjYzZsWMHN910E8WKFSN37tycccYZfPvtt5H9I0eO3GNm6HvvvUcoFIrsHzBgAHPmzIl8J3+fZfbXX3/Rvn178uTJQ+XKlfnggw8OmHvJkiV89dVX3HHHHVSpUoV333030/7dmT766COqVq1Knjx56NixI1u3bmXUqFGUK1eOggULctNNN5GWlpbps956662ccMIJ5M2bl/r16zNt2rQ9jvvBBx9QvXp14uLiWL58+R6XtaanpzNkyBAqVapEXFwcZcqU4f7774/s79OnD1WqVCFPnjxUqFCBfv36kZqaesDPLUmSJEk6Sj69H3ZtgzIN4MQ2Qac5JgQ+c+6f0tPT2bFjB3Xq1CEmJoYpU6bQoUMHABYtWsTy5ctp0KABAA0aNOD+++9n9erVkUJl0qRJJCQkUL169ciYjz/+ONM5Jk2aFDlGbGwsderUYcqUKZGSID09nSlTptCzZ88j9jm37dpG/dH1j9jx9+WbS74hT0yeLI1dt24dEyZM4P777ydv3rx77P97sXThhRcSHx/P+PHjSUxM5LnnnuOcc87hp59+olChQgAsXryY9957j48++oj169fTqVMnBg8ezP33388TTzzBTz/9RI0aNRg4cCAARYsWZenSpQDccccdPPzww1SoUIGCBQvy22+/cd5553H//fcTFxfHyy+/TJs2bVi0aBFlypTJ8vdx/vnn069fPzp27Ejt2rWz/L6kpCSmTp3KDTfcQNGiRfc65vbbb+edd95h1KhRlC1bliFDhpCcnMwvv/wS+U7256KLLmLevHlMmDAhUjz+fabZgAEDGDJkCA899BBPPfUUXbp0YdmyZfs99ogRI2jVqhWJiYlceumlDB8+nEsuuSTTmK1bt/Lkk08yZswYNm/ezAUXXED79u0pUKAAH3/8Mb/++isdOnSgUaNGXHTRRQD07NmTH3/8kTFjxlCyZEnGjh1LixYtmDt3LpUrV44c97///S8vvvgihQsX3msJ2rdvX1544QUee+wxzjjjDFauXJlpdmb+/PkZOXIkJUuWZO7cuVx99dXkz5+f22+//YDfpyRJkiTpCFv5A8wenbHc/H74/5NPtH+Bzpzr27cvn3/+OUuXLmXu3Ln07duXadOm0aVLFxITE7nyyivp3bs3n376KbNmzaJ79+40aNCA008/HYDmzZtTvXp1LrvsMubMmcPEiRO5++676dGjB3FxcQBcd911/Prrr9x+++0sXLiQZ555hjfffJObb745kqN379688MILjBo1igULFnD99dezZcsWunfvHsj3kl388ssvhMNhqlWrtt9xX375JTNnzuStt96ibt26VK5cmYcffpgCBQrw9ttvR8alp6czcuRIatSoQePGjbnssssi961LTEwkNjaWPHnykJSURFJSEtHR0ZH3Dhw4kHPPPZeKFStSqFAhTj75ZK699lpq1KhB5cqVGTRoEBUrVszS7LHdpk6dyh133MHdd99N69at+eKLLyL73nnnHfLnz7/P9z766KOsWbOGpKQkatWqxXXXXcf48eMj+7ds2cKwYcN46KGHaNmyJdWrV+eFF14gPj6e4cOHZylffHw8+fLlI1euXJHvJD4+PrK/W7duXHzxxVSqVIkHHniAlJQUZs6cuc/j7f7+L730UiDjqcVffvklS5YsyTQuNTWVYcOGceqpp3LmmWfSsWNHvvzyS4YPH0716tVp3bo1Z511Fp9++ikAy5cvZ8SIEbz11ls0btyYihUrcuutt3LGGWcwYsSITMd95plnaNiwYWRW3t9t3ryZJ554giFDhtC1a1cqVqzIGWecwVVXXRUZc/fdd9OwYUPKlStHmzZtuPXWW3nzzTez9H1KkiRJko6gcBg+uQsIQ42OUKpO0ImOGYHOnFu9ejWXX345K1euJDExkVq1ajFx4kTOPfdcAB577DGioqLo0KEDO3bsIDk5mWeeeSby/ujoaD766COuv/56GjRoQN68eenatWtk5hVA+fLlGTduHDfffDNPPPEEpUqV4sUXXyQ5OTky5qKLLmLNmjXcc889rFq1ilNOOYUJEybs8ZCIwyk+VzzfXPLNETv+/s6bVVm9BHbOnDmkpKRQuHDhTNu3bdvG4sWLI+vlypXLVHiVKFGC1atXZ+kcdevWzbSekpJC//79GTduHCtXrmTXrl1s27aN5cuXZ+l4kDEbr0ePHtx6662cdNJJtGnThldeeYU2bdowd+5czjjjjH2+t3r16sybN49Zs2Yxffp0Pv/8c9q0aUO3bt148cUXWbx4MampqTRq1CjynpiYGE477TQWLFiQ5Yz7U6tWrchy3rx5SUhI2O/3OWnSJLZs2cJ5550HQJEiRTj33HN56aWXGDRoUGRcnjx5qFixYmS9ePHilCtXjnz58mXatvtcc+fOJS0tjSpVqmQ6344dOzL9TMTGxmbK/E8LFixgx44dnHPOOfsc88Ybb/Dkk0+yePFiUlJS2LVr10FfUi5JkiRJOgJ+/gSWfA7RcXDOPUGnOaYEWs4daAZR7ty5efrpp3n66af3OaZs2bJ7XLb6T02bNuV///vffsf07NnziF7G+k+hUCjLl5cGpXLlyoRCoQM+9CElJYUSJUpkusfYbn+/9DUmJibTvlAoRHp6epay/POy2ltvvZVJkybx8MMPU6lSJeLj4+nYsSM7d+7M0vEAfvjhh8gMypYtWzJ8+HAuvPBChg4dysiRIxkyZMh+3x8VFUW9evWoV68evXr14tVXX+Wyyy7jrrvuytL5o6Ki9ihAD+b+aQf7fQ4fPpx169Zlmn2Xnp7ODz/8wIABA4iKitrncfd3rpSUFKKjo5k1a1am2Y5ApkIvPj4+cj+9vfl7rr2ZMWMGXbp0YcCAASQnJ5OYmMiYMWN45JFH9vs+SZIkSdIRlrYLPumXsXz6dVCwbLB5jjHZ7p5zyj4KFSpEcnIyTz/9NDfddNMeBdmGDRsoUKAAtWvXZtWqVeTKlYty5cod8vliY2MzPWRgf6ZPn063bt1o3749kFEQ7b4/XVadcMIJfP7551x88cUAdOjQgZSUFLp3706tWrW48MILD+p4u+9zuGXLFipWrEhsbCzTp0+nbNmMv5RSU1P59ttv6dWrF5BxT73NmzezZcuWyHc7e/bsTMc8mO9kf9auXcv777/PmDFjOOmkkyLb09LSOOOMM/jkk09o0aLFIR371FNPJS0tjdWrV9O4ceNDzli5cmXi4+OZMmVKpktZd/vqq68oW7ZspvJz2bJlh3w+SZIkSdJh8v0o+GsRxBeCM3oHneaYYzmn/Xr66adp1KgRp512GgMHDqRWrVrs2rWLSZMmMWzYMBYsWECzZs1o0KAB7dq1Y8iQIVSpUoUVK1Ywbtw42rdvv8clqftSrlw5vvnmG5YuXUq+fPn2+2CDypUr8+6779KmTRtCoRD9+vXL8iy83W6//XZuuOEGkpKSuOiii9i4cSMzZswgT548LFy4kOnTp+/z0taOHTvSqFEjGjZsSFJSEkuWLKFv375UqVKFatWqkStXLq6//npuu+02ChUqRJkyZRgyZAhbt27lyiuvBKB+/frkyZOHO++8k5tuuolvvvkm09NYd38nS5YsYfbs2ZQqVYr8+fNH7qd4MF555RUKFy5Mp06d9pi9dt555zF8+PBDLueqVKlCly5duPzyy3nkkUc49dRTWbNmDVOmTKFWrVq0atUqS8fJnTs3ffr04fbbbyc2NpZGjRqxZs0a5s+fz5VXXknlypVZvnw5Y8aMoV69eowbN46xY8ceUmZJkiRJ0mGyfRN8+kDGctO+EF8g0DjHokAfCKHsr0KFCnz//fecddZZ3HLLLdSoUYNzzz2XKVOmMGzYMCDjEsePP/6YM888k+7du1OlShU6d+7MsmXLDuq+fbfeeivR0dFUr16dokWL7vf+cY8++igFCxakYcOGtGnThuTk5IN62irAtddeyxtvvMGHH35InTp1aNu2LTt37mThwoVcdtlltGvXjp9//nmv701OTubDDz+kTZs2VKlSha5du1KtWjU++eQTcuXK6LwHDx5Mhw4duOyyy6hduza//PILEydOpGDBgkDGzMRXX32Vjz/+mJo1a/L666/Tv3//TOfp0KEDLVq04KyzzqJo0aK8/vrrB/UZd3vppZdo3779Xi8r7dChAx988AF//fXXIR0bMp4Ce/nll3PLLbdQtWpV2rVrx7fffntQT84F6NevH7fccgv33HMPJ554IhdddFHk3nZt27bl5ptvpmfPnpxyyil89dVX9OvX75AzS5IkSZIOg+mPw9a/oHAlqHt8P1jzUIXCWb3rv/Zr06ZNJCYmsnHjxj1uUL99+3aWLFlC+fLlyZ07d0AJpeOLv3eSJEmSdIRt/B2eqgO7tkPn0VAta1dOHS/21xX9nTPnJEmSJEmSdPCmDMoo5sqeAVXPCzrNMctyTpIkSZIkSQdnxf/ghzEZy80HwV5uo6SssZyTJEmSJElS1oXD8Mn/vwd4rYvghIO7B7wys5yTJEmSJElS1i0aD0u/gFy54Wwf1PdvWc5JkiRJkiQpa9JSYdI9Gcun3wAFSgebJwewnJMkSZIkSVLWzBoJa3+GPEXgjJuDTpMjWM5JkiRJkiTpwLZvhGkPZiyf1RdyJwSbJ4ewnJMkSZIkSdKBffEobF0LRapA7W5Bp8kxLOckSZIkSZK0f+uXwdfDMpbPHQTRuYLNk4NYzumY1LRpU3r16hV0DEmSJEmSjg9TB0HaDih/JlRJDjpNjmI5p/3q1q0boVBoj1eLFi0CzfXuu+8yaNCgQDNIkiRJknRc+H0WzH0LCEHz+yAUCjpRjuIcRB1QixYtGDFiRKZtcXFxh3SscDhMWloauXL9ux+9QoUK/av3S5IkSZKkLAiH4ZO7M5ZPvhhKnBxsnhzImXMBCYfDpG/detRf4XD4oLPGxcWRlJSU6VWwYEGWLl1KKBRi9uzZkbEbNmwgFAoxbdo0AKZNm0YoFGL8+PHUqVOHuLg4vvzySxYvXsz5559P8eLFyZcvH/Xq1WPy5MmZzvvMM89QuXJlcufOTfHixenYsWNk3z8va33llVeoW7cu+fPnJykpiUsuuYTVq1cf9GeVJEmSJEl/s/AjWP4V5IqHs+8OOk2O5My5gIS3bWNR7TpH/bxVv59FKE+eo37eO+64g4cffpgKFSpQsGBBfvvtN8477zzuv/9+4uLiePnll2nTpg2LFi2iTJkyfPfdd9x000288sorNGzYkHXr1vHFF1/s8/ipqakMGjSIqlWrsnr1anr37k23bt34+OOPj+KnlCRJkiQpB1n+NYzvk7HcsCcknhBsnhzKck4H9NFHH5EvX75M2+68804uueSSLB9j4MCBnHvuuZH1QoUKcfLJ/zcVdtCgQYwdO5YPPviAnj17snz5cvLmzUvr1q3Jnz8/ZcuW5dRTT93n8a+44orIcoUKFXjyySepV68eKSkpe2SXJEmSJEn7sXMrTL0Pvn4GCEPBctDoP0GnyrEs5wISio+n6vezAjnvwTrrrLMYNmxYpm2FChVi06ZNWT5G3bp1M62npKTQv39/xo0bx8qVK9m1axfbtm1j+fLlAJx77rmULVuWChUq0KJFC1q0aEH79u3Js49Zf7NmzaJ///7MmTOH9evXk56eDsDy5cupXr36wXxcSZIkSZKOX8tmwPs9YN3ijPVTukDy/RCXP9hcOZjlXEBCoVAgl5ceirx581KpUqU9tqekpABkuo9damrqPo/xd7feeiuTJk3i4YcfplKlSsTHx9OxY0d27twJQP78+fn++++ZNm0an3zyCffccw/9+/fn22+/pUCBApmOtWXLFpKTk0lOTua1116jaNGiLF++nOTk5MjxJEmSJEnSfuzcClMHwdfDgDDkLwFtnoQqzYNOluP5QAgdsqJFiwKwcuXKyLa/Pxxif6ZPn063bt1o3749NWvWJCkpiaVLl2YakytXLpo1a8aQIUP44YcfWLp0KVOnTt3jWAsXLmTt2rUMHjyYxo0bU61aNR8GIUmSJElSVi2bAc82+r/LWE+5FG742mLuKHHmnA5ox44drFq1KtO2XLlyUaRIEU4//XQGDx5M+fLlWb16NXffnbUnt1SuXJl3332XNm3aEAqF6NevX+RSVMi4z92vv/7KmWeeScGCBfn4449JT0+natWqexyrTJkyxMbG8tRTT3Hdddcxb948Bg0a9O8+tCRJkiRJOd3OrTBlIHzzLBmz5UpC2yeh8rkHfKsOH2fO6YAmTJhAiRIlMr3OOOMMAF566SV27dpFnTp16NWrF/fdd1+Wjvnoo49SsGBBGjZsSJs2bUhOTqZ27dqR/QUKFODdd9/l7LPP5sQTT+TZZ5/l9ddf56STTtrjWEWLFmXkyJG89dZbVK9encGDB/Pwww8fng8vSZIkSVJOtOwrGNYQvvn/l7Geein0+NpiLgCh8N9vGKZDtmnTJhITE9m4cSMJCQmZ9m3fvp0lS5ZQvnx5cufOHVBC6fji750kSZIk7cXOLTBl0P/Nlks4IePecpWbBZ0sx9lfV/R3XtYqSZIkSZJ0PFg6PeNJrOuXZKyfelnGk1hzJwab6zhnOSdJkiRJkpST7dzyt3vLkTFbru2TUMnZctmB5ZwkSZIkSVJO9c/ZcrUvh+b3OVsuG7GckyRJkiRJyml2boHJA2DmcxnrCaX+/2y5c4LNpT1YzkmSJEmSJOUkS7/8/7Pllmas1+4KzQc5Wy6bspyTJEmSJEnKCXakwJQBMPP5jHVnyx0TLOckSZIkSZKOdUu+yJgtt2FZxnqdbnDuIMidEGgsHZjlnCRJkiRJ0rFqRwpM7g/fvpCxnlga2j4FFc8KNJayznJOkiRJkiTpWLTkc3i/599my3XPuLdcXP5gc+mgWM5JkiRJkiQdS9LTYPK98NVTGeuJZTLuLedsuWNSVNABlL1169aNUCi0x6tFixZBR5MkSZIk6fizcyu8efn/FXN1r4AbvrKYO4Y5c04H1KJFC0aMGJFpW1xc3CEdKxwOk5aWRq5c/uhJkiRJknRQUlbD653hj1kQHQfth0GNDkGn0r/kzLmAhMNhUnekHfVXOBw+6KxxcXEkJSVlehUsWJClS5cSCoWYPXt2ZOyGDRsIhUJMmzYNgGnTphEKhRg/fjx16tQhLi6OL7/8kh07dnDTTTdRrFgxcufOzRlnnMG3334bOc7u940bN45atWqRO3duTj/9dObNm5cp25dffknjxo2Jj4+ndOnS3HTTTWzZsuWQ/kwkSZIkScq21vwELzbLKObiC8Ll71vM5RBOXwrIrp3pPP+fz476ea95ogkxcdFH/bx33HEHDz/8MBUqVKBgwYLcfvvtvPPOO4waNYqyZcsyZMgQkpOT+eWXXyhUqFDkfbfddhtPPPEESUlJ3HnnnbRp04affvqJmJgYFi9eTIsWLbjvvvt46aWXWLNmDT179qRnz557zPSTJEmSJOmYtfRLGHMJbN8IBcvDpe9A4YpBp9Jh4sw5HdBHH31Evnz5Mr0eeOCBgzrGwIEDOffcc6lYsSJxcXEMGzaMhx56iJYtW1K9enVeeOEF4uPjGT58eKb33XvvvZx77rnUrFmTUaNG8eeffzJ27FgAHnzwQbp06UKvXr2oXLkyDRs25Mknn+Tll19m+/bth+3zS5IkSZIUmB/ehJfbZRRzpU6DqyZbzOUwzpwLSK7YKK55okkg5z1YZ511FsOGDcu0rVChQmzatCnLx6hbt25kefHixaSmptKoUaPItpiYGE477TQWLFiQ6X0NGjTIdM6qVatGxsyZM4cffviB1157LTImHA6Tnp7OkiVLOPHEE7OcT5IkSZKkbCUchs8fhk/vy1iv3g7aPwsx8YHG0uFnOReQUCgUyOWlhyJv3rxUqlRpj+0pKSkAme5jl5qaus9jHG4pKSlce+213HTTTXvsK1OmzGE/nyRJkiRJR0VaKnzYC2a/mrHe8CZoNgCivAAyJ/JPVYesaNGiAKxcuTKy7e8Ph9iXihUrEhsby/Tp0yPbUlNT+fbbb6levXqmsV9//XVkef369fz000+RGXG1a9fmxx9/pFKlSnu8YmNj/81HkyRJkiQpGNs3wmsdM4q5UBS0egSaD7KYy8GcOacD2rFjB6tWrcq0LVeuXBQpUoTTTz+dwYMHU758eVavXs3dd999wOPlzZuX66+/nttuu41ChQpRpkwZhgwZwtatW7nyyiszjR04cCCFCxemePHi3HXXXRQpUoR27doB0KdPH04//XR69uzJVVddRd68efnxxx+ZNGkSQ4cOPWyfX5IkSZKko2LDb/DahbBmAcTkhQtHQpXmQafSEWY5pwOaMGECJUqUyLStatWqLFy4kJdeeokrr7ySOnXqULVqVYYMGULz5gf+i2Pw4MGkp6dz2WWXsXnzZurWrcvEiRMpWLDgHuP+85//8PPPP3PKKafw4YcfRmbF1apVi88++4y77rqLxo0bEw6HqVixIhdddNHh+/CSJEmSJB0NK2bD6E6Q8ifkS4Iub0KJk4NOpaMgFP77DcN0yDZt2kRiYiIbN24kISEh077t27ezZMkSypcvT+7cuQNKeGyZNm0aZ511FuvXr6dAgQJBx9ExyN87SZIkSceMRRPg7SsgdQsUOymjmEssFXQq/Uv764r+zplzkiRJkiRJQZn5Aoy/HcLpUOEs6PQy5N53kaOcx3JOkiRJkiTpaEtPh0n9YMb/v2f6qZdB68cgOibYXDrqLOeULTVt2hSvuJYkSZIk5Uip2+Dda2DBBxnrZ/eDxrdAKBRsLgXCck6SJEmSJOloSVkDYy6G37+F6Fg4/xmodWHQqRQgyzlJkiRJkqSj4a+f4bWOsH4p5C4AnUdDuUZBp1LALOckSZIkSZKOtGVfwesXw/YNUKAsXPoOFKkcdCplA5ZzkiRJkiRJR9Lct+G96yFtJ5xQFy4eA/mKBp1K2YTlnCRJkiRJ0pEQDsOXj8KUgRnr1VrDBS9AbJ5gcylbsZyTJEmSJEk63NJSYVxv+P7ljPUGPeHcgRAVHWwuZTtRQQdQztK0aVN69eq13zHlypXj8ccf3++YUCjEe++9B8DSpUsJhULMnj37sGSUJEmSJOmI2r4JRnfKKOZCUXDew5B8v8Wc9spyTvvVrVs3QqEQ11133R77evToQSgUolu3bpFt7777LoMGDTqKCbNm2rRphEKhvb5WrVp1WM6RldJRkiRJkpTDbVoJL7WAxVMhJg90fh1OuzroVMrGLOd0QKVLl2bMmDFs27Ytsm379u2MHj2aMmXKZBpbqFAh8ufPf7QjZtmiRYtYuXJlplexYsWCjiVJkiRJyglSt8HrF8Hq+ZCvOHT/GKq2CDqVsjnLuYCEw2FSt28/6q9wOHzQWWvXrk3p0qV59913I9veffddypQpw6mnnppp7D8va129ejVt2rQhPj6e8uXL89prr+1x/J9//pkzzzyT3LlzU716dSZNmnTATPPmzaNly5bky5eP4sWLc9lll/HXX38d8H3FihUjKSkp0ysqKuPX4Ntvv+Xcc8+lSJEiJCYm0qRJE77//vvIe8PhMP3796dMmTLExcVRsmRJbrrppsjnXrZsGTfffHNkRp4kSZIk6TgSDsOH/4GVcyBPYbhiIpQ89cDv03HPB0IEZNeOHTzZteNRP+9No94mJnfug37fFVdcwYgRI+jSpQsAL730Et27d2fatGn7fV+3bt1YsWIFn376KTExMdx0002sXr06sj89PZ0LLriA4sWL880337Bx48YD3rNuw4YNnH322Vx11VU89thjbNu2jT59+tCpUyemTp160J9tt82bN9O1a1eeeuopwuEwjzzyCOeddx4///wz+fPn55133uGxxx5jzJgxnHTSSaxatYo5c+YAGWXlySefzDXXXMPVVztdWZIkSZKOO18/Az+8AaFouHAUFCofdCIdIyznlCWXXnopffv2ZdmyZQBMnz6dMWPG7Lec++mnnxg/fjwzZ86kXr16AAwfPpwTTzwxMmby5MksXLiQiRMnUrJkSQAeeOABWrZsuc/jDh06lFNPPZUHHnggsu2ll16idOnS/PTTT1SpUmWf7y1VqlSm9bJlyzJ//nwAzj777Ez7nn/+eQoUKMBnn31G69atWb58OUlJSTRr1oyYmBjKlCnDaaedBmRczhsdHU3+/PlJSkra5/klSZIkSTnQr9Pgk34Zy8kPQPnGgcbRscVyLiC54uK4adTbgZz3UBQtWpRWrVoxcuRIwuEwrVq1okiRIvt9z4IFC8iVKxd16tSJbKtWrRoFChTINKZ06dKRYg6gQYMG+z3unDlz+PTTT8mXL98e+xYvXrzfcu6LL77IdE+8mJiYyPKff/7J3XffzbRp01i9ejVpaWls3bqV5cuXA3DhhRfy+OOPU6FCBVq0aMF5551HmzZtyJXLXyNJkiRJOm6tXwZvdYdwGpx8CdS/NuhEOsbYKgQkFAod0uWlQbriiivo2bMnAE8//XRgOVJSUmjTpg3//e9/99hXokSJ/b63fPnymcrBv+vatStr167liSeeoGzZssTFxdGgQQN27twJZDwYY9GiRUyePJlJkyZxww038NBDD/HZZ59lKvkkSZIkSceJnVthTBfYti7j/nKtHwPvQa6DZDmnLGvRogU7d+4kFAqRnJx8wPHVqlVj165dzJo1K3JZ66JFi9iwYUNkzIknnshvv/3GypUrI8Xa119/vd/j1q5dm3feeYdy5cod1llr06dP55lnnuG8884D4LffftvjIRPx8fG0adOGNm3a0KNHD6pVq8bcuXOpXbs2sbGxpKWlHbY8kiRJkqRsLByGD3rCn3Mhb1G46FWIObYm4Sh78GmtyrLo6GgWLFjAjz/+SHR09AHHV61alRYtWnDttdfyzTffMGvWLK666iri4+MjY5o1a0aVKlXo2rUrc+bM4YsvvuCuu+7a73F79OjBunXruPjii/n2229ZvHgxEydOpHv37gcsx1avXs2qVasyvVJTUwGoXLkyr7zyCgsWLOCbb76hS5cumbKOHDmS4cOHM2/ePH799VdeffVV4uPjKVu2LADlypXj888/548//sjSk2MlSZIkScewr56Eee9AVC7o9DIkljrwe6S9sJzTQUlISCAhISHL40eMGEHJkiVp0qQJF1xwAddccw3FihWL7I+KimLs2LFs27aN0047jauuuor7779/v8csWbIk06dPJy0tjebNm1OzZk169epFgQIFiIra/4901apVKVGiRKbXrFmzgIyHVaxfv57atWtz2WWXcdNNN2XKWqBAAV544QUaNWpErVq1mDx5Mh9++CGFCxcGYODAgSxdupSKFStStGjRLH9HkiRJkqRjzC9TYHL/jOUWg6Fsw0Dj6NgWCofD4aBD5ASbNm0iMTGRjRs37lFebd++nSVLllC+fHlyH2P3mZOOVf7eSZIkSToi1v0Kz58F2zfAqZdB26e8z5z2an9d0d85c06SJEmSJCkrdqRkPABi+wY4oS60esRiTv+a5ZwkSZIkSdKBhMPw/g2w+kfIVxwuegVyxQWdSjmA5ZwkSZIkSdKBfPko/Pg+RMVAp1cgoWTQiZRDWM5JkiRJkiTtz0+fwJRBGcvnPQRl6gebRzmK5ZwkSZIkSdK+rF0M71wFhKFOd6jbPehEymEs5yRJkiRJkvZmx2Z4/WLYsRFKnw4thwSdSDmQ5ZwkSZIkSdI/pafD2Ovgr0WQvwR0ehlyxQadSjmQ5ZwkSZIkSdI/ffEwLPwIomPholchf/GgEymHspxTttStWzfatWsXdIx/bdq0aYRCITZs2BB0FEmSJElSVi38GD69P2O59WNQqm6weZSjWc5pv7p160YoFGLw4MGZtr/33nuEQqF/ffylS5cSCoWYPXv2vz7Wbtu2baNQoUIUKVKEHTt2HLbjHoqGDRuycuVKEhMTA80hSZIkScqiNT/Bu9dkLNe7Gk69NNg8yvEs53RAuXPn5r///S/r168/rMfduXPnYT3ebu+88w4nnXQS1apV47333jsi58iK1NRUYmNjSUpKOixFpiRJkiTpCNu+EcZcAjs3Q9lG0OLBoBPpOGA5pwNq1qwZSUlJPPjg/v9S2l2KxcXFUa5cOR555JFM+8uVK8egQYO4/PLLSUhI4JprrqF8+fIAnHrqqYRCIZo2bZrpPQ8//DAlSpSgcOHC9OjRg9TU1APmHT58OJdeeimXXnopw4cP32N/KBTiueeeo3Xr1uTJk4cTTzyRGTNm8Msvv9C0aVPy5s1Lw4YNWbx4cab3vf/++9SuXZvcuXNToUIFBgwYwK5duzIdd9iwYbRt25a8efNy//337/Wy1unTp9O0aVPy5MlDwYIFSU5OjhSfEyZM4IwzzqBAgQIULlyY1q1b75FDkiRJknQEpKdnzJhb+zMknAAXjoLomKBT6ThgOReQcDhM+s60o/4Kh8MHnTU6OpoHHniAp556it9//32vY2bNmkWnTp3o3Lkzc+fOpX///vTr14+RI0dmGvfwww9z8skn87///Y9+/foxc+ZMACZPnszKlSt59913I2M//fRTFi9ezKeffsqoUaMYOXLkHsf7p8WLFzNjxgw6depEp06d+OKLL1i2bNke43aXhLNnz6ZatWpccsklXHvttfTt25fvvvuOcDhMz549I+O/+OILLr/8cv7zn//w448/8txzzzFy5Ejuv//+TMft378/7du3Z+7cuVxxxRV7nHf27Nmcc845VK9enRkzZvDll1/Spk0b0tLSANiyZQu9e/fmu+++Y8qUKURFRdG+fXvS09P3+7klSZIkSf/StAfhpwkQHZfxAIh8RYNOpONErqADHK/CqemsuOero37ekgMbEoqNPuj3tW/fnlNOOYV77713r7PRHn30Uc455xz69esHQJUqVfjxxx956KGH6NatW2Tc2WefzS233BJZj47OyFK4cGGSkpIyHbNgwYIMHTqU6OhoqlWrRqtWrZgyZQpXX331PnO+9NJLtGzZkoIFCwKQnJzMiBEj6N+/f6Zx3bt3p1OnTgD06dOHBg0a0K9fP5KTkwH4z3/+Q/fu3SPjBwwYwB133EHXrl0BqFChAoMGDeL222/n3nvvjYy75JJLMr3v119/zXTeIUOGULduXZ555pnItpNOOimy3KFDhz0+T9GiRfnxxx+pUaPGPj+3JEmSJOlfWPAhfD4kY7nNE3BC7WDz6LjizDll2X//+19GjRrFggUL9ti3YMECGjVqlGlbo0aN+PnnnyOzwgDq1s36E25OOumkSHkHUKJECVavXr3P8WlpaYwaNYpLL/2/m3VeeumljBw5co+ZZ7Vq1YosFy+e8TjsmjVrZtq2fft2Nm3aBMCcOXMYOHAg+fLli7yuvvpqVq5cydatW7P8+XbPnNuXn3/+mYsvvpgKFSqQkJBAuXLlAFi+fPl+jytJkiRJOkSrF8DY6zKW618Pp1wcbB4dd5w5F5BQTBQlBzYM5LyH6swzzyQ5OZm+fftmmg13MPLmzZvlsTExma/tD4VC+728c+LEifzxxx9cdNFFmbanpaUxZcoUzj333L0ee/fDGva2bff5UlJSGDBgABdccMEe582dO3dk+UCfLz4+fr/727RpQ9myZXnhhRcoWbIk6enp1KhR44g9PEOSJEmSjmvb1v//B0CkQLnG0HxQ0Il0HLKcC0goFDqky0uDNnjwYE455RSqVq2aafuJJ57I9OnTM22bPn06VapUyTT77Z9iY2MBMs2uO1TDhw+nc+fO3HXXXZm233///QwfPjxTOXewateuzaJFi6hUqdK/ylirVi2mTJnCgAED9ti3du1aFi1axAsvvEDjxo0B+PLLL//V+SRJkiRJ+5CeBu9cDet+hcQycOFIHwChQFjO6aDUrFmTLl268OSTT2bafsstt1CvXj0GDRrERRddxIwZMxg6dGime6vtTbFixYiPj2fChAmUKlWK3Llzk5iYeNC51qxZw4cffsgHH3ywx73ZLr/8ctq3b8+6desoVKjQQR8b4J577qF169aUKVOGjh07EhUVxZw5c5g3bx733Xdflo/Tt29fatasyQ033MB1111HbGwsn376KRdeeCGFChWicOHCPP/885QoUYLly5dzxx13HFJeSZIkSdIBTL0PfpkEueKh86uQt0jQiXSc8p5zOmgDBw7c4/LS2rVr8+abbzJmzBhq1KjBPffcw8CBAw94+WuuXLl48sknee655yhZsiTnn3/+IWV6+eWXyZs3717v53bOOecQHx/Pq6++ekjHhowHS3z00Ud88skn1KtXj9NPP53HHnuMsmXLHtRxqlSpwieffMKcOXM47bTTaNCgAe+//z65cuUiKiqKMWPGMGvWLGrUqMHNN9/MQw89dMiZJUmSJEn7MH8sfPloxnLbp6DEycHm0XEtFA6Hw0GHyAk2bdpEYmIiGzduJCEhIdO+7du3s2TJEsqXL5/p/mSSjhx/7yRJkiTt1ap5MPxcSN0KDW+E5lm/Gko6GPvriv7OmXOSJEmSJOn4sHVdxgMgUrdChaZwTv+gE0mWc5IkSZIk6TiQngZvXwEblkGBstBxBER7K34Fz3JOkiRJkiTlfJ/eD79+CjF5oPNoyHNoDwyUDjfLOUmSJEmSlLP99Al88UjGctunIKlGsHmkv7GckyRJkiRJOdeG32DsNRnL9a6Cmh2DzSP9g+XcUZSenh50BOm44YOoJUmSJLFrJ7zVDbath5KnQvIDQSeS9uCdD4+C2NhYoqKiWLFiBUWLFiU2NpZQKBR0LCnHCofDrFmzhlAoRExMTNBxJEmSJAVl0j3wx3eQOxEuHAm54oJOJO3Bcu4oiIqKonz58qxcuZIVK1YEHUc6LoRCIUqVKkV0dHTQUSRJkiQFYf578M2wjOX2z0HBckGmkfbJcu4oiY2NpUyZMuzatYu0tLSg40g5XkxMjMWcJEmSdLxauxje75mx3Og/ULVlsHmk/bCcO4p2X2LnZXaSJEmSJB0hqdvgzcth52Yo0xDOvifoRNJ++UAISZIkSZKUc3x8G/w5D/IUgY4vQbTzkpS9Wc5JkiRJkqScYfZo+N8rQAg6vAgJJYJOJB2Q5ZwkSZIkSTr2/TkfPuqdsdy0L1Q8K9g8UhZZzkmSJEmSpGPbjs3wZlfYtQ0qng1n3hZ0IinLLOckSZIkSdKxKxyGD26CtT9D/pJwwQsQZd2hY4c/rZIkSZIk6dj17Ysw/12IygUXjoS8RYJOJB2UQMu5Bx98kHr16pE/f36KFStGu3btWLRoUaYxTZs2JRQKZXpdd911mcYsX76cVq1akSdPHooVK8Ztt93Grl27Mo2ZNm0atWvXJi4ujkqVKjFy5Mg98jz99NOUK1eO3LlzU79+fWbOnHnYP7MkSZIkSTpM/pgFE/pmLDcbAGXqB5tHOgSBlnOfffYZPXr04Ouvv2bSpEmkpqbSvHlztmzZkmnc1VdfzcqVKyOvIUOGRPalpaXRqlUrdu7cyVdffcWoUaMYOXIk99xzT2TMkiVLaNWqFWeddRazZ8+mV69eXHXVVUycODEy5o033qB3797ce++9fP/995x88skkJyezevXqI/9FSJIkSZKkg7NtPbzVDdJToVpraNAj6ETSIQmFw+Fw0CF2W7NmDcWKFeOzzz7jzDPPBDJmzp1yyik8/vjje33P+PHjad26NStWrKB48eIAPPvss/Tp04c1a9YQGxtLnz59GDduHPPmzYu8r3PnzmzYsIEJEyYAUL9+ferVq8fQoUMBSE9Pp3Tp0tx4443ccccdB8y+adMmEhMT2bhxIwkJCf/ma5AkSZIkSfuTng5jLoGfxkPBcnDNZxBfIOhUUiZZ7Yqy1T3nNm7cCEChQoUybX/ttdcoUqQINWrUoG/fvmzdujWyb8aMGdSsWTNSzAEkJyezadMm5s+fHxnTrFmzTMdMTk5mxowZAOzcuZNZs2ZlGhMVFUWzZs0iY/5px44dbNq0KdNLkiRJkiQdBV89mVHMRcfBhaMs5nRMyxV0gN3S09Pp1asXjRo1okaNGpHtl1xyCWXLlqVkyZL88MMP9OnTh0WLFvHuu+8CsGrVqkzFHBBZX7Vq1X7HbNq0iW3btrF+/XrS0tL2OmbhwoV7zfvggw8yYMCAf/ehJUmSJEnSwVk6HaYMzFhuORhKnhJoHOnfyjblXI8ePZg3bx5ffvllpu3XXHNNZLlmzZqUKFGCc845h8WLF1OxYsWjHTOib9++9O7dO7K+adMmSpcuHVgeSZIkSZJyvJTV8PYVEE6Dmp2gTvegE0n/WrYo53r27MlHH33E559/TqlSpfY7tn79jCev/PLLL1SsWJGkpKQ9nqr6559/ApCUlBT57+5tfx+TkJBAfHw80dHRREdH73XM7mP8U1xcHHFxcVn/kJIkSZIk6dClp8E7V0LKKihSFVo/BqFQ0Kmkfy3Qe86Fw2F69uzJ2LFjmTp1KuXLlz/ge2bPng1AiRIlAGjQoAFz587N9FTVSZMmkZCQQPXq1SNjpkyZkuk4kyZNokGDBgDExsZSp06dTGPS09OZMmVKZIwkSZIkSQrQtMGw5HOIyQOdXoa4fEEnkg6LQGfO9ejRg9GjR/P++++TP3/+yD3iEhMTiY+PZ/HixYwePZrzzjuPwoUL88MPP3DzzTdz5plnUqtWLQCaN29O9erVueyyyxgyZAirVq3i7rvvpkePHpGZbddddx1Dhw7l9ttv54orrmDq1Km8+eabjBs3LpKld+/edO3albp163Laaafx+OOPs2XLFrp3d4qsJEmSJEmB+mUyfP5QxnKbJ6BYtWDzSIdRKBwOhwM7+T6mn44YMYJu3brx22+/cemllzJv3jy2bNlC6dKlad++PXfffXemR9AuW7aM66+/nmnTppE3b166du3K4MGDyZXr/7rHadOmcfPNN/Pjjz9SqlQp+vXrR7du3TKdd+jQoTz00EOsWrWKU045hSeffDJyGe2BZPXxuJIkSZIk6SBs/B2ebQzb1mXcY67N40EnkrIkq11RoOVcTmI5J0mSJEnSYZaWCiPOg99nQomT4YpPICZ30KmkLMlqVxToPeckSZIkSZL2adK9GcVcXCJcOMpiTjmS5ZwkSZIkScp+FnwIXz+dsdzuGSh04IdISsciyzlJkiRJkpS9rPsV3rshY7lBTzixdbB5pCPIck6SJEmSJGUfqdvhza6wYxOUrg/N+gedSDqiLOckSZIkSVL2MaEPrPoB8hSGjiMgOiboRNIRZTknSZIkSZKyhzlvwKyRQAgueAESTwg6kXTEWc5JkiRJkqTgrV4AH/XKWG5yO1Q6J9A40tFiOSdJkiRJkoK1IyXjPnOpW6FCU2jSJ+hE0lFjOSdJkiRJkoITDmfMmPtrEeQvARe8CFHRQaeSjhrLOUmSJEmSFJzPhsDctyAUnfEAiHxFg04kHVWWc5IkSZIkKRjfvwLTHshYbvlfKNsg2DxSACznJEmSJEnS0ffzJPjwPxnLZ9wMp10dbB4pIJZzkiRJkiTp6Prj+4wHQITToFZnOOfeoBNJgbGckyRJkiRJR8+6JTC6E6RuyXgya9unIBQKOpUUGMs5SZIkSZJ0dGxZC692gC1rIKkmdHoFcsUGnUoKlOWcJEmSJEk68nZuhdcvgnWLIbE0XPIW5E4IOpUUOMs5SZIkSZJ0ZKWnwTtXwe/fQu4CcOk7kFAi6FRStmA5J0mSJEmSjpxwGD6+DRaNg+g4uHgMFK0adCop27CckyRJkiRJR86Xj8J3w4EQdHgByjYIOpGUrVjOSZIkSZKkI2POGJgyMGO5xWCofn6weaRsyHJOkiRJkiQdfounwvs9MpYb3ginXxdsHimbspyTJEmSJEmH18of4I3LIX0X1OgAzQYGnUjKtiznJEmSJEnS4bNhObzWEXZuhnKNod0wiLJ+kPbF3w5JkiRJknR4bF0Hr3aAlD+hWHW46FXIFRd0Kilbs5yTJEmSJEn/Xup2GHMJ/PUTJJwAXd6G+AJBp5KyPcs5SZIkSZL076SnwbtXw/IZEJeYUcwlnhB0KumYYDknSZIkSZIOXTgME++EBR9AdCx0fg2KVw86lXTMsJyTJEmSJEmH7qun4JtnM5bbDYPyjYPNIx1jLOckSZIkSdKhmfs2TOqXsdz8PqjZMdg80jHIck6SJEmSJB28JZ/D2Osylk+/ARr0DDaPdIyynJMkSZIkSQfnz/kwpgukp0L1dtD8fgiFgk4lHZMs5yRJkiRJUtZt/B1e7Qg7NkHZRtD+OYiyXpAOlb89kiRJkiQpa7ZtyCjmNq+AotUynswakzvoVNIxzXJOkiRJkiQd2K4dGZeyrlkA+UtAl7chvmDQqaRjnuWcJEmSJEnav/T0jIc/LPsSYvNDl7egQOmgU0k5guWcJEmSJEnav0n9YP67EBUDnV+FpJpBJ5JyDMs5SZIkSZK0b18PgxlDM5bbPQMVmgYaR8ppLOckSZIkSdLezX0bJvTNWG7WH2p1CjSOlBPlCjqAJEmSJEnKZrath4l3wezXMtbrXQ2NegUaScqpLOckSZIkSdL/WTQePuwFKauAEDToAecOhFAo6GRSjmQ5J0mSJEmSYOs6GN8H5r6ZsV64Epz/DJSpH2wuKYeznJMkSZIk6Xj34wcw7hbYshpCUdCgJ5x1J8TEB51MyvEs5yRJkiRJOl5t+Qs+vhXmj81YL1oNzn8aStUNNpd0HLGckyRJkiTpeBMOw/x34ePbYOtaCEXDGb2gSR/IFRd0Oum4YjknSZIkSdLxZPOfMK43LPwoY73YSdDuaSh5arC5pOOU5ZwkSZIkSceDcBjmvgXjb4dt6yEqFzS+FRrfArlig04nHbcs5yRJkiRJyuk2rYSPboafxmesJ9XKuLdciVrB5pJkOSdJkiRJUo4VDsPs12DCnbBjI0TFZNxX7oxeEB0TdDpJWM5JkiRJkpQzbfwdPvwP/DI5Y73kqXD+M1C8erC5JGViOSdJkiRJUk4SDsP3o2Di3bBzM0THwVl9ocGNEG0NIGU3/lZKkiRJkpRTrF8GH94Ev07LWC9VL2O2XNEqgcaStG+Wc5IkSZIkHevS0+G74TDpXkjdArlyw9n94PTrISo66HSS9sNyTpIkSZKkY9m6X+GDm2DpFxnrZRpkPIm1cMVgc0nKEss5SZIkSZKORenpMPM5mDIQUrdCTB5o1h/qXQ1RUUGnk5RFlnOSJEmSJB1r1i2BsdfBb19nrJdrDG2fgkLlg80l6aBZzkmSJEmSdCxZ+iW8cSlsWw+x+eDcAVDnCmfLSccoyzlJkiRJko4V378CH90M6alQsjZcOBIKlg06laR/wXJOkiRJkqTsLj0NJveHr57MWD+pPbQbBjHxgcaS9O9ZzkmSJEmSlJ3tSIF3r4FF4zLWm/SBJnd4GauUQ1jOSZIkSZKUXW38HUZ3hj/nQnQcnP801Low6FSSDiPLOUmSJEmSsqPfZ8GYiyHlT8hbFDqPhtKnBZ1K0mFmOSdJkiRJUnYz711473rYtR2KVYdL3oACZYJOJekIsJyTJEmSJCm7CIfh84fg0/sz1isnQ8fhEJc/2FySjhjLOUmSJEmSsoPU7fBBT5j7Vsb66T2g+SCIig42l6QjynJOkiRJkqSgpayGMV3g95kQlQtaPQJ1ugWdStJRYDknSZIkSVKQ/pwPoy+Cjb9B7kTo9ApUaBJ0KklHieWcJEmSJElB+WkivH0F7EyBQhXhkjehSKWgU0k6iiznJEmSJEk62sJh+HoYfHIXhNOhXGPo9DLkKRR0MklHmeWcJEmSJElHU1oqfHwbzBqRsV77cjjvEcgVG2wuSYGwnJMkSZIk6WjZth7e7ApLPgNC0Pw+aNADQqGgk0kKiOWcJEmSJElHw9rFMLoTrP0FYvNBhxehasugU0kKmOWcJEmSJElH2pIv4I1LYfsGSCwNF4+BpBpBp5KUDVjOSZIkSZJ0JM0aBeN6Q/ouOKEudB4N+YsHnUpSNmE5J0mSJEnSkZCeBpPugRlDM9ZrdIDzn4aY+GBzScpWLOckSZIkSTrcdqTAO1fBT+Mz1pv2hSZ9fPCDpD1YzkmSJEmSdDht+A1evxj+nAu5cmfMlqvZMehUkrIpyzlJkiRJkg6XVfPglfawZTXkLQYXvw6l6gadSlI2ZjknSZIkSdLhsG4JvHpBRjFXvEbGE1kLlA46laRsznJOkiRJkqR/a/OfGTPmUv7MKOa6jYP4AkGnknQMiAo6gCRJkiRJx7TtG+HVDrB+CRQsB5e+YzEnKcss5yRJkiRJOlSp2//v4Q95i8FlYyF/UtCpJB1DLOckSZIkSToUabvg7Stg2XSIS8iYMVeoQtCpJB1jLOckSZIkSTpY4TB89B9YNA6i4zKeylqiVtCpJB2DLOckSZIkSTpYk/vD/16FUBR0fAnKnRF0IknHKMs5SZIkSZIOxldPwfTHM5bbPAkntg40jqRjm+WcJEmSJElZNft1+OTujOVm/aH2ZYHGkXTss5yTJEmSJCkrFk2A93tkLDfoCY16BRpHUs5gOSdJkiRJ0oEsmwFvdYVwGpx8MZw7CEKhoFNJygEs5yRJkiRJ2p9V82D0RbBrO1RpAW2fgij/OS3p8PBvE0mSJEmS9mX9Uni1A+zYCGUaQMcREB0TdCpJOYjlnCRJkiRJe5OyGl5pDymroNhJcPHrEJsn6FSSchjLOUmSJEmS/mn7xowZc+t+hQJl4NJ3IL5g0Kkk5UCWc5IkSZIk/V3qdhjTBVb9AHmLwmXvQUKJoFNJyqEs5yRJkiRJ2i1tF7xzJSz9AmLzZ8yYK1wx6FSScjDLOUmSJEmSAMJhGHczLPwIomMz7jFX4uSgU0nK4SznJEmSJEkCmDIQvn8ZQlHQ8SUo3zjoRJKOA5ZzkiRJkiTNeBq+fDRjufXjcGKbQONIOn5YzkmSJEmSjm9zxsDEOzOWz7kH6nQNNo+k44rlnCRJkiTp+PXTRHjvhozl03vAGb2DzSPpuGM5J0mSJEk6Pi3/Gt7sCuE0qHURNL8PQqGgU0k6zljOSZIkSZKOP3/Oh9GdYNc2qNwczn8aovwnsqSjz795JEmSJEnHl/XL4JULYPtGKF0fLhwF0TFBp5J0nLKckyRJkiQdP1LWwCvtIGUVFKsOl7wBsXmCTiXpOBZoOffggw9Sr1498ufPT7FixWjXrh2LFi3KNGb79u306NGDwoULky9fPjp06MCff/6Zaczy5ctp1aoVefLkoVixYtx2223s2rUr05hp06ZRu3Zt4uLiqFSpEiNHjtwjz9NPP025cuXInTs39evXZ+bMmYf9M0uSJEmSArJ9E7zWAdb9Coll4NJ3IL5g0KkkHecCLec+++wzevTowddff82kSZNITU2lefPmbNmyJTLm5ptv5sMPP+Stt97is88+Y8WKFVxwwQWR/WlpabRq1YqdO3fy1VdfMWrUKEaOHMk999wTGbNkyRJatWrFWWedxezZs+nVqxdXXXUVEydOjIx544036N27N/feey/ff/89J598MsnJyaxevfrofBmSJEmSpCNnRwqMuQRWzoE8ReCysZBQMuhUkkQoHA6Hgw6x25o1ayhWrBifffYZZ555Jhs3bqRo0aKMHj2ajh07ArBw4UJOPPFEZsyYwemnn8748eNp3bo1K1asoHjx4gA8++yz9OnThzVr1hAbG0ufPn0YN24c8+bNi5yrc+fObNiwgQkTJgBQv3596tWrx9ChQwFIT0+ndOnS3Hjjjdxxxx0HzL5p0yYSExPZuHEjCQkJh/urkSRJkiQdqg3L4fWL4c95EJsfun0IJU8NOpWkHC6rXVG2uufcxo0bAShUqBAAs2bNIjU1lWbNmkXGVKtWjTJlyjBjxgwAZsyYQc2aNSPFHEBycjKbNm1i/vz5kTF/P8buMbuPsXPnTmbNmpVpTFRUFM2aNYuM+acdO3awadOmTC9JkiRJUjaz/Bt44eyMYi5v0YwZcxZzkrKRbFPOpaen06tXLxo1akSNGjUAWLVqFbGxsRQoUCDT2OLFi7Nq1arImL8Xc7v37963vzGbNm1i27Zt/PXXX6Slpe11zO5j/NODDz5IYmJi5FW6dOlD++CSJEmSpCNj9uswqjVsWQPFa8LVn0LpekGnkqRMsk0516NHD+bNm8eYMWOCjpIlffv2ZePGjZHXb7/9FnQkSZIkSRJAehpMugfeuw7SdkK11nDFBCjgpApJ2U+uoAMA9OzZk48++ojPP/+cUqVKRbYnJSWxc+dONmzYkGn23J9//klSUlJkzD+fqrr7aa5/H/PPJ7z++eefJCQkEB8fT3R0NNHR0Xsds/sY/xQXF0dcXNyhfWBJkiRJ0pGxYzO8czX8ND5jvfGtcNZdEJVt5qZIUiaB/u0UDofp2bMnY8eOZerUqZQvXz7T/jp16hATE8OUKVMi2xYtWsTy5ctp0KABAA0aNGDu3LmZnqo6adIkEhISqF69emTM34+xe8zuY8TGxlKnTp1MY9LT05kyZUpkjCRJkiQpm1u/DIY3zyjmouPgghfhnH4Wc5KytUBnzvXo0YPRo0fz/vvvkz9//sj93RITE4mPjycxMZErr7yS3r17U6hQIRISErjxxhtp0KABp59+OgDNmzenevXqXHbZZQwZMoRVq1Zx991306NHj8jMtuuuu46hQ4dy++23c8UVVzB16lTefPNNxo0bF8nSu3dvunbtSt26dTnttNN4/PHH2bJlC927dz/6X4wkSZIk6eAsmwFvdIGtayFfceg8GkrVDTqVJB1QKBwOhwM7eSi01+0jRoygW7duAGzfvp1bbrmF119/nR07dpCcnMwzzzyT6XLTZcuWcf311zNt2jTy5s1L165dGTx4MLly/V/3OG3aNG6++WZ+/PFHSpUqRb9+/SLn2G3o0KE89NBDrFq1ilNOOYUnn3yS+vXrZ+mzZPXxuJIkSZKkw+x/r8KHvSA9FUqcDJ1fh8QTgk4l6TiX1a4o0HIuJ7GckyRJkqSjbPeDH2YMzVivfj60GwaxeYPNJUlkvSvKFg+EkCRJkiTpoGzfBO9cCT9/krHepA80ucP7y0k65ljOSZIkSZKOLeuWwOudYc1CyJUb2j0DNToEnUqSDonlnCRJkiTp2LH0S3jjMti2DvKXyHjwwwm1g04lSYfMck6SJEmSdGyYNRLG3QLpu6DkqRnFXELJoFNJ0r9iOSdJkiRJyt7SdsEnd8M3wzLWT7oAzn8aYvMEm0uSDgPLOUmSJElS9rV9I7zVHRZPyVg/6y448zYIhYLNJUmHieWcJEmSJCl7Wrs448EPf/0EueKh/bNwUrugU0nSYWU5J0mSJEnKfn79DN68HLZvgPwl4eLXoeQpQaeSpMPOck6SJEmSlL18OxzG357x4IcT6mQ8+CF/UtCpJOmIsJyTJEmSJGUPabtgYl+Y+XzGes0Loe1TEBMfbC5JOoIs5yRJkiRJwdu2Ht7qBr9Oy1g/ux80vsUHP0jK8SznJEmSJEnB+usXeP0iWPsLxOSBC56HE9sEnUqSjgrLOUmSJElScDb+ASNawJY1kFAq48EPJWoFnUqSjhrLOUmSJElSMHbtgDcvyyjmiteAS9+F/MWDTiVJR1VU0AEkSZIkScep8X3gj1mQuwB0fs1iTtJxyXJOkiRJknT0/e9VmDUCCEGH4VCwXNCJJCkQlnOSJEmSpKNrxf/go94Zy2fdCZWbBZtHkgJkOSdJkiRJOnq2roM3Loe0HVClJTS+NehEkhQoyzlJkiRJ0tGRngZvXwEbl0OhCtD+WYjyn6WSjm/+LShJkiRJOjo+vR9+/RRi8sBFr0J8gaATSVLgLOckSZIkSUfewnHwxSMZy22fguInBZtHkrIJyzlJkiRJ0pH11y8w9rqM5frXQ82OweaRpGzEck6SJEmSdOTsSIE3usCOTVCmITQfFHQiScpWLOckSZIkSUdGOAwf9IQ1CyFfElw4EqJjgk4lSdmK5ZwkSZIk6ciY8TTMHwtRuaDTy5C/eNCJJCnbsZyTJEmSJB1+S76ASfdkLCc/CGXqB5tHkrIpyzlJkiRJ0uG18Q94uzuE06DWRXDa1UEnkqRsy3JOkiRJknT47NoBb3WFLWugeE1o/TiEQkGnkqRsy3JOkiRJknT4TOgLv38LuRPhopchNk/QiSQpW7OckyRJkiQdHrNHw3fDgRBc8CIUqhB0IknK9iznJEmSJEn/3so58NHNGctN74AqzYPNI0nHCMs5SZIkSdK/s3UdvHEp7NoOlZPhzNuDTiRJxwzLOUmSJEnSoUtPg3eugg3LoWA5uOA5iPKfmpKUVf6NKUmSJEk6dNMehMVTIFc8XPQaxBcMOpEkHVMs5yRJkiRJh2bhx/D5QxnLbZ+EpBrB5pGkY5DlnCRJkiTp4K1dDGOvzVg+7Vqo1SnYPJJ0jLKckyRJkiQdnJ1bMh4AsWMTlD4dmt8XdCJJOmZZzkmSJEmSsi4chg9uhNU/Qr7i0GkU5IoNOpUkHbMs5yRJkiRJWff1MJj3DkTlggtHQf6koBNJ0jHNck6SJEmSlDVLp8Mnd2csN78fyjYINo8k5QCWc5IkSZKkA9u0Et7qBuE0qHkh1L826ESSlCNYzkmSJEmS9m/XTnjzctiyGoqdBG2egFAo6FSSlCNYzkmSJEmS9m/infD7TIhLhItegdi8QSeSpBzDck6SJEmStG9zxsC3L2QsX/A8FK4YbB5JymEs5yRJkiRJe7fyB/jwPxnLTfpA1RbB5pGkHMhyTpIkSZK0p51b4e3usGs7VDoXmtwRdCJJypEs5yRJkiRJe5rcH9b+AvlLZFzOGuU/HyXpSPBvV0mSJElSZos/hZnPZSyf/zTkKRRsHknKwSznJEmSJEn/Z9sGeL9HxnK9q6DSOYHGkaScznJOkiRJkvR/xveBTX9AoQpw7sCg00hSjmc5J0mSJEnK8OP78MMYCEVB++cgNm/QiSQpx7OckyRJkiRBymr4sFfGcqNeUPq0INNI0nHDck6SJEmSjnfhMHxwE2xbB8VrQtO+QSeSpOOG5ZwkSZIkHe9mvwY/jYfoWGj/LOSKDTqRJB03LOckSZIk6Xi2fhmMvyNj+ay7IKlGsHkk6ThjOSdJkiRJx6v0dHjvBti5GUqfDg1vDDqRJB13LOckSZIk6Xj1zTBY9iXE5IX2wyAqOuhEknTcsZyTJEmSpOPR6oUweUDGcvJ9UKhCsHkk6ThlOSdJkiRJx5u0VBh7DaTtgErNoE73oBNJ0nHLck6SJEmSjjefPwwr50DuAtB2KIRCQSeSpOOW5ZwkSZIkHU/+mAWfP5Sx3PpRSCgRbB5JOs5ZzkmSJEnS8SJ1G7x7LYTT4KQLoEaHoBNJ0nHPck6SJEmSjheTB8DanyFfErR6JOg0kiQs5yRJkiTp+PDrZ/DNsIzl84dCnkLB5pEkAZZzkiRJkpTzbd8I792QsVynO1Q+N9g8kqQIyzlJkiRJyukm9IVNv0PBctD8vqDTSJL+xnJOkiRJknKyBR/B7NeAELR/DuLyBZ1IkvQ3lnOSJEmSlFOlrIEP/5Ox3OgmKHN6sHkkSXuwnJMkSZKknCgczijmtv4FxarDWXcFnUiStBeWc5IkSZKUE815HRaNg6iYjMtZc8UFnUiStBeWc5IkSZKU02z4Dcb3yVg+qy+UqBVsHknSPlnOSZIkSVJOkp4O798AOzZBqdOg4X+CTiRJ2g/LOUmSJEnKSWY+D0s+h5g80P5ZiM4VdCJJ0n5YzkmSJElSTrHmJ5h8b8byuQOhcMVg80iSDshyTpIkSZJygrRUGHsN7NoOFc6CelcFnUiSlAWWc5IkSZKUE3zxKKz4H+ROhPOfhlAo6ESSpCywnJMkSZKkY92K/8HnQzKWz3sEEk8INo8kKcss5yRJkiTpWJa6Dd69FtJ3QfXzoWbHoBNJkg7CQZVz4XCY5cuXs3379iOVR5IkSZJ0MKbeB38tgrzFoNVjXs4qSceYgy7nKlWqxG+//Xak8kiSJEmSsmrJFzDj6Yzltk9B3sLB5pEkHbSDKueioqKoXLkya9euPVJ5JEmSJElZsX0TvHcDEIbal0PVFkEnkiQdgoO+59zgwYO57bbbmDdv3pHII0mSJEnKiol9YeNyKFAGkh8IOo0k6RDlOtg3XH755WzdupWTTz6Z2NhY4uPjM+1ft27dYQsnSZIkSfqH9HSY+Rz871UgBO2ehbj8QaeSJB2igy7nHn/88SMQQ5IkSZJ0QOuWwAc3wtIvMtYb3gjlGgWbSZL0rxx0Ode1a9cjkUOSJEmStC/p6fDtCzC5P6RuhZg8cM69cNo1QSeTJP1LB13OAaSlpfHee++xYMECAE466STatm1LdHT0YQ0nSZIkSce9tYvh/Z6w/KuM9XKNoe2TUKhCsLkkSYfFQZdzv/zyC+eddx5//PEHVatWBeDBBx+kdOnSjBs3jooVKx72kJIkSZJ03ElPg2+ehSmDYNc2iMkL5w6AuldC1EE/20/S/2PvvuMju+t7/7/OOdM1RXWl7bv27rru2lQ3TLPBxjbEwRBseiC0awjlJhAC+RHf3NByEwJJwJckhBQIMQHMpWNsjAEbY5uy6769S1q1GU2fOef8/viOZjSStlqrUXk//TiP074z8x15dzV66/P9fkXmKcv3ff9kHnDNNdfg+z5f+tKX6OzsBGB4eJjXvva12LbNd77zndPS0fkuk8mQSqVIp9Mkk8lWd0dERERERBayoe1w+/+AA7805+ufBy/7O+hY29p+iYjICTvRrOikK+d+8pOf8Itf/KIezAF0dXXx8Y9/nMsu00SkIiIiIiIip8xz4b6/h7v+EtwShBLw4r+AZ7wRLKvVvRMRkdPgpMO5cDjM+Pj4tOvZbJZQKDQrnRIREREREVlyBh+Hb/4POPiQOT/zCnjpp6F9dWv7JSIip9VJT1Rw3XXX8da3vpX7778f3/fxfZ9f/OIXvP3tb+dlL3vZ6eijiIiIiIjI4uVW4ad/Df/3chPMhVPwsr+H135NwZyIyBJw0pVzn/nMZ3jDG97AJZdcQjAYBKBarfKyl72MT3/607PeQRERERERkUVr4BEzt9zh35jzjVfBS/8Wkita2SsREZlDJx3Otbe3881vfpPt27fz+OOPA3DOOeewYcOGWe+ciIiIiIjIouRW4Gefgp98ErwKRNrhJZ+ALa/S3HIiIkvMSYdzEzZu3MjGjRtnsy8iIiIiIiKL3+GtZm65/m3m/Kxr4bq/gURfa/slIiItcULh3Pve974TfsK/+Zu/OeXOiIiIiIiILFrVMvz0/5j55bwqRDvhmr+C829QtZyIyBJ2QuHcr3/96xN6MkvfUERERERERKY79Gu4/WYYfMScn/MyuPavIb6stf0SEZGWO6Fw7sc//vHp7oeIiIiIiMjiUy3BTz4BP/tb8F2IdZlQ7rzfbXXPRERknjjlOedERERERETkGA48ZOaWO2IW0uO8l5thrG3dre2XiIjMK6cUzj344IPcdttt7Nu3j3K53HTv61//+qx0TEREREREZEGqFODHH4X7/h58D9p64Nq/gXNf1uqeiYjIPGSf7AO+8pWvcOmll/LYY4/xjW98g0qlwiOPPMJdd91FKpU6HX0UERERERGZ/6ol+PWX4NbnwL2fMcHc5t+Dm3+pYE5ERI7qpCvnPvrRj/KpT32Km2++mUQiwac//WnWr1/P2972NpYvX346+igiIiIiIjJ/ZQfhwS/AA/8EuSPmWrwPXvq3cNZLWto1ERGZ/046nNu5cyfXXnstAKFQiFwuh2VZvPe97+WFL3wht9xyy6x3UkREREREZN7p3wa/uBW23QZubbqf5Ep49lvhGW+EaHsreyciIgvESYdzHR0djI+PA7By5UoefvhhNm/ezNjYGPl8ftY7KCIiIiIiMm94Hjz5ffjFZ2HPTxvXVz4TLvkfcM7LwAm2rn8iIrLgnPCccw8//DAAz33uc7njjjsAeOUrX8m73/1u3vKWt3DTTTdxxRVXnNSL33PPPbz0pS9lxYoVWJbF7bff3nT/jW98I5ZlNW1XX311U5uRkRFe85rXkEwmaW9v581vfjPZbLapzdatW7n88suJRCKsXr2aT37yk9P68tWvfpWzzz6bSCTC5s2b+e53v3tS70VERERERBax0jjc/3/h758BX7nJBHOWY1ZgffOP4C13wvk3KJgTEZGTdsKVc1u2bOFZz3oW119/Pa985SsB+NCHPkQwGOTee+/lhhtu4MMf/vBJvXgul+OCCy7gTW96Ey9/+ctnbHP11VfzL//yL/XzcDjcdP81r3kNhw8f5o477qBSqfD7v//7vPWtb+XLX/4yAJlMhhe/+MVceeWV3HrrrWzbto03velNtLe389a3vhWAe++9l5tuuomPfexjXHfddXz5y1/m+uuv51e/+hXnn3/+Sb0nERERERFZREb3wi8/D7/6dyilzbVIygxbfdZboH11S7snIiILn+X7vn8iDX/605/yL//yL/z3f/83nudxww038Ad/8Adcfvnls9MRy+Ib3/gG119/ff3aG9/4RsbGxqZV1E147LHHOPfcc3nggQd45jOfCcD3v/99rrnmGg4cOMCKFSv43Oc+x4c+9CH6+/sJhUIA/Mmf/Am33347jz/+OACvetWryOVyfPvb364/98UXX8yFF17IrbfeekL9z2QypFIp0uk0yWTyFL4CIiIiIiIyL/g+7L8f7vsHePzbZtVVgK4NcNHb4cJXQ6ittX0UEZF570SzohMe1nr55ZfzhS98gcOHD/N3f/d37Nmzh+c973ls2rSJT3ziE/T3989Kx6e6++67WbZsGWeddRbveMc7GB4ert+77777aG9vrwdzAFdeeSW2bXP//ffX2zz3uc+tB3MAV111FU888QSjo6P1NldeeWXT61511VXcd999R+1XqVQik8k0bSIiIiIisoBVy7D1NvjHF8AXroLH/p8J5s54Prz6q3DzA/DstyiYExGRWXXC4dyEtrY2fv/3f5+f/OQnPPnkk7zyla/kH/7hH1izZg0ve9nLZrVzV199Nf/2b//GnXfeySc+8Ql+8pOf8JKXvATXdQHo7+9n2bJlTY8JBAJ0dnbWw8L+/n56e3ub2kycH6/NsQLHj33sY6RSqfq2erXK2UVEREREFqTcMNzzf+DTW+Drb4FDvwYnDE9/PbzjPnj9N2HTi8E+6R+fREREjuukV2udbMOGDfzpn/4pa9eu5YMf/CDf+c53ZqtfANx44431482bN7NlyxbOPPNM7r777pNefGK2ffCDH+R973tf/TyTySigExERERFZSAYfN6uubv0vqBbNtXivmUvumb8Pbd2t7Z+IiCwJpxzO3XPPPXzhC1/ga1/7GrZt83u/93u8+c1vns2+TXPGGWfQ3d3Njh07uOKKK+jr62NwcLCpTbVaZWRkhL6+PgD6+voYGBhoajNxfrw2E/dnEg6Hpy1OISIiIiIi85znwc674Bf/YPYT+rbAJTeb1VcDoaM/XkREZJadVF32oUOH+OhHP8qmTZt4/vOfz44dO/jMZz7DoUOH+Md//Ecuvvji09VPAA4cOMDw8DDLly8H4JJLLmFsbIyHHnqo3uauu+7C8zwuuuiiept77rmHSqVSb3PHHXdw1lln0dHRUW9z5513Nr3WHXfcwSWXXHJa34+IiIiIiMyh3/4XfPYi+NINtWDOgrOvg9//HrztHrjgRgVzIiIy5064cu4lL3kJP/rRj+ju7ub1r389b3rTmzjrrLOe0otns1l27NhRP9+9eze/+c1v6OzspLOzk1tuuYUbbriBvr4+du7cyfvf/342bNjAVVddBcA555zD1VdfzVve8hZuvfVWKpUK73znO7nxxhtZsWIFAK9+9au55ZZbePOb38wHPvABHn74YT796U/zqU99qv667373u3ne857HX//1X3Pttdfyla98hQcffJDPf/7zT+n9iYiIiIjIPHHv38EPP2yOQwkzn9yz3wKd61vbLxERWfIs3/f9E2n4spe9jDe/+c1cd911OI4zKy9+991384IXvGDa9Te84Q187nOf4/rrr+fXv/41Y2NjrFixghe/+MX8xV/8RdPiDSMjI7zzne/kW9/6FrZtc8MNN/CZz3yGeDxeb7N161ZuvvlmHnjgAbq7u3nXu97FBz7wgabX/OpXv8qHP/xh9uzZw8aNG/nkJz/JNddcc8Lv5USXxxURERERkTn24L/At99jji97N1z+RxDRZ3YRETm9TjQrOuFwTo5N4ZyIiIiIyDy07b/ha38A+PCc98KVf97qHomIyBJxolmR1gIXEREREZHF6YnvwTfeBvjwrD+AKz7S6h6JiIhMo3BOREREREQWn10/gdveAF4VttwIL/krsKxW90pERGQahXMiIiIiIrK47H8A/vMmcEtmNdbf+Qew9aOPiIjMT/oOJSIiIiIii0f/w/ClG6CSgzNeAK/4AjiBVvdKRETkqBTOiYiIiIjI4jC0A/79eiimYfVFcOOXIBBuda9ERESOSeGciIiIiIgsfGP74N9+B3JHoG8LvPo2CLW1ulciIiLHpXBOREREREQWtvEBE8xlDkD3JnjdNyDa3upeiYiInBCFcyIiIiIisnDlR+DffxdGdkH7Gnjd7dDW3epeiYiInDCFcyIiIiIisjCVxuFLr4DBRyDeB6//JqRWtrpXIiIiJ0XhnIiIiIiILDyVAvznTXDwIYh2wutvh84zWt0rERGRk6ZwTkREREREFpZqGW57A+z5KYQS8Lqvw7JzWt0rERGRU6JwTkREREREFg7PhW+8Dbb/AAJReM1tsOJpre6ViIjIKVM4JyIiIiIiC4Pvw7feDY98HewgvOo/YO2lre6ViIjIU6JwTkRERERE5j/fhx/8Kfz638Gy4RX/DBuvbHWvREREnjKFcyIiIiIiMv/d/XH4xWfN8cv+Hs79ndb2R0REZJYonBMRERERkfnt3r+Hn3zcHL/kk/C017S2PyIiIrNI4ZyIiIiIiMxfD30Rfvghc/zCD8NFb2tpd0RERGabwjkREREREZmftv03fOs95viyd8Plf9TS7oiIiJwOCudERERERGT+eeL78I23AT48801w5S1gWa3ulYiIyKxTOCciIiIiIvPL7nvgtteDV4XNvwfX/LWCORERWbQUzomIiIiIyPyx/wH48o3gluCsa+H6z4KtH1tERGTx0nc5ERERERGZH/ofhi/dAJUcnPF8eMUXwAm2ulciIiKnlcI5ERERERFpvaEd8O/XQzENq54NN34ZgpFW90pEROS0UzgnIiIiIiKtNbYf/u13IHcE+jbDa74KobZW90pERGROKJwTEREREZHWGdsP//pSyByAro3w2m9AtL3VvRIREZkzgVZ3QERERERElqjRPSaYG9sH7Wvh9d+EeE+reyUiIjKnFM6JiIiIiMjcG95Zq5g7CJ1nwhv+H6RWtrpXIiIic07hnIiIiIiIzK0jT8C/vgyy/dC9Cd7wLUj0tbpXIiIiLaFwTkRERERE5s7Ao/BvLzOLPyw7tzaUdVmreyUiItIyCudERERERGRuHN5qVmUtjJhVWV/3TWjranWvREREWkrhnIiIiIiInH4HfwX//rtQHIMVT4PXfh1ina3ulYiISMspnBMRERERkdNr/y/hP26AUgZWPRte+98QSbW6VyIiIvOCwjkRERERETl99t4LX3ollLOw5lJ4zW0QTrS6VyIiIvOGwjkRERERETk9dv0E/vNGqORh/XPhpq9AqK3VvRIREZlX7FZ3QEREREREFqEdP4Iv/54J5s68Al59m4I5ERGRGahyTkREREREZtcT34fbXgduGTZdDa/8VwhGWt0rERGReUmVcyIiIiIiMnse+xb812tNMHf2dfB7/65gTkRE5BgUzomIiIiIyOx4+Otw2xvAq8B5L4dXfhECoVb3SkREZF5TOCciIiIiIk/db/8LvvZm8F3YciO8/B/BCba6VyIiIvOewjkREREREXlqfv0f8I23ge/B014L138WHE1vLSIiciIUzomIiIiIyKl78AvwzZsBH575Jnjp34HttLpXIiIiC4bCOREREREROTX3/1/49nvN8UVvh2v/Bmz9iCEiInIy9J1TRERERERO3r1/B997vzm+9A/h6o+DZbW2TyIiIguQJoIQEREREZGTc8//gbv+whxf/kfwwg8rmBMRETlFCudEREREROTE+D7c/XH4ycfN+Qs+BM97f2v7JCIissApnBMRERERkePzfbjzf8HP/sacX/nn8Jz3trRLIiIii4HCOREREREROTbfhx9+GO77e3N+1Ufhkptb2ycREZFFQuGciIiIiIgcnefB9z8Av/y8Ob/m/8Cz39LaPomIiCwiCudERERERGRmngffeS889EXAgpf+LTzjja3tk4iIyCKjcE5ERERERKbLj8D/exc8/m2wbPidf4ALX93qXomIiCw6CudERERERKTZ7p/C198K44fADsLv3gqbX9HqXomIiCxKCudERERERMRwK3D3x+Gnfw340LUBbvhnWHFhq3smIiKyaCmcExERERERGN0DX/sDOPCAOX/aa+HqT0A43tJuiYiILHYK50RERERElrpt/w3ffi+UMhBOmYUfzn95q3slIiKyJCicExERERFZqkpZ+N774TdfMuerL4KX/yN0rG1tv0RERJYQhXMiIiIiIkvRwV+ZYawjO81qrM/9Y3ju+8HRjwgiIiJzSd95RURERESWEs+D+/4O7vwL8CqQXGmq5dZd1uqeiYiILEkK50RERERElorxfvjG22HXj835OS+Fl34GYp2t7ZeIiMgSpnBORERERGQpePKHcPs7ID8EgShc/TF4xhvBslrdMxERkSVN4ZyIiIiIyGJWLcEdH4H7P2fOe8+HG/4Zlp3d2n6JiIgIoHBORERERGTxOvIE/PebYWCbOb/o7XDlLRCMtLZfIiIiUqdwTkRERERksfF9+NW/wvf+BKoFiHXB73wWzrq61T0TERGRKRTOiYiIiIgsJoVR+Na74dFvmvMzng+/+38h0dfSbomIiMjMFM6JiIiIiCwWe++Dr/0BZA6AHYAX/hlc+odg263umYjIkuD7PpUDWUr7MtixIE4yRCAVxkmFsIJOq7s37/m+j7UEFypSOCciIiIistC5Vbjnr+CeT4LvQcd6eMU/w8pntLpnIiKLnl/1KO1OU3hkmOKjw7iZ8ozt7FgAJ2mCOicVrm3Nx3Z4acU0XtmlvC9DaVea0q40TjxI12vPbXW35tzS+r8uIiIiIrLYjO2Dr70F9v/CnF9wE1zzVxBOtLZfIiKLmFeqUnxilMKjwxQfH8EvuvV7VsghfEYKv+rhpku4YyX8ioeXr+Llq1T6c0d9XivszBjaOamwqcBLhrCigQVbXTY1jCvvHwfXr9+3wg6+52PZC/P9nSqFcyIiIiIiC9XDX4dvvQdKaQgl4LpPwZZXtrpXIiKLkjtepvjYCIVHhijuGGsKlex4kOi5XUTO6yJyZjtWoDGdgO/7+EXXBHXpEm66THXiOFOuX/OLVfySS3UwT3Uwf9R+WEHbhHbJEE5HhOCyKIFlMYK9bTjt4XkVbHlll/LeSWHcgeYwDsBJhgifkSJ8RjvhM1Iwf7o/ZxTOiYiIiIgsNOU8fO/98Ot/N+crnwE3/DN0rm9tv0REFpnqUIHCo8MUHhmmvC8Dk3KlQFeEyHndRM/rIrQ6cdRQzLIsrGgAOxog2Nd21NfySi5uphHgTQ7zTJBXwstV8Sse1aEC1aECkG5+raBtgrplMQK9Zh/sjeF0ROYktDvhMO7M9logl8LpjCzYSsDZonBORERERGQhyRyGr9wEh34NWHD5++D5HwQn2OqeiYgseL7vUzmYpfDIMIVHh6kONFewBVfFiZ7XRfTcLgLLYrMaKtlhB7snRrAndvT+VbxagFfGzZSoDhepDOapDuSpHMnjVzwqB7NUDmabHne6QrtpYdz+cfCmhHGpUL0qTmHczBTOiYiIiIgsFId+A/95E4wfgmgnvPJf4Iznt7pXIiILmu96lHalzfxxjw7jpict6GBbhM9MmSGr53YRSIVb11FqIVtXlEBXdNo93/WpjhRMUDeYP6HQjoBNcFm0Ftq1NUK7zplDO680KYzbfbQwLlwP4hTGnRiFcyIiIiIiC8Fj34KvvxUqeejeBK/+L+g8o9W9EpElwPd9qHpmUYOK2ZvNbT4ue/jVKfcmrpXdSfdq28S1sodfdcG2sCMBrEgAO+JgRwK1c6dp33zsYEcDWOEAlnPiAZBXcik+OULxkWEKj4/iF6v1e1bIJnJWJ9Hzuoic1YkdXRjRieVYBGuVd5OjO9/zqY4Ua6FdzuwH8lSOFKDqUTmUo3IoBxxpPChgE+yJ1qvs/LJHadcY5QPZmcO4M1P1eeOcjrDCuJO0MP6EiYiIiIgsVb4PP/sU3HmLOT/zhfCKf4Foe0u7JSKnn+96eIVqbZXPSn21T69QOy5WwfPxXd8EJp6PX9/TfO564FE/x53ctnk/+Tn9Wtu54o1XTvmxVsiuBXsmtJsc8lnR2jXHprQrTXHHKFSnLOhwzqQFHYL2MV5pYbFsi2B3lGB3lOh5XfXrvufjjphhsZUBswhFZSBHZbAW2h3OUTmcozDl+Zz2yZVxCuNmg8I5EREREZH5qlqCb70bfvuf5vxZb4GrPw6OPsaLLCS+6zcCtcJRgrZ8ZVoQ55fcVnd9OhusoIMVtGvb5ONjn9sT5yEbK2BjhZza3tz3XR+/WMUrunjFKn6hdlyq4teueYVJx0XXrHBa8QBMBV65jJcpH+dNGE5XpD5/XGhNcl6tcjoXLNsi0B0l0B0leu6U0G60aKrrakNjsS3C600gF+iMtLDXi5O+q4uIiIiIzEe5Ifiv18K++8By4CWfgGe/pdW9EpEa3/PxsmXcTLk+Ob+bqZ2Pl/FytbAtV3nKIZsVCWC3mdU+7VgQO1Y7jgawHBtsywRLtoVlA4415VrzHufo96zaY6deq4dtzvyrKPNdrx7UTQv2itXm62WXYG8b0fNnf0GHxcKyrfq8dpNDOzl9FM6JiIiIiMw3g4/Bl18FY3shnIRXfhE2XNHqXomcMr/q1UKS5oqnyeEJ1EKo8JThiOHGfGNW0D7tYYrv+/hFtxG2pcu44xOrYzZCOG+8DCc52tOKOM3h2kzHU69FA0uuoutkWY6N02ZDm1atloVJ4ZyIiIiIyHyy/Ufw378PpQx0rINX3wY9Z7W6VwuS7/lUhwqU92Qo7c1Q3pvBK1RN1ZBjmQogxzLD6pxaNZEzcWzX2tSOA5Pa1x9nNaqWAs3PF1oZn3E1xYXIr7h4hYlQrRawlY4RtJXcKUFctWlur6fEtsy8YZMCOzvcPL/YRMA3NdibOPdLbnOV26QQzqsdTwyTPC4L7EQIJxnCSYZre7PZbcEpVW7Bk1qwQESWDoVzIiIiIiLzge/DLz8P3/8T8D1Ycym86j+gTUOKTpRfcSkfyJogbk+G8r4MXr56/AeeJsFVcWKbu4lu7llQczT5vk+lP0/h4SEKDw+Z+aZmiRVypgdpteAMi0bQV5oc+Ln4paqpUvN88/80X8WlNGv9mrGv0cCksK0WvKVCOImw2SdD2PGQqtpEZkkuXaIwXqZ7VaLVXZlzCudERERERFrNrcD3PgAP/rM5v/A1cN2nIBBubb/mOTdbbqqKKx/MTltV0graBFclCK9LElqbJNAeNpPOu55ZrdL1zKqUk69VZ7hf9fAnVrCsNj9m8jXfMxPal/ePUzmQJX0gS/p7e0xQt6WH6OZuAh3zL6jzfZ/KgSz5h4coPjxEdbjY3MCiXoXWCNUaFWmmmm3SUNT6vnl46qkGWb7vm8n+a8Hd5Mq8iUq+yRV8fmnmSj6/4kHAmlLlNj14sxMh7JAzC19ZETmaQrbMwSfGOPjEKAefHGW0P0/v+iSv+MAzW921OadwTkRERESklQpj8NU3wK67AQtedAtc+oegScqb+J5P9Ui+URW3NzM9QALsRJDw2iShtSnC65IEV7S1ZAJ7N1um8Mgwha1HKO1KN4K67+4mtDpBdEu3CeraWxfU+Z5PeU+GwiNDFB4exk1PqkQLWEQ2dhA9v5vIWR3YsWBLK8Qsy8IKOxB2eCqRme/6ZrVR/f0SmXOlfIWDT45x8MlRDj4xyvDBXHMDq7bQiuthz8OFR04ny/f9WRr8v7RlMhlSqRTpdJpkMtnq7oiIiIjIQjC80yz8MLwdgjG44Z/g7Gtb3at5wa+4lPdn61Vxpb0Z/MKUIaoWBJbF6lVx4bVJnM7IvAte3GyZwsO1oG53umkRgdCaBNHNtYq69tNfKem7HqVdaTNk9ZFhvGylfs8K2UTO7qwFcp3YYVWOicipKxerHN6R5sATJowb2j/O1ASqc0UbK8/qYNVZHazY2E5kkS3qcaJZkcK5WaJwTkREREROyp6fwX+9FgqjkFwJN30Flm9pda9axh0vmxCuVhVXPjTzENXQ6gShtUlC65KE1ySxowtrMJA7Xqbw8BD5rUOU90wJ6tYmiW7uJra5Gyc1e0GdX/Eobh81gdxjI00hpxUJED23FshtbMcKKpCTxcPzfColl3KhSqXoUi5VqZRc8DAVlNSqMm3Assy5bZlh3JjrllU7tyYfWzOeN44bj7UdC8u2sGubZZvXmG+/RJgNlbJL/840B58Y5cATowzuHcf3mv8db++NsfKsDlZuamflpg5iyVCLejs3FM7NMYVzIiIiInLCfvXv8O33gleBlc+AG78Mib5W96qJmylR2p2h0p9rzL/m+dP3E/OweX5zO29SO3fKuTfz801lJ0JNVXGtGqJ6uriZWlC37QjlPZnmoG7dpKAuefJBnVdyKT4xQuGRYYqPjeCX3fo9Ox4kem4X0fO7CZ+Rwgosnq+pLHxu1TNBWrFaD9bKJbdxbcq+XHQbAVyp+V61fIKr7raAVQvq6qGdMxHeNe8nwr2Zr4MTcIgmgkTjQaKJUG2rHceDRJMhgqdp/kS34jGwJ82Bx0c5+OQY/bvTeFNWZk52R1i5qaMWyHUQ71hac6kqnJtjCudERERE5Lg8F370Ebj378z5eS+H6z8LwWhLu+X7Pu5wkdKeNKXdGUp70rgzzOd2WlkQ7I3VquJSZohqR3hRVpfMxM2UKGwbIr9tyAR1EyxTURfb0kP0/G6cY1SZeIUqhcdHKGwbovjkKFQbwYSTChE9r5vo+V2E1qW0wqicNr7nUy5WKeXNVsxXKM9wXMpXzL7QOC8XXNzq7AdqtmMRigQIRhyCEwuT+D6+bxbKbhz7jXMPfHzwzXvy/Vp+PnGvFqXU79Ua1J+ndn0+CISdSeHdpOAuESKWCBJJhIglQkTiQaKJIIGjVNC6rseRveP1Yar9O9NUK83/v9raw6w6q4OVZ5nKuGR3a7+/tZrCuTmmcE5EREREjqmUha+/BZ74rjl/3p/A8/+kJQs/+J5PZSBPeU+a0m4TyHnj5eZGFgSXtxFancAKB8wPs7UKjvq+Vu0x4962p7ef8XE22BZ21MEOL6whqqeLmy6R3zZEYdsQ5b1Tgrp1KWJbuk1QlwjhZssUHx0h//AQpZ1jTRWITmeE6Pm1QG5VQoGcnDTf98kMFRgbLNRCtQrFWrhWroVrxXqwVq2HbcxCyhAI2iZMiwQIRZx6uFbfh49xL+IQDAcIRR1C4QBOsDXVoRNhn+/6eLXqYc/z8Vwf36/tvUn3Jl33alXJTece9esTj6mUXYrZCoXxMoXxCoVsbV87P5WwMxhxmgK8aCJIbqzM4R1jZljwJNFEsD5n3MpNHaSWRZfML1VOhMK5OaZwTkRERESOamw//OdNMLANnLCpltv8ijl7eb/qUT6Upbx7ojIug1+csriCYxFalSC8PkVovRlGakcUlrVadaxk5orbeoTyvvHGjdpiGNXBfFMQElgWI3q+GbIaXN6mH5LlpJQLVQb2ZhjYlWFgd5r+3RmKkxYNORmBkE04GiDcFiQcC5jjmDkOxQJEaseNLUgoGiAYNuHaUlut83TwfZ9K0a0HdvlMmWK2Qn68THHc7AvjZQq1cK84XsHzjh0RhdsCZpjqJhPIdSyP6d+ZYzjRrEjfbUVERERETqcDD5pgLjcIbcvgpv+EVc88rS/plV3K+zKUdmco70lT3jeOP2XokRWyzVxu61ImkFsd12IA81CgPUziOStJPGcl1bEihW1DFLYOUd4/TnUgD0BwZdwEcud1E1wWa3GPZaHwPZ+R/hwDuzMM7DJB3Mjh3LSqNztg0dHbRiTeCNcmB20TwVrTcbR11WrSYFkWoWiAUDRAquf47X3fp5SvNgV2E1V4oUiAFZva6V4ZVxXuaaBwTkRERETkdNn233D7/wC3BL3nmxVZ21fP+st4+QqlPbWVTnenKR/MwpTqBzsWMHO5rU8SXp8iuDxuhpbKghFoj5C4fBWJy1dRHS1S3j9OaFWCQGek1V2b13zPp5CtkM+UyKfLVMte0xDDyfvGMcdpUxuq6E+5V7uGD9FkiERHhERnhHhnmERnhEg82LIqo0K2bIK43Rn6d6UZ3JOhXHSntUt2R+hdn6J3fZK+9Sm6V8UVtC0RlmURaQsSaQvS0erOLDEK50REREREZpvvw90fh5983Jxvegnc8I8QTszK01fHSpT3moUbyrvTVAby06pdnFTYDE9dnyK8LkmgJ6Zqh0Uk0BEh0LG0Qzm36pHPlMmlTejWdJwukavt8+MVsyLwPOAEbRKdERKdYeKdteCuo3Ee7wgfdTL+k+G6HsMHsiaI251mYFeG9JHCtHaBsEPvugS961P0rU/Suz5F7BiLjojI6aFwTkRERERkNlUKplruka+b80v/EK78c7BP7Qfu+nxxe8cp78tQ3pvBzZSntQv0RM3w1HUmkFvqwY0sXOVitRa2TQRskwO4xrVi7iTmQrMgGg8SS4YJhh1sx8KywbbNIiWWbdWPm/cc417zc9iOhWWZve9DPlMmO1JkvLbl02XcisfYQJ6x2pDkmUSToeYA7wSq77KjpfoccQO70wzuHcetTF8IoKMvRu8ZjSCuc0UbtkJ7kZZTOCciIiIiMlsGHoFvvhMO/QrsAFz3t/D0153UU7jjZVMVty9jArmD41CdOgkUBJfHCa9LmqGq65I4CVW7yOwbG8jTvzuNV51YZdKrrxxZX2nSbV5dst6udu66zatUmsc1P4/n+pQLVfKZ8rTVII/FdixiyRCxVJi2lNnHkqH6cVsqRCwZJpoM4rR4gQG34pEdK5nAbrRo9sNFxkdL9RCvWvYoZMoUMmUG98z8PJOr7wIhhyP7xsmOlqa1C8cCpiLujCS965P0rksSjgVP75sUkVOicE5ERERE5KkqjJlhrL/8PPguRDvgVf8B655zzIf5rk+lP2cWb9ibobxvHHekOK2dHQsQWpsktCZJeG2C4KoEdkiLN8jpUSm77PzVII/+7BCHd6Rb0odA2KEtGSKWCtGWCjfvk2YfS4WIxIILZri2E7RJ9URJ9URnvO/7PqVctV5pNz5SC/BGSmRHj119Z9kWXSvb6FufovcMM1dcallUq2iKLBAK50RERERETpXnwW//E370EcgdMdfOeRlc9dEZF35wcxUzNHXfOOW9Gcr7p6+iigXB3lg9jAutTRLoiuiH7HnOrXpUSi6Vkku17JLoiszK3GFzxfd9juwb59GfHWL7AwP1hQIsC/rOTBGOBZuGb9qOGdo5sbccC9uxG9ecxvDP5vb2tOeYOA9FHGK14C0UWXo/qlqWRSQeJBIP0rNm5vkpTfVdLbAbKVIqVOlZHadnTZJgeOH8eRORZkvvXzwRERERkdlw6Dfw3T+GA780510b4SWfgA1XAGaFyOpgvl4RV96boTo0fUJ2K+KYirg1CRPIrU5gL8FgYq74nk+l7NaDtHqgVpp+rVJyqRRdKqVq47w8ca1589zmoceBsMOaczpZt6WLted3z9tJ9ou5Ck/+sp9Hf3aY4YPZ+vVkd4RzLl3O2ZcsJ675C+cNU30XI9UTa3VXRGQW6bu+iIiIiMhJ8HPD+Hd8HO/Xt+P5cTzn2XjnvhZv1RX4B33c7bupHMpS3jeOP8PcWYGeaG14apLQ2oRWUZ1FnuuRS5fNcMDRItmRUu24VB8iWMpXT2sf7ICpDquWXHb95gi7fnMELOhbn2Ldli7Wb+mhY3mspZWQvudz4MlRHvv5YXb9+ghu1VRvOgGbM57Ww7mXLWflpg79uRQRmSOW7/vzY03pBS6TyZBKpUin0ySTyVZ3R0RERESOw6+4eIUqXr5q9k3HlaZrfqGKl6/gjWfxyhZwYsPHrJBNaHWiPjw1vCaBrQnZT4nv+5Ty1XrINjlwm5iTKzdW4oR/urEgGHaOswWOfT/SfB4IOziOje/7DO3Psvu3R9izbZgj+8abXjrZHWH9lh7WXdDN8g2pOVuoIDta5PH7DvPYvYfJDDXmNuxaFefcy5az6dl9RNr051NEZLacaFakcG6WKJwTERERmZ/c8TLFx0coPjFCZbBQD92oesd/8LE4YMdC2NEAdixg9rUt0B0ltDZJsLcNy1H10YmoVlyy9VUrS7XKt+krWR6P7VjEO8LEOyIkOiPmuLN23BkmGg8RjDgEgvacVa+NjxTZu22I3VuHOfDECN6k1XfDsQBrzuti/ZZu1pzXOeurabqux56tQzz288Pse2S4Hl6GIg4bn93HuZctp2dNQnMaioicBgrn5pjCOREREZH5wfd8KgezFB4fofj4CJVJ82hNY1ML1ILY0QDWRMA2EbY5Jeyd38Le/0NsK4sd8rEvexP2Ja/HioTn7k0tUJ7rUchWyGfK5DNlCrX99K1EKXdiw02jiWAtdDNh29TjWCI0r4djlotV9j82wp6tQ+zZNkwxW6nfs22L5RvbWb+lm3Vbuo+6queJGO3P8ejPD/PELw5TGG+8xoqN7Zxz2XLOfPoyglrxV0TktFI4N8cUzomIiIi0jlesUtw+SvHxUYpPjOBNCjwAgqviRM/uJLQ2iR0L1gM4K+zMXDHkVuHBf4a7/hJKaXPtwtfAlX8O8WWn/w3NY57nU6wFboVasJbPVMx+vEw+XaYwXgvjshU4iZ82AiG7VuEWIVGreDMVcBPH4QW1AurxeJ7PwO4Me7YeYfdvhxjtzzfd71zRxrrN3ay/oJtl65LYxwkdKyWXHQ8N8tjPD3F4Z7p+PZoMcc4lfZxz6Qrae7WQgIjIXFE4N8cUzomIiIjMHd/3qQ4VKD5mquNKezLgNT7WWmGHyMZ2Imd3EjmrEydxEitl7vm5WYV18BFzvvwCuOb/wOpnz/K7mJ98z2d8pMjwoRwjh7KM9edNdduk4O1kfoKwLIgmQkSTIdqSZh+btE2ct6XChGOBJT28cmwwX6uoG+LQ9jT+pD/T0USQtZu7Wb+lm9XndBIMm5DS930G94zz6L2H2P7AAJWiWYTEsmDt5m7OuXQ5azd3zdm8diIi0qBwbo4pnBMREZHFyPf9eROW+FWP0q40xcdHKDwxgjtcbLof6I6aMO7sTsLrkliBkwwjMofhjv8Ptt1mziPtcMX/B894I9iLp1prssJ4meGDWRPETewP5ajMsMpsEwui8SDRxPSgrS0ZIpYM10O3SDx43Iovma6Yq7DvkWH2bB1i7yMjlAuNYb9OwGbV2R30rEmw6zdHGDmUq99L9kQ597LlnH3xctraNfRaRKSVFM7NMYVzIiIislhUhgoUHx2m8Ngw5b3j2NEATjKEkwrjpEI4yXDjuLa3w4HT0hc3U6L4+CiFx0co7RjFn7wggGMRPiNF5KxOomd3Eug+xfm5qmW4/1b4ySegnAUseMYb4IX/H7R1zcr7aLVyscrIYRO8DR/M1veT5yKbzHYsOvra6FzRRufyNtraw8RSIWKJELFUiGg8iK1KrDnjuh6Ht4+xe+sQe7YONa20CuAEbc58Wg/nXraCFRvb5/WceyIiS4nCuTmmcE5EREQWKt/zKe/LUHh0hOJjw1SPFE76Oayw0wjrkpODu3A92LNPYMii7/mUD4yb1VUfH6EyqSIIwE6EiJzVQfTsTsIb2596KLjzx/C998PQk+Z85TPhmr+ClU9/as/bIq7rMdafr4dvE0NTp4Y5dRYku6N0rWija2WczhVtdK2Ik+qNahjkPOX7PiOHc+zZOsSRfVlWbmpn47N6ibTN7iqvIiLy1J1oVnR6fsUpIiIiIvOaV3IpbR+l8OiwWUBh8kqZtYq06DldhDe241d93HTJbJnytGO/6OKXXKqDBaqDxwj2AlZTWDdxHEiF8V2P4hOjFJ8YxctNquayILgqQfSsDiLndBFc3jY7VUFj++EHfwqP/T9zHuuGF90CF7wa7PkfSnmeT7Y2L9zkSrixgTyeO/Pv3mPJkAnfJkK4lXE6l7fV5y6ThcGyLLpWxOlaEW91V0REZJa0NJy75557+Ku/+iseeughDh8+zDe+8Q2uv/76+n3f9/nIRz7CP/7jPzI2NsZll13G5z73OTZu3FhvMzIywrve9S6+9a1vYds2N9xwA5/+9KeJxxvfrLZu3crNN9/MAw88QE9PD+9617t4//vf39SXr371q/zZn/0Ze/bsYePGjXziE5/gmmuuOe1fAxEREZG54qZLFB4z1XHFHWMwKcSxIgGiZ3cQObeLyKYO7MiUj4nL2476vF7Jxc3UArt0ecYQz8tWoOrjDhenzRU3lRV2iGzqqC3m0IETP4nFHI6nUoT7/g7u+WuoFsCy4VlvgRd8EKIds/c6s8D3fQrjFcYG8owN5s1+IM/YYIHMkQJu1ZvxccGIQ9eKNjpXxk1F3Io4nSvbiM7m11FERERmTUvDuVwuxwUXXMCb3vQmXv7yl0+7/8lPfpLPfOYz/Ou//ivr16/nz/7sz7jqqqt49NFHiUQiALzmNa/h8OHD3HHHHVQqFX7/93+ft771rXz5y18GTAnhi1/8Yq688kpuvfVWtm3bxpve9Cba29t561vfCsC9997LTTfdxMc+9jGuu+46vvzlL3P99dfzq1/9ivPPP3/uviAiIiIis8j3fSqHc7X540aoHMw23Xe6IkTP6SJyTm0BhVMcxmiHHeyeGMGe2NH7UvVMYHeUEM+veoTPbG8s5jDbQyp9H574nqmWG91trq251Axh7Wvt571yoWrCt8E8YwMFxgbypGthXLl49IUZ7IBFR28bXSvbmiriEp2RebOIh4iIiBzfvJlzzrKspso53/dZsWIF//N//k/+6I/+CIB0Ok1vby9f/OIXufHGG3nsscc499xzeeCBB3jmM58JwPe//32uueYaDhw4wIoVK/jc5z7Hhz70Ifr7+wmFzG8L/+RP/oTbb7+dxx9/HIBXvepV5HI5vv3tb9f7c/HFF3PhhRdy6623nlD/NeeciIiIzAcTK5oWHhum+OgIbrrUuGlBaE2SyDmdRM/pJLAstvhDHN+HnXfCjz8KBx8y1+J98OL/DZtfAXP0/t2KR3qoUK+CS9cq4MYG8uQz5aM/0IJEZ4T23hjty2K090Zr+xjxzohWQRUREZnHFvycc7t376a/v58rr7yyfi2VSnHRRRdx3333ceONN3LffffR3t5eD+YArrzySmzb5v777+d3f/d3ue+++3juc59bD+YArrrqKj7xiU8wOjpKR0cH9913H+973/uaXv+qq67i9ttvP2r/SqUSpVLjw24mk5mFdy0iIiJy8txcheITIxQfG6H4xCh+uVFtZQVtwhs7iJ7bSeTsztkdIjrf7b4H7vpL2P8Lcx6IwkVvg8v/J0Rm/5epvu+TT5cZOZRjtCmEyzM+XORYvxKPJkO0L4tOCuHMPtkTIRDUnHAiIiKL2bwN5/r7+wHo7e1tut7b21u/19/fz7Jly5ruBwIBOjs7m9qsX79+2nNM3Ovo6KC/v/+YrzOTj33sY9xyyy2n8M5EREREnhrf86kOFSg+PkLhsWHKezIwKfixEyGi53Sa+ePOTGEttXBn733w47+EPT81504YnvVmuOw9kOg95kNPhO/75DNlRg7nGDmUY+RwjtHavpSvHvVxwYhDR2+MVD18M2FcalmMcHTefiwXERGR00yfAk7RBz/4waZqu0wmw+rVq1vYIxEREVmMJoK4ysEs5dpWOZTFLzXPRRbsayNybifRc7oIrozPzoqmC82BB00ot/Muc24H4RlvhMvfB8kVp/SUhfFyPYAbOZRj+FDWhHC5mUM4y7ZI9UTp6KsFcJMq4aKJ4OIfRiwiIiInbd6Gc319fQAMDAywfPny+vWBgQEuvPDCepvBwcGmx1WrVUZGRuqP7+vrY2BgoKnNxPnx2kzcn0k4HCYcDp/COxMRERGZme/6VI/kTQA3EcQdzuKXZ1iVM2ARXpcyFXLndBHojMx9h+eLQ78xc8pt/4E5twNw4WvguX8M7Sf2y9NitsLI4awJ4ibCuMM5CuOVmR9gQao7SueKtsa2PE5HbwwnOMuLWYiIiMiiNm/DufXr19PX18edd95ZD+MymQz3338/73jHOwC45JJLGBsb46GHHuIZz3gGAHfddRee53HRRRfV23zoQx+iUqkQDAYBuOOOOzjrrLPo6Oiot7nzzjt5z3veU3/9O+64g0suuWSO3q2IiIgsNX7VozKQp3Io2wjjDuegOj2Is4I2wRVxgivaCK1MEFwZJ7gsOvsrmi40/Q/D3R+Dx2uLelk2XHCTCeU618/4kFK+0lQJN7E/1qIMye4InSvidC6fCOHa6OiLEQgtseHCIiIiclq0NJzLZrPs2LGjfr57925+85vf0NnZyZo1a3jPe97D//7f/5uNGzeyfv16/uzP/owVK1bUV3Q955xzuPrqq3nLW97CrbfeSqVS4Z3vfCc33ngjK1aYoQuvfvWrueWWW3jzm9/MBz7wAR5++GE+/elP86lPfar+uu9+97t53vOex1//9V9z7bXX8pWvfIUHH3yQz3/+83P69RAREZHFya94VPpz9SGp5YNZKv05cKevEGCFHRPCrYgTXJUgtKKNQE9saQ5TPZojT5hQ7pFv1C5YsPmVVC/9Y7LOKrJHSuSePEx2rER2pGT2o0WyoyWK2aNUwmFWRZ0I3yaq4Tr62giGFcKJiIjI6WP5/rHWjTq97r77bl7wghdMu/6GN7yBL37xi/i+z0c+8hE+//nPMzY2xnOe8xw++9nPsmnTpnrbkZER3vnOd/Ktb30L27a54YYb+MxnPkM8Hq+32bp1KzfffDMPPPAA3d3dvOtd7+IDH/hA02t+9atf5cMf/jB79uxh48aNfPKTn+Saa6454fdyosvjioiIyOLmlV0qh3ONYamHslQG8uDNEMRFAoRWthFcGSe0Mk5wRZxAV1RB3AyqZZfs7u1kf/of5LY/zLjbSc7tIhs7n2xwPdmsdczgbbJ4R9hUv00O4pa3EYrM20ElIiIisgCdaFbU0nBuMVE4JyIisvT4nk91ME95/3h9qwzkYIYp4uxYoBbCJQiuNJVxTmdECwQAbsVjfKRoqtvGSmRHzZYbLTI+WiI3kqeYn+GLOoNA0CbeGaGtPUyiI0xbR5h4R4R4R5h4R5hEV1Qro4qIiMicONGsSJ9MRERERE6A7/u46XJzEHdwfMbFGux40FTCTVTErYzjpMJLOogr5ipkhgqkj5gtc6RQP8+OleAEfl0coEQ8WiDe1028t7sewsUnBXDhWGBJf51FRERk4VE4JyIiIjIDr1g1IdyBccr7s5T3Z/BmWLnTCjmEVsUJrk4QXp0guDqBkwwtuYDI83xyY6V68JaeFL5lhgqU8tVjPj4QshsVbnGPePpB4kd+TJs1QNweJr7hXMJXvA9rzbPn6B2JiIiIzA2FcyIiIrLk+dXagg2TquKqRwrTG9oQ7GsjtDpBaFWC0JrEklqsoVp2SQ9NDt+K9fAtM1zAqx67/C2WDJHqiZLsjpLsiZKqbcnuKNFEECt3BH72t/DgP0O1CBFg3eXwgr+EtZfOyXsUERERmWsK50RERGRJ8X2f6nCRyqQgrnwoO+PKqU5npBHErTYLNtihpbFyZyFbZt8jIxx4YpT0YJ70kQL5dPmYj7Edi0RXpB64Td0fddXT7BH40d/BL/8RKnlzbfVF8IIPwRnPm+V3JiIiIjK/KJwTERGRRcf3fLxshepYETddwh0r444VqRwpUN4/jl+YPsTSjgUIrkqYMG51gtCqOE481ILet4bv+wwfzLFn2xB7tw3Tvzs94zxwoWigFrZND+HinRHsk6kiPPiQCeQe/hq4teBv5TPgBX8KZ14BS2xosIiIiCxNCudERERkQfF9H79QpZo2gZsJ38xWnTjOlGeshKsLWIRWxBtB3OrEklw5tVJ2Ofj4KHseHmbvtiGyo6Wm+12r4qw9v4vulfF6CBdue4oLLlRL8Mjt8Mv/a8K5CSueDs/7AGy6SqGciIiILCkK50RERGRe8Ssu1VrYNhG8VSeOa+czrZA6jQVOMoTTHsFJmX2gM2IWb+hrwwrYp//NzEPjI0X2bhtiz7ZhDjwxiltpfC0DQZtV53Sy9vwu1p7fRaIzMnsvnD4ID/0LPPRFyB0x15wQnPdyePZbYdUzZu+1RERERBYQhXMiIiLSEu54ub4aaqU/b6rgxkp4x1nVc4LdFsBJhevhW6A9gtMealxLhLAcVWB5ns/ArjR7tg2z9+Ehhg/mmu7HO8Os29zNus3drNzUTmA259Tzfdh7r6mSe+zb4LvmemIFPOtN8PQ3Qrxn9l5PREREZAFSOCciIiKnnVesUj4wTvlAlvL+cSoHxnGPsbiAFbJx2sM4qbAJ3WqVb/XwLRVeMgsznIpirsK+R4fZu22YvY8MU8o1Ak/Lgr4zU6zb3M3a87voXNE2+8N5yznYepuZT27wkcb1tc+BZ78Fzr4WnODsvqaIiIjIAqVwTkRERGaVX3EpH8rVQ7jygSzVocL0hhYEemKEVsUJrYzjdEbM0NNUCCv6FOc1W2J832fkcI6924bZs22I/l0ZfK8x5144FmDNeV2s29zFmnO7iMRPUzA2sgse+Gf49b9DMW2uBWOw5ffgWW+BvvNPz+uKiIiILGAK50REROSU+a5HZSBvhqZOVMUN5GCGKeGcjjChVY2VUIMr49hhfRQ5VdWKy8Enx9i7dYg9Dw8zPlxsut+5oo11m7tYe343fWcksZ3TNMee58HOu+CXn4ftP6S+xGvHelMld+GrIdpxel5bREREZBHQJ2IRERE5Ib7nUx0uUD6QpVKbK658KAfV6UmcHQ+aIG5VnODqhKmMi4da0OuFyXU98uky2dES2dEiubFS7bhEbqxo9ulyU3WcE7BZeVZHLZDrItkdPb2dLKbhN182Q1dHdjaub7gSnv02s7eX5qIbIiIiIidD4ZyIiIhM4/s+brpcG5ZamyvuwDh+0Z3W1go7ZmjqqgTBVQlCq+M4qbCGpR6FW/HIpWth20TQNloiWwvgcqNF8pkyvn/852pLhVi7xSzmsOqsDoLhOZiHb/AxE8j99itQqS0uEU7Cha8xlXJdZ57+PoiIiIgsIgrnREREBDdXMUNT9zeCOC9bmd4wYBFaUQviasNTA11RLFtBHIBb9RgfKdZDtmxTxZupgiuMz/B1nYHtWMQ7wrS1h4l3RIi3h2nrCBPvCBNvj9DWHqatPTQ3IahbhSe/Z4au7r6ncb3nHBPIbXkVhOOnvx8iIiIii5DCORERkSXGK1XN0NRaCFc+MI47Wpre0IZgb1utIq4WyPXFsE7X3GULwET4Nj5stsxwYdJxkVy6VJ9y7VicoE283QRtbbWwrRHEmTAuGg+2PvTMj8BDX4QHvwDp/eaaZcNZ18BFb4N1l5vlX0VERETklCmcExERWcT8qkflsFk5dSKIqx4pzBggBbqj9RAutDpBcHkbdmgOhknOI7MRvgVCtql062gEbY3QzQRx4bZ5vhpt5jDc9/cmmCtnzbVYFzz9DfDMN0H76pZ2T0RERGQxUTgnIiKySPieT3UwPymIy1Lpz4E7PU1yUiEzP1xt0YbQqgR2dPF/LJit8C3RFSXZFSFR25Jd0do+QiQenN/B27EM74Sf/62ZT84tm2u958MlN8N5L4dgpKXdExEREVmMFv+ncBERkUXI933c4WLTYg2Vg1n8ygwrp8YCtSCuURXnJBbmyqm+51MuuZTyFcqFKuVClVK+Sqm2n3xezlcpFSqUC6b9RJslHb4dzeHfws8+BY9+E/zan6E1l8Bz3gcbX6ShqyIiIiKnkcI5ERGRec6veFQG81QOZc0Q1cM5Kodz+MXqtLZWyCG4Mk5odS2IW5XA6Zi/K6e6rsfIwRzDB7MmVKuFaOWJgK0wJXgrHD9cO55A0CbRvcTCt5n4Puz9Ofz0b2DnnY3rG6+C57wX1l7Sur6JiIiILCEK50REROYRN1umcjhH5VCOyuEs5cM5qkfyML0gDhyL4Ip4oyJuVZxAT6z1iwgche/7jI8UGdidYWBPhsHdGY7sG6c6Q7Xf8dgBi3AsSDgaIBwLEI4GCNX24ViAUHTytWD9WqQtSDSxRMK3o/E82P4DE8od+KW5Ztlw/g1w2Xug7/yWdk9ERERkqVE4JyIi0gK+61Mdypsgrl4Nl8Ubr8zY3o4FCPa1EVzeRnB5nOCKNoLLYliB+btyarlQZXCvCeL6d5l9IVOe1i4cC9C9OkEsESQ0KXALzRi8BQlFHQLBpbVQxaxwq/Dw18yccoOPmmtOGJ72Grj0D6FzfUu7JyIiIrJUKZwTERE5zbxitR7CmSAuS6U/D9UZKsYsCHRFayFcI4xzUqF5Xe3luR4jh3OmKq5WGTdyODdtCKptW3StitO7Pmm2dUnal83far9FoVKAX/8H3PsZGNtnroUS8Kw3w8X/AxK9re2fiIiIyBKncE5ERGQWuemSWZzhcI7yoRyV/hzuSHHGtlbInl4N19uGHZ7/VWHZ0WJTEDe4N0O1PD1sTHRGGkHc+hQ9q+MEQvP//S0KxTQ88E/wi89B7oi5FuuGi98Bz/oDiLa3tHsiIiIiYiicExEReQqqYyVKu8Yo7UpT3p2mOjxzEOekwiaEW9EI4wKdkQVRMVYuVjmyb7wexA3sSpNLTx+eGoo4LFtnquEmwrhYcmGuCrugZQfhvn+AB78ApYy5lloDl/0hXPgaCMVa2z8RERERaaJwTkRkCfI9n2rFo1JyqZSqZl90zb7sNs7LLrFkiI6+Njr6YoQi+rZRHSlS2p2mtCtNaXd6elWchamGWxGvD0sNLW/DjgVb0+GT4LkemaEiI4dyjByubYeyjBzK4U8ZnmrZFl0r2xpB3LoUHX0antpSo3vg558xQ1jdkrnWc7ZZefX8G8CZ/38GRURERJYi/ZQlIrKA+L5PMVchPVigkK2YYG0iVJu0Vaecl6feL7vT5gI7EfGOMB3LTVDX0ddG53KzjyYWZ3WU7/u4I8V6EFfalcYdKzU3siG4MkH4jBTh9SnC65LY8zzE9FyP9JECI4dzjB7O1cK4PGMDedyZ5sHD/L/vXZdk2fokfetT9KxJEFwAw2+XhIFH4Gd/axZ78F1zbdWz4Dnvg01Xgz1/Fw0REREREYVzIiLzju/7lHJVxgbzpAfzjB0pkB4skB7Mkz5SoJSvzurrBcNOY4vU9iGzd0I2udESI/15Cpky2dES2dES+x8daXqOSFuQjuUxOpa30VmrsutY3ka8IzyvFzGYyvd9qsNFyrvSZqjq7jTu1OGbtkVoVdyEcWe0E1qbwA7Pz2+nruuROVJoqoQbPZxjdCCPV505nQ2E7Frw2kbnijY6lrexbE2CtvbwHPdejsnzYP8v4Oefhie/37h+5gtNKLfuObCA/u6JiIiILGXz86cJEZEloJitMHYkT3qwUAviTjyAi3eEiSVDBCOB6cFaeFLA1nQt0Hw/7BAI2ic8DLGYq5hgpz/PSH+O0cN5RvtzjA8XKeYqHN6R5vCOdNNjAmGHjt4YncvbTHhXC+5SPVFsp/XVPL7vUx0qmMq42uaNTwnjHIvQqlpl3BkpQmuT2PNsQQPX9UgPFkwVXL0SLsfYQB7PPXoIZ/6/1IK4WhiXWCDz4C1J4wOw8y7YeafZ54drNyw493fM8NUVF7ayhyIiIiJyChTOiYicRsVcpSl4GxsskD5ijk8kgEv1REktM2FW+7IYqWVRkj1Rgi0IhyJtQZZvaGf5hvam65WSy9hA3lRl9ZvwbvRwjvRggWrJ5ci+cY7sG296jO1YpJbF6sNi23tjhKMBnKCNE7QJ1PfOpGMbJ3DiYeJMfN+nOphvzBm3K42XrTQ3cixCaxJmiOoZKUJrWhfGua5HKVellK9QzFYo5qsUs5X6+cTQ1GOGcGGHzr5aQLqiEcQphFsAqmXYfz/s+JEJ5Pq3Nd8PJeC86+Gy90D3hlb0UERERERmgcI5EZGnwPd98pky6SMFMkMFMkdM+GZCuDyl3LEDuLb2MO3LovUQrtUB3KkIhh161iToWZNoul6v5ppUZTdyOMdYf55qxTNVeIdzwJGTej0nYNdCPItwwCYSsAkHLMKORdC2CNkWQSBoQcCHgO/jeOB4Hk7Jxak0z6nm2xZ+TxSrrw1nZdxs0QAEbaoBG7/s4ng+gaB9ytV+nutRylcp5ipmn61QrAVsE9eLuQqlXIVirlo/LhfdE36NYNipVcHF6Fwep2N5zFTCdSiEW1BGdsGOO82256dQzjbfX34BbLgSzrwCVj9bizyIiIiILAIK50REjqNacRkfLtYDOLMv1sO4amXmCfQntLWHa5VvtSq4ZaYKbiEFcKfCcex6lRZPa1z3PZ/xkaKpsOvPMXYwS34wD0UX2/WwKh626+O4PrbnE/A8gpZF0IKQRf04aPlYngdlD8pH78dUVd9ntOozVPUZrvqMuj7eSBmeSB/3sZZtmSq+ekBoqvkmqvomKvw8z68FbSZsKxee2jyB4ViAcFuQSCxAJB4kHAsSaQuS6IzU5oWLKYRbqEpZE8LtuNNUx43sar7f1mPmkTvzCrOP97SmnyIiIiJy2iicE5Elz/d9M0SwFrZNDuDSRwrkpq7OOYVlQbwzQqonSrJ7ogouSqrHDEddqita+r6PX6jiZsq46RJuuoybKdXPI+kyyzIluo82vNcBHKt2cAyOhR9y8IO22QI2nmPhOjaubVG1LKoWVDEZXj5gU3V93IpHtOIRqnq4FY9qxezdqtkmzicPF/U9n2ptNdxTEYoGiLQFiLQFTdhWC9zqx22Tj80WigWwFbotHr4PAw/XquN+BPt+Ad6kodV2AFZfDBtqgVzfFq22KiIiIrLIKZwTkSXB83xT6TYx9HSoWNuba5XjDB8Mhh2SPdGmAC7ZHSHZHSXRFcGZB4sbzCXf8/HGy5OCt0boNnnvH6eqcIIVtLFjAexoACsawI6Y48mbFQua44hTu2bOreDp/dp7nm8Cu8r0EM8cu7hVE/ZVqy5uxcOyrEkBXC2MiwXmxSIY0gK5Ydj140Z1XHag+X77WjNUdcMVsO5yiCRb008RERERaQmFcyKy6JSLVYYP5hjaP87QwSzDB7IMH8xSLR87KIp3hEl2m/neUt0RkhNBXHeUSDyIZS2N6iWvVKt2y5TxMrVqt/SU4C1bhhPL3bBjAZxUGCcZat5POrYizrz9+tq2hR1yFvUQZJllbhUOPmgq43bcCYd+DUxasCMYMyHcRCDXeYYpwRURERGRJUnhnIgsWL7vkx0tMXQgy9D+cYYPZBk6kCV9pDBjeydoNyrfuqMkeyL1KrhEV4RAcHGHL37FNeHaRMVbPYArNV33T3TIpg1OIoyTCk0K3ibOG9etRf51FaGYhgMPwL77zeqqBx+avpBD7/lmzrgNV8KaiyEQbk1fRURERGTeUTgnIguCW/EYOZwzQdyBRhBXOsp8ZW2pEF2rEnSvjtO9ymypZbFFOXeX73q44xXcTMlUuk0ebjopiPNPYlECK+yYwC0xUeUWmhK8hbHjQS1AIEuP78Po7kYQt/9+GHyMpso4gGhH80IOyeUt6a6IiIiIzH8K50Rk3imMl2shXCOIGz2cx/P8aW1t26JjeYyuVXG6VyXqQVw0EWpBz+dGZTDP+D0HqBzM4o6X8XKVabnAUQVsE7AlatVuydrQ0tpmJ8M4iRD2El3EQmSaagkO/aYRxO3/JeQGp7frWG8q4lY/G1ZfBD1ng62/RyIiIiJyfArnRKQl3IpHLl0iO1YiO1qszRGXZfjAOLl0ecbHhGMBulfFm4K4zuVtOKd5QYD5otKfI3PXPgrbhqaHcY7VCNwSIewZgjcnOb/ndhOZF7JHJgVx95v54twp/yY5IVh+Iay5yARxqy+C+LKWdFdEREREFj6FcyIyq3zfp5Srkh0rkattMx0Xs5VjPk+yJ0pPPYiL0706QbwjvCSDpfLBLJm79lF8ZLh+LXJuF23P7MVpNwGcHdMQU5GT5nlw5PFGRdz+X8DIruntYt0mgJsI45ZfCMHInHdXRERERBYnhXMicsImV7vNFLyZrYxbPbFlPO2ARbw9TFt7mI6+tvqQ1K5VcUIR/fNU2pdh/K79FB8fMRcsiJ7fTeKFawgtb2tt50QWokqhFsLVgrj9D0ApPb1dzznNVXFaTVVERERETiP99CsiTXzPZ3Qgz+DeDIN7x8kcKZxwtdtkkXiQtvawCd9SIdpqIVxbe5h4h9lH2oJLshLueEq702Tu2kdp+5i5YEH0gh6SL1hNsFehnMhJ8TzYdy/89ivw6DehlGm+H4zBymfU5ou7CFY90yzmICIiIiIyRxTOiSxhvu8zPlJkcM84g3syJpDbN06l6B71MU7Apq19Stg29TgVXjLzwM0W3/cp7Uwzftc+SrtqlTw2xJ7WS+IFqwl2R1vbQZGFZmgHbP0K/Pa/IL2vcT2xHNZe2qiK6z0fHH0cEhEREZHW0adRkSUknymbAG6PqYob3JuhMD69Gi4QsulZk2DZuiSdfW214C2karfTwPd9Sk+OkrlrP+W9tYoex6LtGb0knr+aQKfmtRI5YfkRePhrpkru4ION66EEnHc9XHAjrLkUbP3yQERERETmD4VzIotUuVBlcF+tIm5PhoG9GbIjpWntbNuia1WcZeuSLFuboHddko6+GLajH15PJ9/3KT42QuaufVQOZM3FgEXbs/pIPG81gfZwazsoslBUS7D9hyaQe/IH4NV+4WA5sOEK2PIqOOsaCMVa208RERERkaNQOCeyCFQrLkP7s7WqOFMRNzqQB39KQws6emO1IC7JsnUJulfFCQSdlvR7KfI9n8IjQ4zftZ/K4RwAVtCm7aLlJJ67CicZanEPRRYA34cDD8Jv/9NUyhXHGvf6NsMFN8H5r4BEb8u6KCIiIiJyohTOiSwwvuczcjjHwJ7G8NThA1k8b2oSB/HOML31IC7JsjUJQlH9tW8F3/MpbD1C5sf7qQ7kAbBCDvFLlxN/zkqcuEI5keMa3QNbbzNVciM7G9fjfbDl98yw1d7zWtY9EREREZFToZ/SRea5SsllcE+GwzvTHN6ZZmB3mlK+Oq1dJB6sBXGJemVcTFVYLee7HvnfHGH8x/upDhUAsCIO8UtXEL9sJU5bsMU9FJnniml45HbY+l+w9+eN68EYnPNSE8itfx7YqgAWERERkYVJ4ZzIPJMbK9WCuDH6d6YZ2j+9Ki4Qslm2NmnCuFogl+iKaKGGecSveuR+NcD43QdwR4oA2LEA8ctWEr90BbYqGEWOzq3AzrtMhdwT34VqsXbDgvXPNcNWz7kOwomWdlNEREREZDbop0ORFvI8n5FDOfp3jtUr48aHi9PataVC9J3ZzvIzUyzfkKJrVRxHCzbMS17ZJf9QLZRLmwU47LYgieeupO3i5dhh/bMrMiPfh8O/NRVy274KuSONez1nmwq5zb8HqZWt66OIiIiIyGmgnxJF5lC5WGVgT4b+iSGqu9KUi25TG8uCzpVxE8SdmaLvzBSJTlXFzVdurkJ5T4bS3jTlPRnKB7PgmkpHOxEi8bxVtD27DzukIXci03geHP6NWWX10W/Ckcca92LdsPmVcMGrYPmF5h9HEREREZFFSOGcyGk0PlKkf5cJ4vp3phk6kMWfMkQ1GHboXZ+shXHt9K5PatGGecr3fdzREqXdacp7M5T2pKkOFqa1czojJC5fSdsz+7CCqnAUaVLOwa674cnvw5M/hGx/454ThrOvgS03woYrwNGcjCIiIiKy+CkBEJkl5WKVkUM5BveO14epZkdL09rFO8Msrw1R7TsjRdfKNmwNUZ2XfM+n0p8zlXF70pT2ZPAy5WntAstihNclCa1LEl6XwukIq9JRZLKx/bD9B/DE92H3PeBO+rcxFIczXwCbroazr4Noe8u6KSIiIiLSCgrnRE6S7/lkhgsMH8gxdGCc4YM5hg5myRyZXkFl2Rbdq+L01YaoLj8zRbwj0oJey4nwKy7l/eOU9mQo7clQ3pvBLzUPO8axCK2ME1qXMoHc2qRWXBWZyvPg4EO16rjvw8DDzffb18Cml8Cmq2DdcyAQbk0/RURERETmAYVzIsdQKlQZPphl+ECWodp++FCO6tTApqYtFaJrVYK+M8ww1WXrkoQi+ms2X7m5Sm14aobynnTTfHETrLBDaG2S8Nok4fVJgqsSmj9OZCalcdj5YxPGbf9h84IOlg2rnm3CuLNeYhZ4UHWpiIiIiAigcE4EMKumpgfzDB/MMXwwy9ABE8SNj0xfORXACdh0rmija1Wc7pVxulaa42g8NMc9lxNVny9urwniSrszVAfz09rZiRDh9SaMC61LEVzehmUrRBCZ0eges5jDE9+DPT8Dr9K4F06aeeM2XQ0bXgRtXS3rpoiIiIjIfKZwTpacYq7SqISrVcONHMpRrXgzto93hmsBXJyuVWbfviyqeeLmOd/3qR4pUNqdNgs47E7jpmeYL64nSnhdqjZfXBJHK+OKHJ3nwoEHTBj35A+aV1cF6DyjMVx1zSUQ0C8sRERERESOR+GczEue61GteLhVj2rZw518XHWpViaOG3u34lGtmHvmuPa42vVy0WXkUI7c2PRFGgACIdsEcLWte1UbnSviRDSf2ILguz6Vw1kzX9zuNOU9abxctbmRPTFfXLIxX5yqHUWOrZiGHXfWhqveAYWRxj3LMSHcWVebCrmuDRquKiIiIiJykhTOyXH5nm/CsIpbD8omjk1I5tbDsGp5UjhWO65WPNxJx+Y5GgFbteI2h28VD8/zj9+xpyDZHalXwk1UxSV7otgavrhg+FWP8oHxWmXcURZvCNiE1yQIrU8RXp8ktCap+eJETkS1ZOaN++1XTIXc5OGqkXbY+KLacNUrINrRsm6KiIiIiCwGCudkRsVchX//8H1UKy5e9fQGZcdjBywCARsn5Jh90CYQsnECNoGgjRN0ant7hr1TPw+EbNp72+ha0UYoqj/6C41XcinvyzSGqe4fhyl/Nq2IY+aKW58ivD5FaGUcK6DhxyInxPfhwIOw9Svw8NegMNq4173JhHGbrobVF4Gjf0NFRERERGaLPl3LjJygTblQnXbdDlgEamFYINQIxuphWGjS+aTjprahSaFZ7djcrz0u0Dh3Araq2ZYoL1+pD1Et7U5TOZSFKdMC2vGgGZ5aC+OCfVq8QeSkje6FrbfBb/8TRnY2rieWw5bfgy03Qu+5reufiIiIiMgip3BOZhQI2rzmloubAjQnqKBMTh83U6K0uxHGVQemr6TqtIdNRdz6JOH1KQLdUS3eIHIqihl49Jtm2OrenzWuB2Nwzkvhghth/fPA1jBwEREREZHTTeGczMiyLNp7Y63uhiwwvuvjl6p4hSpe0cUrVvGLVbzCpOOii1eYOK6dZyu46ekLdQR6ooQnhqiuTxJoj7TgXYksEm4Vdt1tKuQe/zZUi7UbFqx/rgnkznkphBOt7KWIiIiIyJKjcE5EpvF9Hy9boTKYx8uWjxGu1a7Xwji/7B7/yY/GguDytkYYt04rqYrMiv5tpkJu622QG2xc794EF9xkhq6mVrWufyIiIiKy5Hn5PKUdO/AKRdouenaruzPnFM6JLHFurkJ1IE9lMEelP09lIE91MIeXmz7n4ImygjZWNIAdcbAjAaxIAHva+aTjiEOwrw07on+SRGbFeD9s+6oJ5QYeblyPdcH5rzBVciueBhoWLiIiIiJzyK9UKO/dS+nJJylu307pye2UnnySyoED4PuEzzqLM755e6u7Oef0k7DIEuEVq1QG8lQGciaMqx1745WZH2BBoDOCkwrXgjYTopkwbXq4Zkcbx5ajFVJF5lw5D0981wxb3XkX+LUVVJyQWWX1gptgw5UQUEWqiIiIiJxevu9TPXyY4pNPUpoUwpV37cKvzPwzqNPdTbCvD9/3l9zc4grnRBYZr+RSHTTBW6UWwlUHcrjp8lEf43SECfa2EeiNEeyNmeOeKHZIk8GLzGueB3t/birkHv0mlMcb91ZfZCrkzvtdiHa0ro8iIiIisqi5Y2PTQrjS9u142eyM7e1YjPDGjYQ3bWrsN20k0Nk5xz2fPxTOiSxQfsWlMliYVgnnjk5fWGGCkwwR6GsjuKwWwvW1EVgWxQ7rn4KFxK9UcLNZ/HIFy7bAtsG2zW+XbNsMVbTs5ntQP8ayFs1vonzfx8vlcUdHcEdHqY6M4I6M4o6OmOPRMdyREaqj5rpfqRBav47who2EN26o753EAlsEITsID/wT/ObLkN7fuN6+pjaP3Kug68zW9U9EREREZo1freKXSnilEn5t80pl/HIJv1LFCjhYgQAEAliTNgIBrGAQy3Ea14LBU/5ZwCsWKe3YWQvhnqyHcNXBwZkfEAgQXr9+Sgi3ieCK5Vi2RltNpp/IRRYIr+xS3p2muH2M0o4xKgM58Gdua8eDjQq4SdVwdlR/5VvN9338YhF3fBxvfBw3k8HLZs1+fNxcz4zjZmv78QzeeNbsM+MmlMvnn3pHJgV59VBvIuCbcm6Fw9jRKFYsih2JYkej2LEoVjSKHY2Ze9FI/diORWvXJu5HzHGsdj8axYpEZvyG7HsebjqNOzpqQrWJgG0ibBupXR8brR/75aNXhc6k2t9P/r5fNF0L9PWZDwwbNpj9xg2EzzwTOzbPVq0e2QX3/h38+kvg1oL4cBLOu96EcqsvNv/vRERERGRW+L4P1aoJwyrlejjml8u1gKwWkpVKeOUy/tRrpTJ+sYhfrh2XSvil4qTjEl65hF+cdFy7NxHG4T6Fhfdm4jj1wI5g0AR39fMAVqBxbeLcHR6mvG+fGbkxg+DKlU0BXHjjRsLr12GFNKXKidBP6iLzlO/5VA5mKe4Yo7R9lNLeDLjNaZwdC9TCt7ZaABcj0NuG0xZsUa+XDr9cpjo2ZoKjsTETJo3VjtPpepjmZcdxm0K2cTjKHAsnzXHA94/6DfLYb8Cvf5Of/KfqKHnvaWFFIo2wLhTCHR/HHRs7pQ8fViSC09lBoKMTp6OjcdzZWTvuwOnsxLJtSjt3Udqxw/zGb8cOqv399S33059OelKr8SFjIrDbuJHQ+vXY4fDsfSFOxOHfws/+Fh69vTGX3MpnwsXvgLOvhWB0bvsjIiIiMst8zzOhVqXS2E/eypOPZ7hfKU9pO1Ob2mPLlXrA5pdKeJVyPRDzy2UTkE20KZXMZ+d5wgoGscLh2hbCcgL4bhUqVXzXNVV21SpUKviuO/PPCq5r2p7kL7kBnPb2RgC3aWP9s7ITj8/Cu1u6LN+fR3/KFrBMJkMqlSKdTpNMJlvdHVmgqsMFE8btGKO0cwwv37xiqpMKE97YTmRjO+H1KexEaNEMT2wlr1RqhGu1fbV+PiV8q+29XO6pvahtYycSOIkEdjKBE6/tE0nsRBwnkcRJJrCnXk8mzWPicfObrRp/IqTzPPD9pvP6se/j1/Z4XuO4fu6b4Kd+D/Bc8xu7QgGvUMDLF/AKefxisXFcv17AKxbwJ44Ltfv5Al6xiFco4BcKJ/blSSSaA7aOdgKdnTgdtbCtsxbCdXQS6Ox4ShVubiZTC+sagV1p+3bc4eGj/r8LrV3bXGW3cSOhtWuxgrMYjPs+7P6JCeV2/bhxfcOL4DnvgbWXabVVERGR45iYAsPLpM0vUDPjZjL6+o/BfuN44jNU7Xjidv3Xl36jbVO7+lP5TW191wPfMwGJ6+F7zXtzzwPPnbSf1Mbzp9ybsq99XjNhTQg7FMIKhbFCIRPchILY4dp5/fpEu4k2E/cmtw2ZiqmjfU3LZbx8vvF5L5fHK+Tx8pM+F07cz+dq1/KNz4v5fO0zYvM1v1ichf/jcyAYbP4azvS1n3wtEq59bRuBmh2OTDoON7erndvhkBltMnE88f/nGP9vZuJ7XiOsq9YCvEoVqs3nfrUCtWDPr7rTzu14G5FNm3C6u/Uz6Ek40axI4dwsUTgnp8LLVyjuTFPaMUpx+xjuSPM3JCvsED6zFsZtaCfQHdU/hCfIy+epDAxQrW2V/gGqg4ON8G2sEb6daGA0jW3jpFImJGpvr+1TOKl2nGQjTKuHcImEOY8nsNtiS/L/pe95JtirfZibCP38Ugk7mcRp7yDQ0T4vyt+rIyMmsNuxfVJotwMvnZ75AcEg4XXrCG/cQOS884m/8AWE168/+Rf2XHjsW/Dzv4VDvzbXLAfOfzlc9m7o23zK70lERGSh8opF3HQGNz2Gl8ngZjK4Y2ncTNqcj6XNtVoI56VrbTIZqFaP/wLSLBDACjWCPCyrHqLN2dczGDTBYzCIFZp0HAxiBUPN56EZrjXdn3QvEGgO0CbCsVDIhGDHvBbSXGlyUhTOzTGFc3Ii/KpHaW+G0o4xittHqRzMNo8jtC1CaxJENrQT3thBaFUCy5n7AMcrl6kOHqF6ZBB8cBJx7Fq1lh2LtfQbku/7eOk0lYFBqgP9VPr7qQ4MUhkw+2p/P5WBAbxM5uSe2HHq4VqgvQOnox2nfXLo1l671m6GSLa3YyeT+ua8xPi+T3XwyJTAbjvl7TvMh9UpQmecQeKKK0hc8UIiW7Yc+89LpQi//U8zp9zITnMtEIWnvw4uuRk61p2eNyUiInIaTcy36+VyZp7dXM4c53Km4mriOJs1c+5OhGrpWvCWNsenMvxuMisYxG5P4SRTjV8CWhO7iQOrUZU+eT9Tu6O2n9TOccC2sGwHHLu2d8zngYm9bWM5NjS1mbS3am1rbabuwSwWVh+iWSmbUQ+Th21OHaZ5lGsnO1WKFQxixWKNeYVreys2cTz5nrlm5iFuq89R3LhWaxeJmJEIT2HRApH5ROHcHFM4JzPxfZ/qQJ7i9lEzVHVXGr/S/E0vsCxKZEMH4Y3thM9IndaVU71SieqRIaqDg2Y7cmTKfpDq4BHco1UGAViWCenicZz4RGjXZoZlThwnEtht8drwzCnHtcfNVBnluy7V4eHmarcBE7ZV+wfqAdyJlrzbsRiBvj4CvcsI9vYRWLasMf9YU+jWYYaJ6gOAnCLf96keOkRpxw6KTz5J/hf3k7v//qbfLDs93SRe8EISV15B7OKLsSf+DhTT8OAX4Befg+yAuRZph2e/FS56G7R1z/0bEhFZhHzfN8PoanNVMTE307ThXLX5miafT7SpD/+a8phKFd+d/DgXp7OD4IoVhFauJLBiBYHu7gX3Sz2/XKYyeAR3eAg3m20EavXjSVve7N1sbtq9U5ofdya2bab4SKWwU6n6sZNKmgr82ugFJ1Vrk0zVj61IRJ/1jqO+Imi5XA/wJuZk833fhG1tkxb4ms3pPEQWKYVzc0zhnExwM6X6iqrFHaN4482T/9vxoKmMqwVygdRTn1jehG5HTLXbqYZuU1jhMIGeHlPCns3iZrOzt5ABmBLxRMIEdbGYGWo6OHjCiwE47e0E+voI9vYS6O0l0NdrArjeXoJ9vQT6+jQpqbSUOz5O9p57yN55J9mf3NM0T6Edi9F2ybNIrCwQL9+FQ63SM7nKVMk9/fUQ1p9fERGvXJ4eAh1lM+FR/uht8vmWTupuhUIEly8nuHJlbVth9ivMPtDTc9JzST0VXqlkRhxM/DK0f6A+AmFi7w4Nzepr2rEYdlub2eLxxnFbG3ZbrDYXby1wmxSsTYRsdlvbggs4RWRpUzg3xxTOLT1e2aU6mKfSn6cykKMykKc6kMNNN5fcW0Gb0PpUfahqsO/k5xrz8nnK+/ZR3ruP8r69VPbto3Lw0KmFbqEQgWXLzNbTM2nfQ3DSNTuZbOqn7/vmN2lZs+Kol802jsezeLmpx1m88XEzPCGbqx1n8WcY+tfEtk0fentN8NbXR7B3GYHePhO69faa/kUiJ/U1FGklr1wmf/8vGb/rTrJ3/JDq0EjjpuUTWxkgceWLSLzmvQRXr2ldR0VEThOvWMQdGaE6PII7OkJ1ZAR34nh4BHdkxMwTNjlsy+dn9ReDTSzLLKw0Mf9UbSPgYAWmXAsGsJwp54EgluOYa8GAmZ+r/jgHbIfq8BCVg4eoHDpEdWDg+NVjgYAJ71Y0h3b1fV9v02JQx+Ll882h28RUIP0D9fDNHR09sS9VMEigp2d6mBZvHDtNIdvENqV9LKpgTUSWHIVzc0zh3OLlVz2qQwUTwPXnqQyYMM4dKTbPFzfBguDKeGOo6tokVuD4H0TcbI7K/loAt3evCeFqx9UjR477+HroNhG4TQrdAj214G2G0G2u+a5bC/VMiOeNj+PlcqYSrrfXDPk4wQ+eIgvKwYfgZ3+L/+i3KI4EGD8YITvYSWmo+QfP8Lnn1Oapu4LwWWdpCI6IzEv1sG1ktBawDeOOjOKODJtrI7UArrY/7i/njsOKRJoCISc2Uxg0dYvNGB5Zkcich0R+pUJlYIDKgYNUDh2icnDKvr//+JPs27YZKTB5qGxPD+7oaKMC7iTn3rUiEYJ9fY3RCH0Tvwzta4xE6OjQ9yIRkVOkcG6OKZw7OV7JxR0v42XKuNkylmNhRwPYsSB2NIAVDWAF7Tn9IOB7PtWRItX+XD2Aq/TnqQ4VzDLmM7DjQYK9MYK9bQT6zD7YG8OOzBwuudks5b2m8q0RwplqOPfIsYcNOKkUwXVrCa1ZS2jNGjP8oXdZvdrNTqX0wUlkvvF92HmXWXl19z2N65uuhsveA2svobx3L+N33sX4nXdS+NWvmoZcBVeuJH7FC0lccSWxZzxdwbWINPErldoE8JXavGeV5uPyxHmlfo/J7SqTjyceV57WziuWTMg2OmICuOHhGRfBOR4rGMTp7MTp7CQwZe901uaBnSlki8UW/b9/vutSHRycHtodPFivvvNPsorQjscb035M3vf11cO3Vv/SVkRksVM4N8cUztWGPRaquOPl2lYx4dvEeaaMV9v75ROYVyxQC+yiwVpwF6idBxpBXswEeU3XIoFjrnDq+z5uumSCt4HGkNTKQB6qMw83sCJOPXgL9sYI9JljJz59UQN3fJzy3n1U9u014dvefbUhqXtxh4eP+Zadjg5Ca9YQWreW4Jo1Johbt5bQ6tU47e3H/5qJyPzgVuHR2+Hnn4b+reaaHYDNr4RL/xB6z53xYdXhYbJ33834nXeR+/nP8Uul+j0nlSL+/OcTv+KFxJ/zHOxYbA7eiIicDr7rNlannFRJ7mazzVNFZCetYFmbImJiHlgvm236N6IlgkGzyFJXl9l3dhLo6sTp6MTpqgVvHbVrnZ1afOkp8D2P6tDQpNDuEJVDB6kODRHo6GwO3ZabOXg1966ISOspnJtjizmc8z0fL19pCtcmArem8G28ctRwayZWyMZJhLATIfB8vHwVr1DFK1TgKS7oZIWd5kAvFsQK2FSHC1QG8vilmcNBK2gTWGYCuGAtgAv0tWFHML8xHhoyq50OD+FOHA/VtuEh3CNDx/1NstPVZQK4tWsJrV1jQri16witWY2zyP7siCw5I7vg8e/AA/8Eo3vMtWAMnv4Gs9BD++oTfiovnyd3772M/+hOsnffjTs2Vr9nhcO0XXIJkXPPqVeVTK0ymXo8l5OMiyx2fqWCm8ngpjN4mXT92M2k8SaOs7V5WCeHa9nadA5PcYjn0VjBYH1j0rGZF23mc4KT7gWCM7cLhcxq552dOJ1dBDpNEGcnEgrbREREjkHh3BxbbOGcmy0z9MVHasNOK0cd1jkTKxLASQZxEiETviXN3qnt7dqxHZ55eILv+/hltxHWTQrt/KbzifuV+rWjhW7T2BaB7giBjgB2zAU7D9VR3PEBvOEhqkPDjdBtaAjvJBZcAHB6uuvDT5tDuLX6LabIYuL7cOjX8MR3TSg3+GjjXrQTLno7PPstEOt8ai9TrZL/1a/I1oa/Vg4cOOnnsCKRY4R4MexY8/xME/eciRX14gmcZAI7kcAOP/VVpkVa7YQCtkztvH6cwU2nn/L8aROsUMj8/UrEcdri5u9XPI4Tj9f+3sVxEvH630E73mZWs5xo09aGFQ6bkM1xFJSJiIjMMwrn5thiC+f8isfBP/t50zW7LWhCtcTMYZsJ44JYwdZVZ/iuj1esBXaFKm6mQHnHPkp7DlLtH8LN9OMO7aFyeAfu8JHjr5o1WTBIoLubQFeX2fd043R3166Z80Dt3G5rO31vUkRaq1qGPT+tBXLfhfFDjXuWA+sug3N/By64CUKz/2+B7/uUntxO9u67qQ704+XyePmJ1Q3NsZvL4efyp22lQysYNCFCIo4TN4Gdk4hjJ5K1IKF2L5EwoV4iXmtTC/cSCezQ9GkBRCbUVwgvFBr7YhGvWDT7QhG/ZPZesYBfKOKVimY/0aZYxC8WTNvauVcsmL8n6fSsVK/ZiQROMomdSuIkUzjJJE4qiZ1M4iSSxwzX7Hhcfw9EREQWOYVzc2yxhXMAhcdHcNqCpvItHsRy5vfS577nUd69m8LWbRS2/pbi1m0Un3zy2D+YWpaZH6W7EazVQ7epgZsWXBBZuopp2H6HCeS23wGlSavgBdtgwxVw9nWw8UVPuUputnnlciO4y9VCvPzJHU8enscsfWywQiETbMRrwV0ygZ1K4aRSOKl2MzF8KoXTPnEtZa4lk1gKNE4r3/fN//exNG56DC+TaSw6MHUrz3BtWpujPLa+lRvPVSjglUr4hcKcvV87Hq8FbLVwbSJsS6VM4JaqXWs6NnsNFxcREZFjOdGsaHEveyRPSfTs+fUD5lSVgQEKW7dS3LqNwrZtFLdtw8vlprVzOjuJbt5MZPNmgitWNAVuTkfHol/9S0ROUfqgCeOe+C7s/il4k4L+tmVw1ktMILf+uRCMtK6fx2GHQqY6p6PjKT+X73kmtBsfx82M42XHzaT149nacW1S+/EM3ni2EerVJ7o3k9kD+OUy7vDwcRfKmfE9xWLY7alGgJdqbw7wZgj17FRqyVUp+a6Lm8ngpdO4k7exxrGXaT6f2HBPcJqIuRAMYkci2JGIGZ4diWBFo9jhMFY0gh2JYkXC2JEodjSCFY6Y/bRz81g7FsNJpWrVbQl9DhAREZGW06cRWRDc8XGKDz9squK2mUCuOjg4rZ0VjRI571yim7cQ3bKZyOYtBFeuUMWbiByf78PgY2buuCe+Y+aSm6x7E5x1DZx9Lax8Jtjzu5r4dLBsG6c211Vw+fJTeo76KpWTAjsT8I1PD4nGxmrHY3hjZk4wfN8EhPk81UOHT67/sRhOPG7m6AqHTPVeKDzzeSiEFQ6ZACgYam4TDmOFppzX25lzLAvfdcHzzN518V0PPHf6edWtXT/6ue+54HpmXz93zdcwPXPA5mUyx/+iHOvrFQ7XQqwEdjjSvFBAMIgVmjgOTTqeYTGCpi008/WQuTc5RLMiUexIWOGZiIiILHr6tCMz8qtVnrzoYvNb5dSUOVRqwzoax5OGeaRST/m30F65TOmJJ5qq4sq7dk1v6DiEN240VXFbNhPdsoXwmWfqQ7yInDjPhX2/qM0f9+3GCqsAWLD62Y1Arntjq3q5qFiOUx86GDzJx/qua0K8qQHe2NRAz4R63sT1TMaEZPk81dO0SuZ8Zre1mZCtPTW90nBKlaFdv5/EjszfilARERGRxUQphszIHR+vzzVUPXxylQlgfhAw87W0N8/fMnWy5FQ7TryN8t69taq4bZQeewx/hnnigqtW1avhols2EznnHOxYbDberogsJeU87LyrNmT1e1AYadxzwnDG800Yd9ZLIL6sZd2U6SzHMcNW29tP6nG+5zVCvfFxMwdaqYxfLuGXy2aOs1LZXC+Xms9LJbxaO79kzv1y2Vyb6bxcxi8W8TGVhpbjgOOAY2PZTv3csm0IBMx+pvNJj8GxsZxA4zkCDtgOlmNjt8Xr4VrznH2p+i/XrODJxqAiIiIiMpcUzsmMnESCM7//PdxMBjedwc2Y4THmOFOfILp+nknjpTP1Od/qwd5JDjmqv357u6mGqw9P3Uygc37PgSci85Tvw8gu2HU37PgR7PwxVCdNNh9ph01Xm0DuzBdCON6qnsppYtl2vTJMRERERGS+UTgnM7ICAULr1p304/xKBbdWneBlMs3hXjo9Lcxza22CfX0mhNuyheiWLQRXrdI8cSJy6rKDsPse2PVj2HUPpPc1329fA2ddC2dfA2suBUffDkVEREREpDX004jMKisYJNDZqSo3EZlbpXHYey/s+ompkBt8pPm+HTTzx53xfDNctfd80C8ARERERERkHlA4JyIiC49bgQMPmiBu191w8EHwqs1t+jabMG7982HtJRBqm/NuioiIiIiIHI/CORERmf88DwYfhd21yrg9P4dKrrlNxzpY/7xaIPdcaOtuQUdFREREREROjsI5ERGZn0b3NsK43fdA7kjz/VhXI4w743kmnBMREREREVlgFM6JiMj8kB+phXG1QG50d/P9YAzWXmaCuDOeD8vOA9tuRU9FRERERERmjcI5ERFpDbcKB34J2++AnXfC4a2A37hvObDqmbXKuOfDymdCINSizoqIiIiIiJweCudERGTujPfDjh+ZQG7Xj6GYbr6/7NzanHHPg7WXQiTZkm6KiIiIiIjMFYVzIiJy+rhVOPAA7LjDBHL9W5vvRztgw5Ww4UUmlEv0tqSbIiIiIiIiraJwTkREZtf4gKmO23EH7LxrenXciqfDxheZQG7l08F2WtNPERERERGReUDhnIiIPDVuFQ4+aCrjtv9w5uq4M68wgdyZV0C8pzX9FBERERERmYcUzomIyMnLDtbmjvsh7PwxFMea7694mqmM2/giWPkMVceJiIiIiIgchcI5ERE5Ps+FAw+aMG7HHXD4t833I+2w4QrY+GJVx4mIiIiIiJwEhXMiIjKz7JFJ1XF3Ta+OW36hqYzb+GJVx4mIiIiIiJwihXMiImL4vqmI2/5DePIHcPAhwG/cj7TDmS80YdyGKyC+rFU9FRERERERWTQUzomILGWlLOy6G7b/AJ78IWT7m+/3bTFh3ER1nKNvGyIiIiIiIrPJbnUHjuXP//zPsSyraTv77LPr94vFIjfffDNdXV3E43FuuOEGBgYGmp5j3759XHvttcRiMZYtW8Yf//EfU61Wm9rcfffdPP3pTyccDrNhwwa++MUvzsXbExFpjeGd8IvPwb9dD59cD//1GvjVv5lgLtgGZ18HL/0MvO9xePtP4Yo/gzUXKZgTERERERE5Deb9T1rnnXceP/rRj+rngUCjy+9973v5zne+w1e/+lVSqRTvfOc7efnLX87Pf/5zAFzX5dprr6Wvr497772Xw4cP8/rXv55gMMhHP/pRAHbv3s21117L29/+dr70pS9x55138gd/8AcsX76cq666am7frIjI6VAtw777GsNVh7c33+9YD5uuMtVx654DgXBr+ikiIiIiIrIEWb7v+8dv1hp//ud/zu23385vfvObaffS6TQ9PT18+ctf5hWveAUAjz/+OOeccw733XcfF198Md/73ve47rrrOHToEL29vQDceuutfOADH+DIkSOEQiE+8IEP8J3vfIeHH364/tw33ngjY2NjfP/73z/hvmYyGVKpFOl0mmQy+dTeuIjIU5UdhO13mOGqO+6C8njjnh2ANZeYQG7T1dC1ASyrdX0VERERERFZhE40K5r3lXPbt29nxYoVRCIRLrnkEj72sY+xZs0aHnroISqVCldeeWW97dlnn82aNWvq4dx9993H5s2b68EcwFVXXcU73vEOHnnkEZ72tKdx3333NT3HRJv3vOc9x+xXqVSiVCrVzzOZzOy8YRGRU+F50P9bUxn35A/g0K+a77f1NOaOO/MFEEm1pp8iIiIiIiLSZF6HcxdddBFf/OIXOeusszh8+DC33HILl19+OQ8//DD9/f2EQiHa29ubHtPb20t/v5nQvL+/vymYm7g/ce9YbTKZDIVCgWg0OmPfPvaxj3HLLbfMxtsUETk1pXHY+WNTHbf9Dsg2z7nJ8gtrw1WvghVPA3teTzMqIiIiIiKyJM3rcO4lL3lJ/XjLli1cdNFFrF27lttuu+2oodlc+eAHP8j73ve++nkmk2H16tUt7JGILHqeBwMPw867zLb3XvAqjfuhOJzx/Mb8cYm+lnVVRERERERETsy8Duemam9vZ9OmTezYsYMXvehFlMtlxsbGmqrnBgYG6OszP5D29fXxy1/+suk5JlZzndxm6gqvAwMDJJPJYwaA4XCYcFiTpovIaTY+ALt+XAvkfgy5web7nWeYeeM2vhjWXqrFHERERERERBaYBRXOZbNZdu7cyete9zqe8YxnEAwGufPOO7nhhhsAeOKJJ9i3bx+XXHIJAJdccgl/+Zd/yeDgIMuWLQPgjjvuIJlMcu6559bbfPe73216nTvuuKP+HCIic6pSNCur7rzThHEDDzffD7bB+svhzBfCmVdA94bW9FNERERERERmxbwO5/7oj/6Il770paxdu5ZDhw7xkY98BMdxuOmmm0ilUrz5zW/mfe97H52dnSSTSd71rndxySWXcPHFFwPw4he/mHPPPZfXve51fPKTn6S/v58Pf/jD3HzzzfWqt7e//e38/d//Pe9///t505vexF133cVtt93Gd77znVa+dRFZKnwfBh+bNFT151AtNrdZfmEtjHshrL4IAqGWdFVERERERERm37wO5w4cOMBNN93E8PAwPT09POc5z+EXv/gFPT09AHzqU5/Ctm1uuOEGSqUSV111FZ/97Gfrj3cch29/+9u84x3v4JJLLqGtrY03vOEN/K//9b/qbdavX893vvMd3vve9/LpT3+aVatW8U//9E9cddVVc/5+RWSJyA3Brrsbgdz44eb7ieWNMO6M50Nbdyt6KSIiIiIiInPA8n3fb3UnFoNMJkMqlSKdTpNMJlvdHRGZT6pl2H9/bajqXXD4t833A1FYd1kjkOs5GyyrNX0VERERERGRWXGiWdG8rpwTEVmQfB+Gtjcq4/b8DCq55ja9m+HMF5gwbs0lEIy0pq8iIiIiIiLSUgrnRERmQykLu38CT/7ABHLp/c3323qah6om+lrSTREREREREZlfFM6JiJwK34fhHbD9h2bbey+45cZ9J2Qq4iYCud7zwbZb118RERERERGZlxTOiYicqEoB9vy8EciN7m6+37EONl4FG18Eay+DUKwl3RQREREREZGFQ+GciMixjO2rhXF3wK6fQLXQuGcHzUIOG19stq4NWshBRERERERETorCORGRydwK7LuvEcgdebz5fnKlqYzb+GJY/1wIJ1rTTxEREREREVkUFM6JiIz3myBu+w9h54+hPN64Zzmw+qJGINd7nqrjREREREREZNYonBORpcdz4eBDJox78gfQv7X5fqy7Ecad+QKIdrSmnyIiIiIiIrLoKZwTkaUhNww774LtP4AdP4LC6KSbFqx8em3uuBfB8qdpZVURERERERGZEwrnRGRx8lw4+CvYcYcJ4w7+CvAb9yMpOPMK2HSV2cd7WtZVERERERERWboUzonI4jE+ADvvNPPH7bwLimPN93s3N4arrnoWOPonUERERERERFpLP5mKyMLlVmD/L01l3I4fTZ87LpKCM18IG6401XHJ5a3pp4iIiIiIiMhRKJwTkYUlfaARxu36CZQyzfdXPA02vMgEciufoeo4ERERERERmdf0U6uIzG/VEuy7z4Rx238ERx5rvh/rMlVxG640VXKaO05EREREREQWEIVzIjL/jOyuVcfdCbvvgUqucc+yYeUzzdxxG67QyqoiIiIiIiKyoCmcE5HWqxRgz88bK6sO72i+H+81lXEbroAzXgCxztb0U0RERERERGSWKZwTkbmVPQIDD9e2R8z+yBPglhttLAfWXFwL5K6E3vNVHSciIiIiIiKLksI5ETk9qmUYerI5iOt/GHKDM7dPrmyEcWc8z6y0KiIiIiIiIrLIKZwTkafG9yE7OKUa7hFTDedVZniABZ1nQN/5piKu9zyzta8Fy5rz7ouIiIiIiIi0ksI5ETlx1ZIJ3SYPSe1/GPJDM7cPp0zw1jcRwm2GZWdDqG1u+y0iIiIiIiIyTymcE5GZZY/A4d/CwLbGkNShJ8F3p7e1bOg8c1IIV6uKS61SNZyIiIiIiIjIMSicE1nqfB8yB00Qd3hrbf9bGD80c/tIuwne+iYNSe05B0KxOe22iIiIiIiIyGKgcE5kKfE8GN0N/ZNCuMO/hfzwDI0t6NoAfZsnzQ93PiRXqBpOREREREREZJYonBNZrDwXhrY3h3D9W6GUmd7WcmDZObD8gsbWez6E43PfbxEREREREZElROGcyGJQLcORx6YEcQ9DtTC9rRM2Q1HrQdwWWHYeBCNz328RERERERGRJU7hnMhCUymaVVIP/boRxA0+Bl5lettgmwnfll8AfbV9z1ngBOe+3yIiIiIiIiIyjcI5kfmsWoLBR00QN7ENPgZedXrbSHujEm75hea48wywnbnutYiIiIiIiIicIIVzIvOFWzHB2+QgbuCRmSviYt2w4sJGCLf8Amhfo4UaRERERERERBYYhXMireBWYejJ5iCufxu4peltox2w4mnNW3KlgjgRERERERGRRUDhnMjp5nkwvGNKELcVKvnpbcMpUxG34mmNfftaBXEiIiIiIiIii5TCOZHZ5Hkwurs5iDv8Wyhnp7cNxc2w1HoY9zToWA+2Pde9FhEREREREZEWUTgncqqyg2axhoFHYfARM1/c4ONQyU1vG4yZ1VInD03t2qAgTkRERERERKSm5JYIO+FWd2POKZwTOZ5SFo48bhZnGHy0Ecjlh2ZuH4hA32YTwC2/0Oy7N4Gjv24iIiIiIiKydFW9KgP5AQ6MH2D/+P7GPnuAA+MHWJtcy5ev/XKruznnlBaITHArZm64egj3mDke23uUB1jQuR6WnQu958Gyc2DZedB5hoI4ERERERERWZJylVw9eJsavh3KHqLqV4/62APjB+awp/OHEgRZenwfxvbVhqHWhqMOPGpWT/UqMz8m3jslhDsXes6GUGxu+y4iIiIiIiLSQp7vMZgfnFb5dnD8IPvH9zNaGj3m44N2kJXxlaxKrGJVfBWrE6vNce18KVI4J4uTW4Hxw5A+YLaxfaYCbvBxE8aVx2d+XChhwrfec00AN7G1dc1t/0VERERERGTe8n2fslcmX8lTqBbq+0K1QL6ap1gt4vkeHh6+75vH4OP5jXPP9/An/vNr20QbJrXxJ7Wh0WaiH/U+4U/rY9M5R287/bS5bbqUrgdxB7MHqRytsKWmI9xRD9tWJRoB3OrEanqiPTi2c8zHLzUK52Th8X0ophvBW3p/bTvQ2MYPQ+0fqxnZQTMP3OQQrvdcSK0Gy5q79yIiIiIiIiJPie/7uL6L67tUvWp9c30X16td8xvXitViI1SrTgrVplw7XhvvWD9zLnIBK8Dy+HITuk0J4FbGV5IIJVrdxQVF4ZzMPzNVvU0O3tIHjl75NpkTguRKSK0yoVv76logd55ZKdUJnv73IiIiIiIiskRUvEo9wMpX8uSrzftcNVc/L1QKjeuVHPlqnrJbpupXcb1jBG3+zNdaKWSHiAajxAIxogGzDwfCBKwAWGBhYVs2ljnBxsayLCysxn6izdTrk/YTjwPqzzdx/2isKcUnk9tOfdzUtpO1Bduaqt96Y70EbEVKs0VfSZkbvg/lnFnhNDdc2w/V9kcgc+jEq94mxLoawdtM+7YesO3T/95EREREREQWMN/3KVQLpEtp0uU0Y6UxxkpjZEoZxkpjjJfHp4dtE8eTrpe9cqvfShPHcsxmOwTsAAErgGM7RJzItDCt6Txo9vV7k67N1EYhlTxV+hMkp2ZiaGl+eFLINnSU8K12Xi2e+PNPrXpLrTKVbxPnyZVajEFERERERGSKslsmXZoesE2EbulSun5/4jhdSs9qsBa0g8SCMWKB2haMNc6nXq/to4EokUAEx2oO0urndqB+7NgOAatxzbEdgnaw6b5jOdiWijXmu1I+R+bIIOnBATJHBnCCQS540TWt7tacUzgnMyvnYOt/zRy05Y6YUO44E0DOKBCBWLdZYCHWDW3dZp9cXgve1qjqTUTk/2/vzsOcKs/+gd9nzTpJZgYYQAURUFwAUVEEfaWK4FKtgoJWFIFa5VUBqbVuFVxqq6Jt32rFCmpt1VqrtrUudan9qah1Kbu4Ie6ss2Wyn+X+/XFyTk5mBpjMZBYO38915TprcueZSc4k33nOeQAAAKBH002datO1tD29nbaltxWmKWtal6kjk80WpywSUeunLtrbm50C2dopj85jkEAGGxTPxYvCtrSebne7ZFGmmC9GMV+Mor4oRdUoxfwxqlAqKKSECr3HlCCF5FDLwC0/VXAJoU5hmgal43FKNtRTqqGeko0NpGUyFIhEKBiJUjAao0AkSv5wmMQeMuBCNpWi+LYt1LhtK8W3WQFc49atFM8vZ5KJov0r+/VHOAfgMDSif1yx6/2UUMugLdRs3h3GqSEMuAAAAAAAAD1SWk87AVtR8JYqXq7P1Lcc7bIHEQWRImqkELL5ohTzxZx1zdfb04Ac2Ol1x6D8mJkyyYQVtuVvqcYGZ969nI7HidtwCShBEF2BXZQCkRgFo1EK5qeBSGE+GImRGmj/7z2bSlF8e6Hn267Ct9YEKiIU6V1D0d59qLL/Xu16Hrs7hHPQOn+UaNh3iQKVOw7aQr2IlEB3P1MAAAAAAIAd0gyN6rP1VJ+pp7pMHW1Pby8K2tzhW0LbdZBgkwSJqv3V1CvYi3oHelOvQC/qHexNvfy9qDpQTbIoEzOTSSYRE5lkEjMTEztTk82iZWZ2RgBtsb2V+wiC0GrgVqFW4JTObsTMlEunKdVo9W4rBG8N1rr8fLKxnlINDWQaJQxoIQgUjEQpFKukYDRGis9P6aY4peKNlI43UibRRMwmpRobKNXYQPTVrh9SUhRXWFfogWfPByNRMk0jH7ptsU5DzU8ziV0P1uiviFC0dx+K9q6hSJ8aitjzvftQpHcfUv3IFRDOQesEgeicR7r7WQAAAAAAABTJ6BkraMvWUX2mELrVZ+qpPuuaz9+atF2HB25+yV8I2gKF4M1eZy9X+isRgHmQaRiUTacol0pRNpW0pun8NL+uaHvavZ89n25TDzc3fyhMwVglhfK3YDTmzIeiMWdboCJCorTjU1YNXbfCusYGK7DLT63lOKXiDZRubKRUvIFSjY2kZTNkaBo11W6jptpt7fqZ2eGbFbbV5OdrnHVqANeL3xWEcwAAAAAAANBtMnqGajO1VJeuaxGu1WXqWgRv7bmmmiiIFPPFqMpf1bK3W6A39Q72pupANfUO9KawEsapnR5gmgZlmpqsXmp277V8b7JMIlEcqjkhW4q0bAkDGe6C4g9QKBajYLSSQrF82BatpGDRvBXEyUp5rtMnyTKFK6soXFnVpv21TMYK7/JhXTre6ArzGp0eeIIoOr3don1qEL6VGcI5AAAAAAAAKCvd1J1TSO2BE2oztc5ppM66dG3JPduIrIELqnxVVOmvdG5V/iqq9Lnm7fW+Kor4Iujl5gFsmpRONDnXYNvZNNXYWHLvNTdZUUkNBskXDJEvGCQ1YM3b66zlVuaDQfIFguQLhUjx+cvY+s6h+P0U9fsp2qemu5/KHg3hHAAAAAAAAOySySY1ZhuLgjY7ZHNCt0wt1aZrSx4wQRVVqgpUOaGaO3hrLXRD7zbv0HM5yiSaKJNMUDreWDwggrvHW0M9peKNZBpG2x9cEChQESmcFhqNUTAaI3+4oihQaxm+BUmSMeIsdB2EcwAAAAAAAHswZqZ4Lk5bUltoa2orbUttc+a3prY6AyfUpetI57ZfuF4UROsU0oA1QII9b9+qA4VtFUoFwrbdmKHrlE0mKJNMOEFbNpGgdCLhrM8mE5RONFnLiYSzj67lSq7nD1c412RrPnVfny0Yie70+mwAPQXCOQAAAAAAAI/KGTnalt5GW1NbrcAtudUJ3bamC/NZI9vmx4z5Ylao5q92AjZ34GaHcDFfjCQRwcjuhpkpm0xSom47NdXVUqKullKNDc2CtSbKJhKUSSYpk0yQlin9OoBugiCSLxSyernFKp1ebq2Fb8FoFL3awHMQzgEAAAAAAOwmmJl01kkzNErradqe3k5bUltoW8oVwKUKoVt9tr7Njx3zxah3sDf1CfahmmAN9Qn2oT7BPtaACYHeTvCmSAhGdlemaVCqsZESdbXUVLedEnW1lKjdnl+uddbr2baHtW6+YIh8oTD5Q2Hyh62pL2wvV1jLrm3+sLVe9QdIEHFNQNhzIZwDAAAAAABoh6yRpaZcEyVyCUpoCWrKNVFSS1JTrolyRo5yZs6ZaoZGmqkVLbunOSNHmqm1WG5tWsq13Iis67n1DvYuCtxau/kkXyf9pKAr6JpGyfp8yNZK4JaoraVkQ12br9nmD1dQuKqaKqqqKRirdMK1FsGbHboFQziFFKCdEM4BAAAAAMAehZkpracpoSUokUtQk1YI2NxBmzNtFr7Z85qpdXdTqMpfVRyyBYoDt5pgDUV9UVzPzQNy6RQ1bt2Sv222ptu2UKLWCt/S8cY2PY4giBSKxShc3YvCldVUUd3LCeHCVdX59VW7xUijAF6BcA4AAAAAAHZbzEwpPUV1mTpqyDRQfbae6jJ1VJ+pp/psvTV1zcdzcUrkEmRwCSM+7kJYCVNYDVvT/Lxf8pMiKaSKqjNVJZUUUSma2utlUS5atvdx39d+LPd9cU037zB0nZpqt+eDt3z4tmUzNW6zpumm+C4fQ1IUqqiywjb7VgjfrGkoVokebgA9DMI5AAAAAADoMQzToMZcIzVkGqyQrVnA1jyEa8g0UM4sfbRHIms00bASpgq1gkJKyJm3g7YKtaJo6gRwapgqFGu/kBIiUcC1smDXmJnSTXErcMuHbw1bNlN822Zq2LKFmmq3EZvmTh/DXxGhWJ8aivTpa01711BFr0IPOH8Yo94C7I4QzgEAAAAAQKcyTIPqs/VUm66l7entRbfadC1tS2+j2kwtNWQaqCHbUPI11YiI/JKfKv2V1s1XucP5qC/qBG4BOYAgA8rGNA1Kx+PWIAv1tS1PQd2ymbRsZqePISkKRXvXULSmL0X71FC0j3val3zBYBe1BgC6EsI5AAAAAAAoGTNTUksWgrbM9lbDt+3p7VSXqSOTd94jqLmIGqEqfxXFfDGq9Fe2Ol/lr6JKfyXFfDEKKggtoHOwaVI60USJulpK1tdRor6OEvX2fD0l62spUV9HyYb6XfZ8I0GgcFU1RXvXUKymL0XyUzuEC8UqMWopwB4I4RwAAAAAADhhWzwXp3guTo3ZRorn4tSQbXBCN7uXmz2fMXbeC8hNIIGq/FXUK9CLegV6UXWg2pnvFehF1f5qp4db1BclRVQ6sbUA1ms+k0xQsq4QriXs+XwAZ83Xk2nobXpMQRApGItRKFZZ6AHn9ITr02m7jAAAXRRJREFUS5HefUhW8NoGgGII5wAAAAAAPMIehbR5wBbPNlu2b9niaXsGSQgr4R2Gbe7lSn8lySK+fkDXsK/v1rR9G8Vrt1nT7duoqXZ7vgecFbwZWttH3A1EohSurKJwZRWFKqspXOWaz68PRmMYbAEASoa/jgAAAAAAPZTJJjVmGwvXZ8vUFvVia8g2FAVtjblG0s229fDZEVVUKeqLUkSNUMQXoagabRG8ucO4gBwoU2sB2k7LZqipdjs1bd9O8dqtReFb03YrjNO1tg0U4g9X5EO2KgrnQ7dQZRWFY/lpVRWFYpUkyejxBgCdA+EcAAAAAEAXYmZKaInC9dny12prfr222nQt1WXqSOfSwzZZkCniizgBW0S1bk7o5p73FS/7ZX8ntBqg7UzToGRDfYvAzZq3grd0U7xNjxWMxijSqzdV9OptTat7U7iql9XTraqKQrEqklW1k1sEALBzCOcAAAAAADrIZJOack1Un6m3rtGWKQ7batO1RQMmZI1sSY8f88Wc00TtHmvVgWqK+WKthm4YhRR6CtM0KJtMUiaZcE0TlEkknHl7fbKhnppqt1GirpZMY9enWCs+P0V696GK6l5W+FZthXAV1VYQF67uheu7AfQAmmFSU0aneFqjeEajeFqnpkxh3ppq1JTRKRZU6YbTDurup9zlEM4BAAAAALjYQVtjtpHqs/XUkGlwpg1Z62aHcPXZemrMNlJDtqHk0UhDSsi5Nlurp43m11f7q0mREDBA9zF03QrU8qGaPW+Hau7ALZtMUCaVdJZz6VS7agqiSOGqaqe3W3H41osivfqQLxRCCA3dRjNMSmsGZXIGpXIGpTVrmtEKy5pukm6alDOYNN0kzTBJN5ly+Xnrxs68bjDlWllfmHet003STCZmJp8skU8WyadYU78ikk+W2jz17Wy7IpFfFslgdoK05kGbta5l0GZvT2ttv57pwOogwjkAAAAAAC9gZsqZOUpqSUppKUpqSWeghKJwLT9tyDY4IVxjtrFdAyMQWYGb3cvN3cOtl79wnTY7cAsqwTK3GqB9tFyW4tu2UnzrFmrctpXi2/LTrZupcdtWSscbO1xD8fnJFwqRPxQmXyhM/nDYmfcFQ+QPhykQiVKkl9UTLlxZhYEVoCx0w6R4RqfGtObcUlm9KExL5wxK5afpFkGbTmnNpHSu+D6awd3dtN1O2CdTxC9ThV+hSECmiF+hSEApWte7wtfdT7NbIJwDAAAA2IPZo3vWpmutUzEz1nXO7OudNWYbSRIkUiSFFFEhVVKdqSqqpEoqyaJctOzez9k3v10RFVIkpcV+AgmU1tOU0lNFgVpKTxXN29vsefc+KS1FSd1al9bS7bpWm1tQDlKlv5Jivph188eo0mctV/orKeqLWsv59VFflFQJ166CnkfP5Si+fZsVum3d4grftlDjti2Uamxo0+OogSD5w/lwLRhyQjZfyArarLCttQAuhMEUoENaC9jsWzytUUMq12y91bOrMa1RItuxvwW7IgpEQVUmvyJRUJUooEgUUK1eZ6oskSoJJIsiKbJIiiSQKokkSwIpklg033y5+TbFvZ+cf0xJJEEgyukmZTSDsjuZZu1pG/ZtPs3pJgkCUYVPzodphXCtedBW4ZeLtkfz68I+mWRJ7NTfxe4M4RwAAACAx5hsUkO2gerSdS3CttpMbYv1GSPT3U+ZBBKIqXN6IQTkAAXlIAWVIIWVsBO4OVNfJUX90aLgLeaLIWiD3YauadRUu43iW7dS47bNFN+2NR/CbaXGbVsoWV+3y8dQ/AGK9qmhSO8+FO1TQ9He1nykdw1VVPcifyiMnmxQRDdMyhlWcJPLhz7u5Z1u04386ZvshD853aREtvMCtrBPpmjACpDCPqlZmCZTwF52BWzuaVB13UeVKKjI5FetEM3rp1ebpvX3WRS93c7uhHAOAAAAoIexT8lMaSlK62mrR5l7Xrfm6zP1LcO3dC3VZ+tLvv6ZX/JTdaCaqvxVVO2vpqqANY36os7zyRk50kzNmdrzznozR5rhWt9s2b1eN4u/aNnBnEAChZSQE6YFlSCFlBCF5BAFlIAzb68PyPl1+fuElPx+csjZLokIFGD3pGsapRobKNVQT8nGeko22PPWNNFQT/FtWyhRX0fEOw+37cETrACuhqK9+1DEDuH61JA/FPZ8wLAnMUy2TsfMXw/NuunOfFrLz2fz2zRr32TWtc11n0zOCtOy+Wul5XSTzG44q9MdsEUD1rx9iwXV/PqWt4gfvbY6AqFc50M4BwAAANABmqFRUktSQksUn2KZD9DSWiFMay1g29H6UsO11kR9USto81e1GrzZ67vj+mfMXBTaGWxQUA5ilFHwPEPXKR1vpGRDPaUaGyjpCtvc61KNDZRJJtr8uLLqc3q+2eGbHcRFevehQEUE760ezDCZkjmdklmdEhmdElnrlszq1JRxzWfd+xiUyGqtBnBZveN/Q0ohCkSqbPUis0/lVGWxcJPseYlUSSRfi/XWLaRKrvCtWfCGgA08DOEcAAAA7FGYmbJG1rl2mTtUS+QSlNSbrd/FvGZqnfp8fZKPAnLAOTUzIAcooFjL7oEHmgdvMX+MFLHnXuNJEATnWnQAuzvTNCgdj7cI14oCuPx8uile0mOLkkzBWIxC0UoKxWIULJpWUqR3b4r2rqFAJIrwrQswM2kGW6N05gcQyOiFQQQymkEZzaRUzrBCNFfI5g7dnFvG2pbMtW8Qml0RBKKgIlHQJzuncAZViUI+92mcMoXUwnwwPx/Mz9undbqDNl+z4A2hGUDHIJwDAACA3RIzU1JLUkO2gRqzjc6Im43Zxh0ux3NxSmmpDg8U0Bq/5HdOtbRPyXQHavZy85DNmW9lH7/sJ1nExzWA7sCmSelEU9FppMkdBG/peJy4hN6ugihSMGoFbnbw1nwaisUoGKvE6abtYOZ7oSV20AutEKyZrkDNCtfskC2rWduKtue3debpnLIoUDh/8Xz7FvLJFPbLVGHP2ze/FZ6F7ECtlQDOJ3v/emgAXoBPewAAANDtckZup+Faa+vj2XhZRuO0r1fmXLcsP2hAi3k5SGE1XHS9s7ASduYRogH0fMxM2WSSko31xaFbswAu1VBPqXgjmUYJvZkEgYKRKAWjMSt4i1k925x5O3iLVVIgXEGCiJ5GbobJlNEMSuQDtGTz3mW54tM7u6MXWnOSKFBAsQYJCKiiM2/frDBNorDPGoAg7C+EaxV+mUKqXBTEIUwD2HPhUyQAAACUlWZq1JhtpPpMPTVkG1pMG7INVJ+tp4ZMg7M+pafaXc8v+Snqi1LUF6WYL+ZM7Xn3ckSNFIVwooAvxwC7My2XpXQ8TummOKXjjdbUvsXjxcv5daZRWqjvr4hQKBpr9ZTSUNTq3RaKVVKgIuKZ0UyZmbYlsvR1fZq+rk/TtqYsaYZJWn4wAM1kZz5nsLXOsAcKYNLN/LLO+RE57RsXz+dH8NSMzhlcwO6FFlKtMMwOwOzeZX57NE5FIr8i5kM2qRC4OcFbYR/3/RScygkAZYJwDgAAAHbIMA1qzDVSQ6YQqNVnW4ZujdlGZ3uT1tSuWqIgUlQtDtmaB22tTf2yv8ytBoDuYOg6ZRJNLUK2lL3cStimZ7PtquULhZoFbbGinm32fDASJUnuuddubC9mpu2JHH1dn3ICOHv+q/oUfVOf7vIBBWyiQPmeZUq+15kVqLl7mlW4TvVsfvpnhat3GnqhAcDuAuEcAADAHsJkk5pyTS17tDUL3Zwebdl6imfjxFR6dwaBBCtU88eo0ldJUV+UKv2VFPNZy/Z69/YKtQI92QA8hpkpl05Ror6OkvX1lGysp2R9nTNAgns+k2hnsC/JFIxEKFARoUAkQv6KqDVfUVgXrIhSIFJYJ6veHoiEmak2maOv6lqGb/Z0V+GbIBD1i/hp78og9Yn4yCdLpMoCKZLo3FRJINlZtkbnVFzL7nlVEkmRi5dl9zZJJF++ZxoCNQDY0yCcAwAA2A3ZgyHsrDdb81NJG7INZJZwwXK3iBppNVwrCt1c2yvUCpJEb5zeBQAtmaZBqcbGfLCWD952MK9ruTY/riCI5A+HKRCJFoVrzcM2az5KwUiEFH/AU2EOM5NuMumGdXqobjBp+alhWqeF2tvTmkGbGpuHb9Z8Rmt7+LZ3ZSB/CzrTvlE/qTL+YQIA0BUQzgEAAHQhzdAooSUoqSUpqSWL5ltbl8glKKknKZmz1qe0lLPd4PZd8DqkhHbYg82Z5sM2+9RRDHYA4H2mYVinkTY2UCreaJ1OGm90RiRN1tdRosEaSCHV2FjS6KS+YMgZICFUWdXqfDAaI384TGIZg3171M5k1nAGEsjqJun566bp+WufOSGYE3xZ6w2zEIzt+D4t768ZrjDNtc0wuWi7bhbf195eDoJA1Dfibxa6Feb7RQMI3wAAegh80gYAAGgj+7TQeC7uTOPZuDW112Xj1KQ1OcFaSk9ZAVs+bMuZbe9B0hY+yUeV/konUNtV2BbzxUiVvH06FwBY2DQpnb+GmxW4xSkVb6BUYz50izdQOl4I40o9rVQQRApGoxSKVVGoMh+2NZsPV1qhm+Jr27UhTZOpKaNRKlcI06ypkR+F016XX85vd+/v3p7WumbUzq6gSALJokiyJJAsWqeTqpJI/aJWALdPVRDhGwDAbgrhHAAA7FE0U6OmXJMTpNnBmh2qNV/nzOfilMgl2nX9tdb4Jb8zamhICVFYDVNIDlFIDVFYCVNQCVJYCRe2N5sPKkGK+qIUkANleT4A0LNZ125LUzaZoEwyQZlEgrLJRL6Hmztws4I4ewCFUnq3ERGRIFCgIkLBSJSCkSgFojEKRiKthG5VFIhESBQl0g3T6pmW0ymRscKyzfnQLPGlRsnsJmt9frsdniWymhO6NeVDtVSuc8I0SRQopFqDC/gViWRJIEkU84GX4Fz7TBbFohBMkcQW293hmFK0reV+iiSSJArN7pvf1uyxZDFfr5V1okCeOnUXAACKIZwDAIAuZ5gGpfU0pfQUJbUkpfU05YwcZY0s5Ywc5cwcaYZmLZs5a51928W2nc1n9Ayl9FSHn79f8lNEjVCFWkERX4Qiav7ms9aFlTBVqBVOwNZa2IbTRAH2PDsK2DL5Wza/LpNoKiwnE5RJJimbTBCb7btmpD8UzodsUfKFI6SEK0gKRkgMhon8YTJ9ITJ8IdKUEOUkP6V1k1KaQbU5g1L5WzKrU+ILnRIf65TMfkuJ7JdOr7VdXdusPUSBnBE3Q/ZNlVzr8vOqvV1y9gv78qN6+mQK5kf7xKidAADQk+GbAQAA7JRu6laQpqUoqScprVmhWkpLFU2TWtJZtve3l5N6smh9xsh0d7MopIScUK1CrXDCtdaW3eFbRI3gtFCAPZiuaZRNJiibSlI2H5plUknKpVJWoJZfXxSuJZo6HLDZBEkm0R8k8gXJVAJk+oKkKUHSlBBllCBlRD8lRT8lBD/FyU+NpFBKI0rlDErnDOJaIqp1P6JBRPH8rWNUSaSwPx+UqTJV+AvBWoWvtXnJ2keVrfuphXDNryBMAwCAPQfCOQCAHsgwDacXmXuaNYvXNe8ZppkaaYZW6DWW72XWfJ/mvdCa9zJzr9NMrdPaKQkSBeUgBZQA+SQfqaJKquS6iW2Yb8M2n+QjRVLIL/mpQq2gCrUCPdcA9lB6LkfZlB2eJfNhWiK/zrWcTFI2nSrM50O3UkYe3SFJJsEXJFPxk6EESJN8lJX8lBZUSgkqJUyF4qxQoylTVvRRRvRRNn/TBdm60r+bSUTZ/K0IE1Hrz9cnixRUJQqqMgVUiYKqRAFFarlOlSiouIK0ZgFb2NW7Ddc3AwAAaB98MwEAaANmpoyRKfT+0q2p3RPMWaelKWNkWg/W2rguZ+RIZ727m9yCJEgUVIIUUkIUlIPWTQk64VpQzm/Lr2u+3bmfUtimiip6RgBASUoK1+xebK59DK3j/3BgEogVHxmyn3TZZ4Vroo8yokoZUilFCjWxQmlBtUI1qQ0B206okkiRgEx9/ApF/DJV+BWq8Fs904KqnA/UJAq455XikM0J2lSZAopEkohjLwAAQE+BcA4APIOZKWtkKaNnnOAsbaSdwMwdpLnDNDto21nwltbTZRsIoFSyIJMqWb2/3FN3LzFFUgo9xux1olK0X9E++e2t3q/ZuoAcoKASJEVUEKQBQLsxM2nZDOXSacql06Rl0pRLpyiXSTvrdhW0ZZJJMsrQc80kgTRRdQK1rKhSzgnPVMrlt2Wdqa+wTlIpJ6htDtdEgajCr1AkIFNfnxWqRQL5abOwzV5f0Wy9X5E63GYAAADouRDOAUC3MEyDGnONVJ+pp4ZsAyW1pBOqtRaupfVCwFa0PX/L6BnKGBkySx2Vrh0CcqDoFlSChXnZmvdJvhZh2s7WKZJCPrHldlVScfolAHQb0zQok0hQLmWHaCnSMpmiQC2XSVEunaZMKmXd0inKpdKUy1gBnJbJkJFNk5HLEnF5/snBRM3Cs+JwrXhdofeaHby1Fq4pkuD0NrN7mVWoEvVRZQoq7p5nrfdQc28P5gcuiPgVCqoS/rEBAAAAO4VvfADQYcxMaT1N9dl6qs/kb/n5hmxDq+sas42d2hNNFVUKKFZg5pf8hTBNKQRo7mBtZ+vcp236ZT+JAq6pAwC7H90wqbEpRfV1ddRQV0+N9Q2UaGykZGMjpZsaKZtoIi0RJz2VIDOdIMokSMhlSCjzsZqJKCeopIkK5USFNEG1pqLinPq5q55rpuSjkF8pGrXTGkxAomj+GmhBVaZwsxE87dCstWurKRKO7QAAANA9EM4BABEVTgnNGllK62nn9NB4Ll4UrjVkG6guU0cNmYaisC1rtLgKdZtE1AhV+isppISsEE0JUEAq9Erzy/6ieTsws9e7tzv7SX6SRJwCBAC7H9NkyujWqJppzaCMZlA6Z7ayzqBUTqNUU4JS8UbKxOOUTcZJTzaRkU4Qp5NEmQRJuSTJuTSpeor8RoaUNl7PsnlMpQlyiyBtRwGbJqrEskqk+klQfCSqfhJVP0l+P8k+P6k+P/kUybrJIvkViUL5adgnU0gtBGpWqOYO36wAzifjGA8AAADegXAOYDdg90xL6SlK5BKU1JLOddHsEC1jZCijZwrhmp51TgNtbZ/Wljvak00VVar0V1KVv4pivhhV+iup0l9JMV+seJ3PWh/1RXHKJgCUFTNTzjApo5mU1ewwy7QCLc0gzTDJZCKTmSg/tZeZrfs7y2QvM5mm1ePL2s/ah7mwbJgmcS5rnb6ZSZOWy1I2m6NcJkO5bI60XI70XI50zboZOY0MXSNT14i1HLGhE+kaCaZOEhskszW15t3LOsmu9UREEhGF8re2MEikrBygnBIkXQmS6QsS+cMkBkIkBStICVWQLxyhQEWEApEIhaNRCvgU8ssS+RTRmfpkifz5qU+xwjWfLJIqiTiNEwAAAKAE+FYM0Ik0U6OUlqKElqBELlEUriU0a+qe39m2rriWmk0WZPLLfvJJPqpQK4oCtVbDtvz2gBzAFzIAINO0ArKcYZKm21OmnGFQTmfSXNuyrn0ymklpzaCs3TvMFawVpobTiyyjWT3KMjmDMnohgCv1smYCm+Qzc6S6bj4zSyprhfmibc32ZWva2tFPzd86Eyt+okCYpECY5FCY1FCEfOEKCkajFIxEKRKLUSQWo8qqSqqqrqRwRRjHagAAAIAeBOEcQJ67d5o9gqfdQy2lpXY4de+T1tNOoJbSUpQxMmV9jgIJFFbCFFJDRddS80k+8st+8kt+J1SzT/lsvq35Ps72/Daf7CNFVMr6vAGgPJiZNMMKt5yAy2DS9GbL7lDMvb9utry/KyzL5R9Hy9/PDtDc+2ZbrHPf17qPYZbnGmUCm/leYrrTe0xu1rNMZp3CrFPU3cPMtKYKGeQTDFLJJJUMUgSDFFMn2cjmbzmS9SxJplaW50tExIJIpuInllUSJIUEWSZRVkhUVJJkhSRVIVlRSVZVUlQfqT6VVFUl1ecjn18lv89HgYCf/H4/KT6VJEUlWbHuI6kKyaqPZEWx1qsq+YJBkmQcswEAAAB2ZwjnYLfBzJQzc0UjetqnZTpTe5t72Ug787sK2jprgAKf5KOQErKCNSVEYTVMITlEIdW1TglTUAlSWAk7AVzzdeiZBlBeuwq72hyE7ST40k17e+vzVo8y01rOB2WaWRya6fnH1csUerXzh0UimfmAzA7HdFJYJ5V1CuTXFW6FME0VDFLJuilskEI6KVzYXzKtx5JMg0RTI9HUSTB0ErqwxzARkaz6yBcMkhoMkS8QsKbBIPmCIVIDwcJ8MEi+QLDV7bLqw3EaAAAAAEqCcA5aZbJJW1NbSTf1wo0L85qpkcFG8fb8+ub7ttjeyrbm10CzAzb3ddPKcU20tgrKQQoqQQopocKInUqQgnJ+XX7ePaqne70dwNnhGnqiQXeyAygrDGLS8yGPlg99dNNadgdARdsMJsNka59my0Z+X/ey/fg726fFfUwuurZX8fW+CtcFo2bLnL9OmJm/b/4yYs6yaeb3ya8zTHL1DLN+Hrs7VRZJFQXyiyb5BYP8gkEBweox5iODVNKtGxuk5MMwhXWSTc0KxfJT0dRI1HMkGJp10zUiI0ek5Yh1jVjXiLo4LHOTZJlk1UeSku89pqpODzQ536OstW12DzOnt5rP54RqVqBWmJdkfCwCAAAAgK6HT6HQqqSWpBP/cmJ3P40dUkSlcJpm/haQAkWnZzqjebr2C8gBJ3BzB2whOUQBxQrZ/LKfRKH5OHWwJ2PmQniVD6d0wyQtH0RprhDLHW7Zvax006ScuzeW6e6ZVdzbqvm81WuqsD6nFx4/pxcCLneYpjV7ft3Z2Wp3pOYvaK9IAimSSIokkipby7IokiKLpLq2WduLl4vum5+XnfWCdaqmniXZ1EjUsyTqOSJ7qmWJtaw1zWWJtQwZ2QyZuQwZ2Szp2TTp2SxpmTTp2QxpuSzp2faNlrwjnL/tjOzzOUGYYodfrnXWzUdKs2VZtfcrLCuKWnQ/yb1//pROQcRxGQAAAAC8CeEctEoWZZJFmRRRIVmw5iVRstbnl53tYmHZva3FPq1ss9fb1z2zr5O2s3DNJ/kwwuduyA64sroVKmV1g3LOfCGMah56afbpfgY74ZMdULmDMWffVpZb6w3mDtTs0wbdtYuCOA+mW5IokCzaoZE1L4vWvCKJ1rIzFUgRRes+kpC/r7VNct/XtSzlH9uu09qy/fiSKJAkWFNBIBKFwlQUiARBsNYRkSgWlkXBug5jYZ+WU/dj2VMrMBNJkd0BmhWcWc+hcEoimyZpuSxpmQzlMmnSMpn8LU25bIa0TLKwLZshLZ0mLZOlXCZtrUunrdE6M2nS0ilKZzIUz2SIO7EHmiTLpPj8JPt8pOTDspbLrnWqz5kqfr+z3Zn63AGbL98bTcGpmwAAAAAAZYKEA1oVkAO04vwV3f00oEyYrQAqq5uU1axgLJsf2bD5OmvZGvkwm9+ey1/wPauZlDOM/NR0pu6wLesK3Kz5/GMYZskjKPZkgkCkiIVgqxByWSGPKostelnJUnGPK1kS8qFQy95WimwFYookkCK3sl1qGaY1fw6yJJLiCsKc+4gCiaL3ghVD110hWtoJ03JpezlTmGZd8/llJ3zLZpzHKXePtOYUf4BUv5/UQIAUX8Ca+v2k+u35/NTnJzUQJNXvJyUQsLb7A1bI1ixQEyWpU58zAAAAAACUF8I5gG5g5nuQpTWD0ppBGc2gdM6aZjTX+pxBGd3aZq/Laqa1r244oVqmebjmbCsEcD2Nkg+mVNk+ZbA4dLLDJTt0csImdyglWiFW8zBKLnqsVu5X9Lj2uraFXbKrB1hPw8zEpkmmYZBpGtbUMIh1k8ycQbphhaumaRK7t5uma3+zeNk0iMjqoUb53mdEAgmiUFhHZKWVgr2OSBBEa1/XusK81TtNEPL7Wo+QD8gK4ZodkFnhWsYJ3JyQLZ127qOlU2Toeuf9cAXBCsj8flL8flL8gaJl1R8g2b3dZwVuVsgWdPaxwzY1vw9O1QQAAAAAAIRzsNuwLwxv5C8gbzCTYVhT3TTJNKloau+jG9aF4QsXq89fkN40yTAKF7m3t9kXx7cuWs9k2MsGk2YWlgsXxS+c+miY+R5q+SDNCtVcy/l13R2W+RWRfLJEPlkkn2ver+TXydY6VRbJr+QDNEkin2Kd/udMXfv58iGbvVy8Lj91Pcbu3nPL0PUWPawKPa+yZOoaGbru3NzLpmGv18jQtPz2Heyru/bVi/c1Dd0K2uxQrRsv1t+TSLJc3OPMH8j3NiuEZorT6yy/vtXlQtiGETgBAAAAAKCzIJyDVumGSeu+jVPOMEnTC6cuWheoN0jT2bXOdC5OnzO4lXWFeS2/vXhdIQyzb7rJZNojOXJhvRepskh+WaSAKlFAkcifvwUUyVnnU0Rr2d6mNgvTmoVqPkUkf37qXufLX+jeyyEDM+d7gNkBlkFmfqprmhWoZV3XDcvseLlwjbE0ae7wLZPu3F5anUCUZBJFkQRJIlESSRQlEiWJBFEkUZJIFCVrmyi69pMKPbvyw6AyMZE9KiqbResoPyqqtd26udcR2eus+7DpWkfkhGGF8KxZsOa3T+fMh2f+Qu80q2dakBS/jyQZoyMDAAAAAMDuA+EctCqlGfS9e5Z399NoM0Eg6zpaguBcT8u50Hz+YvWiSIWL1ucvbO9e3tnF662L4Bcujm/t03LZPo0yoLYM2fyyRAFVLFrvV6QecXokm2aLXl1mvreWfeqjaRjWetMgUzfyvbby82YhACu+6WS45lvb7r6/HaYZRiFUc3qI2cvOtDh4c+/XlURJck5zVH3W1L5gviTLJMkyibJCcn5aWCeTlF8W8+ske52iFK+TWr+vKEtOyOYEbaIVvhWCNgmnTgIAAAAAAPRgCOegVaok0l6xgHMBevuaYGq+55W1LLSyzr2fUHQ/e0TE4nXWdcdkSXRGa5SKQrVmQZtgjQZZtK+w+1zc3urVpZOe08jIpCnZlLPmtRzpWo6MnEa6liNdy6/L5cjQ8utc89b+hdMfrXCqcMpj4bRJvcU6s9l6w9CJTW+fDimIYj7gkl3XBLN7W1mnOjo9sVpbzu9f6LFVOP0RvbQAAAAAAACgIxDOQav8ikTLrz6+u59GWdmnOxpO+JUPunLNll3zdmBm6BrpuUJo5t7XCdI0zXosXXNCtqL1+fvsDkOWFsIsyeqxJVmnPEqS3UvLOkVSlGWn15Youed3tE5u/bHy85IsW8tyfl/Xsh2uSfZ9ZMnqPWY/biv3ceqh5xgAAAAAAAD0UAjnoEcwDYP0XJa0bLYwzWZJyzWbure3Y7+edsF8WVFJUhVrqqgkKwpJqjW1tuXXKSrJikqyqjj7uU9zLARScrNTHwunRFphlutUSikfbrnub93POlUSAAAAAAAAADofwjlolaFr9NmK96zTHvOjSTpT1wiTzgiSrn1MXbd6j7nmzR3d3x6p0uj6i+tLsmxdF8wdfMn55fy8fe0wKzwrBGPudbKqFu0rKQopTrBW2Kdof0UlSZY9PTADAAAAAAAAAOwawjlolZ7L0d8X/6xbass+Hymqz5r6/KT4fCSrvuKpex9n351t9xcCMlUhWVZwqiMAAAAAAAAAdDuEc9AqSVGp3/7Dik6DtEaftHuXFUaVlJyRI+X86ZbWsjPv2qfl41jrZFUl2ecjWVHRmwwAAAAAAAAA9hgI55q555576I477qDNmzfTyJEj6Te/+Q0deeSR3f20upysKPT9mxd399MAAAAAAAAAAPA0nNfn8vjjj9OCBQto4cKF9N///pdGjhxJkyZNoq1bt3b3UwMAAAAAAAAAAA9COOdy11130UUXXUQzZ86kgw46iJYsWULBYJAeeOCB7n5qAAAAAAAAAADgQQjn8nK5HL3//vs0YcIEZ50oijRhwgR66623WuyfzWYpHo8X3QAAAAAAAAAAAEqBcC5v+/btZBgG1dTUFK2vqamhzZs3t9j/5z//OUWjUee2zz77dNVTBQAAAAAAAAAAj0A4107XXHMNNTY2Orevvvqqu58SAAAAAAAAAADsZjBaa16vXr1IkiTasmVL0fotW7ZQ3759W+zv8/nI5/N11dMDAAAAAAAAAAAPQs+5PFVV6fDDD6dXXnnFWWeaJr3yyit09NFHd+MzAwAAAAAAAAAAr0LPOZcFCxbQjBkz6IgjjqAjjzySfvWrX1EymaSZM2d291MDAAAAAAAAAAAPQjjnMm3aNNq2bRvdcMMNtHnzZjr00EPphRdeaDFIBAAAAAAAAAAAQDkIzMzd/SS8IB6PUzQapcbGRopEIt39dAAAAAAAAAAAoBu1NSvCNecAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAbiJ39xPwCmYmIqJ4PN7NzwQAAAAAAAAAALqbnRHZmdGOIJwrk6amJiIi2meffbr5mQAAAAAAAAAAQE/R1NRE0Wh0h9sF3lV8B21imiZ9++23VFFRQYIgdPfTKYt4PE777LMPffXVVxSJRFCnh9RAnZ5bA3V6dh0vtcVrdbzUFtTpuTVQp+fWQJ2eWwN1enYdL7XFa3W81BYv1ulKzExNTU3Uv39/EsUdX1kOPefKRBRF2nvvvbv7aXSKSCTSJW8ML9XxUlu8VsdLbUGdnlsDdXpuDdTp2XW81Bav1fFSW7xWx0ttQZ2eWwN1em4N1On5dtZjzoYBIQAAAAAAAAAAALoJwjkAAAAAAAAAAIBugnAOdsjn89HChQvJ5/OhTg+qgTo9twbq9Ow6XmqL1+p4qS2o03NroE7PrYE6PbcG6vTsOl5qi9fqeKktXqzTE2FACAAAAAAAAAAAgG6CnnMAAAAAAAAAAADdBOEcAAAAAAAAAABAN0E4BwAAAAAAAAAA0E0QzgEAAAAAAAAAAHQThHMAAAAAAAAAAADdBOEcAHRIVwz4bJpmp9cAgPbDcQCgNF3xniHquvdNV7SnK2pks9lOr+FVXfWa9pKu+pkZhtEldTpbVx3PMplMl9bzyvETOg7hHHSYl97sXvuw3JkSiQQREQmC0Gk16urqiIhIFDv3UPXll1/S6tWricgbvxu3rnpN4zhQOi+81nAc2D101mu6+eN66TjQWewvyZ39s9q+fTsRWe+bzvxivmHDBqqvr+/UYwAR0caNG+mJJ56gxsbGTqvx0Ucf0Yknnkiffvppp9UgIkomk5TL5ai+vp6Idv8AoPnrqzPb45VjTC6XI6JCGNxZ7dq8eTMREUmS1KnHgU8++YRWrlzZaY9PZB1r7r77btq2bVun1vnggw9o2LBhtGrVqk793BGPx6m+vp42b95MgiB02vtG13UiKrzGOqMOPguUD8I5KNnWrVtpzZo19M477xBR530ps9/Y9kGlMzQ0NNAXX3xBH374IRFRpx0cN2/eTG+++Sb9/e9/JyLrw3Jn1Pnwww/pjjvuoGQyWfbHdlu5ciWdf/75tGHDhk6rsXbtWjrxxBNp6dKlnVaDiGjdunW077770iWXXEJEnRcAfP755/TAAw/QTTfdRBs2bOi0P1xbt26ltWvX0vLly4mZO+392RXHga44BhDhONBeOA6UzkvHgY8++ogWLlxIF154IS1dupQ+/PDDTnnvbNmyhT7++OOyPmZrNm7cSEuWLKEFCxbQSy+95IRb5fTxxx/TlVdeSVOmTKFbbrmFNm7cWPYadp399tuPfvjDHxJR530xX7VqFQ0dOpSefvrpsj+22+rVq+nII4+kFStWOF/My/06W7lyJY0ZM4beeOONTg3pP/jgA5o6dSqNHz+eJk2aRG+//XanHG/c78+7776b1qxZQ4IglP2Ys379err88svpjDPOoGuvvZbef//9srfn66+/pvfff5+IOvcfQZ9++indeuutNGPGDFq6dCl9/vnnnVLnww8/pIsvvpgmTZpEF198Ma1du7ZT2rVhwwbq378/nXLKKUTUuceBAw44gN56662yP7Zt9erVdNRRR9EXX3zhHJs74/25cuVKOvbYY+nLL7+kl156qdPqrFu3jr773e/SCSecQCNGjKAXX3yxU44D69evp7lz59LZZ59NV1xxBb311ltlr+O1zwLdjgFKsHLlSh46dCgPGjSIa2pq+LDDDuPXX3+dk8lkWeusXbuWTznlFK6vr2dmZk3Tyvr4zMxr1qzhY445hocOHcpDhgzh8847r+w1mJlXr17NBx98MA8fPpxjsRiPGzeu7DVM0+REIsGDBg1iQRD4mmuu4Ww2W/Y6zNZrQJZlvvLKK1t9HuWwbt06jsVivGDBAv7ss8/K8pitWbFiBYdCIT7mmGP4wAMP5JdeeomZy9cO2+rVq3mvvfbi//mf/+Gamhrea6+9+Ouvvy5rDWbmVatW8QEHHMAjR47kgQMH8kEHHcTPPvssNzY2lrVOVxwHuuIYwIzjQHvhOFA6Lx0H1q1bx9FolKdMmcJjx47lo446ivfee29++eWXmbl8P7sPPviABwwYwFOnTuW1a9eW5TFbs3r1au7fvz+ffPLJPHToUD7ggAP4tttuY8MwytaW1atXc3V1Nc+YMYPPOOMMHjNmDP/sZz9j0zTL/lp7+umnuU+fPjxmzBj+4Q9/6Kw3DKNsNVauXMmhUIh/8pOflO0xW/Pll1/ygAED+Ec/+lHRevvYVo42rVy5kgOBAN9yyy08depUPvzwwzv8mK1Zt24dV1ZW8vz58/mOO+7gs88+mydOnMjpdLqsr4E1a9ZwZWUlz5o1i7/3ve/xSSedxJWVlfzCCy+UrQYz8/r16zkSifCMGTN4ypQpfOKJJ7LP5+OHH364bDU+/PBDrqmp4dGjR/Prr79etsdtbs2aNdy7d2+eOnUqH3300Tx69Gi+5JJLOJFIlLXO6tWrubKyki+++GKeM2cOT5o0iWfOnMm5XK7sx4E333yT99lnHx46dChPmjTJWV/u40AwGOzU48C3337LgwcP5gULFhStT6VSZa2zcuVK9vv9fNNNN/H8+fN58ODBzmfPcv5u1q9fz9XV1fzjH/+YH330Uf7hD3/IQ4cOdf5Gl6vW2rVrubKyki+55BKeM2cOT5s2jWVZ5vvvv79sr2uvfRboCRDOQZtt2rSJ99tvP7722mt51apV/O677/KECRO4X79+vHTpUo7H42Wp89lnnzlfLg8//HDny7mu62V5fObCgfGqq67il156iZcuXcrDhw/n//u//ytbDWbrYFJdXc3XXnstr1+/nl9//XWuqanhN954o6x1bHPmzOGLLrqIg8EgX3755S3Cko4eJNesWcPBYJCvv/56Z108HuetW7d26HHdcrkcn3feeXzxxRczs/Wc33vvPX7yySd569atnE6ny1LH/kCxcOFCTiaTvO+++/K8efPK8thuX3/9NQ8ZMoRvvvlm5/cxePBgfuSRR8pa54svvuABAwbwokWL+JNPPuFvvvmGTzzxRO7Tpw8vXryYt2/fXpY6XXEc6IpjADOOA+2F40DpvHQc0HWdp0+fXhRkr1ixgmfPns2SJPE//vEPZu74F8BvvvmGx44dyyNHjuQjjzySZ8+ezWvWrOnQY7bm888/56FDh/K1117LuVyOmZmvvvpqHjJkSNleZxs2bOCBAwfydddd56ybPXs2z507l5nL/8+H5557jvfff3/+xS9+wcOHD3feR8zMTU1NHX789evXsyzLfNNNNzGz9bt+5ZVX+L777uPly5eXNXT+05/+xOPHj3fqXHfddXzOOefw5MmT+ZVXXunw469YsYJVVeWrr76amZn/9a9/8cCBA/lPf/pThx/bLZ1O85lnnslz5sxx1i1btozPO+88zuVyvG3btrLUSSQSPGnSpKJ/nLz//vtcWVnJPp+P//znPzNzeQKa//3f/+UzzjjDWd6yZQtff/31LEkS//a3v2Xmjv292bRpE48fP57HjRvHJ598Mk+cOJFfe+21Dj/v5r788ks+6KCDnNcAM/M999zD++23H3/zzTdlq/PZZ5/x4MGDi44DixYt4lmzZjEzO4FJOX43pmnyW2+9xQceeCA/+uijvP/++/Mpp5zibC9Hu+zjgP1zM02Tn3zySb711lv5scce448++qjDNZiZX3jhBR47diwzWz+byy+/nE899VQePXo0P/zww2U5Tq9YsYJlWeZrrrmGmZk3btzI++yzD99+++0dfmw3TdP4ggsu4AsuuMBZ99JLL/HkyZO5rq6Ov/rqq7LUyWQyPGXKFL788suddd9++y0PGzaMVVXlO++8k5k79v702meBngLhHLTZe++9x0OGDOEPP/ywaP3MmTN5wIAB/Oijj3b4S18ymeS5c+fylClT+PHHH+cxY8bwiBEjyvrlvLGxkb/3ve/xpZde6qyzD2Lnn39+hx/fVltby2PGjCn6b6+maXz88cfz448/zg8++CBv2rSpLLXsA9/06dP5rrvu4pdffpkVRXFqL126tMMH/C1btnA0GuXvfOc7zrpLLrmEjz76aB42bBifeuqpzpfzjrwO0uk0jx49mp988klmZj7hhBN4xIgRHA6HecCAAfyzn/2Mt2zZ0qG2fPzxxywIQtEHpCVLlnCvXr34P//5T4ceu7l//vOffNhhhxV9WTnttNP4lltu4csuu4yfe+65DreHmfnJJ5/k8ePHc1NTk/M++etf/8p+v58POOAAXrp0KTN3PJjp7ONAVxwDmHEcaC8cB9rHS8eBXC7Hxx13XNEXWWbmrVu38pw5c9jv9/Nbb73V/kbkvfLKKzxp0iReuXIlP/TQQ3zYYYeV/UO5ruv861//mqdOncqbNm1yfmabN2/mAQMG8OrVq8tSY8mSJTxr1iyuq6tzfvaXXXYZH3/88Xzcccfx9OnTefny5R2uZfvqq6/43HPP5e3bt/Ndd93FI0aM4AULFvDMmTN5yZIlTgjZHoZh8I033siCIPAHH3zAzMzHH388jxw5kqPRKA8ePJhPOOEEXrVqVVnacscdd/D3vvc9ZmY++uijnZ5GU6ZMYUEQeNmyZczcvtd0bW0tH3HEEUWv5W3btvGoUaPK+neA2fqbM2LECL777ruddddeey0PGDCAR44cyfvuuy8/+OCDzNyx9+f27dv5oIMO4r/85S9FjzVlyhQeP348q6rKb7/9dvsb4jJ58mSePXt2i/W33norC4LAzz77bNFzKNW7777LJ5xwAi9fvpyff/75TgnoTNPk3//+93zGGWfw559/7vwdzWQyvN9++zk9qcvh8ccf5wsuuKDoWL9gwQIeMWIEH3nkkXzMMcc4vRvL0eMomUzylClT+JtvvuGnn36ahwwZwmeeeSbPnDnT+YdURyxZsoQFQeB//OMfbBgGH3fccTx69GgeMGAADx8+nAcPHsxvvvlmh9vxyCOP8P/8z/8wM/Oxxx7LJ510El977bV82WWXsSAIvHDhQmZu/88sHo/zqaeeWnQciMfjfNppp/HJJ5/c4efvlk6n+dhjj+VFixY56xYuXMiVlZV8yCGHcDQa5UWLFnEmk+lQnaamJh4xYgQvWbKEmQv/AJo9ezafcsopzu+tI7z0WaAnQTgHbfavf/2Le/XqxRs2bGBmLjqon3vuudyvX7+yfCm77777+NFHH2Vm5jfeeKPsX863bNnCM2fOdGrYf4jvv/9+Pu6449g0zaIPrh1py+LFi4s+RNx8882sqiqPHj2ahw4dyjU1Nc4H8o7Usdvw6KOPOgfJf/zjH6yqqnOKzhdffNHux7edddZZfNhhh/HSpUv5qKOO4gkTJvBdd93F99xzDw8fPpwPPPBA5z9/7W1POp3mE088kZ966im+7rrreNKkSbxu3TpOJpN8zTXX8CGHHMIPPPBAUbtL9fbbbzv/1bWtWrWKDzroIF68eDEzly8E+v3vf88VFRXOl7zFixezoig8ffp0HjduHA8ZMoRvv/32Dte77bbbuH///kXrXnzxRZ41axaffvrp3Ldv37J0Y3/11Vc7/Tjwu9/9rlOPAcxdexy48847u+Q4YN+3s48DZ599dqcfBzKZjKeOAw8//HCXHAduv/32LjkOXHrppXz00UdzXV1d0fovv/ySp0yZwqecckqHT6NNp9NFX+weeOAB50O5OzTr6JfYhx56iH/9618XrduyZQvHYjF+9dVXO/TYtg0bNhSdinPjjTey3+/nW2+9lW+44QaeNm0a77fffmU7fTuZTPKIESN4xYoVnEwm+Xe/+x1XV1ezIAjOz64jr7XNmzfzD3/4Q/b5fHzIIYfw5MmTeeXKlZzL5fipp57iiRMn8tlnn12WXnqPPPII19TU8NKlS/mUU07h2tpaZ9vPfvYzlmW5Q6c5vfPOO868/TN56qmn2O/387///e/2P/FmTNPkc889l4cPH85/+ctf+Morr+RgMMgPPfQQP/vss3zrrbeyKIodDp62bt3KRx99NN9yyy1Oj6LPPvuM+/fvz08++SSfdNJJfN5557Gu6x1+7yxatIj32WcfpxeW/Xi5XI4vueQSPvDAAzv8z6eVK1c6888++6wT0P2///f/nPX234D2/i149tlnnRCD2WpHU1MT77XXXvzEE0+085m3VF9fX/SPzdtvv539fj//6le/4iVLlvCcOXNYVdWy/FOA2fo7OmrUKCeE+de//sWxWKzoONDRXruLFi1iSZJ48ODBPGXKFP7oo49Y13V+5513+Oyzz+Yjjjiiw/94ev7559nv9/Pvf/97njx5ctHjPfzwwywIQofPRHD38rNfR2+88QYLguAE3eUyd+5crqio4HvuuYcvvfRSDgQC/Nhjj/GKFSv4kUceYUEQ+KmnnupQjVwux6eddhrPnj3b+Vv8+eefc69evfjFF1/kCy+8kMeNG9fhgNZLnwV6CoRz0GamafKBBx5Y1IXdnewfeOCBRd1nO1qL2fqg9Nprr7X4cp5Kpfizzz5r1x/iTCbD77//fota9913H48ZM6ZoXTk9++yzPHDgQP7b3/7mfLgcP358UQ+Ujvrb3/7Go0aNcn4u3/nOd1iSJD7nnHPK1qbvf//7LEkSf+973ys6je2bb77hgQMHtrguTHtMnjyZDzvsMJ45cyb/8Y9/LNo2c+ZMHjVqVIce3/26cf9c5s6dW7Yvr26HH344V1VV8aRJk1hVVX7xxRedbVdccQUPGjSoxR+2Uq1fv54HDhzIV1xxBW/ZsoXfffddDoVCTtf1/fbbj++7774O1WC2fnYHHXRQpxwHWvuy2BnHAPv+7733nrPcGceB1j70dtZxwP1cO+s44A4rO/M4YD/Hzj4OuH8/nXUccD/uEUcc0WnHAbvOBx980CXHgccff5wPPfRQvvPOO1ucyv7QQw9x//79+csvv+xwneav19b+a37jjTeWrZeWXS+dTvOwYcOKelD+7W9/61Cb7MfOZDJ8yimnFPVaeP3117lPnz5Fr4n2yuVyrGkaT5w40blG17Rp0zgSifDQoUOdU2k7yu4dccQRRzg96Gy//OUvuW/fvmU5vfXzzz/n0047jQ8//PCi01uZrRB16NCh/Pjjj3eoRvPX2caNG/nwww/nn/70p0X1OuqVV17hqVOn8hlnnMFDhgwpei9ms1k++OCDnV5AHTF//nweMWIEf//73+fbb7+dw+Gw00v8jjvu4IMPPrjd4az7Z/Gf//yHx40bx5dddpkTmNjbX375Ze7fvz+vWLGiQzWae+655/ikk07iSZMmOUHmvHnz2tUbsLWfgfu1cPjhh/Pf/vY3Z/n3v/99u07VbK1ONpvliy66qOg9b4eo7b1mX2ufbWfMmMFPP/00M1v/QK2qquIBAwYUfYYrVfP23HLLLTx8+PAWv+snnniCq6ur2xU2uttiGAafc845PGjQIOeff7quO/uMGjWK77rrrtIbwrzDXsSmaXI8HufTTz+dzz//fE6lUh06Drjvu2HDBr700kt5+vTpfNhhh/Edd9xRtO+4ceP4kksu6XCdX/3qVzxmzBg+9thj+ZprruFQKOQ87mOPPcb77rsvNzQ0tKuO7fHHH+dRo0Z57rNAd8JorbBD27Zto/fff59Wr15NTU1NJAgC3X777bRy5UqaN28eERH5fD5nOPCRI0e2a4h7d51EIkFE1mhMhmGQJEl0zDHH0G233UbBYJCOO+442rp1K1111VV0wQUXUCaTaXON9957zxkW+7DDDiMiawQe9whJ9ihGgiDQFVdcQZMnT253W5qPlDhkyBB67rnn6PTTT6fKykoiIjrqqKNKevzW6qRSKSKyRrYcPHgw1dTUkCiKNHv2bPr444/pjjvuoGeeeYYuuugi53fVnjrxeJyIiB555BG69tpr6dxzz6XevXs7+9bU1NC+++5LTU1N7a5h3/eXv/wlZTIZeuihh6iurs5pHxHRpEmTyOfzOcPPl1LHfg24XzfuEYUuvvhiCofD9OCDDxbVbG977J/Ze++9R3/4wx9o+vTpNHbsWBo7diyl02kiIjrxxBPJ5/OVPLKmu046nabBgwfTj370I3rqqadoxIgRdMIJJ9BFF11ECxYsIMMwyOfzOT/LUqRSKTJN0/mZiaJIt99+O/33v/8t23HArqFpWtF6XdfLdgxw10mn0xQIBOjwww936pTzOGDXaW2U2XIeB9y/G/v5MzMNGjSorMcBu457lLdHHnmErr766rIdB1pryy9/+UtKpVJlPQ64XwOyLBdtK+dxwK7jfn7vvvsuPfzww2U9DjSvs++++9KVV15Jf/nLX8p2HPj888/p/vvvp2XLltE///lPIiKaOnUqHXPMMXTffffRH//4x6LHHD16NAWDwZJfA63VsV8L9mtvxowZNHfuXFqxYgX9+te/pmnTptGNN97Y4nfZ1jovvPBCq/uIokiiKDr1r732Wrr44ovb/FrYWVt8Ph8988wzdOqppzqvuaqqKqqpqaGqqqo2t6N5nRdffJGIiBRFIVmWadSoUfTpp5/SBRdcQK+99ho988wzNG/ePHrqqafoRz/6Ubvr2O3p3bs33XjjjfTrX/+aBg8eTESF39OQIUOosrKSVFXtcJ2BAwfSCSecQF988QWtXLmSNm7c6Iw2GA6HKRaLkc/na1cN+2fmPn4SWe+jk046iX7729/S1q1b2zW6YWuvs+OPP54ef/xxWrp0KcmyTHvttZdTV9d1ikQi1K9fv3bXef7554nIOnZOmzaNGhoa6Pnnn6ef/vSndPfddxMRUTQapUAgUPJxraGhgYis94b9ez7yyCPptNNOozfffJMWL15M33zzjfOzGjZsGIVCoZKOae4azUd6tJ/vySefTPPmzSNRFOnWW2+lM888k/7v//6vpNeaXUeSpBZ/p92fBURRdOped911dNlll5U0qqq7jvvvJzOTqqq0ZMkSOvHEE522CoJA/fr1o3322afNNdx13D83+3kefPDBtHLlSpo+fTq9+uqr9Nxzz9G9995Lr732Gk2bNq1ddZq357rrrqOHH36Yhg0bRkSFv6X9+/en3r17UzAY7FBbRFGkyZMnUywWo40bN9KGDRtIkiRnn3A47HyeKrWOoiitjioqCAJVVFTQhAkT6KmnnnJe2+V43+y3335099130/3330+yLFPfvn2JyDp+6rpOPp+PBg0a1O469mt63rx5NGfOHNpvv/3o448/pp/97Gd07733EpH1dygSiZRU49tvv6V//OMf9NRTT9F7771HRNZngTFjxtD9999fts8C7jruUZqZ2fldleOzQI/VDYEg7AZWr17NBx54IA8fPpwFQXAu/F1fX8+LFy/m/fffny+66KKi+5xzzjl80UUXlTS6WWt13Pe1503T5Ndee43HjRvHsixzKBRq8zWBWqvR2n8/HnvsMT7yyCOZmfmaa67hYDBY0rnyO6qzs5/FjBkz+PLLLy/bz0zTNJ4wYQLvv//+XFNT4/QQ/POf/8w1NTW8efPmDrXHPfJj8+shaJrGp59+uvMfoLa0Z0c/s2w2y3/5y1940KBBfOihh/LatWud2nPnzuVJkyaVdAHYtr4GNE3jSZMm8YQJE9r82Luq4/6ZPfzwwzxixIii+8yfP5+POeaYkrp9N69jXzMrnU7zN998wy+99FLRf5Hj8ThPmDCBH3vsMWZue4+wNWvW8IQJE3j8+PG8//77829/+1v++uuvWdd1vvPOO3nIkCEdPg40r3Hvvffyxo0bne32f2g7cgxoSx37uXb0OLCrOq1pz3FgZ3V0Xefjjz++LMeB1up8/PHHzvbmo6W15ziws7Y8+eSTvO+++5blONDW10BHjwOtvW8++eQTZ/tDDz1UluNA8zr33HOP03vl22+/5X/+858dPg7YI4yOGTOGBw8ezOFwmC+88ELnP+SzZ8/mQw45hOfPn8+ffvopb9u2ja+66iref//9Sxp8orU6P/jBD/jbb7919nH31li2bBkrisLRaLSknjltqcNsfdbp3bs3L1++nG+++Wb2+/387rvvdkpbmK0BKEaPHl3SoAA7qmP3Vrv55ptZEAQeNGiQcwyor6/n3/72t85lCdpbZ9asWTs9jsybN49PPPHEknqftlZn5syZTm/pxYsXc9++fXnEiBH89ttv85o1a/iGG27gfffdt809M0r53Xz11Vd86KGH8qJFi0ruMbOjn5m7zplnnskLFizgTZs2cTqd5htuuIEHDBhQ0qnNrdWZMWNGUW+Y5r1ZZs2axVOmTClpJO8PPviABw0a5PQkZC7ucXTDDTfwUUcdxaeddhqvXLmSP/nkE7766qt54MCBbT6ttbUazX/u7mPWM888w5WVlRyLxYpOfS1HHWbr89R+++3HTz/9NP/iF79gv99f1Nu+3O1htq5BOHLkyJJOBd5VnaVLl7IgCDx06FDnOJDJZPjZZ58t+rvUnjq76n35ox/9iMeOHeu8h9tTw93D/Q9/+AMfcMABHIlE+K9//Su//PLLfP311/Pee+9d0vumlN+NaZo8duxYPv/880u+VmdbfmazZ8/mU089lTdu3Mjbt2/nhQsX8l577dXh303z93fz537JJZfwxIkT2zzi7erVq3m//fbjI488knv16sVHHHGE81mCmfnCCy/k4cOHl+WzQPM6zU8td/+u2vtZoCdDOActfPrpp1xTU8M/+clP+PPPP+d77rmHBUFwrlW0fft2vvfee7lfv348atQonjNnDp933nkcDAZLuu5Ha3VEUWxxwXL7QJZOp/nUU0/lqqqqNtdpaw1mKzg54YQT+IYbbmBVVYtOfS1nHWbrj83111/Pffr0aXFh/Y7USSQSPH36dD7iiCNaPP9Srv1Sant0Xefrr7+e+/fv3+YP/Tt6ndkfslOpFL/wwgs8ZMgQ3meffXjChAk8efJkjsViJXVbbmtb7A8A//3vf1kUxaI/OuWq89VXX3FVVRWffPLJfPfdd/PFF1/MVVVVHW6P++fWXDqd5muuuYb79+/Pn3/+eZvrfPzxx9y7d2+eP38+P/HEE7xo0SIWBIHPPPNMXrVqFedyOb733nu5f//+7T4O7KjGlClTiq4vYf8hbs8xoJQ6zB07DpRSh7n9x4Gd1bGvuzJ9+nQePXp0h44Dbanj1p7jwI5qTJ482fki9MILL/DQoUM7dBxo6+/G/nvT3uPAzurY1xX86quvuLq6ukPHgZ393Fp7rbXnONDU1MRHH320c5r6pk2b+Pnnn+eqqio+4YQTnCDwxhtv5GOPPdYZXblv37783//+t81t2Vmdk046iT/99FNnX8MwWNd1njt3LldWVpZ0HCilTlNTE48aNYrHjx9f0pfyUmowW6Pr/vjHP+bKysqSfv87qzNx4kT+9ttvWdM0njNnjnNNNfvLZilB087qTJo0qcX7/IsvvuArr7ySq6qqSjqVbWd1JkyY4IRaf/zjH/mkk05iQRD44IMP5iFDhrT5tVbq78YwDJ44cSKPHz++pCCrrXVuueUWHj16NPfp04ePP/547t+/f9neNyeeeGKL9qxcuZLnzZvH0Wi0pAupf/nll3zooYfy0KFD+ZBDDuEbb7zR2eb+uTz44IN88sknsyAIfMghh/DAgQPb3J6d1WgtNDEMg+fPn88VFRVla0vzOoZh8DHHHMMHH3wwB4PBNofzpdZhZv7www/5iiuu4MrKypKCxp3VcYdAP/nJT0oKFttbx7Z+/XqeP39+Sce1tr7OXn/9dZ4xYwaHw2E+6KCDeMSIESW9b0r93TAzX3TRRXzUUUeV9M+Gttb54x//yMcddxyrqspjxozhAQMGlK09rV26Y/ny5XzppZdyJBJp8+/m008/5b333puvuuoqbmho4Pfee49nzJjBs2bNKuqo0dHPAjur0/wamaZptvuzQE+HcA5auP766/m73/1u0bqTTz6Z33jjDX7jjTec/5Z+9tlnPGPGDD777LP5ggsuKHnUlB3VWb58Ob/55ptFPRpyuRz/4he/YFVVS0rGS6lhjzoUjUZL/iNWSp1XX32Vv//973O/fv1KOmjtqs4bb7zB9fX13NTU1OGLvpfSnldeeYXPOuss7tOnT0nt2dXrzP7vfzab5UWLFvG8efP46quv5vXr13daW0zT5K+++oqnTp1a8oW521rnpZde4lGjRvGoUaP4u9/9btnfN+7n/c477/B5551X8h9IZqvnwznnnFO07sILL2S/38+TJ092rjG0YcMGvvDCC9t1HNhRjUAgwGeddVbR+1DX9XYdA0qtc99997X7OFBKnX//+9/tPg7srM7kyZP5008/5a1bt5YUxpZa56yzzioK/v71r3+16ziwq9eZ/eExk8nwTTfd1O7jQCm/G2Zu93GgrXVefPFFPvzww9t9HNhVHfcXyffee69dx4F0Os2HHXYY/+lPfypa/9FHH3GvXr2KjkNbtmzh559/nt94442SRwTeVZ0zzjij6AvgO++8w4IglPRludQ6dXV1PHDgQK6qqirpy3IpNd5++23+3//9Xx45cmRJNdpSp/nfiPYqpT1vvvkmz5o1i4cNG1byMXpXdU477TRnnWma/P777/Mnn3xS0oXmS2mL/aX2yy+/LPkaY7uqc/rppzvrnn32Wb7tttt4yZIlJR9rdlXnzDPPdEKAhoYG/sMf/sCjRo0q6XdjmibfdtttfMopp/CLL77ICxcu5GHDhu0wOGG2rkO3bt26Nvf+akuN5gHQ6tWrea+99irpb3SpdTRN47Fjx5YcnJdaZ+3atU7P2XLXKaVnebnas3r1ar7iiit4+PDhbT6uted19sknn/DmzZuLBogpd1tsjY2NJfU2bksdd0+2NWvW8LJly/jJJ58s6ftbqe0xDIP/9re/8dFHH93m3002m+UFCxbw1KlTi34Hy5Yt4+rq6ha94rZv396uzwKl1mFu/2eBng7hHLQwb948Pvnkk50LU9unRowePZprampajJLE3L5Rv3ZWp2/fvjxp0qSiOg8++GCLiw6Xo4Y9Gtd//vMfPvroo9s1NHMpdd5++22+5pprSv5yuas6NTU1fOKJJ3Z4xKJS27N8+XKeP38+r1u3rqxtmThxIr/yyitd0pbmr+e2dvMutT3uETnj8XjZ6+zofVNK93jbWWed5VxA2j4t5pZbbuGJEyfy/vvvz9dee22L+5R6HNhZjQMOOMA5Xdf+b1l7jgGl1GHu2HGgrXXS6XSHjgO7+t1cc801zNzxAS1KaU97jwOl/G66oi3u/2i35/25qzru901HjgOl/tzacxxIJBK81157tfqFYtWqVRwKhXjRokUlP/f21Ln55puL7tPW06Q6UufnP/95ye/PUmssX768xSm15apz0003lfy47anjbs+rr77arkEguuK1Vmpb2nv8bEudcgz6UGp7UqlUu943mzZt4oceeoiZrRDeDgDcv49ST/drT43mvZraMwJkqXUeeOCBdn1+KrXO2rVr2zWiaVvqlGPE8VLbs2LFipJH6W1LjR0N4tSZbWnvaLZd8b5pa53m753mp7rvTDqd5rvuuovvv/9+Zi783O1B6Ozfc0cHzWlrnebac0zr6RDOQQv33nsvh0IhPuuss/i8885jRVH4qaee4kQiwW+99RYfe+yxfPXVVxddH6k9B8m21unIF8y21mC2DlbtfZOXUscwjHYf7Eup0xGl1NF1vV1/YEr5/dsH/c58nTF37I/Lruocc8wxzvumI0p5f3bEFVdcwf369XO68W/atIkrKyv5pZde4nvvvZcDgUCL/4qV+vvZVY1gMFhyL5yO1kkkEu0+DrSljvv04/YeB3rSz81uj2ma7ToOtKct7TkO9JSfWSAQKMvIZV3VnjvvvJP33ntvfuaZZ5x19u/5lltu4aOOOopra2s7fLxpax37PdPezwVtqeMefbizapRybbmO1Kmtre1wSN8VP7O21uloe3rSz2z79u0d+mxTSp2Otsft22+/bTUA+Otf/1qWIGhXNez2laNNO6rz5JNPdvixe1Kdv/71r2UbcXhndcrZnu5uS1fVefrpp8v2vumsOu5evfb7btOmTTxkyJCizzOlngVSjjrlPLb1FAjnoFW/+c1v+Be/+AWfddZZLYZzvvDCC/nYY48ty0FrV3WOOeaYDtdpS432fkkutU45DsBd8TNra52OtqcntQV1in3xxRc8duxY9vl8fNJJJ3EwGHQGf9i+fTvvtddeHe6l2RU1UKdn1/FSW3b3Ot9++y3/5z//4RdeeME5tm/cuJHPPvtsPvbYY/mf//xn0f5LlizhAw88kJPJ5B5bx0tt8VodL7Wlu+swc9E/5L/55hsnAFi4cCHPnz+fBUHgb775psfUQJ2eXcdLbfFaHbvG888/X/Rdwl3vww8/5Orqaic0++lPf8qVlZUl/TOgq+rsbjww3ix0xEcffUQPPfQQff311zRy5EgaP348HXHEEXTZZZcREdH8+fMpEAgQkTX0t3tobtM02zy8fHvrHHLIIW2u05EapehIHS5hCO6u+Jl1VXt2h7agTqHOxIkTacSIEfTPf/6T7rnnHjJNk6ZPn07nnXceERF9+eWXFAwGKRqNtunxu6oG6vTsOl5qi9fqrF69mk4//XTy+Xy0ZcsW6tu3Ly1atIimTJlCV111Fd144410/fXXU11dHZ1zzjmkaRp99tln1KdPHzIMY4+s46W2eK2Ol9rSnXX69etHN9xwA02aNImqqqrINE0iIurfvz9dfPHFxMx00003USwWo3fffZf69+/fI2qgTs+u46W2eK3OrmrY3zUEQSBRFCkcDtMtt9xCixcvptdff52qq6vL0pZy1dktdV0OCD3NunXrOBaL8dlnn82XXHIJ77PPPnzYYYfxPffc4+xz0003cSgU4tdee43ffPNNXrhwIVdVVZV0XaGuqOOltnitjpfasqfUOfTQQ3nJkiXOPs174V111VV86KGHtvnUrK6ogTo9u46X2uK1Olu3buVhw4bxtddeyxs2bOBvvvmGp02bxvvvvz/feOONnMlkeOXKlXzJJZewLMs8cuRIHjNmDFdWVpZ0cXkv1fFSW7xWx0tt6Ql1DjzwQF64cKFz6rK7t8r555/PkUikzZ85uqIG6vTsOl5qi9fqtLUGs3V9u1GjRvG0adNYVdWSBmfpqjq7K4Rze6impiaeNGkSX3XVVc66r7/+mqurq7mmpsa5iKxhGDxt2jQWRZH3339/PvTQQ0saVawr6nipLV6r46W27Ml1bK+99hpffvnlXFFR0eYP/V1RA3V6dh0vtcWLddatW8f77rtviw+9P/nJT/jggw/mxYsXs2maznUtb775Zl6yZEnJF0r3Uh0vtcVrdbzUlp5SZ/jw4Xz77bcXnSK7dOlSjsViJV1nqitqoE7PruOltnitTik1PvjgAxYEgQOBQMmjc3dVnd0Vwrk9VDKZ5NGjR/Ojjz7qLDMzn3322XzCCSfw0Ucfzc8995yz/2uvvcZr1qwpeTShrqjjpbZ4rY6X2rIn1hk7dmxRnTfeeIPnzJnDa9eu7VE1UKdn1/FSW7xYZ+XKlbz33nvza6+9xszFo9TOnTuXBw4cyKtWrSrpMb1ex0tt8VodL7WlJ9UZNGhQUZ3NmzcXXcC9p9RAnZ5dx0tt8VqdUmps2rSJL7300pJHNO/KOrsrhHN7INM0ecuWLdy/f3++4447nPVfffUVH3TQQfz73/+eR4wYwbNnz+7xdbzUFq/V8VJb9uQ6P/jBD4rul06ne1QN1OnZdbzUFi/WsY0ePZq/853vOMuZTMaZP+KII/icc85p1+N6uY6X2uK1Ol5qS0+s05HBwLqiBur07DpeaovX6pRyrGnv542urLM7Qji3B2n+Zr377rtZEASeNWsWX3/99RwOh53R3p544gned999i4Z670l1vNQWr9XxUltQp1CnlBGNu6IG6vTsOl5qi9fqJBIJjsfj3NjY6Kz773//y3369OFzzz3XWWc/5oIFC/i0004rqR1eq+Oltnitjpfa4rU6XmoL6uA14LU6XmqLlyCc20N89NFHvHjxYv7222+ddYZh8EMPPcSjR4/mk046iW+77TZn229+8xseNWpUycMUd0UdL7XFa3W81BbUwWsAdfAa8FqddevW8cSJE3nUqFHcv39//uMf/8jM1n+mH3vsMe7VqxefddZZnMvlnOB/+vTpfM4557CmaW2u5aU6XmqL1+p4qS1eq+OltqAOXgNeq+OltngNwrk9wCeffMJVVVUsCAJfc801LUZwS6fTRd1JmZkvu+wyPuusszidTrf5jdEVdbzUFq/V8VJbUKd9dbzUFtRpXx0vtcVrddatW8fV1dV8xRVX8COPPMILFixgRVGcC0Ynk0n++9//znvvvTcPGzaMzzjjDJ46dSqHQiFes2ZNm9rhtTpeaovX6nipLV6r46W2oA5eA16r46W2eBHCOY9LJBI8a9YsvvDCC/mee+5hQRD4xz/+cdEHf/eH+vXr1/P8+fO5oqKCV69e3aPqeKktXqvjpbagDl4DqIPXgNfq1NbW8sSJE3nu3LlF68ePH8+XX3550bp4PM5XXXUV/+AHP+DLLruM161b1+a2eKmOl9ritTpeaovX6nipLaiD14DX6nipLV4lE3iaKIp0+OGHU3V1NU2bNo169epF55xzDhERXXXVVdSrVy8SBIGIiJqamuill16iFStW0GuvvUbDhw/vUXW81Bav1fFSW1AHrwHUwWvAa3U0TaOGhgY666yziIjINE0SRZEGDRpEdXV1RETE1j9sqaKigm677bai/drKS3W81Bav1fFSW7xWx0ttQR28BrxWx0tt8azOyfygJ0kkEkXLf/rTn1gQBL7yyit5+/btzGxdhHrLli2saRrX1dX12DpeaovX6nipLaiD1wDq4DXgtToff/yxM5/L5ZiZ+frrr+fzzz+/aD/3RZvbc70XL9XxUlu8VsdLbfFaHS+1BXXaV8dLbfFaHS+1xYvQc24PEAqFiIjIMAwSRZGmTZtGzEzf//73SRAEmj9/Pi1evJg2btxIjz76KFVWVvbYOl5qi9fqeKktqIPXAOrgNeC1OkOHDiUi6z/TiqIQkfWf661btzr7/PznPyefz0dz584lWZadHnt7ah0vtcVrdbzUFq/V8VJbUAevAa/V8VJbPKmzUj/omUzTdEZD+dOf/sSKovABBxzAsiw7F2jcXep4qS1eq+OltqBOz62BOj27jpfa4rU69n+nr7vuOj755JOZmfmnP/0pC4LAK1euLEsNr9XxUlu8VsdLbfFaHS+1BXV6bg3U6bk1urKOFyCc2wOZpum8SY4//niuqqoq6eLVPamOl9ritTpeagvq9NwaqNOz63ipLV6qY4d/Cxcu5B/+8Id8xx13sM/n4/fff79sNbxWx0tt8VodL7XFa3W81BbU6bk1UKfn1ujKOl6AcG4Ppes6X3HFFSwIAq9atWq3ruOltnitjpfagjo9twbq9Ow6XmqL1+rccsstLAgCR6NRfvfddzulhtfqeKktXqvjpbZ4rY6X2oI6PbcG6vTcGl1ZZ3eGcG4Ppes6L126lFesWLHb1/FSW7xWx0ttQZ2eWwN1enYdL7XFa3XeffddFgSB161b12k1vFbHS23xWh0vtcVrdbzUFtTpuTVQp+fW6Mo6uzOBmbm7r3sH3YOZu+TCi11Rx0tt8VodL7UFdXpuDdTp2XW81Bav1Ukmk86AFKjTc2qgTs+tgTo9twbq9Ow6XmqL1+p4qS27M4RzAAAAAAAAAAAA3UTs7icAAAAAAAAAAACwp0I4BwAAAAAAAAAA0E0QzgEAAAAAAAAAAHQThHMAAAAAAAAAAADdBOEcAAAAAAAAAABAN0E4BwAAAAAAAAAA0E0QzgEAAABAhzEzTZgwgYYOHUqrV6+mCRMm0MaNG7v7aQEAAAD0eAjnAAAAAKBN3nrrLZIkiU499dQW2z7//HOSJInuvvtuOv/88ykWi9GgQYO64VkCAAAA7F4EZubufhIAAAAA0PP94Ac/oHA4TMuWLaOPPvqI+vfv391PCQAAAGC3h55zAAAAALBLiUSCHn/8cZozZw6deuqp9NBDDznb/v3vf5MgCPTKK6/QEUccQcFgkMaOHUsfffRR0WPce++9NHjwYFJVlQ444AD6wx/+0MWtAAAAAOh5EM4BAAAAwC79+c9/pmHDhtEBBxxA06dPpwceeICan4Bx3XXX0Z133knvvfceybJMs2bNcrY9/fTTNG/ePPrRj35Ea9eupYsvvphmzpxJr776alc3BQAAAKBHwWmtAAAAALBL48aNo6lTp9K8efNI13Xq168fPfHEEzR+/Hj697//Td/5znfo5ZdfphNOOIGIiJ577jk69dRTKZ1Ok9/vp3HjxtHBBx9Mv/vd75zHnDp1KiWTSXr22We7q1kAAAAA3Q495wAAAABgpz766CN655136NxzzyUiIlmWadq0abRs2bKi/UaMGOHM9+vXj4iItm7dSkRE69evp3HjxhXtP27cOFq/fn1nPnUAAACAHk/u7icAAAAAAD3bsmXLSNf1ogEgmJl8Ph/dfffdzjpFUZx5QRCIiMg0za57ogAAAAC7IfScAwAAAIAd0nWdHn74Ybrzzjtp5cqVzm3VqlXUv39/euyxx9r0OAceeCAtX768aN3y5cvpoIMO6oynDQAAALDbQM85AAAAANihf/zjH1RfX0+zZ8+maDRatG3KlCm0bNkyuuOOO3b5OD/+8Y9p6tSpNGrUKJowYQI988wz9NRTT9HLL7/cWU8dAAAAYLeAnnMAAAAAsEPLli2jCRMmtAjmiKxw7r333qPVq1fv8nHOOOMM+vWvf02LFy+mgw8+mO677z568MEHafz48Z3wrAEAAAB2HxitFQAAAAAAAAAAoJug5xwAAAAAAAAAAEA3QTgHAAAAAAAAAADQTRDOAQAAAAAAAAAAdBOEcwAAAAAAAAAAAN0E4RwAAAAAAAAAAEA3QTgHAAAAAAAAAADQTRDOAQAAAAAAAAAAdBOEcwAAAAAAAAAAAN0E4RwAAAAAAAAAAEA3QTgHAAAAAAAAAADQTRDOAQAAAAAAAAAAdJP/D4BDMnCceEu8AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Guardar el dataframe agrupado\n", + "df_grouped.to_csv('global_electricity_statistics_by_region.csv')" + ], + "metadata": { + "id": "3HyCu76yuvpS" + }, + "execution_count": 9, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Supongamos que 'df_grouped' es tu DataFrame y quieres predecir la columna '2021'\n", + "df = df_grouped.drop('Total', axis=1) # Eliminar la columna 'Total'\n", + "\n", + "# Limpiar los datos: reemplazar los valores 'NaN' e infinitos por cero\n", + "df = df.replace([np.inf, -np.inf], np.nan).fillna(0)\n", + "\n", + "X = df.drop('2021', axis=1)\n", + "y = df['2021']\n", + "\n", + "# Dividir los datos en conjuntos de entrenamiento y prueba\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.42, random_state=45)\n", + "\n", + "\n", + "# Guardar el índice de X_test antes de cambiar su forma\n", + "X_test_index = X_test.index\n", + "\n", + "# Cambiar la forma de los datos para que sean compatibles con CNN\n", + "X_train = np.expand_dims(X_train, axis=2)\n", + "X_test = np.expand_dims(X_test, axis=2)\n", + "\n", + "# Crear la red CNN\n", + "model = Sequential()\n", + "model.add(Conv1D(filters=64, kernel_size=9, activation='relu', input_shape=(X_train.shape[1], 1))) # Puedes cambiar el número de filtros (64 aquí), el tamaño del kernel (3 aquí) y la función de activación ('relu' aquí)\n", + "model.add(MaxPooling1D(pool_size=2)) # Puedes cambiar el tamaño del pool (2 aquí)\n", + "model.add(Flatten())\n", + "model.add(Dense(90, activation='relu')) # Puedes cambiar el número de neuronas (50 aquí) y la función de activación ('relu' aquí)\n", + "model.add(Dense(1))\n", + "\n", + "# Compilar el modelo\n", + "model.compile(optimizer='adam', loss=MeanSquaredError()) # Puedes cambiar el optimizador ('adam' aquí) y la función de pérdida (MeanSquaredError aquí)\n", + "\n", + "# Ajustar el modelo a los datos de entrenamiento\n", + "history = model.fit(X_train, y_train, epochs=2000, verbose=4) # Puedes cambiar el número de épocas (200 aquí)\n", + "\n", + "# Graficar la pérdida durante el entrenamiento\n", + "plt.plot(history.history['loss'])\n", + "plt.title('Model loss')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Epoch')\n", + "plt.legend(['Train'], loc='upper right')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "nfJrQD1i4qys", + "outputId": "4ca67d91-0d4a-405b-d647-f087ba7b1fa1" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/2000\n", + "Epoch 2/2000\n", + "Epoch 3/2000\n", + "Epoch 4/2000\n", + "Epoch 5/2000\n", + "Epoch 6/2000\n", + "Epoch 7/2000\n", + "Epoch 8/2000\n", + "Epoch 9/2000\n", + "Epoch 10/2000\n", + "Epoch 11/2000\n", + "Epoch 12/2000\n", + "Epoch 13/2000\n", + "Epoch 14/2000\n", + "Epoch 15/2000\n", + "Epoch 16/2000\n", + "Epoch 17/2000\n", + "Epoch 18/2000\n", + "Epoch 19/2000\n", + "Epoch 20/2000\n", + "Epoch 21/2000\n", + "Epoch 22/2000\n", + "Epoch 23/2000\n", + "Epoch 24/2000\n", + "Epoch 25/2000\n", + "Epoch 26/2000\n", + "Epoch 27/2000\n", + "Epoch 28/2000\n", + "Epoch 29/2000\n", + "Epoch 30/2000\n", + "Epoch 31/2000\n", + "Epoch 32/2000\n", + "Epoch 33/2000\n", + "Epoch 34/2000\n", + "Epoch 35/2000\n", + "Epoch 36/2000\n", + "Epoch 37/2000\n", + "Epoch 38/2000\n", + "Epoch 39/2000\n", + "Epoch 40/2000\n", + "Epoch 41/2000\n", + "Epoch 42/2000\n", + "Epoch 43/2000\n", + "Epoch 44/2000\n", + "Epoch 45/2000\n", + "Epoch 46/2000\n", + "Epoch 47/2000\n", + "Epoch 48/2000\n", + "Epoch 49/2000\n", + "Epoch 50/2000\n", + "Epoch 51/2000\n", + "Epoch 52/2000\n", + "Epoch 53/2000\n", + "Epoch 54/2000\n", + "Epoch 55/2000\n", + "Epoch 56/2000\n", + "Epoch 57/2000\n", + "Epoch 58/2000\n", + "Epoch 59/2000\n", + "Epoch 60/2000\n", + "Epoch 61/2000\n", + "Epoch 62/2000\n", + "Epoch 63/2000\n", + "Epoch 64/2000\n", + "Epoch 65/2000\n", + "Epoch 66/2000\n", + "Epoch 67/2000\n", + "Epoch 68/2000\n", + "Epoch 69/2000\n", + "Epoch 70/2000\n", + "Epoch 71/2000\n", + "Epoch 72/2000\n", + "Epoch 73/2000\n", + "Epoch 74/2000\n", + "Epoch 75/2000\n", + "Epoch 76/2000\n", + "Epoch 77/2000\n", + "Epoch 78/2000\n", + "Epoch 79/2000\n", + "Epoch 80/2000\n", + "Epoch 81/2000\n", + "Epoch 82/2000\n", + "Epoch 83/2000\n", + "Epoch 84/2000\n", + "Epoch 85/2000\n", + "Epoch 86/2000\n", + "Epoch 87/2000\n", + "Epoch 88/2000\n", + "Epoch 89/2000\n", + "Epoch 90/2000\n", + "Epoch 91/2000\n", + "Epoch 92/2000\n", + "Epoch 93/2000\n", + "Epoch 94/2000\n", + "Epoch 95/2000\n", + "Epoch 96/2000\n", + "Epoch 97/2000\n", + "Epoch 98/2000\n", + "Epoch 99/2000\n", + "Epoch 100/2000\n", + "Epoch 101/2000\n", + "Epoch 102/2000\n", + "Epoch 103/2000\n", + "Epoch 104/2000\n", + "Epoch 105/2000\n", + "Epoch 106/2000\n", + "Epoch 107/2000\n", + "Epoch 108/2000\n", + "Epoch 109/2000\n", + "Epoch 110/2000\n", + "Epoch 111/2000\n", + "Epoch 112/2000\n", + "Epoch 113/2000\n", + "Epoch 114/2000\n", + "Epoch 115/2000\n", + "Epoch 116/2000\n", + "Epoch 117/2000\n", + "Epoch 118/2000\n", + "Epoch 119/2000\n", + "Epoch 120/2000\n", + "Epoch 121/2000\n", + "Epoch 122/2000\n", + "Epoch 123/2000\n", + "Epoch 124/2000\n", + "Epoch 125/2000\n", + "Epoch 126/2000\n", + "Epoch 127/2000\n", + "Epoch 128/2000\n", + "Epoch 129/2000\n", + "Epoch 130/2000\n", + "Epoch 131/2000\n", + "Epoch 132/2000\n", + "Epoch 133/2000\n", + "Epoch 134/2000\n", + "Epoch 135/2000\n", + "Epoch 136/2000\n", + "Epoch 137/2000\n", + "Epoch 138/2000\n", + "Epoch 139/2000\n", + "Epoch 140/2000\n", + "Epoch 141/2000\n", + "Epoch 142/2000\n", + "Epoch 143/2000\n", + "Epoch 144/2000\n", + "Epoch 145/2000\n", + "Epoch 146/2000\n", + "Epoch 147/2000\n", + "Epoch 148/2000\n", + "Epoch 149/2000\n", + "Epoch 150/2000\n", + "Epoch 151/2000\n", + "Epoch 152/2000\n", + "Epoch 153/2000\n", + "Epoch 154/2000\n", + "Epoch 155/2000\n", + "Epoch 156/2000\n", + "Epoch 157/2000\n", + "Epoch 158/2000\n", + "Epoch 159/2000\n", + "Epoch 160/2000\n", + "Epoch 161/2000\n", + "Epoch 162/2000\n", + "Epoch 163/2000\n", + "Epoch 164/2000\n", + "Epoch 165/2000\n", + "Epoch 166/2000\n", + "Epoch 167/2000\n", + "Epoch 168/2000\n", + "Epoch 169/2000\n", + "Epoch 170/2000\n", + "Epoch 171/2000\n", + "Epoch 172/2000\n", + "Epoch 173/2000\n", + "Epoch 174/2000\n", + "Epoch 175/2000\n", + "Epoch 176/2000\n", + "Epoch 177/2000\n", + "Epoch 178/2000\n", + "Epoch 179/2000\n", + "Epoch 180/2000\n", + "Epoch 181/2000\n", + "Epoch 182/2000\n", + "Epoch 183/2000\n", + "Epoch 184/2000\n", + "Epoch 185/2000\n", + "Epoch 186/2000\n", + "Epoch 187/2000\n", + "Epoch 188/2000\n", + "Epoch 189/2000\n", + "Epoch 190/2000\n", + "Epoch 191/2000\n", + "Epoch 192/2000\n", + "Epoch 193/2000\n", + "Epoch 194/2000\n", + "Epoch 195/2000\n", + "Epoch 196/2000\n", + "Epoch 197/2000\n", + "Epoch 198/2000\n", + "Epoch 199/2000\n", + "Epoch 200/2000\n", + "Epoch 201/2000\n", + "Epoch 202/2000\n", + "Epoch 203/2000\n", + "Epoch 204/2000\n", + "Epoch 205/2000\n", + "Epoch 206/2000\n", + "Epoch 207/2000\n", + "Epoch 208/2000\n", + "Epoch 209/2000\n", + "Epoch 210/2000\n", + "Epoch 211/2000\n", + "Epoch 212/2000\n", + "Epoch 213/2000\n", + "Epoch 214/2000\n", + "Epoch 215/2000\n", + "Epoch 216/2000\n", + "Epoch 217/2000\n", + "Epoch 218/2000\n", + "Epoch 219/2000\n", + "Epoch 220/2000\n", + "Epoch 221/2000\n", + "Epoch 222/2000\n", + "Epoch 223/2000\n", + "Epoch 224/2000\n", + "Epoch 225/2000\n", + "Epoch 226/2000\n", + "Epoch 227/2000\n", + "Epoch 228/2000\n", + "Epoch 229/2000\n", + "Epoch 230/2000\n", + "Epoch 231/2000\n", + "Epoch 232/2000\n", + "Epoch 233/2000\n", + "Epoch 234/2000\n", + "Epoch 235/2000\n", + "Epoch 236/2000\n", + "Epoch 237/2000\n", + "Epoch 238/2000\n", + "Epoch 239/2000\n", + "Epoch 240/2000\n", + "Epoch 241/2000\n", + "Epoch 242/2000\n", + "Epoch 243/2000\n", + "Epoch 244/2000\n", + "Epoch 245/2000\n", + "Epoch 246/2000\n", + "Epoch 247/2000\n", + "Epoch 248/2000\n", + "Epoch 249/2000\n", + "Epoch 250/2000\n", + "Epoch 251/2000\n", + "Epoch 252/2000\n", + "Epoch 253/2000\n", + "Epoch 254/2000\n", + "Epoch 255/2000\n", + "Epoch 256/2000\n", + "Epoch 257/2000\n", + "Epoch 258/2000\n", + "Epoch 259/2000\n", + "Epoch 260/2000\n", + "Epoch 261/2000\n", + "Epoch 262/2000\n", + "Epoch 263/2000\n", + "Epoch 264/2000\n", + "Epoch 265/2000\n", + "Epoch 266/2000\n", + "Epoch 267/2000\n", + "Epoch 268/2000\n", + "Epoch 269/2000\n", + "Epoch 270/2000\n", + "Epoch 271/2000\n", + "Epoch 272/2000\n", + "Epoch 273/2000\n", + "Epoch 274/2000\n", + "Epoch 275/2000\n", + "Epoch 276/2000\n", + "Epoch 277/2000\n", + "Epoch 278/2000\n", + "Epoch 279/2000\n", + "Epoch 280/2000\n", + "Epoch 281/2000\n", + "Epoch 282/2000\n", + "Epoch 283/2000\n", + "Epoch 284/2000\n", + "Epoch 285/2000\n", + "Epoch 286/2000\n", + "Epoch 287/2000\n", + "Epoch 288/2000\n", + "Epoch 289/2000\n", + "Epoch 290/2000\n", + "Epoch 291/2000\n", + "Epoch 292/2000\n", + "Epoch 293/2000\n", + "Epoch 294/2000\n", + "Epoch 295/2000\n", + "Epoch 296/2000\n", + "Epoch 297/2000\n", + "Epoch 298/2000\n", + "Epoch 299/2000\n", + "Epoch 300/2000\n", + "Epoch 301/2000\n", + "Epoch 302/2000\n", + "Epoch 303/2000\n", + "Epoch 304/2000\n", + "Epoch 305/2000\n", + "Epoch 306/2000\n", + "Epoch 307/2000\n", + "Epoch 308/2000\n", + "Epoch 309/2000\n", + "Epoch 310/2000\n", + "Epoch 311/2000\n", + "Epoch 312/2000\n", + "Epoch 313/2000\n", + "Epoch 314/2000\n", + "Epoch 315/2000\n", + "Epoch 316/2000\n", + "Epoch 317/2000\n", + "Epoch 318/2000\n", + "Epoch 319/2000\n", + "Epoch 320/2000\n", + "Epoch 321/2000\n", + "Epoch 322/2000\n", + "Epoch 323/2000\n", + "Epoch 324/2000\n", + "Epoch 325/2000\n", + "Epoch 326/2000\n", + "Epoch 327/2000\n", + "Epoch 328/2000\n", + "Epoch 329/2000\n", + "Epoch 330/2000\n", + "Epoch 331/2000\n", + "Epoch 332/2000\n", + "Epoch 333/2000\n", + "Epoch 334/2000\n", + "Epoch 335/2000\n", + "Epoch 336/2000\n", + "Epoch 337/2000\n", + "Epoch 338/2000\n", + "Epoch 339/2000\n", + "Epoch 340/2000\n", + "Epoch 341/2000\n", + "Epoch 342/2000\n", + "Epoch 343/2000\n", + "Epoch 344/2000\n", + "Epoch 345/2000\n", + "Epoch 346/2000\n", + "Epoch 347/2000\n", + "Epoch 348/2000\n", + "Epoch 349/2000\n", + "Epoch 350/2000\n", + "Epoch 351/2000\n", + "Epoch 352/2000\n", + "Epoch 353/2000\n", + "Epoch 354/2000\n", + "Epoch 355/2000\n", + "Epoch 356/2000\n", + "Epoch 357/2000\n", + "Epoch 358/2000\n", + "Epoch 359/2000\n", + "Epoch 360/2000\n", + "Epoch 361/2000\n", + "Epoch 362/2000\n", + "Epoch 363/2000\n", + "Epoch 364/2000\n", + "Epoch 365/2000\n", + "Epoch 366/2000\n", + "Epoch 367/2000\n", + "Epoch 368/2000\n", + "Epoch 369/2000\n", + "Epoch 370/2000\n", + "Epoch 371/2000\n", + "Epoch 372/2000\n", + "Epoch 373/2000\n", + "Epoch 374/2000\n", + "Epoch 375/2000\n", + "Epoch 376/2000\n", + "Epoch 377/2000\n", + "Epoch 378/2000\n", + "Epoch 379/2000\n", + "Epoch 380/2000\n", + "Epoch 381/2000\n", + "Epoch 382/2000\n", + "Epoch 383/2000\n", + "Epoch 384/2000\n", + "Epoch 385/2000\n", + "Epoch 386/2000\n", + "Epoch 387/2000\n", + "Epoch 388/2000\n", + "Epoch 389/2000\n", + "Epoch 390/2000\n", + "Epoch 391/2000\n", + "Epoch 392/2000\n", + "Epoch 393/2000\n", + "Epoch 394/2000\n", + "Epoch 395/2000\n", + "Epoch 396/2000\n", + "Epoch 397/2000\n", + "Epoch 398/2000\n", + "Epoch 399/2000\n", + "Epoch 400/2000\n", + "Epoch 401/2000\n", + "Epoch 402/2000\n", + "Epoch 403/2000\n", + "Epoch 404/2000\n", + "Epoch 405/2000\n", + "Epoch 406/2000\n", + "Epoch 407/2000\n", + "Epoch 408/2000\n", + "Epoch 409/2000\n", + "Epoch 410/2000\n", + "Epoch 411/2000\n", + "Epoch 412/2000\n", + "Epoch 413/2000\n", + "Epoch 414/2000\n", + "Epoch 415/2000\n", + "Epoch 416/2000\n", + "Epoch 417/2000\n", + "Epoch 418/2000\n", + "Epoch 419/2000\n", + "Epoch 420/2000\n", + "Epoch 421/2000\n", + "Epoch 422/2000\n", + "Epoch 423/2000\n", + "Epoch 424/2000\n", + "Epoch 425/2000\n", + "Epoch 426/2000\n", + "Epoch 427/2000\n", + "Epoch 428/2000\n", + "Epoch 429/2000\n", + "Epoch 430/2000\n", + "Epoch 431/2000\n", + "Epoch 432/2000\n", + "Epoch 433/2000\n", + "Epoch 434/2000\n", + "Epoch 435/2000\n", + "Epoch 436/2000\n", + "Epoch 437/2000\n", + "Epoch 438/2000\n", + "Epoch 439/2000\n", + "Epoch 440/2000\n", + "Epoch 441/2000\n", + "Epoch 442/2000\n", + "Epoch 443/2000\n", + "Epoch 444/2000\n", + "Epoch 445/2000\n", + "Epoch 446/2000\n", + "Epoch 447/2000\n", + "Epoch 448/2000\n", + "Epoch 449/2000\n", + "Epoch 450/2000\n", + "Epoch 451/2000\n", + "Epoch 452/2000\n", + "Epoch 453/2000\n", + "Epoch 454/2000\n", + "Epoch 455/2000\n", + "Epoch 456/2000\n", + "Epoch 457/2000\n", + "Epoch 458/2000\n", + "Epoch 459/2000\n", + "Epoch 460/2000\n", + "Epoch 461/2000\n", + "Epoch 462/2000\n", + "Epoch 463/2000\n", + "Epoch 464/2000\n", + "Epoch 465/2000\n", + "Epoch 466/2000\n", + "Epoch 467/2000\n", + "Epoch 468/2000\n", + "Epoch 469/2000\n", + "Epoch 470/2000\n", + "Epoch 471/2000\n", + "Epoch 472/2000\n", + "Epoch 473/2000\n", + "Epoch 474/2000\n", + "Epoch 475/2000\n", + "Epoch 476/2000\n", + "Epoch 477/2000\n", + "Epoch 478/2000\n", + "Epoch 479/2000\n", + "Epoch 480/2000\n", + "Epoch 481/2000\n", + "Epoch 482/2000\n", + "Epoch 483/2000\n", + "Epoch 484/2000\n", + "Epoch 485/2000\n", + "Epoch 486/2000\n", + "Epoch 487/2000\n", + "Epoch 488/2000\n", + "Epoch 489/2000\n", + "Epoch 490/2000\n", + "Epoch 491/2000\n", + "Epoch 492/2000\n", + "Epoch 493/2000\n", + "Epoch 494/2000\n", + "Epoch 495/2000\n", + "Epoch 496/2000\n", + "Epoch 497/2000\n", + "Epoch 498/2000\n", + "Epoch 499/2000\n", + "Epoch 500/2000\n", + "Epoch 501/2000\n", + "Epoch 502/2000\n", + "Epoch 503/2000\n", + "Epoch 504/2000\n", + "Epoch 505/2000\n", + "Epoch 506/2000\n", + "Epoch 507/2000\n", + "Epoch 508/2000\n", + "Epoch 509/2000\n", + "Epoch 510/2000\n", + "Epoch 511/2000\n", + "Epoch 512/2000\n", + "Epoch 513/2000\n", + "Epoch 514/2000\n", + "Epoch 515/2000\n", + "Epoch 516/2000\n", + "Epoch 517/2000\n", + "Epoch 518/2000\n", + "Epoch 519/2000\n", + "Epoch 520/2000\n", + "Epoch 521/2000\n", + "Epoch 522/2000\n", + "Epoch 523/2000\n", + "Epoch 524/2000\n", + "Epoch 525/2000\n", + "Epoch 526/2000\n", + "Epoch 527/2000\n", + "Epoch 528/2000\n", + "Epoch 529/2000\n", + "Epoch 530/2000\n", + "Epoch 531/2000\n", + "Epoch 532/2000\n", + "Epoch 533/2000\n", + "Epoch 534/2000\n", + "Epoch 535/2000\n", + "Epoch 536/2000\n", + "Epoch 537/2000\n", + "Epoch 538/2000\n", + "Epoch 539/2000\n", + "Epoch 540/2000\n", + "Epoch 541/2000\n", + "Epoch 542/2000\n", + "Epoch 543/2000\n", + "Epoch 544/2000\n", + "Epoch 545/2000\n", + "Epoch 546/2000\n", + "Epoch 547/2000\n", + "Epoch 548/2000\n", + "Epoch 549/2000\n", + "Epoch 550/2000\n", + "Epoch 551/2000\n", + "Epoch 552/2000\n", + "Epoch 553/2000\n", + "Epoch 554/2000\n", + "Epoch 555/2000\n", + "Epoch 556/2000\n", + "Epoch 557/2000\n", + "Epoch 558/2000\n", + "Epoch 559/2000\n", + "Epoch 560/2000\n", + "Epoch 561/2000\n", + "Epoch 562/2000\n", + "Epoch 563/2000\n", + "Epoch 564/2000\n", + "Epoch 565/2000\n", + "Epoch 566/2000\n", + "Epoch 567/2000\n", + "Epoch 568/2000\n", + "Epoch 569/2000\n", + "Epoch 570/2000\n", + "Epoch 571/2000\n", + "Epoch 572/2000\n", + "Epoch 573/2000\n", + "Epoch 574/2000\n", + "Epoch 575/2000\n", + "Epoch 576/2000\n", + "Epoch 577/2000\n", + "Epoch 578/2000\n", + "Epoch 579/2000\n", + "Epoch 580/2000\n", + "Epoch 581/2000\n", + "Epoch 582/2000\n", + "Epoch 583/2000\n", + "Epoch 584/2000\n", + "Epoch 585/2000\n", + "Epoch 586/2000\n", + "Epoch 587/2000\n", + "Epoch 588/2000\n", + "Epoch 589/2000\n", + "Epoch 590/2000\n", + "Epoch 591/2000\n", + "Epoch 592/2000\n", + "Epoch 593/2000\n", + "Epoch 594/2000\n", + "Epoch 595/2000\n", + "Epoch 596/2000\n", + "Epoch 597/2000\n", + "Epoch 598/2000\n", + "Epoch 599/2000\n", + "Epoch 600/2000\n", + "Epoch 601/2000\n", + "Epoch 602/2000\n", + "Epoch 603/2000\n", + "Epoch 604/2000\n", + "Epoch 605/2000\n", + "Epoch 606/2000\n", + "Epoch 607/2000\n", + "Epoch 608/2000\n", + "Epoch 609/2000\n", + "Epoch 610/2000\n", + "Epoch 611/2000\n", + "Epoch 612/2000\n", + "Epoch 613/2000\n", + "Epoch 614/2000\n", + "Epoch 615/2000\n", + "Epoch 616/2000\n", + "Epoch 617/2000\n", + "Epoch 618/2000\n", + "Epoch 619/2000\n", + "Epoch 620/2000\n", + "Epoch 621/2000\n", + "Epoch 622/2000\n", + "Epoch 623/2000\n", + "Epoch 624/2000\n", + "Epoch 625/2000\n", + "Epoch 626/2000\n", + "Epoch 627/2000\n", + "Epoch 628/2000\n", + "Epoch 629/2000\n", + "Epoch 630/2000\n", + "Epoch 631/2000\n", + "Epoch 632/2000\n", + "Epoch 633/2000\n", + "Epoch 634/2000\n", + "Epoch 635/2000\n", + "Epoch 636/2000\n", + "Epoch 637/2000\n", + "Epoch 638/2000\n", + "Epoch 639/2000\n", + "Epoch 640/2000\n", + "Epoch 641/2000\n", + "Epoch 642/2000\n", + "Epoch 643/2000\n", + "Epoch 644/2000\n", + "Epoch 645/2000\n", + "Epoch 646/2000\n", + "Epoch 647/2000\n", + "Epoch 648/2000\n", + "Epoch 649/2000\n", + "Epoch 650/2000\n", + "Epoch 651/2000\n", + "Epoch 652/2000\n", + "Epoch 653/2000\n", + "Epoch 654/2000\n", + "Epoch 655/2000\n", + "Epoch 656/2000\n", + "Epoch 657/2000\n", + "Epoch 658/2000\n", + "Epoch 659/2000\n", + "Epoch 660/2000\n", + "Epoch 661/2000\n", + "Epoch 662/2000\n", + "Epoch 663/2000\n", + "Epoch 664/2000\n", + "Epoch 665/2000\n", + "Epoch 666/2000\n", + "Epoch 667/2000\n", + "Epoch 668/2000\n", + "Epoch 669/2000\n", + "Epoch 670/2000\n", + "Epoch 671/2000\n", + "Epoch 672/2000\n", + "Epoch 673/2000\n", + "Epoch 674/2000\n", + "Epoch 675/2000\n", + "Epoch 676/2000\n", + "Epoch 677/2000\n", + "Epoch 678/2000\n", + "Epoch 679/2000\n", + "Epoch 680/2000\n", + "Epoch 681/2000\n", + "Epoch 682/2000\n", + "Epoch 683/2000\n", + "Epoch 684/2000\n", + "Epoch 685/2000\n", + "Epoch 686/2000\n", + "Epoch 687/2000\n", + "Epoch 688/2000\n", + "Epoch 689/2000\n", + "Epoch 690/2000\n", + "Epoch 691/2000\n", + "Epoch 692/2000\n", + "Epoch 693/2000\n", + "Epoch 694/2000\n", + "Epoch 695/2000\n", + "Epoch 696/2000\n", + "Epoch 697/2000\n", + "Epoch 698/2000\n", + "Epoch 699/2000\n", + "Epoch 700/2000\n", + "Epoch 701/2000\n", + "Epoch 702/2000\n", + "Epoch 703/2000\n", + "Epoch 704/2000\n", + "Epoch 705/2000\n", + "Epoch 706/2000\n", + "Epoch 707/2000\n", + "Epoch 708/2000\n", + "Epoch 709/2000\n", + "Epoch 710/2000\n", + "Epoch 711/2000\n", + "Epoch 712/2000\n", + "Epoch 713/2000\n", + "Epoch 714/2000\n", + "Epoch 715/2000\n", + "Epoch 716/2000\n", + "Epoch 717/2000\n", + "Epoch 718/2000\n", + "Epoch 719/2000\n", + "Epoch 720/2000\n", + "Epoch 721/2000\n", + "Epoch 722/2000\n", + "Epoch 723/2000\n", + "Epoch 724/2000\n", + "Epoch 725/2000\n", + "Epoch 726/2000\n", + "Epoch 727/2000\n", + "Epoch 728/2000\n", + "Epoch 729/2000\n", + "Epoch 730/2000\n", + "Epoch 731/2000\n", + "Epoch 732/2000\n", + "Epoch 733/2000\n", + "Epoch 734/2000\n", + "Epoch 735/2000\n", + "Epoch 736/2000\n", + "Epoch 737/2000\n", + "Epoch 738/2000\n", + "Epoch 739/2000\n", + "Epoch 740/2000\n", + "Epoch 741/2000\n", + "Epoch 742/2000\n", + "Epoch 743/2000\n", + "Epoch 744/2000\n", + "Epoch 745/2000\n", + "Epoch 746/2000\n", + "Epoch 747/2000\n", + "Epoch 748/2000\n", + "Epoch 749/2000\n", + "Epoch 750/2000\n", + "Epoch 751/2000\n", + "Epoch 752/2000\n", + "Epoch 753/2000\n", + "Epoch 754/2000\n", + "Epoch 755/2000\n", + "Epoch 756/2000\n", + "Epoch 757/2000\n", + "Epoch 758/2000\n", + "Epoch 759/2000\n", + "Epoch 760/2000\n", + "Epoch 761/2000\n", + "Epoch 762/2000\n", + "Epoch 763/2000\n", + "Epoch 764/2000\n", + "Epoch 765/2000\n", + "Epoch 766/2000\n", + "Epoch 767/2000\n", + "Epoch 768/2000\n", + "Epoch 769/2000\n", + "Epoch 770/2000\n", + "Epoch 771/2000\n", + "Epoch 772/2000\n", + "Epoch 773/2000\n", + "Epoch 774/2000\n", + "Epoch 775/2000\n", + "Epoch 776/2000\n", + "Epoch 777/2000\n", + "Epoch 778/2000\n", + "Epoch 779/2000\n", + "Epoch 780/2000\n", + "Epoch 781/2000\n", + "Epoch 782/2000\n", + "Epoch 783/2000\n", + "Epoch 784/2000\n", + "Epoch 785/2000\n", + "Epoch 786/2000\n", + "Epoch 787/2000\n", + "Epoch 788/2000\n", + "Epoch 789/2000\n", + "Epoch 790/2000\n", + "Epoch 791/2000\n", + "Epoch 792/2000\n", + "Epoch 793/2000\n", + "Epoch 794/2000\n", + "Epoch 795/2000\n", + "Epoch 796/2000\n", + "Epoch 797/2000\n", + "Epoch 798/2000\n", + "Epoch 799/2000\n", + "Epoch 800/2000\n", + "Epoch 801/2000\n", + "Epoch 802/2000\n", + "Epoch 803/2000\n", + "Epoch 804/2000\n", + "Epoch 805/2000\n", + "Epoch 806/2000\n", + "Epoch 807/2000\n", + "Epoch 808/2000\n", + "Epoch 809/2000\n", + "Epoch 810/2000\n", + "Epoch 811/2000\n", + "Epoch 812/2000\n", + "Epoch 813/2000\n", + "Epoch 814/2000\n", + "Epoch 815/2000\n", + "Epoch 816/2000\n", + "Epoch 817/2000\n", + "Epoch 818/2000\n", + "Epoch 819/2000\n", + "Epoch 820/2000\n", + "Epoch 821/2000\n", + "Epoch 822/2000\n", + "Epoch 823/2000\n", + "Epoch 824/2000\n", + "Epoch 825/2000\n", + "Epoch 826/2000\n", + "Epoch 827/2000\n", + "Epoch 828/2000\n", + "Epoch 829/2000\n", + "Epoch 830/2000\n", + "Epoch 831/2000\n", + "Epoch 832/2000\n", + "Epoch 833/2000\n", + "Epoch 834/2000\n", + "Epoch 835/2000\n", + "Epoch 836/2000\n", + "Epoch 837/2000\n", + "Epoch 838/2000\n", + "Epoch 839/2000\n", + "Epoch 840/2000\n", + "Epoch 841/2000\n", + "Epoch 842/2000\n", + "Epoch 843/2000\n", + "Epoch 844/2000\n", + "Epoch 845/2000\n", + "Epoch 846/2000\n", + "Epoch 847/2000\n", + "Epoch 848/2000\n", + "Epoch 849/2000\n", + "Epoch 850/2000\n", + "Epoch 851/2000\n", + "Epoch 852/2000\n", + "Epoch 853/2000\n", + "Epoch 854/2000\n", + "Epoch 855/2000\n", + "Epoch 856/2000\n", + "Epoch 857/2000\n", + "Epoch 858/2000\n", + "Epoch 859/2000\n", + "Epoch 860/2000\n", + "Epoch 861/2000\n", + "Epoch 862/2000\n", + "Epoch 863/2000\n", + "Epoch 864/2000\n", + "Epoch 865/2000\n", + "Epoch 866/2000\n", + "Epoch 867/2000\n", + "Epoch 868/2000\n", + "Epoch 869/2000\n", + "Epoch 870/2000\n", + "Epoch 871/2000\n", + "Epoch 872/2000\n", + "Epoch 873/2000\n", + "Epoch 874/2000\n", + "Epoch 875/2000\n", + "Epoch 876/2000\n", + "Epoch 877/2000\n", + "Epoch 878/2000\n", + "Epoch 879/2000\n", + "Epoch 880/2000\n", + "Epoch 881/2000\n", + "Epoch 882/2000\n", + "Epoch 883/2000\n", + "Epoch 884/2000\n", + "Epoch 885/2000\n", + "Epoch 886/2000\n", + "Epoch 887/2000\n", + "Epoch 888/2000\n", + "Epoch 889/2000\n", + "Epoch 890/2000\n", + "Epoch 891/2000\n", + "Epoch 892/2000\n", + "Epoch 893/2000\n", + "Epoch 894/2000\n", + "Epoch 895/2000\n", + "Epoch 896/2000\n", + "Epoch 897/2000\n", + "Epoch 898/2000\n", + "Epoch 899/2000\n", + "Epoch 900/2000\n", + "Epoch 901/2000\n", + "Epoch 902/2000\n", + "Epoch 903/2000\n", + "Epoch 904/2000\n", + "Epoch 905/2000\n", + "Epoch 906/2000\n", + "Epoch 907/2000\n", + "Epoch 908/2000\n", + "Epoch 909/2000\n", + "Epoch 910/2000\n", + "Epoch 911/2000\n", + "Epoch 912/2000\n", + "Epoch 913/2000\n", + "Epoch 914/2000\n", + "Epoch 915/2000\n", + "Epoch 916/2000\n", + "Epoch 917/2000\n", + "Epoch 918/2000\n", + "Epoch 919/2000\n", + "Epoch 920/2000\n", + "Epoch 921/2000\n", + "Epoch 922/2000\n", + "Epoch 923/2000\n", + "Epoch 924/2000\n", + "Epoch 925/2000\n", + "Epoch 926/2000\n", + "Epoch 927/2000\n", + "Epoch 928/2000\n", + "Epoch 929/2000\n", + "Epoch 930/2000\n", + "Epoch 931/2000\n", + "Epoch 932/2000\n", + "Epoch 933/2000\n", + "Epoch 934/2000\n", + "Epoch 935/2000\n", + "Epoch 936/2000\n", + "Epoch 937/2000\n", + "Epoch 938/2000\n", + "Epoch 939/2000\n", + "Epoch 940/2000\n", + "Epoch 941/2000\n", + "Epoch 942/2000\n", + "Epoch 943/2000\n", + "Epoch 944/2000\n", + "Epoch 945/2000\n", + "Epoch 946/2000\n", + "Epoch 947/2000\n", + "Epoch 948/2000\n", + "Epoch 949/2000\n", + "Epoch 950/2000\n", + "Epoch 951/2000\n", + "Epoch 952/2000\n", + "Epoch 953/2000\n", + "Epoch 954/2000\n", + "Epoch 955/2000\n", + "Epoch 956/2000\n", + "Epoch 957/2000\n", + "Epoch 958/2000\n", + "Epoch 959/2000\n", + "Epoch 960/2000\n", + "Epoch 961/2000\n", + "Epoch 962/2000\n", + "Epoch 963/2000\n", + "Epoch 964/2000\n", + "Epoch 965/2000\n", + "Epoch 966/2000\n", + "Epoch 967/2000\n", + "Epoch 968/2000\n", + "Epoch 969/2000\n", + "Epoch 970/2000\n", + "Epoch 971/2000\n", + "Epoch 972/2000\n", + "Epoch 973/2000\n", + "Epoch 974/2000\n", + "Epoch 975/2000\n", + "Epoch 976/2000\n", + "Epoch 977/2000\n", + "Epoch 978/2000\n", + "Epoch 979/2000\n", + "Epoch 980/2000\n", + "Epoch 981/2000\n", + "Epoch 982/2000\n", + "Epoch 983/2000\n", + "Epoch 984/2000\n", + "Epoch 985/2000\n", + "Epoch 986/2000\n", + "Epoch 987/2000\n", + "Epoch 988/2000\n", + "Epoch 989/2000\n", + "Epoch 990/2000\n", + "Epoch 991/2000\n", + "Epoch 992/2000\n", + "Epoch 993/2000\n", + "Epoch 994/2000\n", + "Epoch 995/2000\n", + "Epoch 996/2000\n", + "Epoch 997/2000\n", + "Epoch 998/2000\n", + "Epoch 999/2000\n", + "Epoch 1000/2000\n", + "Epoch 1001/2000\n", + "Epoch 1002/2000\n", + "Epoch 1003/2000\n", + "Epoch 1004/2000\n", + "Epoch 1005/2000\n", + "Epoch 1006/2000\n", + "Epoch 1007/2000\n", + "Epoch 1008/2000\n", + "Epoch 1009/2000\n", + "Epoch 1010/2000\n", + "Epoch 1011/2000\n", + "Epoch 1012/2000\n", + "Epoch 1013/2000\n", + "Epoch 1014/2000\n", + "Epoch 1015/2000\n", + "Epoch 1016/2000\n", + "Epoch 1017/2000\n", + "Epoch 1018/2000\n", + "Epoch 1019/2000\n", + "Epoch 1020/2000\n", + "Epoch 1021/2000\n", + "Epoch 1022/2000\n", + "Epoch 1023/2000\n", + "Epoch 1024/2000\n", + "Epoch 1025/2000\n", + "Epoch 1026/2000\n", + "Epoch 1027/2000\n", + "Epoch 1028/2000\n", + "Epoch 1029/2000\n", + "Epoch 1030/2000\n", + "Epoch 1031/2000\n", + "Epoch 1032/2000\n", + "Epoch 1033/2000\n", + "Epoch 1034/2000\n", + "Epoch 1035/2000\n", + "Epoch 1036/2000\n", + "Epoch 1037/2000\n", + "Epoch 1038/2000\n", + "Epoch 1039/2000\n", + "Epoch 1040/2000\n", + "Epoch 1041/2000\n", + "Epoch 1042/2000\n", + "Epoch 1043/2000\n", + "Epoch 1044/2000\n", + "Epoch 1045/2000\n", + "Epoch 1046/2000\n", + "Epoch 1047/2000\n", + "Epoch 1048/2000\n", + "Epoch 1049/2000\n", + "Epoch 1050/2000\n", + "Epoch 1051/2000\n", + "Epoch 1052/2000\n", + "Epoch 1053/2000\n", + "Epoch 1054/2000\n", + "Epoch 1055/2000\n", + "Epoch 1056/2000\n", + "Epoch 1057/2000\n", + "Epoch 1058/2000\n", + "Epoch 1059/2000\n", + "Epoch 1060/2000\n", + "Epoch 1061/2000\n", + "Epoch 1062/2000\n", + "Epoch 1063/2000\n", + "Epoch 1064/2000\n", + "Epoch 1065/2000\n", + "Epoch 1066/2000\n", + "Epoch 1067/2000\n", + "Epoch 1068/2000\n", + "Epoch 1069/2000\n", + "Epoch 1070/2000\n", + "Epoch 1071/2000\n", + "Epoch 1072/2000\n", + "Epoch 1073/2000\n", + "Epoch 1074/2000\n", + "Epoch 1075/2000\n", + "Epoch 1076/2000\n", + "Epoch 1077/2000\n", + "Epoch 1078/2000\n", + "Epoch 1079/2000\n", + "Epoch 1080/2000\n", + "Epoch 1081/2000\n", + "Epoch 1082/2000\n", + "Epoch 1083/2000\n", + "Epoch 1084/2000\n", + "Epoch 1085/2000\n", + "Epoch 1086/2000\n", + "Epoch 1087/2000\n", + "Epoch 1088/2000\n", + "Epoch 1089/2000\n", + "Epoch 1090/2000\n", + "Epoch 1091/2000\n", + "Epoch 1092/2000\n", + "Epoch 1093/2000\n", + "Epoch 1094/2000\n", + "Epoch 1095/2000\n", + "Epoch 1096/2000\n", + "Epoch 1097/2000\n", + "Epoch 1098/2000\n", + "Epoch 1099/2000\n", + "Epoch 1100/2000\n", + "Epoch 1101/2000\n", + "Epoch 1102/2000\n", + "Epoch 1103/2000\n", + "Epoch 1104/2000\n", + "Epoch 1105/2000\n", + "Epoch 1106/2000\n", + "Epoch 1107/2000\n", + "Epoch 1108/2000\n", + "Epoch 1109/2000\n", + "Epoch 1110/2000\n", + "Epoch 1111/2000\n", + "Epoch 1112/2000\n", + "Epoch 1113/2000\n", + "Epoch 1114/2000\n", + "Epoch 1115/2000\n", + "Epoch 1116/2000\n", + "Epoch 1117/2000\n", + "Epoch 1118/2000\n", + "Epoch 1119/2000\n", + "Epoch 1120/2000\n", + "Epoch 1121/2000\n", + "Epoch 1122/2000\n", + "Epoch 1123/2000\n", + "Epoch 1124/2000\n", + "Epoch 1125/2000\n", + "Epoch 1126/2000\n", + "Epoch 1127/2000\n", + "Epoch 1128/2000\n", + "Epoch 1129/2000\n", + "Epoch 1130/2000\n", + "Epoch 1131/2000\n", + "Epoch 1132/2000\n", + "Epoch 1133/2000\n", + "Epoch 1134/2000\n", + "Epoch 1135/2000\n", + "Epoch 1136/2000\n", + "Epoch 1137/2000\n", + "Epoch 1138/2000\n", + "Epoch 1139/2000\n", + "Epoch 1140/2000\n", + "Epoch 1141/2000\n", + "Epoch 1142/2000\n", + "Epoch 1143/2000\n", + "Epoch 1144/2000\n", + "Epoch 1145/2000\n", + "Epoch 1146/2000\n", + "Epoch 1147/2000\n", + "Epoch 1148/2000\n", + "Epoch 1149/2000\n", + "Epoch 1150/2000\n", + "Epoch 1151/2000\n", + "Epoch 1152/2000\n", + "Epoch 1153/2000\n", + "Epoch 1154/2000\n", + "Epoch 1155/2000\n", + "Epoch 1156/2000\n", + "Epoch 1157/2000\n", + "Epoch 1158/2000\n", + "Epoch 1159/2000\n", + "Epoch 1160/2000\n", + "Epoch 1161/2000\n", + "Epoch 1162/2000\n", + "Epoch 1163/2000\n", + "Epoch 1164/2000\n", + "Epoch 1165/2000\n", + "Epoch 1166/2000\n", + "Epoch 1167/2000\n", + "Epoch 1168/2000\n", + "Epoch 1169/2000\n", + "Epoch 1170/2000\n", + "Epoch 1171/2000\n", + "Epoch 1172/2000\n", + "Epoch 1173/2000\n", + "Epoch 1174/2000\n", + "Epoch 1175/2000\n", + "Epoch 1176/2000\n", + "Epoch 1177/2000\n", + "Epoch 1178/2000\n", + "Epoch 1179/2000\n", + "Epoch 1180/2000\n", + "Epoch 1181/2000\n", + "Epoch 1182/2000\n", + "Epoch 1183/2000\n", + "Epoch 1184/2000\n", + "Epoch 1185/2000\n", + "Epoch 1186/2000\n", + "Epoch 1187/2000\n", + "Epoch 1188/2000\n", + "Epoch 1189/2000\n", + "Epoch 1190/2000\n", + "Epoch 1191/2000\n", + "Epoch 1192/2000\n", + "Epoch 1193/2000\n", + "Epoch 1194/2000\n", + "Epoch 1195/2000\n", + "Epoch 1196/2000\n", + "Epoch 1197/2000\n", + "Epoch 1198/2000\n", + "Epoch 1199/2000\n", + "Epoch 1200/2000\n", + "Epoch 1201/2000\n", + "Epoch 1202/2000\n", + "Epoch 1203/2000\n", + "Epoch 1204/2000\n", + "Epoch 1205/2000\n", + "Epoch 1206/2000\n", + "Epoch 1207/2000\n", + "Epoch 1208/2000\n", + "Epoch 1209/2000\n", + "Epoch 1210/2000\n", + "Epoch 1211/2000\n", + "Epoch 1212/2000\n", + "Epoch 1213/2000\n", + "Epoch 1214/2000\n", + "Epoch 1215/2000\n", + "Epoch 1216/2000\n", + "Epoch 1217/2000\n", + "Epoch 1218/2000\n", + "Epoch 1219/2000\n", + "Epoch 1220/2000\n", + "Epoch 1221/2000\n", + "Epoch 1222/2000\n", + "Epoch 1223/2000\n", + "Epoch 1224/2000\n", + "Epoch 1225/2000\n", + "Epoch 1226/2000\n", + "Epoch 1227/2000\n", + "Epoch 1228/2000\n", + "Epoch 1229/2000\n", + "Epoch 1230/2000\n", + "Epoch 1231/2000\n", + "Epoch 1232/2000\n", + "Epoch 1233/2000\n", + "Epoch 1234/2000\n", + "Epoch 1235/2000\n", + "Epoch 1236/2000\n", + "Epoch 1237/2000\n", + "Epoch 1238/2000\n", + "Epoch 1239/2000\n", + "Epoch 1240/2000\n", + "Epoch 1241/2000\n", + "Epoch 1242/2000\n", + "Epoch 1243/2000\n", + "Epoch 1244/2000\n", + "Epoch 1245/2000\n", + "Epoch 1246/2000\n", + "Epoch 1247/2000\n", + "Epoch 1248/2000\n", + "Epoch 1249/2000\n", + "Epoch 1250/2000\n", + "Epoch 1251/2000\n", + "Epoch 1252/2000\n", + "Epoch 1253/2000\n", + "Epoch 1254/2000\n", + "Epoch 1255/2000\n", + "Epoch 1256/2000\n", + "Epoch 1257/2000\n", + "Epoch 1258/2000\n", + "Epoch 1259/2000\n", + "Epoch 1260/2000\n", + "Epoch 1261/2000\n", + "Epoch 1262/2000\n", + "Epoch 1263/2000\n", + "Epoch 1264/2000\n", + "Epoch 1265/2000\n", + "Epoch 1266/2000\n", + "Epoch 1267/2000\n", + "Epoch 1268/2000\n", + "Epoch 1269/2000\n", + "Epoch 1270/2000\n", + "Epoch 1271/2000\n", + "Epoch 1272/2000\n", + "Epoch 1273/2000\n", + "Epoch 1274/2000\n", + "Epoch 1275/2000\n", + "Epoch 1276/2000\n", + "Epoch 1277/2000\n", + "Epoch 1278/2000\n", + "Epoch 1279/2000\n", + "Epoch 1280/2000\n", + "Epoch 1281/2000\n", + "Epoch 1282/2000\n", + "Epoch 1283/2000\n", + "Epoch 1284/2000\n", + "Epoch 1285/2000\n", + "Epoch 1286/2000\n", + "Epoch 1287/2000\n", + "Epoch 1288/2000\n", + "Epoch 1289/2000\n", + "Epoch 1290/2000\n", + "Epoch 1291/2000\n", + "Epoch 1292/2000\n", + "Epoch 1293/2000\n", + "Epoch 1294/2000\n", + "Epoch 1295/2000\n", + "Epoch 1296/2000\n", + "Epoch 1297/2000\n", + "Epoch 1298/2000\n", + "Epoch 1299/2000\n", + "Epoch 1300/2000\n", + "Epoch 1301/2000\n", + "Epoch 1302/2000\n", + "Epoch 1303/2000\n", + "Epoch 1304/2000\n", + "Epoch 1305/2000\n", + "Epoch 1306/2000\n", + "Epoch 1307/2000\n", + "Epoch 1308/2000\n", + "Epoch 1309/2000\n", + "Epoch 1310/2000\n", + "Epoch 1311/2000\n", + "Epoch 1312/2000\n", + "Epoch 1313/2000\n", + "Epoch 1314/2000\n", + "Epoch 1315/2000\n", + "Epoch 1316/2000\n", + "Epoch 1317/2000\n", + "Epoch 1318/2000\n", + "Epoch 1319/2000\n", + "Epoch 1320/2000\n", + "Epoch 1321/2000\n", + "Epoch 1322/2000\n", + "Epoch 1323/2000\n", + "Epoch 1324/2000\n", + "Epoch 1325/2000\n", + "Epoch 1326/2000\n", + "Epoch 1327/2000\n", + "Epoch 1328/2000\n", + "Epoch 1329/2000\n", + "Epoch 1330/2000\n", + "Epoch 1331/2000\n", + "Epoch 1332/2000\n", + "Epoch 1333/2000\n", + "Epoch 1334/2000\n", + "Epoch 1335/2000\n", + "Epoch 1336/2000\n", + "Epoch 1337/2000\n", + "Epoch 1338/2000\n", + "Epoch 1339/2000\n", + "Epoch 1340/2000\n", + "Epoch 1341/2000\n", + "Epoch 1342/2000\n", + "Epoch 1343/2000\n", + "Epoch 1344/2000\n", + "Epoch 1345/2000\n", + "Epoch 1346/2000\n", + "Epoch 1347/2000\n", + "Epoch 1348/2000\n", + "Epoch 1349/2000\n", + "Epoch 1350/2000\n", + "Epoch 1351/2000\n", + "Epoch 1352/2000\n", + "Epoch 1353/2000\n", + "Epoch 1354/2000\n", + "Epoch 1355/2000\n", + "Epoch 1356/2000\n", + "Epoch 1357/2000\n", + "Epoch 1358/2000\n", + "Epoch 1359/2000\n", + "Epoch 1360/2000\n", + "Epoch 1361/2000\n", + "Epoch 1362/2000\n", + "Epoch 1363/2000\n", + "Epoch 1364/2000\n", + "Epoch 1365/2000\n", + "Epoch 1366/2000\n", + "Epoch 1367/2000\n", + "Epoch 1368/2000\n", + "Epoch 1369/2000\n", + "Epoch 1370/2000\n", + "Epoch 1371/2000\n", + "Epoch 1372/2000\n", + "Epoch 1373/2000\n", + "Epoch 1374/2000\n", + "Epoch 1375/2000\n", + "Epoch 1376/2000\n", + "Epoch 1377/2000\n", + "Epoch 1378/2000\n", + "Epoch 1379/2000\n", + "Epoch 1380/2000\n", + "Epoch 1381/2000\n", + "Epoch 1382/2000\n", + "Epoch 1383/2000\n", + "Epoch 1384/2000\n", + "Epoch 1385/2000\n", + "Epoch 1386/2000\n", + "Epoch 1387/2000\n", + "Epoch 1388/2000\n", + "Epoch 1389/2000\n", + "Epoch 1390/2000\n", + "Epoch 1391/2000\n", + "Epoch 1392/2000\n", + "Epoch 1393/2000\n", + "Epoch 1394/2000\n", + "Epoch 1395/2000\n", + "Epoch 1396/2000\n", + "Epoch 1397/2000\n", + "Epoch 1398/2000\n", + "Epoch 1399/2000\n", + "Epoch 1400/2000\n", + "Epoch 1401/2000\n", + "Epoch 1402/2000\n", + "Epoch 1403/2000\n", + "Epoch 1404/2000\n", + "Epoch 1405/2000\n", + "Epoch 1406/2000\n", + "Epoch 1407/2000\n", + "Epoch 1408/2000\n", + "Epoch 1409/2000\n", + "Epoch 1410/2000\n", + "Epoch 1411/2000\n", + "Epoch 1412/2000\n", + "Epoch 1413/2000\n", + "Epoch 1414/2000\n", + "Epoch 1415/2000\n", + "Epoch 1416/2000\n", + "Epoch 1417/2000\n", + "Epoch 1418/2000\n", + "Epoch 1419/2000\n", + "Epoch 1420/2000\n", + "Epoch 1421/2000\n", + "Epoch 1422/2000\n", + "Epoch 1423/2000\n", + "Epoch 1424/2000\n", + "Epoch 1425/2000\n", + "Epoch 1426/2000\n", + "Epoch 1427/2000\n", + "Epoch 1428/2000\n", + "Epoch 1429/2000\n", + "Epoch 1430/2000\n", + "Epoch 1431/2000\n", + "Epoch 1432/2000\n", + "Epoch 1433/2000\n", + "Epoch 1434/2000\n", + "Epoch 1435/2000\n", + "Epoch 1436/2000\n", + "Epoch 1437/2000\n", + "Epoch 1438/2000\n", + "Epoch 1439/2000\n", + "Epoch 1440/2000\n", + "Epoch 1441/2000\n", + "Epoch 1442/2000\n", + "Epoch 1443/2000\n", + "Epoch 1444/2000\n", + "Epoch 1445/2000\n", + "Epoch 1446/2000\n", + "Epoch 1447/2000\n", + "Epoch 1448/2000\n", + "Epoch 1449/2000\n", + "Epoch 1450/2000\n", + "Epoch 1451/2000\n", + "Epoch 1452/2000\n", + "Epoch 1453/2000\n", + "Epoch 1454/2000\n", + "Epoch 1455/2000\n", + "Epoch 1456/2000\n", + "Epoch 1457/2000\n", + "Epoch 1458/2000\n", + "Epoch 1459/2000\n", + "Epoch 1460/2000\n", + "Epoch 1461/2000\n", + "Epoch 1462/2000\n", + "Epoch 1463/2000\n", + "Epoch 1464/2000\n", + "Epoch 1465/2000\n", + "Epoch 1466/2000\n", + "Epoch 1467/2000\n", + "Epoch 1468/2000\n", + "Epoch 1469/2000\n", + "Epoch 1470/2000\n", + "Epoch 1471/2000\n", + "Epoch 1472/2000\n", + "Epoch 1473/2000\n", + "Epoch 1474/2000\n", + "Epoch 1475/2000\n", + "Epoch 1476/2000\n", + "Epoch 1477/2000\n", + "Epoch 1478/2000\n", + "Epoch 1479/2000\n", + "Epoch 1480/2000\n", + "Epoch 1481/2000\n", + "Epoch 1482/2000\n", + "Epoch 1483/2000\n", + "Epoch 1484/2000\n", + "Epoch 1485/2000\n", + "Epoch 1486/2000\n", + "Epoch 1487/2000\n", + "Epoch 1488/2000\n", + "Epoch 1489/2000\n", + "Epoch 1490/2000\n", + "Epoch 1491/2000\n", + "Epoch 1492/2000\n", + "Epoch 1493/2000\n", + "Epoch 1494/2000\n", + "Epoch 1495/2000\n", + "Epoch 1496/2000\n", + "Epoch 1497/2000\n", + "Epoch 1498/2000\n", + "Epoch 1499/2000\n", + "Epoch 1500/2000\n", + "Epoch 1501/2000\n", + "Epoch 1502/2000\n", + "Epoch 1503/2000\n", + "Epoch 1504/2000\n", + "Epoch 1505/2000\n", + "Epoch 1506/2000\n", + "Epoch 1507/2000\n", + "Epoch 1508/2000\n", + "Epoch 1509/2000\n", + "Epoch 1510/2000\n", + "Epoch 1511/2000\n", + "Epoch 1512/2000\n", + "Epoch 1513/2000\n", + "Epoch 1514/2000\n", + "Epoch 1515/2000\n", + "Epoch 1516/2000\n", + "Epoch 1517/2000\n", + "Epoch 1518/2000\n", + "Epoch 1519/2000\n", + "Epoch 1520/2000\n", + "Epoch 1521/2000\n", + "Epoch 1522/2000\n", + "Epoch 1523/2000\n", + "Epoch 1524/2000\n", + "Epoch 1525/2000\n", + "Epoch 1526/2000\n", + "Epoch 1527/2000\n", + "Epoch 1528/2000\n", + "Epoch 1529/2000\n", + "Epoch 1530/2000\n", + "Epoch 1531/2000\n", + "Epoch 1532/2000\n", + "Epoch 1533/2000\n", + "Epoch 1534/2000\n", + "Epoch 1535/2000\n", + "Epoch 1536/2000\n", + "Epoch 1537/2000\n", + "Epoch 1538/2000\n", + "Epoch 1539/2000\n", + "Epoch 1540/2000\n", + "Epoch 1541/2000\n", + "Epoch 1542/2000\n", + "Epoch 1543/2000\n", + "Epoch 1544/2000\n", + "Epoch 1545/2000\n", + "Epoch 1546/2000\n", + "Epoch 1547/2000\n", + "Epoch 1548/2000\n", + "Epoch 1549/2000\n", + "Epoch 1550/2000\n", + "Epoch 1551/2000\n", + "Epoch 1552/2000\n", + "Epoch 1553/2000\n", + "Epoch 1554/2000\n", + "Epoch 1555/2000\n", + "Epoch 1556/2000\n", + "Epoch 1557/2000\n", + "Epoch 1558/2000\n", + "Epoch 1559/2000\n", + "Epoch 1560/2000\n", + "Epoch 1561/2000\n", + "Epoch 1562/2000\n", + "Epoch 1563/2000\n", + "Epoch 1564/2000\n", + "Epoch 1565/2000\n", + "Epoch 1566/2000\n", + "Epoch 1567/2000\n", + "Epoch 1568/2000\n", + "Epoch 1569/2000\n", + "Epoch 1570/2000\n", + "Epoch 1571/2000\n", + "Epoch 1572/2000\n", + "Epoch 1573/2000\n", + "Epoch 1574/2000\n", + "Epoch 1575/2000\n", + "Epoch 1576/2000\n", + "Epoch 1577/2000\n", + "Epoch 1578/2000\n", + "Epoch 1579/2000\n", + "Epoch 1580/2000\n", + "Epoch 1581/2000\n", + "Epoch 1582/2000\n", + "Epoch 1583/2000\n", + "Epoch 1584/2000\n", + "Epoch 1585/2000\n", + "Epoch 1586/2000\n", + "Epoch 1587/2000\n", + "Epoch 1588/2000\n", + "Epoch 1589/2000\n", + "Epoch 1590/2000\n", + "Epoch 1591/2000\n", + "Epoch 1592/2000\n", + "Epoch 1593/2000\n", + "Epoch 1594/2000\n", + "Epoch 1595/2000\n", + "Epoch 1596/2000\n", + "Epoch 1597/2000\n", + "Epoch 1598/2000\n", + "Epoch 1599/2000\n", + "Epoch 1600/2000\n", + "Epoch 1601/2000\n", + "Epoch 1602/2000\n", + "Epoch 1603/2000\n", + "Epoch 1604/2000\n", + "Epoch 1605/2000\n", + "Epoch 1606/2000\n", + "Epoch 1607/2000\n", + "Epoch 1608/2000\n", + "Epoch 1609/2000\n", + "Epoch 1610/2000\n", + "Epoch 1611/2000\n", + "Epoch 1612/2000\n", + "Epoch 1613/2000\n", + "Epoch 1614/2000\n", + "Epoch 1615/2000\n", + "Epoch 1616/2000\n", + "Epoch 1617/2000\n", + "Epoch 1618/2000\n", + "Epoch 1619/2000\n", + "Epoch 1620/2000\n", + "Epoch 1621/2000\n", + "Epoch 1622/2000\n", + "Epoch 1623/2000\n", + "Epoch 1624/2000\n", + "Epoch 1625/2000\n", + "Epoch 1626/2000\n", + "Epoch 1627/2000\n", + "Epoch 1628/2000\n", + "Epoch 1629/2000\n", + "Epoch 1630/2000\n", + "Epoch 1631/2000\n", + "Epoch 1632/2000\n", + "Epoch 1633/2000\n", + "Epoch 1634/2000\n", + "Epoch 1635/2000\n", + "Epoch 1636/2000\n", + "Epoch 1637/2000\n", + "Epoch 1638/2000\n", + "Epoch 1639/2000\n", + "Epoch 1640/2000\n", + "Epoch 1641/2000\n", + "Epoch 1642/2000\n", + "Epoch 1643/2000\n", + "Epoch 1644/2000\n", + "Epoch 1645/2000\n", + "Epoch 1646/2000\n", + "Epoch 1647/2000\n", + "Epoch 1648/2000\n", + "Epoch 1649/2000\n", + "Epoch 1650/2000\n", + "Epoch 1651/2000\n", + "Epoch 1652/2000\n", + "Epoch 1653/2000\n", + "Epoch 1654/2000\n", + "Epoch 1655/2000\n", + "Epoch 1656/2000\n", + "Epoch 1657/2000\n", + "Epoch 1658/2000\n", + "Epoch 1659/2000\n", + "Epoch 1660/2000\n", + "Epoch 1661/2000\n", + "Epoch 1662/2000\n", + "Epoch 1663/2000\n", + "Epoch 1664/2000\n", + "Epoch 1665/2000\n", + "Epoch 1666/2000\n", + "Epoch 1667/2000\n", + "Epoch 1668/2000\n", + "Epoch 1669/2000\n", + "Epoch 1670/2000\n", + "Epoch 1671/2000\n", + "Epoch 1672/2000\n", + "Epoch 1673/2000\n", + "Epoch 1674/2000\n", + "Epoch 1675/2000\n", + "Epoch 1676/2000\n", + "Epoch 1677/2000\n", + "Epoch 1678/2000\n", + "Epoch 1679/2000\n", + "Epoch 1680/2000\n", + "Epoch 1681/2000\n", + "Epoch 1682/2000\n", + "Epoch 1683/2000\n", + "Epoch 1684/2000\n", + "Epoch 1685/2000\n", + "Epoch 1686/2000\n", + "Epoch 1687/2000\n", + "Epoch 1688/2000\n", + "Epoch 1689/2000\n", + "Epoch 1690/2000\n", + "Epoch 1691/2000\n", + "Epoch 1692/2000\n", + "Epoch 1693/2000\n", + "Epoch 1694/2000\n", + "Epoch 1695/2000\n", + "Epoch 1696/2000\n", + "Epoch 1697/2000\n", + "Epoch 1698/2000\n", + "Epoch 1699/2000\n", + "Epoch 1700/2000\n", + "Epoch 1701/2000\n", + "Epoch 1702/2000\n", + "Epoch 1703/2000\n", + "Epoch 1704/2000\n", + "Epoch 1705/2000\n", + "Epoch 1706/2000\n", + "Epoch 1707/2000\n", + "Epoch 1708/2000\n", + "Epoch 1709/2000\n", + "Epoch 1710/2000\n", + "Epoch 1711/2000\n", + "Epoch 1712/2000\n", + "Epoch 1713/2000\n", + "Epoch 1714/2000\n", + "Epoch 1715/2000\n", + "Epoch 1716/2000\n", + "Epoch 1717/2000\n", + "Epoch 1718/2000\n", + "Epoch 1719/2000\n", + "Epoch 1720/2000\n", + "Epoch 1721/2000\n", + "Epoch 1722/2000\n", + "Epoch 1723/2000\n", + "Epoch 1724/2000\n", + "Epoch 1725/2000\n", + "Epoch 1726/2000\n", + "Epoch 1727/2000\n", + "Epoch 1728/2000\n", + "Epoch 1729/2000\n", + "Epoch 1730/2000\n", + "Epoch 1731/2000\n", + "Epoch 1732/2000\n", + "Epoch 1733/2000\n", + "Epoch 1734/2000\n", + "Epoch 1735/2000\n", + "Epoch 1736/2000\n", + "Epoch 1737/2000\n", + "Epoch 1738/2000\n", + "Epoch 1739/2000\n", + "Epoch 1740/2000\n", + "Epoch 1741/2000\n", + "Epoch 1742/2000\n", + "Epoch 1743/2000\n", + "Epoch 1744/2000\n", + "Epoch 1745/2000\n", + "Epoch 1746/2000\n", + "Epoch 1747/2000\n", + "Epoch 1748/2000\n", + "Epoch 1749/2000\n", + "Epoch 1750/2000\n", + "Epoch 1751/2000\n", + "Epoch 1752/2000\n", + "Epoch 1753/2000\n", + "Epoch 1754/2000\n", + "Epoch 1755/2000\n", + "Epoch 1756/2000\n", + "Epoch 1757/2000\n", + "Epoch 1758/2000\n", + "Epoch 1759/2000\n", + "Epoch 1760/2000\n", + "Epoch 1761/2000\n", + "Epoch 1762/2000\n", + "Epoch 1763/2000\n", + "Epoch 1764/2000\n", + "Epoch 1765/2000\n", + "Epoch 1766/2000\n", + "Epoch 1767/2000\n", + "Epoch 1768/2000\n", + "Epoch 1769/2000\n", + "Epoch 1770/2000\n", + "Epoch 1771/2000\n", + "Epoch 1772/2000\n", + "Epoch 1773/2000\n", + "Epoch 1774/2000\n", + "Epoch 1775/2000\n", + "Epoch 1776/2000\n", + "Epoch 1777/2000\n", + "Epoch 1778/2000\n", + "Epoch 1779/2000\n", + "Epoch 1780/2000\n", + "Epoch 1781/2000\n", + "Epoch 1782/2000\n", + "Epoch 1783/2000\n", + "Epoch 1784/2000\n", + "Epoch 1785/2000\n", + "Epoch 1786/2000\n", + "Epoch 1787/2000\n", + "Epoch 1788/2000\n", + "Epoch 1789/2000\n", + "Epoch 1790/2000\n", + "Epoch 1791/2000\n", + "Epoch 1792/2000\n", + "Epoch 1793/2000\n", + "Epoch 1794/2000\n", + "Epoch 1795/2000\n", + "Epoch 1796/2000\n", + "Epoch 1797/2000\n", + "Epoch 1798/2000\n", + "Epoch 1799/2000\n", + "Epoch 1800/2000\n", + "Epoch 1801/2000\n", + "Epoch 1802/2000\n", + "Epoch 1803/2000\n", + "Epoch 1804/2000\n", + "Epoch 1805/2000\n", + "Epoch 1806/2000\n", + "Epoch 1807/2000\n", + "Epoch 1808/2000\n", + "Epoch 1809/2000\n", + "Epoch 1810/2000\n", + "Epoch 1811/2000\n", + "Epoch 1812/2000\n", + "Epoch 1813/2000\n", + "Epoch 1814/2000\n", + "Epoch 1815/2000\n", + "Epoch 1816/2000\n", + "Epoch 1817/2000\n", + "Epoch 1818/2000\n", + "Epoch 1819/2000\n", + "Epoch 1820/2000\n", + "Epoch 1821/2000\n", + "Epoch 1822/2000\n", + "Epoch 1823/2000\n", + "Epoch 1824/2000\n", + "Epoch 1825/2000\n", + "Epoch 1826/2000\n", + "Epoch 1827/2000\n", + "Epoch 1828/2000\n", + "Epoch 1829/2000\n", + "Epoch 1830/2000\n", + "Epoch 1831/2000\n", + "Epoch 1832/2000\n", + "Epoch 1833/2000\n", + "Epoch 1834/2000\n", + "Epoch 1835/2000\n", + "Epoch 1836/2000\n", + "Epoch 1837/2000\n", + "Epoch 1838/2000\n", + "Epoch 1839/2000\n", + "Epoch 1840/2000\n", + "Epoch 1841/2000\n", + "Epoch 1842/2000\n", + "Epoch 1843/2000\n", + "Epoch 1844/2000\n", + "Epoch 1845/2000\n", + "Epoch 1846/2000\n", + "Epoch 1847/2000\n", + "Epoch 1848/2000\n", + "Epoch 1849/2000\n", + "Epoch 1850/2000\n", + "Epoch 1851/2000\n", + "Epoch 1852/2000\n", + "Epoch 1853/2000\n", + "Epoch 1854/2000\n", + "Epoch 1855/2000\n", + "Epoch 1856/2000\n", + "Epoch 1857/2000\n", + "Epoch 1858/2000\n", + "Epoch 1859/2000\n", + "Epoch 1860/2000\n", + "Epoch 1861/2000\n", + "Epoch 1862/2000\n", + "Epoch 1863/2000\n", + "Epoch 1864/2000\n", + "Epoch 1865/2000\n", + "Epoch 1866/2000\n", + "Epoch 1867/2000\n", + "Epoch 1868/2000\n", + "Epoch 1869/2000\n", + "Epoch 1870/2000\n", + "Epoch 1871/2000\n", + "Epoch 1872/2000\n", + "Epoch 1873/2000\n", + "Epoch 1874/2000\n", + "Epoch 1875/2000\n", + "Epoch 1876/2000\n", + "Epoch 1877/2000\n", + "Epoch 1878/2000\n", + "Epoch 1879/2000\n", + "Epoch 1880/2000\n", + "Epoch 1881/2000\n", + "Epoch 1882/2000\n", + "Epoch 1883/2000\n", + "Epoch 1884/2000\n", + "Epoch 1885/2000\n", + "Epoch 1886/2000\n", + "Epoch 1887/2000\n", + "Epoch 1888/2000\n", + "Epoch 1889/2000\n", + "Epoch 1890/2000\n", + "Epoch 1891/2000\n", + "Epoch 1892/2000\n", + "Epoch 1893/2000\n", + "Epoch 1894/2000\n", + "Epoch 1895/2000\n", + "Epoch 1896/2000\n", + "Epoch 1897/2000\n", + "Epoch 1898/2000\n", + "Epoch 1899/2000\n", + "Epoch 1900/2000\n", + "Epoch 1901/2000\n", + "Epoch 1902/2000\n", + "Epoch 1903/2000\n", + "Epoch 1904/2000\n", + "Epoch 1905/2000\n", + "Epoch 1906/2000\n", + "Epoch 1907/2000\n", + "Epoch 1908/2000\n", + "Epoch 1909/2000\n", + "Epoch 1910/2000\n", + "Epoch 1911/2000\n", + "Epoch 1912/2000\n", + "Epoch 1913/2000\n", + "Epoch 1914/2000\n", + "Epoch 1915/2000\n", + "Epoch 1916/2000\n", + "Epoch 1917/2000\n", + "Epoch 1918/2000\n", + "Epoch 1919/2000\n", + "Epoch 1920/2000\n", + "Epoch 1921/2000\n", + "Epoch 1922/2000\n", + "Epoch 1923/2000\n", + "Epoch 1924/2000\n", + "Epoch 1925/2000\n", + "Epoch 1926/2000\n", + "Epoch 1927/2000\n", + "Epoch 1928/2000\n", + "Epoch 1929/2000\n", + "Epoch 1930/2000\n", + "Epoch 1931/2000\n", + "Epoch 1932/2000\n", + "Epoch 1933/2000\n", + "Epoch 1934/2000\n", + "Epoch 1935/2000\n", + "Epoch 1936/2000\n", + "Epoch 1937/2000\n", + "Epoch 1938/2000\n", + "Epoch 1939/2000\n", + "Epoch 1940/2000\n", + "Epoch 1941/2000\n", + "Epoch 1942/2000\n", + "Epoch 1943/2000\n", + "Epoch 1944/2000\n", + "Epoch 1945/2000\n", + "Epoch 1946/2000\n", + "Epoch 1947/2000\n", + "Epoch 1948/2000\n", + "Epoch 1949/2000\n", + "Epoch 1950/2000\n", + "Epoch 1951/2000\n", + "Epoch 1952/2000\n", + "Epoch 1953/2000\n", + "Epoch 1954/2000\n", + "Epoch 1955/2000\n", + "Epoch 1956/2000\n", + "Epoch 1957/2000\n", + "Epoch 1958/2000\n", + "Epoch 1959/2000\n", + "Epoch 1960/2000\n", + "Epoch 1961/2000\n", + "Epoch 1962/2000\n", + "Epoch 1963/2000\n", + "Epoch 1964/2000\n", + "Epoch 1965/2000\n", + "Epoch 1966/2000\n", + "Epoch 1967/2000\n", + "Epoch 1968/2000\n", + "Epoch 1969/2000\n", + "Epoch 1970/2000\n", + "Epoch 1971/2000\n", + "Epoch 1972/2000\n", + "Epoch 1973/2000\n", + "Epoch 1974/2000\n", + "Epoch 1975/2000\n", + "Epoch 1976/2000\n", + "Epoch 1977/2000\n", + "Epoch 1978/2000\n", + "Epoch 1979/2000\n", + "Epoch 1980/2000\n", + "Epoch 1981/2000\n", + "Epoch 1982/2000\n", + "Epoch 1983/2000\n", + "Epoch 1984/2000\n", + "Epoch 1985/2000\n", + "Epoch 1986/2000\n", + "Epoch 1987/2000\n", + "Epoch 1988/2000\n", + "Epoch 1989/2000\n", + "Epoch 1990/2000\n", + "Epoch 1991/2000\n", + "Epoch 1992/2000\n", + "Epoch 1993/2000\n", + "Epoch 1994/2000\n", + "Epoch 1995/2000\n", + "Epoch 1996/2000\n", + "Epoch 1997/2000\n", + "Epoch 1998/2000\n", + "Epoch 1999/2000\n", + "Epoch 2000/2000\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3OklEQVR4nO3deXxU1f3/8fdNQoYEsgDZJRA2WQWRJUZcCwoBERE3SCsg1a8KVkT8Il9/RaDVQK1LrRq1StAK4lJAHihQQNCqIIsEBRGBskRZwmI2lgSS8/sDM2bIZCEkuTfJ6/l4zIOZe8/MfE4uZN6ce+4ZyxhjBAAA4EA+dhcAAABQGoIKAABwLIIKAABwLIIKAABwLIIKAABwLIIKAABwLIIKAABwLIIKAABwLIIKAABwLIIKgBpjWZamTp163s/bs2ePLMvS7Nmzy2y3evVqWZal1atXV6o+AM5DUAHqmdmzZ8uyLFmWpc8//7zEfmOMYmNjZVmWbrzxRhsqBIBfEVSAeqphw4aaO3duie2ffvqpfvzxR7lcLhuqAgBPBBWgnho4cKDef/99nTlzxmP73Llz1aNHD0VFRdlUGQD8iqAC1FPDhw/X0aNHtXz5cve2/Px8ffDBBxoxYoTX5xw/flyPPPKIYmNj5XK51L59e/31r3/VuV/CnpeXp4cffljh4eEKCgrSTTfdpB9//NHra/7000+6++67FRkZKZfLpc6dO2vWrFlV11FJ77//vnr06KGAgACFhYXpt7/9rX766SePNgcPHtTo0aPVvHlzuVwuRUdHa8iQIdqzZ4+7zYYNG9S/f3+FhYUpICBArVq10t13312ltQLw5Gd3AQDsERcXp4SEBL3zzjtKTEyUJC1ZskRZWVm688479cILL3i0N8bopptu0qpVqzRmzBhdeumlWrZsmR599FH99NNPeu6559xtf//73+vtt9/WiBEjdMUVV+iTTz7RoEGDStRw6NAhXX755bIsS+PGjVN4eLiWLFmiMWPGKDs7W+PHj7/gfs6ePVujR49Wr169lJycrEOHDulvf/ubvvjiC23atEmhoaGSpGHDhmnr1q168MEHFRcXp4yMDC1fvlz79u1zP77hhhsUHh6uxx57TKGhodqzZ4/mz59/wTUCKIMBUK+kpqYaSWb9+vXmxRdfNEFBQebEiRPGGGNuu+02c9111xljjGnZsqUZNGiQ+3kLFy40ksyf//xnj9e79dZbjWVZZufOncYYY9LS0owk88ADD3i0GzFihJFknnjiCfe2MWPGmOjoaHPkyBGPtnfeeacJCQlx17V7924jyaSmppbZt1WrVhlJZtWqVcYYY/Lz801ERITp0qWLOXnypLvd4sWLjSQzZcoUY4wxP//8s5Fknn766VJfe8GCBe6fG4Caw6kfoB67/fbbdfLkSS1evFg5OTlavHhxqad9Pv74Y/n6+uoPf/iDx/ZHHnlExhgtWbLE3U5SiXbnjo4YY/Svf/1LgwcPljFGR44ccd/69++vrKwsff311xfUvw0bNigjI0MPPPCAGjZs6N4+aNAgdejQQR999JEkKSAgQP7+/lq9erV+/vlnr69VNPKyePFinT59+oLqAlBxdSaofPbZZxo8eLBiYmJkWZYWLlx4Xs+fOnWq+5LN4rdGjRpVT8GAA4SHh6tfv36aO3eu5s+fr4KCAt16661e2+7du1cxMTEKCgry2N6xY0f3/qI/fXx81KZNG4927du393h8+PBhZWZm6rXXXlN4eLjHbfTo0ZKkjIyMC+pfUU3nvrckdejQwb3f5XJp5syZWrJkiSIjI3X11VfrL3/5iw4ePOhuf80112jYsGGaNm2awsLCNGTIEKWmpiovL++CagRQtjoTVI4fP65u3brppZdeqtTzJ06cqAMHDnjcOnXqpNtuu62KKwWcZcSIEVqyZIleeeUVJSYmukcOqlthYaEk6be//a2WL1/u9danT58aqUU6O+Lzww8/KDk5WQ0bNtQf//hHdezYUZs2bZJ0drG6Dz74QGvWrNG4cePck4B79Oih3NzcGqsTqG/qTFBJTEzUn//8Zw0dOtTr/ry8PE2cOFEXXXSRGjVqpPj4eI/VKxs3bqyoqCj37dChQ/ruu+80ZsyYGuoBYI+hQ4fKx8dHa9euLfW0jyS1bNlS+/fvV05Ojsf277//3r2/6M/CwkLt2rXLo9327ds9HhddEVRQUKB+/fp5vUVERFxQ34pqOve9i7YV7S/Spk0bPfLII/r3v/+tLVu2KD8/X88884xHm8svv1xPPvmkNmzYoDlz5mjr1q2aN2/eBdUJoHR1JqiUZ9y4cVqzZo3mzZunb775RrfddpsGDBigHTt2eG3/+uuv6+KLL9ZVV11Vw5UCNatx48ZKSUnR1KlTNXjw4FLbDRw4UAUFBXrxxRc9tj/33HOyLMt95VDRn+deNfT88897PPb19dWwYcP0r3/9S1u2bCnxfocPH65Mdzz07NlTEREReuWVVzxO0SxZskTbtm1zX4l04sQJnTp1yuO5bdq0UVBQkPt5P//8c4nLsC+99FJJ4vQPUI3qxeXJ+/btU2pqqvbt26eYmBhJZ0/1LF26VKmpqXrqqac82p86dUpz5szRY489Zke5QI0bOXJkuW0GDx6s6667To8//rj27Nmjbt266d///rc+/PBDjR8/3j0n5dJLL9Xw4cP18ssvKysrS1dccYVWrlypnTt3lnjNGTNmaNWqVYqPj9c999yjTp066dixY/r666+1YsUKHTt27IL61aBBA82cOVOjR4/WNddco+HDh7svT46Li9PDDz8sSfrhhx/Ut29f3X777erUqZP8/Py0YMECHTp0SHfeeack6c0339TLL7+soUOHqk2bNsrJydE//vEPBQcHa+DAgRdUJ4DS1Yug8u2336qgoEAXX3yxx/a8vDw1a9asRPsFCxYoJyenQr+8gfrCx8dHixYt0pQpU/Tuu+8qNTVVcXFxevrpp/XII494tJ01a5bCw8M1Z84cLVy4UL/5zW/00UcfKTY21qNdZGSk1q1bp+nTp2v+/Pl6+eWX1axZM3Xu3FkzZ86skrpHjRqlwMBAzZgxQ5MmTVKjRo00dOhQzZw50z0fJzY2VsOHD9fKlSv1z3/+U35+furQoYPee+89DRs2TNLZybTr1q3TvHnzdOjQIYWEhKh3796aM2eOWrVqVSW1AijJMueOZdYBlmVpwYIFuvnmmyVJ7777rpKSkrR161b5+vp6tC2am1Jc3759FRwcrAULFtRUyQAAwIt6MaLSvXt3FRQUKCMjo9w5J7t379aqVau0aNGiGqoOAACUps4EldzcXI9z4Lt371ZaWpqaNm2qiy++WElJSbrrrrv0zDPPqHv37jp8+LBWrlyprl27eiztPWvWLEVHR7snBAIAAPvUmVM/q1ev1nXXXVdi+8iRIzV79mydPn1af/7zn/XWW2/pp59+UlhYmC6//HJNmzZNl1xyiaSz6zq0bNlSd911l5588sma7gIAADhHnQkqAACg7rF1HZW4uDivy9aPHTvWzrIAAIBD2DpHZf369SooKHA/3rJli66//nqWrQcAAJIcdupn/PjxWrx4sXbs2CHLssptX1hYqP379ysoKKhC7QEAgP2MMcrJyVFMTIx8fMo+ueOYq37y8/P19ttva8KECRUOHfv37y+xgBQAAKgd0tPT1bx58zLbOCaoLFy4UJmZmRo1alSpbfLy8jy+U6NoMCg9PV3BwcHVXSIAAKgC2dnZio2NVVBQULltHRNU3njjDSUmJrq/i8eb5ORkTZs2rcT24OBgggoAALVMRc6gOGKOyt69e9W6dWvNnz9fQ4YMKbXduSMqRYksKyuLoAIAQC2RnZ2tkJCQCn1+O2JEJTU1VRERER4rxHrjcrnkcrlqqCoAAGA3W9dRkc5euZOamqqRI0fKz88RuQkAADiE7clgxYoV2rdvn+6++267SwEAQNLZ/0Tn5+fbXUat1aBBA/n6+lbJa9keVG644QY5YJoMAACSzi6XsXv3bhUWFtpdSq0WGhqqqKioC17nzPagAgCAUxhjdODAAfn6+io2NrbcxchQkjFGJ06cUEZGhiQpOjr6gl6PoAIAwC/OnDmjEydOKCYmRoGBgXaXU2sFBARIkjIyMhQREXFBp4GIigAA/KLo++f8/f1trqT2Kwp6p0+fvqDXIagAAHAOvj/uwlXVz5CgAgAAHIugAgAASoiLi9Pzzz9vdxkEFQAAajPLssq8TZ06tVKvu379et17771VW2wlcNWPFyfyz+jY8Xy5/HwVHsSS/QAA5zpw4ID7/rvvvqspU6Zo+/bt7m2NGzd23zfGqKCgoEIrwYeHh1dtoZXEiIoXK7Zl6MqZq/TQvE12lwIAQJmioqLct5CQEFmW5X78/fffKygoSEuWLFGPHj3kcrn0+eefa9euXRoyZIgiIyPVuHFj9erVSytWrPB43XNP/ViWpddff11Dhw5VYGCg2rVrp0WLFlV7/wgqAACUwhijE/lnbLlV5artjz32mGbMmKFt27apa9euys3N1cCBA7Vy5Upt2rRJAwYM0ODBg7Vv374yX2fatGm6/fbb9c0332jgwIFKSkrSsWPHqqxObzj1AwBAKU6eLlCnKctsee/vpvdXoH/VfExPnz5d119/vftx06ZN1a1bN/fjP/3pT1qwYIEWLVqkcePGlfo6o0aN0vDhwyVJTz31lF544QWtW7dOAwYMqJI6vWFEpQx8BREAoC7o2bOnx+Pc3FxNnDhRHTt2VGhoqBo3bqxt27aVO6LStWtX9/1GjRopODjYvVR+dWFExQuW+QEASFJAA199N72/be9dVRo1auTxeOLEiVq+fLn++te/qm3btgoICNCtt95a7jdGN2jQwOOxZVnV/uWNBBUAAEphWVaVnX5xki+++EKjRo3S0KFDJZ0dYdmzZ4+9RZWCUz8AANQz7dq10/z585WWlqbNmzdrxIgR1T4yUlkElTIYMUkFAFD3PPvss2rSpImuuOIKDR48WP3799dll11md1le1b3xrCrAd1EBAGqjUaNGadSoUe7H1157rdfLnOPi4vTJJ594bBs7dqzH43NPBXl7nczMzErXWlGMqAAAAMciqAAAAMciqJSBdVQAALAXQcULi5VUAABwBIIKAADnqMrv2amvqupnSFABAOAXvr5nV4Mtb4VWlO/EiROSSq5me764PLkM5GkAqF/8/PwUGBiow4cPq0GDBvLx4f/z58sYoxMnTigjI0OhoaHu8FdZBBUvWEcFAOony7IUHR2t3bt3a+/evXaXU6uFhoYqKirqgl+HoAIAQDH+/v5q164dp38uQIMGDS54JKUIQQUAgHP4+PioYcOGdpcBMZm2bExSAQDAVgQVL5iiAgCAMxBUAACAYxFUAACAYxFUymCYpAIAgK0IKl6wjgoAAM5AUAEAAI5FUAEAAI5FUCkDX54JAIC9CCpeMUkFAAAnIKgAAADHIqgAAADHsj2o/PTTT/rtb3+rZs2aKSAgQJdccok2bNhgd1mS+KofAADsZuu3J//888/q06ePrrvuOi1ZskTh4eHasWOHmjRpYmdZrKMCAIBD2BpUZs6cqdjYWKWmprq3tWrVysaKAACAk9h66mfRokXq2bOnbrvtNkVERKh79+76xz/+YWdJAADAQWwNKv/973+VkpKidu3aadmyZbr//vv1hz/8QW+++abX9nl5ecrOzva4VSfDQioAANjK1lM/hYWF6tmzp5566ilJUvfu3bVlyxa98sorGjlyZIn2ycnJmjZtWrXXxRQVAACcwdYRlejoaHXq1MljW8eOHbVv3z6v7SdPnqysrCz3LT09vSbKBAAANrF1RKVPnz7avn27x7YffvhBLVu29Nre5XLJ5XLVRGmSuDwZAAC72Tqi8vDDD2vt2rV66qmntHPnTs2dO1evvfaaxo4da2dZsrg+GQAAR7A1qPTq1UsLFizQO++8oy5duuhPf/qTnn/+eSUlJdlZFgAAcAhbT/1I0o033qgbb7zR7jIAAIAD2b6EvpNxdTIAAPYiqHjBDBUAAJyBoAIAAByLoAIAAByLoFIGpqgAAGAvgooXLKMCAIAzEFQAAIBjEVQAAIBjEVTKwkIqAADYiqDiBXNUAABwBoIKAABwLIIKAABwLIJKGZihAgCAvQgqXlh82w8AAI5AUAEAAI5FUAEAAI5FUCkDy6gAAGAvgoo3TFEBAMARCCoAAMCxCCoAAMCxCCplMKykAgCArQgqXjBFBQAAZyCoAAAAxyKoAAAAxyKolIF1VAAAsBdBxQvLYpYKAABOQFABAACORVABAACORVApA3NUAACwF0HFC2aoAADgDAQVAADgWAQVAADgWASVMjBFBQAAexFUvGAZFQAAnIGgAgAAHIugAgAAHIugUgbDQioAANiKoOKFxUoqAAA4AkEFAAA4FkEFAAA4lq1BZerUqbIsy+PWoUMHO0uSxOXJAAA4hZ/dBXTu3FkrVqxwP/bzs70kAADgELanAj8/P0VFRdldBgAAcCDb56js2LFDMTExat26tZKSkrRv375S2+bl5Sk7O9vjVp24OhkAAHvZGlTi4+M1e/ZsLV26VCkpKdq9e7euuuoq5eTkeG2fnJyskJAQ9y02NrZa6mKKCgAAzmAZB61qlpmZqZYtW+rZZ5/VmDFjSuzPy8tTXl6e+3F2drZiY2OVlZWl4ODgKqvjy51HNOL1r9Q+MkjLHr66yl4XAACc/fwOCQmp0Oe37XNUigsNDdXFF1+snTt3et3vcrnkcrlquCoAAGAX2+eoFJebm6tdu3YpOjra7lIkSUaOGWwCAKBesjWoTJw4UZ9++qn27NmjL7/8UkOHDpWvr6+GDx9uZ1lMUgEAwCFsPfXz448/avjw4Tp69KjCw8N15ZVXau3atQoPD7ezLAAA4BC2BpV58+bZ+fYAAMDhHDVHxWmccz0UAAD1E0HFC4tJKgAAOAJBBQAAOBZBBQAAOBZBpQxMUQEAwF4EFS8spqgAAOAIBBUAAOBYBBUAAOBYBJUyOOiLpQEAqJcIKl4wRQUAAGcgqAAAAMciqAAAAMciqJSBGSoAANiLoOKFxUIqAAA4AkEFAAA4FkEFAAA4FkGlLExSAQDAVgQVL5iiAgCAMxBUAACAYxFUAACAYxFUysAUFQAA7EVQ8YIpKgAAOANBBQAAOBZBBQAAOBZBpQzGMEsFAAA7EVS8YB0VAACcgaACAAAci6ACAAAci6BSBmaoAABgL4KKV0xSAQDACQgqAADAsQgqZeDqZAAA7EVQ8YLLkwEAcAaCCgAAcCyCCgAAcCyCShkMFygDAGArgooXTFEBAMAZCCoAAMCxCCoAAMCxHBNUZsyYIcuyNH78eLtLcWMdFQAA7OWIoLJ+/Xq9+uqr6tq1q92lSJIsFlIBAMARbA8qubm5SkpK0j/+8Q81adLE7nIAAICD2B5Uxo4dq0GDBqlfv37lts3Ly1N2drbHDQAA1F1+dr75vHnz9PXXX2v9+vUVap+cnKxp06ZVc1W/Yo4KAAD2sm1EJT09XQ899JDmzJmjhg0bVug5kydPVlZWlvuWnp5eLbUxQwUAAGewbURl48aNysjI0GWXXebeVlBQoM8++0wvvvii8vLy5Ovr6/Ecl8sll8tV06UCAACb2BZU+vbtq2+//dZj2+jRo9WhQwdNmjSpREgBAAD1j21BJSgoSF26dPHY1qhRIzVr1qzEdgAAUD/ZftWPE7GMCgAAzmDrVT/nWr16td0lAAAAB2FEBQAAOBZBpQyGhVQAALAVQcULi5VUAABwBIIKAABwLIIKAABwLIJKGZihAgCAvQgqXrCOCgAAzkBQAQAAjkVQAQAAjkVQKQPLqAAAYC+CCgAAcCyCCgAAcCyCCgAAcCyCShkMK6kAAGCrSgWV9PR0/fjjj+7H69at0/jx4/Xaa69VWWF2Yh0VAACcoVJBZcSIEVq1apUk6eDBg7r++uu1bt06Pf7445o+fXqVFggAAOqvSgWVLVu2qHfv3pKk9957T126dNGXX36pOXPmaPbs2VVZHwAAqMcqFVROnz4tl8slSVqxYoVuuukmSVKHDh104MCBqqvOZqyjAgCAvSoVVDp37qxXXnlF//nPf7R8+XINGDBAkrR//341a9asSgu0gyUmqQAA4ASVCiozZ87Uq6++qmuvvVbDhw9Xt27dJEmLFi1ynxICAAC4UH6VedK1116rI0eOKDs7W02aNHFvv/feexUYGFhlxQEAgPqtUiMqJ0+eVF5enjuk7N27V88//7y2b9+uiIiIKi3QTkxRAQDAXpUKKkOGDNFbb70lScrMzFR8fLyeeeYZ3XzzzUpJSanSAu3AOioAADhDpYLK119/rauuukqS9MEHHygyMlJ79+7VW2+9pRdeeKFKCwQAAPVXpYLKiRMnFBQUJEn697//rVtuuUU+Pj66/PLLtXfv3iot0E5cngwAgL0qFVTatm2rhQsXKj09XcuWLdMNN9wgScrIyFBwcHCVFmgHTv0AAOAMlQoqU6ZM0cSJExUXF6fevXsrISFB0tnRle7du1dpgQAAoP6q1OXJt956q6688kodOHDAvYaKJPXt21dDhw6tsuIAAED9VqmgIklRUVGKiopyf4ty8+bN6+Bib0xSAQDATpU69VNYWKjp06crJCRELVu2VMuWLRUaGqo//elPKiwsrOoaaxxL6AMA4AyVGlF5/PHH9cYbb2jGjBnq06ePJOnzzz/X1KlTderUKT355JNVWiQAAKifKhVU3nzzTb3++uvub02WpK5du+qiiy7SAw88QFABAABVolKnfo4dO6YOHTqU2N6hQwcdO3bsgotyCtZRAQDAXpUKKt26ddOLL75YYvuLL76orl27XnBRdmMdFQAAnKFSp37+8pe/aNCgQVqxYoV7DZU1a9YoPT1dH3/8cZUWCAAA6q9Kjahcc801+uGHHzR06FBlZmYqMzNTt9xyi7Zu3ap//vOfVV0jAACopyq9jkpMTEyJSbObN2/WG2+8oddee+2CC3MCpqgAAGCvSo2o1HVMUQEAwBkIKgAAwLFsDSopKSnq2rWrgoODFRwcrISEBC1ZssTOkgAAgIOc1xyVW265pcz9mZmZ5/XmzZs314wZM9SuXTsZY/Tmm29qyJAh2rRpkzp37nxer1UdDAupAABgq/MKKiEhIeXuv+uuuyr8eoMHD/Z4/OSTTyolJUVr1661NaiwjgoAAM5wXkElNTW1uupQQUGB3n//fR0/fty9Nsu58vLylJeX536cnZ1dbfUAAAD72T6Z9ttvv1Xjxo3lcrl03333acGCBerUqZPXtsnJyQoJCXHfYmNja7haAABQk2wPKu3bt1daWpq++uor3X///Ro5cqS+++47r20nT56srKws9y09Pb1aa2OGCgAA9qr0gm9Vxd/fX23btpUk9ejRQ+vXr9ff/vY3vfrqqyXaulwuuVyuGqiKSSoAADiB7SMq5yosLPSYhwIAAOovW0dUJk+erMTERLVo0UI5OTmaO3euVq9erWXLltlZFgAAcAhbg0pGRobuuusuHThwQCEhIeratauWLVum66+/3s6y3FhGBQAAe9kaVN544w07375UrKMCAIAzOG6OCgAAQBGCCgAAcCyCShn4rh8AAOxFUPGCKSoAADgDQQUAADgWQQUAADgWQaUMzFABAMBeBBUvLBZSAQDAEQgqAADAsQgqAADAsQgqZWGSCgAAtiKoeMEMFQAAnIGgAgAAHIugAgAAHIugUgamqAAAYC+CihcsowIAgDMQVAAAgGMRVMpgDCd/AACwE0HFC4sLlAEAcASCCgAAcCyCCgAAcCyCShmYoQIAgL0IKl5weTIAAM5AUAEAAI5FUAEAAI5FUCkDy6gAAGAvggoAAHAsggoAAHAsggoAAHAsgkoZDCupAABgK4KKF6yjAgCAMxBUAACAYxFUAACAYxFUysA6KgAA2Iug4oXFJBUAAByBoFIGBlQAALAXQcUL93gKSQUAAFsRVLzgzA8AAM5AUCkDC74BAGAvW4NKcnKyevXqpaCgIEVEROjmm2/W9u3b7SxJkmSJIRUAAJzA1qDy6aefauzYsVq7dq2WL1+u06dP64YbbtDx48ftLMuNy5MBALCXn51vvnTpUo/Hs2fPVkREhDZu3Kirr77apqp+naNCTgEAwF6OmqOSlZUlSWratKmtdXDiBwAAZ7B1RKW4wsJCjR8/Xn369FGXLl28tsnLy1NeXp77cXZ2drXWZDj3AwCArRwzojJ27Fht2bJF8+bNK7VNcnKyQkJC3LfY2NjqKYYhFQAAHMERQWXcuHFavHixVq1apebNm5fabvLkycrKynLf0tPTq7UuxlMAALCXrad+jDF68MEHtWDBAq1evVqtWrUqs73L5ZLL5ar2uoouT+bMDwAA9rI1qIwdO1Zz587Vhx9+qKCgIB08eFCSFBISooCAANvqYmVaAACcwdZTPykpKcrKytK1116r6Oho9+3dd9+1sywAAOAQtp/6cSIGVAAAcAZHTKZ1MqeGKQAA6gOCihdWsUkq5BQAAOxDUPGCUz8AADgDQaUcDKgAAGAfgooXxS9PZo4KAAD2Iah4YXHyBwAARyColIPxFAAA7ENQ8YYBFQAAHIGgUg6mqAAAYB+Cihcek2k5+QMAgG0IKl5w5gcAAGcgqJSDUz8AANiHoOJF8SX0AQCAfQgqAADAsQgqXhQfT+HUDwAA9iGoeMGZHwAAnIGgUg4uTwYAwD4EFS/4rh8AAJyBoFIO5qgAAGAfgooXnivTAgAAuxBUAACAYxFUymE49wMAgG0IKl5weTIAAM5AUCkH4ykAANiHoOJF8cuTOfMDAIB9CCpecOoHAABnIKiUhxEVAABsQ1DxggEVAACcgaBSDr7rBwAA+xBUvLAsJtMCAOAEBBUvOPUDAIAzEFTKwYAKAAD2Iah44fGlhJz7AQDANgQVLywWUgEAwBEIKuVgPAUAAPsQVAAAgGMRVMqxKG2/3SUAAFBvEVTKMX3xd3aXAABAvUVQAQAAjmVrUPnss880ePBgxcTEyLIsLVy40M5yAACAw9gaVI4fP65u3brppZdesrOMchUWcu0PAAB28LPzzRMTE5WYmGhnCRWSd6ZQAf6+dpcBAEC9wxyVCjiRf8buEgAAqJdsHVE5X3l5ecrLy3M/zs7OrpH3PcOpHwAAbFGrRlSSk5MVEhLivsXGxtbI+xJUAACwR60KKpMnT1ZWVpb7lp6eXiPvW1BAUAEAwA616tSPy+WSy+Wq8fct4BuUAQCwha1BJTc3Vzt37nQ/3r17t9LS0tS0aVO1aNHCxso8FRQW2l0CAAD1kq1BZcOGDbruuuvcjydMmCBJGjlypGbPnm1TVSUxRwUAAHvYGlSuvfZamVpwWqWAoAIAgC1q1WRauxBUAACwB0GlAjj1AwCAPQgqFcCICgAA9iCoVABBBQAAexBUKoCgAgCAPQgqFcAcFQAA7EFQqYBCggoAALYgqFQAIyoAANiDoFIBLKEPAIA9CCoVUEBOAQDAFgSVCjjDiAoAALYgqFQAlycDAGAPgkoFEFQAALAHQaUCCCoAANiDoFIBXJ4MAIA9CCoVUGgIKgAA2IGgUgFnCggqAADYgaBSAcxRAQDAHgSVCmCOCgAA9iCoVABzVAAAsAdBpQKYowIAgD0IKhXAlxICAGAPgkoFFHDqBwAAWxBUKoDJtAAA2IOgUgEFzFEBAMAWBJUK4NQPAAD2IKhUQOoXe/S/H2y2uwwAAOodgkoFvbfhR+XmnbG7DAAA6hWCynk4mHXK7hIAAKhXCCrnIefUabtLAACgXiGonIecU5z6AQCgJhFUzgNBBQCAmkVQOQ+c+gEAoGYRVM4DIyoAANQsgsp5YEQFAICaRVA5D9mMqAAAUKMIKufhX1//qLfW7LG7DAAA6g2CynnIOXVGUz7cqrT0TLtLAQCgXiCoVMLXe3+2uwQAAOoFgkop5j9whUICGnjdt3V/to7m5tVwRQAA1D+OCCovvfSS4uLi1LBhQ8XHx2vdunV2l6TLWjTRy0mXed33r69/VO+nVmrtf4/WcFUAANQvtgeVd999VxMmTNATTzyhr7/+Wt26dVP//v2VkZFhd2kKbuh9REWSCgqN7nxtrQb//XPN/Wqfvtx1RCfyz3AJMwAAVcgyxhg7C4iPj1evXr304osvSpIKCwsVGxurBx98UI899liZz83OzlZISIiysrIUHBxc5bVtP5ij/s9/dt7PC/T3lZ+PpUB/P/n7+Zy9+fqoga+lBr4+auDrIz9fS34+lnx9fOTrI/kW3bd0zjZLvpYlH5+z7X2KHluWLEuyJMmyZJ39Q5Z+3W5ZkuVud872Xx6ffXrx5xd/zq+v/ctdt1+3nru97Lbe7lrFGhfbXay+8t/3121lv1bx1/BWd8nXLa+tVfZ7eau9nNcqvv18fuY6j7Ye71XO8dP5vFbxZ5XzM9d5tC3v51DKy1a50uqvhneqmXepof7U3PGp/neqa3/Xyv+dKgX6+6lpI/8qfd/z+fz2q9J3Pk/5+fnauHGjJk+e7N7m4+Ojfv36ac2aNSXa5+XlKS/v17kh2dnZ1Vpf24jG6h3XVM0a++uKNs30xc6jigppqLX/PaqO0cFaue2QTp4ukDFSA18fnTxdIEk6kX/2T9ZdAQDUdjd1i9ELw7vb9v62BpUjR46ooKBAkZGRHtsjIyP1/fffl2ifnJysadOm1VR58vWx9N59Ce7Hv0uI89ruTEGhLMtS9snTauDnoyM5eTpTaHQyv0D5BQXKO1OoMwVGpwsKf7mdvX+m0Kjgl1uhMTpT8Mufxba79xUaFRb+us8YIyPJGMnI/PLn2ccqeuxln9HZB2cfF3+NXx+r+PN+GW/7Zc/Z+8XG4IoPx/26vey2xQfxvD/fe1uV2taU3OZlf/HtHq96Hm291V7az0Plti3l51TO+3p7i4odH+OlxpJ3K3Z8yv6Ze9ZY8n3P5/iYUgr2eiyrUU0NPtdcf2rqferQz62mfmY18zYV+H129kEDX3tnidgaVM7X5MmTNWHCBPfj7OxsxcbG2ljRWX6/HMQmvwyNNXbVqh8rAACOZesnalhYmHx9fXXo0CGP7YcOHVJUVFSJ9i6XSy6Xq6bKAwAANrN1PMff3189evTQypUr3dsKCwu1cuVKJSQklPFMAABQH9h+jmLChAkaOXKkevbsqd69e+v555/X8ePHNXr0aLtLAwAANrM9qNxxxx06fPiwpkyZooMHD+rSSy/V0qVLS0ywBQAA9Y/t66hciOpeRwUAAFS98/n8tn1lWgAAgNIQVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGPZvoT+hShaVDc7O9vmSgAAQEUVfW5XZHH8Wh1UcnJyJEmxsbE2VwIAAM5XTk6OQkJCymxTq7/rp7CwUPv371dQUJAsy6rS187OzlZsbKzS09Pr5PcI0b/ar673sa73T6r7faR/tV919dEYo5ycHMXExMjHp+xZKLV6RMXHx0fNmzev1vcIDg6us38BJfpXF9T1Ptb1/kl1v4/0r/arjj6WN5JShMm0AADAsQgqAADAsQgqpXC5XHriiSfkcrnsLqVa0L/ar673sa73T6r7faR/tZ8T+lirJ9MCAIC6jREVAADgWAQVAADgWAQVAADgWAQVAADgWAQVL1566SXFxcWpYcOGio+P17p16+wuqUKSk5PVq1cvBQUFKSIiQjfffLO2b9/u0ebaa6+VZVket/vuu8+jzb59+zRo0CAFBgYqIiJCjz76qM6cOVOTXfFq6tSpJWrv0KGDe/+pU6c0duxYNWvWTI0bN9awYcN06NAhj9dwat+KxMXFleijZVkaO3aspNp3/D777DMNHjxYMTExsixLCxcu9NhvjNGUKVMUHR2tgIAA9evXTzt27PBoc+zYMSUlJSk4OFihoaEaM2aMcnNzPdp88803uuqqq9SwYUPFxsbqL3/5S3V3za2sPp4+fVqTJk3SJZdcokaNGikmJkZ33XWX9u/f7/Ea3o77jBkzPNrY1cfyjuGoUaNK1D5gwACPNk4+huX1z9u/R8uy9PTTT7vbOPn4VeRzoap+d65evVqXXXaZXC6X2rZtq9mzZ1dNJww8zJs3z/j7+5tZs2aZrVu3mnvuuceEhoaaQ4cO2V1aufr3729SU1PNli1bTFpamhk4cKBp0aKFyc3Ndbe55pprzD333GMOHDjgvmVlZbn3nzlzxnTp0sX069fPbNq0yXz88ccmLCzMTJ482Y4ueXjiiSdM586dPWo/fPiwe/99991nYmNjzcqVK82GDRvM5Zdfbq644gr3fif3rUhGRoZH/5YvX24kmVWrVhljat/x+/jjj83jjz9u5s+fbySZBQsWeOyfMWOGCQkJMQsXLjSbN282N910k2nVqpU5efKku82AAQNMt27dzNq1a81//vMf07ZtWzN8+HD3/qysLBMZGWmSkpLMli1bzDvvvGMCAgLMq6++ansfMzMzTb9+/cy7775rvv/+e7NmzRrTu3dv06NHD4/XaNmypZk+fbrHcS3+79bOPpZ3DEeOHGkGDBjgUfuxY8c82jj5GJbXv+L9OnDggJk1a5axLMvs2rXL3cbJx68inwtV8bvzv//9rwkMDDQTJkww3333nfn73/9ufH19zdKlSy+4DwSVc/Tu3duMHTvW/bigoMDExMSY5ORkG6uqnIyMDCPJfPrpp+5t11xzjXnooYdKfc7HH39sfHx8zMGDB93bUlJSTHBwsMnLy6vOcsv1xBNPmG7dunndl5mZaRo0aGDef/9997Zt27YZSWbNmjXGGGf3rTQPPfSQadOmjSksLDTG1O7jd+6HQGFhoYmKijJPP/20e1tmZqZxuVzmnXfeMcYY89133xlJZv369e42S5YsMZZlmZ9++skYY8zLL79smjRp4tG/SZMmmfbt21dzj0ry9kF3rnXr1hlJZu/eve5tLVu2NM8991ypz3FKH0sLKkOGDCn1ObXpGFbk+A0ZMsT85je/8dhWW46fMSU/F6rqd+f//u//ms6dO3u81x133GH69+9/wTVz6qeY/Px8bdy4Uf369XNv8/HxUb9+/bRmzRobK6ucrKwsSVLTpk09ts+ZM0dhYWHq0qWLJk+erBMnTrj3rVmzRpdccokiIyPd2/r376/s7Gxt3bq1Zgovw44dOxQTE6PWrVsrKSlJ+/btkyRt3LhRp0+f9jh2HTp0UIsWLdzHzul9O1d+fr7efvtt3X333R5fulmbj19xu3fv1sGDBz2OWUhIiOLj4z2OWWhoqHr27Olu069fP/n4+Oirr75yt7n66qvl7+/vbtO/f39t375dP//8cw31puKysrJkWZZCQ0M9ts+YMUPNmjVT9+7d9fTTT3sMqzu9j6tXr1ZERITat2+v+++/X0ePHnXvq0vH8NChQ/roo480ZsyYEvtqy/E793Ohqn53rlmzxuM1itpUxWdnrf5Swqp25MgRFRQUeBwMSYqMjNT3339vU1WVU1hYqPHjx6tPnz7q0qWLe/uIESPUsmVLxcTE6JtvvtGkSZO0fft2zZ8/X5J08OBBr/0v2men+Ph4zZ49W+3bt9eBAwc0bdo0XXXVVdqyZYsOHjwof3//Er/8IyMj3XU7uW/eLFy4UJmZmRo1apR7W20+fucqqsdbvcWPWUREhMd+Pz8/NW3a1KNNq1atSrxG0b4mTZpUS/2VcerUKU2aNEnDhw/3+IK3P/zhD7rsssvUtGlTffnll5o8ebIOHDigZ599VpKz+zhgwADdcsstatWqlXbt2qX/+7//U2JiotasWSNfX986dQzffPNNBQUF6ZZbbvHYXluOn7fPhar63Vlam+zsbJ08eVIBAQGVrpugUkeNHTtWW7Zs0eeff+6x/d5773Xfv+SSSxQdHa2+fftq165datOmTU2XeV4SExPd97t27ar4+Hi1bNlS77333gX9I3CqN954Q4mJiYqJiXFvq83Hr747ffq0br/9dhljlJKS4rFvwoQJ7vtdu3aVv7+//ud//kfJycmOX579zjvvdN+/5JJL1LVrV7Vp00arV69W3759bays6s2aNUtJSUlq2LChx/bacvxK+1xwOk79FBMWFiZfX98Ss50PHTqkqKgom6o6f+PGjdPixYu1atUqNW/evMy28fHxkqSdO3dKkqKiorz2v2ifk4SGhuriiy/Wzp07FRUVpfz8fGVmZnq0KX7salPf9u7dqxUrVuj3v/99me1q8/Erqqesf29RUVHKyMjw2H/mzBkdO3asVh3XopCyd+9eLV++3GM0xZv4+HidOXNGe/bskVQ7+likdevWCgsL8/g7WReO4X/+8x9t37693H+TkjOPX2mfC1X1u7O0NsHBwRf8H0mCSjH+/v7q0aOHVq5c6d5WWFiolStXKiEhwcbKKsYYo3HjxmnBggX65JNPSgw1epOWliZJio6OliQlJCTo22+/9fjFUvSLtVOnTtVSd2Xl5uZq165dio6OVo8ePdSgQQOPY7d9+3bt27fPfexqU99SU1MVERGhQYMGldmuNh+/Vq1aKSoqyuOYZWdn66uvvvI4ZpmZmdq4caO7zSeffKLCwkJ3SEtISNBnn32m06dPu9ssX75c7du3d8Qpg6KQsmPHDq1YsULNmjUr9zlpaWny8fFxnzJxeh+L+/HHH3X06FGPv5O1/RhKZ0c4e/TooW7dupXb1knHr7zPhar63ZmQkODxGkVtquSz84Kn49Yx8+bNMy6Xy8yePdt899135t577zWhoaEes52d6v777zchISFm9erVHpfJnThxwhhjzM6dO8306dPNhg0bzO7du82HH35oWrduba6++mr3axRdhnbDDTeYtLQ0s3TpUhMeHu6IS3gfeeQRs3r1arN7927zxRdfmH79+pmwsDCTkZFhjDl7iV2LFi3MJ598YjZs2GASEhJMQkKC+/lO7ltxBQUFpkWLFmbSpEke22vj8cvJyTGbNm0ymzZtMpLMs88+azZt2uS+4mXGjBkmNDTUfPjhh+abb74xQ4YM8Xp5cvfu3c1XX31lPv/8c9OuXTuPS1szMzNNZGSk+d3vfme2bNli5s2bZwIDA2vs8uSy+pifn29uuukm07x5c5OWlubx77Loaokvv/zSPPfccyYtLc3s2rXLvP322yY8PNzcddddjuhjWf3LyckxEydONGvWrDG7d+82K1asMJdddplp166dOXXqlPs1nHwMy/s7aszZy4sDAwNNSkpKiec7/fiV97lgTNX87iy6PPnRRx8127ZtMy+99BKXJ1env//976ZFixbG39/f9O7d26xdu9bukipEktdbamqqMcaYffv2mauvvto0bdrUuFwu07ZtW/Poo496rMNhjDF79uwxiYmJJiAgwISFhZlHHnnEnD592oYeebrjjjtMdHS08ff3NxdddJG54447zM6dO937T548aR544AHTpEkTExgYaIYOHWoOHDjg8RpO7Vtxy5YtM5LM9u3bPbbXxuO3atUqr38nR44caYw5e4nyH//4RxMZGWlcLpfp27dviX4fPXrUDB8+3DRu3NgEBweb0aNHm5ycHI82mzdvNldeeaVxuVzmoosuMjNmzKipLpbZx927d5f677JobZyNGzea+Ph4ExISYho2bGg6duxonnrqKY8Pejv7WFb/Tpw4YW644QYTHh5uGjRoYFq2bGnuueeeEv+xc/IxLO/vqDHGvPrqqyYgIMBkZmaWeL7Tj195nwvGVN3vzlWrVplLL73U+Pv7m9atW3u8x4WwfukIAACA4zBHBQAAOBZBBQAAOBZBBQAAOBZBBQAAOBZBBQAAOBZBBQAAOBZBBQAAOBZBBUCdYlmWFi5caHcZAKoIQQVAlRk1apQsyypxGzBggN2lAail/OwuAEDdMmDAAKWmpnpsc9JX3QOoXRhRAVClXC6XoqKiPG5F3xBrWZZSUlKUmJiogIAAtW7dWh988IHH87/99lv95je/UUBAgJo1a6Z7771Xubm5Hm1mzZqlzp07y+VyKTo6WuPGjfPYf+TIEQ0dOlSBgYFq166dFi1aVL2dBlBtCCoAatQf//hHDRs2TJs3b1ZSUpLuvPNObdu2TZJ0/Phx9e/fX02aNNH69ev1/vvva8WKFR5BJCUlRWPHjtW9996rb7/9VosWLVLbtm093mPatGm6/fbb9c0332jgwIFKSkrSsWPHarSfAKpIlXy1IQAYY0aOHGl8fX1No0aNPG5PPvmkMebsN7ned999Hs+Jj483999/vzHGmNdee800adLE5Obmuvd/9NFHxsfHx/2NvDExMebxxx8vtQZJ5v/9v//nfpybm2skmSVLllRZPwHUHOaoAKhS1113nVJSUjy2NW3a1H0/ISHBY19CQoLS0tIkSdu2bVO3bt3UqFEj9/4+ffqosLBQ27dvl2VZ2r9/v/r27VtmDV27dnXfb9SokYKDg5WRkVHZLgGwEUEFQJVq1KhRiVMxVSUgIKBC7Ro0aODx2LIsFRYWVkdJAKoZc1QA1Ki1a9eWeNyxY0dJUseOHbV582YdP37cvf+LL76Qj4+P2rdvr6CgIMXFxWnlypU1WjMA+zCiAqBK5eXl6eDBgx7b/Pz8FBYWJkl6//331bNnT1155ZWaM2eO1q1bpzfeeEOSlJSUpCeeeEIjR47U1KlTdfjwYT344IP63e9+p8jISEnS1KlTdd999ykiIkKJiYnKycnRF198oQcffLBmOwqgRhBUAFSppUuXKjo62mNb+/bt9f3330s6e0XOvHnz9MADDyg6OlrvvPOOOnXqJEkKDAzUsmXL9NBDD6lXr14KDAzUsGHD9Oyzz7pfa+TIkTp16pSee+45TZw4UWFhYbr11ltrroMAapRljDF2FwGgfrAsSwsWLNDNN99sdykAagnmqAAAAMciqAAAAMdijgqAGsOZZgDnixEVAADgWAQVAADgWAQVAADgWAQVAADgWAQVAADgWAQVAADgWAQVAADgWAQVAADgWAQVAADgWP8fGroGo9npIQcAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(df_grouped.columns)" + ], + "metadata": { + "id": "qIb-HBQV3mri", + "outputId": "fd886769-a0f8-487e-dfe6-7957f3c4df6e", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Index(['1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988',\n", + " '1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',\n", + " '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006',\n", + " '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',\n", + " '2016', '2017', '2018', '2019', '2020', '2021', 'Total'],\n", + " dtype='object')\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "preguntar al profe sobre datos Tabla \"Total\" y otras cosas\n" + ], + "metadata": { + "id": "Mau8HCYfZdVO" + } + }, + { + "cell_type": "code", + "source": [ + "print(y_test)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "My8by2_2DI_X", + "outputId": "889e0207-9b1e-4d8c-dd5f-0ba6ae624490" + }, + "execution_count": 43, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Region\n", + "Middle East 2909.974107\n", + "Central & South America 3238.838636\n", + "Asia & Oceania 30933.492914\n", + "Name: 2021, dtype: float64\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(y_train)" + ], + "metadata": { + "id": "LKSqeON6YN7Y", + "outputId": "71d797eb-8aa6-43ab-957b-b17213d35820", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 46, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Region\n", + "Africa 1997.010181\n", + "Europe 11273.946852\n", + "North America 11829.410197\n", + "Eurasia 6892.277529\n", + "Name: 2021, dtype: float64\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "years = df_grouped.loc[X_test_index]['Total']\n", + "\n", + "plt.figure(figsize=(12, 6))\n", + "plt.plot(years, y_test, label='Datos Reales', marker='o')\n", + "plt.plot(years, y_train, label='Predicciones', marker='x')\n", + "plt.title('Predicciones vs. Datos Reales')\n", + "plt.xlabel('Año')\n", + "plt.ylabel('Valor')\n", + "plt.xticks(years, rotation=45) # Rotar etiquetas del eje x para que se vean mejor\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.show()\n" + ], + "metadata": { + "id": "2Y5furXoWET-", + "outputId": "fbdf062a-2b36-4ed5-9030-288b4736cc93", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 254 + } + }, + "execution_count": 49, + "outputs": [ + { + "output_type": "error", + "ename": "TypeError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0myears\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Total\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Crear una secuencia de años desde 1980 hasta 2021\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m12\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m6\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myears\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Datos Reales'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmarker\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'o'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myears\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Predicciones'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmarker\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'x'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: 'str' object cannot be interpreted as an integer" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "2\n", + "# Escalar los datos entre 0 y 1scaler_X = MinMaxScaler(feature_range=(0, 1))\n", + "scaler_X = MinMaxScaler(feature_range=(0, 1))\n", + "scaler_y = MinMaxScaler(feature_range=(0, 1))\n", + "train_X_scaled = scaler_X.fit_transform(train_X)\n", + "test_X_scaled = scaler_X.transform(test_X)\n", + "train_y_scaled = scaler_y.fit_transform(train_y.values.reshape(-1, 1))\n", + "test_y_scaled = scaler_y.transform(test_y.values.reshape(-1, 1))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 303 + }, + "id": "ji9qjt_SCrvY", + "outputId": "7610dff1-9cc5-4bba-92ea-a0b93fdf3a09" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mscaler_X\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mMinMaxScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_range\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mscaler_y\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mMinMaxScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeature_range\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mtrain_X_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_X\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_X\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mtest_X_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_X\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_X\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mtrain_y_scaled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler_y\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_y\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/utils/_set_output.py\u001b[0m in \u001b[0;36mwrapped\u001b[0;34m(self, X, *args, **kwargs)\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mwraps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mwrapped\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 140\u001b[0;31m \u001b[0mdata_to_wrap\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 141\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_to_wrap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 142\u001b[0m \u001b[0;31m# only wrap the first output for cross decomposition\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/base.py\u001b[0m in \u001b[0;36mfit_transform\u001b[0;34m(self, X, y, **fit_params)\u001b[0m\n\u001b[1;32m 876\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0my\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 877\u001b[0m \u001b[0;31m# fit method of arity 1 (unsupervised transformation)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 878\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mfit_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 879\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 880\u001b[0m \u001b[0;31m# fit method of arity 2 (supervised transformation)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_data.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 425\u001b[0m \u001b[0;31m# Reset internal state before fitting\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 426\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 427\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpartial_fit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 428\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 429\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mpartial_fit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_data.py\u001b[0m in \u001b[0;36mpartial_fit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 464\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 465\u001b[0m \u001b[0mfirst_pass\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"n_samples_seen_\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 466\u001b[0;31m X = self._validate_data(\n\u001b[0m\u001b[1;32m 467\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 468\u001b[0m \u001b[0mreset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfirst_pass\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/base.py\u001b[0m in \u001b[0;36m_validate_data\u001b[0;34m(self, X, y, reset, validate_separately, **check_params)\u001b[0m\n\u001b[1;32m 563\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Validation should be done on X, y or both.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 564\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mno_val_X\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mno_val_y\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 565\u001b[0;31m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcheck_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_name\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"X\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mcheck_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 566\u001b[0m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 567\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mno_val_X\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mno_val_y\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py\u001b[0m in \u001b[0;36mcheck_array\u001b[0;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)\u001b[0m\n\u001b[1;32m 776\u001b[0m )\n\u001b[1;32m 777\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype_iter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdtype_iter\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdtypes_orig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 778\u001b[0;31m \u001b[0mdtype_orig\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult_type\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mdtypes_orig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 779\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 780\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"iloc\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"dtype\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/numpy/core/overrides.py\u001b[0m in \u001b[0;36mresult_type\u001b[0;34m(*args, **kwargs)\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: at least one array or dtype is required" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Definir el modelo LSTM\n", + "model_lstm = Sequential()\n", + "model_lstm.add(LSTM(50, activation='relu', input_shape=(train_scaled.shape[1], 1)))\n", + "model_lstm.add(Dense(1))\n", + "model_lstm.compile(optimizer='adam', loss='mse')\n", + "\n", + "#/ Definir el modelo GRU\n", + "#model_gru = Sequential()\n", + "#model_gru.add(GRU(50, activation='relu', input_shape=(train_scaled.shape[1], 1)))\n", + "#model_gru.add(Dense(1))\n", + "#model_gru.compile(optimizer='adam', loss='mse')\n", + "#" + ], + "metadata": { + "id": "CaTJQmj33IvW" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "model_lstm.fit(train_X, train_y, epochs=10, verbose=0)\n", + "#model_gru.fit(train_X, train_y, epochs=10, verbose=0)\n", + "\n", + "# Evaluar los modelos\n", + "mse_lstm = model_lstm.evaluate(test_X, test_y)\n", + "#mse_gru = model_gru.evaluate(test_X, test_y)\n", + "\n", + "print(f'Test MSE LSTM: {mse_lstm}')\n", + "#print(f'Test MSE GRU: {mse_gru}')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 245 + }, + "id": "3wBcalVC41ED", + "outputId": "671dcbb9-7d07-4da9-b9e3-1c52a5f16ef9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_X\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_y\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m#model_gru.fit(train_X, train_y, epochs=10, verbose=0)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Evaluar los modelos\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mmse_lstm\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel_lstm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_X\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_y\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'train_X' is not defined" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "hasta aca\n" + ], + "metadata": { + "id": "keXYd4TrurKV" + } + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Convertir los datos a un formato largo usando melt de pandas\n", + "new_data = pd.melt(data, id_vars=['Country', 'Latitude', 'Longitude', 'Features', 'Region'], var_name='Year', value_name='Value')\n", + "\n", + "# Convertir las columnas al tipo de datos correcto\n", + "new_data['Year'] = new_data['Year'].astype(int)\n", + "new_data['Latitude'] = pd.to_numeric(new_data['Latitude'])\n", + "new_data['Longitude'] = pd.to_numeric(new_data['Longitude'])" + ], + "metadata": { + "id": "Xd6En43Apl_Z", + "outputId": "ff66b8ad-695e-4976-8859-ea466bc350cc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 303 + } + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/lib.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.maybe_convert_numeric\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unable to parse string \" -24.653257\"", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Convertir las columnas al tipo de datos correcto\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Latitude'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numeric\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Latitude'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Longitude'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numeric\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Longitude'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/tools/numeric.py\u001b[0m in \u001b[0;36mto_numeric\u001b[0;34m(arg, errors, downcast)\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0mcoerce_numeric\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0merrors\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m\"ignore\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"raise\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 184\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 185\u001b[0;31m values, _ = lib.maybe_convert_numeric(\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcoerce_numeric\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcoerce_numeric\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m )\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/lib.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.maybe_convert_numeric\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unable to parse string \" -24.653257\" at position 161" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Reordenar los niveles de 'Features' en la secuencia deseada\n", + "feature_order = [\"imports\", \"exports\", \"net imports\", \"installed capacity\", \"net generation\", \"net consumption\", \"distribution losses\"]\n", + "new_data['Features'] = pd.Categorical(new_data['Features'], categories=feature_order, ordered=True)\n", + "\n", + "custom_palette = [\"red\", \"blue\", \"green\",\"purple\", \"#FF7F00\", \"cyan\", \"brown\"]\n", + "\n", + "# Agrupar los datos por 'Year' y 'Region' y calcular la suma de valores\n", + "region_features = new_data.groupby(['Year', 'Region', 'Features']).agg(Total_Value=('Value', 'sum')).reset_index()\n", + "\n", + "# Establecer el estilo de los gráficos en Seaborn a \"whitegrid\"\n", + "sns.set_style(\"whitegrid\")\n", + "\n", + "# Crear el gráfico de líneas con la paleta de colores personalizada\n", + "sns.lineplot(data=region_features, x='Year', y='Total_Value', hue='Region')\n", + "plt.title('Total Values by Region Over Time')\n", + "plt.xlabel('Year')\n", + "plt.ylabel('Total')\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 390 + }, + "id": "cYzGOiNeVfY7", + "outputId": "d3044941-773c-479f-a4bf-7e86be3e6785" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# Agrupar los datos por 'Year' y 'Region' y calcular la suma de valores\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mregion_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Region'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Features'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0magg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mTotal_Value\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Value'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sum'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;31m# Establecer el estilo de los gráficos en Seaborn a \"whitegrid\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mgroupby\u001b[0;34m(self, by, axis, level, as_index, sort, group_keys, squeeze, observed, dropna)\u001b[0m\n\u001b[1;32m 8400\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_axis_number\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8401\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 8402\u001b[0;31m return DataFrameGroupBy(\n\u001b[0m\u001b[1;32m 8403\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8404\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mby\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort, group_keys, squeeze, observed, mutated, dropna)\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mpandas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrouper\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_grouper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 965\u001b[0;31m grouper, exclusions, obj = get_grouper(\n\u001b[0m\u001b[1;32m 966\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 967\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/grouper.py\u001b[0m in \u001b[0;36mget_grouper\u001b[0;34m(obj, key, axis, level, sort, observed, mutated, validate, dropna)\u001b[0m\n\u001b[1;32m 886\u001b[0m \u001b[0min_axis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 888\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgpr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 889\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgpr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mGrouper\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mgpr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkey\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 890\u001b[0m \u001b[0;31m# Add key to exclusions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "custom_palette = [\"#E41A1C\", \"#377EB8\", \"#4DAF4A\", \"#984EA3\", \"#FF7F00\", \"#FFFF33\", \"#A65628\"]\n", + "\n", + "# Filter the data for the past five years and 'exports'\n", + "export_data = new_data[(new_data['Features'] == \"exports\") & (new_data['Year'] >= (new_data['Year'].max() - 4))]\n", + "\n", + "# Group by 'Country' and calculate the total export value\n", + "top_exporting_countries = export_data.groupby('Country')['Value'].sum().reset_index().sort_values(by='Value', ascending=False).head(10)\n", + "\n", + "# Plotting\n", + "plt.figure(figsize=(10,6))\n", + "sns.barplot(x='Value', y='Country', data=top_exporting_countries, palette=custom_palette)\n", + "print(top_exporting_countries)\n", + "\n", + "plt.xlabel('Total Exports')\n", + "plt.ylabel('Country')\n", + "plt.title('Exports - Last 5 Years - Top Ten Countries')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 512 + }, + "id": "pEGfENwGVhHK", + "outputId": "2dc0d837-10ef-4939-a46a-d36246f692a7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3801\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3802\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m# Filter the data for the past five years and 'exports'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mexport_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Features'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"exports\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnew_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;31m# Group by 'Country' and calculate the total export value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3805\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3806\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3807\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3808\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3809\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3802\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3804\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3805\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3806\u001b[0m \u001b[0;31m# If we have a listlike key, _check_indexing_error will raise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'Year'" + ] + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "RQfTp3HSXLqQ" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file From 3a9dee50a92dfceffb1d3abde011429fe950c82e Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Mon, 6 Nov 2023 20:03:52 -0300 Subject: [PATCH 12/16] Creado mediante Colaboratory --- proyectoIAPrediccion1CNNPrediccion0.1.ipynb | 73 ++++++++++----------- 1 file changed, 36 insertions(+), 37 deletions(-) diff --git a/proyectoIAPrediccion1CNNPrediccion0.1.ipynb b/proyectoIAPrediccion1CNNPrediccion0.1.ipynb index 12b1e0a..8bb8b70 100644 --- a/proyectoIAPrediccion1CNNPrediccion0.1.ipynb +++ b/proyectoIAPrediccion1CNNPrediccion0.1.ipynb @@ -55,7 +55,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": { "id": "9_FId2wvQAgd" }, @@ -78,9 +78,9 @@ "base_uri": "https://localhost:8080/" }, "id": "lWY6qwmkQ2PL", - "outputId": "134f9d98-a4a0-40d7-e4bf-b88f779b17c7" + "outputId": "1943cce5-e556-4021-f4da-ea0b90820493" }, - "execution_count": 3, + "execution_count": 4, "outputs": [ { "output_type": "stream", @@ -125,7 +125,7 @@ ] }, "metadata": {}, - "execution_count": 3 + "execution_count": 4 } ] }, @@ -155,7 +155,7 @@ "metadata": { "id": "9MZcbtw9t95l" }, - "execution_count": 4, + "execution_count": 5, "outputs": [] }, { @@ -165,12 +165,12 @@ ], "metadata": { "id": "xegG-hIr9XGK", - "outputId": "82ffec0b-5f60-47c2-9bc8-4c0170520cc3", + "outputId": "0fca8842-9503-47be-86a5-375c957fcb77", "colab": { "base_uri": "https://localhost:8080/" } }, - "execution_count": 5, + "execution_count": 6, "outputs": [ { "output_type": "execute_result", @@ -185,7 +185,7 @@ ] }, "metadata": {}, - "execution_count": 5 + "execution_count": 6 } ] }, @@ -212,9 +212,9 @@ "base_uri": "https://localhost:8080/" }, "id": "6wZ4FIMSDhZH", - "outputId": "9a522fdb-e17f-4fbe-c4dc-cc36a816664d" + "outputId": "03ebe18a-3f6f-49f5-9943-e753f876e038" }, - "execution_count": 6, + "execution_count": 7, "outputs": [ { "output_type": "stream", @@ -277,12 +277,12 @@ ], "metadata": { "id": "y9YU2bOl_Cf6", - "outputId": "3793db9d-5025-4bec-8d5b-f45fe53d755a", + "outputId": "dc40d8f7-b2b4-40db-e1d9-2c3fdae7f6ef", "colab": { "base_uri": "https://localhost:8080/" } }, - "execution_count": 7, + "execution_count": 8, "outputs": [ { "output_type": "stream", @@ -333,12 +333,12 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 893 + "height": 574 }, "id": "UAOFyFDLLMo-", - "outputId": "fd4fa822-1db5-4d47-946e-8953ea205c03" + "outputId": "61cf55b1-ea7d-4c6a-eace-a62bf8beb53b" }, - "execution_count": 8, + "execution_count": 9, "outputs": [ { "output_type": "display_data", @@ -362,7 +362,7 @@ "metadata": { "id": "3HyCu76yuvpS" }, - "execution_count": 9, + "execution_count": 10, "outputs": [] }, { @@ -416,7 +416,7 @@ "height": 1000 }, "id": "nfJrQD1i4qys", - "outputId": "4ca67d91-0d4a-405b-d647-f087ba7b1fa1" + "outputId": "1f2e8317-5f50-4ad6-bd0b-b845834f335f" }, "execution_count": 11, "outputs": [ @@ -2432,7 +2432,7 @@ "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3OklEQVR4nO3deXxU1f3/8fdNQoYEsgDZJRA2WQWRJUZcCwoBERE3SCsg1a8KVkT8Il9/RaDVQK1LrRq1StAK4lJAHihQQNCqIIsEBRGBskRZwmI2lgSS8/sDM2bIZCEkuTfJ6/l4zIOZe8/MfE4uZN6ce+4ZyxhjBAAA4EA+dhcAAABQGoIKAABwLIIKAABwLIIKAABwLIIKAABwLIIKAABwLIIKAABwLIIKAABwLIIKAABwLIIKgBpjWZamTp163s/bs2ePLMvS7Nmzy2y3evVqWZal1atXV6o+AM5DUAHqmdmzZ8uyLFmWpc8//7zEfmOMYmNjZVmWbrzxRhsqBIBfEVSAeqphw4aaO3duie2ffvqpfvzxR7lcLhuqAgBPBBWgnho4cKDef/99nTlzxmP73Llz1aNHD0VFRdlUGQD8iqAC1FPDhw/X0aNHtXz5cve2/Px8ffDBBxoxYoTX5xw/flyPPPKIYmNj5XK51L59e/31r3/VuV/CnpeXp4cffljh4eEKCgrSTTfdpB9//NHra/7000+6++67FRkZKZfLpc6dO2vWrFlV11FJ77//vnr06KGAgACFhYXpt7/9rX766SePNgcPHtTo0aPVvHlzuVwuRUdHa8iQIdqzZ4+7zYYNG9S/f3+FhYUpICBArVq10t13312ltQLw5Gd3AQDsERcXp4SEBL3zzjtKTEyUJC1ZskRZWVm688479cILL3i0N8bopptu0qpVqzRmzBhdeumlWrZsmR599FH99NNPeu6559xtf//73+vtt9/WiBEjdMUVV+iTTz7RoEGDStRw6NAhXX755bIsS+PGjVN4eLiWLFmiMWPGKDs7W+PHj7/gfs6ePVujR49Wr169lJycrEOHDulvf/ubvvjiC23atEmhoaGSpGHDhmnr1q168MEHFRcXp4yMDC1fvlz79u1zP77hhhsUHh6uxx57TKGhodqzZ4/mz59/wTUCKIMBUK+kpqYaSWb9+vXmxRdfNEFBQebEiRPGGGNuu+02c9111xljjGnZsqUZNGiQ+3kLFy40ksyf//xnj9e79dZbjWVZZufOncYYY9LS0owk88ADD3i0GzFihJFknnjiCfe2MWPGmOjoaHPkyBGPtnfeeacJCQlx17V7924jyaSmppbZt1WrVhlJZtWqVcYYY/Lz801ERITp0qWLOXnypLvd4sWLjSQzZcoUY4wxP//8s5Fknn766VJfe8GCBe6fG4Caw6kfoB67/fbbdfLkSS1evFg5OTlavHhxqad9Pv74Y/n6+uoPf/iDx/ZHHnlExhgtWbLE3U5SiXbnjo4YY/Svf/1LgwcPljFGR44ccd/69++vrKwsff311xfUvw0bNigjI0MPPPCAGjZs6N4+aNAgdejQQR999JEkKSAgQP7+/lq9erV+/vlnr69VNPKyePFinT59+oLqAlBxdSaofPbZZxo8eLBiYmJkWZYWLlx4Xs+fOnWq+5LN4rdGjRpVT8GAA4SHh6tfv36aO3eu5s+fr4KCAt16661e2+7du1cxMTEKCgry2N6xY0f3/qI/fXx81KZNG4927du393h8+PBhZWZm6rXXXlN4eLjHbfTo0ZKkjIyMC+pfUU3nvrckdejQwb3f5XJp5syZWrJkiSIjI3X11VfrL3/5iw4ePOhuf80112jYsGGaNm2awsLCNGTIEKWmpiovL++CagRQtjoTVI4fP65u3brppZdeqtTzJ06cqAMHDnjcOnXqpNtuu62KKwWcZcSIEVqyZIleeeUVJSYmukcOqlthYaEk6be//a2WL1/u9danT58aqUU6O+Lzww8/KDk5WQ0bNtQf//hHdezYUZs2bZJ0drG6Dz74QGvWrNG4cePck4B79Oih3NzcGqsTqG/qTFBJTEzUn//8Zw0dOtTr/ry8PE2cOFEXXXSRGjVqpPj4eI/VKxs3bqyoqCj37dChQ/ruu+80ZsyYGuoBYI+hQ4fKx8dHa9euLfW0jyS1bNlS+/fvV05Ojsf277//3r2/6M/CwkLt2rXLo9327ds9HhddEVRQUKB+/fp5vUVERFxQ34pqOve9i7YV7S/Spk0bPfLII/r3v/+tLVu2KD8/X88884xHm8svv1xPPvmkNmzYoDlz5mjr1q2aN2/eBdUJoHR1JqiUZ9y4cVqzZo3mzZunb775RrfddpsGDBigHTt2eG3/+uuv6+KLL9ZVV11Vw5UCNatx48ZKSUnR1KlTNXjw4FLbDRw4UAUFBXrxxRc9tj/33HOyLMt95VDRn+deNfT88897PPb19dWwYcP0r3/9S1u2bCnxfocPH65Mdzz07NlTEREReuWVVzxO0SxZskTbtm1zX4l04sQJnTp1yuO5bdq0UVBQkPt5P//8c4nLsC+99FJJ4vQPUI3qxeXJ+/btU2pqqvbt26eYmBhJZ0/1LF26VKmpqXrqqac82p86dUpz5szRY489Zke5QI0bOXJkuW0GDx6s6667To8//rj27Nmjbt266d///rc+/PBDjR8/3j0n5dJLL9Xw4cP18ssvKysrS1dccYVWrlypnTt3lnjNGTNmaNWqVYqPj9c999yjTp066dixY/r666+1YsUKHTt27IL61aBBA82cOVOjR4/WNddco+HDh7svT46Li9PDDz8sSfrhhx/Ut29f3X777erUqZP8/Py0YMECHTp0SHfeeack6c0339TLL7+soUOHqk2bNsrJydE//vEPBQcHa+DAgRdUJ4DS1Yug8u2336qgoEAXX3yxx/a8vDw1a9asRPsFCxYoJyenQr+8gfrCx8dHixYt0pQpU/Tuu+8qNTVVcXFxevrpp/XII494tJ01a5bCw8M1Z84cLVy4UL/5zW/00UcfKTY21qNdZGSk1q1bp+nTp2v+/Pl6+eWX1axZM3Xu3FkzZ86skrpHjRqlwMBAzZgxQ5MmTVKjRo00dOhQzZw50z0fJzY2VsOHD9fKlSv1z3/+U35+furQoYPee+89DRs2TNLZybTr1q3TvHnzdOjQIYWEhKh3796aM2eOWrVqVSW1AijJMueOZdYBlmVpwYIFuvnmmyVJ7777rpKSkrR161b5+vp6tC2am1Jc3759FRwcrAULFtRUyQAAwIt6MaLSvXt3FRQUKCMjo9w5J7t379aqVau0aNGiGqoOAACUps4EldzcXI9z4Lt371ZaWpqaNm2qiy++WElJSbrrrrv0zDPPqHv37jp8+LBWrlyprl27eiztPWvWLEVHR7snBAIAAPvUmVM/q1ev1nXXXVdi+8iRIzV79mydPn1af/7zn/XWW2/pp59+UlhYmC6//HJNmzZNl1xyiaSz6zq0bNlSd911l5588sma7gIAADhHnQkqAACg7rF1HZW4uDivy9aPHTvWzrIAAIBD2DpHZf369SooKHA/3rJli66//nqWrQcAAJIcdupn/PjxWrx4sXbs2CHLssptX1hYqP379ysoKKhC7QEAgP2MMcrJyVFMTIx8fMo+ueOYq37y8/P19ttva8KECRUOHfv37y+xgBQAAKgd0tPT1bx58zLbOCaoLFy4UJmZmRo1alSpbfLy8jy+U6NoMCg9PV3BwcHVXSIAAKgC2dnZio2NVVBQULltHRNU3njjDSUmJrq/i8eb5ORkTZs2rcT24OBgggoAALVMRc6gOGKOyt69e9W6dWvNnz9fQ4YMKbXduSMqRYksKyuLoAIAQC2RnZ2tkJCQCn1+O2JEJTU1VRERER4rxHrjcrnkcrlqqCoAAGA3W9dRkc5euZOamqqRI0fKz88RuQkAADiE7clgxYoV2rdvn+6++267SwEAQNLZ/0Tn5+fbXUat1aBBA/n6+lbJa9keVG644QY5YJoMAACSzi6XsXv3bhUWFtpdSq0WGhqqqKioC17nzPagAgCAUxhjdODAAfn6+io2NrbcxchQkjFGJ06cUEZGhiQpOjr6gl6PoAIAwC/OnDmjEydOKCYmRoGBgXaXU2sFBARIkjIyMhQREXFBp4GIigAA/KLo++f8/f1trqT2Kwp6p0+fvqDXIagAAHAOvj/uwlXVz5CgAgAAHIugAgAASoiLi9Pzzz9vdxkEFQAAajPLssq8TZ06tVKvu379et17771VW2wlcNWPFyfyz+jY8Xy5/HwVHsSS/QAA5zpw4ID7/rvvvqspU6Zo+/bt7m2NGzd23zfGqKCgoEIrwYeHh1dtoZXEiIoXK7Zl6MqZq/TQvE12lwIAQJmioqLct5CQEFmW5X78/fffKygoSEuWLFGPHj3kcrn0+eefa9euXRoyZIgiIyPVuHFj9erVSytWrPB43XNP/ViWpddff11Dhw5VYGCg2rVrp0WLFlV7/wgqAACUwhijE/lnbLlV5artjz32mGbMmKFt27apa9euys3N1cCBA7Vy5Upt2rRJAwYM0ODBg7Vv374yX2fatGm6/fbb9c0332jgwIFKSkrSsWPHqqxObzj1AwBAKU6eLlCnKctsee/vpvdXoH/VfExPnz5d119/vftx06ZN1a1bN/fjP/3pT1qwYIEWLVqkcePGlfo6o0aN0vDhwyVJTz31lF544QWtW7dOAwYMqJI6vWFEpQx8BREAoC7o2bOnx+Pc3FxNnDhRHTt2VGhoqBo3bqxt27aVO6LStWtX9/1GjRopODjYvVR+dWFExQuW+QEASFJAA199N72/be9dVRo1auTxeOLEiVq+fLn++te/qm3btgoICNCtt95a7jdGN2jQwOOxZVnV/uWNBBUAAEphWVaVnX5xki+++EKjRo3S0KFDJZ0dYdmzZ4+9RZWCUz8AANQz7dq10/z585WWlqbNmzdrxIgR1T4yUlkElTIYMUkFAFD3PPvss2rSpImuuOIKDR48WP3799dll11md1le1b3xrCrAd1EBAGqjUaNGadSoUe7H1157rdfLnOPi4vTJJ594bBs7dqzH43NPBXl7nczMzErXWlGMqAAAAMciqAAAAMciqJSBdVQAALAXQcULi5VUAABwBIIKAADnqMrv2amvqupnSFABAOAXvr5nV4Mtb4VWlO/EiROSSq5me764PLkM5GkAqF/8/PwUGBiow4cPq0GDBvLx4f/z58sYoxMnTigjI0OhoaHu8FdZBBUvWEcFAOony7IUHR2t3bt3a+/evXaXU6uFhoYqKirqgl+HoAIAQDH+/v5q164dp38uQIMGDS54JKUIQQUAgHP4+PioYcOGdpcBMZm2bExSAQDAVgQVL5iiAgCAMxBUAACAYxFUAACAYxFUymCYpAIAgK0IKl6wjgoAAM5AUAEAAI5FUAEAAI5FUCkDX54JAIC9CCpeMUkFAAAnIKgAAADHIqgAAADHsj2o/PTTT/rtb3+rZs2aKSAgQJdccok2bNhgd1mS+KofAADsZuu3J//888/q06ePrrvuOi1ZskTh4eHasWOHmjRpYmdZrKMCAIBD2BpUZs6cqdjYWKWmprq3tWrVysaKAACAk9h66mfRokXq2bOnbrvtNkVERKh79+76xz/+YWdJAADAQWwNKv/973+VkpKidu3aadmyZbr//vv1hz/8QW+++abX9nl5ecrOzva4VSfDQioAANjK1lM/hYWF6tmzp5566ilJUvfu3bVlyxa98sorGjlyZIn2ycnJmjZtWrXXxRQVAACcwdYRlejoaHXq1MljW8eOHbVv3z6v7SdPnqysrCz3LT09vSbKBAAANrF1RKVPnz7avn27x7YffvhBLVu29Nre5XLJ5XLVRGmSuDwZAAC72Tqi8vDDD2vt2rV66qmntHPnTs2dO1evvfaaxo4da2dZsrg+GQAAR7A1qPTq1UsLFizQO++8oy5duuhPf/qTnn/+eSUlJdlZFgAAcAhbT/1I0o033qgbb7zR7jIAAIAD2b6EvpNxdTIAAPYiqHjBDBUAAJyBoAIAAByLoAIAAByLoFIGpqgAAGAvgooXLKMCAIAzEFQAAIBjEVQAAIBjEVTKwkIqAADYiqDiBXNUAABwBoIKAABwLIIKAABwLIJKGZihAgCAvQgqXlh82w8AAI5AUAEAAI5FUAEAAI5FUCkDy6gAAGAvgoo3TFEBAMARCCoAAMCxCCoAAMCxCCplMKykAgCArQgqXjBFBQAAZyCoAAAAxyKoAAAAxyKolIF1VAAAsBdBxQvLYpYKAABOQFABAACORVABAACORVApA3NUAACwF0HFC2aoAADgDAQVAADgWAQVAADgWASVMjBFBQAAexFUvGAZFQAAnIGgAgAAHIugAgAAHIugUgbDQioAANiKoOKFxUoqAAA4AkEFAAA4FkEFAAA4lq1BZerUqbIsy+PWoUMHO0uSxOXJAAA4hZ/dBXTu3FkrVqxwP/bzs70kAADgELanAj8/P0VFRdldBgAAcCDb56js2LFDMTExat26tZKSkrRv375S2+bl5Sk7O9vjVp24OhkAAHvZGlTi4+M1e/ZsLV26VCkpKdq9e7euuuoq5eTkeG2fnJyskJAQ9y02NrZa6mKKCgAAzmAZB61qlpmZqZYtW+rZZ5/VmDFjSuzPy8tTXl6e+3F2drZiY2OVlZWl4ODgKqvjy51HNOL1r9Q+MkjLHr66yl4XAACc/fwOCQmp0Oe37XNUigsNDdXFF1+snTt3et3vcrnkcrlquCoAAGAX2+eoFJebm6tdu3YpOjra7lIkSUaOGWwCAKBesjWoTJw4UZ9++qn27NmjL7/8UkOHDpWvr6+GDx9uZ1lMUgEAwCFsPfXz448/avjw4Tp69KjCw8N15ZVXau3atQoPD7ezLAAA4BC2BpV58+bZ+fYAAMDhHDVHxWmccz0UAAD1E0HFC4tJKgAAOAJBBQAAOBZBBQAAOBZBpQxMUQEAwF4EFS8spqgAAOAIBBUAAOBYBBUAAOBYBJUyOOiLpQEAqJcIKl4wRQUAAGcgqAAAAMciqAAAAMciqJSBGSoAANiLoOKFxUIqAAA4AkEFAAA4FkEFAAA4FkGlLExSAQDAVgQVL5iiAgCAMxBUAACAYxFUAACAYxFUysAUFQAA7EVQ8YIpKgAAOANBBQAAOBZBBQAAOBZBpQzGMEsFAAA7EVS8YB0VAACcgaACAAAci6ACAAAci6BSBmaoAABgL4KKV0xSAQDACQgqAADAsQgqZeDqZAAA7EVQ8YLLkwEAcAaCCgAAcCyCCgAAcCyCShkMFygDAGArgooXTFEBAMAZCCoAAMCxCCoAAMCxHBNUZsyYIcuyNH78eLtLcWMdFQAA7OWIoLJ+/Xq9+uqr6tq1q92lSJIsFlIBAMARbA8qubm5SkpK0j/+8Q81adLE7nIAAICD2B5Uxo4dq0GDBqlfv37lts3Ly1N2drbHDQAA1F1+dr75vHnz9PXXX2v9+vUVap+cnKxp06ZVc1W/Yo4KAAD2sm1EJT09XQ899JDmzJmjhg0bVug5kydPVlZWlvuWnp5eLbUxQwUAAGewbURl48aNysjI0GWXXebeVlBQoM8++0wvvvii8vLy5Ovr6/Ecl8sll8tV06UCAACb2BZU+vbtq2+//dZj2+jRo9WhQwdNmjSpREgBAAD1j21BJSgoSF26dPHY1qhRIzVr1qzEdgAAUD/ZftWPE7GMCgAAzmDrVT/nWr16td0lAAAAB2FEBQAAOBZBpQyGhVQAALAVQcULi5VUAABwBIIKAABwLIIKAABwLIJKGZihAgCAvQgqXrCOCgAAzkBQAQAAjkVQAQAAjkVQKQPLqAAAYC+CCgAAcCyCCgAAcCyCCgAAcCyCShkMK6kAAGCrSgWV9PR0/fjjj+7H69at0/jx4/Xaa69VWWF2Yh0VAACcoVJBZcSIEVq1apUk6eDBg7r++uu1bt06Pf7445o+fXqVFggAAOqvSgWVLVu2qHfv3pKk9957T126dNGXX36pOXPmaPbs2VVZHwAAqMcqFVROnz4tl8slSVqxYoVuuukmSVKHDh104MCBqqvOZqyjAgCAvSoVVDp37qxXXnlF//nPf7R8+XINGDBAkrR//341a9asSgu0gyUmqQAA4ASVCiozZ87Uq6++qmuvvVbDhw9Xt27dJEmLFi1ynxICAAC4UH6VedK1116rI0eOKDs7W02aNHFvv/feexUYGFhlxQEAgPqtUiMqJ0+eVF5enjuk7N27V88//7y2b9+uiIiIKi3QTkxRAQDAXpUKKkOGDNFbb70lScrMzFR8fLyeeeYZ3XzzzUpJSanSAu3AOioAADhDpYLK119/rauuukqS9MEHHygyMlJ79+7VW2+9pRdeeKFKCwQAAPVXpYLKiRMnFBQUJEn697//rVtuuUU+Pj66/PLLtXfv3iot0E5cngwAgL0qFVTatm2rhQsXKj09XcuWLdMNN9wgScrIyFBwcHCVFmgHTv0AAOAMlQoqU6ZM0cSJExUXF6fevXsrISFB0tnRle7du1dpgQAAoP6q1OXJt956q6688kodOHDAvYaKJPXt21dDhw6tsuIAAED9VqmgIklRUVGKiopyf4ty8+bN6+Bib0xSAQDATpU69VNYWKjp06crJCRELVu2VMuWLRUaGqo//elPKiwsrOoaaxxL6AMA4AyVGlF5/PHH9cYbb2jGjBnq06ePJOnzzz/X1KlTderUKT355JNVWiQAAKifKhVU3nzzTb3++uvub02WpK5du+qiiy7SAw88QFABAABVolKnfo4dO6YOHTqU2N6hQwcdO3bsgotyCtZRAQDAXpUKKt26ddOLL75YYvuLL76orl27XnBRdmMdFQAAnKFSp37+8pe/aNCgQVqxYoV7DZU1a9YoPT1dH3/8cZUWCAAA6q9Kjahcc801+uGHHzR06FBlZmYqMzNTt9xyi7Zu3ap//vOfVV0jAACopyq9jkpMTEyJSbObN2/WG2+8oddee+2CC3MCpqgAAGCvSo2o1HVMUQEAwBkIKgAAwLFsDSopKSnq2rWrgoODFRwcrISEBC1ZssTOkgAAgIOc1xyVW265pcz9mZmZ5/XmzZs314wZM9SuXTsZY/Tmm29qyJAh2rRpkzp37nxer1UdDAupAABgq/MKKiEhIeXuv+uuuyr8eoMHD/Z4/OSTTyolJUVr1661NaiwjgoAAM5wXkElNTW1uupQQUGB3n//fR0/fty9Nsu58vLylJeX536cnZ1dbfUAAAD72T6Z9ttvv1Xjxo3lcrl03333acGCBerUqZPXtsnJyQoJCXHfYmNja7haAABQk2wPKu3bt1daWpq++uor3X///Ro5cqS+++47r20nT56srKws9y09Pb1aa2OGCgAA9qr0gm9Vxd/fX23btpUk9ejRQ+vXr9ff/vY3vfrqqyXaulwuuVyuGqiKSSoAADiB7SMq5yosLPSYhwIAAOovW0dUJk+erMTERLVo0UI5OTmaO3euVq9erWXLltlZFgAAcAhbg0pGRobuuusuHThwQCEhIeratauWLVum66+/3s6y3FhGBQAAe9kaVN544w07375UrKMCAIAzOG6OCgAAQBGCCgAAcCyCShn4rh8AAOxFUPGCKSoAADgDQQUAADgWQQUAADgWQaUMzFABAMBeBBUvLBZSAQDAEQgqAADAsQgqAADAsQgqZWGSCgAAtiKoeMEMFQAAnIGgAgAAHIugAgAAHIugUgamqAAAYC+CihcsowIAgDMQVAAAgGMRVMpgDCd/AACwE0HFC4sLlAEAcASCCgAAcCyCCgAAcCyCShmYoQIAgL0IKl5weTIAAM5AUAEAAI5FUAEAAI5FUCkDy6gAAGAvggoAAHAsggoAAHAsggoAAHAsgkoZDCupAABgK4KKF6yjAgCAMxBUAACAYxFUAACAYxFUysA6KgAA2Iug4oXFJBUAAByBoFIGBlQAALAXQcUL93gKSQUAAFsRVLzgzA8AAM5AUCkDC74BAGAvW4NKcnKyevXqpaCgIEVEROjmm2/W9u3b7SxJkmSJIRUAAJzA1qDy6aefauzYsVq7dq2WL1+u06dP64YbbtDx48ftLMuNy5MBALCXn51vvnTpUo/Hs2fPVkREhDZu3Kirr77apqp+naNCTgEAwF6OmqOSlZUlSWratKmtdXDiBwAAZ7B1RKW4wsJCjR8/Xn369FGXLl28tsnLy1NeXp77cXZ2drXWZDj3AwCArRwzojJ27Fht2bJF8+bNK7VNcnKyQkJC3LfY2NjqKYYhFQAAHMERQWXcuHFavHixVq1apebNm5fabvLkycrKynLf0tPTq7UuxlMAALCXrad+jDF68MEHtWDBAq1evVqtWrUqs73L5ZLL5ar2uoouT+bMDwAA9rI1qIwdO1Zz587Vhx9+qKCgIB08eFCSFBISooCAANvqYmVaAACcwdZTPykpKcrKytK1116r6Oho9+3dd9+1sywAAOAQtp/6cSIGVAAAcAZHTKZ1MqeGKQAA6gOCihdWsUkq5BQAAOxDUPGCUz8AADgDQaUcDKgAAGAfgooXxS9PZo4KAAD2Iah4YXHyBwAARyColIPxFAAA7ENQ8YYBFQAAHIGgUg6mqAAAYB+Cihcek2k5+QMAgG0IKl5w5gcAAGcgqJSDUz8AANiHoOJF8SX0AQCAfQgqAADAsQgqXhQfT+HUDwAA9iGoeMGZHwAAnIGgUg4uTwYAwD4EFS/4rh8AAJyBoFIO5qgAAGAfgooXnivTAgAAuxBUAACAYxFUymE49wMAgG0IKl5weTIAAM5AUCkH4ykAANiHoOJF8cuTOfMDAIB9CCpecOoHAABnIKiUhxEVAABsQ1DxggEVAACcgaBSDr7rBwAA+xBUvLAsJtMCAOAEBBUvOPUDAIAzEFTKwYAKAAD2Iah44fGlhJz7AQDANgQVLywWUgEAwBEIKuVgPAUAAPsQVAAAgGMRVMqxKG2/3SUAAFBvEVTKMX3xd3aXAABAvUVQAQAAjmVrUPnss880ePBgxcTEyLIsLVy40M5yAACAw9gaVI4fP65u3brppZdesrOMchUWcu0PAAB28LPzzRMTE5WYmGhnCRWSd6ZQAf6+dpcBAEC9wxyVCjiRf8buEgAAqJdsHVE5X3l5ecrLy3M/zs7OrpH3PcOpHwAAbFGrRlSSk5MVEhLivsXGxtbI+xJUAACwR60KKpMnT1ZWVpb7lp6eXiPvW1BAUAEAwA616tSPy+WSy+Wq8fct4BuUAQCwha1BJTc3Vzt37nQ/3r17t9LS0tS0aVO1aNHCxso8FRQW2l0CAAD1kq1BZcOGDbruuuvcjydMmCBJGjlypGbPnm1TVSUxRwUAAHvYGlSuvfZamVpwWqWAoAIAgC1q1WRauxBUAACwB0GlAjj1AwCAPQgqFcCICgAA9iCoVABBBQAAexBUKoCgAgCAPQgqFcAcFQAA7EFQqYBCggoAALYgqFQAIyoAANiDoFIBLKEPAIA9CCoVUEBOAQDAFgSVCjjDiAoAALYgqFQAlycDAGAPgkoFEFQAALAHQaUCCCoAANiDoFIBXJ4MAIA9CCoVUGgIKgAA2IGgUgFnCggqAADYgaBSAcxRAQDAHgSVCmCOCgAA9iCoVABzVAAAsAdBpQKYowIAgD0IKhXAlxICAGAPgkoFFHDqBwAAWxBUKoDJtAAA2IOgUgEFzFEBAMAWBJUK4NQPAAD2IKhUQOoXe/S/H2y2uwwAAOodgkoFvbfhR+XmnbG7DAAA6hWCynk4mHXK7hIAAKhXCCrnIefUabtLAACgXiGonIecU5z6AQCgJhFUzgNBBQCAmkVQOQ+c+gEAoGYRVM4DIyoAANQsgsp5YEQFAICaRVA5D9mMqAAAUKMIKufhX1//qLfW7LG7DAAA6g2CynnIOXVGUz7cqrT0TLtLAQCgXiCoVMLXe3+2uwQAAOoFgkop5j9whUICGnjdt3V/to7m5tVwRQAA1D+OCCovvfSS4uLi1LBhQ8XHx2vdunV2l6TLWjTRy0mXed33r69/VO+nVmrtf4/WcFUAANQvtgeVd999VxMmTNATTzyhr7/+Wt26dVP//v2VkZFhd2kKbuh9REWSCgqN7nxtrQb//XPN/Wqfvtx1RCfyz3AJMwAAVcgyxhg7C4iPj1evXr304osvSpIKCwsVGxurBx98UI899liZz83OzlZISIiysrIUHBxc5bVtP5ij/s9/dt7PC/T3lZ+PpUB/P/n7+Zy9+fqoga+lBr4+auDrIz9fS34+lnx9fOTrI/kW3bd0zjZLvpYlH5+z7X2KHluWLEuyJMmyZJ39Q5Z+3W5ZkuVud872Xx6ffXrx5xd/zq+v/ctdt1+3nru97Lbe7lrFGhfbXay+8t/3121lv1bx1/BWd8nXLa+tVfZ7eau9nNcqvv18fuY6j7Ye71XO8dP5vFbxZ5XzM9d5tC3v51DKy1a50uqvhneqmXepof7U3PGp/neqa3/Xyv+dKgX6+6lpI/8qfd/z+fz2q9J3Pk/5+fnauHGjJk+e7N7m4+Ojfv36ac2aNSXa5+XlKS/v17kh2dnZ1Vpf24jG6h3XVM0a++uKNs30xc6jigppqLX/PaqO0cFaue2QTp4ukDFSA18fnTxdIEk6kX/2T9ZdAQDUdjd1i9ELw7vb9v62BpUjR46ooKBAkZGRHtsjIyP1/fffl2ifnJysadOm1VR58vWx9N59Ce7Hv0uI89ruTEGhLMtS9snTauDnoyM5eTpTaHQyv0D5BQXKO1OoMwVGpwsKf7mdvX+m0Kjgl1uhMTpT8Mufxba79xUaFRb+us8YIyPJGMnI/PLn2ccqeuxln9HZB2cfF3+NXx+r+PN+GW/7Zc/Z+8XG4IoPx/26vey2xQfxvD/fe1uV2taU3OZlf/HtHq96Hm291V7az0Plti3l51TO+3p7i4odH+OlxpJ3K3Z8yv6Ze9ZY8n3P5/iYUgr2eiyrUU0NPtdcf2rqferQz62mfmY18zYV+H129kEDX3tnidgaVM7X5MmTNWHCBPfj7OxsxcbG2ljRWX6/HMQmvwyNNXbVqh8rAACOZesnalhYmHx9fXXo0CGP7YcOHVJUVFSJ9i6XSy6Xq6bKAwAANrN1PMff3189evTQypUr3dsKCwu1cuVKJSQklPFMAABQH9h+jmLChAkaOXKkevbsqd69e+v555/X8ePHNXr0aLtLAwAANrM9qNxxxx06fPiwpkyZooMHD+rSSy/V0qVLS0ywBQAA9Y/t66hciOpeRwUAAFS98/n8tn1lWgAAgNIQVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGMRVAAAgGPZvoT+hShaVDc7O9vmSgAAQEUVfW5XZHH8Wh1UcnJyJEmxsbE2VwIAAM5XTk6OQkJCymxTq7/rp7CwUPv371dQUJAsy6rS187OzlZsbKzS09Pr5PcI0b/ar673sa73T6r7faR/tV919dEYo5ycHMXExMjHp+xZKLV6RMXHx0fNmzev1vcIDg6us38BJfpXF9T1Ptb1/kl1v4/0r/arjj6WN5JShMm0AADAsQgqAADAsQgqpXC5XHriiSfkcrnsLqVa0L/ar673sa73T6r7faR/tZ8T+lirJ9MCAIC6jREVAADgWAQVAADgWAQVAADgWAQVAADgWAQVL1566SXFxcWpYcOGio+P17p16+wuqUKSk5PVq1cvBQUFKSIiQjfffLO2b9/u0ebaa6+VZVket/vuu8+jzb59+zRo0CAFBgYqIiJCjz76qM6cOVOTXfFq6tSpJWrv0KGDe/+pU6c0duxYNWvWTI0bN9awYcN06NAhj9dwat+KxMXFleijZVkaO3aspNp3/D777DMNHjxYMTExsixLCxcu9NhvjNGUKVMUHR2tgIAA9evXTzt27PBoc+zYMSUlJSk4OFihoaEaM2aMcnNzPdp88803uuqqq9SwYUPFxsbqL3/5S3V3za2sPp4+fVqTJk3SJZdcokaNGikmJkZ33XWX9u/f7/Ea3o77jBkzPNrY1cfyjuGoUaNK1D5gwACPNk4+huX1z9u/R8uy9PTTT7vbOPn4VeRzoap+d65evVqXXXaZXC6X2rZtq9mzZ1dNJww8zJs3z/j7+5tZs2aZrVu3mnvuuceEhoaaQ4cO2V1aufr3729SU1PNli1bTFpamhk4cKBp0aKFyc3Ndbe55pprzD333GMOHDjgvmVlZbn3nzlzxnTp0sX069fPbNq0yXz88ccmLCzMTJ482Y4ueXjiiSdM586dPWo/fPiwe/99991nYmNjzcqVK82GDRvM5Zdfbq644gr3fif3rUhGRoZH/5YvX24kmVWrVhljat/x+/jjj83jjz9u5s+fbySZBQsWeOyfMWOGCQkJMQsXLjSbN282N910k2nVqpU5efKku82AAQNMt27dzNq1a81//vMf07ZtWzN8+HD3/qysLBMZGWmSkpLMli1bzDvvvGMCAgLMq6++ansfMzMzTb9+/cy7775rvv/+e7NmzRrTu3dv06NHD4/XaNmypZk+fbrHcS3+79bOPpZ3DEeOHGkGDBjgUfuxY8c82jj5GJbXv+L9OnDggJk1a5axLMvs2rXL3cbJx68inwtV8bvzv//9rwkMDDQTJkww3333nfn73/9ufH19zdKlSy+4DwSVc/Tu3duMHTvW/bigoMDExMSY5ORkG6uqnIyMDCPJfPrpp+5t11xzjXnooYdKfc7HH39sfHx8zMGDB93bUlJSTHBwsMnLy6vOcsv1xBNPmG7dunndl5mZaRo0aGDef/9997Zt27YZSWbNmjXGGGf3rTQPPfSQadOmjSksLDTG1O7jd+6HQGFhoYmKijJPP/20e1tmZqZxuVzmnXfeMcYY89133xlJZv369e42S5YsMZZlmZ9++skYY8zLL79smjRp4tG/SZMmmfbt21dzj0ry9kF3rnXr1hlJZu/eve5tLVu2NM8991ypz3FKH0sLKkOGDCn1ObXpGFbk+A0ZMsT85je/8dhWW46fMSU/F6rqd+f//u//ms6dO3u81x133GH69+9/wTVz6qeY/Px8bdy4Uf369XNv8/HxUb9+/bRmzRobK6ucrKwsSVLTpk09ts+ZM0dhYWHq0qWLJk+erBMnTrj3rVmzRpdccokiIyPd2/r376/s7Gxt3bq1Zgovw44dOxQTE6PWrVsrKSlJ+/btkyRt3LhRp0+f9jh2HTp0UIsWLdzHzul9O1d+fr7efvtt3X333R5fulmbj19xu3fv1sGDBz2OWUhIiOLj4z2OWWhoqHr27Olu069fP/n4+Oirr75yt7n66qvl7+/vbtO/f39t375dP//8cw31puKysrJkWZZCQ0M9ts+YMUPNmjVT9+7d9fTTT3sMqzu9j6tXr1ZERITat2+v+++/X0ePHnXvq0vH8NChQ/roo480ZsyYEvtqy/E793Ohqn53rlmzxuM1itpUxWdnrf5Swqp25MgRFRQUeBwMSYqMjNT3339vU1WVU1hYqPHjx6tPnz7q0qWLe/uIESPUsmVLxcTE6JtvvtGkSZO0fft2zZ8/X5J08OBBr/0v2men+Ph4zZ49W+3bt9eBAwc0bdo0XXXVVdqyZYsOHjwof3//Er/8IyMj3XU7uW/eLFy4UJmZmRo1apR7W20+fucqqsdbvcWPWUREhMd+Pz8/NW3a1KNNq1atSrxG0b4mTZpUS/2VcerUKU2aNEnDhw/3+IK3P/zhD7rsssvUtGlTffnll5o8ebIOHDigZ599VpKz+zhgwADdcsstatWqlXbt2qX/+7//U2JiotasWSNfX986dQzffPNNBQUF6ZZbbvHYXluOn7fPhar63Vlam+zsbJ08eVIBAQGVrpugUkeNHTtWW7Zs0eeff+6x/d5773Xfv+SSSxQdHa2+fftq165datOmTU2XeV4SExPd97t27ar4+Hi1bNlS77333gX9I3CqN954Q4mJiYqJiXFvq83Hr747ffq0br/9dhljlJKS4rFvwoQJ7vtdu3aVv7+//ud//kfJycmOX579zjvvdN+/5JJL1LVrV7Vp00arV69W3759bays6s2aNUtJSUlq2LChx/bacvxK+1xwOk79FBMWFiZfX98Ss50PHTqkqKgom6o6f+PGjdPixYu1atUqNW/evMy28fHxkqSdO3dKkqKiorz2v2ifk4SGhuriiy/Wzp07FRUVpfz8fGVmZnq0KX7salPf9u7dqxUrVuj3v/99me1q8/Erqqesf29RUVHKyMjw2H/mzBkdO3asVh3XopCyd+9eLV++3GM0xZv4+HidOXNGe/bskVQ7+likdevWCgsL8/g7WReO4X/+8x9t37693H+TkjOPX2mfC1X1u7O0NsHBwRf8H0mCSjH+/v7q0aOHVq5c6d5WWFiolStXKiEhwcbKKsYYo3HjxmnBggX65JNPSgw1epOWliZJio6OliQlJCTo22+/9fjFUvSLtVOnTtVSd2Xl5uZq165dio6OVo8ePdSgQQOPY7d9+3bt27fPfexqU99SU1MVERGhQYMGldmuNh+/Vq1aKSoqyuOYZWdn66uvvvI4ZpmZmdq4caO7zSeffKLCwkJ3SEtISNBnn32m06dPu9ssX75c7du3d8Qpg6KQsmPHDq1YsULNmjUr9zlpaWny8fFxnzJxeh+L+/HHH3X06FGPv5O1/RhKZ0c4e/TooW7dupXb1knHr7zPhar63ZmQkODxGkVtquSz84Kn49Yx8+bNMy6Xy8yePdt899135t577zWhoaEes52d6v777zchISFm9erVHpfJnThxwhhjzM6dO8306dPNhg0bzO7du82HH35oWrduba6++mr3axRdhnbDDTeYtLQ0s3TpUhMeHu6IS3gfeeQRs3r1arN7927zxRdfmH79+pmwsDCTkZFhjDl7iV2LFi3MJ598YjZs2GASEhJMQkKC+/lO7ltxBQUFpkWLFmbSpEke22vj8cvJyTGbNm0ymzZtMpLMs88+azZt2uS+4mXGjBkmNDTUfPjhh+abb74xQ4YM8Xp5cvfu3c1XX31lPv/8c9OuXTuPS1szMzNNZGSk+d3vfme2bNli5s2bZwIDA2vs8uSy+pifn29uuukm07x5c5OWlubx77Loaokvv/zSPPfccyYtLc3s2rXLvP322yY8PNzcddddjuhjWf3LyckxEydONGvWrDG7d+82K1asMJdddplp166dOXXqlPs1nHwMy/s7aszZy4sDAwNNSkpKiec7/fiV97lgTNX87iy6PPnRRx8127ZtMy+99BKXJ1env//976ZFixbG39/f9O7d26xdu9bukipEktdbamqqMcaYffv2mauvvto0bdrUuFwu07ZtW/Poo496rMNhjDF79uwxiYmJJiAgwISFhZlHHnnEnD592oYeebrjjjtMdHS08ff3NxdddJG54447zM6dO937T548aR544AHTpEkTExgYaIYOHWoOHDjg8RpO7Vtxy5YtM5LM9u3bPbbXxuO3atUqr38nR44caYw5e4nyH//4RxMZGWlcLpfp27dviX4fPXrUDB8+3DRu3NgEBweb0aNHm5ycHI82mzdvNldeeaVxuVzmoosuMjNmzKipLpbZx927d5f677JobZyNGzea+Ph4ExISYho2bGg6duxonnrqKY8Pejv7WFb/Tpw4YW644QYTHh5uGjRoYFq2bGnuueeeEv+xc/IxLO/vqDHGvPrqqyYgIMBkZmaWeL7Tj195nwvGVN3vzlWrVplLL73U+Pv7m9atW3u8x4WwfukIAACA4zBHBQAAOBZBBQAAOBZBBQAAOBZBBQAAOBZBBQAAOBZBBQAAOBZBBQAAOBZBBUCdYlmWFi5caHcZAKoIQQVAlRk1apQsyypxGzBggN2lAail/OwuAEDdMmDAAKWmpnpsc9JX3QOoXRhRAVClXC6XoqKiPG5F3xBrWZZSUlKUmJiogIAAtW7dWh988IHH87/99lv95je/UUBAgJo1a6Z7771Xubm5Hm1mzZqlzp07y+VyKTo6WuPGjfPYf+TIEQ0dOlSBgYFq166dFi1aVL2dBlBtCCoAatQf//hHDRs2TJs3b1ZSUpLuvPNObdu2TZJ0/Phx9e/fX02aNNH69ev1/vvva8WKFR5BJCUlRWPHjtW9996rb7/9VosWLVLbtm093mPatGm6/fbb9c0332jgwIFKSkrSsWPHarSfAKpIlXy1IQAYY0aOHGl8fX1No0aNPG5PPvmkMebsN7ned999Hs+Jj483999/vzHGmNdee800adLE5Obmuvd/9NFHxsfHx/2NvDExMebxxx8vtQZJ5v/9v//nfpybm2skmSVLllRZPwHUHOaoAKhS1113nVJSUjy2NW3a1H0/ISHBY19CQoLS0tIkSdu2bVO3bt3UqFEj9/4+ffqosLBQ27dvl2VZ2r9/v/r27VtmDV27dnXfb9SokYKDg5WRkVHZLgGwEUEFQJVq1KhRiVMxVSUgIKBC7Ro0aODx2LIsFRYWVkdJAKoZc1QA1Ki1a9eWeNyxY0dJUseOHbV582YdP37cvf+LL76Qj4+P2rdvr6CgIMXFxWnlypU1WjMA+zCiAqBK5eXl6eDBgx7b/Pz8FBYWJkl6//331bNnT1155ZWaM2eO1q1bpzfeeEOSlJSUpCeeeEIjR47U1KlTdfjwYT344IP63e9+p8jISEnS1KlTdd999ykiIkKJiYnKycnRF198oQcffLBmOwqgRhBUAFSppUuXKjo62mNb+/bt9f3330s6e0XOvHnz9MADDyg6OlrvvPOOOnXqJEkKDAzUsmXL9NBDD6lXr14KDAzUsGHD9Oyzz7pfa+TIkTp16pSee+45TZw4UWFhYbr11ltrroMAapRljDF2FwGgfrAsSwsWLNDNN99sdykAagnmqAAAAMciqAAAAMdijgqAGsOZZgDnixEVAADgWAQVAADgWAQVAADgWAQVAADgWAQVAADgWAQVAADgWAQVAADgWAQVAADgWAQVAADgWP8fGroGo9npIQcAAAAASUVORK5CYII=\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/c0lEQVR4nO3dfVwVdf7//+cB5QAKeMmFihepaV6hmRfYllYUoh9TuzJzF3PNPpX2qbXactvM3C1sXbPdrbS+pdaWWZZaP9MML6hMyjQptbR0VUy50BQQVETO+/eHy8mjgAgH5jA87rfmJmfmPXNebyfPeTLznhmHMcYIAADAJvysLgAAAMCbCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAfJ7D4dC0adMuer29e/fK4XBowYIF5bZLSUmRw+FQSkpKpeoD4FsINwAqZMGCBXI4HHI4HFq/fv15y40xio6OlsPh0P/8z/9YUCEAnEG4AXBRAgMDtXDhwvPmf/rpp/r555/ldDotqAoAfkW4AXBRhgwZosWLF+v06dMe8xcuXKjevXsrMjLSosoA4AzCDYCLMnr0aP3yyy9KTk52zzt16pTee+893XHHHaWuU1BQoIceekjR0dFyOp3q1KmT/v73v8sY49GusLBQf/jDH9S8eXOFhIToxhtv1M8//1zqNg8cOKDf//73ioiIkNPpVNeuXTVv3jzvdVTS4sWL1bt3bwUFBalZs2b67W9/qwMHDni0yczM1Lhx49SqVSs5nU5FRUVp+PDh2rt3r7vNpk2bFB8fr2bNmikoKEjt2rXT73//e6/WCuBX9awuAEDt0rZtW8XGxurtt99WQkKCJGnlypXKzc3V7bffrn/+858e7Y0xuvHGG7Vu3TqNHz9ePXv21KpVq/TII4/owIEDmj17trvtXXfdpTfffFN33HGHBgwYoLVr12ro0KHn1ZCVlaX+/fvL4XBo0qRJat68uVauXKnx48crLy9PDz74YJX7uWDBAo0bN059+vRRUlKSsrKy9I9//ENffPGFtmzZokaNGkmSbr75Zm3fvl3333+/2rZtq+zsbCUnJys9Pd39+oYbblDz5s312GOPqVGjRtq7d6+WLFlS5RoBlMEAQAXMnz/fSDJff/21eeGFF0xISIg5fvy4McaYW2+91VxzzTXGGGPatGljhg4d6l5v2bJlRpL561//6rG9W265xTgcDrNr1y5jjDFpaWlGkrnvvvs82t1xxx1GknnyySfd88aPH2+ioqLM4cOHPdrefvvtJiwszF3Xnj17jCQzf/78cvu2bt06I8msW7fOGGPMqVOnTHh4uOnWrZs5ceKEu93y5cuNJDN16lRjjDFHjx41kszMmTPL3PbSpUvdf28AaganpQBctNtuu00nTpzQ8uXLdezYMS1fvrzMU1IrVqyQv7+//u///s9j/kMPPSRjjFauXOluJ+m8ducehTHG6P3339ewYcNkjNHhw4fdU3x8vHJzc/XNN99UqX+bNm1Sdna27rvvPgUGBrrnDx06VJ07d9ZHH30kSQoKClJAQIBSUlJ09OjRUrdVcoRn+fLlKioqqlJdACqmToebzz77TMOGDVOLFi3kcDi0bNmyi1p/2rRp7ktjz54aNGhQPQUDPqJ58+aKi4vTwoULtWTJEhUXF+uWW24pte2+ffvUokULhYSEeMy/7LLL3MtL/vTz81P79u092nXq1Mnj9aFDh5STk6NXXnlFzZs395jGjRsnScrOzq5S/0pqOve9Jalz587u5U6nU88++6xWrlypiIgIXX311frb3/6mzMxMd/uBAwfq5ptv1lNPPaVmzZpp+PDhmj9/vgoLC6tUI4Cy1elwU1BQoJiYGL344ouVWv/hhx9WRkaGx9SlSxfdeuutXq4U8D133HGHVq5cqblz5yohIcF9hKK6uVwuSdJvf/tbJScnlzpdeeWVNVKLdObI0o8//qikpCQFBgbqiSee0GWXXaYtW7ZIOnMDwvfee0+pqamaNGmSeyB07969lZ+fX2N1AnVJnQ43CQkJ+utf/6qRI0eWurywsFAPP/ywWrZsqQYNGqhfv34edzBt2LChIiMj3VNWVpa+//57jR8/voZ6AFhn5MiR8vPz05dfflnmKSlJatOmjQ4ePKhjx455zN+xY4d7ecmfLpdLu3fv9mi3c+dOj9clV1IVFxcrLi6u1Ck8PLxKfSup6dz3LplXsrxE+/bt9dBDD+mTTz7Rtm3bdOrUKc2aNcujTf/+/fX0009r06ZNeuutt7R9+3YtWrSoSnUCKF2dDjcXMmnSJKWmpmrRokX67rvvdOutt2rw4MH66aefSm3/6quv6tJLL9VVV11Vw5UCNa9hw4aaM2eOpk2bpmHDhpXZbsiQISouLtYLL7zgMX/27NlyOBzuK65K/jz3aqvnn3/e47W/v79uvvlmvf/++9q2bdt573fo0KHKdMfDFVdcofDwcM2dO9fj9NHKlSv1ww8/uK/gOn78uE6ePOmxbvv27RUSEuJe7+jRo+dd8t6zZ09J4tQUUE24FLwM6enpmj9/vtLT09WiRQtJZ05Dffzxx5o/f76eeeYZj/YnT57UW2+9pccee8yKcgFLjB079oJthg0bpmuuuUaPP/649u7dq5iYGH3yySf64IMP9OCDD7rH2PTs2VOjR4/WSy+9pNzcXA0YMEBr1qzRrl27ztvmjBkztG7dOvXr108TJkxQly5ddOTIEX3zzTdavXq1jhw5UqV+1a9fX88++6zGjRungQMHavTo0e5Lwdu2bas//OEPkqQff/xR1113nW677TZ16dJF9erV09KlS5WVlaXbb79dkvT666/rpZde0siRI9W+fXsdO3ZM/+///T+FhoZqyJAhVaoTQOkIN2XYunWriouLdemll3rMLywsVNOmTc9rv3TpUh07dqxCH/ZAXeLn56cPP/xQU6dO1TvvvKP58+erbdu2mjlzph566CGPtvPmzVPz5s311ltvadmyZbr22mv10UcfKTo62qNdRESENm7cqOnTp2vJkiV66aWX1LRpU3Xt2lXPPvusV+q+8847FRwcrBkzZujRRx9VgwYNNHLkSD377LPu8UXR0dEaPXq01qxZo3//+9+qV6+eOnfurHfffVc333yzpDMDijdu3KhFixYpKytLYWFh6tu3r9566y21a9fOK7UC8OQw5x4vraMcDoeWLl2qESNGSJLeeecdjRkzRtu3b5e/v79H25KxNme77rrrFBoaqqVLl9ZUyQAAoBQcuSlDr169VFxcrOzs7AuOodmzZ4/WrVunDz/8sIaqAwAAZanT4SY/P9/jfP6ePXuUlpamJk2a6NJLL9WYMWOUmJioWbNmqVevXjp06JDWrFmjHj16eNwSft68eYqKinIPiAQAANap06elUlJSdM0115w3f+zYsVqwYIGKior017/+VW+88YYOHDigZs2aqX///nrqqafUvXt3SWfuudGmTRslJibq6aefrukuAACAc9TpcAMAAOyH+9wAAABbIdwAAABbqXMDil0ulw4ePKiQkBA5HA6rywEAABVgjNGxY8fUokUL+fmVf2ymzoWbgwcPnndDMAAAUDvs379frVq1KrdNnQs3ISEhks785YSGhlpcDQAAqIi8vDxFR0e7v8fLU+fCTcmpqNDQUMINAAC1TEWGlDCgGAAA2ArhBgAA2ArhBgAA2EqdG3MDAEB1KS4uVlFRkdVl1FoBAQEXvMy7Igg3AABUkTFGmZmZysnJsbqUWs3Pz0/t2rVTQEBAlbZDuAEAoIpKgk14eLiCg4O5SWwllNxkNyMjQ61bt67S3yHhBgCAKiguLnYHm6ZNm1pdTq3WvHlzHTx4UKdPn1b9+vUrvR0GFAMAUAUlY2yCg4MtrqT2KzkdVVxcXKXtEG4AAPACTkVVnbf+Dgk3AADAVgg3AADAK9q2bavnn3/e6jIINwAA1DUOh6Pcadq0aZXa7tdff627777bu8VWAldLeUnh6WIdOlaoen5+igwLtLocAADKlJGR4f75nXfe0dSpU7Vz5073vIYNG7p/NsaouLhY9epdODI0b97cu4VWEkduvGT7wTz95tl1uu3lVKtLAQCgXJGRke4pLCxMDofD/XrHjh0KCQnRypUr1bt3bzmdTq1fv167d+/W8OHDFRERoYYNG6pPnz5avXq1x3bPPS3lcDj06quvauTIkQoODlbHjh314YcfVnv/CDcAAHiRMUbHT522ZDLGeK0fjz32mGbMmKEffvhBPXr0UH5+voYMGaI1a9Zoy5YtGjx4sIYNG6b09PRyt/PUU0/ptttu03fffachQ4ZozJgxOnLkiNfqLI2lp6XmzJmjOXPmaO/evZKkrl27aurUqUpISCi1/YIFCzRu3DiPeU6nUydPnqzuUgEAqJATRcXqMnWVJe/9/fR4BQd456t9+vTpuv76692vmzRpopiYGPfrv/zlL1q6dKk+/PBDTZo0qczt3HnnnRo9erQk6ZlnntE///lPbdy4UYMHD/ZKnaWxNNy0atVKM2bMUMeOHWWM0euvv67hw4dry5Yt6tq1a6nrhIaGepwX5L4CAAB43xVXXOHxOj8/X9OmTdNHH32kjIwMnT59WidOnLjgkZsePXq4f27QoIFCQ0OVnZ1dLTWXsDTcDBs2zOP1008/rTlz5ujLL78sM9yUnBcEAMAXBdX31/fT4y17b29p0KCBx+uHH35YycnJ+vvf/64OHTooKChIt9xyi06dOlXuds59jILD4ZDL5fJanaXxmauliouLtXjxYhUUFCg2NrbMdvn5+WrTpo1cLpcuv/xyPfPMM2UGISsYee98JwCg9nE4HF47NeRLvvjiC915550aOXKkpDPfxyXDSnyN5X/7W7duVWxsrE6ePKmGDRtq6dKl6tKlS6ltO3XqpHnz5qlHjx7Kzc3V3//+dw0YMEDbt29Xq1atSl2nsLBQhYWF7td5eXnV0g9OjgEA7Kxjx45asmSJhg0bJofDoSeeeKLaj8BUluVXS3Xq1ElpaWn66quvdO+992rs2LH6/vvvS20bGxurxMRE9ezZUwMHDtSSJUvUvHlzvfzyy2VuPykpSWFhYe4pOjq6uroCAIBtPffcc2rcuLEGDBigYcOGKT4+XpdffrnVZZXKYbx53ZgXxMXFqX379uUGlrPdeuutqlevnt5+++1Sl5d25CY6Olq5ubkKDQ31Ss2StCX9qEa+tEHRTYL0+R+v9dp2AQC+7eTJk9qzZ4/atWunwEBu4loV5f1d5uXlKSwsrELf35YfuTmXy+XyCCPlKS4u1tatWxUVFVVmG6fTqdDQUI8JAADYl6VjbqZMmaKEhAS1bt1ax44d08KFC5WSkqJVq87cHyAxMVEtW7ZUUlKSpDPX3Pfv318dOnRQTk6OZs6cqX379umuu+6yshsefOs4GAAAdY+l4SY7O1uJiYnKyMhQWFiYevTooVWrVrlvGpSeni4/v18PLh09elQTJkxQZmamGjdurN69e2vDhg1lDkCuSdxvBwAA32BpuHnttdfKXZ6SkuLxevbs2Zo9e3Y1VgQAAGo7nxtzAwBAbeRj1+fUSt76OyTcAABQBSV34D1+/LjFldR+JXc79vev2p2WLb+Jn90Q3AGgbvH391ejRo3cz0sKDg5mHGYluFwuHTp0SMHBwapXr2rxhHDjJfxvDAB1V8kzD6v7gZB25+fnp9atW1c5HBJuAACoIofDoaioKIWHh6uoqMjqcmqtgIAAj6ukK4twAwCAl/j7+1d5vAiqjgHFAADAVgg3AADAVgg3XsLAeAAAfAPhBgAA2ArhBgAA2ArhBgAA2Arhxst4tggAANYi3HiJg3sUAwDgEwg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3Xsa1UgAAWItw4yU8fgEAAN9AuAEAALZCuAEAALZCuAEAALZCuPEynr4AAIC1CDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDdeZrhHMQAAliLceAl3KAYAwDcQbgAAgK0QbgAAgK0QbgAAgK0QbryMOxQDAGAtwo2XOMSIYgAAfAHhBgAA2Iql4WbOnDnq0aOHQkNDFRoaqtjYWK1cubLcdRYvXqzOnTsrMDBQ3bt314oVK2qoWgAAUBtYGm5atWqlGTNmaPPmzdq0aZOuvfZaDR8+XNu3by+1/YYNGzR69GiNHz9eW7Zs0YgRIzRixAht27athisHAAC+ymGMbw2BbdKkiWbOnKnx48eft2zUqFEqKCjQ8uXL3fP69++vnj17au7cuRXafl5ensLCwpSbm6vQ0FCv1f39wTwN+efnCg9xauPjcV7bLgAAuLjvb58Zc1NcXKxFixapoKBAsbGxpbZJTU1VXJxncIiPj1dqampNlFghPpUUAQCog+pZXcDWrVsVGxurkydPqmHDhlq6dKm6dOlSatvMzExFRER4zIuIiFBmZmaZ2y8sLFRhYaH7dV5enncKPwePXwAAwDdYfuSmU6dOSktL01dffaV7771XY8eO1ffff++17SclJSksLMw9RUdHe23bAADA91gebgICAtShQwf17t1bSUlJiomJ0T/+8Y9S20ZGRiorK8tjXlZWliIjI8vc/pQpU5Sbm+ue9u/f79X6AQCAb7E83JzL5XJ5nEY6W2xsrNasWeMxLzk5ucwxOpLkdDrdl5qXTAAAwL4sHXMzZcoUJSQkqHXr1jp27JgWLlyolJQUrVq1SpKUmJioli1bKikpSZL0wAMPaODAgZo1a5aGDh2qRYsWadOmTXrllVes7IYH37r2DACAusfScJOdna3ExERlZGQoLCxMPXr00KpVq3T99ddLktLT0+Xn9+vBpQEDBmjhwoX685//rD/96U/q2LGjli1bpm7dulnVBTcGFAMA4Bt87j431a267nOzIzNPg5//XM0aOrXpz9znBgAAb6qV97kBAADwBsINAACwFcKN19Wps3wAAPgcwo2XOMSIYgAAfAHhBgAA2ArhBgAA2ArhBgAA2Arhxsvq1l2DAADwPYQbL+EOxQAA+AbCDQAAsBXCDQAAsBXCDQAAsBXCjZcxnhgAAGsRbryE8cQAAPgGwg0AALAVwg0AALAVwg0AALAVwg0AALAVwo2XGZ6/AACApQg3XsLjFwAA8A2EGwAAYCuEGwAAYCuEGwAAYCuEGy9jODEAANYi3HgNI4oBAPAFhBsAAGArhBsAAGArhBsAAGArhBsv4wbFAABYi3DjJdyhGAAA30C4AQAAtkK4AQAAtkK4AQAAtkK48TLDiGIAACxFuPESxhMDAOAbCDcAAMBWCDcAAMBWLA03SUlJ6tOnj0JCQhQeHq4RI0Zo586d5a6zYMECORwOjykwMLCGKgYAAL7O0nDz6aefauLEifryyy+VnJysoqIi3XDDDSooKCh3vdDQUGVkZLinffv21VDFAADA19Wz8s0//vhjj9cLFixQeHi4Nm/erKuvvrrM9RwOhyIjI6u7vErhWikAAKzlU2NucnNzJUlNmjQpt11+fr7atGmj6OhoDR8+XNu3by+zbWFhofLy8jym6uDg+QsAAPgEnwk3LpdLDz74oK688kp169atzHadOnXSvHnz9MEHH+jNN9+Uy+XSgAED9PPPP5faPikpSWFhYe4pOjq6uroAAAB8gMP4yF3n7r33Xq1cuVLr169Xq1atKrxeUVGRLrvsMo0ePVp/+ctfzlteWFiowsJC9+u8vDxFR0crNzdXoaGhXqldkvYcLtA1f09RSGA9bZ0W77XtAgCAM9/fYWFhFfr+tnTMTYlJkyZp+fLl+uyzzy4q2EhS/fr11atXL+3atavU5U6nU06n0xtlAgCAWsDS01LGGE2aNElLly7V2rVr1a5du4veRnFxsbZu3aqoqKhqqLASfOI4GAAAdZelR24mTpyohQsX6oMPPlBISIgyMzMlSWFhYQoKCpIkJSYmqmXLlkpKSpIkTZ8+Xf3791eHDh2Uk5OjmTNnat++fbrrrrss64fE4xcAAPAVloabOXPmSJIGDRrkMX/+/Pm68847JUnp6eny8/v1ANPRo0c1YcIEZWZmqnHjxurdu7c2bNigLl261FTZAADAh1kabioyljklJcXj9ezZszV79uxqqggAANR2PnMpOAAAgDcQbryM8cQAAFiLcOMl3KAYAADfQLgBAAC2QrgBAAC2QrgBAAC2QrjxMh95VBcAAHUW4cZLHNyjGAAAn0C4AQAAtkK4AQAAtkK4AQAAtkK48TKGEwMAYC3CjZdwh2IAAHwD4QYAANgK4QYAANgK4QYAANgK4QYAANgK4cbLePoCAADWItwAAABbIdwAAABbIdwAAABbIdwAAABbIdx4meEBDAAAWIpw4yU8fgEAAN9AuAEAALZCuAEAALZCuAEAALZCuPEy7lAMAIC1CDde4mBEMQAAPoFwAwAAbIVwAwAAbIVwAwAAbIVw42WMJwYAwFqEGy9hODEAAL6BcAMAAGyFcAMAAGzF0nCTlJSkPn36KCQkROHh4RoxYoR27tx5wfUWL16szp07KzAwUN27d9eKFStqoFoAAFAbWBpuPv30U02cOFFffvmlkpOTVVRUpBtuuEEFBQVlrrNhwwaNHj1a48eP15YtWzRixAiNGDFC27Ztq8HKy8GIYgAALOUwxnceGHDo0CGFh4fr008/1dVXX11qm1GjRqmgoEDLly93z+vfv7969uypuXPnXvA98vLyFBYWptzcXIWGhnqt9ozcE4pNWqsAfz/9+HSC17YLAAAu7vvbp8bc5ObmSpKaNGlSZpvU1FTFxcV5zIuPj1dqamqp7QsLC5WXl+cxAQAA+/KZcONyufTggw/qyiuvVLdu3cpsl5mZqYiICI95ERERyszMLLV9UlKSwsLC3FN0dLRX6wYAAL7FZ8LNxIkTtW3bNi1atMir250yZYpyc3Pd0/79+726fQAA4FvqWV2AJE2aNEnLly/XZ599platWpXbNjIyUllZWR7zsrKyFBkZWWp7p9Mpp9PptVoBAIBvs/TIjTFGkyZN0tKlS7V27Vq1a9fuguvExsZqzZo1HvOSk5MVGxtbXWVeFMPlUgAAWMrSIzcTJ07UwoUL9cEHHygkJMQ9biYsLExBQUGSpMTERLVs2VJJSUmSpAceeEADBw7UrFmzNHToUC1atEibNm3SK6+8Ylk/JMnBAxgAAPAJlh65mTNnjnJzczVo0CBFRUW5p3feecfdJj09XRkZGe7XAwYM0MKFC/XKK68oJiZG7733npYtW1buIGQAAFB3WHrkpiK32ElJSTlv3q233qpbb721GioCAAC1nc9cLQUAAOANhBsv8537PQMAUDdVKtzs379fP//8s/v1xo0b9eCDD1o+qNdKDsYTAwDgEyoVbu644w6tW7dO0pk7Bl9//fXauHGjHn/8cU2fPt2rBQIAAFyMSoWbbdu2qW/fvpKkd999V926ddOGDRv01ltvacGCBd6sDwAA4KJUKtwUFRW57/q7evVq3XjjjZKkzp07e1y2DQAAUNMqFW66du2quXPn6vPPP1dycrIGDx4sSTp48KCaNm3q1QJrG8YTAwBgrUqFm2effVYvv/yyBg0apNGjRysmJkaS9OGHH7pPV9U1jCcGAMA3VOomfoMGDdLhw4eVl5enxo0bu+fffffdCg4O9lpxAAAAF6tSR25OnDihwsJCd7DZt2+fnn/+ee3cuVPh4eFeLRAAAOBiVCrcDB8+XG+88YYkKScnR/369dOsWbM0YsQIzZkzx6sFAgAAXIxKhZtvvvlGV111lSTpvffeU0REhPbt26c33nhD//znP71aYG1TkedlAQCA6lOpcHP8+HGFhIRIkj755BPddNNN8vPzU//+/bVv3z6vFlhrMKIYAACfUKlw06FDBy1btkz79+/XqlWrdMMNN0iSsrOzFRoa6tUCAQAALkalws3UqVP18MMPq23bturbt69iY2MlnTmK06tXL68WCAAAcDEqdSn4Lbfcot/85jfKyMhw3+NGkq677jqNHDnSa8UBAABcrEqFG0mKjIxUZGSk++ngrVq1qrM38AMAAL6jUqelXC6Xpk+frrCwMLVp00Zt2rRRo0aN9Je//EUul8vbNdYqXCsFAIC1KnXk5vHHH9drr72mGTNm6Morr5QkrV+/XtOmTdPJkyf19NNPe7XI2sDB5VIAAPiESoWb119/Xa+++qr7aeCS1KNHD7Vs2VL33XdfnQw3AADAN1TqtNSRI0fUuXPn8+Z37txZR44cqXJRAAAAlVWpcBMTE6MXXnjhvPkvvPCCevToUeWiAAAAKqtSp6X+9re/aejQoVq9erX7Hjepqanav3+/VqxY4dUCaxuevgAAgLUqdeRm4MCB+vHHHzVy5Ejl5OQoJydHN910k7Zv365///vf3q6xVnAwnhgAAJ/gMF580uO3336ryy+/XMXFxd7apNfl5eUpLCxMubm5Xn1UxOH8Ql3x19WSpL0zhnptuwAA4OK+vyt15AYAAMBXEW4AAICtEG4AAICtXNTVUjfddFO5y3NycqpSS63GeGIAAHzDRYWbsLCwCy5PTEysUkEAAABVcVHhZv78+dVVBwAAgFcw5gYAANgK4aYaePHWQQAA4CIRbrzEwS2KAQDwCYQbAABgK4QbAABgK5aGm88++0zDhg1TixYt5HA4tGzZsnLbp6SkyOFwnDdlZmbWTMEAAMDnWRpuCgoKFBMToxdffPGi1tu5c6cyMjLcU3h4eDVVWDmMJwYAwDoXdZ8bb0tISFBCQsJFrxceHq5GjRp5v6AqYDgxAAC+oVaOuenZs6eioqJ0/fXX64svvii3bWFhofLy8jwmAABgX7Uq3ERFRWnu3Ll6//339f777ys6OlqDBg3SN998U+Y6SUlJCgsLc0/R0dE1WDEAAKhplp6WulidOnVSp06d3K8HDBig3bt3a/bs2fr3v/9d6jpTpkzR5MmT3a/z8vIIOAAA2FitCjel6du3r9avX1/mcqfTKafTWYMVAQAAK9Wq01KlSUtLU1RUlNVleOBiKQAArGPpkZv8/Hzt2rXL/XrPnj1KS0tTkyZN1Lp1a02ZMkUHDhzQG2+8IUl6/vnn1a5dO3Xt2lUnT57Uq6++qrVr1+qTTz6xqgtuPH0BAADfYGm42bRpk6655hr365KxMWPHjtWCBQuUkZGh9PR09/JTp07poYce0oEDBxQcHKwePXpo9erVHtsAAAB1m8PUsUdY5+XlKSwsTLm5uQoNDfXadnOOn1LP6cmSpN3PDJG/H4dyAADwlov5/q71Y24AAADORripBnXsYBgAAD6FcOMlDh7AAACATyDcAAAAWyHcAAAAWyHcAAAAWyHcVAOGEwMAYB3CjbcwnhgAAJ9AuAEAALZCuAEAALZCuAEAALZCuKkG3KAYAADrEG68xMGAYgAAfALhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhphoYHsAAAIBlCDdewsVSAAD4BsINAACwFcINAACwFcINAACwFcJNNeDxCwAAWIdw4yUOnr8AAIBPINwAAABbIdwAAABbIdwAAABbIdwAAABbIdx4CcOJAQDwDYQbAABgK4QbAABgK4QbAABgK4SbasAdigEAsA7hxku4QTEAAL6BcAMAAGyFcAMAAGzF0nDz2WefadiwYWrRooUcDoeWLVt2wXVSUlJ0+eWXy+l0qkOHDlqwYEG11wkAAGoPS8NNQUGBYmJi9OKLL1ao/Z49ezR06FBdc801SktL04MPPqi77rpLq1atquZKL44RI4oBALBKPSvfPCEhQQkJCRVuP3fuXLVr106zZs2SJF122WVav369Zs+erfj4+Ooqs0IcZ92jeNuBPPVt18TCagAAqLtq1Zib1NRUxcXFecyLj49XamqqRRWV7raXfaseAADqEkuP3FyszMxMRUREeMyLiIhQXl6eTpw4oaCgoPPWKSwsVGFhoft1Xl5etdcJAACsU6uO3FRGUlKSwsLC3FN0dLTVJQEAgGpUq8JNZGSksrKyPOZlZWUpNDS01KM2kjRlyhTl5ua6p/3799dEqQAAwCK16rRUbGysVqxY4TEvOTlZsbGxZa7jdDrldDqruzQAAOAjLD1yk5+fr7S0NKWlpUk6c6l3Wlqa0tPTJZ056pKYmOhuf8899+g///mP/vjHP2rHjh166aWX9O677+oPf/iDFeV74PELAAD4BkvDzaZNm9SrVy/16tVLkjR58mT16tVLU6dOlSRlZGS4g44ktWvXTh999JGSk5MVExOjWbNm6dVXX7X8MnAAAOA7LD0tNWjQIJlyHqFd2t2HBw0apC1btlRjVQAAoDarVQOKAQAALoRwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVw4yXcoRgAAN9AuAEAALZCuAEAALZCuAEAALZCuAEAALZCuPEShxhRDACALyDcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHceAmPXwAAwDcQbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbryE8cQAAPgGwg0AALAVwg0AALAVwg0AALAVwg0AALAVwo2XOLhFMQAAPoFwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVw4yUMJwYAwDcQbgAAgK0QbgAAgK34RLh58cUX1bZtWwUGBqpfv37auHFjmW0XLFggh8PhMQUGBtZgtQAAwJdZHm7eeecdTZ48WU8++aS++eYbxcTEKD4+XtnZ2WWuExoaqoyMDPe0b9++GqwYAAD4MsvDzXPPPacJEyZo3Lhx6tKli+bOnavg4GDNmzevzHUcDociIyPdU0RERA1WXFZNVlcAAAAki8PNqVOntHnzZsXFxbnn+fn5KS4uTqmpqWWul5+frzZt2ig6OlrDhw/X9u3ba6JcAABQC1gabg4fPqzi4uLzjrxEREQoMzOz1HU6deqkefPm6YMPPtCbb74pl8ulAQMG6Oeffy61fWFhofLy8jymmmCMqZH3AQAAniw/LXWxYmNjlZiYqJ49e2rgwIFasmSJmjdvrpdffrnU9klJSQoLC3NP0dHRNVIn2QYAAGtYGm6aNWsmf39/ZWVleczPyspSZGRkhbZRv3599erVS7t27Sp1+ZQpU5Sbm+ue9u/fX+W6K4JsAwCANSwNNwEBAerdu7fWrFnjnudyubRmzRrFxsZWaBvFxcXaunWroqKiSl3udDoVGhrqMdUEF4duAACwRD2rC5g8ebLGjh2rK664Qn379tXzzz+vgoICjRs3TpKUmJioli1bKikpSZI0ffp09e/fXx06dFBOTo5mzpypffv26a677rKyG3Kcc7kU2QYAAGtYHm5GjRqlQ4cOaerUqcrMzFTPnj318ccfuwcZp6eny8/v1wNMR48e1YQJE5SZmanGjRurd+/e2rBhg7p06WJVF0rFkRsAAKzhMHXssp68vDyFhYUpNzfX66eo2j72kfvnHX8ZrMD6/l7dPgAAddXFfH/XuqulaguO3AAAYA3CTTUh2wAAYA3CTTUh2wAAYA3CTTXhtBQAANYg3FQTsg0AANYg3FSTZVsOWF0CAAB1EuGmmjz54Xbtys63ugwAAOocwk012nu4wOoSAACocwg31Si/8LTVJQAAUOcQbqpRwSnCDQAANY1wU41cXDEFAECNI9wAAABbIdxUIxeHbgAAqHGEm2pUVOyyugQAAOocwk01KirmyA0AADWNcFONOHIDAEDNI9x4UesmwR6vCTcAANQ8wo0XrXjgKo/Xpwg3AADUOMKNFzV01vN4XXSaMTcAANQ0wk014rQUAAA1j3BTjQg3AADUPMJNNWLMDQAANY9wU424zw0AADWPcFONik5z5AYAgJpGuKlG+YWneb4UAAA1jHBTjdbvOqwxr35ldRkAANQphJtqlvqfX3SyqNjqMgAAqDMINzXgQM4Jq0sAAKDOINzUgLwTRVaXAABAnUG4qQH5haetLgEAgDqDcFMDjp0k3AAAUFMINzUgn3ADAECNIdzUgP/vu4M6UnDK6jIAAKgTCDc14POfDmv4i+utLgMAgDqBcFND9h85odM8SBMAgGpHuKlB3O8GAIDqR7ipQQNnpui9zT9bXQYAALbmE+HmxRdfVNu2bRUYGKh+/fpp48aN5bZfvHixOnfurMDAQHXv3l0rVqyooUqr7uHF3+qFtT/xSAYAAKqJ5eHmnXfe0eTJk/Xkk0/qm2++UUxMjOLj45WdnV1q+w0bNmj06NEaP368tmzZohEjRmjEiBHatm1bDVdeeX//5Ed1fuJj/e+/N+mVz3br858OafO+I9pzuEAHc04o93iRTp12yRieKA4AwMVyGIu/Qfv166c+ffrohRdekCS5XC5FR0fr/vvv12OPPXZe+1GjRqmgoEDLly93z+vfv7969uypuXPnXvD98vLyFBYWptzcXIWGhnqvI//11lf79MxHP6h+PT/lHK/aYxf8HJKznr+c9f1U399P9fwcqufvUH0/P/n7OeTv55CfwyE/P8nP4ZDD4ZCf48zPfg55vHY4LtzGs53k0JnlDklySA6VrHPmZ8d/f5Z+bX/uutKv7d3rnrPN0tbVf9uUtu7Z2zx3XZ1Vs3uZn6PUbZ7p65mfdU5/S/rm536/0tc9u+/nrvvr6/PXLel/CcdZLxwe88/62VGRNufPrdD2St1G2XWdrSLtK9SmjG1ebF/KU97HXXkfhBf+lCxnu+WsW5X3NJV9zypst9hldODoCQUF+CsiNFAB9fzk7zjzWVRRJe9vZGTMmb8DY8x//zyrCveyX9uqnNe//nzu9s5ddv77GWO0ad9R7f2lQP0vaaoWYUFqFFxfQQH+CvCvvmMAVdkXFVu/vHWNtqTnaPbqHxVU31+/i22j9s0bnul3fX+53Bs/+zP3v3McjrN+/vXf9Nn/DJ31/RQeElh+gRfpYr6/63n1nS/SqVOntHnzZk2ZMsU9z8/PT3FxcUpNTS11ndTUVE2ePNljXnx8vJYtW1Zq+8LCQhUWFrpf5+XlVb3wcozp10a392kth6SCU6e1+1CBIkMD9emP2Qqs768t6TlqHBygj7YelMtIwQH+yjlepKJil46dPK2TRcU67TrzP5XLSCeKinWCU1gAUCOWfHPA6hIsMfWD7V7d3uWtG2nJfVd6dZsXw9Jwc/jwYRUXFysiIsJjfkREhHbs2FHqOpmZmaW2z8zMLLV9UlKSnnrqKe8UXEElv8WEBNZXz+hGkqRRfVpLkob3bClJeiCuY5nrnzrt0olTxSo8XazC0y6dLCpWUbFRscuoyOU682fxmT+NkVzm1z9d7te//uz6728qLmPkcl24fbHr7N90Sv8Nypgy5v93RVcZ6/73P7lcpozfys7Md52zffdvcv9t7zLnb/Ps38ZKtiGPmkv5bbGMdX9dVvq6Kvl7K2VdnduHs7Z59t9ribN/+zr7N62zjzJ4/AZ2gfae885uW8Z7lvHrXVnvX6FtltFeVei3Z83l/N1c4CDChY4xXOgo0IUOElV5+xdc/wINLrCFqtTvcEjBAfV04lSxTp4udn8GlXxmlMfIeB651LlHcc89Mnv+EQLPI6Ul9Z5/tNi9jXOPlpbznoH1/fRL/inlnShSUEA9ucyZz9nTxRc4evLffl1IRQ4uVvT4V0WOVFZkW40bBKiBs56OFpxS7oki1fc/c3Tf5TLy9z+zhZLPe+nXz76z/nB//pW0PbPMyFnPv4K9qR6WhpuaMGXKFI8jPXl5eYqOjrawogsLqOengHp+kupbXQoAALWOpeGmWbNm8vf3V1ZWlsf8rKwsRUZGlrpOZGTkRbV3Op1yOp3eKRgAAPg8S6+WCggIUO/evbVmzRr3PJfLpTVr1ig2NrbUdWJjYz3aS1JycnKZ7QEAQN1i+WmpyZMna+zYsbriiivUt29fPf/88yooKNC4ceMkSYmJiWrZsqWSkpIkSQ888IAGDhyoWbNmaejQoVq0aJE2bdqkV155xcpuAAAAH2F5uBk1apQOHTqkqVOnKjMzUz179tTHH3/sHjScnp4uP79fDzANGDBACxcu1J///Gf96U9/UseOHbVs2TJ169bNqi4AAAAfYvl9bmpadd/nBgAAeN/FfH9bfodiAAAAbyLcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAW7H88Qs1reSGzHl5eRZXAgAAKqrke7siD1aoc+Hm2LFjkqTo6GiLKwEAABfr2LFjCgsLK7dNnXu2lMvl0sGDBxUSEiKHw+HVbefl5Sk6Olr79++35XOr7N4/yf59pH+1n937aPf+SfbvY3X1zxijY8eOqUWLFh4P1C5NnTty4+fnp1atWlXre4SGhtryf9gSdu+fZP8+0r/az+59tHv/JPv3sTr6d6EjNiUYUAwAAGyFcAMAAGyFcONFTqdTTz75pJxOp9WlVAu790+yfx/pX+1n9z7avX+S/fvoC/2rcwOKAQCAvXHkBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhxktefPFFtW3bVoGBgerXr582btxodUkVkpSUpD59+igkJETh4eEaMWKEdu7c6dFm0KBBcjgcHtM999zj0SY9PV1Dhw5VcHCwwsPD9cgjj+j06dM12ZUyTZs27bz6O3fu7F5+8uRJTZw4UU2bNlXDhg118803Kysry2Mbvty/tm3bntc/h8OhiRMnSqp9+++zzz7TsGHD1KJFCzkcDi1btsxjuTFGU6dOVVRUlIKCghQXF6effvrJo82RI0c0ZswYhYaGqlGjRho/frzy8/M92nz33Xe66qqrFBgYqOjoaP3tb3+r7q65ldfHoqIiPfroo+revbsaNGigFi1aKDExUQcPHvTYRmn7fcaMGR5trOrjhfbhnXfeeV7tgwcP9mhTm/ehpFL/TTocDs2cOdPdxlf3YUW+F7z1uZmSkqLLL79cTqdTHTp00IIFC7zTCYMqW7RokQkICDDz5s0z27dvNxMmTDCNGjUyWVlZVpd2QfHx8Wb+/Plm27ZtJi0tzQwZMsS0bt3a5Ofnu9sMHDjQTJgwwWRkZLin3Nxc9/LTp0+bbt26mbi4OLNlyxazYsUK06xZMzNlyhQrunSeJ5980nTt2tWj/kOHDrmX33PPPSY6OtqsWbPGbNq0yfTv398MGDDAvdzX+5edne3Rt+TkZCPJrFu3zhhT+/bfihUrzOOPP26WLFliJJmlS5d6LJ8xY4YJCwszy5YtM99++6258cYbTbt27cyJEyfcbQYPHmxiYmLMl19+aT7//HPToUMHM3r0aPfy3NxcExERYcaMGWO2bdtm3n77bRMUFGRefvlly/uYk5Nj4uLizDvvvGN27NhhUlNTTd++fU3v3r09ttGmTRszffp0j/169r9bK/t4oX04duxYM3jwYI/ajxw54tGmNu9DY4xH3zIyMsy8efOMw+Ewu3fvdrfx1X1Yke8Fb3xu/uc//zHBwcFm8uTJ5vvvvzf/+te/jL+/v/n444+r3AfCjRf07dvXTJw40f26uLjYtGjRwiQlJVlYVeVkZ2cbSebTTz91zxs4cKB54IEHylxnxYoVxs/Pz2RmZrrnzZkzx4SGhprCwsLqLLdCnnzySRMTE1PqspycHFO/fn2zePFi97wffvjBSDKpqanGGN/v37keeOAB0759e+NyuYwxtXv/nful4XK5TGRkpJk5c6Z7Xk5OjnE6nebtt982xhjz/fffG0nm66+/drdZuXKlcTgc5sCBA8YYY1566SXTuHFjj/49+uijplOnTtXco/OV9sV4ro0bNxpJZt++fe55bdq0MbNnzy5zHV/pY1nhZvjw4WWuY8d9OHz4cHPttdd6zKst+/Dc7wVvfW7+8Y9/NF27dvV4r1GjRpn4+Pgq18xpqSo6deqUNm/erLi4OPc8Pz8/xcXFKTU11cLKKic3N1eS1KRJE4/5b731lpo1a6Zu3bppypQpOn78uHtZamqqunfvroiICPe8+Ph45eXlafv27TVT+AX89NNPatGihS655BKNGTNG6enpkqTNmzerqKjIY/917txZrVu3du+/2tC/EqdOndKbb76p3//+9x4Phq3t+6/Enj17lJmZ6bG/wsLC1K9fP4/91ahRI11xxRXuNnFxcfLz89NXX33lbnP11VcrICDA3SY+Pl47d+7U0aNHa6g3FZebmyuHw6FGjRp5zJ8xY4aaNm2qXr16aebMmR6H/H29jykpKQoPD1enTp1077336pdffnEvs9s+zMrK0kcffaTx48eft6w27MNzvxe89bmZmprqsY2SNt747qxzD870tsOHD6u4uNhjB0pSRESEduzYYVFVleNyufTggw/qyiuvVLdu3dzz77jjDrVp00YtWrTQd999p0cffVQ7d+7UkiVLJEmZmZml9r9kmdX69eunBQsWqFOnTsrIyNBTTz2lq666Stu2bVNmZqYCAgLO+9KIiIhw1+7r/TvbsmXLlJOTozvvvNM9r7bvv7OV1FNavWfvr/DwcI/l9erVU5MmTTzatGvX7rxtlCxr3LhxtdRfGSdPntSjjz6q0aNHezyE8P/+7/90+eWXq0mTJtqwYYOmTJmijIwMPffcc5J8u4+DBw/WTTfdpHbt2mn37t3605/+pISEBKWmpsrf3992+/D1119XSEiIbrrpJo/5tWEflva94K3PzbLa5OXl6cSJEwoKCqp03YQbuE2cOFHbtm3T+vXrPebffffd7p+7d++uqKgoXXfdddq9e7fat29f02VetISEBPfPPXr0UL9+/dSmTRu9++67VfrH44tee+01JSQkqEWLFu55tX3/1WVFRUW67bbbZIzRnDlzPJZNnjzZ/XOPHj0UEBCg//3f/1VSUpLP39b/9ttvd//cvXt39ejRQ+3bt1dKSoquu+46CyurHvPmzdOYMWMUGBjoMb827MOyvhd8HaelqqhZs2by9/c/b5R4VlaWIiMjLarq4k2aNEnLly/XunXr1KpVq3Lb9uvXT5K0a9cuSVJkZGSp/S9Z5msaNWqkSy+9VLt27VJkZKROnTqlnJwcjzZn77/a0r99+/Zp9erVuuuuu8ptV5v3X0k95f17i4yMVHZ2tsfy06dP68iRI7Vqn5YEm3379ik5OdnjqE1p+vXrp9OnT2vv3r2SakcfS1xyySVq1qyZx/+TdtiHkvT5559r586dF/x3KfnePizre8Fbn5tltQkNDa3yL56EmyoKCAhQ7969tWbNGvc8l8ulNWvWKDY21sLKKsYYo0mTJmnp0qVau3bteYdAS5OWliZJioqKkiTFxsZq69atHh9GJR/GXbp0qZa6qyI/P1+7d+9WVFSUevfurfr163vsv507dyo9Pd29/2pL/+bPn6/w8HANHTq03Ha1ef+1a9dOkZGRHvsrLy9PX331lcf+ysnJ0ebNm91t1q5dK5fL5Q52sbGx+uyzz1RUVORuk5ycrE6dOvnE6YySYPPTTz9p9erVatq06QXXSUtLk5+fn/t0jq/38Ww///yzfvnlF4//J2v7Pizx2muvqXfv3oqJiblgW1/Zhxf6XvDW52ZsbKzHNkraeOW7s8pDkmEWLVpknE6nWbBggfn+++/N3XffbRo1auQxStxX3XvvvSYsLMykpKR4XI54/PhxY4wxu3btMtOnTzebNm0ye/bsMR988IG55JJLzNVXX+3eRsklfzfccINJS0szH3/8sWnevLnPXCr90EMPmZSUFLNnzx7zxRdfmLi4ONOsWTOTnZ1tjDlzSWPr1q3N2rVrzaZNm0xsbKyJjY11r+/r/TPmzBV6rVu3No8++qjH/Nq4/44dO2a2bNlitmzZYiSZ5557zmzZssV9pdCMGTNMo0aNzAcffGC+++47M3z48FIvBe/Vq5f56quvzPr1603Hjh09LiPOyckxERER5ne/+53Ztm2bWbRokQkODq6xy4jL6+OpU6fMjTfeaFq1amXS0tI8/l2WXGWyYcMGM3v2bJOWlmZ2795t3nzzTdO8eXOTmJjoE30sr3/Hjh0zDz/8sElNTTV79uwxq1evNpdffrnp2LGjOXnypHsbtXkflsjNzTXBwcFmzpw5563vy/vwQt8Lxnjnc7PkUvBHHnnE/PDDD+bFF1/kUnBf869//cu0bt3aBAQEmL59+5ovv/zS6pIqRFKp0/z5840xxqSnp5urr77aNGnSxDidTtOhQwfzyCOPeNwnxRhj9u7daxISEkxQUJBp1qyZeeihh0xRUZEFPTrfqFGjTFRUlAkICDAtW7Y0o0aNMrt27XIvP3HihLnvvvtM48aNTXBwsBk5cqTJyMjw2IYv988YY1atWmUkmZ07d3rMr437b926daX+Pzl27FhjzJnLwZ944gkTERFhnE6nue66687r9y+//GJGjx5tGjZsaEJDQ824cePMsWPHPNp8++235je/+Y1xOp2mZcuWZsaMGTXVxXL7uGfPnjL/XZbcu2jz5s2mX79+JiwszAQGBprLLrvMPPPMMx7hwMo+lte/48ePmxtuuME0b97c1K9f37Rp08ZMmDDhvF8Ga/M+LPHyyy+boKAgk5OTc976vrwPL/S9YIz3PjfXrVtnevbsaQICAswll1zi8R5V4fhvRwAAAGyBMTcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcA6jyHw6Fly5ZZXQYALyHcALDUnXfeKYfDcd40ePBgq0sDUEvVs7oAABg8eLDmz5/vMc/pdFpUDYDajiM3ACzndDoVGRnpMZU89djhcGjOnDlKSEhQUFCQLrnkEr333nse62/dulXXXnutgoKC1LRpU919993Kz8/3aDNv3jx17dpVTqdTUVFRmjRpksfyw4cPa+TIkQoODlbHjh314YcfVm+nAVQbwg0An/fEE0/o5ptv1rfffqsxY8bo9ttv1w8//CBJKigoUHx8vBo3bqyvv/5aixcv1urVqz3Cy5w5czRx4kTdfffd2rp1qz788EN16NDB4z2eeuop3Xbbbfruu+80ZMgQjRkzRkeOHKnRfgLwEq88fhMAKmns2LHG39/fNGjQwGN6+umnjTFnnlB8zz33eKzTr18/c++99xpjjHnllVdM48aNTX5+vnv5Rx99ZPz8/NxPmm7RooV5/PHHy6xBkvnzn//sfp2fn28kmZUrV3qtnwBqDmNuAFjummuu0Zw5czzmNWnSxP1zbGysx7LY2FilpaVJkn744QfFxMSoQYMG7uVXXnmlXC6Xdu7cKYfDoYMHD+q6664rt4YePXq4f27QoIFCQ0OVnZ1d2S4BsBDhBoDlGjRocN5pIm8JCgqqULv69et7vHY4HHK5XNVREoBqxpgbAD7vyy+/PO/1ZZddJkm67LLL9O2336qgoMC9/IsvvpCfn586deqkkJAQtW3bVmvWrKnRmgFYhyM3ACxXWFiozMxMj3n16tVTs2bNJEmLFy/WFVdcod/85jd66623tHHjRr322muSpDFjxujJJ5/U2LFjNW3aNB06dEj333+/fve73ykiIkKSNG3aNN1zzz0KDw9XQkKCjh07pi+++EL3339/zXYUQI0g3ACw3Mcff6yoqCiPeZ06ddKOHTsknbmSadGiRbrvvvsUFRWlt99+W126dJEkBQcHa9WqVXrggQfUp08fBQcH6+abb9Zzzz3n3tbYsWN18uRJzZ49Ww8//LCaNWumW265peY6CKBGOYwxxuoiAKAsDodDS5cu1YgRI6wuBUAtwZgbAABgK4QbAABgK4y5AeDTOHMO4GJx5AYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANjK/w+4bsgwKzcDJgAAAABJRU5ErkJggg==\n" }, "metadata": {} } @@ -2445,12 +2445,12 @@ ], "metadata": { "id": "qIb-HBQV3mri", - "outputId": "fd886769-a0f8-487e-dfe6-7957f3c4df6e", + "outputId": "9f2a50f4-7db5-4f3b-b870-8c9333552d04", "colab": { "base_uri": "https://localhost:8080/" } }, - "execution_count": null, + "execution_count": 12, "outputs": [ { "output_type": "stream", @@ -2485,9 +2485,9 @@ "base_uri": "https://localhost:8080/" }, "id": "My8by2_2DI_X", - "outputId": "889e0207-9b1e-4d8c-dd5f-0ba6ae624490" + "outputId": "b830aab8-88aa-4018-ce87-ab056a4577cb" }, - "execution_count": 43, + "execution_count": 13, "outputs": [ { "output_type": "stream", @@ -2505,16 +2505,17 @@ { "cell_type": "code", "source": [ + "\n", "print(y_train)" ], "metadata": { "id": "LKSqeON6YN7Y", - "outputId": "71d797eb-8aa6-43ab-957b-b17213d35820", + "outputId": "83cc2a19-41cb-4ce2-cd21-7b19ea3cc682", "colab": { "base_uri": "https://localhost:8080/" } }, - "execution_count": 46, + "execution_count": 19, "outputs": [ { "output_type": "stream", @@ -2524,7 +2525,6 @@ "Africa 1997.010181\n", "Europe 11273.946852\n", "North America 11829.410197\n", - "Eurasia 6892.277529\n", "Name: 2021, dtype: float64\n" ] } @@ -2548,24 +2548,23 @@ ], "metadata": { "id": "2Y5furXoWET-", - "outputId": "fbdf062a-2b36-4ed5-9030-288b4736cc93", + "outputId": "095a1dbf-b540-477d-b743-eac9daf29065", "colab": { "base_uri": "https://localhost:8080/", - "height": 254 + "height": 469 } }, - "execution_count": 49, + "execution_count": 20, "outputs": [ { - "output_type": "error", - "ename": "TypeError", - "evalue": "ignored", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0myears\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Total\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Crear una secuencia de años desde 1980 hasta 2021\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m12\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m6\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myears\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Datos Reales'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmarker\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'o'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myears\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Predicciones'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmarker\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'x'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: 'str' object cannot be interpreted as an integer" - ] + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/8AAAJECAYAAABAeJRUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmnklEQVR4nOzdd1yW9f7H8Rd7yRAVEEE2TtTU3FscqU0z22bDcpO/lp1OZaeO1TklaqnnNLRzylO2S00F9yAzy9wyxC1uQUHWfV+/P264lVygwA34fj4ePoTr/nLdnxvIeHFd93XbGYZhICIiIiIiIiI1lr2tBxARERERERGRiqX4FxEREREREanhFP8iIiIiIiIiNZziX0RERERERKSGU/yLiIiIiIiI1HCKfxEREREREZEaTvEvIiIiIiIiUsMp/kVERERERERqOMW/iIiIiIiISA2n+BcREbmK0NBQHnnkEev7K1aswM7OjhUrVpT7fc2ZMwc7Ozv27NlT7vsWKas/f++LiEj1pfgXEZEqrTiGi/+4uroSHR3NmDFjOHLkiK3HkyqkR48e1u8Te3t7vLy8aNSoEQ899BAJCQnXte8ZM2YwZ86c8hm0DPbs2VPi+9/e3h5fX19uueUWkpKSKn0eERGpvhxtPYCIiEhpvPbaa4SFhZGbm8uaNWuYOXMmCxcuZOvWrbi7u1fqLN26dePcuXM4OzuX+74feugh7r33XlxcXMp93zeCoKAgJk+eDEB2djapqal88803fPrpp9xzzz18+umnODk5lXm/M2bMoG7dujY7Cn7fffcxYMAATCYTycnJzJgxg549e7JhwwZiYmJsMpOIiFQvin8REakWbrnlFtq2bQvA448/Tp06dXj33Xf5/vvvue+++y75MdnZ2Xh4eJT7LPb29ri6upb7fgEcHBxwcHCokH3fCLy9vXnwwQdLbHvzzTcZN24cM2bMIDQ0lLfeestG01271q1bl3hcXbt25ZZbbmHmzJnMmDHDhpOJiEh1odP+RUSkWurVqxcA6enpADzyyCPUqlWLtLQ0BgwYgKenJw888AAAZrOZ+Ph4mjVrhqurK/7+/jz55JOcOnWqxD4Nw+D1118nKCgId3d3evbsybZt2y6678s953/9+vUMGDCA2rVr4+HhQYsWLZg6dWqJNTt37uSee+6hXr16uLm50ahRI/7yl79Yb7/cc/5nzJhBs2bNcHFxITAwkNGjR3P69OkSa3r06EHz5s3Zvn07PXv2xN3dnQYNGvD2229f9Bjy8vJ45ZVXiIyMxMXFheDgYJ577jny8vJKrEtISKBLly74+PhQq1YtGjVqxIsvvnjR/i7UvHlzevbsedF2s9lMgwYNuPvuu63bPv/8c9q0aYOnpydeXl7ExMRc9Dm7Xg4ODkybNo2mTZvy3nvvkZmZab1t9uzZ9OrVCz8/P1xcXGjatCkzZ84s8fGhoaFs27aNlStXWk+/79Gjh/X23bt3M2TIEHx9fXF3d6dDhw4sWLDgojmmT59Os2bNcHd3p3bt2rRt25a5c+de02Pq2rUrAGlpaSW2nz59mri4OIKDg3FxcSEyMpK33noLs9lcYt0///lPOnXqRJ06dXBzc6NNmzZ89dVXpbrv0t5HZXxtRUSk9HTkX0REqqXi6KlTp451W2FhIf369aNLly7885//tD4d4Mknn2TOnDkMHz6ccePGkZ6eznvvvcfvv//O2rVrraeBv/zyy7z++usMGDCAAQMG8Ntvv9G3b1/y8/OvOk9CQgKDBg2ifv36jB8/noCAAHbs2MH8+fMZP348AJs3b6Zr1644OTkxYsQIQkNDSUtL48cff+SNN9647L5fffVVJk2aRGxsLCNHjmTXrl3MnDmTDRs2lJgf4NSpU/Tv35+77rqLe+65h6+++ornn3+emJgYbrnlFsAS4bfddhtr1qxhxIgRNGnShC1btjBlyhSSk5P57rvvANi2bRuDBg2iRYsWvPbaa7i4uJCamsratWuv+LkYOnQor776KhkZGQQEBFi3r1mzhkOHDnHvvfdaP2f33XcfvXv3th6N37FjB2vXrrV+zsqLg4MD9913H3/9619Zs2YNAwcOBGDmzJk0a9aM2267DUdHR3788UdGjRqF2Wxm9OjRAMTHxzN27Fhq1apl/UWNv78/AEeOHKFTp07k5OQwbtw46tSpwyeffMJtt93GV199xZ133gnABx98wLhx47j77rsZP348ubm5bN68mfXr13P//feX+fEU/3Kodu3a1m05OTl0796dgwcP8uSTT9KwYUPWrVvHxIkTOXz4MPHx8da1U6dO5bbbbuOBBx4gPz+fzz//nCFDhjB//nzr5+ZSSnsflfm1FRGRUjJERESqsNmzZxuAkZiYaBw7dszYv3+/8fnnnxt16tQx3NzcjAMHDhiGYRjDhg0zAOOFF14o8fGrV682AOOzzz4rsX3RokUlth89etRwdnY2Bg4caJjNZuu6F1980QCMYcOGWbctX77cAIzly5cbhmEYhYWFRlhYmBESEmKcOnWqxP1cuK9u3boZnp6ext69ey+7pvjxpqenl5irb9++hslksq577733DMD4+OOPrdu6d+9uAMZ//vMf67a8vDwjICDAGDx4sHXbf//7X8Pe3t5YvXp1iTlmzZplAMbatWsNwzCMKVOmGIBx7Ngxoyx27dplAMb06dNLbB81apRRq1YtIycnxzAMwxg/frzh5eVlFBYWlmn/l9O9e3ejWbNml73922+/NQBj6tSp1m3Fs1yoX79+Rnh4eIltzZo1M7p3737R2ri4OAMo8bk8c+aMERYWZoSGhlq/ZrfffvsVZ7uc9PR0AzAmTZpkHDt2zMjIyDBWr15t3HzzzQZgfPnll9a1f/vb3wwPDw8jOTm5xD5eeOEFw8HBwdi3b99lH3d+fr7RvHlzo1evXiW2h4SElPjeL+19lPfXVkRErp9O+xcRkWohNjaWevXqERwczL333kutWrX49ttvadCgQYl1I0eOLPH+l19+ibe3N3369OH48ePWP23atKFWrVosX74cgMTERPLz8xk7dix2dnbWj4+Li7vqbL///jvp6enExcXh4+NT4rbifR07doxVq1bx6KOP0rBhw0uuuZTiueLi4rC3P/+/7SeeeAIvL6+LTi+vVatWieeGOzs7065dO3bv3l3ic9KkSRMaN25c4nNS/FSK4s9J8WP5/vvvLzql+0qio6Np1aoVX3zxhXWbyWTiq6++4tZbb8XNzc26/+zs7Ou+En9p1apVC4AzZ85YtxXPApCZmcnx48fp3r07u3fvLvH0gMtZuHAh7dq1o0uXLiXuZ8SIEezZs4ft27cDlsd64MABNmzYcE2zv/LKK9SrV4+AgAC6du3Kjh07eOedd0o8heLLL7+ka9eu1K5du8TXNTY2FpPJxKpVqy75uE+dOkVmZiZdu3blt99+u+Icpb2Pyv7aiojI1em0fxERqRbef/99oqOjcXR0xN/fn0aNGpWIYQBHR0eCgoJKbEtJSSEzMxM/P79L7vfo0aMA7N27F4CoqKgSt9erV6/EqdWXUvwUhObNm192TXF8X2nNpRTP1ahRoxLbnZ2dCQ8Pt95eLCgo6KJfJtSuXZvNmzdb309JSWHHjh3Uq1fvkvdZ/DkZOnQoH374IY8//jgvvPACvXv35q677uLuu+++6HP/Z0OHDuXFF1/k4MGDNGjQgBUrVnD06FGGDh1qXTNq1CjmzZvHLbfcQoMGDejbty/33HMP/fv3v8pn5dqcPXsWAE9PT+u2tWvX8sorr5CUlEROTk6J9ZmZmXh7e19xn3v37qV9+/YXbW/SpIn19ubNm/P888+TmJhIu3btiIyMpG/fvtx///107ty5VLOPGDGCIUOGkJuby7Jly5g2bRomk6nEmpSUFDZv3nzVryvA/Pnzef3119m0aVOJ6zxc6RdRZbmPyv7aiojI1Sn+RUSkWmjXrp31av+X4+LiclGUms1m/Pz8+Oyzzy75MZeLmOrqcq8UYBiG9W2z2UxMTAzvvvvuJdcGBwcDlqPDq1atYvny5SxYsIBFixbxxRdf0KtXL5YsWXLFVyUYOnQoEydO5MsvvyQuLo558+bh7e1dIv78/PzYtGkTixcv5qeffuKnn35i9uzZPPzww3zyySfX8vCvaOvWrQBERkYCll/a9O7dm8aNG/Puu+8SHByMs7MzCxcuZMqUKWU62+FqmjRpwq5du5g/fz6LFi3i66+/ZsaMGbz88stMmjTpqh8fFRVFbGwsAIMGDcLBwYEXXniBnj17Wv+7MJvN9OnTh+eee+6S+4iOjgZg9erV3HbbbXTr1o0ZM2ZQv359nJycmD179lUvQFja+6jsr62IiFyd4l9ERGq0iIgIEhMT6dy5c4lTnf8sJCQEsBzZDA8Pt24/duzYRa8KcKn7AEtcFgfanxXvszhAS6t4rl27dpWYKz8/n/T09Mve39Xm/eOPP+jdu/dVj/Ta29vTu3dvevfuzbvvvsvf//53/vKXv7B8+fIr3ndYWBjt2rXjiy++YMyYMXzzzTfccccduLi4lFjn7OzMrbfeyq233orZbGbUqFH861//4q9//as10suDyWRi7ty5uLu7W0/R//HHH8nLy+OHH34o8VSM4qc9XOhyn6eQkBB27dp10fadO3daby/m4eHB0KFDGTp0KPn5+dx111288cYbTJw4scwvHfmXv/yFDz74gJdeeolFixYBlq/r2bNnr/o98fXXX+Pq6srixYtLfD1mz5591fst7X1A5X1tRUSkdPScfxERqdHuueceTCYTf/vb3y66rbCw0PpyebGxsTg5OTF9+vQSR8kvvEL65bRu3ZqwsDDi4+Mvevm94n3Vq1ePbt268fHHH7Nv375LrrmU2NhYnJ2dmTZtWol1H330EZmZmVe8Mvvl3HPPPRw8eJAPPvjgotvOnTtHdnY2ACdPnrzo9latWgFc9JKAlzJ06FB+/vlnPv74Y44fP17ilH+AEydOlHjf3t6eFi1alNh/QUEBO3fu5PDhw1d/YJdhMpkYN24cO3bsYNy4cXh5eQHnz5K48POamZl5yQj28PC46GsLMGDAAH755ReSkpKs27Kzs/n3v/9NaGgoTZs2veRjdXZ2pmnTphiGQUFBQZkfk4+PD08++SSLFy9m06ZNgOXrmpSUxOLFiy9af/r0aQoLCwHL47azsyvxtIE9e/ZYX+XhSkp7H6X52oqISOXSkX8REanRunfvzpNPPsnkyZPZtGkTffv2xcnJiZSUFL788kumTp3K3XffTb169XjmmWeYPHkygwYNYsCAAfz+++/89NNP1K1b94r3YW9vz8yZM7n11ltp1aoVw4cPp379+uzcuZNt27ZZQ2natGl06dKF1q1bM2LECMLCwtizZw8LFiywBtyf1atXj4kTJzJp0iT69+/Pbbfdxq5du5gxYwY333xziYv7ldZDDz3EvHnzeOqpp1i+fDmdO3fGZDKxc+dO5s2bx+LFi2nbti2vvfYaq1atYuDAgYSEhHD06FFmzJhBUFBQiQvcXc4999zDM888wzPPPIOvr+9FR4sff/xxTp48Sa9evQgKCmLv3r1Mnz6dVq1aWZ8zf/DgQZo0acKwYcOYM2fOVe8zMzOTTz/9FLC8LF1qairffPMNaWlp3HvvvSV+CdS3b1/r0eknn3ySs2fP8sEHH+Dn53fRLxvatGnDzJkzef3114mMjMTPz49evXrxwgsv8L///Y9bbrmFcePG4evryyeffEJ6ejpff/219Wkoffv2JSAggM6dO+Pv78+OHTt47733GDhwYIlrEJTF+PHjiY+P58033+Tzzz/n2Wef5YcffmDQoEE88sgjtGnThuzsbLZs2cJXX33Fnj17qFu3LgMHDuTdd9+lf//+3H///Rw9epT333+fyMjIEteGuJTS3kdpvrYiIlLJbPhKAyIiIldV/NJ3GzZsuOK6YcOGGR4eHpe9/d///rfRpk0bw83NzfD09DRiYmKM5557zjh06JB1jclkMiZNmmTUr1/fcHNzM3r06GFs3br1opc7+/NL/RVbs2aN0adPH8PT09Pw8PAwWrRocdHL3W3dutW48847DR8fH8PV1dVo1KiR8de//vWix1v8Un/F3nvvPaNx48aGk5OT4e/vb4wcOfKilxW83EvdDRs2zAgJCSmxLT8/33jrrbeMZs2aGS4uLkbt2rWNNm3aGJMmTTIyMzMNwzCMpUuXGrfffrsRGBhoODs7G4GBgcZ999130cu8XUnnzp0NwHj88ccvuu2rr74y+vbta/j5+RnOzs5Gw4YNjSeffNI4fPiwdU3xS91d+Pm/nOKXOiz+U6tWLSMqKsp48MEHjSVLllzyY3744QejRYsWhqurqxEaGmq89dZbxscff3zR1yAjI8MYOHCg4enpaQAlXvYvLS3NuPvuu61f03bt2hnz588vcT//+te/jG7duhl16tQxXFxcjIiICOPZZ5+1fq4vp/jx/+Mf/7jk7Y888ojh4OBgpKamGoZheZnBiRMnGpGRkYazs7NRt25do1OnTsY///lPIz8/3/pxH330kREVFWW4uLgYjRs3NmbPnm288sorxp9/NPzz935p76M0X1sREalcdoZxhXMNRURERERERKTa03P+RURERERERGo4xb+IiIiIiIhIDaf4FxEREREREanhFP8iIiIiIiIiNZziX0RERERERKSGU/yLiIiIiIiI1HCOth6gpjCbzRw6dAhPT0/s7OxsPY6IiIiIiIjUcIZhcObMGQIDA7G3v/KxfcV/OTl06BDBwcG2HkNERERERERuMPv37ycoKOiKaxT/5cTT0xOwfNK9vLxsPM3lFRQUsGTJEvr27YuTk5Otxymz6j6/iIiIiIhUfdWlO7KysggODrb26JUo/stJ8an+Xl5eVT7+3d3d8fLyqtLfxJdT3ecXEREREZGqr7p1R2meeq4L/omIiIiIiIjUcIp/ERERERERkRpO8S8iIiIiIiJSw+k5/5XIMAwKCwsxmUw2m6GgoABHR0dyc3NtOse1qu7zl4aDgwOOjo56yUgRERERESk3iv9Kkp+fz+HDh8nJybHpHIZhEBAQwP79+6tlXFb3+UvL3d2d+vXr4+zsbOtRRERERESkBlD8VwKz2Ux6ejoODg4EBgbi7Oxss3A1m82cPXuWWrVqYW9f/Z71Ud3nvxrDMMjPz+fYsWOkp6cTFRVVIx+niIiIiIhULsV/JcjPz8dsNhMcHIy7u7tNZzGbzeTn5+Pq6loto7K6z18abm5uODk5sXfvXutjFRERERERuR41s56qqJoaq1L+9L0iIiIiIiLlSYUhIiIiIiIiUsMp/kVERERERERqOMV/NWMyGySlneD7TQdJSjuByWzYeqQbVo8ePYiLi7P1GCIiIiIiIlel+K9GFm09TJe3lnHfBz8z/vNN3PfBz3R5axmLth6usPt85JFHsLOzw87ODicnJ/z9/enTpw8ff/wxZrO5TPuaM2cOPj4+FTPoBXr06GGd2dXVlejoaCZPnoxh6BclIiIiIiJyY1L8VxOLth5m5Ke/cTgzt8T2jMxcRn76W4X+AqB///4cPnyYPXv28NNPP9GzZ0/Gjx/PoEGDKCwsrLD7vR5PPPEEhw8fZteuXUycOJGXX36ZWbNm2XosERERERERm1D824hhGOTkF5bqz5ncAl75YRuXOm5dvO3VH7ZzJrfgqvu6lqPfLi4uBAQE0KBBA1q3bs2LL77I999/z08//cScOXOs6959911iYmLw8PAgODiYUaNGcfbsWQBWrFjB8OHDyczMtB6Vf/XVVwE4deoUDz/8MLVr18bd3Z1bbrmFlJQU63737t3LrbfeSu3atfH09KRjx44sXLjwijO7u7sTEBBASEgIw4cPp0WLFiQkJFhvz8vL45lnnqFBgwZ4eHjQvn17VqxYYb39xIkT3HfffTRo0AB3d3diYmL43//+d8X7vNo+L3wcHh4eNGvW7KqPQ0REREREKpfJbLA+/SQbj9uxPv1kjXmqtaOtB7hRnSsw0fTlxeWyLwPIyMol5tUlV1279dU+5XKfvXr1omXLlnzzzTc8/vjjgOXl6aZNm0ZYWBi7d+9m1KhRPPfcc8yYMYNOnToRHx/Pyy+/zK5duwCoVasWYHlqQUpKCj/88ANeXl48//zzDBgwgO3bt+Pk5MTo0aPJz89n1apVuLm58euvv1o/9moMw2DNmjXs3LmTqKgo6/YxY8awfft2Pv/8cwIDA/n222/p378/W7ZsISoqitzcXNq0acPzzz+Pl5cXCxYs4KGHHiIiIoJ27dpd8r6uts8LH4eHhwfbt28v9eMQEREREZGKt2jrYSb9uL3ojGsH/pPyK/W9XXnl1qb0b17f1uNdF8W/XLPGjRuzefNm6/sXXvwuNDSU119/naeeeooZM2bg7OyMt7c3dnZ2BAQEWNcVR//atWvp1KkTAJ999hnBwcF89913DBkyhH379jF48GBiYmIwm83UrVsXLy+vK842Y8YMPvzwQ/Lz8ykoKMDV1ZVx48YBsG/fPmbPns2+ffsIDAwE4JlnnmHRokXMnj2bv//97zRo0IBnnnnGur+xY8eyePFi5s2bd8n4L80+L3wcAOHh4WX5dIuIiIiISAUqfqr1n4/zFz/VeuaDrav1LwAU/zbi5uTA9tf6lWrtL+kneWT2hquumzP8ZtqF+V5xjYuDHWdyr7ik1AzDwM7Ozvp+YmIikydPZufOnWRlZVFYWEhubi45OTm4u7tfch87duzA0dGR9u3bW7fVqVOHRo0asWPHDgDGjRvHyJEjWbJkCb1796Zv377WXxRczgMPPMBf/vIXTp06xSuvvEKnTp2sH7NlyxZMJhPR0dElPiYvL486deoAYDKZ+Pvf/868efM4ePAg+fn55OXlXfZxlGafFz6O2NhYBg8eTIsWLa74OEREREREpOKZzAaTftx+2ada2wGTftxOn6YBONjbXWJV1af4txE7OzvcnUv36e8aVY/63q5kZOZe8pvRDgjwdqVrVL2rfiOW9Qr9V7Jjxw7CwsIA2LNnD4MGDWLkyJG88cYb+Pr6smbNGh577DHy8/MvG82l8fjjj9OvXz8WLFjA4sWLefPNN/nnP/9pPZJ/Kd7e3kRGRgIwb948IiMj6dChA7GxsZw9exYHBwc2btyIg4NDiY8rPg3/H//4B1OnTiU+Pt56HYO4uDjy8/MveX+l2eeFj2PJkiVMnjyZd955h7Fjx17z50ZERERERK7fL+knL7q4+oUM4HBmLr+kn6RjRJ3KG6wc6YJ/1YCDvR2v3NoUsIT+hYrff+XWppX6G6hly5axZcsWBg8eDMDGjRsxm8288847dOjQgejoaA4dOlTiY5ydnTGZTCW2NWnShMLCQtavX2/dduLECXbt2kXTpk2t24KDg3nqqaf4+uuvGT16NB9++GGpZ61Vqxbjx4/nmWeewTAMbrrpJkwmE0ePHiUyMrLEn+KnJKxdu5bbb7+dBx98kJYtWxIeHk5ycvJl76M0+7zwcXzzzTf83//9Hx988EGpH4eIiIiIiJQ/k9lg4ZbSvXra0fI6jdoGFP/VRP/m9Zn5YGsCvF1LbA/wdq3w557k5eWRkZHBwYMH+e233/j73//O7bffzqBBg3j44YcBiIyMpKCggOnTp7N7927++9//XvTSeqGhoZw9e5alS5dy/PhxcnJyiIqK4vbbb+eJJ55gzZo1/PHHHzz44IM0aNCA22+/HbBcS2Dx4sWkp6fz22+/sWbNGho3blymx/Dkk0+SnJzM119/TXR0NA888AAPP/ww33zzDenp6fzyyy9MnjyZBQsWABAVFUVCQgLr1q1jx44dPPnkkxw5cuSy+y/NPv/8OJYvX06TJk3K9DhERERERKR8mMwG3286SN8pK/nvz3tL9TF+nq5XX1RF6bT/aqR/8/r0aRrAL+knOXomFz9PV9qF+Vb4Ef9FixZRv359HB0dqV27Ni1btmTatGkMGzYMe3vL749atmzJu+++y1tvvcXEiRPp1q0bkydPtv5yAKBTp0489dRTDB06lBMnTvDKK6/w6quvMnv2bMaPH8+gQYPIz8+nW7duLFy4ECcnJ8Dy/PvRo0dz4MABvLy86NWrF9OnTy/TY/D19eXhhx/m1Vdf5a677mL27Nm8/vrr/N///R8HDx6kbt26dOjQgUGDBgHw0ksvsXv3bvr164e7uzsjRozgjjvuIDMz87L3cbV9/vlx9O/fnylTppTpcYiIiIiIyPUxmw0WbDnM1KUppB61vDS5l6sjZgOy8wqv+FTrq11jrSqzM67lhd/lIllZWXh7e5OZmXnRlehzc3NJT08nLCwMV1fb/qbIbDaTlZWFl5eXNdyrk+o+f2lVpe8ZEREREZGawGw2+GlrBlOXJpN85Hz0P941nEc6h7Iu9TgjP/0NoMQvAIoPtVbFq/1fqUP/TEf+RUREREREpMYymw0Wb8tg6tIUdmacAcDT1ZHHuoQxvHMY3m6WM46Ln2o96cftJS7+F+Dtyiu3Nq1y4V9Win8RERERERGpcQzDYPG2I8QnJp+PfhdHhncJ47Eu56P/QsVPtU5KPcqS1evp27U9HSP9qu3L+11I8S8iIiIiIiI1hmEYJGw/QnxiCtsPZwFQy8WR4Z1DeaxLGD7uzlf8eAd7O9qH+XJih0H7SrjGWmVR/IuIiIiIiEi1ZxgGS3ccJX5pMlsPWqLfw9mBRzqH8niXcGp7XDn6azrFv4iIiIiIiFRbhmGwfNdR4hNT2HzA8upc7s4ODOsUyhNdw/G9waO/mE0vlz5z5kxatGiBl5cXXl5edOzYkZ9++sl6e25uLqNHj6ZOnTrUqlWLwYMHX/Ra6/v27WPgwIG4u7vj5+fHs88+S2FhYYk1K1asoHXr1ri4uBAZGcmcOXMumuX9998nNDQUV1dX2rdvzy+//FIhj1lERERERESuX3H03zFjHY/O+ZXNBzJxc3Lgye7hrH6uJ8/3b6zwv4BN4z8oKIg333yTjRs38uuvv9KrVy9uv/12tm3bBsDTTz/Njz/+yJdffsnKlSs5dOgQd911l/XjTSYTAwcOJD8/n3Xr1vHJJ58wZ84cXn75Zeua9PR0Bg4cSM+ePdm0aRNxcXE8/vjjLF682Lrmiy++YMKECbzyyiv89ttvtGzZkn79+nH06NHK+2SIiIiIiIjIVRmGwcrkY9w5Yx3DZ2/gj/2ncXWyZ0S3cFY/35OJtzShTi0XW49Z5dgZhmFcfVnl8fX15R//+Ad333039erVY+7cudx9990A7Ny5kyZNmpCUlESHDh346aefGDRoEIcOHcLf3x+AWbNm8fzzz3Ps2DGcnZ15/vnnWbBgAVu3brXex7333svp06dZtGgRAO3bt+fmm2/mvffeAyyvJR8cHMzYsWN54YUXSjX3lV5fsSq9ZrvZbCYrKwsvLy/s7W36u59rUt3nL62q9D0jIiIiIlIVGIbB6pTjxCcm89u+0wC4OtnzYPsQnuweQT3P8gv+goICFi5cyIABA3ByuvhVAaqKK3Xon1WZ5/ybTCa+/PJLsrOz6dixIxs3bqSgoIDY2FjrmsaNG9OwYUNr/CclJRETE2MNf4B+/foxcuRItm3bxk033URSUlKJfRSviYuLAyA/P5+NGzcyceJE6+329vbExsaSlJR02Xnz8vLIy8uzvp+VZbmgREFBAQUFBSXWFhQUYBgGZrMZs9lc9k9OOSr+XU/xPNVNdZ+/tMxmM4ZhUFBQgIODg63HERERERGxGcMwWLf7JNOXpbGxKPpdHO257+YgRnQNs0b/nzvsehTvqzz3WRHKMp/N43/Lli107NiR3NxcatWqxbfffkvTpk3ZtGkTzs7O+Pj4lFjv7+9PRkYGABkZGSXCv/j24tuutCYrK4tz585x6tQpTCbTJdfs3LnzsnNPnjyZSZMmXbR9yZIluLu7l9jm6OhIQEAAZ8+eJT8//wqfjcpz5swZW49QwqhRo8jMzOSzzz4DYNCgQcTExDB58uRLri/L/H/ed3WQn5/PuXPnWLVq1UXXsBARERERuVGkZNrx03570s5YXm7P0c6gk79BbINCvNnNhtW7K/T+ExISKnT/1ysnJ6fUa20e/40aNWLTpk1kZmby1VdfMWzYMFauXGnrsa5q4sSJTJgwwfp+VlYWwcHB9O3b95Kn/e/fv59atWpd8yncdivexLB3gG7PXnzjqn9gZzZh9Lj6UxQMw+DMmTN4enpiZ3f116scPnw4//nPfwBwcnKiYcOGPPTQQ0ycOBFHx/L79nFycsLR0dH6ufvuu+9wcnLC09PzuuYHy8UcDcO46mkwVUlubi5ubm5069ZNp/2LiIiIyA1nffpJpi1L45c9pwBwcrDj3rZBjOgWRoBXxf98XFBQQEJCAn369Knyp/2Xls3j39nZmcjISADatGnDhg0bmDp1KkOHDiU/P5/Tp0+XOPp/5MgRAgICAAgICLjoqvzFrwZw4Zo/v0LAkSNH8PLyws3NDQcHBxwcHC65pngfl+Li4oKLy8XPKXFycrrom8NkMmFnZ4e9vf21P0/dwRG75W+AnR10f+789pVvw4q/Q8+/YFeKfRefKl88z9XY2dnRv39/Zs+eTV5eHgsXLmT06NE4OzuXeKoEWI5WOztf29U07ezsSsxUt27dcpkfoHbt2tc0ky3Z29tjZ2d3ye8nEREREZGa6pf0k0xJSCZp9wkAnB3sGXpzMKN6RlDf263S56nqP4+XZbYqd8U0s9lMXl4ebdq0wcnJiaVLl1pv27VrF/v27aNjx44AdOzYkS1btpS4Kn9CQgJeXl40bdrUuubCfRSvKd6Hs7Mzbdq0KbHGbDazdOlS65oKYRiQn136Px1HW476L38Dlr1u2bbsdcv73Z613F6a/VzD9R1dXFwICAggJCSEkSNHEhsbyw8//MAjjzzCHXfcwRtvvEFgYCCNGjUCYP/+/dxzzz34+Pjg6+vL7bffzp49e6z7M5lMTJgwAR8fH+rUqcNzzz3Hn6872aNHD+t1GcByjYXnn3+ekJAQ/P39iY6O5qOPPrLevm3bNgYNGoSXlxeenp507dqVtLQ0AOucF+5r3Lhx+Pn54erqSpcuXdiwYYP19hUrVmBnZ8fSpUtp27Yt7u7udOrUiV27dpWY8fvvv6d169a4uroSHh7OpEmTrKfoG4bBq6++SsOGDXFxcSEwMJBx48aV+XMvIiIiInIj+HXPSR748Gfu+VcSSbtP4ORgx4MdGrLi2R787Y7mNgn/msamR/4nTpzILbfcQsOGDTlz5gxz585lxYoVLF68GG9vbx577DEmTJiAr68vXl5ejB07lo4dO9KhQwcA+vbtS9OmTXnooYd4++23ycjI4KWXXmL06NHWo/JPPfUU7733Hs899xyPPvooy5YtY968eSxYsMA6x4QJExg2bBht27alXbt2xMfHk52dzfDhwyvuwRfkwN8Dr+1jV/3D8udy71/JCweu7T4v4ObmxokTlt/ELV26FC8vL+tzYQoKCujXrx8dO3Zk9erVODo68vrrr9O/f382b96Ms7Mz77zzDnPmzOHjjz+mSZMmvPPOO3z77bf06tXrsvf58MMPk5SURHx8PBERERw7doyTJ08CcPDgQbp160aPHj1YtmwZXl5erF279rLPlX/uuef4+uuv+eSTTwgJCeHtt9+mX79+pKam4uvra133l7/8hXfeeYd69erx1FNP8eijj7J27VoAVq9ezcMPP8y0adOsv2gYMWIEAK+88gpff/01U6ZM4fPPP6dZs2ZkZGTwxx9/XPfnXkRERESkJtm49xTxicmsTjkOWE7vH9I2mNE9I2ngo+AvTzaN/6NHj/Lwww9z+PBhvL29adGiBYsXL6ZPnz4ATJkyBXt7ewYPHkxeXh79+vVjxowZ1o93cHBg/vz5jBw5ko4dO+Lh4cGwYcN47bXXrGvCwsJYsGABTz/9NFOnTiUoKIgPP/yQfv36WdcMHTqUY8eO8fLLL5ORkUGrVq1YtGjRRRcBvNEZhsHSpUtZvHgxY8eO5dixY3h4ePDhhx9aT/f/9NNPMZvNfPjhh9bn5M+ePRsfHx9WrFhB3759iY+PZ+LEidx1112A5eUZFy9efNn7TU5OZt68eSQkJNCrVy+ysrJo0aKF9bT/999/H29vbz7//HPraS/R0dGX3Fd2djYzZ85kzpw53HLLLQB88MEHJCQk8NFHH/Hss+evqfDGG2/QvXt3AF544QUGDhxIbm4urq6uTJo0iRdeeIFhw4YBEB4ezt/+9jeee+45XnnlFfbt20dAQACxsbHWayW0a9fumj/3IiIiIiI1ye/7TjElMYVVyccAcLS3Y0jbIEb3jCSotvtVPlquhU3j/8LTti/F1dWV999/n/fff/+ya0JCQli4cOEV99OjRw9+//33K64ZM2YMY8aMueKacuXkDi8eKvvHrZliOcrv4AymfMsp/12eLv3HO7hCbtmu9D9//nxq1apFQUEBZrOZ+++/n1dffZXRo0cTExNT4nn+f/zxB6mpqRddqC83N5e0tDQyMzM5fPgw7du3t97m6OhI27ZtLzr1v9imTZtwcHCwhvilbu/atWupnu+SlpZGQUEBnTt3tm5zcnKiXbt27Nixo8TaFi1aWN+uX78+YPmFVcOGDfnjjz9Yu3Ytb7zxhnWNyWQiNzeXnJwchgwZQnx8POHh4fTv358BAwZw6623lutFEkVEREREqptN+08Tn5jMil2W6Hewt+Pu1kGM6RVJsK+ivyKpRGzFzg6cPcr2MSvftoR/z79YLvq38m3Lc/4dnEteBPBKii6YVxY9e/Zk5syZODs7ExgYWCJgPTxKPoazZ8/Spk2bS76sXr169cp832B5msH13H6tLvxlQvFZDMUXHDx79iyTJk2ynr1wIVdXV4KDg9m1axeJiYkkJCQwatQo/vGPf7By5coqfcEQEREREZGKsPnAaeITU1i203K9Ngd7O+66qQFje0XRsI6ivzIo/quL4tAvDn84//fyN0q+X848PDysr8hwNa1bt+aLL77Az8/vsi+tV79+fdavX0+3bt0AKCwsZOPGjbRu3fqS62NiYjCbzaxcufKS1wVo0aIFn3zyCQUFBVcN64iICJydnVm7di0hISGA5ToFGzZsKHGBwdI8zl27dl3x8+Lm5satt97KrbfeyujRo2ncuDFbtmy57OMUEREREalpthzIJD4xmaVF0W9vB3feFMTYXpGE1i3jwVC5Lor/6sJsKhn+xYrfN5sqf6ZLeOCBB/jHP/7B7bffzmuvvUZQUBB79+7lm2++4bnnniMoKIjx48fz5ptvEhUVRePGjXn33Xc5ffr0ZfcZGhrKsGHDePTRR60X/Dtx4gTHjx/nnnvuYcyYMUyfPp17772XiRMn4u3tzc8//0y7du2sr0BQzMPDg5EjR/Lss8/i6+tLw4YNefvtt8nJyeGxxx4r9eN8+eWXGTRoEA0bNuTuu+/G3t6eP/74g61bt/L6668zZ84cTCYT7du3x93dnU8//RQ3NzfrLxxERERERGqyrQcziU9MIXGH5SXV7e3gjlYNGNs7ijBFv00o/quLnhMvf1sFHfG/Fu7u7qxatYrnn3+eu+66izNnztCgQQN69+5tPRPg//7v/zh8+DDDhg3D3t6eRx99lDvvvJPMzMzL7nfmzJm8+OKLjBkzhhMnTtCwYUNefPFFAOrUqcOyZct49tln6d69Ow4ODrRq1arE8/ov9Oabb2I2m3nooYc4c+YMbdu2ZfHixdSuXbvUj7Nfv37Mnz+f1157jbfeegsnJycaN27M448/DoCPjw9vvvkmEyZMwGQyERMTw48//kidOnVKfR8iIiIiItXN9kNZxCcms2S7Jfrt7OD2loGM7R1FRL1aNp7uxmZnXO4qa1ImWVlZeHt7k5mZedHp7rm5uaSnpxMWFoarq6uNJrQwm81kZWXh5eVlvVp+dVLd5y+tqvQ9IyIiIiJyNTszsohPSGHRtgzAEv23tghkXO8oIv2qX/QXFBSwcOFCBgwYUKWv2XWlDv0zHfkXERERERGRa7Ir4wxTlyazcMv56B8YU5/xvaOI8ve8ykdLZVL8i4iIiIiISJmkHDlD/NIUFm45TPG55ANj6jOudxSNAhT9VZHiX0REREREREol9egZpi5NZf7mQ9bov6V5AONjo2gccOXTzsW2FP8iIiIiIiJyRWnHzjJtaQo//HE++vs182d872iaBir6qwPFfyXStRWltPS9IiIiIiJVQfrxbKYtTeH7TQcxF/2I2qepP3GxUTQL9LbtcFImiv9KUHx1yJycHNzc3Gw8jVQHOTk5AFX6yqIiIiIiUnPtOZ7NtGUpfPf7+eiPbeJHXGw0zRso+qsjxX8lcHBwwMfHh6NHjwLg7u6OnZ2dTWYxm83k5+eTm5tbLV8qr7rPfzWGYZCTk8PRo0fx8fHBwcHB1iOJiIiIyA1k74lspi9L5dvfD2Iqqv5ejf2Ii42iRZCPbYeT66L4ryQBAQEA1l8A2IphGJw7dw43Nzeb/QLielT3+UvLx8fH+j0jIiIiIlLR9p/MYfqyFL7+7Xz092hUj7jYaFoF+9h2OCkXiv9KYmdnR/369fHz86OgoMBmcxQUFLBq1Sq6detWLU8pr+7zl4aTk5OO+IuIiIhIpdh/Mof3l6fy1cYDFBZFf7foesTFRtG6YW0bTyflSfFfyRwcHGwadg4ODhQWFuLq6lot47m6zy8iIiIiUhUcPH2O95al8uWv+63R3zWqLnGx0bQJUfTXRIp/ERERERGRG8Sh0+d4f3kq837dT4HJEv2dI+vwdGw0bUN9bTydVCTFv4iIiIiISA13OPMcM5an8cWG/eSbzAB0iqhDXGw07cIU/TcCxb+IiIiIiEgNdSQrlxnLU/nfL+ejv0O4L3Gx0XQIr2Pj6aQyKf5FRERERERqmKNZucxYkcbcX/aRX2iJ/nahvsT1iaJTRF0bTye2oPgXERERERGpIY6eyWXWit18tn4veUXR3zakNk/3iaZTRJ0a/XLZcmWKfxERERERkWru2Jk8/rUyjU/X7yW3wBL9rRv68HSfaLpE1lX0i+JfRERERESkujp+No9/r9rNf5L2WKO/VbAl+rtFKfrlPMW/iIiIiIhINXPCGv17OVdgAqBlkDdxfaLpEV1P0S8XUfyLiIiIiIhUEyez861H+nPyLdHfIsibuNgoejbyU/TLZSn+RUREREREqrhT2fl8sHo3n6zbQ3ZR9Ddv4EVc72h6N1H0y9Up/kVERERERKqo0zn5fLg6nTnr9nA2rxCApvW9iIuNok9Tf0W/lJriX0REREREpIrJPFfAR2vSmb0mnTNF0d+kKPr7KvrlGij+RUREREREqois3AI+XpPOR2vSOZNrif7GAZ5F0R+Avb2iX66N4l9ERERERMTGzuQWMHvtHj5cvZusouiP9q9FXGw0/Zsp+uX6Kf5FRERERERs5ExuAZ+s28MHq9PJPFcAQJRfLcbHRjGgeX1Fv5Qbxb+IiIiIiEglO5tXWBT9uzmdY4n+iHoejI+NZmBMfRwU/VLOFP8iIiIiIiKVJDuvkP8k7eXfq9I4VRT94fU8GN87ikEtAhX9UmEU/yIiIiIiIhUsJ784+ndzMjsfgLC6HozrHcltLRso+qXCKf5FREREREQqyLl8E//9eQ//WrmbE0XRH1LHnXG9ori9VSCODvY2nlBuFIp/ERERERGRcnYu38Rn6/cya2Uax89aor+hrztje0Vy500NFP1S6RT/IiIiIiIi5SS3wMRn6/cxa2Uax87kARBU241xvaK4s3UDnBT9YiOKfxERERERkeuUW2Dif7/sY+aKNI4WRX8DHzfG9opkcJsgRb/YnOJfRERERETkGuUWmPhiw35mrEjlSNb56B/dM5K72wTh7Kjol6pB8S8iIiIiIlJGeYUm5m3Yz/vL08jIygWgvrcro3tGck/bYEW/VDmKfxERERERkVLKLzQz79f9zFieyqFMS/QHeLkyumcE99wcjIujg40nFLk0xb+IiIiIiMhV5Bea+WrjAd5fnsrB0+cA8PdyYVSPSIbeHIyrk6JfqjbFv4iIiIiIyGUUmMx8vfEA7y1P5cApS/TX83RhVI8I7mvXUNEv1YbiX0RERERE5E8KTGa+/e0g05ensP+kJfrr1nJhZI8IHmiv6JfqR/EvIiIiIiJSpNBk5tvfDzJ9WSr7TuYAULeWM091j+CB9iG4OSv6pXpS/IuIiIiIyA2v0GTm+02HmL4shT0nLNFfx8OZJ7uH82CHENydlU5Svek7WEREREREblgms8EPfxxk2tJU0o9nA+Dr4cyIbuE83FHRLzWHvpNFREREROSGYzIbzN98iKlLU9h9zBL9td2deKJbOMM6huLholSSmkXf0SIiIiIicsMwmQ0WbDnMtKUppB49C4CPuxNPdA1nWKdQain6pYbSd7aIiIiIiNR4ZrPBwq2HmZqYQkpR9Hu7OfFE1zCGdQrF09XJxhOKVCzFv4iIiIiI1Fhms8GibRlMTUxh15EzAHi5OvJ413Ae6RyKl6JfbhCKfxERERERqXHMZoMl2zOIT0xhZ4Yl+j1dHHmsaxjDO4fh7abolxuL4l9ERERERGoMwzBYsv0I8Ykp7DicBUAtF0ce7RzKY13C8XZX9MuNSfEvIiIiIiLVnmEYJO44SnxiMtsOWaLfw9mB4Z3DeLxrGD7uzjaeUMS2FP8iIiIiIlJtGYbBsp1HiU9MYcvBTMAS/cM6hfJE13Bqeyj6RUDxLyIiIiIi1ZBhGCzfZYn+zQcs0e/u7MDDHUMZ0S0cX0W/SAmKfxERERERqTYMw2BF8jHiE1P4Y/9pANycHHi4YwgjuoVTp5aLbQcUqaIU/yIiIiIiUuUZhsGqlOPEJybz+77TALg62VuP9NdV9ItckeJfRERERESqLMMwWJN6nPjEFDbuPQWAi6M9D3UI4cnuEdTzVPSLlIbiX0REREREqhzDMFiXdoL4xGQ27Dkf/Q+0D+GpHuH4ebraeEKR6kXxLyIiIiIiVUpS2gmmJCbzS/pJAJwd7bm/XUNG9YjAz0vRL3ItFP8iIiIiIlIlrN9tif6fdxdFv4M997ULZmSPSAK8Ff0i10PxLyIiIiIiNrVhz0mmJCSzLu0EYIn+oTcHM6pnBPW93Ww8nUjNYG/LO588eTI333wznp6e+Pn5cccdd7Br164Sa3r06IGdnV2JP0899VSJNfv27WPgwIG4u7vj5+fHs88+S2FhYYk1K1asoHXr1ri4uBAZGcmcOXMumuf9998nNDQUV1dX2rdvzy+//FLuj1lERERERCw27j3Jgx+uZ8isJNalncDJwY4H2jdkxbM9+NsdzRX+IuXIpkf+V65cyejRo7n55pspLCzkxRdfpG/fvmzfvh0PDw/ruieeeILXXnvN+r67u7v1bZPJxMCBAwkICGDdunUcPnyYhx9+GCcnJ/7+978DkJ6ezsCBA3nqqaf47LPPWLp0KY8//jj169enX79+AHzxxRdMmDCBWbNm0b59e+Lj4+nXrx+7du3Cz8+vkj4jIiIiIiI138a9p4hPTGZ1ynEAHO3tGNI2mNE9Iwiq7X6VjxaRa2HT+F+0aFGJ9+fMmYOfnx8bN26kW7du1u3u7u4EBARcch9Llixh+/btJCYm4u/vT6tWrfjb3/7G888/z6uvvoqzszOzZs0iLCyMd955B4AmTZqwZs0apkyZYo3/d999lyeeeILhw4cDMGvWLBYsWMDHH3/MCy+8UBEPX0RERETkhvL7vlNMSUxhVfIxwBL9d7cJYnTPSIJ9Ff0iFalKPec/MzMTAF9f3xLbP/vsMz799FMCAgK49dZb+etf/2o9+p+UlERMTAz+/v7W9f369WPkyJFs27aNm266iaSkJGJjY0vss1+/fsTFxQGQn5/Pxo0bmThxovV2e3t7YmNjSUpKuuSseXl55OXlWd/PysoCoKCggIKCgmv8DFS84tmq8oxXUt3nFxEREbkRbT6QybRlaawsOtLvYG/Hna0CGdk9jIZF0a+f76QqqS7dUZb5qkz8m81m4uLi6Ny5M82bN7duv//++wkJCSEwMJDNmzfz/PPPs2vXLr755hsAMjIySoQ/YH0/IyPjimuysrI4d+4cp06dwmQyXXLNzp07Lznv5MmTmTRp0kXblyxZUuJpCVVVQkKCrUe4LtV9fhEREZEbwf6zsHC/PdtPWy41Zo9B23oG/YLM1HXZy9af97LVxjOKXElV746cnJxSr60y8T969Gi2bt3KmjVrSmwfMWKE9e2YmBjq169P7969SUtLIyIiorLHtJo4cSITJkywvp+VlUVwcDB9+/bFy8vLZnNdTUFBAQkJCfTp0wcnJydbj1Nm1X1+ERERkRvBtkNZTFuWxrJdltP77e3g9pb1Gd0jgpA6Vf9AmUh16Y7iM9BLo0rE/5gxY5g/fz6rVq0iKCjoimvbt28PQGpqKhEREQQEBFx0Vf4jR44AWK8TEBAQYN124RovLy/c3NxwcHDAwcHhkmsud60BFxcXXFxcLtru5ORUpb85ilWXOS+nus8vIiIiUhNtO5RJfGIKCdstP1fb28HtrRowtlck4fVq2Xg6kbKr6t1Rltls+lJ/hmEwZswYvv32W5YtW0ZYWNhVP2bTpk0A1K9fH4COHTuyZcsWjh49al2TkJCAl5cXTZs2ta5ZunRpif0kJCTQsWNHAJydnWnTpk2JNWazmaVLl1rXiIiIiIjIpe04nMWT//2VgdPWkLD9CHZ2cHurQBImdGfK0FYKf5EqwKZH/kePHs3cuXP5/vvv8fT0tD5H39vbGzc3N9LS0pg7dy4DBgygTp06bN68maeffppu3brRokULAPr27UvTpk156KGHePvtt8nIyOCll15i9OjR1iPzTz31FO+99x7PPfccjz76KMuWLWPevHksWLDAOsuECRMYNmwYbdu2pV27dsTHx5OdnW29+r+IiIiIiJS0MyOLqYkp/LTV8nO8nR0MahHI+N6RRPp52ng6EbmQTeN/5syZAPTo0aPE9tmzZ/PII4/g7OxMYmKiNcSDg4MZPHgwL730knWtg4MD8+fPZ+TIkXTs2BEPDw+GDRvGa6+9Zl0TFhbGggULePrpp5k6dSpBQUF8+OGH1pf5Axg6dCjHjh3j5ZdfJiMjg1atWrFo0aKLLgIoIiIiInKjSz5yhqmJKSzYchiwRP+AmPqM7x1FtL+iX6Qqsmn8G4ZxxduDg4NZuXLlVfcTEhLCwoULr7imR48e/P7771dcM2bMGMaMGXPV+xMRERERuRGlHj1DfFH0F/8oPyAmgPG9o2kUoOgXqcqqxAX/RERERESk6ko9epZpS1P4cfMha/T3bxbA+NgomtSvuq90JSLnKf5FREREROSSdh+zRP8PfxzCXBT9fZv6Mz42imaB3rYdTkTKRPEvIiIiIiIlpB/PZvrSFL7bdNAa/X2a+jO+dxTNGyj6Raojxb+IiIiIiACw90Q205am8t2mg5iKqj+2iR9xsdGKfpFqTvEvIiIiInKD23cih+nLUvjm9/PR36uxH3GxUbQI8rHtcCJSLhT/IiIiIiI3qP0nc3hvWSpf/3aAwqLo79GoHnGx0bQK9rHtcCJSrhT/IiIiIiI3mAOncnh/eSpf/no++rtF1yMuNorWDWvbeDoRqQiKfxERERGRG8TB0+eKon8/BSZL9HeNqktcbBRtQnxtPJ2IVCTFv4iIiIhIDXc40xL9X2w4H/2dI+sQFxvNzaGKfpEbgeJfRERERKSGysjMZcaKVD7/ZT/5JjMAHcPrEBcbRfvwOjaeTkQqk+JfRERERKSGOZKVy8wVacz9ZR/5hZbobxfmy9Ox0XSMUPSL3IgU/yIiIiIiNcTRrFxmrkxj7vp95BVF/82hta3Rb2dnZ+MJRcRWFP8iIiIiItXc0TO5zFqxm8/W77VGf9uQ2jzdJ5pOin4RQfEvIiIiIlJtHTuTx79WpvHp+r3kFliiv3VDH57uE02XyLqKfhGxUvyLiIiIiFQzJ87m8a9Vu/lv0l7OFZgAaBVsif5uUYp+EbmY4l9EREREpJo4mZ3Pv1al8Z9156O/ZZA3cX2i6RFdT9EvIpel+BcRERERqeJOZefz79W7+WTdHnLyLdEf08Cbp/tE0bORn6JfRK5K8S8iIiIiUkWdzsnng9W7mbN2D9lF0d8s0IunY6Pp3UTRLyKlp/gXEREREaliMnMK+HDNbmav3cPZvEIAmtb3Ii42ij5N/RX9IlJmin8RERERkSoi81wBH69J5+M16Zwpiv7GAZ7ExUbTt6k/9vaKfhG5Nop/EREREREby8otYPaaPXy4Zjdnci3R38jfk7jYKPo1C1D0i8h1U/yLiIiIiNjImdwCZq/dw4erd5NVFP3R/rUY3zuaW5or+kWk/Cj+RUREREQq2dm8QuasTeeD1elknisAINKvFuN7RzEwpr6iX0TKneJfRERERKSSnM0r5JN1e/hg9W5O51iiP6KeB+N6RzGoRSAOin4RqSCKfxERERGRCpadV8h/kvby71VpnCqK/vC6lui/taWiX0QqnuJfRERERKSC5OQX8t+kvfxr1W5OZucDEFrHnXG9o7itZSCODvY2nlBEbhSKfxERERGRcnYu38SnP+/lX6vSOH7WEv0hddwZ2yuKO1op+kWk8in+RURERETKSW6BJfpnrdzN8bN5AAT7ujG2VxR33dRA0S8iNqP4FxERERG5TrkFJuau38fMlWkcO2OJ/qDaboztFcldrYNwUvSLiI0p/kVERERErlFugYnPf9nHjBVpHC2K/gY+bozpFcng1kE4Oyr6RaRqUPyLiIiIiJRRXqGJLzbsZ8byNDKycgEI9HZldK9IhrQJVvSLSJWj+BcRERERKaW8QhPzfj3AjOWpHM60RH99b1dG9YzknrZBuDg62HhCEZFLU/yLiIiIiFxFfqGZLzfu5/1lqRwqiv4AL1dG9Yxg6M3Bin4RqfIU/yIiIiIil1FgMvPVxgO8tyyVg6fPAeDv5cKoHpEMvTkYVydFv4hUD4p/EREREZE/KTCZ+ea3A0xflsqBU5bor+fpwqgeEdzXrqGiX0SqHcW/iIiIiEiRQpOZb34/yHvLUtl3MgeAurVcGNkjggfaK/pFpPpS/IuIiIjIDa/QZOa7TYeYviyFvSeKo9+Zp7pH8ED7ENycFf0iUr0p/kVERETkhlVoMvPDH4eYviyV9OPZANTxcObJ7uE82CEEd2f9uCwiNYP+NRMRERGRG47JbPDjH4eYtjSF3UXRX9vdiSe7R/BQhxA8XPRjsojULPpXTURERERuGCazwfzNluhPO2aJfh93J0Z0C2dYx1BFv4jUWPrXTURERERqPLPZYMGWw0xdmkLq0bMAeLsVRX+nUGop+kWkhtO/ciIiIiJSY5nNBj9tzWDq0mSSj1ii38vVkSe6hvNI51A8XZ1sPKGISOVQ/IuIiIhIjWM2GyzelsHUpSnszDgDgKerI493CWd4l1C8FP0icoNR/IuIiIhIjWE2GyzZnkF84gXR7+LIo13CeLRLGN5uin4RuTEp/kVERESk2jMMgyXbjzA1MYXth7MAqOXiyKOdQ3msSzje7op+EbmxKf5FREREpNoyDIPEHUeJT0xm2yFL9Hs4OzC8cxiPdw3Dx93ZxhOKiFQNin8RERERqXYMw2DZzqPEJ6aw5WAmAO7ODjzSKZQnuoZT20PRLyJyIcW/iIiIiFQbhmGwYtcx4hOT+ePA+eh/uGMoI7qF46voFxG5JMW/iIiIiFR5hmGwMvkY8YkpbNp/GgA3Jwce7hjCiG7h1KnlYtsBRUSqOMW/iIiIiFRZhmGwOuU48YnJ/LbvNACuTvY81CGEJ7tHUFfRLyJSKop/EREREalyDMNgbeoJ4hOT+XXvKQBcHO15sEMIT3YPx8/T1cYTiohUL4p/EREREalS1qUdJz4hhV/2nATA2dGeB9o3ZGT3CPy8FP0iItdC8S8iIiIiVcLPu08wJSGZ9enno//+dg0Z2SMCf0W/iMh1UfyLiIiIiE2t332C+MQUknafAMDZwZ572wUzqkckAd6KfhGR8qD4FxERERGb2LDnJFMSklmXZol+Jwc7ht5sif5AHzcbTyciUrMo/kVERESkUm3ce5IpCSmsST0OWKJ/SNtgRveMpIGiX0SkQij+RURERKRS/LbvFFMSklmdYol+R3s7hrQNYnTPSIJqu9t4OhGRmk3xLyIiIiIVatP+00xJSGZl8jEAHOztuLt1EGN6RRLsq+gXEakMin8RERERqRCbD1iif/mu89F/100NGNsrioZ1FP0iIpVJ8S8iIiIi5WrLgUziE5NZuvMoAPZ2cOdNQYztFUloXQ8bTycicmNS/IuIiIhIudh6MJP4xBQSdxwBLNF/R6sGjO0dRZiiX0TEphT/IiIiInJdth/KIj4xmSXbz0f/bS0DGds7ioh6tWw8nYiIANjb8s4nT57MzTffjKenJ35+ftxxxx3s2rWrxJrc3FxGjx5NnTp1qFWrFoMHD+bIkSMl1uzbt4+BAwfi7u6On58fzz77LIWFhSXWrFixgtatW+Pi4kJkZCRz5sy5aJ7333+f0NBQXF1dad++Pb/88ku5P2YRERGRmmJnRhZP/XcjA6atZsn2I9jZwe2tAlnydHfi771J4S8iUoXYNP5XrlzJ6NGj+fnnn0lISKCgoIC+ffuSnZ1tXfP000/z448/8uWXX7Jy5UoOHTrEXXfdZb3dZDIxcOBA8vPzWbduHZ988glz5szh5Zdftq5JT09n4MCB9OzZk02bNhEXF8fjjz/O4sWLrWu++OILJkyYwCuvvMJvv/1Gy5Yt6devH0ePHq2cT4aIiIhINbEr4wyjPttI//jVLNqWgZ0d3NoykISnuzH13puI9FP0i4hUNXaGYRi2HqLYsWPH8PPzY+XKlXTr1o3MzEzq1avH3LlzufvuuwHYuXMnTZo0ISkpiQ4dOvDTTz8xaNAgDh06hL+/PwCzZs3i+eef59ixYzg7O/P888+zYMECtm7dar2ve++9l9OnT7No0SIA2rdvz80338x7770HgNlsJjg4mLFjx/LCCy9cNGteXh55eXnW97OysggODub48eN4eXlV2OfoehUUFJCQkECfPn1wcnKy9ThlVt3nFxERqc5Sjp7lveVp/LTtCMU/QQ5o7s+YHhFE+Sv4RaTmqC7dkZWVRd26dcnMzLxqh1ap5/xnZmYC4OvrC8DGjRspKCggNjbWuqZx48Y0bNjQGv9JSUnExMRYwx+gX79+jBw5km3btnHTTTeRlJRUYh/Fa+Li4gDIz89n48aNTJw40Xq7vb09sbGxJCUlXXLWyZMnM2nSpIu2L1myBHf3qv/SNQkJCbYe4bpU9/lFRESqk4wcWHzAnt9P2GFgB0ArXzP9gs0Euh8kZeNBUmw8o4hIRajq3ZGTk1PqtVUm/s1mM3FxcXTu3JnmzZsDkJGRgbOzMz4+PiXW+vv7k5GRYV1zYfgX315825XWZGVlce7cOU6dOoXJZLrkmp07d15y3okTJzJhwgTr+8VH/vv27asj/xWous8vIiJSnew+ls17K9KYvyXDeqS/b1M/xvaMoHGAp22HExGpQNWlO7Kyskq9tsrE/+jRo9m6dStr1qyx9Sil4uLigouLy0XbnZycqvQ3R7HqMuflVPf5RUREqrLdx84yfVkq3286iNka/f6Mj42iWaC3bYcTEalEVb07yjJblYj/MWPGMH/+fFatWkVQUJB1e0BAAPn5+Zw+fbrE0f8jR44QEBBgXfPnq/IXvxrAhWv+/AoBR44cwcvLCzc3NxwcHHBwcLjkmuJ9iIiIiNR0e45nM21ZCt/9fj76Y5v4ExcbRfMGin4RkerMplf7NwyDMWPG8O2337Js2TLCwsJK3N6mTRucnJxYunSpdduuXbvYt28fHTt2BKBjx45s2bKlxFX5ExIS8PLyomnTptY1F+6jeE3xPpydnWnTpk2JNWazmaVLl1rXiIiIiNRUe09k88yXf9D73ZV885sl/Hs39uPHMV34cFhbhb+ISA1g0yP/o0ePZu7cuXz//fd4enpan6Pv7e2Nm5sb3t7ePPbYY0yYMAFfX1+8vLwYO3YsHTt2pEOHDgD07duXpk2b8tBDD/H222+TkZHBSy+9xOjRo62n5T/11FO89957PPfcczz66KMsW7aMefPmsWDBAussEyZMYNiwYbRt25Z27doRHx9PdnY2w4cPr/xPjIiIiEgl2H8yh+nLUvj6t4OYig7192xUj7jYaFoG+9h2OBERKVc2jf+ZM2cC0KNHjxLbZ8+ezSOPPALAlClTsLe3Z/DgweTl5dGvXz9mzJhhXevg4MD8+fMZOXIkHTt2xMPDg2HDhvHaa69Z14SFhbFgwQKefvpppk6dSlBQEB9++CH9+vWzrhk6dCjHjh3j5ZdfJiMjg1atWrFo0aKLLgIoIiIiUt3tP5nD+8tT+WrjAQqLor97dD3iYqO4qWFtG08nIiIVwc4wiq/dKtcjKysLb2/vUr2+oi0VFBSwcOFCBgwYUKUvXHE51X1+ERERWzp4+hzvLUvly1/3W6O/a1Rd4mKjaROi6BcRKVZduqMsHVolLvgnIiIiIhXn0OlzvL88lXm/7qfAZIn+LpF1ebpPFG1CfG08nYiIVAbFv4iIiEgNdTjzHDOWp/HFhv3km8wAdIqow9N9ork5VNEvInIjUfyLiIiI1DAZmbnMWJHK57+cj/4O4b48HRtN+/A6Np5ORERsQfEvIiIiUkMcycpl5oo05v6yj/xCS/S3C7NEf8cIRb+IyI1M8S8iIiJSzR09UxT96/eRVxT9N4fWtka/nZ2djScUERFbU/yLiIiIVFPHzuQxa2Uan/681xr9bUIs0d85UtEvIiLnKf5FREREqpnjZ/P418o0/vvzXnILLNF/U0Mfno6NpmtUXUW/iIhcRPEvIiIiUk2cOJvHv1ft5j9JezlXYAKgZbAPT8dG0T26nqJfREQuS/EvIiIiUsWdzM4viv495ORbor9FkDdPx0bTo5GiX0RErk7xLyIiIlJFncrO54PVu/lk3R6yi6I/poE3cbFR9Grsp+gXEZFSU/yLiIiIVDGnc/L5cHU6c9bt4WxeIQDNAr2Ii40mtomiX0REyk7xLyIiIlJFZOYU8NGa3cxeu4czRdHfpL4XcbFR9G3qr+gXEZFrpvgXERERsbHMcwV8vCadj9emcybXEv2NAzyLoj8Ae3tFv4iIXB/Fv4iIiIiNZOUWMHvNHj5as5usouhv5O/J+Ngo+jdT9IuISPlR/IuIiIhUsjO5BcxZu4cP16STea4AgCi/WoyPjWJA8/qKfhERKXeKfxEREZFKcjavkE/W7eGD1bs5nWOJ/oh6HoyPjWZgTH0cFP0iIlJBFP8iIiIiFSw7r5BPkvbwwardnCqK/vB6HozvHcWgFoGKfhERqXCKfxEREZEKkpNfyH+S9vLvVbs5mZ0PQFhdD8b1juS2lg0U/SIiUmkU/yIiIiLl7Fy+if/+vId/rdzNiaLoD63jzrjeUdzWMhBHB3sbTygiIjcaxb+IiIhIOTmXb+Kz9XuZtTKN42ct0R9Sx52xvaK4o5WiX0REbEfxLyIiInKdcgtMfLZ+H7NWpnHsTB4Awb5ujO0VxZ03NcBJ0S8iIjam+BcRERG5RrkFJv73yz5mrkjjaFH0B9V2Y2yvSO5qHaToFxGRKkPxLyIiIlJGuQUmvtiwnxkrUjmSZYn+Bj5ujOkVyeDWQTg7KvpFRKRqUfyLiIiIlFJeoYl5G/bz/vI0MrJyAQj0dmV0r0iGtAlW9IuISJWl+BcRERG5ivxCM/N+3c+M5akcyrREf31vV0b1jOSetkG4ODrYeEIREZErU/yLiIiIXEZ+oZmvNh7g/eWpHDx9DgB/LxdG94xk6M3Bin4REak2FP8iIiIif1JgMvP1xgNMX3Y++v08XRjVI4J72zXE1UnRLyIi1YviX0RERKRIgcnMt78dZPryFPaftER/PU8XRnaP4P72in4REam+yhT/hmGwf/9+/Pz8cHV1raiZRERERCpVocnMt78fZPqyVPadzAGgbi0XnuoezgPtQ3BzVvSLiEj1Vub4j4yMZNu2bURFRVXUTCIiIiKVotBk5vtNh5i+LIU9JyzRX8fDmae6R/BgB0W/iIjUHGWKf3t7e6Kiojhx4oTiX0RERKotk9nghz8OMm1pKunHswHw9XDmyW7hPNQxBHdnPTNSRERqljL/n+3NN9/k2WefZebMmTRv3rwiZhIRERGpECazwfzNh5i6NIXdxyzRX9vdiRHdIni4YwgeLop+ERGpmcr8f7iHH36YnJwcWrZsibOzM25ubiVuP3nyZLkNJyIiIlIeTGaDBVsOM21pCqlHzwLg4+7EE13DGdYplFqKfhERqeHK/H+6+Pj4ChhDREREpPyZL4j+lKLo93Zz4omuYQzrFIqnq5ONJxQREakcZY7/YcOGVcQcIiIiIuXGbDb4aWsGU5cmk3zEEv1ero483jWcRzqH4qXoFxGRG8w1neNmMpn47rvv2LFjBwDNmjXjtttuw8FBV8QVERER2zGbDRZvy2Dq0hR2ZpwBwNPVkce6hDG8cxjebop+ERG5MZU5/lNTUxkwYAAHDx6kUaNGAEyePJng4GAWLFhAREREuQ8pIiIiciWGYbB42xGmLk1hx+EsADxdHBneJYzHuij6RUREyhz/48aNIyIigp9//hlfX18ATpw4wYMPPsi4ceNYsGBBuQ8pIiIicimGYZCw/QjxiSlsL4r+Wi6ODO8cymNdwvBxd7bxhCIiIlVDmeN/5cqVJcIfoE6dOrz55pt07ty5XIcTERERuRTDMFi64yjxS5PZetAS/R7ODjzSOZTHu4RT20PRLyIicqEyx7+Liwtnzpy5aPvZs2dxdtb/aEVERKTiGIbB8l1HiU9MYfOBTADcnR0Y1imUJ7qG46voFxERuaQyx/+gQYMYMWIEH330Ee3atQNg/fr1PPXUU9x2223lPqCIiIiIYRisSD5GfGIKf+w/DYCbkwMPdwphRNdw6tRyse2AIiIiVVyZ43/atGkMGzaMjh074uRkuXhOYWEht912G1OnTi33AUVEROTGZRgGq1KOE5+YzO/7TgPg6mTPwx1DGdEtnLqKfhERkVIpc/z7+Pjw/fffk5KSws6dOwFo0qQJkZGR5T6ciIiI3JgMw2BN6nHiE1PYuPcUYIn+B9uH8GT3COp5KvpFRETKoszxXywqKoqoqKjynEVERERucIZhsC7tBPGJyWzYY4l+F0d7HmgfwlM9wvHzdLXxhCIiItVTqeJ/woQJpd7hu+++e83DiIiIyI1rXdpx4hNS+GXPSQCcHe25v11DRvWIwM9L0S8iInI9ShX/v//+e6l2Zmdnd13DiIiIyI3n590nmJKQzPr0ouh3sOe+dsGM7BFJgLeiX0REpDyUKv6XL19e0XOIiIjIDeaX9JNMSUgmafcJwBL9Q28OZlTPCOp7u9l4OhERkZrlmp/zLyIiInItft1zkimJyaxNtUS/k4Md97QNZnTPSAJ9FP0iIiIV4Zri/9dff2XevHns27eP/Pz8Erd988035TKYiIiI1Cwb954iPjGZ1SnHAUv0D2kbzKgeEQTVdrfxdCIiIjVbmeP/888/5+GHH6Zfv34sWbKEvn37kpyczJEjR7jzzjsrYkYRERGpxn7fd4opiSmsSj4GgKO9HUPaBjG6Z6SiX0REpJKUOf7//ve/M2XKFEaPHo2npydTp04lLCyMJ598kvr161fEjCIiIlIN/bH/NFMSk1mxyxL9DvZ23N06iDG9Ign2VfSLiIhUpjLHf1paGgMHDgTA2dmZ7Oxs7OzsePrpp+nVqxeTJk0q9yFFRESk+thyIJMpicks23kUsET/XTc1YGyvKBrWUfSLiIjYQpnjv3bt2pw5cwaABg0asHXrVmJiYjh9+jQ5OTnlPqCIiIhUD1sPZhKfmEziDkv029vBnTcFMbZXJKF1PWw8nYiIyI2t1PG/detWmjdvTrdu3UhISCAmJoYhQ4Ywfvx4li1bRkJCAr17967IWUVERKQK2nYok/jEFBK2HwEs0X9HqwaM7R1FmKJfRESkSih1/Ldo0YKbb76ZO+64gyFDhgDwl7/8BScnJ9atW8fgwYN56aWXKmxQERERqVp2HM4iPjGZxdss0W9nB7e3DGRs7ygi6tWy8XQiIiJyoVLH/8qVK5k9ezaTJ0/mjTfeYPDgwTz++OO88MILFTmfiIiIVDE7M7KYmpjCT1szAEv039oikHG9o4j0U/SLiIhURaWO/65du9K1a1emT5/OvHnzmDNnDt27dycyMpLHHnuMYcOGERAQUJGzioiIiA0lHznD1MQUFmw5DFiif2BMfcb3jiLK39PG04mIiMiV2Jf1Azw8PBg+fDgrV64kOTmZIUOG8P7779OwYUNuu+22iphRREREbCjlyBnGzP2NfvGrrOE/MKY+i8Z34737Wyv8RUREqoEyX+3/QpGRkbz44ouEhIQwceJEFixYUF5ziYiIiI2lHj3LtKUp/Lj5EIZh2XZL8wDGx0bROMDLtsOJiIhImVxz/K9atYqPP/6Yr7/+Gnt7e+655x4ee+yx8pxNREREbGD3MUv0//DHIcxF0d+vmT/je0fTNFDRLyIiUh2VKf4PHTrEnDlzmDNnDqmpqXTq1Ilp06Zxzz334OGhl/IRERGpztKPZzN9aQrfbTpojf4+Tf2Ji42iWaC3bYcTERGR61Lq5/zfcssthISEMH36dO6880527NjBmjVrGD58+DWH/6pVq7j11lsJDAzEzs6O7777rsTtjzzyCHZ2diX+9O/fv8SakydP8sADD+Dl5YWPjw+PPfYYZ8+eLbFm8+bNdO3aFVdXV4KDg3n77bcvmuXLL7+kcePGuLq6EhMTw8KFC6/pMYmIiFQ3e09k83/z/iD23ZV887sl/GOb+DF/bBc+eLitwl9ERKQGKPWRfycnJ7766isGDRqEg4NDudx5dnY2LVu25NFHH+Wuu+665Jr+/fsze/Zs6/suLi4lbn/ggQc4fPgwCQkJFBQUMHz4cEaMGMHcuXMByMrKom/fvsTGxjJr1iy2bNnCo48+io+PDyNGjABg3bp13HfffUyePJlBgwYxd+5c7rjjDn777TeaN29eLo9VRESkqtl3Iofpy1L45veDmIoO9fdq7EdcbBQtgnxsO5yIiIiUq1LH/w8//FDud37LLbdwyy23XHGNi4vLZV9CcMeOHSxatIgNGzbQtm1bAKZPn86AAQP45z//SWBgIJ999hn5+fl8/PHHODs706xZMzZt2sS7775rjf+pU6fSv39/nn32WQD+9re/kZCQwHvvvcesWbPK8RGLiIjY3v6TOby3LJWvfztAYVH092hUj7jYaFoF+9h2OBEREakQ13W1/8qwYsUK/Pz8qF27Nr169eL111+nTp06ACQlJeHj42MNf4DY2Fjs7e1Zv349d955J0lJSXTr1g1nZ2frmn79+vHWW29x6tQpateuTVJSEhMmTChxv/369bvoaQgXysvLIy8vz/p+VlYWAAUFBRQUFJTHQ68QxbNV5RmvpLrPLyJiSwdOnWPWqt18/dsha/R3jazD2F4R3FQU/fr3VUREpPp0R1nmq9Lx379/f+666y7CwsJIS0vjxRdf5JZbbiEpKQkHBwcyMjLw8/Mr8TGOjo74+vqSkZEBQEZGBmFhYSXW+Pv7W2+rXbs2GRkZ1m0Xrinex6VMnjyZSZMmXbR9yZIluLu7X9PjrUwJCQm2HuG6VPf5RUQq08k8SDhgz/pjdpgMOwAaeZu5JdhMmOcRDm85wuEtNh5SRESkCqrq3ZGTk1PqtVU6/u+9917r2zExMbRo0YKIiAhWrFhB7969bTgZTJw4scTZAllZWQQHB9O3b1+8vKruyyAVFBSQkJBAnz59cHJysvU4ZVbd5xcRqUyHM3OZuXI3X/1xkAKT5Uh/p3BfxvWKoE1IbRtPJyIiUnVVl+4oPgO9NKp0/P9ZeHg4devWJTU1ld69exMQEMDRo0dLrCksLOTkyZPW6wQEBARw5MiREmuK37/amstdawAs1yL488UHwXJhxKr8zVGsusx5OdV9fhGRinQ48xwzlqfxxYb95JvMAHQMr8PTfaJpF+Zr4+lERESqj6reHWWZrdQv9VcVHDhwgBMnTlC/fn0AOnbsyOnTp9m4caN1zbJlyzCbzbRv3966ZtWqVSWeC5GQkECjRo2oXbu2dc3SpUtL3FdCQgIdO3as6IckIiJSbo5k5fLK91vp/vYK/vvzXvJNZtqH+fL5iA78b0QHhb+IiMgNzKZH/s+ePUtqaqr1/fT0dDZt2oSvry++vr5MmjSJwYMHExAQQFpaGs899xyRkZH069cPgCZNmtC/f3+eeOIJZs2aRUFBAWPGjOHee+8lMDAQgPvvv59Jkybx2GOP8fzzz7N161amTp3KlClTrPc7fvx4unfvzjvvvMPAgQP5/PPP+fXXX/n3v/9duZ8QERGRa3A0K5cZK9KY+8s+8gstR/rbhfoS1yeKThF1bTydiIiIVAU2jf9ff/2Vnj17Wt8vfg79sGHDmDlzJps3b+aTTz7h9OnTBAYG0rdvX/72t7+VON3+s88+Y8yYMfTu3Rt7e3sGDx7MtGnTrLd7e3uzZMkSRo8eTZs2bahbty4vv/yy9WX+ADp16sTcuXN56aWXePHFF4mKiuK7776jefPmlfBZEBERuTZHz+Qya8VuPlu/l7yi6G8bUpun+0TTKaIOdnZ2Np5QREREqgqbxn+PHj0wDOOyty9evPiq+/D19WXu3LlXXNOiRQtWr159xTVDhgxhyJAhV70/ERERWzt2Jo9/rUzj0/V7yS2wRH/rhj483SeaLpF1Ff0iIiJykWp1wT8REZEb2Ymzefxr1W7+m7SXcwUmAFoFW6K/W5SiX0RERC5P8S8iIlLFnczO51+r0vjPuvPR3zLIm7g+0fSIrqfoFxERkatS/IuIiFRRp7Lz+ffq3Xyybg85+ZbobxHkTVxsFD0b+Sn6RUREpNQU/yIiIlXM6Zx8Pli9mzlr95BdFP3NG3gR1zua3k0U/SIiIlJ2in8REZEqIjOngA/X7Gb22j2czSsEoGl9L+Jio+jT1F/RLyIiItdM8S8iImJjmecK+GhNOrPXpHOmKPqbFEV/X0W/iIiIlAPFv4iIiI1k5Rbw8Zp0PlqTzplcS/Q3DvAsiv4A7O0V/SIiIlI+FP8iIiKV7ExuAbPX7uHD1bvJKor+aP9axMVG07+Zol9ERETKn+JfRESkkpzNK2TO2nQ+WJ1O5rkCAKL8ajE+NooBzesr+kVERKTCKP5FREQq2Nm8Qj5Zt4cPVu/mdI4l+iPqeTA+NpqBMfVxUPSLiIhIBVP8i4iIVJDsvEL+k7SXf69K41RR9IfX82B87ygGtQhU9IuIiEilUfyLiIiUs5z8Qv6btJd/rdrNyex8AMLqejCudyS3tWyg6BcREZFKp/gXEREpJ+fyTXz6817+tSqN42ct0R9Sx51xvaK4vVUgjg72Np5QREREblSKfxERkeuUW2CJ/lkrd3P8bB4ADX3dGdsrkjtvaqDoFxEREZtT/IuIiFyj3AITc9fvY+bKNI6dsUR/UG03xvWK4s7WDXBS9IuIiEgVofgXEREpo9wCE5//so8ZK9I4WhT9DXzcGNsrksFtghT9IiIiUuUo/kVEREopr9DEFxv2M2N5GhlZuYAl+kf3jOTuNkE4Oyr6RUREpGpS/IuIiFxFXqGJeb8eYMbyVA5nWqK/vrcro3tGck/bYEW/iIiIVHmKfxERkcvILzTz5cb9vL8slUNF0R/g5cronhHcc3MwLo4ONp5QREREpHQU/yIiIn9SYDLz1cYDvLcslYOnzwHg7+XCqB6RDL05GFcnRb+IiIhUL4p/ERGRIgUmM9/8doDpy1I5cMoS/fU8XRjVI4L72jVU9IuIiEi1pfgXEZEbXqHJzDe/H+S9ZansO5kDQN1aLozsEcED7RX9IiIiUv0p/kVE5IZVaDLz3aZDTF+Wwt4TxdHvzFPdI3igfQhuzop+ERERqRkU/yIicsMpNJn54Y9DTF+WSvrxbADqeDjzZPdwHuwQgruz/vcoIiIiNYt+uhERkRuGyWzwwx8Hmb40ld1F0e/r4cyIbuE83FHRLyIiIjWXfsoREZEaz2Q2mL/5EFOXprD7mCX6a7s78US3cIZ1DMXDRf87FBERkZpNP+2IiEiNZTYbzN9ymGlLU0g9ehYAH3cnnugazrBOodRS9IuIiMgNQj/1iIhIjWM2GyzcepipiSmkFEW/t5sTT3QNY1inUDxdnWw8oYiIiEjlUvyLiEiNYTYbLNqWwdTEFHYdOQOAl6sjj3cN55HOoXgp+kVEROQGpfgXEZFqz2w2WLI9g/jEFHZmWKLf08WRx7qGMbxzGN5uin4RERG5sSn+RUSk2jIMgyXbjzA1MYXth7MAqOXiyKOdQ3msSzje7op+EREREVD8i4hINWQYBok7jhKfmMy2Q5bo93B2YHjnMB7vGoaPu7ONJxQRERGpWhT/IiJSbRiGwbKdR4lPTGHLwUzAEv3DOoXyRNdwanso+kVEREQuRfEvIiJVnmEYrNh1jPjEZP44YIl+d2cHHu4Yyohu4fgq+kVERESuSPEvIiJVlmEYrEw+RnxiCpv2nwbAzcmBhzuGMKJbOHVqudh2QBEREZFqQvEvIiJVjmEYrE45zpTEZH7fdxoAVyd765H+uop+ERERKW/LJ4O9A3R/7uLbVr4NZhP0nFj5c5UTxb+IiFQZhmGwNvUEUxKT2bj3FAAujvY81CGEJ7tHUM9T0S8iIiIVxN4Blr9hebvT0+e3r3zbsr3nX2wzVzlR/IuIiM0ZhkFSmiX6N+w5H/0PtA/hqR7h+Hm62nhCERERqZYMAwyz5Y/ZVPS26U/vF73d6gHIPQ3L38D+7HHc8yKxX/1PWPWmJfwvdUZANaL4FxERmyqO/l/STwLg7GjP/e0aMqpHBH5ein4REamGyhKcxbdduP2Stxl/2seFb5fittLOYZjBfKl1l5uj+DbzJfZ/4f7+/DiL9nXJz8GFt11i3rI8TsN8TV9Chw3/IhawgxoR/qD4FxERG1m/2xL9P+8uin4He+5rF8zIHpEEeCv6RUTKzDDKHnoKzioVnGIrdmBnbznt384e7BwwCrKxAwwHZ+xqQPiD4l9ERCrZhj0nmZKQzLq0E4Al+ofeHMyonhHU93az8XQiUmbXEpxXjdGKCM7L3VaBwVniNgWnXIKdQ4ngtATohW+X8jZ7+z+tcyh62+4S+yh+/8/7uGB7iX3Yl+I2u8s8lqvddrk57C7zOC91W3nMYVfy67LybeyWv4HJzhEHU77lOf814BcAin8REakUG/eeZEpCCmtSjwPg5GDHPW2DGd0zkkAfRb+UUaUEZxljtDyC84oxWlHBeaUjwArOGumS4WTPxRF4tRi1u3wgljb0yhyjFRmBlwvrcojRy90mVU/Rxf1M3V5g/pmmDPLcjkPxRQCr+S8AFP8iIlKhftt3iikJyaxOsUS/o70dQ9oGM7pnBEG13W08XRldNTiv5XTb6wzOMsVoeQXn1WK0AoLzz7cpOKufMh2tvFKM2pUiEEsbnDY4Ilku0V3WUFVwipTKBVf1N3d6GhYuxNz1GRwcHM6/CkA1/gWA4l+qvhr+epsiV1XewVnm01yvLTgPncpmbcpR9h4/w00YtHMy0yygFm1DvPFysYcNFRycpYpRBWeNV+rgLOOps1c9IlmK02PLdLSyvCPwWqL7OucQEanqzKbzF/crKDi/vbhDzCbbzFVOFP9S9dXw19ussi4MzjKf5loewXm9p9uauTj0yvvoZ3kEZykeZzUNzkBgCIDTBRuPFf2p6coaTpeN0fI8dbYqHJG8luguzRxXuE1ERKS0rnRAsRof8S+m+Jeqr/g/tOVvYG8qxKUgCPulr8DP70PH0dDiHjiRdpUIrKDgvNJzLiv0dNtL7UPBecO75lNnLxGOZT511p7TuSZ2Hc3hcFYeJuwBe4Lq1KJpg9p4ujpX0hHJ8oru64xRERERkSpG8S/VQ/fnwDBwWPF3+l+4Pel9yx+xndLEUZlPnS1tjF7p9NgqEoGVOYeNbD2YSXxiCok7jgBgbwd33NSAcb2iCK3rYbO5REREROQ8xb9UH6FdrG8agJ29UxnC6fJHKy99euyfg7OMRyttHYHldgT4KrfpCOcNbfuhLOITk1my/Xz0396qAWN7RRJer5aNpxMRERGRCyn+pfpYYnluv4EddhiWswFqwHNvRKqbHYezmJqYwqJtGYDl90O3tQxkXO8oIhT9IiIiIlWS4l+qh+WT4dDvAKyLfI4OgXY15vU2RaqLXRlnmLo0mYVbzkf/oBaBjO8dSaSfp42nExEREZErUfxL1bfybVj5JgBGLX+O12qCueugGvN6myJVXcqRM8QvTWHhlsMYhiX6B8TUZ3zvKKL9Ff0iIiIi1YHiX6o+swnqNYFjOzA3uwvyi55nXkNeb1Okqko9eoapS1OZv/kQhmHZNiAmgPG9o2kUoOgXERERqU4U/1L1dRoDa6cCYG42GH4/dP42HfEXKXdpx84ybWkKP/xxPvr7NwtgfGwUTep72XY4EREREbkmin+p+nYugMJzUCcKAloCh676ISJSdruPnWX6slS+33QQc1H0923qz/jYKJoFett2OBERERG5Lop/qfo2z7P8HTPE8mRjESlX6cezmb4she9+Px/9sU38iYuNonkDRb+IiIhITaD4l6rt7FHYvcLydszdNh1FpKbZeyKbaUtT+W7TQUxF1R/bxI/xvaOJCVL0i4iIiNQkin+p2rZ9C4YJGrSBOhFQUGDriUSqvX0ncpi+LIVvfj8f/b0a+xEXG0WLIB/bDiciIiIiFULxL1Wb9ZT/e2w7h0gNsP9kDu8tS+Xr3w5QWBT9PRrVIy42mlbBPrYdTkREREQqlOJfqq6Tu+Hgr2BnD83utPU0ItXWgVM5vL88lS9/PR/93aLrERcbReuGtW08nYiIiIhUBsW/VF1bvrL8Hd4DPP1tOopIdXTw9Lmi6N9PgckS/V2j6hIXG0WbEF8bTyciIiIilUnxL1WTYeiUf5FrdDjTEv1fbDgf/Z0j6xAXG83NoYp+ERERkRuR4l+qpsN/wIkUcHSFxgNtPY1ItZCRmcuMFal8/st+8k1mADqG1yEuNor24XVsPJ2IiIiI2JK9Le981apV3HrrrQQGBmJnZ8d3331X4nbDMHj55ZepX78+bm5uxMbGkpKSUmLNyZMneeCBB/Dy8sLHx4fHHnuMs2fPllizefNmunbtiqurK8HBwbz99tsXzfLll1/SuHFjXF1diYmJYeHCheX+eKUMtnxp+bvRLeDqZdtZRKq4I1m5vPrDNrr9Yzn/SdpLvslMuzBf/vdEB/43ooPCX0RERERsG//Z2dm0bNmS999//5K3v/3220ybNo1Zs2axfv16PDw86NevH7m5udY1DzzwANu2bSMhIYH58+ezatUqRowYYb09KyuLvn37EhISwsaNG/nHP/7Bq6++yr///W/rmnXr1nHffffx2GOP8fvvv3PHHXdwxx13sHXr1op78HJ5ZhNs/drydswQ284iUoUdPZPLpB+30e3t5cxZt4f8QjM3h9Zm7uPt+WJEBzpGKPpFRERExMLOMAzD1kMA2NnZ8e2333LHHXcAlqP+gYGB/N///R/PPPMMAJmZmfj7+zNnzhzuvfdeduzYQdOmTdmwYQNt27YFYNGiRQwYMIADBw4QGBjIzJkz+ctf/kJGRgbOzs4AvPDCC3z33Xfs3LkTgKFDh5Kdnc38+fOt83To0IFWrVoxa9asS86bl5dHXl6e9f2srCyCg4M5fvw4Xl5V90h1QUEBCQkJ9OnTBycnJ1uPc0l2e1bj+NmdGK4+FMZtBwdn623VYX6Rinb8bB7/Xr2Hub/sJ6/Qcnp/64Y+jOsVQadwX+zs7Gw8oYiIiEj1Vl26Iysri7p165KZmXnVDq2yz/lPT08nIyOD2NhY6zZvb2/at29PUlIS9957L0lJSfj4+FjDHyA2NhZ7e3vWr1/PnXfeSVJSEt26dbOGP0C/fv146623OHXqFLVr1yYpKYkJEyaUuP9+/fpd9DSEC02ePJlJkyZdtH3JkiW4u7tfxyOvHAkJCbYe4bJa7fuIEGCvRyv+WJx4yTVVeX6RinKmAJYetGfNETsKzJbAD61lcEuwmUbex8ncdZyfdtl4SBEREZEapKp3R05OTqnXVtn4z8jIAMDfv+RLvPn7+1tvy8jIwM/Pr8Ttjo6O+Pr6llgTFhZ20T6Kb6tduzYZGRlXvJ9LmThxYolfGBQf+e/bt6+O/F+Pwlwc48cAEHTL0zQI6Vzi5io/v0gFOJGdz4dr9vDZr/s4V2A50t8yyJvxvSLoEllHR/pFREREyll16Y6srKxSr62y8V/Vubi44OLictF2JyenKv3NUazKzpm6CPKywKsBjuHdwP7Sl6WosvOLlKOT2fn8e9Vu/pO0h5x8E2CJ/rg+0fSIrqfoFxEREalgVb07yjJblY3/gIAAAI4cOUL9+vWt248cOUKrVq2sa44ePVri4woLCzl58qT14wMCAjhy5EiJNcXvX21N8e1SiTbPs/zdfPBlw1+kpjuVnc8Hq3fzybo9ZBdFf0wDb57uE0XPRn6KfhEREREpsypbV2FhYQQEBLB06VLrtqysLNavX0/Hjh0B6NixI6dPn2bjxo3WNcuWLcNsNtO+fXvrmlWrVlFQUGBdk5CQQKNGjahdu7Z1zYX3U7ym+H6kkuRmQvJiy9st7rHtLCI2cDonn38u3kXXt5czY0Ua2fkmmgV68eHDbflhTGd6NfZX+IuIiIjINbHpkf+zZ8+SmppqfT89PZ1Nmzbh6+tLw4YNiYuL4/XXXycqKoqwsDD++te/EhgYaH1FgCZNmtC/f3+eeOIJZs2aRUFBAWPGjOHee+8lMDAQgPvvv59Jkybx2GOP8fzzz7N161amTp3KlClTrPc7fvx4unfvzjvvvMPAgQP5/PPP+fXXX0u8HKBUgh0/gikP6jUG/+a2nkak0mTmFPDRmt3MXruHM3mFADSt70VcbBR9mir4RUREROT62TT+f/31V3r27Gl9v/gCesOGDWPOnDk899xzZGdnM2LECE6fPk2XLl1YtGgRrq6u1o/57LPPGDNmDL1798be3p7Bgwczbdo06+3e3t4sWbKE0aNH06ZNG+rWrcvLL7/MiBEjrGs6derE3Llzeemll3jxxReJioriu+++o3lzBWil2vKl5e+YIaDYkRtA5rkCPl6Tzsdr0zmTa4n+xgGexMVG07epP/b2+u9ARERERMqHnWEYhq2HqAmysrLw9vYu1esr2lJBQQELFy5kwIABVevCFWcy4N0mYJhh/B9QO/SSy6rs/CJlkJVbwOw1e/hozW6yiqK/kb8ncbFR9GsWoOgXERERsbHq0h1l6dAqe8E/ucFs/cYS/sHtLxv+ItXdmdwC5qzdw4dr0sk8Z7kOSbR/Lcb3juaW5op+EREREak4in+pGrYUXeU/Zoht5xCpAGfzCvlk3R4+WL2b0zmW6I/0q8X43lEMjKmv6BcRERGRCqf4F9s7ngqHfgc7B2h2p62nESk32XmFfJK0hw9W7eZUUfRH1PNgXO8oBrUIxEHRLyIiIiKVRPEvtld8ob+IXuBR17aziJSDnPxC/pO0l3+v2s3J7HwAwutaov/Wlop+EREREal8in+xLcM4f8p/i3tsO4vIdcrJL+TTn/fyr5W7OVEU/aF13BnXO4rbWgbi6GBv4wlFRERE5Eal+BfbOvQbnNwNTu7QaICtpxG5JufyTXy2fi+zVqZx/Kwl+kPquDO2VxR3tFL0i4iIiIjtKf7FtjYXnfLfaAC41LLtLCJllFtg4rP1+5i5Io3jZ/MACPZ1Y2yvKO66qYGiX0RERESqDMW/2I7ZBFu/trytU/6lGsktMPG/XyzRf/SMJfqDarsxtlckd7UOwknRLyIiIiJVjOJfbCd9JWQfBTdfy8X+RKq43AITX2zYz4wVqRzJskR/Ax83xvSKZHDrIJwdFf0iIiIiUjUp/sV2tnxl+bvZneDgZNtZRK4gr9DEvA37eX95GhlZuQAEersyulckQ9oEK/pFREREpMpT/IttFJyD7T9Y3o4ZYttZRC4jv9DMvF/3M2N5KocyLdFf39uVUT0juadtEC6ODjaeUERERESkdBT/YhvJiyD/DHg3hOD2tp5GpIT8QjNfbTzA+8tTOXj6HAABXq6M6hnB0JuDFf0iIiIiUu0o/sU2ik/5jxkM9jplWqqGApOZrzceYPqy89Hv7+XCqB6RDL05GFcnRb+IiIiIVE+Kf6l8505ByhLL2zG6yr/YXoHJzLe/HWT68hT2n7REfz1PF0b1iOC+dg0V/SIiIiJS7Sn+pfJt/wFM+eDfHPyb2noauYEVmsx88/tB3luWyr6TOQDUreXCyB4RPNBe0S8iIiIiNYfiXyrfli8tf8fcbds55IZVaDLz3aZDTF+Wwt4TxdHvzFPdI3igfQhuzop+EREREalZFP9SuTIPwp41lrebK/6lcpnMBt9vOsj0ZamkH88GoI6HM092D+fBDiG4O+ufRBERERGpmfSTrlSurV8DBjTsBD7Btp5GbhAms8GPfxxi2tIUdhdFf213J57sHsFDHULwcNE/hSIiIiJSs+knXqlcxaf8txhi2znkhmAyG8zfbIn+tGOW6Pdxd2JEt3CGdQxV9IuIiIjIDUM/+UrlObYLMjaDvSM0vcPW00gNZjYbLNhymGlLU0g5ehYAb7ei6O8USi1Fv4iIiIjcYPQTsFSezfMsf0f2AXdf284iNZLZbPDT1gymLk0m+Ygl+r1cHXmiaziPdA7F09XJxhOKiIiIiNiG4l8qh2HoKv9SYcxmg8XbMpi6NIWdGWcA8HR15PEu4QzvEoqXol9EREREbnCKf6kcBzbA6b3gXAsaDbD1NFJDGIbB4m1HmLo0hR2HswDwdHHk0S5hPNolDG83Rb+IiIiICCj+pbIUH/VvPAic3W07i1R7hmGQsP0I8YkpbC+K/loujjzaOZTHuoTj7a7oFxERERG5kOJfKp6pALZ+Y3k7Rlf5l2tnGAZLdxwlfmkyWw9aot/D2YHhncN4vGsYPu7ONp5QRERERKRqUvxLxdu9EnKOg3tdCO9h62mkGjIMg+W7jhKfmMLmA5kAuDs78EinUJ7oGk5tD0W/iIiIiMiVKP6l4m0pusp/87vAQd9yUnqGYbAi+RjxiSn8sf80YIn+hzuGMqJbOL6KfhERERGRUlGJScXKz4Ed8y1vx9xj21mk2jAMg1Upx5mSkMymouh3c3Lg4Y4hjOgWTp1aLrYdUERERESkmlH8S8XatRAKsqF2KAS1tfU0UsUZhsGaVEv0/7bvNACuTvY81CGEJ7tHUFfRLyIiIiJyTRT/UrGKr/IfMwTs7Gw7i1RZhmGwLu0EUxKS+XXvKQBcHO15sEMIT3YPx8/T1cYTioiIiIhUb4p/qTg5JyE10fK2rvIvl7Eu7TjxCSn8suckAM6O9jzQviEju0fg56XoFxEREREpD4p/qTjbvgVzIQS0gHqNbD2NVDE/77Yc6V+ffj7672/XkJE9IvBX9IuIiIiIlCvFv1ScLV9Z/m6hC/3Jeb+kn2RKQjJJu08A4Oxgz73tghnVI5IAb0W/iIiIiEhFUPxLxTi9D/atA+yg+WBbTyNVwK97TjIlMZm1qZbod3KwY+jNlugP9HGz8XQiIiIiIjWb4l8qxtavLX+HdgGvQNvOIja1ce8p4hOTWZ1yHLBE/5C2wYzuGUkDRb+IiIiISKVQ/EvF2HzBVf7lhvT7vlNMSUxhVfIxABzt7RjSNojRPSMJqu1u4+lERERERG4sin8pf0e2wdFt4OAMTW+z9TRSyTbtP018YjIrdlmi38HejrtbBzGmVyTBvop+ERERERFbUPxL+dtSdNQ/qi+41bbtLFJpNh84TXxiCst2HgUs0X/XTQ0Y2yuKhnUU/SIiIiIitqT4l/JlNsOWouf765T/G8LWg5nEJyaTuMMS/fZ2cOdNQYztFUloXQ8bTyciIiIiIqD4l/K2fz1k7gNnT4juZ+tppAJtO5RJfGIKCduPAJbov6NVA8b2jiJM0S8iIiIiUqUo/qV8bZln+bvpbeCkK7nXRDsOZxGfmMzibeej/7aWgYztHUVEvVo2nk5ERERERC5F8S/lpzAftn1reTvmbtvOIuVuZ0YWUxNT+GlrBgB2xdHfK4pIP0W/iIiIiEhVpviX8pO2DM6dglr+ENbd1tNIOUk+coapiSks2HIYsET/oBaBjO8dSaSfp42nExERERGR0lD8S/kpvsp/88Fg72DbWeS6pRw5w9Sllug3DMu2gS3qM753FNH+in4RERERkepE8S/lI+8s7FpoeVun/FdrqUfPMG1pKj9uPmSN/gExAYzvHU2jAEW/iIiIiEh1pPiX8rFrIRTkgG8EBLa29TRyDdKOnWXa0hR++ON89PdvFsD42Cia1Pey7XAiIiIiInJdFP9SPjYXXeU/ZojlSeFSbaQfz2ba0hS+33QQc1H0923qz/jYKJoFett2OBERERERKReKf7l+2cctF/sDS/xLtbDneDbTlqXw3e/noz+2iT9xsVE0b6DoFxERERGpSRT/cv22fQuGCQJvgrqRtp5GrmLfiRymLUvh298PYiqq/t6N/YiLjSYm6P/bu/O4KOuF/ePXsAgigqGo4IK4ixtm5Ya5hEvhVqYeT2lZ+oSpqWU99tjJPB2PpnVSs0xPaD8PamonK7U6uYCaS6YdBVxBcWVzQ0D2mfn9MTJKLqmpNwyf9+vla4Z7boZrCv647u9yU/oBAAAAR0T5xx9nn/I/0NgcuKmT57P10cZ4/fvXK6W/SyNfjQttqJa1KhkbDgAAAMA9RfnHH3M+UTq1UzI5Sc2eMjoNruPk+Wx9HJWgL3efUuHl0t+poa/GhTZQq9oPGJwOAAAAwP1A+ccfE/el7THwUalidWOzoJjT6TmauzFBX+4+qQKzrfR3bFBF40IbqnUApR8AAAAoSyj/uHNWqxSz0vacKf8lRlJ6jj6OStCKXVdKf0j9KhrfrYFaB/gYnA4AAACAESj/uHMpsdLZQ5Kzm9Skl9Fpyrzkizn6JOqIlv9yUvlmiySpfb3KGt+toR6uQ+kHAAAAyjLKP+5c7OVR/0Y9JXd2iTdKakauPolK0LKdV0p/27o+Gh/aUG3qVjY4HQAAAICSgPKPO2OxSHH/tj1vPsDYLGVUWkauPok+oqU7Tyi/0Fb6Hwm0lf529Sj9AAAAAK6g/OPOnNgmZZyW3LylBt2NTlOmpGXm6tPoo1ry83HlXS79D9d5wF76TSaTwQkBAAAAlDSUf9yZmBW2x6A+koubsVnKiDOZeZq/6Ygifz6u3AJb6W8dYCv9HepT+gEAAADcGOUft68wT9r/te15C3b5v9fOZuVpweajWrz9mL30t6pdSeNDG6pjgyqUfgAAAAC/i/KP25ewXsq9KFX0kwI6GJ3GYZ2/lK/5m49o8bbjyikwS5Ja1qqk8aEN1KmhL6UfAAAAwC2j/OP2FU35b9ZfcnI2NosDunApXwu2HNX/23ZM2fm20t+iprfGhzZU50aUfgAAAAC3z8noADfzzjvvyGQyFfvXuHFj++u5ubkaNWqUKleuLE9PT/Xv31+pqanF3uPEiRMKCwuTh4eHqlatqtdff12FhYXFzomOjtaDDz4oNzc31a9fX59//vn9+HilU26GdPgH23Om/N9V6dn5mvmfgwp5b6PmRR9Rdr5ZzWt4K+K5h/TNqA7q0rgqxR8AAADAHSnxI/9NmzbV+vXr7V+7uFyJPH78eK1du1YrV66Ut7e3Ro8eraeeekpbt26VJJnNZoWFhal69eratm2bkpOTNXToULm6uurvf/+7JCkxMVFhYWEKDw/XkiVLtGHDBg0fPlx+fn7q0aPH/f2wpcHBNVJhrlSloVS9hdFpHMLF7AJ99tNRLdp6TFl5tgtTTf29NC60oUKbUPgBAAAA/HElvvy7uLioevXq1xy/ePGiIiIitHTpUnXt2lWStGjRIjVp0kQ7duxQ27Zt9eOPP2r//v1av369qlWrpuDgYL377rv63//9X73zzjsqV66cPv30UwUGBuqDDz6QJDVp0kQ//fSTPvzwQ8r/9cSutD02HyhRSv+QizkFivgpUYt+SlTm5dLfxM9L40IbqHtQNUo/AAAAgLumxJf/+Ph4+fv7y93dXe3atdO0adNUu3Zt7d69WwUFBQoNDbWf27hxY9WuXVvbt29X27ZttX37djVv3lzVqlWzn9OjRw+NHDlS+/btU6tWrbR9+/Zi71F0zrhx426aKy8vT3l5efavMzIyJEkFBQUqKCi4C5/83ijKdkcZs1LlcjRaJkkFTfpKBnzOP5S/hMjMLdDn205o0fbjysy1lf5G1Tw1pks9dWtSVU5OpmuWpgAAAAC4f0pL77idfCW6/Ldp00aff/65GjVqpOTkZE2ZMkUdO3ZUXFycUlJSVK5cOVWqVKnY91SrVk0pKSmSpJSUlGLFv+j1otdudk5GRoZycnJUvnz562abNm2apkyZcs3xH3/8UR4eHnf0ee+ndevW3fb31E37Uc2tFp33qKct2w9IOnD3g92iO8lvtNxCaVOKSVFJTsox20b1/cpb1bOWRS180mU+vls/HDc4JAAAAAC7kt47srOzb/ncEl3+H3/8cfvzFi1aqE2bNgoICNCKFStuWMrvlzfffFOvvvqq/euMjAzVqlVL3bt3l5eXl4HJbq6goEDr1q1Tt27d5Orqelvf67xoliTJO2S4nnj4iXuQ7vf9kfxGycwt1L92nNDCbcd0Mcc2ol/ft4LGdKmnnk2rycmJ6f0AAABASVJaekfRDPRbUaLL/29VqlRJDRs2VEJCgrp166b8/Hylp6cXG/1PTU217xFQvXp17dy5s9h7FN0N4OpzfnuHgNTUVHl5ed30AoObm5vc3NyuOe7q6lqifzmK3HbOc0ekpF8lk7OcWzwtZ4M/Y2n475yVV6j/t+2Y/rnlqNKzbdNx6vlW0NjQhgpr7idnSj8AAABQopX03nE72Ur0rf5+KysrS0eOHJGfn59at24tV1dXbdiwwf76oUOHdOLECbVr106S1K5dO8XGxiotLc1+zrp16+Tl5aWgoCD7OVe/R9E5Re+By2K/tD3W7Sx5VjU0Skl3Ka9Q86KPqON7GzXzP4eUnl2gur4VNPtPwfpxfCf1aelP8QcAAABwX5Xokf8JEyaod+/eCggIUFJSkiZPnixnZ2cNHjxY3t7eevHFF/Xqq6/Kx8dHXl5eGjNmjNq1a6e2bdtKkrp3766goCANGTJEM2bMUEpKit566y2NGjXKPmofHh6uuXPn6o033tALL7ygjRs3asWKFVq7dq2RH71ksVql2BW25y0GGpulBMvOL9S/th/X/M1Hdf5SviQpsEoFvfJYffVpWYPCDwAAAMAwJbr8nzp1SoMHD9a5c+fk6+urkJAQ7dixQ76+vpKkDz/8UE5OTurfv7/y8vLUo0cPffLJJ/bvd3Z21po1azRy5Ei1a9dOFSpU0HPPPae//vWv9nMCAwO1du1ajR8/XrNnz1bNmjX12WefcZu/qyXvkc4lSC7lpcZhRqcpcXLyzYrccVzzNx/R2Sxb6a9T2UNjujZQ32B/uTiXqgk2AAAAABxQiS7/X3zxxU1fd3d318cff6yPP/74hucEBATou+++u+n7dO7cWf/973/vKGOZELPS9tjoccmtorFZSpDcAlvp/3TTUZ3Nst32MeBy6e9H6QcAAABQgpTo8o8SwGKW4v5te86Uf0m20r/05xOat+mIzmTaSn8tn/Ia07WBnmxVQ66UfgAAAAAlDOUfN3dsi5SVIpV/QKr3mNFpDJVbYNYXO0/ok+gjSrtc+ms+UF5jutbXUw/WpPQDAAAAKLEo/7i52MtT/oP6SS7lDI1ilLxCs5b/clKfRB1RSkauJKlGpfIa3bW++j9YU+VcKP0AAAAASjbKP26sIFfa/63tefMBxmYxQF6hWSt2ndInUQlKvmgr/f7e7hrVtb4GtK5F6QcAAABQalD+cWPx/5HyMiSvmlLtdkanuW/yCy1aufukPt6YoKTLpd/P210vd6mvgQ/VlJuLs8EJAQAAAOD2UP5xY0VT/pv3l5wcf5Q7v9CiL3ef0sdRCTqdniNJqublplFd6mvQw7Uo/QAAAABKLco/ri8nXTr8H9vz5o69y3+B2aJ/7z6luVEJOnXBVvqrVnTTy53r6U+P1Ja7K6UfAAAAQOlG+cf1HVgtmfOlqkFS9WZGp7knCswWrfr1tD6KitfJ87bS71vRTSM71dOf21D6AQAAADgOyj+uL3aF7bH508bmuAcKzRat+u9pzY1K0PFz2ZKkKp7lFN6pnp5pE6Dy5Sj9AAAAABwL5R/XykiWErfYnjdznPJfaLbomz1J+mhjvI5dLv2VK9hK/7NtKf0AAAAAHBflH9eK+7ckq1SrrfRAgNFp/jCzxapv957WRxsSdPTsJUmST4VyeunRuhrSLkAe5fgzAAAAAODYaD24VtEu/y0GGJvjDzJbrFoTk6TZG+J19Iyt9D/g4ar/ebSehrYLUAU3fv0BAAAAlA20HxR3Nl5K3iM5uUhBTxqd5o5YLFatiU3WnA3xSkjLkiRV8nDViI519Vz7OvKk9AMAAAAoY2hBKK5o1L/eY1KFysZmuU0Wi1XfxSVr9vp4xV8u/d7lXTWiY6Cea19HFd1dDU4IAAAAAMag/OMKq1WKKdrlv+RN+TdbrPo58bx2nzWpcuJ5tatfVc5OJlksVv2wL0Wz18frUGqmJMnL3UXDO9bV8x3qyIvSDwAAAKCMo/zjitO7pQuJkmsFqfETRqcp5oe4ZE1ZvV/JF3MlOWtx/C5V93JX32A/bTp8VgdTbKW/oruLXgwJ1LAOgfIuT+kHAAAAAInyj6sVTflvHCaVq2Bslqv8EJeskZG/yvqb4ykZuZq/OVGSVNHNRcNCAvViCKUfAAAAAH6L8g8bc+HlW/ypRE35zysw6+1v9l1T/K/m6eai6Nc7q7Kn233LBQAAAAClCeW/DLnRmnlJUuIm6dIZyaOyVK/LPc9SaLbobFa+0jJzlZqRp9SMXKVl5iktI9f+PDUjT2ez8n73vbLyCnU4NUvtKP8AAAAAcF2U/zLiemvm/bzdNbl3kHo287sy5b/pk5LznU+bLzRbdO5SvlIzbKW+qNyn2Qu97fFsVp6sNxvOv01pmbl3780AAAAAwMFQ/suAG66Zv5irkZG/av7gIHU/sNp2sPnA677H1aU+LSNPqZm2R3u5v/x4LitPllss9c5OJvl6uqmql5uqVnRXtaseq3m5y7eim05dyFZ45K+/+15VK7rf2g8FAAAAgDKI8u/gzBarpqzef90181ZJJknR3y5Wd3OWcirU1Kqk6ko9dFhpmVdK/p2U+iqe5VTNy11VK7qrqpebqhWV+8sFv6qXmypXcLuy7OAGmvh5yc/bXSkXc6/7GUySqnu765FAn1sLBwAAAABlEOXfwe1MPH95qv/1WSV1zt8kOUsRF1vr/a/jbniuk0nyreh2udS7qerlx2peV0btb7XU3ypnJ5Mm9w7SyMhfZbqct0jRT5jcO+iu/TwAAAAAcESUfwf3e2vhvZWlzk57JEkHKvdQqE9V+V419b6o3N/tUn87ejbz07xnH7xqzwKb6lfvWQAAAAAAuCHKv4P7vbXwTzj/rHImsy490EQfj33mPqW6fT2b+albUHVtT0jTj1t+VveObYrfrQAAAAAAcENORgfAvfVIoI/8vN11o4rc13mbJKl868H3L9QdcnYyqU2gj1pXsapNoA/FHwAAAABuEeXfwRWtmZd0zQUAf51TW6cDssokp+b97384AAAAAMB9QfkvA4rWzFf3Lr4E4M8VfpEkmQI6SN41jYgGAAAAALgPWPNfRlxvzXyHDX+XUiU1f9roeAAAAACAe4jyX4YUrZk/d8CqNp5pMqXGSU6uUlBfo6MBAAAAAO4hpv2XUU5x/7Y9adBN8vAxNgwAAAAA4J6i/JdFVquc9l0u/80HGJsFAAAAAHDPUf7LoAcuJch08YRUzlNq2NPoOAAAAACAe4zyXxZETZM2zbB/WevCNtuTJr2l7XNtrwMAAAAAHBblvyxwcpaiptouAJgL5J++03bcarUdd3I2Nh8AAAAA4J5it/+yoNMbtseoqXI6c1iuhZmyunrIFPOF1GXSldcBAAAAAA6J8l9WXC74zlFTJUmmgmyKPwAAAACUEUz7L0s6vSGrk+16j9XJleIPAAAAAGUE5b8s2TRDJkuhzCYXmSwFxTYBBAAAAAA4Lqb9lxWbZkhRU2V+dKLWZAapV8X99iUAzAAAAAAAAMdG+S8LLhd/dZkkS/vx0nffydJxgpydL98FQOICAAAAAAA4MMp/WWAxX9ncr6DgyvGiwm8xG5MLAAAAAHBfUP7Lgi5v3vg1RvwBAAAAwOGx4R8AAAAAAA6O8g8AAAAAgIOj/AMAAAAA4OAo/wAAAAAAODjKPwAAAAAADo7yDwAAAACAg6P8AwAAAADg4Cj/AAAAAAA4OMo/AAAAAAAOjvIPAAAAAICDo/wDAAAAAODgKP8AAAAAADg4yj8AAAAAAA6O8g8AAAAAgINzMTqAo7BarZKkjIwMg5PcXEFBgbKzs5WRkSFXV1ej49y20p4fAAAAQMlXWnpHUf8s6qM3Q/m/SzIzMyVJtWrVMjgJAAAAAKAsyczMlLe3903PMVlv5RIBfpfFYlFSUpIqVqwok8lkdJwbysjIUK1atXTy5El5eXkZHee2lfb8AAAAAEq+0tI7rFarMjMz5e/vLyenm6/qZ+T/LnFyclLNmjWNjnHLvLy8SvQv8e8p7fkBAAAAlHyloXf83oh/ETb8AwAAAADAwVH+AQAAAABwcJT/MsbNzU2TJ0+Wm5ub0VHuSGnPDwAAAKDkc8TewYZ/AAAAAAA4OEb+AQAAAABwcJR/AAAAAAAcHOUfAAAAAAAHR/kHAAAAAMDBUf4BAAAAAHBwlH8AAAAAABwc5R83VRrvBJmbm6vMzEyjYwAAAABAieFidACUPOfPn1dOTo4KCgpUq1YtOTs7S7JdCDCZTAanu7m4uDi99tprSklJkZ+fn0JDQzVq1CiVL1/e6GgAAAAAHNDx48e1ZcsWJSYmatCgQWrQoEGJ7E0ma2kc2sU9Exsbq0GDBsnLy0v79u3Tk08+af8nlewLAEeOHNHDDz+sp59+Wg8//LCioqJ06NAh+fj4aNWqVfL09DQ6IgAAAAAHEhsbq169eikgIEBHjx5VQUGBtm3bpnr16hkd7RpM+4fd8ePH9fjjj6t3796KjIzUkiVLFB8fr/DwcC1cuFCSSmzxl6R169bpkUce0aeffqoRI0ZoyZIlmjRpki5cuKBu3brp0qVLRkcEAAAA4CAOHz6sbt266bnnntOaNWt06tQpVapUSRs2bDA62nVR/mG3evVqNWvWTO+9957q16+vPn36aMiQITpz5ozeeecdffbZZ0ZHvKmkpCQdOHBATk62X2uTyaS+ffvq3XffldlsVnh4uAoKCgxOCQAAAKC0y87O1owZMzRgwAC9/fbbqlixoiQpKChIJ0+e1OjRo7VmzRolJSUZnPQKyj/s0tPTlZGRodzcXJnNZklSzZo11b17dz322GNatmyZjh07ZmzIm+jUqZN8fHz07bffymKxSJKcnZ3VtWtXDRkyRHFxcYqPjzc4JQAAAIDSzsPDQ3369NEzzzwjFxcXmUwmvfvuu1q7dq0SEhJ08OBBjRkzRgsWLFBhYaHRcSVR/nGVgIAA7d69W//5z3+UnJyso0ePatiwYerVq5fGjh2rXbt2KTEx0eiYdvHx8dqzZ4/961atWsnT01MfffSR9u/fbz/u5uamF154QQkJCdq8ebMBSQEAAAA4mj59+qht27aSpP379+vrr7/WqlWrFBkZqfXr1+tPf/qTIiIiSsydyCj/ZVhmZqbS0tKUlpYmSRoyZIhGjRqlQYMGKTQ0VMHBwRo8eLBGjx6t4OBg+fn5KSYmxuDUNnv37lWjRo20fft2SZLFYpGPj48iIyMVExOj8ePHa+fOnfbzXVxcFBwcrCpVqhgVGQAAAEAplp6erpMnT153QLROnTr67rvvFBYWZr9denBwsHx8fErMvmnc6q+M2rdvn8aNG6eTJ0/K19dXTz/9tMaOHat//OMf6tmzpwoKCuTq6qru3btLkpKTk+Xh4aH69esbnNxW/Nu3b6833nhDI0eOlCQ5OTnJarUqICBAW7duVffu3TVhwgR17dpVISEh+u6777R//361bt3a4PQAAAAASpu4uDi9+OKLys7OVnx8vF599VWNGzdOVatWlWRbBlB0e3EXF1vN3rp1q+rWrSs3NzfDcl+NW/2VQfv27VPHjh313HPPqX379lq7dq0SExP19ddf64EHHrjm/JycHP3973/XkiVLtHnzZtWsWdOA1DYHDx5U8+bNNWHCBE2bNk1Wq1WrVq3SoUOHFBgYqObNm6tp06Y6ceKEpk+frm3btiknJ0deXl5asGCBWrVqZVh2AAAAAKXPwYMH9eijj2rYsGHq27evfSB10aJFGjhw4DXnZ2Vl6b333tO8efO0efNmBQUFGZD6Woz8lzHJyckaNGiQRowYoffee0+SVLduXb355ps6e/assrOzVaNGDUmS2WxWTEyMFi5cqMjISG3cuNHQ4i9JmzZtktlsVkhIiCwWi7p27ars7GylpqbK29tb2dnZWrRokTp27KhZs2apsLBQFy9elKenp30HTgAAAAC4FRkZGfrLX/6ip556yt6f2rdvrx07digiIkIDBw6U1Wq1T+3fuHGj3n//fR08eFDr1q0rMcVfYs1/mZOcnKx+/fppxIgR9mPffPONfv31V3Xp0kV9+/bVU089Jcm2U763t7eCg4P1888/l4hR85deekmTJ09W37591bBhQ1WpUkWRkZE6evSoIiIi9OCDD+rVV19VSkqKypUrJw8PD/n5+VH8AQAAANy2s2fPKi8vT71795Yk+13RGjZsqEuXLklSsTX9nTt3Vu/evfXjjz+WiP50Nab9lzG5ublKS0tT7dq1JUkzZszQO++8owULFqh+/fo6ceKE3nzzTb3yyisaO3asJNtmek5OJes60dSpU7V8+XItXrxYwcHB9uNffvmlwsPDFRUVpebNmxsXEAAAAECpderUKfus561bt6pDhw6SpMLCQrm4uGjZsmWKiIjQ+vXr7d+TlJQkf39/Q/LeipLV6HBPFF3fsVqtcnd3LzZ1PygoSKtXr9azzz6rtm3bKiwsTB4eHkpJSbGfY2TxP3LkiCZPnqxRo0Zp7ty59uP/93//p8WLF6tx48aSbBcoJMnf31++vr7y8PAwJC8AAACA0u3AgQOqXbu2wsPDJcle/C0Wi30zv9zcXKWkpNhnAvz1r3/VlClTlJOTY0zoW8CafweXkJCgyMhIHT9+XE2aNNFzzz2natWq2Ufze/XqZT+3aK1KnTp1VK9evWLHjBATE6MePXqodevWMplMWrBggaxWq8aMGSOTyaSWLVvasxVdoPjqq6/k4+OjypUrG5IZAAAAQOm1Z88ehYSEqHLlyjp69KguXrwob29vSdcfFHV2dtbkyZP17rvvavfu3fYd/0siRv4dWGxsrNq1a6f4+HgdPXpU3377rV555RVdunTJ/ot79aoPk8mk6dOna9++fQoNDbUfM0J8fLz69Omj559/XqtXr9by5cv15z//2b6u5rfZDh48qPHjx2vhwoWaN2+eKlWqZEBqAAAAAKXV3r171aFDB7311lvasWOHoqOjtXLlymLnFM04Ll++vOrWrat3331X7733nnbt2lXi1vj/FuXfQZ06dUqDBw/W8OHDtWTJEm3atEkjRozQ/v37lZqaaj+vqEDv3LlTY8eO1dy5c/XVV1+pTp06BiW3/UHNmjVL7du315QpU2QymeTh4SGz2azNmzfr6aef1sSJE3Xq1ClJthkCCxYs0IYNGxQVFaUWLVoYlh0AAABA6bN//361atVK48aN08SJE1WvXj0NHTpUS5cu1ZkzZ+znFQ2ims1mrVmzRh988IG2bt2qBx980Kjot4zy74CsVqs2b96sWrVqKTw83H51atCgQUpPT1dsbGyx89PT07V+/XqdPHlSmzdvLraBnhGcnJz09ttva/jw4SpXrpwkafr06Vq6dKnq1KmjFi1aaMGCBRo1apQkqUWLFho6dKjWrVunli1bGhkdAAAAQCljsVi0du1aTZ8+XVOnTrUf79Kli3bu3KkTJ07YzytStWpV+fn5afv27WrduvV9z3wn2O3fQUVFRSkxMVEvvPCCJNuVqcLCQjVt2lRTp07VoEGDip1/7tw5ubi42NezlCTx8fGaOHGiRowYoZ49e0qSfvnlF7Vp00Zbtmyxb8ABAAAAALcjIyNDXl5eysrKkqenp6Tidzvr0qWL3N3d9c0339gHJoukp6eXquXGjPw7kMzMTPua+E6dOtmLv8VikbOzs9zc3OTr61tsnf+CBQt06tQpVa5c2dDif/LkSf3444+KjIzUhQsXlJ+fb3+tQYMGmj9/vr34S7Y/0mbNmtlvWQgAAAAAt2Pfvn166KGHtG3bNnl6etp7kpOTk/15//79dezYMR06dEiSrVsVvVYSB05vhvLvIA4fPqyQkBCtWLHimg39rt6VsmgGgCT95S9/UXh4uLKysgzJXCQmJkaPPPKIJkyYoFGjRik4OFgzZ860r+mXJB8fn2Lfs379evn6+tqvzgEAAADArdq7d69CQkKUkJCgWbNmKScnp9iG4kXPhwwZoszMTM2fP1+S7cJA0WtGbY5+pyj/DmLx4sWKjY3VpEmTtGrVKuXm5kq68gtZWFio/Px8Xbx4UeXLl9c//vEPzZw5U7t27VLjxo0Ny33hwgUNGzZMQ4cO1fr163XhwgUNGDBAq1ev1qRJk3T8+HFJVzbWSExM1FtvvaV58+bpww8/1AMPPGBYdgAAAAClz969e9W2bVuFh4fro48+0q5du3ThwgVJxdf1m81meXt7a9KkSVq9erViYmKMinxXuBgdAHdH586dJdlK/osvviiz2ayhQ4fay7+Li+1/dY0aNTRx4kQlJSXpp59+MnxXyszMTJ07d07du3dX1apVJUnvv/++5s6dq6VLl2rGjBmaMmWKqlSpopiYGM2ePVubN29WdHQ0u/oDAAAAuC2//vqr2rZtq9dff11Tp05VXl6e/va3v2n69OmaM2dOsVnTzs7OkqQmTZrI1dXV3ldKK8q/A1m1apX27dun9PR0jRw5UpUqVdL333+vJk2aaOzYsbJarbJYLEpOTtaOHTvUvHlzoyPLyclJHh4eSkpKkmS7eOHi4qLRo0crNzdXCxcuVPfu3dW3b1/5+/vr+eef1+TJk1nrDwAAAOC2FBQU6NNPP9WYMWM0depUmc1mubm5aeTIkVqzZo0SEhJUv379a76vc+fO2r17d6lb4/9b7PZfSpnNZjk7O9t3oszMzFSvXr30/fffy8PDQ6+99ppmz56tihUrat26dXrooYdktVq1YsUKPfLIIwoMDDT6I9j17t1bp0+fVlRUlLy9ve0XACTpiSeeUE5OjqKiogxOCQAAAKC0u94O/bt27dKjjz6qOXPmaPjw4cVes1qtMplM9sfSjDX/pdCePXvUr18/ZWdn26elVKxYUTk5Odq2bZsk23T68uXLKycnR0eOHFF2drZMJpMGDRpkaPE/deqUVqxYoa+++kr//e9/JUmLFi1Senq6BgwYoPz8fHvxl6QePXrIbDbLbDYbFRkAAABAKVe0lv+3xd9qteqhhx7S//zP/2jWrFk6ffp0sddL6+Z+10P5L2X27t2r9u3bq2nTpvLw8JAk5efny2q1qkGDBsrPz9fYsWO1du1a7du3T+Hh4Ro8eLDWrFkjoyd5xMbGKiQkRDNnztTLL7+syZMn6/Dhw6pSpYqWLl2qAwcOqHv37oqPj7dvWBgbG6uKFStS/gEAAADctnPnzkkqfvu+qxWV+s6dO+vChQs6fPiwpOIb/zkKyn8pEhMTow4dOmj06NGaPn26/XjRFJQ2bdqoV69eWrFihb755hvVrl1bs2bN0muvvaYWLVoYerXq+PHjevzxxzV48GBFR0dr0aJF+uWXX5Seni5Jatu2rX744QedOXNGYWFh6tSpk/r166fly5dr2rRpKleunGHZAQAAAJQ++/fvV7Vq1TR69GhJsk/fv55+/fopKChIkyZNkqRiG/85Ctb8lxIpKSlq1aqVWrZsqR9++EFms1kTJkxQfHy8EhIS9PLLL8vNzU2HDh3S0KFDFRwcbN8XoCRYsGCBli1bpo0bN9ovQoSFhalv375yc3NTQECA/Y4FH330kZKSkuTm5qbBgwerUaNGBiYHAAAAUNokJSXpySeflMVi0cGDBzVs2DDNmTNHkq5Zv1/Um/75z39q/vz5+uGHH1SlShWjot8z7PZfirRr104nT57UN998o08//VQFBQUKDg5WQECA5s6dq27dumnkyJFq1qyZJJWY4i/Z/sBOnDihPXv2qFWrVpo6daq+//575efnKz09XSdOnNDf/vY3jRgxQmPGjDE6LgAAAIBSymKxKDo6WgEBARo3bpxOnTql559/XpI0Z84cmUwm+8bp0pXe9NRTT+mJJ55wyOIvMfJfqiQnJ2vixIlauXKlQkJCtGzZMlWuXFmSFBkZqTFjxmjp0qV6/PHHDU56rcTERD377LNKS0tTy5Yt9dVXX2nVqlXq06ePzpw5o6lTpyomJkYrV66Uj4+PfU2OI2ysAQAAAOD+KBrFP3HihPbu3avevXtLkr744gu98MILGj58+A1nADg6Rv5LET8/P02bNk01atRQaGioKleubP+FffbZZzVlyhRFRUWVyPIfGBioyMhI/fLLL9q/f79MJpP69u0rSapatar8/f21adMmeXp62q/AlaU/RAAAAAB/zJ49e/TWW29p+fLlql27tmrXrm1/bcCAATKZTBo2bJgk2wwAi8WiZcuWqWXLlmrevLlRse8byn8p4+/vr4kTJ8rd3V3SlU0rzp8/L19fXwUHBxsb8CYCAwMVGBiozz77TLt27VJ+fr59I7/U1FTVqVOHXf0BAAAA3Laiu6K98sorqlChgiTbyL7VapWTk5OcnZ3Vv39/mUwm+xIAk8mkTz75REeOHDEw+f1D+S+FvLy8in1tMpk0Z84cnT17Vh06dDAo1a1r3769JkyYoNmzZ6t69eqKi4vTokWLtHnzZvsfKgAAAADcihvdFa2goKDYXcNcXFzUv39/mc1mPfPMM6pUqZJ27NhRbIaAI6P8l3JffPGFoqKitHLlSm3YsEEBAQFGR/pdQUFBWrVqlUaMGCEnJyfVqFFDmzZtKhNTbQAAAADcPSkpKerRo4dCQkI0Y8aMYndFO3LkiF566SX17NlTjRs3tn/Phg0b5Onpqa1bt6pJkyYGpr+/KP+lXFBQkCIjI7VlyxY1bdrU6Di3rEuXLtq5c6cKCgrk5uamSpUqGR0JAAAAQCl0o7ui1alTR3PmzFFcXJzefvtt1a5dW+vWrVN0dLQ2btxYpoq/xG7/DuHqtfMAAAAAUJbc7K5oS5cu1ahRo+x3RUtNTZXValX16tUNTn3/Uf4BAAAAAKVaUlKS5s6dq9DQUHXt2rXYbfwaNGigfv36aebMmQanNBbT/gEAAAAApdrv3RWtVatWBic0HuUfAAAAAFDqlfa7ot1rlH8AAAAAgEMpjXdFu9ecjA4AAAAAAMDdFBQUpNOnT2vLli1M+b+MDf8AAAAAAA6Hu6IVR/kHAAAAAMDBMe0fAAAAAAAHR/kHAAAAAMDBUf4BAAAAAHBwlH8AAAAAABwc5R8AAAAAAAdH+QcAAAAAwMFR/gEAgCGsVqtCQ0PVoEEDxcTEKDQ0VImJiUbHAgDAIVH+AQDAPbN9+3Y5OzsrLCzsmteOHTsmZ2dnzZ07V0OGDFGlSpUUGBhoQEoAAByfyWq1Wo0OAQAAHNPw4cPl6empiIgIHTp0SP7+/kZHAgCgTGLkHwAA3BNZWVlavny5Ro4cqbCwMH3++ef216Kjo2UymbRhwwY99NBD8vDwUPv27XXo0KFi7zFv3jzVq1dP5cqVU6NGjfSvf/3rPn8KAAAcA+UfAADcEytWrFDjxo3VqFEjPfvss1q4cKF+O+Fw0qRJ+uCDD7Rr1y65uLjohRdesL+2atUqjR07Vq+99pri4uL00ksvadiwYYqKirrfHwUAgFKPaf8AAOCe6NChgwYOHKixY8eqsLBQfn5+WrlypTp37qzo6Gh16dJF69ev12OPPSZJ+u677xQWFqacnBy5u7urQ4cOatq0qRYsWGB/z4EDB+rSpUtau3atUR8LAIBSiZF/AABw1x06dEg7d+7U4MGDJUkuLi4aNGiQIiIiip3XokUL+3M/Pz9JUlpamiTpwIED6tChQ7HzO3TooAMHDtzL6AAAOCQXowMAAADHExERocLCwmIb/FmtVrm5uWnu3Ln2Y66urvbnJpNJkmSxWO5fUAAAyghG/gEAwF1VWFioxYsX64MPPtCePXvs//bu3St/f38tW7bslt6nSZMm2rp1a7FjW7duVVBQ0L2IDQCAQ2PkHwAA3FVr1qzRhQsX9OKLL8rb27vYa/3791dERIRmzpz5u+/z+uuva+DAgWrVqpVCQ0O1evVqffXVV1q/fv29ig4AgMNi5B8AANxVERERCg0Nvab4S7byv2vXLsXExPzu+/Tr10+zZ8/W+++/r6ZNm2r+/PlatGiROnfufA9SAwDg2NjtHwAAAAAAB8fIPwAAAAAADo7yDwAAAACAg6P8AwAAAADg4Cj/AAAAAAA4OMo/AAAAAAAOjvIPAAAAAICDo/wDAAAAAODgKP8AAAAAADg4yj8AAAAAAA6O8g8AAAAAgIOj/AMAAAAA4OD+P1g6pxbJXfWJAAAAAElFTkSuQmCC\n" + }, + "metadata": {} } ] }, From a9ae80a6092cb5936f7e9f75eda5bd83ebe02dd9 Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Mon, 6 Nov 2023 21:08:36 -0300 Subject: [PATCH 13/16] Creado mediante Colaboratory --- proyectoIAPrediccion1CNNPrediccion0.1.ipynb | 2332 ++----------------- 1 file changed, 233 insertions(+), 2099 deletions(-) diff --git a/proyectoIAPrediccion1CNNPrediccion0.1.ipynb b/proyectoIAPrediccion1CNNPrediccion0.1.ipynb index 8bb8b70..86a4e7c 100644 --- a/proyectoIAPrediccion1CNNPrediccion0.1.ipynb +++ b/proyectoIAPrediccion1CNNPrediccion0.1.ipynb @@ -45,17 +45,17 @@ "from keras.losses import MeanSquaredError\n", "from keras.regularizers import l2\n", "from sklearn.metrics import mean_squared_error\n", - "\n" + "from math import sqrt\n" ], "metadata": { "id": "H7kZjC_GUZZd" }, - "execution_count": 1, + "execution_count": 145, "outputs": [] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 159, "metadata": { "id": "9_FId2wvQAgd" }, @@ -63,24 +63,24 @@ "source": [ "# Leer los datos\n", "GES_Data = \"global_electricity_statistics_cleaned.csv\"\n", - "df = pd.read_csv(GES_Data)" + "dfread = pd.read_csv(GES_Data)" ] }, { "cell_type": "code", "source": [ "# Ver los primeros datos\n", - "print(df.head())\n", - "df[\"Features\"].value_counts()" + "print(dfread.head())\n", + "dfread[\"Features\"].value_counts()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "lWY6qwmkQ2PL", - "outputId": "1943cce5-e556-4021-f4da-ea0b90820493" + "outputId": "da98030e-ee6e-4dd5-e7ac-42be995ab92e" }, - "execution_count": 4, + "execution_count": 160, "outputs": [ { "output_type": "stream", @@ -125,7 +125,7 @@ ] }, "metadata": {}, - "execution_count": 4 + "execution_count": 160 } ] }, @@ -134,43 +134,43 @@ "source": [ "# Convertir las columnas de los años a numéricas\n", "cols = [str(year) for year in range(1980, 2022)]\n", - "df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')\n", + "dfread[cols] = dfread[cols].apply(pd.to_numeric, errors='coerce')\n", "\n", "# Calcular el promedio de cada fila (ignorando los valores NaN)\n", - "df['avg'] = df.loc[:, '1980':'2021'].mean(axis=1)\n", + "dfread['avg'] = dfread.loc[:, '1980':'2021'].mean(axis=1)\n", "\n", "# Rellenar los valores NaN con el promedio de la fila correspondiente\n", "for col in cols:\n", - " df[col].fillna(df['avg'], inplace=True)\n", + " dfread[col].fillna(dfread['avg'], inplace=True)\n", "\n", "# Eliminar la columna 'avg' ya que ya no es necesaria\n", - "df.drop('avg', axis=1, inplace=True)\n", + "dfread.drop('avg', axis=1, inplace=True)\n", "\n", "# Agregar la columna 'Total' que es la suma de las columnas desde 1980 hasta 2021\n", - "df['Total'] = df.loc[:, '1980':'2021'].sum(axis=1)\n", + "dfread['Total'] = dfread.loc[:, '1980':'2021'].sum(axis=1)\n", "\n", "# Agrupar por 'Region' y obtener la suma de los valores\n", - "df_grouped = df.groupby('Region', as_index=False).sum(numeric_only=True)\n" + "dfread_grouped = dfread.groupby('Region', as_index=False).sum(numeric_only=True)\n" ], "metadata": { "id": "9MZcbtw9t95l" }, - "execution_count": 5, + "execution_count": 161, "outputs": [] }, { "cell_type": "code", "source": [ - "df_grouped.describe().columns" + "dfread_grouped.describe().columns" ], "metadata": { "id": "xegG-hIr9XGK", - "outputId": "0fca8842-9503-47be-86a5-375c957fcb77", + "outputId": "a938e42a-23e5-4856-8dc7-aa1161e1cd4e", "colab": { "base_uri": "https://localhost:8080/" } }, - "execution_count": 6, + "execution_count": 162, "outputs": [ { "output_type": "execute_result", @@ -185,7 +185,7 @@ ] }, "metadata": {}, - "execution_count": 6 + "execution_count": 162 } ] }, @@ -205,16 +205,16 @@ { "cell_type": "code", "source": [ - "print(df_grouped)" + "print(dfread_grouped)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "6wZ4FIMSDhZH", - "outputId": "03ebe18a-3f6f-49f5-9943-e753f876e038" + "outputId": "d156f24c-6279-40b4-fd9c-76ca9d2037f6" }, - "execution_count": 7, + "execution_count": 163, "outputs": [ { "output_type": "stream", @@ -273,16 +273,16 @@ { "cell_type": "code", "source": [ - "print(df_grouped.columns)" + "print(dfread_grouped.columns)" ], "metadata": { "id": "y9YU2bOl_Cf6", - "outputId": "dc40d8f7-b2b4-40db-e1d9-2c3fdae7f6ef", + "outputId": "c76d30f2-c40c-43c9-97be-7efe97d27a0f", "colab": { "base_uri": "https://localhost:8080/" } }, - "execution_count": 8, + "execution_count": 164, "outputs": [ { "output_type": "stream", @@ -302,51 +302,122 @@ { "cell_type": "code", "source": [ - "# Asegúrate de que 'Region' sea el índice del DataFrame\n", - "df_grouped.set_index('Region', inplace=True)\n", - "\n", "# Elimina la columna 'Total'\n", - "df_groupedGraf = df_grouped.drop(columns=['Total'])\n", + "df_groupedGraf = dfread_grouped.drop(columns=['Total'])\n", + "df_groupedGraf.set_index('Region', inplace=True)" + ], + "metadata": { + "id": "CV7jvrdZ-uZT" + }, + "execution_count": 178, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "print(df_groupedGraf.columns)" + ], + "metadata": { + "id": "aOlLupUN-veI", + "outputId": "760ab5f8-ad09-4ed8-bade-2d70e626da6f", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 180, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Index(['1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988',\n", + " '1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',\n", + " '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006',\n", + " '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',\n", + " '2016', '2017', '2018', '2019', '2020', '2021'],\n", + " dtype='object')\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ "\n", "# Convierte las columnas a un tipo numérico y maneja los NaNs\n", "df_groupedGraf = df_groupedGraf.apply(pd.to_numeric, errors='coerce')\n", "df_groupedGraf = df_groupedGraf.replace(np.nan, 0)\n", "\n", "# Transpone el DataFrame para que los años sean las filas y las regiones sean las columnas\n", - "df_groupedGraf = df_groupedGraf.transpose()\n", - "\n", + "df_groupedGraf = df_groupedGraf.transpose()" + ], + "metadata": { + "id": "mKuAxW4R9sQB" + }, + "execution_count": 181, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "print(df_groupedGraf.columns)" + ], + "metadata": { + "id": "PD_9dnmbDWuD", + "outputId": "2113b511-38a3-4fcd-c4f4-7039b20a22d5", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 182, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Index(['Africa', 'Asia & Oceania', 'Central & South America', 'Eurasia',\n", + " 'Europe', 'Middle East', 'North America'],\n", + " dtype='object', name='Region')\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ "# Crea el gráfico\n", - "plt.figure(figsize=(15, 10))\n", + "plt.figure(figsize=(10, 6))\n", "for region in df_groupedGraf.columns:\n", " plt.plot(df_groupedGraf.index, df_groupedGraf[region], label=region)\n", "\n", + "plt.title('Datos por Región desde 1980 hasta 2020')\n", "plt.xlabel('Año')\n", "plt.ylabel('Valor')\n", - "plt.title('Valor por año por Contiente')\n", "plt.legend()\n", "\n", + "\n", "# Rota las etiquetas del eje x para evitar la superposición\n", "plt.xticks(rotation=45)\n", "\n", "plt.show()" ], "metadata": { + "id": "fHn2FqgZ9SUS", + "outputId": "c6ffc741-a545-43e1-89a5-7a8d76a395a8", "colab": { "base_uri": "https://localhost:8080/", - "height": 574 - }, - "id": "UAOFyFDLLMo-", - "outputId": "61cf55b1-ea7d-4c6a-eace-a62bf8beb53b" + "height": 502 + } }, - "execution_count": 9, + "execution_count": 183, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ - "
" + "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOcAAANsCAYAAAAQsswkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZhO9eP/8ec9Y2aMZcZuyL4nVJaERCVDloikVGgv6iMtUilLi4/2UtqEFmnVJmRJi5TShxAqWSpE9rGOmfv3x/zc3ybbEM4Yz8d13Vdned/nvO7bjCuv633OCYXD4TCSJEmSJEmSjrqooANIkiRJkiRJxyvLOUmSJEmSJCkglnOSJEmSJElSQCznJEmSJEmSpIBYzkmSJEmSJEkBsZyTJEmSJEmSAmI5J0mSJEmSJAXEck6SJEmSJEkKiOWcJEmSJEmSFBDLOUmSlKMtXbqUUCjEyJEjg46SLXXo0IHExEQGDRrE77//TmJiYtCRjhv+bEqSJLCckyRJ2Ujbtm3JkycPmzdv3ueYLl26EBsby9q1a49ispxp/vz5TJ8+nXvuuYeXXnqJMmXK0L1796BjHTFjx46lZcuWFClShNjYWEqWLEmnTp2YOnXqET3v6NGjefzxx4/oOfbnmWeesQCUJCkbC4XD4XDQISRJkgDeeOMNOnfuzKhRo7j88sv32L9161aKFSvG2WefzQcffJClYy5dupTy5cszYsQIunXrdpgTH9u2b9/O2rVrOeGEE9i1axdr1qyhRIkSQcc67MLhMFdccQUjR47k1FNPpWPHjiQlJbFy5UrGjh3LrFmzmD59Og0bNjwi52/dujXz5s1j6dKle+TasWMHMTExREdHH5FzA9SoUYMiRYowbdq0I3YOSZJ06HIFHUCSJGm3tm3bkj9/fkaPHr3Xcu79999ny5YtdOnSJYB0GbZs2ULevHkDOz9klJR58uT518fJnTs3J5xwAgC5cuU6Zou59PR0du7cSe7cufe6/5FHHmHkyJH06tWLRx99lFAoFNl311138corr5Ar19H/3+JQKLTPzJIk6fjhZa2SJCnbiI+P54ILLmDKlCmsXr16j/2jR48mf/78tG3blnXr1nHrrbdSs2ZN8uXLR0JCAi1btmTOnDlZOtfUqVNp3LgxefPmpUCBApx//vksWLAg05j+/fsTCoX48ccfueSSSyhYsCBnnHHGPo85cuRIQqEQn3/+Oddeey2FCxcmISGByy+/nPXr1+8x/plnnuGkk04iLi6OkiVL0qNHDzZs2JBpTNOmTalRowazZs3izDPPJE+ePNx55537zPDDDz/QrVs3KlSoQO7cuUlKSuKKK67Y4zLg3Z/tl19+oVu3bhQoUIDExES6d+/O1q1bM43dtWsXgwYNomLFisTFxVGuXDnuvPNOduzYsc8cu3Xr1o18+fLx66+/kpycTN68eSlZsiQDBw7knxdwbNmyhVtuuYXSpUsTFxdH1apVefjhh/cYFwqF6NmzJ6+99lrk+5swYcJez79t2zYefPBBqlWrxsMPP5ypmNvtsssu47TTTous//rrr1x44YUUKlSIPHnycPrppzNu3LhM75k2bRqhUIg333yT+++/n1KlSpE7d27OOeccfvnll8i4pk2bMm7cOJYtW0YoFCIUClGuXDlg3/ecW7hwIR07dqRQoULkzp2bunXr7jFTdPfP2vTp0+nduzdFixYlb968tG/fnjVr1kTGlStXjvnz5/PZZ59Fzt+0adPI/g0bNtCrV6/Id16pUiX++9//kp6evtfvU5IkHX7OnJMkSdlKly5dGDVqFG+++SY9e/aMbF+3bh0TJ07k4osvJj4+nvnz5/Pee+9x4YUXUr58ef7880+ee+45mjRpwo8//kjJkiX3eY7JkyfTsmVLKlSoQP/+/dm2bRtPPfUUjRo14vvvv4+UJ7tdeOGFVK5cmQceeGCPomhvevbsSYECBejfvz+LFi1i2LBhLFu2LFLoQEY5NmDAAJo1a8b1118fGfftt98yffp0YmJiIsdbu3YtLVu2pHPnzlx66aUUL158n+eeNGkSv/76K927dycpKYn58+fz/PPPM3/+fL7++us9yqlOnTpRvnx5HnzwQb7//ntefPFFihUrxn//+9/ImKuuuopRo0bRsWNHbrnlFr755hsefPBBFixYwNixYw/4faSlpdGiRQtOP/10hgwZwoQJE7j33nvZtWsXAwcOBDIu8Wzbti2ffvopV155JaeccgoTJ07ktttu448//uCxxx7LdMypU6dGfkaKFCmyx5/Zbl9++SXr1q2jV69eWbp09M8//6Rhw4Zs3bqVm266icKFCzNq1Cjatm3L22+/Tfv27TONHzx4MFFRUdx6661s3LiRIUOG0KVLF7755hsgY2bexo0b+f333yOfIV++fPs8//z582nUqBEnnHACd9xxB3nz5uXNN9+kXbt2vPPOO3uc/8Ybb6RgwYLce++9LF26lMcff5yePXvyxhtvAPD4449z4403ki9fPu666y6AyM/P1q1badKkCX/88QfXXnstZcqU4auvvqJv376sXLky0PvkSZJ0XAlLkiRlI7t27QqXKFEi3KBBg0zbn3322TAQnjhxYjgcDoe3b98eTktLyzRmyZIl4bi4uPDAgQMzbQPCI0aMiGw75ZRTwsWKFQuvXbs2sm3OnDnhqKio8OWXXx7Zdu+994aB8MUXX5yl7CNGjAgD4Tp16oR37twZ2T5kyJAwEH7//ffD4XA4vHr16nBsbGy4efPmmT7D0KFDw0D4pZdeimxr0qRJGAg/++yzWcqwdevWPba9/vrrYSD8+eef7/HZrrjiikxj27dvHy5cuHBkffbs2WEgfNVVV2Uad+utt4aB8NSpU/ebp2vXrmEgfOONN0a2paenh1u1ahWOjY0Nr1mzJhwOh8PvvfdeGAjfd999md7fsWPHcCgUCv/yyy+RbUA4KioqPH/+/P2eOxwOh5944okwEB47duwBx4bD4XCvXr3CQPiLL76IbNu8eXO4fPny4XLlykX+vD799NMwED7xxBPDO3bs2ON8c+fOjWxr1apVuGzZsnuca28/m+ecc064Zs2a4e3bt0e2paenhxs2bBiuXLlyZNvun7VmzZqF09PTI9tvvvnmcHR0dHjDhg2RbSeddFK4SZMme5x/0KBB4bx584Z/+umnTNvvuOOOcHR0dHj58uX7+aYkSdLh4mWtkiQpW4mOjqZz587MmDEj0w30R48eTfHixTnnnHMAiIuLIyoq439l0tLSWLt2Lfny5aNq1ap8//33+zz+ypUrmT17Nt26daNQoUKR7bVq1eLcc8/l448/3uM911133UF9hmuuuSbTzLfrr7+eXLlyRY49efJkdu7cSa9evSKfAeDqq68mISFhj0so4+LisvwU1fj4+Mjy9u3b+euvvzj99NMB9vq9/POzNW7cmLVr17Jp0yaASObevXtnGnfLLbcA7JF1X/4+C3L3Zak7d+5k8uTJkfNER0dz00037XGecDjM+PHjM21v0qQJ1atXP+B5d3+O/PnzZynnxx9/zGmnnZbp8uV8+fJxzTXXsHTpUn788cdM47t3705sbGxkvXHjxkDGpbEHa926dUydOpVOnTqxefNm/vrrL/766y/Wrl1LcnIyP//8M3/88Uem91xzzTWZZkM2btyYtLQ0li1bdsDzvfXWWzRu3JiCBQtGzvXXX3/RrFkz0tLS+Pzzzw/6M0iSpINnOSdJkrKd3Q98GD16NAC///47X3zxBZ07d45cmpiens5jjz1G5cqViYuLo0iRIhQtWpQffviBjRs37vPYu0uLqlWr7rHvxBNP5K+//mLLli2ZtpcvX/6g8leuXDnTer58+ShRokSkbNxXhtjYWCpUqLBHsXLCCSdkKoD2Z926dfznP/+hePHixMfHU7Ro0Uj+vX0vZcqUybResGBBgMg98pYtW0ZUVBSVKlXKNC4pKYkCBQpkqQSKioqiQoUKmbZVqVIFINN3UrJkyT1KtBNPPDGy/++y+meSkJAAwObNm7M0ftmyZfv82dhbjgN9fwfjl19+IRwO069fP4oWLZrpde+99wLscS/Gf3P+n3/+mQkTJuxxrmbNmu31XJIk6cjwnnOSJCnbqVOnDtWqVeP111/nzjvv5PXXXyccDmd6SusDDzxAv379uOKKKxg0aBCFChUiKiqKXr16Hfab2f99NloQDub8nTp14quvvuK2227jlFNOIV++fKSnp9OiRYu9fi/7ug9beC8PYchOsvqdVKtWDYC5c+fSrl27w54jq99fVuz+87n11ltJTk7e65h/lqT/5vzp6emce+653H777Xvdv7tAlSRJR5blnCRJypa6dOlCv379+OGHHxg9ejSVK1emXr16kf1vv/02Z511FsOHD8/0vg0bNlCkSJF9Hrds2bIALFq0aI99CxcupEiRIuTNm/dfZf/5558566yzIuspKSmsXLmS8847b48Mf59RtnPnTpYsWRKZuXSw1q9fz5QpUxgwYAD33HNPpjyHqmzZsqSnp/Pzzz9HZo9BxoMTNmzYEPks+5Oens6vv/6aqez56aefACIPcihbtiyTJ09m8+bNmWbPLVy4MLL/UJxxxhkULFgwUvQe6KEQZcuW3efPxqHmyGqxuftnISYm5pB/Bg7m/BUrViQlJeWwnkuSJB08L2uVJEnZ0u5Zcvfccw+zZ8/ONGsOMmYM/XN20FtvvbXHPbn+qUSJEpxyyimMGjWKDRs2RLbPmzePTz75JFKg/RvPP/88qampkfVhw4axa9cuWrZsCUCzZs2IjY3lySefzPQZhg8fzsaNG2nVqtUhnXd38fTP7+XfPHVz9/fxz2M8+uijAFnOOnTo0MhyOBxm6NChxMTERO4heN5555GWlpZpHMBjjz1GKBSKfHcHK0+ePPTp04cFCxbQp0+fvc4oe/XVV5k5c2Ykx8yZM5kxY0Zk/5YtW3j++ecpV65clu5z90958+bd76XWuxUrVoymTZvy3HPPsXLlyj32r1mz5qDPvfv8f/9Z361Tp07MmDGDiRMn7rFvw4YN7Nq165DOJ0mSDo4z5yRJUrZUvnx5GjZsyPvvvw+wRznXunVrBg4cSPfu3WnYsCFz587ltdde2+PeZnvz0EMP0bJlSxo0aMCVV17Jtm3beOqpp0hMTKR///7/OvvOnTs555xz6NSpE4sWLeKZZ57hjDPOoG3btgAULVqUvn37MmDAAFq0aEHbtm0j4+rVq8ell156SOdNSEjgzDPPZMiQIaSmpnLCCSfwySefsGTJkkP+LCeffDJdu3bl+eefZ8OGDTRp0oSZM2cyatQo2rVrl2mG4L7kzp2bCRMm0LVrV+rXr8/48eMZN24cd955J0WLFgWgTZs2nHXWWdx1110sXbqUk08+mU8++YT333+fXr16UbFixUP+DLfddhvz58/nkUce4dNPP6Vjx44kJSWxatUq3nvvPWbOnMlXX30FwB133MHrr79Oy5YtuemmmyhUqBCjRo1iyZIlvPPOO5ke4JFVderU4Y033qB3797Uq1ePfPny0aZNm72OffrppznjjDOoWbMmV199NRUqVODPP/9kxowZ/P7778yZM+eQzj9s2DDuu+8+KlWqRLFixTj77LO57bbb+OCDD2jdujXdunWjTp06bNmyhblz5/L222+zdOnS/c5ClSRJh0lAT4mVJEk6oKeffjoMhE877bQ99m3fvj18yy23hEuUKBGOj48PN2rUKDxjxoxwkyZNwk2aNImMW7JkSRgIjxgxItP7J0+eHG7UqFE4Pj4+nJCQEG7Tpk34xx9/zDTm3nvvDQPhNWvWZCnviBEjwkD4s88+C19zzTXhggULhvPlyxfu0qVLeO3atXuMHzp0aLhatWrhmJiYcPHixcPXX399eP369ZnGNGnSJHzSSSdl6fzhcDj8+++/h9u3bx8uUKBAODExMXzhhReGV6xYEQbC99577wE/2+7PsGTJksi21NTU8IABA8Lly5cPx8TEhEuXLh3u27dvePv27QfM07Vr13DevHnDixcvDjdv3jycJ0+ecPHixcP33ntvOC0tLdPYzZs3h2+++eZwyZIlwzExMeHKlSuHH3rooXB6enqmcUC4R48eWf5Odnv77bfDzZs3DxcqVCicK1eucIkSJcIXXXRReNq0aZnGLV68ONyxY8dwgQIFwrlz5w6fdtpp4Y8++ijTmE8//TQMhN96661M2/f285aSkhK+5JJLwgUKFAgD4bJly+5z7O7zX3755eGkpKRwTExM+IQTTgi3bt06/Pbbb0fG7P5z+vbbb/ea69NPP41sW7VqVbhVq1bh/Pnzh4FMvx+bN28O9+3bN1ypUqVwbGxsuEiRIuGGDRuGH3744fDOnTuz+M1KkqR/IxQOH8LdaiVJkrSHkSNH0r17d7799lvq1q0bdJxsoVu3brz99tukpKQEHUWSJClb8p5zkiRJkiRJUkAs5yRJkiRJkqSAWM5JkiRJkiRJAfGec5IkSZIkSVJAnDknSZIkSZIkBcRyTpIkSZIkSQpIrqAD5BTp6emsWLGC/PnzEwqFgo4jSZIkSZKkAIXDYTZv3kzJkiWJitr3/DjLucNkxYoVlC5dOugYkiRJkiRJykZ+++03SpUqtc/9lnOHSf78+YGMLzwhISHgNJIkSZIkSQrSpk2bKF26dKQz2hfLucNk96WsCQkJlnOSJEmSJEkCOODtz3wghCRJkiRJkhQQyzlJkiRJkiQpIJZzkiRJkiRJUkC859xRFA6H2bVrF2lpaUFHkXK8mJgYoqOjg44hSZIkSdJ+Wc4dJTt37mTlypVs3bo16CjScSEUClGqVCny5csXdBRJkiRJkvbJcu4oSE9PZ8mSJURHR1OyZEliY2MP+KQOSYcuHA6zZs0afv/9dypXruwMOkmSJElStmU5dxTs3LmT9PR0SpcuTZ48eYKOIx0XihYtytKlS0lNTbWckyRJkiRlWz4Q4iiKivLrlo4WZ6dKkiRJko4FtkWSJEmSJElSQCznJEmSJEmSpIBYzulfCYfDXHPNNRQqVIhQKMTs2bP3OTYUCvHee+8dtWySJEmSJEnZneWcsmTGjBlER0fTqlWrTNsnTJjAyJEj+eijj1i5ciU1atTY5zFWrlxJy5Ytj3RUSZIkSZKkY4blnLJk+PDh3HjjjXz++eesWLEisn3x4sWUKFGChg0bkpSURK5cez4AeOfOnQAkJSURFxd31DJLkiRJkiRld5ZzAQmHw2zdueuov8Lh8EFnTUlJ4Y033uD666+nVatWjBw5EoBu3bpx4403snz5ckKhEOXKlQOgadOm9OzZk169elGkSBGSk5OBPS9r/f3337n44ospVKgQefPmpW7dunzzzTdARul3/vnnU7x4cfLly0e9evWYPHnyv/rOJUmSJEmSsps9pznpqNiWmkb1eyYe9fP+ODCZPLEH98f+5ptvUq1aNapWrcqll15Kr1696Nu3L0888QQVK1bk+eef59tvvyU6OjrynlGjRnH99dczffr0vR4zJSWFJk2acMIJJ/DBBx+QlJTE999/T3p6emT/eeedx/33309cXBwvv/wybdq0YdGiRZQpU+bQvwBJkiRJkqRsxHJOBzR8+HAuvfRSAFq0aMHGjRv57LPPaNq0Kfnz5yc6OpqkpKRM76lcuTJDhgzZ5zFHjx7NmjVr+PbbbylUqBAAlSpViuw/+eSTOfnkkyPrgwYNYuzYsXzwwQf07NnzcH48SZIkSZKkwFjOBSQ+JpofByYHct6DsWjRImbOnMnYsWMByJUrFxdddBHDhw+nadOm+3xfnTp19nvc2bNnc+qpp0aKuX9KSUmhf//+jBs3jpUrV7Jr1y62bdvG8uXLDyq/JEmSJElSdmY5F5BQKHTQl5cGYfjw4ezatYuSJUtGtoXDYeLi4hg6dOg+35c3b979Hjc+Pn6/+2+99VYmTZrEww8/TKVKlYiPj6djx46Rh0tIkiRJkiTlBNm/HVJgdu3axcsvv8wjjzxC8+bNM+1r164dr7/++iEfu1atWrz44ousW7dur7Pnpk+fTrdu3Wjfvj2QMZNu6dKlh3w+SZIkSZKk7MintWqfPvroI9avX8+VV15JjRo1Mr06dOjA8OHDD/nYF198MUlJSbRr147p06fz66+/8s477zBjxgwg45517777LrNnz2bOnDlccsklkYdFSJIkSZIk5RSWc9qn4cOH06xZMxITE/fY16FDB7777js2bdp0SMeOjY3lk08+oVixYpx33nnUrFmTwYMHR574+uijj1KwYEEaNmxImzZtSE5Opnbt2v/q80iSJEmSJGU3oXA4HA46RE6wadMmEhMT2bhxIwkJCZn2bd++nSVLllC+fHly584dUELp+OLvnSRJkiQpSPvriv7OmXOSJEmSJElSQCznJEmSJEmSpIBYzkmSJEmSJEkBsZyTJEmSJEmSAmI5J0mSJEmSJAXEck6SJEmSJEkKiOWcJEmSJEmSFBDLOUmSJEmSJCkglnOSJEmSJEkK1vQnYf2yoFMEwnJOR9TSpUsJhULMnj076CjHjKZNm9KrV6+gY0iSJEmSdHT8Og0m9YNhDWHbhqDTHHWWc8qSGTNmEB0dTatWrQ7qfaVLl2blypXUqFHjX50/PT2dPn36ULJkSeLj46lVqxbvv/9+lt//0Ucf0aRJE/Lnz0+ePHmoV68eI0eO/FeZjpR3332XQYMGBR1DkiRJkqQjLz0NPrk7Y/mULhBfINA4QbCcU5YMHz6cG2+8kc8//5wVK1Zk+X3R0dEkJSWRK1euf3X+V199lccee4xHH32UBQsW8Oijj5I3b94svfepp57i/PPPp1GjRnzzzTf88MMPdO7cmeuuu45bb731X+U6EgoVKkT+/PmDjiFJkiRJ0pH3wxuwai7EJUKTPkGnCYTlXFDCYdi55ei/wuGDjpqSksIbb7zB9ddfT6tWrfaYcbZ+/Xq6dOlC0aJFiY+Pp3LlyowYMQLY87LWtLQ0rrzySsqXL098fDxVq1bliSeeOGCGqKgoihYtSufOnSlXrhzNmjWjWbNmB3zfb7/9xi233EKvXr144IEHqF69OpUqVeKWW27hoYce4pFHHuGbb76JjJ8/fz6tW7cmISGB/Pnz07hxYxYvXhzZ/+KLL3LiiSeSO3duqlWrxjPPPJPpfH369KFKlSrkyZOHChUq0K9fP1JTUyP7+/fvzymnnMIrr7xCuXLlSExMpHPnzmzevDky5p+Xtb7yyivUrVuX/Pnzk5SUxCWXXMLq1asP+NklSZIkScrWdm6FKf//yrEzb4G8hYPNE5B/N51Jhy51KzxQ8uif984VEJu1GWe7vfnmm1SrVo2qVaty6aWX0qtXL/r27UsoFAKgX79+/Pjjj4wfP54iRYrwyy+/sG3btr0eKz09nVKlSvHWW29RuHBhvvrqK6655hpKlChBp06d9pnhnHPOYePGjfTr1++gLvl8++23SU1N3esMuWuvvZY777yT119/nfr16/PHH39w5pln0rRpU6ZOnUpCQgLTp09n165dALz22mvcc889DB06lFNPPZX//e9/XH311eTNm5euXbsCkD9/fkaOHEnJkiWZO3cuV199Nfnz5+f222+PnHfx4sW89957fPTRR6xfv55OnToxePBg7r///r1+htTUVAYNGkTVqlVZvXo1vXv3plu3bnz88cdZ/h4kSZIkScp2ZjwNm1dAgTJw2rVBpwmM5ZwOaPjw4Vx66aUAtGjRgo0bN/LZZ5/RtGlTAJYvX86pp55K3bp1AShXrtw+jxUTE8OAAQMi6+XLl2fGjBm8+eab+yzntm7dyrnnnssll1zCpEmT2LZtGw899FCkHExISOCll16iY8eOe7z3p59+IjExkRIlSuyxLzY2lgoVKvDTTz8B8PTTT5OYmMiYMWOIiYkBoEqVKpHx9957L4888ggXXHBBJPuPP/7Ic889Fynn7r777sj4cuXKceuttzJmzJhM5Vx6ejojR46MXLp62WWXMWXKlH2Wc1dccUVkuUKFCjz55JPUq1ePlJQU8uXLt9f3SJIkSZKUrW3+E758LGP5nHshJneweQJkOReUmDwZs9iCOO9BWLRoETNnzmTs2LEA5MqVi4suuojhw4dHyrnrr7+eDh068P3339O8eXPatWtHw4YN93nMp59+mpdeeonly5ezbds2du7cySmnnLLP8SNHjmTDhg08/fTTpKSk0LRpU7p3786LL77I77//TkpKCo0aNTqoz7U3s2fPpnHjxpFi7u+2bNnC4sWLufLKK7n66qsj23ft2kViYmJk/Y033uDJJ59k8eLFpKSksGvXLhISEjIdq1y5cpnuKVeiRIn9XqY6a9Ys+vfvz5w5c1i/fj3p6elARilavXr1Q/68kiRJkiQFZtoDkLoFTqgLNToEnSZQlnNBCYUO+vLSIAwfPpxdu3ZRsuT/XYIbDoeJi4tj6NChJCYm0rJlS5YtW8bHH3/MpEmTOOecc+jRowcPP/zwHscbM2YMt956K4888ggNGjQgf/78PPTQQ5nu+/ZPP/zwAyeddBIxMTEULFiQSZMm0bhxY9q3b0/lypVp0aLFXmfGQcbMt40bN7JixYpMnwFg586dLF68mLPOOguA+Pj4fWZISUkB4IUXXqB+/fqZ9kVHRwMZT7Tt0qULAwYMIDk5OTIL75FHHsk0/p/lXygUihRu/7RlyxaSk5NJTk7mtddeo2jRoixfvpzk5GR27ty5z7ySJEmSJGVbf/4I37+csZx8f0ZHchzzgRDap127dvHyyy/zyCOPMHv27Mhrzpw5lCxZktdffz0ytmjRonTt2pVXX32Vxx9/nOeff36vx5w+fToNGzbkhhtu4NRTT6VSpUqZHriwNyeccAKzZ8+OPDShWLFiTJ48mblz5/LYY49x33337fO9HTp0ICYmZo+CDODZZ59ly5YtXHzxxQDUqlWLL774ItMDHHYrXrw4JUuW5Ndff6VSpUqZXuXLlwfgq6++omzZstx1113UrVuXypUrs2zZsv1+tgNZuHAha9euZfDgwTRu3Jhq1ar5MAhJkiRJ0rFtUj8Ip8OJbaHM6UGnCZzlnPZp9wMLrrzySmrUqJHp1aFDB4YPHw7APffcw/vvv88vv/zC/Pnz+eijjzjxxBP3eszKlSvz3XffMXHiRH766Sf69evHt99+u98cV155JWlpabRt25avvvqKRYsWMXHiRFJSUsiTJ08kx96UKVOGIUOG8Pjjj3PXXXexcOFCFi9ezKOPPsrtt9/OLbfcEpkJ17NnTzZt2kTnzp357rvv+Pnnn3nllVdYtGgRAAMGDODBBx/kySef5KeffmLu3LmMGDGCRx99NPLZli9fzpgxY1i8eDFPPvlk5HLgQ1WmTBliY2N56qmn+PXXX/nggw8O6oEYkiRJkiRlK79MgV8mQ1QMNOsfdJpswXJO+zR8+HCaNWuW6Z5qu3Xo0IHvvvuOH374gdjYWPr27UutWrU488wziY6OZsyYMXs95rXXXssFF1zARRddRP369Vm7di033HDDfnOULFmSmTNnUqRIES644AJOPfVUXn75ZV5++WXGjRvH888/HynI9qZXr16MHTuWL774grp161KjRg1Gjx7NsGHDMl16W7hwYaZOnUpKSgpNmjShTp06vPDCC5HLUK+66ipefPFFRowYQc2aNWnSpAkjR46MzJxr27YtN998Mz179uSUU07hq6++ol+/fgf8nvenaNGijBw5krfeeovq1aszePDgvV4uLEmSJElStpeeBp/8/38nn3Y1FK4YbJ5sIhQOh8NBh8gJNm3aRGJiIhs3btzjAQDbt29nyZIllC9fnty5j9+nj0hHk793kiRJkpTNfP8KfNATcifCTbMhT6GgEx1R++uK/s6Zc5IkSZIkSTqydqTA1P9/z/gzb8/xxdzBsJyTJEmSJEnSkTVjKKSsgoLlMi5pVYTlnCRJkiRJko6cTSth+hMZy836Q664QONkN5ZzkiRJkiRJOnI+vR9St0Kp06B6u6DTZDuWc5IkSZIkSToyVs2D/72asZx8P4RCwebJhiznJEmSJEmSdGRM6geE4aT2UPq0oNNkS4GWc8OGDaNWrVokJCSQkJBAgwYNGD9+fGT/9u3b6dGjB4ULFyZfvnx06NCBP//8M9Mxli9fTqtWrciTJw/FihXjtttuY9euXZnGTJs2jdq1axMXF0elSpUYOXLkHlmefvppypUrR+7cualfvz4zZ848Ip9ZkiRJkiTpuPDzZFg8FaJj4Zx7g06TbQVazpUqVYrBgwcza9YsvvvuO84++2zOP/985s+fD8DNN9/Mhx9+yFtvvcVnn33GihUruOCCCyLvT0tLo1WrVuzcuZOvvvqKUaNGMXLkSO65557ImCVLltCqVSvOOussZs+eTa9evbjqqquYOHFiZMwbb7xB7969uffee/n+++85+eSTSU5OZvXq1Ufvy5AkSZIkScop0nbBJ3dnLJ92DRQqH2yebCwUDofDQYf4u0KFCvHQQw/RsWNHihYtyujRo+nYsSMACxcu5MQTT2TGjBmcfvrpjB8/ntatW7NixQqKFy8OwLPPPkufPn1Ys2YNsbGx9OnTh3HjxjFv3rzIOTp37syGDRuYMGECAPXr16devXoMHToUgPT0dEqXLs2NN97IHXfckaXcmzZtIjExkY0bN5KQkJBp3/bt21myZAnly5cnd+7c//o7knRg/t5JkiRJUoBmjYQP/wPxBeGm/2X89zizv67o77LNPefS0tIYM2YMW7ZsoUGDBsyaNYvU1FSaNWsWGVOtWjXKlCnDjBkzAJgxYwY1a9aMFHMAycnJbNq0KTL7bsaMGZmOsXvM7mPs3LmTWbNmZRoTFRVFs2bNImP2ZseOHWzatCnTS9lLuXLlePzxx4OOcUSEQiHee++9oGP8a926daNdu3ZBx5AkSZIkHU47NsPU+zOWm/Q5Lou5gxF4OTd37lzy5ctHXFwc1113HWPHjqV69eqsWrWK2NhYChQokGl88eLFWbVqFQCrVq3KVMzt3r973/7GbNq0iW3btvHXX3+Rlpa21zG7j7E3Dz74IImJiZFX6dKlD+nzHwtWrVrFjTfeSIUKFYiLi6N06dK0adOGKVOmHNbzNG3alF69eh3WYx7IL7/8QnJyMgkJCRQqVIiWLVuyZs2aA74vLS2NwYMHU61aNeLj4ylUqBD169fnxRdfPKz5+vfvzymnnHJYj/n6668THR1Njx49DutxD8UTTzyx13tASpIkSZKOYdOfhC2roVAFqHtl0GmyvVxBB6hatSqzZ89m48aNvP3223Tt2pXPPvss6FgH1LdvX3r37h1Z37RpU44s6JYuXUqjRo0oUKAADz30EDVr1iQ1NZWJEyfSo0cPFi5ceFTzhMNh0tLSyJXr8PzoXnPNNWzcuJHPPvuMPHnyMGPGDLJypfeAAQN47rnnGDp0KHXr1mXTpk189913rF+//rDkOpKGDx/O7bffznPPPccjjzwSyCWfaWlphEIhEhMTj/q5JUmSJElH0MY/4KunMpabDYBcscHmOQYEPnMuNjaWSpUqUadOHR588EFOPvlknnjiCZKSkti5cycbNmzINP7PP/8kKSkJgKSkpD2e3rp7/UBjEhISiI+Pp0iRIkRHR+91zO5j7E1cXFzkKbO7XwcjHA6zNXXrUX8d7C0Gb7jhBkKhEDNnzqRDhw5UqVKFk046id69e/P1119Hxm3YsIGrrrqKokWLkpCQwNlnn82cOXMi+3fPAHvllVcoV64ciYmJdO7cmc2bNwMZlzd+9tlnPPHEE4RCIUKhEEuXLmXatGmEQiHGjx9PnTp1iIuL48svv2Tx4sWcf/75FC9enHz58lGvXj0mT558UJ8NMi5hTk5O5tRTT6Vq1ap069aNYsWKHfB9H3zwATfccAMXXngh5cuX5+STT+bKK6/k1ltvjYzZsWMHN910E8WKFSN37tycccYZfPvtt5H9I0eO3GNm6HvvvUcoFIrsHzBgAHPmzIl8J3+fZfbXX3/Rvn178uTJQ+XKlfnggw8OmHvJkiV89dVX3HHHHVSpUoV333030/7dmT766COqVq1Knjx56NixI1u3bmXUqFGUK1eOggULctNNN5GWlpbps956662ccMIJ5M2bl/r16zNt2rQ9jvvBBx9QvXp14uLiWL58+R6XtaanpzNkyBAqVapEXFwcZcqU4f7774/s79OnD1WqVCFPnjxUqFCBfv36kZqaesDPLUmSJEk6Sj69H3ZtgzIN4MQ2Qac5JgQ+c+6f0tPT2bFjB3Xq1CEmJoYpU6bQoUMHABYtWsTy5ctp0KABAA0aNOD+++9n9erVkUJl0qRJJCQkUL169ciYjz/+ONM5Jk2aFDlGbGwsderUYcqUKZGSID09nSlTptCzZ88j9jm37dpG/dH1j9jx9+WbS74hT0yeLI1dt24dEyZM4P777ydv3rx77P97sXThhRcSHx/P+PHjSUxM5LnnnuOcc87hp59+olChQgAsXryY9957j48++oj169fTqVMnBg8ezP33388TTzzBTz/9RI0aNRg4cCAARYsWZenSpQDccccdPPzww1SoUIGCBQvy22+/cd5553H//fcTFxfHyy+/TJs2bVi0aBFlypTJ8vdx/vnn069fPzp27Ejt2rWz/L6kpCSmTp3KDTfcQNGiRfc65vbbb+edd95h1KhRlC1bliFDhpCcnMwvv/wS+U7256KLLmLevHlMmDAhUjz+fabZgAEDGDJkCA899BBPPfUUXbp0YdmyZfs99ogRI2jVqhWJiYlceumlDB8+nEsuuSTTmK1bt/Lkk08yZswYNm/ezAUXXED79u0pUKAAH3/8Mb/++isdOnSgUaNGXHTRRQD07NmTH3/8kTFjxlCyZEnGjh1LixYtmDt3LpUrV44c97///S8vvvgihQsX3msJ2rdvX1544QUee+wxzjjjDFauXJlpdmb+/PkZOXIkJUuWZO7cuVx99dXkz5+f22+//YDfpyRJkiTpCFv5A8wenbHc/H74/5NPtH+Bzpzr27cvn3/+OUuXLmXu3Ln07duXadOm0aVLFxITE7nyyivp3bs3n376KbNmzaJ79+40aNCA008/HYDmzZtTvXp1LrvsMubMmcPEiRO5++676dGjB3FxcQBcd911/Prrr9x+++0sXLiQZ555hjfffJObb745kqN379688MILjBo1igULFnD99dezZcsWunfvHsj3kl388ssvhMNhqlWrtt9xX375JTNnzuStt96ibt26VK5cmYcffpgCBQrw9ttvR8alp6czcuRIatSoQePGjbnssssi961LTEwkNjaWPHnykJSURFJSEtHR0ZH3Dhw4kHPPPZeKFStSqFAhTj75ZK699lpq1KhB5cqVGTRoEBUrVszS7LHdpk6dyh133MHdd99N69at+eKLLyL73nnnHfLnz7/P9z766KOsWbOGpKQkatWqxXXXXcf48eMj+7ds2cKwYcN46KGHaNmyJdWrV+eFF14gPj6e4cOHZylffHw8+fLlI1euXJHvJD4+PrK/W7duXHzxxVSqVIkHHniAlJQUZs6cuc/j7f7+L730UiDjqcVffvklS5YsyTQuNTWVYcOGceqpp3LmmWfSsWNHvvzyS4YPH0716tVp3bo1Z511Fp9++ikAy5cvZ8SIEbz11ls0btyYihUrcuutt3LGGWcwYsSITMd95plnaNiwYWRW3t9t3ryZJ554giFDhtC1a1cqVqzIGWecwVVXXRUZc/fdd9OwYUPKlStHmzZtuPXWW3nzzTez9H1KkiRJko6gcBg+uQsIQ42OUKpO0ImOGYHOnFu9ejWXX345K1euJDExkVq1ajFx4kTOPfdcAB577DGioqLo0KEDO3bsIDk5mWeeeSby/ujoaD766COuv/56GjRoQN68eenatWtk5hVA+fLlGTduHDfffDNPPPEEpUqV4sUXXyQ5OTky5qKLLmLNmjXcc889rFq1ilNOOYUJEybs8ZCIwyk+VzzfXPLNETv+/s6bVVm9BHbOnDmkpKRQuHDhTNu3bdvG4sWLI+vlypXLVHiVKFGC1atXZ+kcdevWzbSekpJC//79GTduHCtXrmTXrl1s27aN5cuXZ+l4kDEbr0ePHtx6662cdNJJtGnThldeeYU2bdowd+5czjjjjH2+t3r16sybN49Zs2Yxffp0Pv/8c9q0aUO3bt148cUXWbx4MampqTRq1CjynpiYGE477TQWLFiQ5Yz7U6tWrchy3rx5SUhI2O/3OWnSJLZs2cJ5550HQJEiRTj33HN56aWXGDRoUGRcnjx5qFixYmS9ePHilCtXjnz58mXatvtcc+fOJS0tjSpVqmQ6344dOzL9TMTGxmbK/E8LFixgx44dnHPOOfsc88Ybb/Dkk0+yePFiUlJS2LVr10FfUi5JkiRJOgJ+/gSWfA7RcXDOPUGnOaYEWs4daAZR7ty5efrpp3n66af3OaZs2bJ7XLb6T02bNuV///vffsf07NnziF7G+k+hUCjLl5cGpXLlyoRCoQM+9CElJYUSJUpkusfYbn+/9DUmJibTvlAoRHp6epay/POy2ltvvZVJkybx8MMPU6lSJeLj4+nYsSM7d+7M0vEAfvjhh8gMypYtWzJ8+HAuvPBChg4dysiRIxkyZMh+3x8VFUW9evWoV68evXr14tVXX+Wyyy7jrrvuytL5o6Ki9ihAD+b+aQf7fQ4fPpx169Zlmn2Xnp7ODz/8wIABA4iKitrncfd3rpSUFKKjo5k1a1am2Y5ApkIvPj4+cj+9vfl7rr2ZMWMGXbp0YcCAASQnJ5OYmMiYMWN45JFH9vs+SZIkSdIRlrYLPumXsXz6dVCwbLB5jjHZ7p5zyj4KFSpEcnIyTz/9NDfddNMeBdmGDRsoUKAAtWvXZtWqVeTKlYty5cod8vliY2MzPWRgf6ZPn063bt1o3749kFEQ7b4/XVadcMIJfP7551x88cUAdOjQgZSUFLp3706tWrW48MILD+p4u+9zuGXLFipWrEhsbCzTp0+nbNmMv5RSU1P59ttv6dWrF5BxT73NmzezZcuWyHc7e/bsTMc8mO9kf9auXcv777/PmDFjOOmkkyLb09LSOOOMM/jkk09o0aLFIR371FNPJS0tjdWrV9O4ceNDzli5cmXi4+OZMmVKpktZd/vqq68oW7ZspvJz2bJlh3w+SZIkSdJh8v0o+GsRxBeCM3oHneaYYzmn/Xr66adp1KgRp512GgMHDqRWrVrs2rWLSZMmMWzYMBYsWECzZs1o0KAB7dq1Y8iQIVSpUoUVK1Ywbtw42rdvv8clqftSrlw5vvnmG5YuXUq+fPn2+2CDypUr8+6779KmTRtCoRD9+vXL8iy83W6//XZuuOEGkpKSuOiii9i4cSMzZswgT548LFy4kOnTp+/z0taOHTvSqFEjGjZsSFJSEkuWLKFv375UqVKFatWqkStXLq6//npuu+02ChUqRJkyZRgyZAhbt27lyiuvBKB+/frkyZOHO++8k5tuuolvvvkm09NYd38nS5YsYfbs2ZQqVYr8+fNH7qd4MF555RUKFy5Mp06d9pi9dt555zF8+PBDLueqVKlCly5duPzyy3nkkUc49dRTWbNmDVOmTKFWrVq0atUqS8fJnTs3ffr04fbbbyc2NpZGjRqxZs0a5s+fz5VXXknlypVZvnw5Y8aMoV69eowbN46xY8ceUmZJkiRJ0mGyfRN8+kDGctO+EF8g0DjHokAfCKHsr0KFCnz//fecddZZ3HLLLdSoUYNzzz2XKVOmMGzYMCDjEsePP/6YM888k+7du1OlShU6d+7MsmXLDuq+fbfeeivR0dFUr16dokWL7vf+cY8++igFCxakYcOGtGnThuTk5IN62irAtddeyxtvvMGHH35InTp1aNu2LTt37mThwoVcdtlltGvXjp9//nmv701OTubDDz+kTZs2VKlSha5du1KtWjU++eQTcuXK6LwHDx5Mhw4duOyyy6hduza//PILEydOpGDBgkDGzMRXX32Vjz/+mJo1a/L666/Tv3//TOfp0KEDLVq04KyzzqJo0aK8/vrrB/UZd3vppZdo3779Xi8r7dChAx988AF//fXXIR0bMp4Ce/nll3PLLbdQtWpV2rVrx7fffntQT84F6NevH7fccgv33HMPJ554IhdddFHk3nZt27bl5ptvpmfPnpxyyil89dVX9OvX75AzS5IkSZIOg+mPw9a/oHAlqHt8P1jzUIXCWb3rv/Zr06ZNJCYmsnHjxj1uUL99+3aWLFlC+fLlyZ07d0AJpeOLv3eSJEmSdIRt/B2eqgO7tkPn0VAta1dOHS/21xX9nTPnJEmSJEmSdPCmDMoo5sqeAVXPCzrNMctyTpIkSZIkSQdnxf/ghzEZy80HwV5uo6SssZyTJEmSJElS1oXD8Mn/vwd4rYvghIO7B7wys5yTJEmSJElS1i0aD0u/gFy54Wwf1PdvWc5JkiRJkiQpa9JSYdI9Gcun3wAFSgebJwewnJMkSZIkSVLWzBoJa3+GPEXgjJuDTpMjWM5JkiRJkiTpwLZvhGkPZiyf1RdyJwSbJ4ewnJMkSZIkSdKBffEobF0LRapA7W5Bp8kxLOckSZIkSZK0f+uXwdfDMpbPHQTRuYLNk4NYzumY1LRpU3r16hV0DEmSJEmSjg9TB0HaDih/JlRJDjpNjmI5p/3q1q0boVBoj1eLFi0CzfXuu+8yaNCgQDNIkiRJknRc+H0WzH0LCEHz+yAUCjpRjuIcRB1QixYtGDFiRKZtcXFxh3SscDhMWloauXL9ux+9QoUK/av3S5IkSZKkLAiH4ZO7M5ZPvhhKnBxsnhzImXMBCYfDpG/detRf4XD4oLPGxcWRlJSU6VWwYEGWLl1KKBRi9uzZkbEbNmwgFAoxbdo0AKZNm0YoFGL8+PHUqVOHuLg4vvzySxYvXsz5559P8eLFyZcvH/Xq1WPy5MmZzvvMM89QuXJlcufOTfHixenYsWNk3z8va33llVeoW7cu+fPnJykpiUsuuYTVq1cf9GeVJEmSJEl/s/AjWP4V5IqHs+8OOk2O5My5gIS3bWNR7TpH/bxVv59FKE+eo37eO+64g4cffpgKFSpQsGBBfvvtN8477zzuv/9+4uLiePnll2nTpg2LFi2iTJkyfPfdd9x000288sorNGzYkHXr1vHFF1/s8/ipqakMGjSIqlWrsnr1anr37k23bt34+OOPj+KnlCRJkiQpB1n+NYzvk7HcsCcknhBsnhzKck4H9NFHH5EvX75M2+68804uueSSLB9j4MCBnHvuuZH1QoUKcfLJ/zcVdtCgQYwdO5YPPviAnj17snz5cvLmzUvr1q3Jnz8/ZcuW5dRTT93n8a+44orIcoUKFXjyySepV68eKSkpe2SXJEmSJEn7sXMrTL0Pvn4GCEPBctDoP0GnyrEs5wISio+n6vezAjnvwTrrrLMYNmxYpm2FChVi06ZNWT5G3bp1M62npKTQv39/xo0bx8qVK9m1axfbtm1j+fLlAJx77rmULVuWChUq0KJFC1q0aEH79u3Js49Zf7NmzaJ///7MmTOH9evXk56eDsDy5cupXr36wXxcSZIkSZKOX8tmwPs9YN3ijPVTukDy/RCXP9hcOZjlXEBCoVAgl5ceirx581KpUqU9tqekpABkuo9damrqPo/xd7feeiuTJk3i4YcfplKlSsTHx9OxY0d27twJQP78+fn++++ZNm0an3zyCffccw/9+/fn22+/pUCBApmOtWXLFpKTk0lOTua1116jaNGiLF++nOTk5MjxJEmSJEnSfuzcClMHwdfDgDDkLwFtnoQqzYNOluP5QAgdsqJFiwKwcuXKyLa/Pxxif6ZPn063bt1o3749NWvWJCkpiaVLl2YakytXLpo1a8aQIUP44YcfWLp0KVOnTt3jWAsXLmTt2rUMHjyYxo0bU61aNR8GIUmSJElSVi2bAc82+r/LWE+5FG742mLuKHHmnA5ox44drFq1KtO2XLlyUaRIEU4//XQGDx5M+fLlWb16NXffnbUnt1SuXJl3332XNm3aEAqF6NevX+RSVMi4z92vv/7KmWeeScGCBfn4449JT0+natWqexyrTJkyxMbG8tRTT3Hdddcxb948Bg0a9O8+tCRJkiRJOd3OrTBlIHzzLBmz5UpC2yeh8rkHfKsOH2fO6YAmTJhAiRIlMr3OOOMMAF566SV27dpFnTp16NWrF/fdd1+Wjvnoo49SsGBBGjZsSJs2bUhOTqZ27dqR/QUKFODdd9/l7LPP5sQTT+TZZ5/l9ddf56STTtrjWEWLFmXkyJG89dZbVK9encGDB/Pwww8fng8vSZIkSVJOtOwrGNYQvvn/l7Geein0+NpiLgCh8N9vGKZDtmnTJhITE9m4cSMJCQmZ9m3fvp0lS5ZQvnx5cufOHVBC6fji750kSZIk7cXOLTBl0P/Nlks4IePecpWbBZ0sx9lfV/R3XtYqSZIkSZJ0PFg6PeNJrOuXZKyfelnGk1hzJwab6zhnOSdJkiRJkpST7dzyt3vLkTFbru2TUMnZctmB5ZwkSZIkSVJO9c/ZcrUvh+b3OVsuG7GckyRJkiRJyml2boHJA2DmcxnrCaX+/2y5c4LNpT1YzkmSJEmSJOUkS7/8/7Pllmas1+4KzQc5Wy6bspyTJEmSJEnKCXakwJQBMPP5jHVnyx0TLOckSZIkSZKOdUu+yJgtt2FZxnqdbnDuIMidEGgsHZjlnCRJkiRJ0rFqRwpM7g/fvpCxnlga2j4FFc8KNJayznJOkiRJkiTpWLTkc3i/599my3XPuLdcXP5gc+mgWM5JkiRJkiQdS9LTYPK98NVTGeuJZTLuLedsuWNSVNABlL1169aNUCi0x6tFixZBR5MkSZIk6fizcyu8efn/FXN1r4AbvrKYO4Y5c04H1KJFC0aMGJFpW1xc3CEdKxwOk5aWRq5c/uhJkiRJknRQUlbD653hj1kQHQfth0GNDkGn0r/kzLmAhMNhUnekHfVXOBw+6KxxcXEkJSVlehUsWJClS5cSCoWYPXt2ZOyGDRsIhUJMmzYNgGnTphEKhRg/fjx16tQhLi6OL7/8kh07dnDTTTdRrFgxcufOzRlnnMG3334bOc7u940bN45atWqRO3duTj/9dObNm5cp25dffknjxo2Jj4+ndOnS3HTTTWzZsuWQ/kwkSZIkScq21vwELzbLKObiC8Ll71vM5RBOXwrIrp3pPP+fz476ea95ogkxcdFH/bx33HEHDz/8MBUqVKBgwYLcfvvtvPPOO4waNYqyZcsyZMgQkpOT+eWXXyhUqFDkfbfddhtPPPEESUlJ3HnnnbRp04affvqJmJgYFi9eTIsWLbjvvvt46aWXWLNmDT179qRnz557zPSTJEmSJOmYtfRLGHMJbN8IBcvDpe9A4YpBp9Jh4sw5HdBHH31Evnz5Mr0eeOCBgzrGwIEDOffcc6lYsSJxcXEMGzaMhx56iJYtW1K9enVeeOEF4uPjGT58eKb33XvvvZx77rnUrFmTUaNG8eeffzJ27FgAHnzwQbp06UKvXr2oXLkyDRs25Mknn+Tll19m+/bth+3zS5IkSZIUmB/ehJfbZRRzpU6DqyZbzOUwzpwLSK7YKK55okkg5z1YZ511FsOGDcu0rVChQmzatCnLx6hbt25kefHixaSmptKoUaPItpiYGE477TQWLFiQ6X0NGjTIdM6qVatGxsyZM4cffviB1157LTImHA6Tnp7OkiVLOPHEE7OcT5IkSZKkbCUchs8fhk/vy1iv3g7aPwsx8YHG0uFnOReQUCgUyOWlhyJv3rxUqlRpj+0pKSkAme5jl5qaus9jHG4pKSlce+213HTTTXvsK1OmzGE/nyRJkiRJR0VaKnzYC2a/mrHe8CZoNgCivAAyJ/JPVYesaNGiAKxcuTKy7e8Ph9iXihUrEhsby/Tp0yPbUlNT+fbbb6levXqmsV9//XVkef369fz000+RGXG1a9fmxx9/pFKlSnu8YmNj/81HkyRJkiQpGNs3wmsdM4q5UBS0egSaD7KYy8GcOacD2rFjB6tWrcq0LVeuXBQpUoTTTz+dwYMHU758eVavXs3dd999wOPlzZuX66+/nttuu41ChQpRpkwZhgwZwtatW7nyyiszjR04cCCFCxemePHi3HXXXRQpUoR27doB0KdPH04//XR69uzJVVddRd68efnxxx+ZNGkSQ4cOPWyfX5IkSZKko2LDb/DahbBmAcTkhQtHQpXmQafSEWY5pwOaMGECJUqUyLStatWqLFy4kJdeeokrr7ySOnXqULVqVYYMGULz5gf+i2Pw4MGkp6dz2WWXsXnzZurWrcvEiRMpWLDgHuP+85//8PPPP3PKKafw4YcfRmbF1apVi88++4y77rqLxo0bEw6HqVixIhdddNHh+/CSJEmSJB0NK2bD6E6Q8ifkS4Iub0KJk4NOpaMgFP77DcN0yDZt2kRiYiIbN24kISEh077t27ezZMkSypcvT+7cuQNKeGyZNm0aZ511FuvXr6dAgQJBx9ExyN87SZIkSceMRRPg7SsgdQsUOymjmEssFXQq/Uv764r+zplzkiRJkiRJQZn5Aoy/HcLpUOEs6PQy5N53kaOcx3JOkiRJkiTpaEtPh0n9YMb/v2f6qZdB68cgOibYXDrqLOeULTVt2hSvuJYkSZIk5Uip2+Dda2DBBxnrZ/eDxrdAKBRsLgXCck6SJEmSJOloSVkDYy6G37+F6Fg4/xmodWHQqRQgyzlJkiRJkqSj4a+f4bWOsH4p5C4AnUdDuUZBp1LALOckSZIkSZKOtGVfwesXw/YNUKAsXPoOFKkcdCplA5ZzkiRJkiRJR9Lct+G96yFtJ5xQFy4eA/mKBp1K2YTlnCRJkiRJ0pEQDsOXj8KUgRnr1VrDBS9AbJ5gcylbsZyTJEmSJEk63NJSYVxv+P7ljPUGPeHcgRAVHWwuZTtRQQdQztK0aVN69eq13zHlypXj8ccf3++YUCjEe++9B8DSpUsJhULMnj37sGSUJEmSJOmI2r4JRnfKKOZCUXDew5B8v8Wc9spyTvvVrVs3QqEQ11133R77evToQSgUolu3bpFt7777LoMGDTqKCbNm2rRphEKhvb5WrVp1WM6RldJRkiRJkpTDbVoJL7WAxVMhJg90fh1OuzroVMrGLOd0QKVLl2bMmDFs27Ytsm379u2MHj2aMmXKZBpbqFAh8ufPf7QjZtmiRYtYuXJlplexYsWCjiVJkiRJyglSt8HrF8Hq+ZCvOHT/GKq2CDqVsjnLuYCEw2FSt28/6q9wOHzQWWvXrk3p0qV59913I9veffddypQpw6mnnppp7D8va129ejVt2rQhPj6e8uXL89prr+1x/J9//pkzzzyT3LlzU716dSZNmnTATPPmzaNly5bky5eP4sWLc9lll/HXX38d8H3FihUjKSkp0ysqKuPX4Ntvv+Xcc8+lSJEiJCYm0qRJE77//vvIe8PhMP3796dMmTLExcVRsmRJbrrppsjnXrZsGTfffHNkRp4kSZIk6TgSDsOH/4GVcyBPYbhiIpQ89cDv03HPB0IEZNeOHTzZteNRP+9No94mJnfug37fFVdcwYgRI+jSpQsAL730Et27d2fatGn7fV+3bt1YsWIFn376KTExMdx0002sXr06sj89PZ0LLriA4sWL880337Bx48YD3rNuw4YNnH322Vx11VU89thjbNu2jT59+tCpUyemTp160J9tt82bN9O1a1eeeuopwuEwjzzyCOeddx4///wz+fPn55133uGxxx5jzJgxnHTSSaxatYo5c+YAGWXlySefzDXXXMPVVztdWZIkSZKOO18/Az+8AaFouHAUFCofdCIdIyznlCWXXnopffv2ZdmyZQBMnz6dMWPG7Lec++mnnxg/fjwzZ86kXr16AAwfPpwTTzwxMmby5MksXLiQiRMnUrJkSQAeeOABWrZsuc/jDh06lFNPPZUHHnggsu2ll16idOnS/PTTT1SpUmWf7y1VqlSm9bJlyzJ//nwAzj777Ez7nn/+eQoUKMBnn31G69atWb58OUlJSTRr1oyYmBjKlCnDaaedBmRczhsdHU3+/PlJSkra5/klSZIkSTnQr9Pgk34Zy8kPQPnGgcbRscVyLiC54uK4adTbgZz3UBQtWpRWrVoxcuRIwuEwrVq1okiRIvt9z4IFC8iVKxd16tSJbKtWrRoFChTINKZ06dKRYg6gQYMG+z3unDlz+PTTT8mXL98e+xYvXrzfcu6LL77IdE+8mJiYyPKff/7J3XffzbRp01i9ejVpaWls3bqV5cuXA3DhhRfy+OOPU6FCBVq0aMF5551HmzZtyJXLXyNJkiRJOm6tXwZvdYdwGpx8CdS/NuhEOsbYKgQkFAod0uWlQbriiivo2bMnAE8//XRgOVJSUmjTpg3//e9/99hXokSJ/b63fPnymcrBv+vatStr167liSeeoGzZssTFxdGgQQN27twJZDwYY9GiRUyePJlJkyZxww038NBDD/HZZ59lKvkkSZIkSceJnVthTBfYti7j/nKtHwPvQa6DZDmnLGvRogU7d+4kFAqRnJx8wPHVqlVj165dzJo1K3JZ66JFi9iwYUNkzIknnshvv/3GypUrI8Xa119/vd/j1q5dm3feeYdy5cod1llr06dP55lnnuG8884D4LffftvjIRPx8fG0adOGNm3a0KNHD6pVq8bcuXOpXbs2sbGxpKWlHbY8kiRJkqRsLByGD3rCn3Mhb1G46FWIObYm4Sh78GmtyrLo6GgWLFjAjz/+SHR09AHHV61alRYtWnDttdfyzTffMGvWLK666iri4+MjY5o1a0aVKlXo2rUrc+bM4YsvvuCuu+7a73F79OjBunXruPjii/n2229ZvHgxEydOpHv37gcsx1avXs2qVasyvVJTUwGoXLkyr7zyCgsWLOCbb76hS5cumbKOHDmS4cOHM2/ePH799VdeffVV4uPjKVu2LADlypXj888/548//sjSk2MlSZIkScewr56Eee9AVC7o9DIkljrwe6S9sJzTQUlISCAhISHL40eMGEHJkiVp0qQJF1xwAddccw3FihWL7I+KimLs2LFs27aN0047jauuuor7779/v8csWbIk06dPJy0tjebNm1OzZk169epFgQIFiIra/4901apVKVGiRKbXrFmzgIyHVaxfv57atWtz2WWXcdNNN2XKWqBAAV544QUaNWpErVq1mDx5Mh9++CGFCxcGYODAgSxdupSKFStStGjRLH9HkiRJkqRjzC9TYHL/jOUWg6Fsw0Dj6NgWCofD4aBD5ASbNm0iMTGRjRs37lFebd++nSVLllC+fHlyH2P3mZOOVf7eSZIkSToi1v0Kz58F2zfAqZdB26e8z5z2an9d0d85c06SJEmSJCkrdqRkPABi+wY4oS60esRiTv+a5ZwkSZIkSdKBhMPw/g2w+kfIVxwuegVyxQWdSjmA5ZwkSZIkSdKBfPko/Pg+RMVAp1cgoWTQiZRDWM5JkiRJkiTtz0+fwJRBGcvnPQRl6gebRzmK5ZwkSZIkSdK+rF0M71wFhKFOd6jbPehEymEs5yRJkiRJkvZmx2Z4/WLYsRFKnw4thwSdSDmQ5ZwkSZIkSdI/pafD2Ovgr0WQvwR0ehlyxQadSjmQ5ZwkSZIkSdI/ffEwLPwIomPholchf/GgEymHspxTttStWzfatWsXdIx/bdq0aYRCITZs2BB0FEmSJElSVi38GD69P2O59WNQqm6weZSjWc5pv7p160YoFGLw4MGZtr/33nuEQqF/ffylS5cSCoWYPXv2vz7Wbtu2baNQoUIUKVKEHTt2HLbjHoqGDRuycuVKEhMTA80hSZIkScqiNT/Bu9dkLNe7Gk69NNg8yvEs53RAuXPn5r///S/r168/rMfduXPnYT3ebu+88w4nnXQS1apV47333jsi58iK1NRUYmNjSUpKOixFpiRJkiTpCNu+EcZcAjs3Q9lG0OLBoBPpOGA5pwNq1qwZSUlJPPjg/v9S2l2KxcXFUa5cOR555JFM+8uVK8egQYO4/PLLSUhI4JprrqF8+fIAnHrqqYRCIZo2bZrpPQ8//DAlSpSgcOHC9OjRg9TU1APmHT58OJdeeimXXnopw4cP32N/KBTiueeeo3Xr1uTJk4cTTzyRGTNm8Msvv9C0aVPy5s1Lw4YNWbx4cab3vf/++9SuXZvcuXNToUIFBgwYwK5duzIdd9iwYbRt25a8efNy//337/Wy1unTp9O0aVPy5MlDwYIFSU5OjhSfEyZM4IwzzqBAgQIULlyY1q1b75FDkiRJknQEpKdnzJhb+zMknAAXjoLomKBT6ThgOReQcDhM+s60o/4Kh8MHnTU6OpoHHniAp556it9//32vY2bNmkWnTp3o3Lkzc+fOpX///vTr14+RI0dmGvfwww9z8skn87///Y9+/foxc+ZMACZPnszKlSt59913I2M//fRTFi9ezKeffsqoUaMYOXLkHsf7p8WLFzNjxgw6depEp06d+OKLL1i2bNke43aXhLNnz6ZatWpccsklXHvttfTt25fvvvuOcDhMz549I+O/+OILLr/8cv7zn//w448/8txzzzFy5Ejuv//+TMft378/7du3Z+7cuVxxxRV7nHf27Nmcc845VK9enRkzZvDll1/Spk0b0tLSANiyZQu9e/fmu+++Y8qUKURFRdG+fXvS09P3+7klSZIkSf/StAfhpwkQHZfxAIh8RYNOpONErqADHK/CqemsuOero37ekgMbEoqNPuj3tW/fnlNOOYV77713r7PRHn30Uc455xz69esHQJUqVfjxxx956KGH6NatW2Tc2WefzS233BJZj47OyFK4cGGSkpIyHbNgwYIMHTqU6OhoqlWrRqtWrZgyZQpXX331PnO+9NJLtGzZkoIFCwKQnJzMiBEj6N+/f6Zx3bt3p1OnTgD06dOHBg0a0K9fP5KTkwH4z3/+Q/fu3SPjBwwYwB133EHXrl0BqFChAoMGDeL222/n3nvvjYy75JJLMr3v119/zXTeIUOGULduXZ555pnItpNOOimy3KFDhz0+T9GiRfnxxx+pUaPGPj+3JEmSJOlfWPAhfD4kY7nNE3BC7WDz6LjizDll2X//+19GjRrFggUL9ti3YMECGjVqlGlbo0aN+PnnnyOzwgDq1s36E25OOumkSHkHUKJECVavXr3P8WlpaYwaNYpLL/2/m3VeeumljBw5co+ZZ7Vq1YosFy+e8TjsmjVrZtq2fft2Nm3aBMCcOXMYOHAg+fLli7yuvvpqVq5cydatW7P8+XbPnNuXn3/+mYsvvpgKFSqQkJBAuXLlAFi+fPl+jytJkiRJOkSrF8DY6zKW618Pp1wcbB4dd5w5F5BQTBQlBzYM5LyH6swzzyQ5OZm+fftmmg13MPLmzZvlsTExma/tD4VC+728c+LEifzxxx9cdNFFmbanpaUxZcoUzj333L0ee/fDGva2bff5UlJSGDBgABdccMEe582dO3dk+UCfLz4+fr/727RpQ9myZXnhhRcoWbIk6enp1KhR44g9PEOSJEmSjmvb1v//B0CkQLnG0HxQ0Il0HLKcC0goFDqky0uDNnjwYE455RSqVq2aafuJJ57I9OnTM22bPn06VapUyTT77Z9iY2MBMs2uO1TDhw+nc+fO3HXXXZm233///QwfPjxTOXewateuzaJFi6hUqdK/ylirVi2mTJnCgAED9ti3du1aFi1axAsvvEDjxo0B+PLLL//V+SRJkiRJ+5CeBu9cDet+hcQycOFIHwChQFjO6aDUrFmTLl268OSTT2bafsstt1CvXj0GDRrERRddxIwZMxg6dGime6vtTbFixYiPj2fChAmUKlWK3Llzk5iYeNC51qxZw4cffsgHH3ywx73ZLr/8ctq3b8+6desoVKjQQR8b4J577qF169aUKVOGjh07EhUVxZw5c5g3bx733Xdflo/Tt29fatasyQ033MB1111HbGwsn376KRdeeCGFChWicOHCPP/885QoUYLly5dzxx13HFJeSZIkSdIBTL0PfpkEueKh86uQt0jQiXSc8p5zOmgDBw7c4/LS2rVr8+abbzJmzBhq1KjBPffcw8CBAw94+WuuXLl48sknee655yhZsiTnn3/+IWV6+eWXyZs3717v53bOOecQHx/Pq6++ekjHhowHS3z00Ud88skn1KtXj9NPP53HHnuMsmXLHtRxqlSpwieffMKcOXM47bTTaNCgAe+//z65cuUiKiqKMWPGMGvWLGrUqMHNN9/MQw89dMiZJUmSJEn7MH8sfPloxnLbp6DEycHm0XEtFA6Hw0GHyAk2bdpEYmIiGzduJCEhIdO+7du3s2TJEsqXL5/p/mSSjhx/7yRJkiTt1ap5MPxcSN0KDW+E5lm/Gko6GPvriv7OmXOSJEmSJOn4sHVdxgMgUrdChaZwTv+gE0mWc5IkSZIk6TiQngZvXwEblkGBstBxBER7K34Fz3JOkiRJkiTlfJ/eD79+CjF5oPNoyHNoDwyUDjfLOUmSJEmSlLP99Al88UjGctunIKlGsHmkv7GckyRJkiRJOdeG32DsNRnL9a6Cmh2DzSP9g+XcUZSenh50BOm44YOoJUmSJLFrJ7zVDbath5KnQvIDQSeS9uCdD4+C2NhYoqKiWLFiBUWLFiU2NpZQKBR0LCnHCofDrFmzhlAoRExMTNBxJEmSJAVl0j3wx3eQOxEuHAm54oJOJO3Bcu4oiIqKonz58qxcuZIVK1YEHUc6LoRCIUqVKkV0dHTQUSRJkiQFYf578M2wjOX2z0HBckGmkfbJcu4oiY2NpUyZMuzatYu0tLSg40g5XkxMjMWcJEmSdLxauxje75mx3Og/ULVlsHmk/bCcO4p2X2LnZXaSJEmSJB0hqdvgzcth52Yo0xDOvifoRNJ++UAISZIkSZKUc3x8G/w5D/IUgY4vQbTzkpS9Wc5JkiRJkqScYfZo+N8rQAg6vAgJJYJOJB2Q5ZwkSZIkSTr2/TkfPuqdsdy0L1Q8K9g8UhZZzkmSJEmSpGPbjs3wZlfYtQ0qng1n3hZ0IinLLOckSZIkSdKxKxyGD26CtT9D/pJwwQsQZd2hY4c/rZIkSZIk6dj17Ysw/12IygUXjoS8RYJOJB2UQMu5Bx98kHr16pE/f36KFStGu3btWLRoUaYxTZs2JRQKZXpdd911mcYsX76cVq1akSdPHooVK8Ztt93Grl27Mo2ZNm0atWvXJi4ujkqVKjFy5Mg98jz99NOUK1eO3LlzU79+fWbOnHnYP7MkSZIkSTpM/pgFE/pmLDcbAGXqB5tHOgSBlnOfffYZPXr04Ouvv2bSpEmkpqbSvHlztmzZkmnc1VdfzcqVKyOvIUOGRPalpaXRqlUrdu7cyVdffcWoUaMYOXIk99xzT2TMkiVLaNWqFWeddRazZ8+mV69eXHXVVUycODEy5o033qB3797ce++9fP/995x88skkJyezevXqI/9FSJIkSZKkg7NtPbzVDdJToVpraNAj6ETSIQmFw+Fw0CF2W7NmDcWKFeOzzz7jzDPPBDJmzp1yyik8/vjje33P+PHjad26NStWrKB48eIAPPvss/Tp04c1a9YQGxtLnz59GDduHPPmzYu8r3PnzmzYsIEJEyYAUL9+ferVq8fQoUMBSE9Pp3Tp0tx4443ccccdB8y+adMmEhMT2bhxIwkJCf/ma5AkSZIkSfuTng5jLoGfxkPBcnDNZxBfIOhUUiZZ7Yqy1T3nNm7cCEChQoUybX/ttdcoUqQINWrUoG/fvmzdujWyb8aMGdSsWTNSzAEkJyezadMm5s+fHxnTrFmzTMdMTk5mxowZAOzcuZNZs2ZlGhMVFUWzZs0iY/5px44dbNq0KdNLkiRJkiQdBV89mVHMRcfBhaMs5nRMyxV0gN3S09Pp1asXjRo1okaNGpHtl1xyCWXLlqVkyZL88MMP9OnTh0WLFvHuu+8CsGrVqkzFHBBZX7Vq1X7HbNq0iW3btrF+/XrS0tL2OmbhwoV7zfvggw8yYMCAf/ehJUmSJEnSwVk6HaYMzFhuORhKnhJoHOnfyjblXI8ePZg3bx5ffvllpu3XXHNNZLlmzZqUKFGCc845h8WLF1OxYsWjHTOib9++9O7dO7K+adMmSpcuHVgeSZIkSZJyvJTV8PYVEE6Dmp2gTvegE0n/WrYo53r27MlHH33E559/TqlSpfY7tn79jCev/PLLL1SsWJGkpKQ9nqr6559/ApCUlBT57+5tfx+TkJBAfHw80dHRREdH73XM7mP8U1xcHHFxcVn/kJIkSZIk6dClp8E7V0LKKihSFVo/BqFQ0Kmkfy3Qe86Fw2F69uzJ2LFjmTp1KuXLlz/ge2bPng1AiRIlAGjQoAFz587N9FTVSZMmkZCQQPXq1SNjpkyZkuk4kyZNokGDBgDExsZSp06dTGPS09OZMmVKZIwkSZIkSQrQtMGw5HOIyQOdXoa4fEEnkg6LQGfO9ejRg9GjR/P++++TP3/+yD3iEhMTiY+PZ/HixYwePZrzzjuPwoUL88MPP3DzzTdz5plnUqtWLQCaN29O9erVueyyyxgyZAirVq3i7rvvpkePHpGZbddddx1Dhw7l9ttv54orrmDq1Km8+eabjBs3LpKld+/edO3albp163Laaafx+OOPs2XLFrp3d4qsJEmSJEmB+mUyfP5QxnKbJ6BYtWDzSIdRKBwOhwM7+T6mn44YMYJu3brx22+/cemllzJv3jy2bNlC6dKlad++PXfffXemR9AuW7aM66+/nmnTppE3b166du3K4MGDyZXr/7rHadOmcfPNN/Pjjz9SqlQp+vXrR7du3TKdd+jQoTz00EOsWrWKU045hSeffDJyGe2BZPXxuJIkSZIk6SBs/B2ebQzb1mXcY67N40EnkrIkq11RoOVcTmI5J0mSJEnSYZaWCiPOg99nQomT4YpPICZ30KmkLMlqVxToPeckSZIkSZL2adK9GcVcXCJcOMpiTjmS5ZwkSZIkScp+FnwIXz+dsdzuGSh04IdISsciyzlJkiRJkpS9rPsV3rshY7lBTzixdbB5pCPIck6SJEmSJGUfqdvhza6wYxOUrg/N+gedSDqiLOckSZIkSVL2MaEPrPoB8hSGjiMgOiboRNIRZTknSZIkSZKyhzlvwKyRQAgueAESTwg6kXTEWc5JkiRJkqTgrV4AH/XKWG5yO1Q6J9A40tFiOSdJkiRJkoK1IyXjPnOpW6FCU2jSJ+hE0lFjOSdJkiRJkoITDmfMmPtrEeQvARe8CFHRQaeSjhrLOUmSJEmSFJzPhsDctyAUnfEAiHxFg04kHVWWc5IkSZIkKRjfvwLTHshYbvlfKNsg2DxSACznJEmSJEnS0ffzJPjwPxnLZ9wMp10dbB4pIJZzkiRJkiTp6Prj+4wHQITToFZnOOfeoBNJgbGckyRJkiRJR8+6JTC6E6RuyXgya9unIBQKOpUUGMs5SZIkSZJ0dGxZC692gC1rIKkmdHoFcsUGnUoKlOWcJEmSJEk68nZuhdcvgnWLIbE0XPIW5E4IOpUUOMs5SZIkSZJ0ZKWnwTtXwe/fQu4CcOk7kFAi6FRStmA5J0mSJEmSjpxwGD6+DRaNg+g4uHgMFK0adCop27CckyRJkiRJR86Xj8J3w4EQdHgByjYIOpGUrVjOSZIkSZKkI2POGJgyMGO5xWCofn6weaRsyHJOkiRJkiQdfounwvs9MpYb3ginXxdsHimbspyTJEmSJEmH18of4I3LIX0X1OgAzQYGnUjKtiznJEmSJEnS4bNhObzWEXZuhnKNod0wiLJ+kPbF3w5JkiRJknR4bF0Hr3aAlD+hWHW46FXIFRd0Kilbs5yTJEmSJEn/Xup2GHMJ/PUTJJwAXd6G+AJBp5KyPcs5SZIkSZL076SnwbtXw/IZEJeYUcwlnhB0KumYYDknSZIkSZIOXTgME++EBR9AdCx0fg2KVw86lXTMsJyTJEmSJEmH7qun4JtnM5bbDYPyjYPNIx1jLOckSZIkSdKhmfs2TOqXsdz8PqjZMdg80jHIck6SJEmSJB28JZ/D2Osylk+/ARr0DDaPdIyynJMkSZIkSQfnz/kwpgukp0L1dtD8fgiFgk4lHZMs5yRJkiRJUtZt/B1e7Qg7NkHZRtD+OYiyXpAOlb89kiRJkiQpa7ZtyCjmNq+AotUynswakzvoVNIxzXJOkiRJkiQd2K4dGZeyrlkA+UtAl7chvmDQqaRjnuWcJEmSJEnav/T0jIc/LPsSYvNDl7egQOmgU0k5guWcJEmSJEnav0n9YP67EBUDnV+FpJpBJ5JyDMs5SZIkSZK0b18PgxlDM5bbPQMVmgYaR8ppLOckSZIkSdLezX0bJvTNWG7WH2p1CjSOlBPlCjqAJEmSJEnKZrath4l3wezXMtbrXQ2NegUaScqpLOckSZIkSdL/WTQePuwFKauAEDToAecOhFAo6GRSjmQ5J0mSJEmSYOs6GN8H5r6ZsV64Epz/DJSpH2wuKYeznJMkSZIk6Xj34wcw7hbYshpCUdCgJ5x1J8TEB51MyvEs5yRJkiRJOl5t+Qs+vhXmj81YL1oNzn8aStUNNpd0HLGckyRJkiTpeBMOw/x34ePbYOtaCEXDGb2gSR/IFRd0Oum4YjknSZIkSdLxZPOfMK43LPwoY73YSdDuaSh5arC5pOOU5ZwkSZIkSceDcBjmvgXjb4dt6yEqFzS+FRrfArlig04nHbcs5yRJkiRJyuk2rYSPboafxmesJ9XKuLdciVrB5pJkOSdJkiRJUo4VDsPs12DCnbBjI0TFZNxX7oxeEB0TdDpJWM5JkiRJkpQzbfwdPvwP/DI5Y73kqXD+M1C8erC5JGViOSdJkiRJUk4SDsP3o2Di3bBzM0THwVl9ocGNEG0NIGU3/lZKkiRJkpRTrF8GH94Ev07LWC9VL2O2XNEqgcaStG+Wc5IkSZIkHevS0+G74TDpXkjdArlyw9n94PTrISo66HSS9sNyTpIkSZKkY9m6X+GDm2DpFxnrZRpkPIm1cMVgc0nKEss5SZIkSZKORenpMPM5mDIQUrdCTB5o1h/qXQ1RUUGnk5RFlnOSJEmSJB1r1i2BsdfBb19nrJdrDG2fgkLlg80l6aBZzkmSJEmSdCxZ+iW8cSlsWw+x+eDcAVDnCmfLSccoyzlJkiRJko4V378CH90M6alQsjZcOBIKlg06laR/wXJOkiRJkqTsLj0NJveHr57MWD+pPbQbBjHxgcaS9O9ZzkmSJEmSlJ3tSIF3r4FF4zLWm/SBJnd4GauUQ1jOSZIkSZKUXW38HUZ3hj/nQnQcnP801Low6FSSDiPLOUmSJEmSsqPfZ8GYiyHlT8hbFDqPhtKnBZ1K0mFmOSdJkiRJUnYz711473rYtR2KVYdL3oACZYJOJekIsJyTJEmSJCm7CIfh84fg0/sz1isnQ8fhEJc/2FySjhjLOUmSJEmSsoPU7fBBT5j7Vsb66T2g+SCIig42l6QjynJOkiRJkqSgpayGMV3g95kQlQtaPQJ1ugWdStJRYDknSZIkSVKQ/pwPoy+Cjb9B7kTo9ApUaBJ0KklHieWcJEmSJElB+WkivH0F7EyBQhXhkjehSKWgU0k6iiznJEmSJEk62sJh+HoYfHIXhNOhXGPo9DLkKRR0MklHmeWcJEmSJElHU1oqfHwbzBqRsV77cjjvEcgVG2wuSYGwnJMkSZIk6WjZth7e7ApLPgNC0Pw+aNADQqGgk0kKiOWcJEmSJElHw9rFMLoTrP0FYvNBhxehasugU0kKmOWcJEmSJElH2pIv4I1LYfsGSCwNF4+BpBpBp5KUDVjOSZIkSZJ0JM0aBeN6Q/ouOKEudB4N+YsHnUpSNmE5J0mSJEnSkZCeBpPugRlDM9ZrdIDzn4aY+GBzScpWLOckSZIkSTrcdqTAO1fBT+Mz1pv2hSZ9fPCDpD1YzkmSJEmSdDht+A1evxj+nAu5cmfMlqvZMehUkrIpyzlJkiRJkg6XVfPglfawZTXkLQYXvw6l6gadSlI2ZjknSZIkSdLhsG4JvHpBRjFXvEbGE1kLlA46laRsznJOkiRJkqR/a/OfGTPmUv7MKOa6jYP4AkGnknQMiAo6gCRJkiRJx7TtG+HVDrB+CRQsB5e+YzEnKcss5yRJkiRJOlSp2//v4Q95i8FlYyF/UtCpJB1DLOckSZIkSToUabvg7Stg2XSIS8iYMVeoQtCpJB1jLOckSZIkSTpY4TB89B9YNA6i4zKeylqiVtCpJB2DLOckSZIkSTpYk/vD/16FUBR0fAnKnRF0IknHKMs5SZIkSZIOxldPwfTHM5bbPAkntg40jqRjm+WcJEmSJElZNft1+OTujOVm/aH2ZYHGkXTss5yTJEmSJCkrFk2A93tkLDfoCY16BRpHUs5gOSdJkiRJ0oEsmwFvdYVwGpx8MZw7CEKhoFNJygEs5yRJkiRJ2p9V82D0RbBrO1RpAW2fgij/OS3p8PBvE0mSJEmS9mX9Uni1A+zYCGUaQMcREB0TdCpJOYjlnCRJkiRJe5OyGl5pDymroNhJcPHrEJsn6FSSchjLOUmSJEmS/mn7xowZc+t+hQJl4NJ3IL5g0Kkk5UCWc5IkSZIk/V3qdhjTBVb9AHmLwmXvQUKJoFNJyqEs5yRJkiRJ2i1tF7xzJSz9AmLzZ8yYK1wx6FSScjDLOUmSJEmSAMJhGHczLPwIomMz7jFX4uSgU0nK4SznJEmSJEkCmDIQvn8ZQlHQ8SUo3zjoRJKOA5ZzkiRJkiTNeBq+fDRjufXjcGKbQONIOn5YzkmSJEmSjm9zxsDEOzOWz7kH6nQNNo+k44rlnCRJkiTp+PXTRHjvhozl03vAGb2DzSPpuGM5J0mSJEk6Pi3/Gt7sCuE0qHURNL8PQqGgU0k6zljOSZIkSZKOP3/Oh9GdYNc2qNwczn8aovwnsqSjz795JEmSJEnHl/XL4JULYPtGKF0fLhwF0TFBp5J0nLKckyRJkiQdP1LWwCvtIGUVFKsOl7wBsXmCTiXpOBZoOffggw9Sr1498ufPT7FixWjXrh2LFi3KNGb79u306NGDwoULky9fPjp06MCff/6Zaczy5ctp1aoVefLkoVixYtx2223s2rUr05hp06ZRu3Zt4uLiqFSpEiNHjtwjz9NPP025cuXInTs39evXZ+bMmYf9M0uSJEmSArJ9E7zWAdb9Coll4NJ3IL5g0KkkHecCLec+++wzevTowddff82kSZNITU2lefPmbNmyJTLm5ptv5sMPP+Stt97is88+Y8WKFVxwwQWR/WlpabRq1YqdO3fy1VdfMWrUKEaOHMk999wTGbNkyRJatWrFWWedxezZs+nVqxdXXXUVEydOjIx544036N27N/feey/ff/89J598MsnJyaxevfrofBmSJEmSpCNnRwqMuQRWzoE8ReCysZBQMuhUkkQoHA6Hgw6x25o1ayhWrBifffYZZ555Jhs3bqRo0aKMHj2ajh07ArBw4UJOPPFEZsyYwemnn8748eNp3bo1K1asoHjx4gA8++yz9OnThzVr1hAbG0ufPn0YN24c8+bNi5yrc+fObNiwgQkTJgBQv3596tWrx9ChQwFIT0+ndOnS3Hjjjdxxxx0HzL5p0yYSExPZuHEjCQkJh/urkSRJkiQdqg3L4fWL4c95EJsfun0IJU8NOpWkHC6rXVG2uufcxo0bAShUqBAAs2bNIjU1lWbNmkXGVKtWjTJlyjBjxgwAZsyYQc2aNSPFHEBycjKbNm1i/vz5kTF/P8buMbuPsXPnTmbNmpVpTFRUFM2aNYuM+acdO3awadOmTC9JkiRJUjaz/Bt44eyMYi5v0YwZcxZzkrKRbFPOpaen06tXLxo1akSNGjUAWLVqFbGxsRQoUCDT2OLFi7Nq1arImL8Xc7v37963vzGbNm1i27Zt/PXXX6Slpe11zO5j/NODDz5IYmJi5FW6dOlD++CSJEmSpCNj9uswqjVsWQPFa8LVn0LpekGnkqRMsk0516NHD+bNm8eYMWOCjpIlffv2ZePGjZHXb7/9FnQkSZIkSRJAehpMugfeuw7SdkK11nDFBCjgpApJ2U+uoAMA9OzZk48++ojPP/+cUqVKRbYnJSWxc+dONmzYkGn23J9//klSUlJkzD+fqrr7aa5/H/PPJ7z++eefJCQkEB8fT3R0NNHR0Xsds/sY/xQXF0dcXNyhfWBJkiRJ0pGxYzO8czX8ND5jvfGtcNZdEJVt5qZIUiaB/u0UDofp2bMnY8eOZerUqZQvXz7T/jp16hATE8OUKVMi2xYtWsTy5ctp0KABAA0aNGDu3LmZnqo6adIkEhISqF69emTM34+xe8zuY8TGxlKnTp1MY9LT05kyZUpkjCRJkiQpm1u/DIY3zyjmouPgghfhnH4Wc5KytUBnzvXo0YPRo0fz/vvvkz9//sj93RITE4mPjycxMZErr7yS3r17U6hQIRISErjxxhtp0KABp59+OgDNmzenevXqXHbZZQwZMoRVq1Zx991306NHj8jMtuuuu46hQ4dy++23c8UVVzB16lTefPNNxo0bF8nSu3dvunbtSt26dTnttNN4/PHH2bJlC927dz/6X4wkSZIk6eAsmwFvdIGtayFfceg8GkrVDTqVJB1QKBwOhwM7eSi01+0jRoygW7duAGzfvp1bbrmF119/nR07dpCcnMwzzzyT6XLTZcuWcf311zNt2jTy5s1L165dGTx4MLly/V/3OG3aNG6++WZ+/PFHSpUqRb9+/SLn2G3o0KE89NBDrFq1ilNOOYUnn3yS+vXrZ+mzZPXxuJIkSZKkw+x/r8KHvSA9FUqcDJ1fh8QTgk4l6TiX1a4o0HIuJ7GckyRJkqSjbPeDH2YMzVivfj60GwaxeYPNJUlkvSvKFg+EkCRJkiTpoGzfBO9cCT9/krHepA80ucP7y0k65ljOSZIkSZKOLeuWwOudYc1CyJUb2j0DNToEnUqSDonlnCRJkiTp2LH0S3jjMti2DvKXyHjwwwm1g04lSYfMck6SJEmSdGyYNRLG3QLpu6DkqRnFXELJoFNJ0r9iOSdJkiRJyt7SdsEnd8M3wzLWT7oAzn8aYvMEm0uSDgPLOUmSJElS9rV9I7zVHRZPyVg/6y448zYIhYLNJUmHieWcJEmSJCl7Wrs448EPf/0EueKh/bNwUrugU0nSYWU5J0mSJEnKfn79DN68HLZvgPwl4eLXoeQpQaeSpMPOck6SJEmSlL18OxzG357x4IcT6mQ8+CF/UtCpJOmIsJyTJEmSJGUPabtgYl+Y+XzGes0Loe1TEBMfbC5JOoIs5yRJkiRJwdu2Ht7qBr9Oy1g/ux80vsUHP0jK8SznJEmSJEnB+usXeP0iWPsLxOSBC56HE9sEnUqSjgrLOUmSJElScDb+ASNawJY1kFAq48EPJWoFnUqSjhrLOUmSJElSMHbtgDcvyyjmiteAS9+F/MWDTiVJR1VU0AEkSZIkScep8X3gj1mQuwB0fs1iTtJxyXJOkiRJknT0/e9VmDUCCEGH4VCwXNCJJCkQlnOSJEmSpKNrxf/go94Zy2fdCZWbBZtHkgJkOSdJkiRJOnq2roM3Loe0HVClJTS+NehEkhQoyzlJkiRJ0tGRngZvXwEbl0OhCtD+WYjyn6WSjm/+LShJkiRJOjo+vR9+/RRi8sBFr0J8gaATSVLgLOckSZIkSUfewnHwxSMZy22fguInBZtHkrIJyzlJkiRJ0pH11y8w9rqM5frXQ82OweaRpGzEck6SJEmSdOTsSIE3usCOTVCmITQfFHQiScpWLOckSZIkSUdGOAwf9IQ1CyFfElw4EqJjgk4lSdmK5ZwkSZIk6ciY8TTMHwtRuaDTy5C/eNCJJCnbsZyTJEmSJB1+S76ASfdkLCc/CGXqB5tHkrIpyzlJkiRJ0uG18Q94uzuE06DWRXDa1UEnkqRsy3JOkiRJknT47NoBb3WFLWugeE1o/TiEQkGnkqRsy3JOkiRJknT4TOgLv38LuRPhopchNk/QiSQpW7OckyRJkiQdHrNHw3fDgRBc8CIUqhB0IknK9iznJEmSJEn/3so58NHNGctN74AqzYPNI0nHCMs5SZIkSdK/s3UdvHEp7NoOlZPhzNuDTiRJxwzLOUmSJEnSoUtPg3eugg3LoWA5uOA5iPKfmpKUVf6NKUmSJEk6dNMehMVTIFc8XPQaxBcMOpEkHVMs5yRJkiRJh2bhx/D5QxnLbZ+EpBrB5pGkY5DlnCRJkiTp4K1dDGOvzVg+7Vqo1SnYPJJ0jLKckyRJkiQdnJ1bMh4AsWMTlD4dmt8XdCJJOmZZzkmSJEmSsi4chg9uhNU/Qr7i0GkU5IoNOpUkHbMs5yRJkiRJWff1MJj3DkTlggtHQf6koBNJ0jHNck6SJEmSlDVLp8Mnd2csN78fyjYINo8k5QCWc5IkSZKkA9u0Et7qBuE0qHkh1L826ESSlCNYzkmSJEmS9m/XTnjzctiyGoqdBG2egFAo6FSSlCNYzkmSJEmS9m/infD7TIhLhItegdi8QSeSpBzDck6SJEmStG9zxsC3L2QsX/A8FK4YbB5JymEs5yRJkiRJe7fyB/jwPxnLTfpA1RbB5pGkHMhyTpIkSZK0p51b4e3usGs7VDoXmtwRdCJJypEs5yRJkiRJe5rcH9b+AvlLZFzOGuU/HyXpSPBvV0mSJElSZos/hZnPZSyf/zTkKRRsHknKwSznJEmSJEn/Z9sGeL9HxnK9q6DSOYHGkaScznJOkiRJkvR/xveBTX9AoQpw7sCg00hSjmc5J0mSJEnK8OP78MMYCEVB++cgNm/QiSQpx7OckyRJkiRBymr4sFfGcqNeUPq0INNI0nHDck6SJEmSjnfhMHxwE2xbB8VrQtO+QSeSpOOG5ZwkSZIkHe9mvwY/jYfoWGj/LOSKDTqRJB03LOckSZIk6Xi2fhmMvyNj+ay7IKlGsHkk6ThjOSdJkiRJx6v0dHjvBti5GUqfDg1vDDqRJB13LOckSZIk6Xj1zTBY9iXE5IX2wyAqOuhEknTcsZyTJEmSpOPR6oUweUDGcvJ9UKhCsHkk6ThlOSdJkiRJx5u0VBh7DaTtgErNoE73oBNJ0nHLck6SJEmSjjefPwwr50DuAtB2KIRCQSeSpOOW5ZwkSZIkHU/+mAWfP5Sx3PpRSCgRbB5JOs5ZzkmSJEnS8SJ1G7x7LYTT4KQLoEaHoBNJ0nHPck6SJEmSjheTB8DanyFfErR6JOg0kiQs5yRJkiTp+PDrZ/DNsIzl84dCnkLB5pEkAZZzkiRJkpTzbd8I792QsVynO1Q+N9g8kqQIyzlJkiRJyukm9IVNv0PBctD8vqDTSJL+xnJOkiRJknKyBR/B7NeAELR/DuLyBZ1IkvQ3lnOSJEmSlFOlrIEP/5Ox3OgmKHN6sHkkSXuwnJMkSZKknCgczijmtv4FxarDWXcFnUiStBeWc5IkSZKUE815HRaNg6iYjMtZc8UFnUiStBeWc5IkSZKU02z4Dcb3yVg+qy+UqBVsHknSPlnOSZIkSVJOkp4O798AOzZBqdOg4X+CTiRJ2g/LOUmSJEnKSWY+D0s+h5g80P5ZiM4VdCJJ0n5YzkmSJElSTrHmJ5h8b8byuQOhcMVg80iSDshyTpIkSZJygrRUGHsN7NoOFc6CelcFnUiSlAWWc5IkSZKUE3zxKKz4H+ROhPOfhlAo6ESSpCywnJMkSZKkY92K/8HnQzKWz3sEEk8INo8kKcss5yRJkiTpWJa6Dd69FtJ3QfXzoWbHoBNJkg7CQZVz4XCY5cuXs3379iOVR5IkSZJ0MKbeB38tgrzFoNVjXs4qSceYgy7nKlWqxG+//Xak8kiSJEmSsmrJFzDj6Yzltk9B3sLB5pEkHbSDKueioqKoXLkya9euPVJ5JEmSJElZsX0TvHcDEIbal0PVFkEnkiQdgoO+59zgwYO57bbbmDdv3pHII0mSJEnKiol9YeNyKFAGkh8IOo0k6RDlOtg3XH755WzdupWTTz6Z2NhY4uPjM+1ft27dYQsnSZIkSfqH9HSY+Rz871UgBO2ehbj8QaeSJB2igy7nHn/88SMQQ5IkSZJ0QOuWwAc3wtIvMtYb3gjlGgWbSZL0rxx0Ode1a9cjkUOSJEmStC/p6fDtCzC5P6RuhZg8cM69cNo1QSeTJP1LB13OAaSlpfHee++xYMECAE466STatm1LdHT0YQ0nSZIkSce9tYvh/Z6w/KuM9XKNoe2TUKhCsLkkSYfFQZdzv/zyC+eddx5//PEHVatWBeDBBx+kdOnSjBs3jooVKx72kJIkSZJ03ElPg2+ehSmDYNc2iMkL5w6AuldC1EE/20/S/2PvvuMju+t7/7/OOdM1RXWl7bv27rru2lQ3TLPBxjbEwRBseiC0awjlJhAC+RHf3NByEwJJwJckhBQIMQHMpWNsjAEbY5uy6769S1q1GU2fOef8/viOZjSStlqrUXk//TiP074z8x15dzV66/P9fkXmKcv3ff9kHnDNNdfg+z5f+tKX6OzsBGB4eJjXvva12LbNd77zndPS0fkuk8mQSqVIp9Mkk8lWd0dERERERBayoe1w+/+AA7805+ufBy/7O+hY29p+iYjICTvRrOikK+d+8pOf8Itf/KIezAF0dXXx8Y9/nMsu00SkIiIiIiIip8xz4b6/h7v+EtwShBLw4r+AZ7wRLKvVvRMRkdPgpMO5cDjM+Pj4tOvZbJZQKDQrnRIREREREVlyBh+Hb/4POPiQOT/zCnjpp6F9dWv7JSIip9VJT1Rw3XXX8da3vpX7778f3/fxfZ9f/OIXvP3tb+dlL3vZ6eijiIiIiIjI4uVW4ad/Df/3chPMhVPwsr+H135NwZyIyBJw0pVzn/nMZ3jDG97AJZdcQjAYBKBarfKyl72MT3/607PeQRERERERkUVr4BEzt9zh35jzjVfBS/8Wkita2SsREZlDJx3Otbe3881vfpPt27fz+OOPA3DOOeewYcOGWe+ciIiIiIjIouRW4Gefgp98ErwKRNrhJZ+ALa/S3HIiIkvMSYdzEzZu3MjGjRtnsy8iIiIiIiKL3+GtZm65/m3m/Kxr4bq/gURfa/slIiItcULh3Pve974TfsK/+Zu/OeXOiIiIiIiILFrVMvz0/5j55bwqRDvhmr+C829QtZyIyBJ2QuHcr3/96xN6MkvfUERERERERKY79Gu4/WYYfMScn/MyuPavIb6stf0SEZGWO6Fw7sc//vHp7oeIiIiIiMjiUy3BTz4BP/tb8F2IdZlQ7rzfbXXPRERknjjlOedERERERETkGA48ZOaWO2IW0uO8l5thrG3dre2XiIjMK6cUzj344IPcdttt7Nu3j3K53HTv61//+qx0TEREREREZEGqFODHH4X7/h58D9p64Nq/gXNf1uqeiYjIPGSf7AO+8pWvcOmll/LYY4/xjW98g0qlwiOPPMJdd91FKpU6HX0UERERERGZ/6ol+PWX4NbnwL2fMcHc5t+Dm3+pYE5ERI7qpCvnPvrRj/KpT32Km2++mUQiwac//WnWr1/P2972NpYvX346+igiIiIiIjJ/ZQfhwS/AA/8EuSPmWrwPXvq3cNZLWto1ERGZ/046nNu5cyfXXnstAKFQiFwuh2VZvPe97+WFL3wht9xyy6x3UkREREREZN7p3wa/uBW23QZubbqf5Ep49lvhGW+EaHsreyciIgvESYdzHR0djI+PA7By5UoefvhhNm/ezNjYGPl8ftY7KCIiIiIiMm94Hjz5ffjFZ2HPTxvXVz4TLvkfcM7LwAm2rn8iIrLgnPCccw8//DAAz33uc7njjjsAeOUrX8m73/1u3vKWt3DTTTdxxRVXnNSL33PPPbz0pS9lxYoVWJbF7bff3nT/jW98I5ZlNW1XX311U5uRkRFe85rXkEwmaW9v581vfjPZbLapzdatW7n88suJRCKsXr2aT37yk9P68tWvfpWzzz6bSCTC5s2b+e53v3tS70VERERERBax0jjc/3/h758BX7nJBHOWY1ZgffOP4C13wvk3KJgTEZGTdsKVc1u2bOFZz3oW119/Pa985SsB+NCHPkQwGOTee+/lhhtu4MMf/vBJvXgul+OCCy7gTW96Ey9/+ctnbHP11VfzL//yL/XzcDjcdP81r3kNhw8f5o477qBSqfD7v//7vPWtb+XLX/4yAJlMhhe/+MVceeWV3HrrrWzbto03velNtLe389a3vhWAe++9l5tuuomPfexjXHfddXz5y1/m+uuv51e/+hXnn3/+Sb0nERERERFZREb3wi8/D7/6dyilzbVIygxbfdZboH11S7snIiILn+X7vn8iDX/605/yL//yL/z3f/83nudxww038Ad/8Adcfvnls9MRy+Ib3/gG119/ff3aG9/4RsbGxqZV1E147LHHOPfcc3nggQd45jOfCcD3v/99rrnmGg4cOMCKFSv43Oc+x4c+9CH6+/sJhUIA/Mmf/Am33347jz/+OACvetWryOVyfPvb364/98UXX8yFF17IrbfeekL9z2QypFIp0uk0yWTyFL4CIiIiIiIyL/g+7L8f7vsHePzbZtVVgK4NcNHb4cJXQ6ittX0UEZF570SzohMe1nr55ZfzhS98gcOHD/N3f/d37Nmzh+c973ls2rSJT3ziE/T3989Kx6e6++67WbZsGWeddRbveMc7GB4ert+77777aG9vrwdzAFdeeSW2bXP//ffX2zz3uc+tB3MAV111FU888QSjo6P1NldeeWXT61511VXcd999R+1XqVQik8k0bSIiIiIisoBVy7D1NvjHF8AXroLH/p8J5s54Prz6q3DzA/DstyiYExGRWXXC4dyEtrY2fv/3f5+f/OQnPPnkk7zyla/kH/7hH1izZg0ve9nLZrVzV199Nf/2b//GnXfeySc+8Ql+8pOf8JKXvATXdQHo7+9n2bJlTY8JBAJ0dnbWw8L+/n56e3ub2kycH6/NsQLHj33sY6RSqfq2erXK2UVEREREFqTcMNzzf+DTW+Drb4FDvwYnDE9/PbzjPnj9N2HTi8E+6R+fREREjuukV2udbMOGDfzpn/4pa9eu5YMf/CDf+c53ZqtfANx44431482bN7NlyxbOPPNM7r777pNefGK2ffCDH+R973tf/TyTySigExERERFZSAYfN6uubv0vqBbNtXivmUvumb8Pbd2t7Z+IiCwJpxzO3XPPPXzhC1/ga1/7GrZt83u/93u8+c1vns2+TXPGGWfQ3d3Njh07uOKKK+jr62NwcLCpTbVaZWRkhL6+PgD6+voYGBhoajNxfrw2E/dnEg6Hpy1OISIiIiIi85znwc674Bf/YPYT+rbAJTeb1VcDoaM/XkREZJadVF32oUOH+OhHP8qmTZt4/vOfz44dO/jMZz7DoUOH+Md//Ecuvvji09VPAA4cOMDw8DDLly8H4JJLLmFsbIyHHnqo3uauu+7C8zwuuuiiept77rmHSqVSb3PHHXdw1lln0dHRUW9z5513Nr3WHXfcwSWXXHJa34+IiIiIiMyh3/4XfPYi+NINtWDOgrOvg9//HrztHrjgRgVzIiIy5064cu4lL3kJP/rRj+ju7ub1r389b3rTmzjrrLOe0otns1l27NhRP9+9eze/+c1v6OzspLOzk1tuuYUbbriBvr4+du7cyfvf/342bNjAVVddBcA555zD1VdfzVve8hZuvfVWKpUK73znO7nxxhtZsWIFAK9+9au55ZZbePOb38wHPvABHn74YT796U/zqU99qv667373u3ne857HX//1X3Pttdfyla98hQcffJDPf/7zT+n9iYiIiIjIPHHv38EPP2yOQwkzn9yz3wKd61vbLxERWfIs3/f9E2n4spe9jDe/+c1cd911OI4zKy9+991384IXvGDa9Te84Q187nOf4/rrr+fXv/41Y2NjrFixghe/+MX8xV/8RdPiDSMjI7zzne/kW9/6FrZtc8MNN/CZz3yGeDxeb7N161ZuvvlmHnjgAbq7u3nXu97FBz7wgabX/OpXv8qHP/xh9uzZw8aNG/nkJz/JNddcc8Lv5USXxxURERERkTn24L/At99jji97N1z+RxDRZ3YRETm9TjQrOuFwTo5N4ZyIiIiIyDy07b/ha38A+PCc98KVf97qHomIyBJxolmR1gIXEREREZHF6YnvwTfeBvjwrD+AKz7S6h6JiIhMo3BOREREREQWn10/gdveAF4VttwIL/krsKxW90pERGQahXMiIiIiIrK47H8A/vMmcEtmNdbf+Qew9aOPiIjMT/oOJSIiIiIii0f/w/ClG6CSgzNeAK/4AjiBVvdKRETkqBTOiYiIiIjI4jC0A/79eiimYfVFcOOXIBBuda9ERESOSeGciIiIiIgsfGP74N9+B3JHoG8LvPo2CLW1ulciIiLHpXBOREREREQWtvEBE8xlDkD3JnjdNyDa3upeiYiInBCFcyIiIiIisnDlR+DffxdGdkH7Gnjd7dDW3epeiYiInDCFcyIiIiIisjCVxuFLr4DBRyDeB6//JqRWtrpXIiIiJ0XhnIiIiIiILDyVAvznTXDwIYh2wutvh84zWt0rERGRk6ZwTkREREREFpZqGW57A+z5KYQS8Lqvw7JzWt0rERGRU6JwTkREREREFg7PhW+8Dbb/AAJReM1tsOJpre6ViIjIKVM4JyIiIiIiC4Pvw7feDY98HewgvOo/YO2lre6ViIjIU6JwTkRERERE5j/fhx/8Kfz638Gy4RX/DBuvbHWvREREnjKFcyIiIiIiMv/d/XH4xWfN8cv+Hs79ndb2R0REZJYonBMRERERkfnt3r+Hn3zcHL/kk/C017S2PyIiIrNI4ZyIiIiIiMxfD30Rfvghc/zCD8NFb2tpd0RERGabwjkREREREZmftv03fOs95viyd8Plf9TS7oiIiJwOCudERERERGT+eeL78I23AT48801w5S1gWa3ulYiIyKxTOCciIiIiIvPL7nvgtteDV4XNvwfX/LWCORERWbQUzomIiIiIyPyx/wH48o3gluCsa+H6z4KtH1tERGTx0nc5ERERERGZH/ofhi/dAJUcnPF8eMUXwAm2ulciIiKnlcI5ERERERFpvaEd8O/XQzENq54NN34ZgpFW90pEROS0UzgnIiIiIiKtNbYf/u13IHcE+jbDa74KobZW90pERGROKJwTEREREZHWGdsP//pSyByAro3w2m9AtL3VvRIREZkzgVZ3QERERERElqjRPSaYG9sH7Wvh9d+EeE+reyUiIjKnFM6JiIiIiMjcG95Zq5g7CJ1nwhv+H6RWtrpXIiIic07hnIiIiIiIzK0jT8C/vgyy/dC9Cd7wLUj0tbpXIiIiLaFwTkRERERE5s7Ao/BvLzOLPyw7tzaUdVmreyUiItIyCudERERERGRuHN5qVmUtjJhVWV/3TWjranWvREREWkrhnIiIiIiInH4HfwX//rtQHIMVT4PXfh1ina3ulYiISMspnBMRERERkdNr/y/hP26AUgZWPRte+98QSbW6VyIiIvOCwjkRERERETl99t4LX3ollLOw5lJ4zW0QTrS6VyIiIvOGwjkRERERETk9dv0E/vNGqORh/XPhpq9AqK3VvRIREZlX7FZ3QEREREREFqEdP4Iv/54J5s68Al59m4I5ERGRGahyTkREREREZtcT34fbXgduGTZdDa/8VwhGWt0rERGReUmVcyIiIiIiMnse+xb812tNMHf2dfB7/65gTkRE5BgUzomIiIiIyOx4+Otw2xvAq8B5L4dXfhECoVb3SkREZF5TOCciIiIiIk/db/8LvvZm8F3YciO8/B/BCba6VyIiIvOewjkREREREXlqfv0f8I23ge/B014L138WHE1vLSIiciIUzomIiIiIyKl78AvwzZsBH575Jnjp34HttLpXIiIiC4bCOREREREROTX3/1/49nvN8UVvh2v/Bmz9iCEiInIy9J1TRERERERO3r1/B997vzm+9A/h6o+DZbW2TyIiIguQJoIQEREREZGTc8//gbv+whxf/kfwwg8rmBMRETlFCudEREREROTE+D7c/XH4ycfN+Qs+BM97f2v7JCIissApnBMRERERkePzfbjzf8HP/sacX/nn8Jz3trRLIiIii4HCOREREREROTbfhx9+GO77e3N+1Ufhkptb2ycREZFFQuGciIiIiIgcnefB9z8Av/y8Ob/m/8Cz39LaPomIiCwiCudERERERGRmngffeS889EXAgpf+LTzjja3tk4iIyCKjcE5ERERERKbLj8D/exc8/m2wbPidf4ALX93qXomIiCw6CudERERERKTZ7p/C198K44fADsLv3gqbX9HqXomIiCxKCudERERERMRwK3D3x+Gnfw340LUBbvhnWHFhq3smIiKyaCmcExERERERGN0DX/sDOPCAOX/aa+HqT0A43tJuiYiILHYK50RERERElrpt/w3ffi+UMhBOmYUfzn95q3slIiKyJCicExERERFZqkpZ+N774TdfMuerL4KX/yN0rG1tv0RERJYQhXMiIiIiIkvRwV+ZYawjO81qrM/9Y3ju+8HRjwgiIiJzSd95RURERESWEs+D+/4O7vwL8CqQXGmq5dZd1uqeiYiILEkK50RERERElorxfvjG22HXj835OS+Fl34GYp2t7ZeIiMgSpnBORERERGQpePKHcPs7ID8EgShc/TF4xhvBslrdMxERkSVN4ZyIiIiIyGJWLcEdH4H7P2fOe8+HG/4Zlp3d2n6JiIgIoHBORERERGTxOvIE/PebYWCbOb/o7XDlLRCMtLZfIiIiUqdwTkRERERksfF9+NW/wvf+BKoFiHXB73wWzrq61T0TERGRKRTOiYiIiIgsJoVR+Na74dFvmvMzng+/+38h0dfSbomIiMjMFM6JiIiIiCwWe++Dr/0BZA6AHYAX/hlc+odg263umYjIkuD7PpUDWUr7MtixIE4yRCAVxkmFsIJOq7s37/m+j7UEFypSOCciIiIistC5Vbjnr+CeT4LvQcd6eMU/w8pntLpnIiKLnl/1KO1OU3hkmOKjw7iZ8ozt7FgAJ2mCOicVrm3Nx3Z4acU0XtmlvC9DaVea0q40TjxI12vPbXW35tzS+r8uIiIiIrLYjO2Dr70F9v/CnF9wE1zzVxBOtLZfIiKLmFeqUnxilMKjwxQfH8EvuvV7VsghfEYKv+rhpku4YyX8ioeXr+Llq1T6c0d9XivszBjaOamwqcBLhrCigQVbXTY1jCvvHwfXr9+3wg6+52PZC/P9nSqFcyIiIiIiC9XDX4dvvQdKaQgl4LpPwZZXtrpXIiKLkjtepvjYCIVHhijuGGsKlex4kOi5XUTO6yJyZjtWoDGdgO/7+EXXBHXpEm66THXiOFOuX/OLVfySS3UwT3Uwf9R+WEHbhHbJEE5HhOCyKIFlMYK9bTjt4XkVbHlll/LeSWHcgeYwDsBJhgifkSJ8RjvhM1Iwf7o/ZxTOiYiIiIgsNOU8fO/98Ot/N+crnwE3/DN0rm9tv0REFpnqUIHCo8MUHhmmvC8Dk3KlQFeEyHndRM/rIrQ6cdRQzLIsrGgAOxog2Nd21NfySi5uphHgTQ7zTJBXwstV8Sse1aEC1aECkG5+raBtgrplMQK9Zh/sjeF0ROYktDvhMO7M9logl8LpjCzYSsDZonBORERERGQhyRyGr9wEh34NWHD5++D5HwQn2OqeiYgseL7vUzmYpfDIMIVHh6kONFewBVfFiZ7XRfTcLgLLYrMaKtlhB7snRrAndvT+VbxagFfGzZSoDhepDOapDuSpHMnjVzwqB7NUDmabHne6QrtpYdz+cfCmhHGpUL0qTmHczBTOiYiIiIgsFId+A/95E4wfgmgnvPJf4Iznt7pXIiILmu96lHalzfxxjw7jpict6GBbhM9MmSGr53YRSIVb11FqIVtXlEBXdNo93/WpjhRMUDeYP6HQjoBNcFm0Ftq1NUK7zplDO680KYzbfbQwLlwP4hTGnRiFcyIiIiIiC8Fj34KvvxUqeejeBK/+L+g8o9W9EpElwPd9qHpmUYOK2ZvNbT4ue/jVKfcmrpXdSfdq28S1sodfdcG2sCMBrEgAO+JgRwK1c6dp33zsYEcDWOEAlnPiAZBXcik+OULxkWEKj4/iF6v1e1bIJnJWJ9Hzuoic1YkdXRjRieVYBGuVd5OjO9/zqY4Ua6FdzuwH8lSOFKDqUTmUo3IoBxxpPChgE+yJ1qvs/LJHadcY5QPZmcO4M1P1eeOcjrDCuJO0MP6EiYiIiIgsVb4PP/sU3HmLOT/zhfCKf4Foe0u7JSKnn+96eIVqbZXPSn21T69QOy5WwfPxXd8EJp6PX9/TfO564FE/x53ctnk/+Tn9Wtu54o1XTvmxVsiuBXsmtJsc8lnR2jXHprQrTXHHKFSnLOhwzqQFHYL2MV5pYbFsi2B3lGB3lOh5XfXrvufjjphhsZUBswhFZSBHZbAW2h3OUTmcozDl+Zz2yZVxCuNmg8I5EREREZH5qlqCb70bfvuf5vxZb4GrPw6OPsaLLCS+6zcCtcJRgrZ8ZVoQ55fcVnd9OhusoIMVtGvb5ONjn9sT5yEbK2BjhZza3tz3XR+/WMUrunjFKn6hdlyq4teueYVJx0XXrHBa8QBMBV65jJcpH+dNGE5XpD5/XGhNcl6tcjoXLNsi0B0l0B0leu6U0G60aKrrakNjsS3C600gF+iMtLDXi5O+q4uIiIiIzEe5Ifiv18K++8By4CWfgGe/pdW9EpEa3/PxsmXcTLk+Ob+bqZ2Pl/FytbAtV3nKIZsVCWC3mdU+7VgQO1Y7jgawHBtsywRLtoVlA4415VrzHufo96zaY6deq4dtzvyrKPNdrx7UTQv2itXm62WXYG8b0fNnf0GHxcKyrfq8dpNDOzl9FM6JiIiIiMw3g4/Bl18FY3shnIRXfhE2XNHqXomcMr/q1UKS5oqnyeEJ1EKo8JThiOHGfGNW0D7tYYrv+/hFtxG2pcu44xOrYzZCOG+8DCc52tOKOM3h2kzHU69FA0uuoutkWY6N02ZDm1atloVJ4ZyIiIiIyHyy/Ufw378PpQx0rINX3wY9Z7W6VwuS7/lUhwqU92Qo7c1Q3pvBK1RN1ZBjmQogxzLD6pxaNZEzcWzX2tSOA5Pa1x9nNaqWAs3PF1oZn3E1xYXIr7h4hYlQrRawlY4RtJXcKUFctWlur6fEtsy8YZMCOzvcPL/YRMA3NdibOPdLbnOV26QQzqsdTwyTPC4L7EQIJxnCSYZre7PZbcEpVW7Bk1qwQESWDoVzIiIiIiLzge/DLz8P3/8T8D1Ycym86j+gTUOKTpRfcSkfyJogbk+G8r4MXr56/AeeJsFVcWKbu4lu7llQczT5vk+lP0/h4SEKDw+Z+aZmiRVypgdpteAMi0bQV5oc+Ln4paqpUvN88/80X8WlNGv9mrGv0cCksK0WvKVCOImw2SdD2PGQqtpEZkkuXaIwXqZ7VaLVXZlzCudERERERFrNrcD3PgAP/rM5v/A1cN2nIBBubb/mOTdbbqqKKx/MTltV0graBFclCK9LElqbJNAeNpPOu55ZrdL1zKqUk69VZ7hf9fAnVrCsNj9m8jXfMxPal/ePUzmQJX0gS/p7e0xQt6WH6OZuAh3zL6jzfZ/KgSz5h4coPjxEdbjY3MCiXoXWCNUaFWmmmm3SUNT6vnl46qkGWb7vm8n+a8Hd5Mq8iUq+yRV8fmnmSj6/4kHAmlLlNj14sxMh7JAzC19ZETmaQrbMwSfGOPjEKAefHGW0P0/v+iSv+MAzW921OadwTkRERESklQpj8NU3wK67AQtedAtc+oegScqb+J5P9Ui+URW3NzM9QALsRJDw2iShtSnC65IEV7S1ZAJ7N1um8Mgwha1HKO1KN4K67+4mtDpBdEu3CeraWxfU+Z5PeU+GwiNDFB4exk1PqkQLWEQ2dhA9v5vIWR3YsWBLK8Qsy8IKOxB2eCqRme/6ZrVR/f0SmXOlfIWDT45x8MlRDj4xyvDBXHMDq7bQiuthz8OFR04ny/f9WRr8v7RlMhlSqRTpdJpkMtnq7oiIiIjIQjC80yz8MLwdgjG44Z/g7Gtb3at5wa+4lPdn61Vxpb0Z/MKUIaoWBJbF6lVx4bVJnM7IvAte3GyZwsO1oG53umkRgdCaBNHNtYq69tNfKem7HqVdaTNk9ZFhvGylfs8K2UTO7qwFcp3YYVWOicipKxerHN6R5sATJowb2j/O1ASqc0UbK8/qYNVZHazY2E5kkS3qcaJZkcK5WaJwTkREREROyp6fwX+9FgqjkFwJN30Flm9pda9axh0vmxCuVhVXPjTzENXQ6gShtUlC65KE1ySxowtrMJA7Xqbw8BD5rUOU90wJ6tYmiW7uJra5Gyc1e0GdX/Eobh81gdxjI00hpxUJED23FshtbMcKKpCTxcPzfColl3KhSqXoUi5VqZRc8DAVlNSqMm3Assy5bZlh3JjrllU7tyYfWzOeN44bj7UdC8u2sGubZZvXmG+/RJgNlbJL/840B58Y5cATowzuHcf3mv8db++NsfKsDlZuamflpg5iyVCLejs3FM7NMYVzIiIiInLCfvXv8O33gleBlc+AG78Mib5W96qJmylR2p2h0p9rzL/m+dP3E/OweX5zO29SO3fKuTfz801lJ0JNVXGtGqJ6uriZWlC37QjlPZnmoG7dpKAuefJBnVdyKT4xQuGRYYqPjeCX3fo9Ox4kem4X0fO7CZ+Rwgosnq+pLHxu1TNBWrFaD9bKJbdxbcq+XHQbAVyp+V61fIKr7raAVQvq6qGdMxHeNe8nwr2Zr4MTcIgmgkTjQaKJUG2rHceDRJMhgqdp/kS34jGwJ82Bx0c5+OQY/bvTeFNWZk52R1i5qaMWyHUQ71hac6kqnJtjCudERERE5Lg8F370Ebj378z5eS+H6z8LwWhLu+X7Pu5wkdKeNKXdGUp70rgzzOd2WlkQ7I3VquJSZohqR3hRVpfMxM2UKGwbIr9tyAR1EyxTURfb0kP0/G6cY1SZeIUqhcdHKGwbovjkKFQbwYSTChE9r5vo+V2E1qW0wqicNr7nUy5WKeXNVsxXKM9wXMpXzL7QOC8XXNzq7AdqtmMRigQIRhyCEwuT+D6+bxbKbhz7jXMPfHzwzXvy/Vp+PnGvFqXU79Ua1J+ndn0+CISdSeHdpOAuESKWCBJJhIglQkTiQaKJIIGjVNC6rseRveP1Yar9O9NUK83/v9raw6w6q4OVZ5nKuGR3a7+/tZrCuTmmcE5EREREjqmUha+/BZ74rjl/3p/A8/+kJQs/+J5PZSBPeU+a0m4TyHnj5eZGFgSXtxFancAKB8wPs7UKjvq+Vu0x4962p7ef8XE22BZ21MEOL6whqqeLmy6R3zZEYdsQ5b1Tgrp1KWJbuk1QlwjhZssUHx0h//AQpZ1jTRWITmeE6Pm1QG5VQoGcnDTf98kMFRgbLNRCtQrFWrhWroVrxXqwVq2HbcxCyhAI2iZMiwQIRZx6uFbfh49xL+IQDAcIRR1C4QBOsDXVoRNhn+/6eLXqYc/z8Vwf36/tvUn3Jl33alXJTece9esTj6mUXYrZCoXxMoXxCoVsbV87P5WwMxhxmgK8aCJIbqzM4R1jZljwJNFEsD5n3MpNHaSWRZfML1VOhMK5OaZwTkRERESOamw//OdNMLANnLCpltv8ijl7eb/qUT6Upbx7ojIug1+csriCYxFalSC8PkVovRlGakcUlrVadaxk5orbeoTyvvHGjdpiGNXBfFMQElgWI3q+GbIaXN6mH5LlpJQLVQb2ZhjYlWFgd5r+3RmKkxYNORmBkE04GiDcFiQcC5jjmDkOxQJEaseNLUgoGiAYNuHaUlut83TwfZ9K0a0HdvlMmWK2Qn68THHc7AvjZQq1cK84XsHzjh0RhdsCZpjqJhPIdSyP6d+ZYzjRrEjfbUVERERETqcDD5pgLjcIbcvgpv+EVc88rS/plV3K+zKUdmco70lT3jeOP2XokRWyzVxu61ImkFsd12IA81CgPUziOStJPGcl1bEihW1DFLYOUd4/TnUgD0BwZdwEcud1E1wWa3GPZaHwPZ+R/hwDuzMM7DJB3Mjh3LSqNztg0dHbRiTeCNcmB20TwVrTcbR11WrSYFkWoWiAUDRAquf47X3fp5SvNgV2E1V4oUiAFZva6V4ZVxXuaaBwTkRERETkdNn233D7/wC3BL3nmxVZ21fP+st4+QqlPbWVTnenKR/MwpTqBzsWMHO5rU8SXp8iuDxuhpbKghFoj5C4fBWJy1dRHS1S3j9OaFWCQGek1V2b13zPp5CtkM+UyKfLVMte0xDDyfvGMcdpUxuq6E+5V7uGD9FkiERHhERnhHhnmERnhEg82LIqo0K2bIK43Rn6d6UZ3JOhXHSntUt2R+hdn6J3fZK+9Sm6V8UVtC0RlmURaQsSaQvS0erOLDEK50REREREZpvvw90fh5983Jxvegnc8I8QTszK01fHSpT3moUbyrvTVAby06pdnFTYDE9dnyK8LkmgJ6Zqh0Uk0BEh0LG0Qzm36pHPlMmlTejWdJwukavt8+MVsyLwPOAEbRKdERKdYeKdteCuo3Ee7wgfdTL+k+G6HsMHsiaI251mYFeG9JHCtHaBsEPvugS961P0rU/Suz5F7BiLjojI6aFwTkRERERkNlUKplruka+b80v/EK78c7BP7Qfu+nxxe8cp78tQ3pvBzZSntQv0RM3w1HUmkFvqwY0sXOVitRa2TQRskwO4xrVi7iTmQrMgGg8SS4YJhh1sx8KywbbNIiWWbdWPm/cc417zc9iOhWWZve9DPlMmO1JkvLbl02XcisfYQJ6x2pDkmUSToeYA7wSq77KjpfoccQO70wzuHcetTF8IoKMvRu8ZjSCuc0UbtkJ7kZZTOCciIiIiMlsGHoFvvhMO/QrsAFz3t/D0153UU7jjZVMVty9jArmD41CdOgkUBJfHCa9LmqGq65I4CVW7yOwbG8jTvzuNV51YZdKrrxxZX2nSbV5dst6udu66zatUmsc1P4/n+pQLVfKZ8rTVII/FdixiyRCxVJi2lNnHkqH6cVsqRCwZJpoM4rR4gQG34pEdK5nAbrRo9sNFxkdL9RCvWvYoZMoUMmUG98z8PJOr7wIhhyP7xsmOlqa1C8cCpiLujCS965P0rksSjgVP75sUkVOicE5ERERE5KkqjJlhrL/8PPguRDvgVf8B655zzIf5rk+lP2cWb9ibobxvHHekOK2dHQsQWpsktCZJeG2C4KoEdkiLN8jpUSm77PzVII/+7BCHd6Rb0odA2KEtGSKWCtGWCjfvk2YfS4WIxIILZri2E7RJ9URJ9URnvO/7PqVctV5pNz5SC/BGSmRHj119Z9kWXSvb6FufovcMM1dcallUq2iKLBAK50RERERETpXnwW//E370EcgdMdfOeRlc9dEZF35wcxUzNHXfOOW9Gcr7p6+iigXB3lg9jAutTRLoiuiH7HnOrXpUSi6Vkku17JLoiszK3GFzxfd9juwb59GfHWL7AwP1hQIsC/rOTBGOBZuGb9qOGdo5sbccC9uxG9ecxvDP5vb2tOeYOA9FHGK14C0UWXo/qlqWRSQeJBIP0rNm5vkpTfVdLbAbKVIqVOlZHadnTZJgeOH8eRORZkvvXzwRERERkdlw6Dfw3T+GA780510b4SWfgA1XAGaFyOpgvl4RV96boTo0fUJ2K+KYirg1CRPIrU5gL8FgYq74nk+l7NaDtHqgVpp+rVJyqRRdKqVq47w8ca1589zmoceBsMOaczpZt6WLted3z9tJ9ou5Ck/+sp9Hf3aY4YPZ+vVkd4RzLl3O2ZcsJ675C+cNU30XI9UTa3VXRGQW6bu+iIiIiMhJ8HPD+Hd8HO/Xt+P5cTzn2XjnvhZv1RX4B33c7bupHMpS3jeOP8PcWYGeaG14apLQ2oRWUZ1FnuuRS5fNcMDRItmRUu24VB8iWMpXT2sf7ICpDquWXHb95gi7fnMELOhbn2Ldli7Wb+mhY3mspZWQvudz4MlRHvv5YXb9+ghu1VRvOgGbM57Ww7mXLWflpg79uRQRmSOW7/vzY03pBS6TyZBKpUin0ySTyVZ3R0RERESOw6+4eIUqXr5q9k3HlaZrfqGKl6/gjWfxyhZwYsPHrJBNaHWiPjw1vCaBrQnZT4nv+5Ty1XrINjlwm5iTKzdW4oR/urEgGHaOswWOfT/SfB4IOziOje/7DO3Psvu3R9izbZgj+8abXjrZHWH9lh7WXdDN8g2pOVuoIDta5PH7DvPYvYfJDDXmNuxaFefcy5az6dl9RNr051NEZLacaFakcG6WKJwTERERmZ/c8TLFx0coPjFCZbBQD92oesd/8LE4YMdC2NEAdixg9rUt0B0ltDZJsLcNy1H10YmoVlyy9VUrS7XKt+krWR6P7VjEO8LEOyIkOiPmuLN23BkmGg8RjDgEgvacVa+NjxTZu22I3VuHOfDECN6k1XfDsQBrzuti/ZZu1pzXOeurabqux56tQzz288Pse2S4Hl6GIg4bn93HuZctp2dNQnMaioicBgrn5pjCOREREZH5wfd8KgezFB4fofj4CJVJ82hNY1ML1ILY0QDWRMA2EbY5Jeyd38Le/0NsK4sd8rEvexP2Ja/HioTn7k0tUJ7rUchWyGfK5DNlCrX99K1EKXdiw02jiWAtdDNh29TjWCI0r4djlotV9j82wp6tQ+zZNkwxW6nfs22L5RvbWb+lm3Vbuo+6queJGO3P8ejPD/PELw5TGG+8xoqN7Zxz2XLOfPoyglrxV0TktFI4N8cUzomIiIi0jlesUtw+SvHxUYpPjOBNCjwAgqviRM/uJLQ2iR0L1gM4K+zMXDHkVuHBf4a7/hJKaXPtwtfAlX8O8WWn/w3NY57nU6wFboVasJbPVMx+vEw+XaYwXgvjshU4iZ82AiG7VuEWIVGreDMVcBPH4QW1AurxeJ7PwO4Me7YeYfdvhxjtzzfd71zRxrrN3ay/oJtl65LYxwkdKyWXHQ8N8tjPD3F4Z7p+PZoMcc4lfZxz6Qrae7WQgIjIXFE4N8cUzomIiIjMHd/3qQ4VKD5mquNKezLgNT7WWmGHyMZ2Imd3EjmrEydxEitl7vm5WYV18BFzvvwCuOb/wOpnz/K7mJ98z2d8pMjwoRwjh7KM9edNdduk4O1kfoKwLIgmQkSTIdqSZh+btE2ct6XChGOBJT28cmwwX6uoG+LQ9jT+pD/T0USQtZu7Wb+lm9XndBIMm5DS930G94zz6L2H2P7AAJWiWYTEsmDt5m7OuXQ5azd3zdm8diIi0qBwbo4pnBMREZHFyPf9eROW+FWP0q40xcdHKDwxgjtcbLof6I6aMO7sTsLrkliBkwwjMofhjv8Ptt1mziPtcMX/B894I9iLp1prssJ4meGDWRPETewP5ajMsMpsEwui8SDRxPSgrS0ZIpYM10O3SDx43Iovma6Yq7DvkWH2bB1i7yMjlAuNYb9OwGbV2R30rEmw6zdHGDmUq99L9kQ597LlnH3xctraNfRaRKSVFM7NMYVzIiIislhUhgoUHx2m8Ngw5b3j2NEATjKEkwrjpEI4yXDjuLa3w4HT0hc3U6L4+CiFx0co7RjFn7wggGMRPiNF5KxOomd3Eug+xfm5qmW4/1b4ySegnAUseMYb4IX/H7R1zcr7aLVyscrIYRO8DR/M1veT5yKbzHYsOvra6FzRRufyNtraw8RSIWKJELFUiGg8iK1KrDnjuh6Ht4+xe+sQe7YONa20CuAEbc58Wg/nXraCFRvb5/WceyIiS4nCuTmmcE5EREQWKt/zKe/LUHh0hOJjw1SPFE76Oayw0wjrkpODu3A92LNPYMii7/mUD4yb1VUfH6EyqSIIwE6EiJzVQfTsTsIb2596KLjzx/C998PQk+Z85TPhmr+ClU9/as/bIq7rMdafr4dvE0NTp4Y5dRYku6N0rWija2WczhVtdK2Ik+qNahjkPOX7PiOHc+zZOsSRfVlWbmpn47N6ibTN7iqvIiLy1J1oVnR6fsUpIiIiIvOaV3IpbR+l8OiwWUBh8kqZtYq06DldhDe241d93HTJbJnytGO/6OKXXKqDBaqDxwj2AlZTWDdxHEiF8V2P4hOjFJ8YxctNquayILgqQfSsDiLndBFc3jY7VUFj++EHfwqP/T9zHuuGF90CF7wa7PkfSnmeT7Y2L9zkSrixgTyeO/Pv3mPJkAnfJkK4lXE6l7fV5y6ThcGyLLpWxOlaEW91V0REZJa0NJy75557+Ku/+iseeughDh8+zDe+8Q2uv/76+n3f9/nIRz7CP/7jPzI2NsZll13G5z73OTZu3FhvMzIywrve9S6+9a1vYds2N9xwA5/+9KeJxxvfrLZu3crNN9/MAw88QE9PD+9617t4//vf39SXr371q/zZn/0Ze/bsYePGjXziE5/gmmuuOe1fAxEREZG54qZLFB4z1XHFHWMwKcSxIgGiZ3cQObeLyKYO7MiUj4nL2476vF7Jxc3UArt0ecYQz8tWoOrjDhenzRU3lRV2iGzqqC3m0IETP4nFHI6nUoT7/g7u+WuoFsCy4VlvgRd8EKIds/c6s8D3fQrjFcYG8owN5s1+IM/YYIHMkQJu1ZvxccGIQ9eKNjpXxk1F3Io4nSvbiM7m11FERERmTUvDuVwuxwUXXMCb3vQmXv7yl0+7/8lPfpLPfOYz/Ou//ivr16/nz/7sz7jqqqt49NFHiUQiALzmNa/h8OHD3HHHHVQqFX7/93+ft771rXz5y18GTAnhi1/8Yq688kpuvfVWtm3bxpve9Cba29t561vfCsC9997LTTfdxMc+9jGuu+46vvzlL3P99dfzq1/9ivPPP3/uviAiIiIis8j3fSqHc7X540aoHMw23Xe6IkTP6SJyTm0BhVMcxmiHHeyeGMGe2NH7UvVMYHeUEM+veoTPbG8s5jDbQyp9H574nqmWG91trq251Axh7Wvt571yoWrCt8E8YwMFxgbypGthXLl49IUZ7IBFR28bXSvbmiriEp2RebOIh4iIiBzfvJlzzrKspso53/dZsWIF//N//k/+6I/+CIB0Ok1vby9f/OIXufHGG3nsscc499xzeeCBB3jmM58JwPe//32uueYaDhw4wIoVK/jc5z7Hhz70Ifr7+wmFzG8L/+RP/oTbb7+dxx9/HIBXvepV5HI5vv3tb9f7c/HFF3PhhRdy6623nlD/NeeciIiIzAcTK5oWHhum+OgIbrrUuGlBaE2SyDmdRM/pJLAstvhDHN+HnXfCjz8KBx8y1+J98OL/DZtfAXP0/t2KR3qoUK+CS9cq4MYG8uQz5aM/0IJEZ4T23hjty2K090Zr+xjxzohWQRUREZnHFvycc7t376a/v58rr7yyfi2VSnHRRRdx3333ceONN3LffffR3t5eD+YArrzySmzb5v777+d3f/d3ue+++3juc59bD+YArrrqKj7xiU8wOjpKR0cH9913H+973/uaXv+qq67i9ttvP2r/SqUSpVLjw24mk5mFdy0iIiJy8txcheITIxQfG6H4xCh+uVFtZQVtwhs7iJ7bSeTsztkdIjrf7b4H7vpL2P8Lcx6IwkVvg8v/J0Rm/5epvu+TT5cZOZRjtCmEyzM+XORYvxKPJkO0L4tOCuHMPtkTIRDUnHAiIiKL2bwN5/r7+wHo7e1tut7b21u/19/fz7Jly5ruBwIBOjs7m9qsX79+2nNM3Ovo6KC/v/+YrzOTj33sY9xyyy2n8M5EREREnhrf86kOFSg+PkLhsWHKezIwKfixEyGi53Sa+ePOTGEttXBn733w47+EPT81504YnvVmuOw9kOg95kNPhO/75DNlRg7nGDmUY+RwjtHavpSvHvVxwYhDR2+MVD18M2FcalmMcHTefiwXERGR00yfAk7RBz/4waZqu0wmw+rVq1vYIxEREVmMJoK4ysEs5dpWOZTFLzXPRRbsayNybifRc7oIrozPzoqmC82BB00ot/Muc24H4RlvhMvfB8kVp/SUhfFyPYAbOZRj+FDWhHC5mUM4y7ZI9UTp6KsFcJMq4aKJ4OIfRiwiIiInbd6Gc319fQAMDAywfPny+vWBgQEuvPDCepvBwcGmx1WrVUZGRuqP7+vrY2BgoKnNxPnx2kzcn0k4HCYcDp/COxMRERGZme/6VI/kTQA3EcQdzuKXZ1iVM2ARXpcyFXLndBHojMx9h+eLQ78xc8pt/4E5twNw4WvguX8M7Sf2y9NitsLI4awJ4ibCuMM5CuOVmR9gQao7SueKtsa2PE5HbwwnOMuLWYiIiMiiNm/DufXr19PX18edd95ZD+MymQz3338/73jHOwC45JJLGBsb46GHHuIZz3gGAHfddRee53HRRRfV23zoQx+iUqkQDAYBuOOOOzjrrLPo6Oiot7nzzjt5z3veU3/9O+64g0suuWSO3q2IiIgsNX7VozKQp3Io2wjjDuegOj2Is4I2wRVxgivaCK1MEFwZJ7gsOvsrmi40/Q/D3R+Dx2uLelk2XHCTCeU618/4kFK+0lQJN7E/1qIMye4InSvidC6fCOHa6OiLEQgtseHCIiIiclq0NJzLZrPs2LGjfr57925+85vf0NnZyZo1a3jPe97D//7f/5uNGzeyfv16/uzP/owVK1bUV3Q955xzuPrqq3nLW97CrbfeSqVS4Z3vfCc33ngjK1aYoQuvfvWrueWWW3jzm9/MBz7wAR5++GE+/elP86lPfar+uu9+97t53vOex1//9V9z7bXX8pWvfIUHH3yQz3/+83P69RAREZHFya94VPpz9SGp5YNZKv05cKevEGCFHRPCrYgTXJUgtKKNQE9saQ5TPZojT5hQ7pFv1C5YsPmVVC/9Y7LOKrJHSuSePEx2rER2pGT2o0WyoyWK2aNUwmFWRZ0I3yaq4Tr62giGFcKJiIjI6WP5/rHWjTq97r77bl7wghdMu/6GN7yBL37xi/i+z0c+8hE+//nPMzY2xnOe8xw++9nPsmnTpnrbkZER3vnOd/Ktb30L27a54YYb+MxnPkM8Hq+32bp1KzfffDMPPPAA3d3dvOtd7+IDH/hA02t+9atf5cMf/jB79uxh48aNfPKTn+Saa6454fdyosvjioiIyOLmlV0qh3ONYamHslQG8uDNEMRFAoRWthFcGSe0Mk5wRZxAV1RB3AyqZZfs7u1kf/of5LY/zLjbSc7tIhs7n2xwPdmsdczgbbJ4R9hUv00O4pa3EYrM20ElIiIisgCdaFbU0nBuMVE4JyIisvT4nk91ME95/3h9qwzkYIYp4uxYoBbCJQiuNJVxTmdECwQAbsVjfKRoqtvGSmRHzZYbLTI+WiI3kqeYn+GLOoNA0CbeGaGtPUyiI0xbR5h4R4R4R5h4R5hEV1Qro4qIiMicONGsSJ9MRERERE6A7/u46XJzEHdwfMbFGux40FTCTVTErYzjpMJLOogr5ipkhgqkj5gtc6RQP8+OleAEfl0coEQ8WiDe1028t7sewsUnBXDhWGBJf51FRERk4VE4JyIiIjIDr1g1IdyBccr7s5T3Z/BmWLnTCjmEVsUJrk4QXp0guDqBkwwtuYDI83xyY6V68JaeFL5lhgqU8tVjPj4QshsVbnGPePpB4kd+TJs1QNweJr7hXMJXvA9rzbPn6B2JiIiIzA2FcyIiIrLk+dXagg2TquKqRwrTG9oQ7GsjtDpBaFWC0JrEklqsoVp2SQ9NDt+K9fAtM1zAqx67/C2WDJHqiZLsjpLsiZKqbcnuKNFEECt3BH72t/DgP0O1CBFg3eXwgr+EtZfOyXsUERERmWsK50RERGRJ8X2f6nCRyqQgrnwoO+PKqU5npBHErTYLNtihpbFyZyFbZt8jIxx4YpT0YJ70kQL5dPmYj7Edi0RXpB64Td0fddXT7BH40d/BL/8RKnlzbfVF8IIPwRnPm+V3JiIiIjK/KJwTERGRRcf3fLxshepYETddwh0r444VqRwpUN4/jl+YPsTSjgUIrkqYMG51gtCqOE481ILet4bv+wwfzLFn2xB7tw3Tvzs94zxwoWigFrZND+HinRHsk6kiPPiQCeQe/hq4teBv5TPgBX8KZ14BS2xosIiIiCxNCudERERkQfF9H79QpZo2gZsJ38xWnTjOlGeshKsLWIRWxBtB3OrEklw5tVJ2Ofj4KHseHmbvtiGyo6Wm+12r4qw9v4vulfF6CBdue4oLLlRL8Mjt8Mv/a8K5CSueDs/7AGy6SqGciIiILCkK50RERGRe8Ssu1VrYNhG8VSeOa+czrZA6jQVOMoTTHsFJmX2gM2IWb+hrwwrYp//NzEPjI0X2bhtiz7ZhDjwxiltpfC0DQZtV53Sy9vwu1p7fRaIzMnsvnD4ID/0LPPRFyB0x15wQnPdyePZbYdUzZu+1RERERBYQhXMiIiLSEu54ub4aaqU/b6rgxkp4x1nVc4LdFsBJhevhW6A9gtMealxLhLAcVWB5ns/ArjR7tg2z9+Ehhg/mmu7HO8Os29zNus3drNzUTmA259Tzfdh7r6mSe+zb4LvmemIFPOtN8PQ3Qrxn9l5PREREZAFSOCciIiKnnVesUj4wTvlAlvL+cSoHxnGPsbiAFbJx2sM4qbAJ3WqVb/XwLRVeMgsznIpirsK+R4fZu22YvY8MU8o1Ak/Lgr4zU6zb3M3a87voXNE2+8N5yznYepuZT27wkcb1tc+BZ78Fzr4WnODsvqaIiIjIAqVwTkRERGaVX3EpH8rVQ7jygSzVocL0hhYEemKEVsUJrYzjdEbM0NNUCCv6FOc1W2J832fkcI6924bZs22I/l0ZfK8x5144FmDNeV2s29zFmnO7iMRPUzA2sgse+Gf49b9DMW2uBWOw5ffgWW+BvvNPz+uKiIiILGAK50REROSU+a5HZSBvhqZOVMUN5GCGKeGcjjChVY2VUIMr49hhfRQ5VdWKy8Enx9i7dYg9Dw8zPlxsut+5oo11m7tYe343fWcksZ3TNMee58HOu+CXn4ftP6S+xGvHelMld+GrIdpxel5bREREZBHQJ2IRERE5Ib7nUx0uUD6QpVKbK658KAfV6UmcHQ+aIG5VnODqhKmMi4da0OuFyXU98uky2dES2dEiubFS7bhEbqxo9ulyU3WcE7BZeVZHLZDrItkdPb2dLKbhN182Q1dHdjaub7gSnv02s7eX5qIbIiIiIidD4ZyIiIhM4/s+brpcG5ZamyvuwDh+0Z3W1go7ZmjqqgTBVQlCq+M4qbCGpR6FW/HIpWth20TQNloiWwvgcqNF8pkyvn/852pLhVi7xSzmsOqsDoLhOZiHb/AxE8j99itQqS0uEU7Cha8xlXJdZ57+PoiIiIgsIgrnREREBDdXMUNT9zeCOC9bmd4wYBFaUQviasNTA11RLFtBHIBb9RgfKdZDtmxTxZupgiuMz/B1nYHtWMQ7wrS1h4l3RIi3h2nrCBPvCBNvj9DWHqatPTQ3IahbhSe/Z4au7r6ncb3nHBPIbXkVhOOnvx8iIiIii5DCORERkSXGK1XN0NRaCFc+MI47Wpre0IZgb1utIq4WyPXFsE7X3GULwET4Nj5stsxwYdJxkVy6VJ9y7VicoE283QRtbbWwrRHEmTAuGg+2PvTMj8BDX4QHvwDp/eaaZcNZ18BFb4N1l5vlX0VERETklCmcExERWcT8qkflsFk5dSKIqx4pzBggBbqj9RAutDpBcHkbdmgOhknOI7MRvgVCtql062gEbY3QzQRx4bZ5vhpt5jDc9/cmmCtnzbVYFzz9DfDMN0H76pZ2T0RERGQxUTgnIiKySPieT3UwPymIy1Lpz4E7PU1yUiEzP1xt0YbQqgR2dPF/LJit8C3RFSXZFSFR25Jd0do+QiQenN/B27EM74Sf/62ZT84tm2u958MlN8N5L4dgpKXdExEREVmMFv+ncBERkUXI933c4WLTYg2Vg1n8ygwrp8YCtSCuURXnJBbmyqm+51MuuZTyFcqFKuVClVK+Sqm2n3xezlcpFSqUC6b9RJslHb4dzeHfws8+BY9+E/zan6E1l8Bz3gcbX6ShqyIiIiKnkcI5ERGRec6veFQG81QOZc0Q1cM5Kodz+MXqtLZWyCG4Mk5odS2IW5XA6Zi/K6e6rsfIwRzDB7MmVKuFaOWJgK0wJXgrHD9cO55A0CbRvcTCt5n4Puz9Ofz0b2DnnY3rG6+C57wX1l7Sur6JiIiILCEK50REROYRN1umcjhH5VCOyuEs5cM5qkfyML0gDhyL4Ip4oyJuVZxAT6z1iwgche/7jI8UGdidYWBPhsHdGY7sG6c6Q7Xf8dgBi3AsSDgaIBwLEI4GCNX24ViAUHTytWD9WqQtSDSxRMK3o/E82P4DE8od+KW5Ztlw/g1w2Xug7/yWdk9ERERkqVE4JyIi0gK+61Mdypsgrl4Nl8Ubr8zY3o4FCPa1EVzeRnB5nOCKNoLLYliB+btyarlQZXCvCeL6d5l9IVOe1i4cC9C9OkEsESQ0KXALzRi8BQlFHQLBpbVQxaxwq/Dw18yccoOPmmtOGJ72Grj0D6FzfUu7JyIiIrJUKZwTERE5zbxitR7CmSAuS6U/D9UZKsYsCHRFayFcI4xzUqF5Xe3luR4jh3OmKq5WGTdyODdtCKptW3StitO7Pmm2dUnal83far9FoVKAX/8H3PsZGNtnroUS8Kw3w8X/AxK9re2fiIiIyBKncE5ERGQWuemSWZzhcI7yoRyV/hzuSHHGtlbInl4N19uGHZ7/VWHZ0WJTEDe4N0O1PD1sTHRGGkHc+hQ9q+MEQvP//S0KxTQ88E/wi89B7oi5FuuGi98Bz/oDiLa3tHsiIiIiYiicExEReQqqYyVKu8Yo7UpT3p2mOjxzEOekwiaEW9EI4wKdkQVRMVYuVjmyb7wexA3sSpNLTx+eGoo4LFtnquEmwrhYcmGuCrugZQfhvn+AB78ApYy5lloDl/0hXPgaCMVa2z8RERERaaJwTkRkCfI9n2rFo1JyqZSqZl90zb7sNs7LLrFkiI6+Njr6YoQi+rZRHSlS2p2mtCtNaXd6elWchamGWxGvD0sNLW/DjgVb0+GT4LkemaEiI4dyjByubYeyjBzK4U8ZnmrZFl0r2xpB3LoUHX0antpSo3vg558xQ1jdkrnWc7ZZefX8G8CZ/38GRURERJYi/ZQlIrKA+L5PMVchPVigkK2YYG0iVJu0Vaecl6feL7vT5gI7EfGOMB3LTVDX0ddG53KzjyYWZ3WU7/u4I8V6EFfalcYdKzU3siG4MkH4jBTh9SnC65LY8zzE9FyP9JECI4dzjB7O1cK4PGMDedyZ5sHD/L/vXZdk2fokfetT9KxJEFwAw2+XhIFH4Gd/axZ78F1zbdWz4Dnvg01Xgz1/Fw0REREREYVzIiLzju/7lHJVxgbzpAfzjB0pkB4skB7Mkz5SoJSvzurrBcNOY4vU9iGzd0I2udESI/15Cpky2dES2dES+x8daXqOSFuQjuUxOpa30VmrsutY3ka8IzyvFzGYyvd9qsNFyrvSZqjq7jTu1OGbtkVoVdyEcWe0E1qbwA7Pz2+nruuROVJoqoQbPZxjdCCPV505nQ2E7Frw2kbnijY6lrexbE2CtvbwHPdejsnzYP8v4Oefhie/37h+5gtNKLfuObCA/u6JiIiILGXz86cJEZEloJitMHYkT3qwUAviTjyAi3eEiSVDBCOB6cFaeFLA1nQt0Hw/7BAI2ic8DLGYq5hgpz/PSH+O0cN5RvtzjA8XKeYqHN6R5vCOdNNjAmGHjt4YncvbTHhXC+5SPVFsp/XVPL7vUx0qmMq42uaNTwnjHIvQqlpl3BkpQmuT2PNsQQPX9UgPFkwVXL0SLsfYQB7PPXoIZ/6/1IK4WhiXWCDz4C1J4wOw8y7YeafZ54drNyw493fM8NUVF7ayhyIiIiJyChTOiYicRsVcpSl4GxsskD5ijk8kgEv1REktM2FW+7IYqWVRkj1Rgi0IhyJtQZZvaGf5hvam65WSy9hA3lRl9ZvwbvRwjvRggWrJ5ci+cY7sG296jO1YpJbF6sNi23tjhKMBnKCNE7QJ1PfOpGMbJ3DiYeJMfN+nOphvzBm3K42XrTQ3cixCaxJmiOoZKUJrWhfGua5HKVellK9QzFYo5qsUs5X6+cTQ1GOGcGGHzr5aQLqiEcQphFsAqmXYfz/s+JEJ5Pq3Nd8PJeC86+Gy90D3hlb0UERERERmgcI5EZGnwPd98pky6SMFMkMFMkdM+GZCuDyl3LEDuLb2MO3LovUQrtUB3KkIhh161iToWZNoul6v5ppUZTdyOMdYf55qxTNVeIdzwJGTej0nYNdCPItwwCYSsAkHLMKORdC2CNkWQSBoQcCHgO/jeOB4Hk7Jxak0z6nm2xZ+TxSrrw1nZdxs0QAEbaoBG7/s4ng+gaB9ytV+nutRylcp5ipmn61QrAVsE9eLuQqlXIVirlo/LhfdE36NYNipVcHF6Fwep2N5zFTCdSiEW1BGdsGOO82256dQzjbfX34BbLgSzrwCVj9bizyIiIiILAIK50REjqNacRkfLtYDOLMv1sO4amXmCfQntLWHa5VvtSq4ZaYKbiEFcKfCcex6lRZPa1z3PZ/xkaKpsOvPMXYwS34wD0UX2/WwKh626+O4PrbnE/A8gpZF0IKQRf04aPlYngdlD8pH78dUVd9ntOozVPUZrvqMuj7eSBmeSB/3sZZtmSq+ekBoqvkmqvomKvw8z68FbSZsKxee2jyB4ViAcFuQSCxAJB4kHAsSaQuS6IzU5oWLKYRbqEpZE8LtuNNUx43sar7f1mPmkTvzCrOP97SmnyIiIiJy2iicE5Elz/d9M0SwFrZNDuDSRwrkpq7OOYVlQbwzQqonSrJ7ogouSqrHDEddqita+r6PX6jiZsq46RJuuoybKdXPI+kyyzIluo82vNcBHKt2cAyOhR9y8IO22QI2nmPhOjaubVG1LKoWVDEZXj5gU3V93IpHtOIRqnq4FY9qxezdqtkmzicPF/U9n2ptNdxTEYoGiLQFiLQFTdhWC9zqx22Tj80WigWwFbotHr4PAw/XquN+BPt+Ad6kodV2AFZfDBtqgVzfFq22KiIiIrLIKZwTkSXB83xT6TYx9HSoWNuba5XjDB8Mhh2SPdGmAC7ZHSHZHSXRFcGZB4sbzCXf8/HGy5OCt0boNnnvH6eqcIIVtLFjAexoACsawI6Y48mbFQua44hTu2bOreDp/dp7nm8Cu8r0EM8cu7hVE/ZVqy5uxcOyrEkBXC2MiwXmxSIY0gK5Ydj140Z1XHag+X77WjNUdcMVsO5yiCRb008RERERaQmFcyKy6JSLVYYP5hjaP87QwSzDB7IMH8xSLR87KIp3hEl2m/neUt0RkhNBXHeUSDyIZS2N6iWvVKt2y5TxMrVqt/SU4C1bhhPL3bBjAZxUGCcZat5POrYizrz9+tq2hR1yFvUQZJllbhUOPmgq43bcCYd+DUxasCMYMyHcRCDXeYYpwRURERGRJUnhnIgsWL7vkx0tMXQgy9D+cYYPZBk6kCV9pDBjeydoNyrfuqMkeyL1KrhEV4RAcHGHL37FNeHaRMVbPYArNV33T3TIpg1OIoyTCk0K3ibOG9etRf51FaGYhgMPwL77zeqqBx+avpBD7/lmzrgNV8KaiyEQbk1fRURERGTeUTgnIguCW/EYOZwzQdyBRhBXOsp8ZW2pEF2rEnSvjtO9ymypZbFFOXeX73q44xXcTMlUuk0ebjopiPNPYlECK+yYwC0xUeUWmhK8hbHjQS1AIEuP78Po7kYQt/9+GHyMpso4gGhH80IOyeUt6a6IiIiIzH8K50Rk3imMl2shXCOIGz2cx/P8aW1t26JjeYyuVXG6VyXqQVw0EWpBz+dGZTDP+D0HqBzM4o6X8XKVabnAUQVsE7AlatVuydrQ0tpmJ8M4iRD2El3EQmSaagkO/aYRxO3/JeQGp7frWG8q4lY/G1ZfBD1ng62/RyIiIiJyfArnRKQl3IpHLl0iO1YiO1qszRGXZfjAOLl0ecbHhGMBulfFm4K4zuVtOKd5QYD5otKfI3PXPgrbhqaHcY7VCNwSIewZgjcnOb/ndhOZF7JHJgVx95v54twp/yY5IVh+Iay5yARxqy+C+LKWdFdEREREFj6FcyIyq3zfp5Srkh0rkattMx0Xs5VjPk+yJ0pPPYiL0706QbwjvCSDpfLBLJm79lF8ZLh+LXJuF23P7MVpNwGcHdMQU5GT5nlw5PFGRdz+X8DIruntYt0mgJsI45ZfCMHInHdXRERERBYnhXMicsImV7vNFLyZrYxbPbFlPO2ARbw9TFt7mI6+tvqQ1K5VcUIR/fNU2pdh/K79FB8fMRcsiJ7fTeKFawgtb2tt50QWokqhFsLVgrj9D0ApPb1dzznNVXFaTVVERERETiP99CsiTXzPZ3Qgz+DeDIN7x8kcKZxwtdtkkXiQtvawCd9SIdpqIVxbe5h4h9lH2oJLshLueEq702Tu2kdp+5i5YEH0gh6SL1hNsFehnMhJ8TzYdy/89ivw6DehlGm+H4zBymfU5ou7CFY90yzmICIiIiIyRxTOiSxhvu8zPlJkcM84g3syJpDbN06l6B71MU7Apq19Stg29TgVXjLzwM0W3/cp7Uwzftc+SrtqlTw2xJ7WS+IFqwl2R1vbQZGFZmgHbP0K/Pa/IL2vcT2xHNZe2qiK6z0fHH0cEhEREZHW0adRkSUknymbAG6PqYob3JuhMD69Gi4QsulZk2DZuiSdfW214C2karfTwPd9Sk+OkrlrP+W9tYoex6LtGb0knr+aQKfmtRI5YfkRePhrpkru4ION66EEnHc9XHAjrLkUbP3yQERERETmD4VzIotUuVBlcF+tIm5PhoG9GbIjpWntbNuia1WcZeuSLFuboHddko6+GLajH15PJ9/3KT42QuaufVQOZM3FgEXbs/pIPG81gfZwazsoslBUS7D9hyaQe/IH4NV+4WA5sOEK2PIqOOsaCMVa208RERERkaNQOCeyCFQrLkP7s7WqOFMRNzqQB39KQws6emO1IC7JsnUJulfFCQSdlvR7KfI9n8IjQ4zftZ/K4RwAVtCm7aLlJJ67CicZanEPRRYA34cDD8Jv/9NUyhXHGvf6NsMFN8H5r4BEb8u6KCIiIiJyohTOiSwwvuczcjjHwJ7G8NThA1k8b2oSB/HOML31IC7JsjUJQlH9tW8F3/MpbD1C5sf7qQ7kAbBCDvFLlxN/zkqcuEI5keMa3QNbbzNVciM7G9fjfbDl98yw1d7zWtY9EREREZFToZ/SRea5SsllcE+GwzvTHN6ZZmB3mlK+Oq1dJB6sBXGJemVcTFVYLee7HvnfHGH8x/upDhUAsCIO8UtXEL9sJU5bsMU9FJnniml45HbY+l+w9+eN68EYnPNSE8itfx7YqgAWERERkYVJ4ZzIPJMbK9WCuDH6d6YZ2j+9Ki4Qslm2NmnCuFogl+iKaKGGecSveuR+NcD43QdwR4oA2LEA8ctWEr90BbYqGEWOzq3AzrtMhdwT34VqsXbDgvXPNcNWz7kOwomWdlNEREREZDbop0ORFvI8n5FDOfp3jtUr48aHi9PataVC9J3ZzvIzUyzfkKJrVRxHCzbMS17ZJf9QLZRLmwU47LYgieeupO3i5dhh/bMrMiPfh8O/NRVy274KuSONez1nmwq5zb8HqZWt66OIiIiIyGmgnxJF5lC5WGVgT4b+iSGqu9KUi25TG8uCzpVxE8SdmaLvzBSJTlXFzVdurkJ5T4bS3jTlPRnKB7PgmkpHOxEi8bxVtD27DzukIXci03geHP6NWWX10W/Ckcca92LdsPmVcMGrYPmF5h9HEREREZFFSOGcyGk0PlKkf5cJ4vp3phk6kMWfMkQ1GHboXZ+shXHt9K5PatGGecr3fdzREqXdacp7M5T2pKkOFqa1czojJC5fSdsz+7CCqnAUaVLOwa674cnvw5M/hGx/454ThrOvgS03woYrwNGcjCIiIiKy+CkBEJkl5WKVkUM5BveO14epZkdL09rFO8Msrw1R7TsjRdfKNmwNUZ2XfM+n0p8zlXF70pT2ZPAy5WntAstihNclCa1LEl6XwukIq9JRZLKx/bD9B/DE92H3PeBO+rcxFIczXwCbroazr4Noe8u6KSIiIiLSCgrnRE6S7/lkhgsMH8gxdGCc4YM5hg5myRyZXkFl2Rbdq+L01YaoLj8zRbwj0oJey4nwKy7l/eOU9mQo7clQ3pvBLzUPO8axCK2ME1qXMoHc2qRWXBWZyvPg4EO16rjvw8DDzffb18Cml8Cmq2DdcyAQbk0/RURERETmAYVzIsdQKlQZPphl+ECWodp++FCO6tTApqYtFaJrVYK+M8ww1WXrkoQi+ms2X7m5Sm14aobynnTTfHETrLBDaG2S8Nok4fVJgqsSmj9OZCalcdj5YxPGbf9h84IOlg2rnm3CuLNeYhZ4UHWpiIiIiAigcE4EMKumpgfzDB/MMXwwy9ABE8SNj0xfORXACdh0rmija1Wc7pVxulaa42g8NMc9lxNVny9urwniSrszVAfz09rZiRDh9SaMC61LEVzehmUrRBCZ0eges5jDE9+DPT8Dr9K4F06aeeM2XQ0bXgRtXS3rpoiIiIjIfKZwTpacYq7SqISrVcONHMpRrXgzto93hmsBXJyuVWbfviyqeeLmOd/3qR4pUNqdNgs47E7jpmeYL64nSnhdqjZfXBJHK+OKHJ3nwoEHTBj35A+aV1cF6DyjMVx1zSUQ0C8sRERERESOR+GczEue61GteLhVj2rZw518XHWpViaOG3u34lGtmHvmuPa42vVy0WXkUI7c2PRFGgACIdsEcLWte1UbnSviRDSf2ILguz6Vw1kzX9zuNOU9abxctbmRPTFfXLIxX5yqHUWOrZiGHXfWhqveAYWRxj3LMSHcWVebCrmuDRquKiIiIiJykhTOyXH5nm/CsIpbD8omjk1I5tbDsGp5UjhWO65WPNxJx+Y5GgFbteI2h28VD8/zj9+xpyDZHalXwk1UxSV7otgavrhg+FWP8oHxWmXcURZvCNiE1yQIrU8RXp8ktCap+eJETkS1ZOaN++1XTIXc5OGqkXbY+KLacNUrINrRsm6KiIiIiCwGCudkRsVchX//8H1UKy5e9fQGZcdjBywCARsn5Jh90CYQsnECNoGgjRN0ant7hr1TPw+EbNp72+ha0UYoqj/6C41XcinvyzSGqe4fhyl/Nq2IY+aKW58ivD5FaGUcK6DhxyInxPfhwIOw9Svw8NegMNq4173JhHGbrobVF4Gjf0NFRERERGaLPl3LjJygTblQnXbdDlgEamFYINQIxuphWGjS+aTjprahSaFZ7djcrz0u0Dh3Araq2ZYoL1+pD1Et7U5TOZSFKdMC2vGgGZ5aC+OCfVq8QeSkje6FrbfBb/8TRnY2rieWw5bfgy03Qu+5reufiIiIiMgip3BOZhQI2rzmloubAjQnqKBMTh83U6K0uxHGVQemr6TqtIdNRdz6JOH1KQLdUS3eIHIqihl49Jtm2OrenzWuB2Nwzkvhghth/fPA1jBwEREREZHTTeGczMiyLNp7Y63uhiwwvuvjl6p4hSpe0cUrVvGLVbzCpOOii1eYOK6dZyu46ekLdQR6ooQnhqiuTxJoj7TgXYksEm4Vdt1tKuQe/zZUi7UbFqx/rgnkznkphBOt7KWIiIiIyJKjcE5EpvF9Hy9boTKYx8uWjxGu1a7Xwji/7B7/yY/GguDytkYYt04rqYrMiv5tpkJu622QG2xc794EF9xkhq6mVrWufyIiIiKy5Hn5PKUdO/AKRdouenaruzPnFM6JLHFurkJ1IE9lMEelP09lIE91MIeXmz7n4ImygjZWNIAdcbAjAaxIAHva+aTjiEOwrw07on+SRGbFeD9s+6oJ5QYeblyPdcH5rzBVciueBhoWLiIiIiJzyK9UKO/dS+nJJylu307pye2UnnySyoED4PuEzzqLM755e6u7Oef0k7DIEuEVq1QG8lQGciaMqx1745WZH2BBoDOCkwrXgjYTopkwbXq4Zkcbx5ajFVJF5lw5D0981wxb3XkX+LUVVJyQWWX1gptgw5UQUEWqiIiIiJxevu9TPXyY4pNPUpoUwpV37cKvzPwzqNPdTbCvD9/3l9zc4grnRBYZr+RSHTTBW6UWwlUHcrjp8lEf43SECfa2EeiNEeyNmeOeKHZIk8GLzGueB3t/birkHv0mlMcb91ZfZCrkzvtdiHa0ro8iIiIisqi5Y2PTQrjS9u142eyM7e1YjPDGjYQ3bWrsN20k0Nk5xz2fPxTOiSxQfsWlMliYVgnnjk5fWGGCkwwR6GsjuKwWwvW1EVgWxQ7rn4KFxK9UcLNZ/HIFy7bAtsG2zW+XbNsMVbTs5ntQP8ayFs1vonzfx8vlcUdHcEdHqY6M4I6M4o6OmOPRMdyREaqj5rpfqRBav47who2EN26o753EAlsEITsID/wT/ObLkN7fuN6+pjaP3Kug68zW9U9EREREZo1freKXSnilEn5t80pl/HIJv1LFCjhYgQAEAliTNgIBrGAQy3Ea14LBU/5ZwCsWKe3YWQvhnqyHcNXBwZkfEAgQXr9+Sgi3ieCK5Vi2RltNpp/IRRYIr+xS3p2muH2M0o4xKgM58Gdua8eDjQq4SdVwdlR/5VvN9338YhF3fBxvfBw3k8HLZs1+fNxcz4zjZmv78QzeeNbsM+MmlMvnn3pHJgV59VBvIuCbcm6Fw9jRKFYsih2JYkej2LEoVjSKHY2Ze9FI/diORWvXJu5HzHGsdj8axYpEZvyG7HsebjqNOzpqQrWJgG0ibBupXR8brR/75aNXhc6k2t9P/r5fNF0L9PWZDwwbNpj9xg2EzzwTOzbPVq0e2QX3/h38+kvg1oL4cBLOu96EcqsvNv/vRERERGRW+L4P1aoJwyrlejjml8u1gKwWkpVKeOUy/tRrpTJ+sYhfrh2XSvil4qTjEl65hF+cdFy7NxHG4T6Fhfdm4jj1wI5g0AR39fMAVqBxbeLcHR6mvG+fGbkxg+DKlU0BXHjjRsLr12GFNKXKidBP6iLzlO/5VA5mKe4Yo7R9lNLeDLjNaZwdC9TCt7ZaABcj0NuG0xZsUa+XDr9cpjo2ZoKjsTETJo3VjtPpepjmZcdxm0K2cTjKHAsnzXHA94/6DfLYb8Cvf5Of/KfqKHnvaWFFIo2wLhTCHR/HHRs7pQ8fViSC09lBoKMTp6OjcdzZWTvuwOnsxLJtSjt3Udqxw/zGb8cOqv399S33059OelKr8SFjIrDbuJHQ+vXY4fDsfSFOxOHfws/+Fh69vTGX3MpnwsXvgLOvhWB0bvsjIiIiMst8zzOhVqXS2E/eypOPZ7hfKU9pO1Ob2mPLlXrA5pdKeJVyPRDzy2UTkE20KZXMZ+d5wgoGscLh2hbCcgL4bhUqVXzXNVV21SpUKviuO/PPCq5r2p7kL7kBnPb2RgC3aWP9s7ITj8/Cu1u6LN+fR3/KFrBMJkMqlSKdTpNMJlvdHVmgqsMFE8btGKO0cwwv37xiqpMKE97YTmRjO+H1KexEaNEMT2wlr1RqhGu1fbV+PiV8q+29XO6pvahtYycSOIkEdjKBE6/tE0nsRBwnkcRJJrCnXk8mzWPicfObrRp/IqTzPPD9pvP6se/j1/Z4XuO4fu6b4Kd+D/Bc8xu7QgGvUMDLF/AKefxisXFcv17AKxbwJ44Ltfv5Al6xiFco4BcKJ/blSSSaA7aOdgKdnTgdtbCtsxbCdXQS6Ox4ShVubiZTC+sagV1p+3bc4eGj/r8LrV3bXGW3cSOhtWuxgrMYjPs+7P6JCeV2/bhxfcOL4DnvgbWXabVVERGR45iYAsPLpM0vUDPjZjL6+o/BfuN44jNU7Xjidv3Xl36jbVO7+lP5TW191wPfMwGJ6+F7zXtzzwPPnbSf1Mbzp9ybsq99XjNhTQg7FMIKhbFCIRPchILY4dp5/fpEu4k2E/cmtw2ZiqmjfU3LZbx8vvF5L5fHK+Tx8pM+F07cz+dq1/KNz4v5fO0zYvM1v1ichf/jcyAYbP4azvS1n3wtEq59bRuBmh2OTDoON7erndvhkBltMnE88f/nGP9vZuJ7XiOsq9YCvEoVqs3nfrUCtWDPr7rTzu14G5FNm3C6u/Uz6Ek40axI4dwsUTgnp8LLVyjuTFPaMUpx+xjuSPM3JCvsED6zFsZtaCfQHdU/hCfIy+epDAxQrW2V/gGqg4ON8G2sEb6daGA0jW3jpFImJGpvr+1TOKl2nGQjTKuHcImEOY8nsNtiS/L/pe95JtirfZibCP38Ugk7mcRp7yDQ0T4vyt+rIyMmsNuxfVJotwMvnZ75AcEg4XXrCG/cQOS884m/8AWE168/+Rf2XHjsW/Dzv4VDvzbXLAfOfzlc9m7o23zK70lERGSh8opF3HQGNz2Gl8ngZjK4Y2ncTNqcj6XNtVoI56VrbTIZqFaP/wLSLBDACjWCPCyrHqLN2dczGDTBYzCIFZp0HAxiBUPN56EZrjXdn3QvEGgO0CbCsVDIhGDHvBbSXGlyUhTOzTGFc3Ii/KpHaW+G0o4xittHqRzMNo8jtC1CaxJENrQT3thBaFUCy5n7AMcrl6kOHqF6ZBB8cBJx7Fq1lh2LtfQbku/7eOk0lYFBqgP9VPr7qQ4MUhkw+2p/P5WBAbxM5uSe2HHq4VqgvQOnox2nfXLo1l671m6GSLa3YyeT+ua8xPi+T3XwyJTAbjvl7TvMh9UpQmecQeKKK0hc8UIiW7Yc+89LpQi//U8zp9zITnMtEIWnvw4uuRk61p2eNyUiInIaTcy36+VyZp7dXM4c53Km4mriOJs1c+5OhGrpWvCWNsenMvxuMisYxG5P4SRTjV8CWhO7iQOrUZU+eT9Tu6O2n9TOccC2sGwHHLu2d8zngYm9bWM5NjS1mbS3am1rbabuwSwWVh+iWSmbUQ+Th21OHaZ5lGsnO1WKFQxixWKNeYVreys2cTz5nrlm5iFuq89R3LhWaxeJmJEIT2HRApH5ROHcHFM4JzPxfZ/qQJ7i9lEzVHVXGr/S/E0vsCxKZEMH4Y3thM9IndaVU71SieqRIaqDg2Y7cmTKfpDq4BHco1UGAViWCenicZz4RGjXZoZlThwnEtht8drwzCnHtcfNVBnluy7V4eHmarcBE7ZV+wfqAdyJlrzbsRiBvj4CvcsI9vYRWLasMf9YU+jWYYaJ6gOAnCLf96keOkRpxw6KTz5J/hf3k7v//qbfLDs93SRe8EISV15B7OKLsSf+DhTT8OAX4Befg+yAuRZph2e/FS56G7R1z/0bEhFZhHzfN8PoanNVMTE307ThXLX5miafT7SpD/+a8phKFd+d/DgXp7OD4IoVhFauJLBiBYHu7gX3Sz2/XKYyeAR3eAg3m20EavXjSVve7N1sbtq9U5ofdya2bab4SKWwU6n6sZNKmgr82ugFJ1Vrk0zVj61IRJ/1jqO+Imi5XA/wJuZk833fhG1tkxb4ms3pPEQWKYVzc0zhnExwM6X6iqrFHaN4482T/9vxoKmMqwVygdRTn1jehG5HTLXbqYZuU1jhMIGeHlPCns3iZrOzt5ABmBLxRMIEdbGYGWo6OHjCiwE47e0E+voI9vYS6O0l0NdrArjeXoJ9vQT6+jQpqbSUOz5O9p57yN55J9mf3NM0T6Edi9F2ybNIrCwQL9+FQ63SM7nKVMk9/fUQ1p9fERGvXJ4eAh1lM+FR/uht8vmWTupuhUIEly8nuHJlbVth9ivMPtDTc9JzST0VXqlkRhxM/DK0f6A+AmFi7w4Nzepr2rEYdlub2eLxxnFbG3ZbrDYXby1wmxSsTYRsdlvbggs4RWRpUzg3xxTOLT1e2aU6mKfSn6cykKMykKc6kMNNN5fcW0Gb0PpUfahqsO/k5xrz8nnK+/ZR3ruP8r69VPbto3Lw0KmFbqEQgWXLzNbTM2nfQ3DSNTuZbOqn7/vmN2lZs+Kol802jsezeLmpx1m88XEzPCGbqx1n8WcY+tfEtk0fentN8NbXR7B3GYHePhO69faa/kUiJ/U1FGklr1wmf/8vGb/rTrJ3/JDq0EjjpuUTWxkgceWLSLzmvQRXr2ldR0VEThOvWMQdGaE6PII7OkJ1ZAR34nh4BHdkxMwTNjlsy+dn9ReDTSzLLKw0Mf9UbSPgYAWmXAsGsJwp54EgluOYa8GAmZ+r/jgHbIfq8BCVg4eoHDpEdWDg+NVjgYAJ71Y0h3b1fV9v02JQx+Ll882h28RUIP0D9fDNHR09sS9VMEigp2d6mBZvHDtNIdvENqV9LKpgTUSWHIVzc0zh3OLlVz2qQwUTwPXnqQyYMM4dKTbPFzfBguDKeGOo6tokVuD4H0TcbI7K/loAt3evCeFqx9UjR477+HroNhG4TQrdAj214G2G0G2u+a5bC/VMiOeNj+PlcqYSrrfXDPk4wQ+eIgvKwYfgZ3+L/+i3KI4EGD8YITvYSWmo+QfP8Lnn1Oapu4LwWWdpCI6IzEv1sG1ktBawDeOOjOKODJtrI7UArrY/7i/njsOKRJoCISc2Uxg0dYvNGB5Zkcich0R+pUJlYIDKgYNUDh2icnDKvr//+JPs27YZKTB5qGxPD+7oaKMC7iTn3rUiEYJ9fY3RCH0Tvwzta4xE6OjQ9yIRkVOkcG6OKZw7OV7JxR0v42XKuNkylmNhRwPYsSB2NIAVDWAF7Tn9IOB7PtWRItX+XD2Aq/TnqQ4VzDLmM7DjQYK9MYK9bQT6zD7YG8OOzBwuudks5b2m8q0RwplqOPfIsYcNOKkUwXVrCa1ZS2jNGjP8oXdZvdrNTqX0wUlkvvF92HmXWXl19z2N65uuhsveA2svobx3L+N33sX4nXdS+NWvmoZcBVeuJH7FC0lccSWxZzxdwbWINPErldoE8JXavGeV5uPyxHmlfo/J7SqTjyceV57WziuWTMg2OmICuOHhGRfBOR4rGMTp7MTp7CQwZe901uaBnSlki8UW/b9/vutSHRycHtodPFivvvNPsorQjscb035M3vf11cO3Vv/SVkRksVM4N8cUztWGPRaquOPl2lYx4dvEeaaMV9v75ROYVyxQC+yiwVpwF6idBxpBXswEeU3XIoFjrnDq+z5uumSCt4HGkNTKQB6qMw83sCJOPXgL9sYI9JljJz59UQN3fJzy3n1U9u014dvefbUhqXtxh4eP+Zadjg5Ca9YQWreW4Jo1Johbt5bQ6tU47e3H/5qJyPzgVuHR2+Hnn4b+reaaHYDNr4RL/xB6z53xYdXhYbJ33834nXeR+/nP8Uul+j0nlSL+/OcTv+KFxJ/zHOxYbA7eiIicDr7rNlannFRJ7mazzVNFZCetYFmbImJiHlgvm236N6IlgkGzyFJXl9l3dhLo6sTp6MTpqgVvHbVrnZ1afOkp8D2P6tDQpNDuEJVDB6kODRHo6GwO3ZabOXg1966ISOspnJtjizmc8z0fL19pCtcmArem8G28ctRwayZWyMZJhLATIfB8vHwVr1DFK1TgKS7oZIWd5kAvFsQK2FSHC1QG8vilmcNBK2gTWGYCuGAtgAv0tWFHML8xHhoyq50OD+FOHA/VtuEh3CNDx/1NstPVZQK4tWsJrV1jQri16witWY2zyP7siCw5I7vg8e/AA/8Eo3vMtWAMnv4Gs9BD++oTfiovnyd3772M/+hOsnffjTs2Vr9nhcO0XXIJkXPPqVeVTK0ymXo8l5OMiyx2fqWCm8ngpjN4mXT92M2k8SaOs7V5WCeHa9nadA5PcYjn0VjBYH1j0rGZF23mc4KT7gWCM7cLhcxq552dOJ1dBDpNEGcnEgrbREREjkHh3BxbbOGcmy0z9MVHasNOK0cd1jkTKxLASQZxEiETviXN3qnt7dqxHZ55eILv+/hltxHWTQrt/KbzifuV+rWjhW7T2BaB7giBjgB2zAU7D9VR3PEBvOEhqkPDjdBtaAjvJBZcAHB6uuvDT5tDuLX6LabIYuL7cOjX8MR3TSg3+GjjXrQTLno7PPstEOt8ai9TrZL/1a/I1oa/Vg4cOOnnsCKRY4R4MexY8/xME/eciRX14gmcZAI7kcAOP/VVpkVa7YQCtkztvH6cwU2nn/L8aROsUMj8/UrEcdri5u9XPI4Tj9f+3sVxEvH630E73mZWs5xo09aGFQ6bkM1xFJSJiIjMMwrn5thiC+f8isfBP/t50zW7LWhCtcTMYZsJ44JYwdZVZ/iuj1esBXaFKm6mQHnHPkp7DlLtH8LN9OMO7aFyeAfu8JHjr5o1WTBIoLubQFeX2fd043R3166Z80Dt3G5rO31vUkRaq1qGPT+tBXLfhfFDjXuWA+sug3N/By64CUKz/2+B7/uUntxO9u67qQ704+XyePmJ1Q3NsZvL4efyp22lQysYNCFCIo4TN4Gdk4hjJ5K1IKF2L5EwoV4iXmtTC/cSCezQ9GkBRCbUVwgvFBr7YhGvWDT7QhG/ZPZesYBfKOKVimY/0aZYxC8WTNvauVcsmL8n6fSsVK/ZiQROMomdSuIkUzjJJE4qiZ1M4iSSxwzX7Hhcfw9EREQWOYVzc2yxhXMAhcdHcNqCpvItHsRy5vfS577nUd69m8LWbRS2/pbi1m0Un3zy2D+YWpaZH6W7EazVQ7epgZsWXBBZuopp2H6HCeS23wGlSavgBdtgwxVw9nWw8UVPuUputnnlciO4y9VCvPzJHU8enscsfWywQiETbMRrwV0ygZ1K4aRSOKl2MzF8KoXTPnEtZa4lk1gKNE4r3/fN//exNG56DC+TaSw6MHUrz3BtWpujPLa+lRvPVSjglUr4hcKcvV87Hq8FbLVwbSJsS6VM4JaqXWs6NnsNFxcREZFjOdGsaHEveyRPSfTs+fUD5lSVgQEKW7dS3LqNwrZtFLdtw8vlprVzOjuJbt5MZPNmgitWNAVuTkfHol/9S0ROUfqgCeOe+C7s/il4k4L+tmVw1ktMILf+uRCMtK6fx2GHQqY6p6PjKT+X73kmtBsfx82M42XHzaT149nacW1S+/EM3ni2EerVJ7o3k9kD+OUy7vDwcRfKmfE9xWLY7alGgJdqbw7wZgj17FRqyVUp+a6Lm8ngpdO4k7exxrGXaT6f2HBPcJqIuRAMYkci2JGIGZ4diWBFo9jhMFY0gh2JYkXC2JEodjSCFY6Y/bRz81g7FsNJpWrVbQl9DhAREZGW06cRWRDc8XGKDz9squK2mUCuOjg4rZ0VjRI571yim7cQ3bKZyOYtBFeuUMWbiByf78PgY2buuCe+Y+aSm6x7E5x1DZx9Lax8Jtjzu5r4dLBsG6c211Vw+fJTeo76KpWTAjsT8I1PD4nGxmrHY3hjZk4wfN8EhPk81UOHT67/sRhOPG7m6AqHTPVeKDzzeSiEFQ6ZACgYam4TDmOFppzX25lzLAvfdcHzzN518V0PPHf6edWtXT/6ue+54HpmXz93zdcwPXPA5mUyx/+iHOvrFQ7XQqwEdjjSvFBAMIgVmjgOTTqeYTGCpi008/WQuTc5RLMiUexIWOGZiIiILHr6tCMz8qtVnrzoYvNb5dSUOVRqwzoax5OGeaRST/m30F65TOmJJ5qq4sq7dk1v6DiEN240VXFbNhPdsoXwmWfqQ7yInDjPhX2/qM0f9+3GCqsAWLD62Y1Arntjq3q5qFiOUx86GDzJx/qua0K8qQHe2NRAz4R63sT1TMaEZPk81dO0SuZ8Zre1mZCtPTW90nBKlaFdv5/EjszfilARERGRxUQphszIHR+vzzVUPXxylQlgfhAw87W0N8/fMnWy5FQ7TryN8t69taq4bZQeewx/hnnigqtW1avhols2EznnHOxYbDberogsJeU87LyrNmT1e1AYadxzwnDG800Yd9ZLIL6sZd2U6SzHMcNW29tP6nG+5zVCvfFxMwdaqYxfLuGXy2aOs1LZXC+Xms9LJbxaO79kzv1y2Vyb6bxcxi8W8TGVhpbjgOOAY2PZTv3csm0IBMx+pvNJj8GxsZxA4zkCDtgOlmNjt8Xr4VrznH2p+i/XrODJxqAiIiIiMpcUzsmMnESCM7//PdxMBjedwc2Y4THmOFOfILp+nknjpTP1Od/qwd5JDjmqv357u6mGqw9P3Uygc37PgSci85Tvw8gu2HU37PgR7PwxVCdNNh9ph01Xm0DuzBdCON6qnsppYtl2vTJMRERERGS+UTgnM7ICAULr1p304/xKBbdWneBlMs3hXjo9Lcxza22CfX0mhNuyheiWLQRXrdI8cSJy6rKDsPse2PVj2HUPpPc1329fA2ddC2dfA2suBUffDkVEREREpDX004jMKisYJNDZqSo3EZlbpXHYey/s+ompkBt8pPm+HTTzx53xfDNctfd80C8ARERERERkHlA4JyIiC49bgQMPmiBu191w8EHwqs1t+jabMG7982HtJRBqm/NuioiIiIiIHI/CORERmf88DwYfhd21yrg9P4dKrrlNxzpY/7xaIPdcaOtuQUdFREREREROjsI5ERGZn0b3NsK43fdA7kjz/VhXI4w743kmnBMREREREVlgFM6JiMj8kB+phXG1QG50d/P9YAzWXmaCuDOeD8vOA9tuRU9FRERERERmjcI5ERFpDbcKB34J2++AnXfC4a2A37hvObDqmbXKuOfDymdCINSizoqIiIiIiJweCudERGTujPfDjh+ZQG7Xj6GYbr6/7NzanHHPg7WXQiTZkm6KiIiIiIjMFYVzIiJy+rhVOPAA7LjDBHL9W5vvRztgw5Ww4UUmlEv0tqSbIiIiIiIiraJwTkREZtf4gKmO23EH7LxrenXciqfDxheZQG7l08F2WtNPERERERGReUDhnIiIPDVuFQ4+aCrjtv9w5uq4M68wgdyZV0C8pzX9FBERERERmYcUzomIyMnLDtbmjvsh7PwxFMea7694mqmM2/giWPkMVceJiIiIiIgchcI5ERE5Ps+FAw+aMG7HHXD4t833I+2w4QrY+GJVx4mIiIiIiJwEhXMiIjKz7JFJ1XF3Ta+OW36hqYzb+GJVx4mIiIiIiJwihXMiImL4vqmI2/5DePIHcPAhwG/cj7TDmS80YdyGKyC+rFU9FRERERERWTQUzomILGWlLOy6G7b/AJ78IWT7m+/3bTFh3ER1nKNvGyIiIiIiIrPJbnUHjuXP//zPsSyraTv77LPr94vFIjfffDNdXV3E43FuuOEGBgYGmp5j3759XHvttcRiMZYtW8Yf//EfU61Wm9rcfffdPP3pTyccDrNhwwa++MUvzsXbExFpjeGd8IvPwb9dD59cD//1GvjVv5lgLtgGZ18HL/0MvO9xePtP4Yo/gzUXKZgTERERERE5Deb9T1rnnXceP/rRj+rngUCjy+9973v5zne+w1e/+lVSqRTvfOc7efnLX87Pf/5zAFzX5dprr6Wvr497772Xw4cP8/rXv55gMMhHP/pRAHbv3s21117L29/+dr70pS9x55138gd/8AcsX76cq666am7frIjI6VAtw777GsNVh7c33+9YD5uuMtVx654DgXBr+ikiIiIiIrIEWb7v+8dv1hp//ud/zu23385vfvObaffS6TQ9PT18+ctf5hWveAUAjz/+OOeccw733XcfF198Md/73ve47rrrOHToEL29vQDceuutfOADH+DIkSOEQiE+8IEP8J3vfIeHH364/tw33ngjY2NjfP/73z/hvmYyGVKpFOl0mmQy+dTeuIjIU5UdhO13mOGqO+6C8njjnh2ANZeYQG7T1dC1ASyrdX0VERERERFZhE40K5r3lXPbt29nxYoVRCIRLrnkEj72sY+xZs0aHnroISqVCldeeWW97dlnn82aNWvq4dx9993H5s2b68EcwFVXXcU73vEOHnnkEZ72tKdx3333NT3HRJv3vOc9x+xXqVSiVCrVzzOZzOy8YRGRU+F50P9bUxn35A/g0K+a77f1NOaOO/MFEEm1pp8iIiIiIiLSZF6HcxdddBFf/OIXOeusszh8+DC33HILl19+OQ8//DD9/f2EQiHa29ubHtPb20t/v5nQvL+/vymYm7g/ce9YbTKZDIVCgWg0OmPfPvaxj3HLLbfMxtsUETk1pXHY+WNTHbf9Dsg2z7nJ8gtrw1WvghVPA3teTzMqIiIiIiKyJM3rcO4lL3lJ/XjLli1cdNFFrF27lttuu+2oodlc+eAHP8j73ve++nkmk2H16tUt7JGILHqeBwMPw867zLb3XvAqjfuhOJzx/Mb8cYm+lnVVRERERERETsy8Duemam9vZ9OmTezYsYMXvehFlMtlxsbGmqrnBgYG6OszP5D29fXxy1/+suk5JlZzndxm6gqvAwMDJJPJYwaA4XCYcFiTpovIaTY+ALt+XAvkfgy5web7nWeYeeM2vhjWXqrFHERERERERBaYBRXOZbNZdu7cyete9zqe8YxnEAwGufPOO7nhhhsAeOKJJ9i3bx+XXHIJAJdccgl/+Zd/yeDgIMuWLQPgjjvuIJlMcu6559bbfPe73216nTvuuKP+HCIic6pSNCur7rzThHEDDzffD7bB+svhzBfCmVdA94bW9FNERERERERmxbwO5/7oj/6Il770paxdu5ZDhw7xkY98BMdxuOmmm0ilUrz5zW/mfe97H52dnSSTSd71rndxySWXcPHFFwPw4he/mHPPPZfXve51fPKTn6S/v58Pf/jD3HzzzfWqt7e//e38/d//Pe9///t505vexF133cVtt93Gd77znVa+dRFZKnwfBh+bNFT151AtNrdZfmEtjHshrL4IAqGWdFVERERERERm37wO5w4cOMBNN93E8PAwPT09POc5z+EXv/gFPT09AHzqU5/Ctm1uuOEGSqUSV111FZ/97Gfrj3cch29/+9u84x3v4JJLLqGtrY03vOEN/K//9b/qbdavX893vvMd3vve9/LpT3+aVatW8U//9E9cddVVc/5+RWSJyA3Brrsbgdz44eb7ieWNMO6M50Nbdyt6KSIiIiIiInPA8n3fb3UnFoNMJkMqlSKdTpNMJlvdHRGZT6pl2H9/bajqXXD4t833A1FYd1kjkOs5GyyrNX0VERERERGRWXGiWdG8rpwTEVmQfB+Gtjcq4/b8DCq55ja9m+HMF5gwbs0lEIy0pq8iIiIiIiLSUgrnRERmQykLu38CT/7ABHLp/c3323qah6om+lrSTREREREREZlfFM6JiJwK34fhHbD9h2bbey+45cZ9J2Qq4iYCud7zwbZb118RERERERGZlxTOiYicqEoB9vy8EciN7m6+37EONl4FG18Eay+DUKwl3RQREREREZGFQ+GciMixjO2rhXF3wK6fQLXQuGcHzUIOG19stq4NWshBRERERERETorCORGRydwK7LuvEcgdebz5fnKlqYzb+GJY/1wIJ1rTTxEREREREVkUFM6JiIz3myBu+w9h54+hPN64Zzmw+qJGINd7nqrjREREREREZNYonBORpcdz4eBDJox78gfQv7X5fqy7Ecad+QKIdrSmnyIiIiIiIrLoKZwTkaUhNww774LtP4AdP4LC6KSbFqx8em3uuBfB8qdpZVURERERERGZEwrnRGRx8lw4+CvYcYcJ4w7+CvAb9yMpOPMK2HSV2cd7WtZVERERERERWboUzonI4jE+ADvvNPPH7bwLimPN93s3N4arrnoWOPonUERERERERFpLP5mKyMLlVmD/L01l3I4fTZ87LpKCM18IG6401XHJ5a3pp4iIiIiIiMhRKJwTkYUlfaARxu36CZQyzfdXPA02vMgEciufoeo4ERERERERmdf0U6uIzG/VEuy7z4Rx238ERx5rvh/rMlVxG640VXKaO05EREREREQWEIVzIjL/jOyuVcfdCbvvgUqucc+yYeUzzdxxG67QyqoiIiIiIiKyoCmcE5HWqxRgz88bK6sO72i+H+81lXEbroAzXgCxztb0U0RERERERGSWKZwTkbmVPQIDD9e2R8z+yBPglhttLAfWXFwL5K6E3vNVHSciIiIiIiKLksI5ETk9qmUYerI5iOt/GHKDM7dPrmyEcWc8z6y0KiIiIiIiIrLIKZwTkafG9yE7OKUa7hFTDedVZniABZ1nQN/5piKu9zyzta8Fy5rz7ouIiIiIiIi0ksI5ETlx1ZIJ3SYPSe1/GPJDM7cPp0zw1jcRwm2GZWdDqG1u+y0iIiIiIiIyTymcE5GZZY/A4d/CwLbGkNShJ8F3p7e1bOg8c1IIV6uKS61SNZyIiIiIiIjIMSicE1nqfB8yB00Qd3hrbf9bGD80c/tIuwne+iYNSe05B0KxOe22iIiIiIiIyGKgcE5kKfE8GN0N/ZNCuMO/hfzwDI0t6NoAfZsnzQ93PiRXqBpOREREREREZJYonBNZrDwXhrY3h3D9W6GUmd7WcmDZObD8gsbWez6E43PfbxEREREREZElROGcyGJQLcORx6YEcQ9DtTC9rRM2Q1HrQdwWWHYeBCNz328RERERERGRJU7hnMhCUymaVVIP/boRxA0+Bl5lettgmwnfll8AfbV9z1ngBOe+3yIiIiIiIiIyjcI5kfmsWoLBR00QN7ENPgZedXrbSHujEm75hea48wywnbnutYiIiIiIiIicIIVzIvOFWzHB2+QgbuCRmSviYt2w4sJGCLf8Amhfo4UaRERERERERBYYhXMireBWYejJ5iCufxu4peltox2w4mnNW3KlgjgRERERERGRRUDhnMjp5nkwvGNKELcVKvnpbcMpUxG34mmNfftaBXEiIiIiIiIii5TCOZHZ5Hkwurs5iDv8Wyhnp7cNxc2w1HoY9zToWA+2Pde9FhEREREREZEWUTgncqqyg2axhoFHYfARM1/c4ONQyU1vG4yZ1VInD03t2qAgTkRERERERKSm5JYIO+FWd2POKZwTOZ5SFo48bhZnGHy0Ecjlh2ZuH4hA32YTwC2/0Oy7N4Gjv24iIiIiIiKydFW9KgP5AQ6MH2D/+P7GPnuAA+MHWJtcy5ev/XKruznnlBaITHArZm64egj3mDke23uUB1jQuR6WnQu958Gyc2DZedB5hoI4ERERERERWZJylVw9eJsavh3KHqLqV4/62APjB+awp/OHEgRZenwfxvbVhqHWhqMOPGpWT/UqMz8m3jslhDsXes6GUGxu+y4iIiIiIiLSQp7vMZgfnFb5dnD8IPvH9zNaGj3m44N2kJXxlaxKrGJVfBWrE6vNce18KVI4J4uTW4Hxw5A+YLaxfaYCbvBxE8aVx2d+XChhwrfec00AN7G1dc1t/0VERERERGTe8n2fslcmX8lTqBbq+0K1QL6ap1gt4vkeHh6+75vH4OP5jXPP9/An/vNr20QbJrXxJ7Wh0WaiH/U+4U/rY9M5R287/bS5bbqUrgdxB7MHqRytsKWmI9xRD9tWJRoB3OrEanqiPTi2c8zHLzUK52Th8X0ophvBW3p/bTvQ2MYPQ+0fqxnZQTMP3OQQrvdcSK0Gy5q79yIiIiIiIiJPie/7uL6L67tUvWp9c30X16td8xvXitViI1SrTgrVplw7XhvvWD9zLnIBK8Dy+HITuk0J4FbGV5IIJVrdxQVF4ZzMPzNVvU0O3tIHjl75NpkTguRKSK0yoVv76logd55ZKdUJnv73IiIiIiIiskRUvEo9wMpX8uSrzftcNVc/L1QKjeuVHPlqnrJbpupXcb1jBG3+zNdaKWSHiAajxAIxogGzDwfCBKwAWGBhYVs2ljnBxsayLCysxn6izdTrk/YTjwPqzzdx/2isKcUnk9tOfdzUtpO1Bduaqt96Y70EbEVKs0VfSZkbvg/lnFnhNDdc2w/V9kcgc+jEq94mxLoawdtM+7YesO3T/95EREREREQWMN/3KVQLpEtp0uU0Y6UxxkpjZEoZxkpjjJfHp4dtE8eTrpe9cqvfShPHcsxmOwTsAAErgGM7RJzItDCt6Txo9vV7k67N1EYhlTxV+hMkp2ZiaGl+eFLINnSU8K12Xi2e+PNPrXpLrTKVbxPnyZVajEFERERERGSKslsmXZoesE2EbulSun5/4jhdSs9qsBa0g8SCMWKB2haMNc6nXq/to4EokUAEx2oO0urndqB+7NgOAatxzbEdgnaw6b5jOdiWijXmu1I+R+bIIOnBATJHBnCCQS540TWt7tacUzgnMyvnYOt/zRy05Y6YUO44E0DOKBCBWLdZYCHWDW3dZp9cXgve1qjqTUTk/2/vzsOcKs/+gd9nzTpJZgYYQAURUFwAUVEEfaWK4FKtgoJWFIFa5VUBqbVuFVxqq6Jt32rFCmpt1VqrtrUudan9qah1Kbu4Ie6ss2Wyn+X+/XFyTk5mBpjMZBYO38915TprcueZSc4k33nOeQAAAKBH002datO1tD29nbaltxWmKWtal6kjk80WpywSUeunLtrbm50C2dopj85jkEAGGxTPxYvCtrSebne7ZFGmmC9GMV+Mor4oRdUoxfwxqlAqKKSECr3HlCCF5FDLwC0/VXAJoU5hmgal43FKNtRTqqGeko0NpGUyFIhEKBiJUjAao0AkSv5wmMQeMuBCNpWi+LYt1LhtK8W3WQFc49atFM8vZ5KJov0r+/VHOAfgMDSif1yx6/2UUMugLdRs3h3GqSEMuAAAAAAAAD1SWk87AVtR8JYqXq7P1Lcc7bIHEQWRImqkELL5ohTzxZx1zdfb04Ac2Ol1x6D8mJkyyYQVtuVvqcYGZ969nI7HidtwCShBEF2BXZQCkRgFo1EK5qeBSGE+GImRGmj/7z2bSlF8e6Hn267Ct9YEKiIU6V1D0d59qLL/Xu16Hrs7hHPQOn+UaNh3iQKVOw7aQr2IlEB3P1MAAAAAAIAd0gyN6rP1VJ+pp7pMHW1Pby8K2tzhW0LbdZBgkwSJqv3V1CvYi3oHelOvQC/qHexNvfy9qDpQTbIoEzOTSSYRE5lkEjMTEztTk82iZWZ2RgBtsb2V+wiC0GrgVqFW4JTObsTMlEunKdVo9W4rBG8N1rr8fLKxnlINDWQaJQxoIQgUjEQpFKukYDRGis9P6aY4peKNlI43UibRRMwmpRobKNXYQPTVrh9SUhRXWFfogWfPByNRMk0jH7ptsU5DzU8ziV0P1uiviFC0dx+K9q6hSJ8aitjzvftQpHcfUv3IFRDOQesEgeicR7r7WQAAAAAAABTJ6BkraMvWUX2mELrVZ+qpPuuaz9+atF2HB25+yV8I2gKF4M1eZy9X+isRgHmQaRiUTacol0pRNpW0pun8NL+uaHvavZ89n25TDzc3fyhMwVglhfK3YDTmzIeiMWdboCJCorTjU1YNXbfCusYGK7DLT63lOKXiDZRubKRUvIFSjY2kZTNkaBo11W6jptpt7fqZ2eGbFbbV5OdrnHVqANeL3xWEcwAAAAAAANBtMnqGajO1VJeuaxGu1WXqWgRv7bmmmiiIFPPFqMpf1bK3W6A39Q72pupANfUO9KawEsapnR5gmgZlmpqsXmp277V8b7JMIlEcqjkhW4q0bAkDGe6C4g9QKBajYLSSQrF82BatpGDRvBXEyUp5rtMnyTKFK6soXFnVpv21TMYK7/JhXTre6ArzGp0eeIIoOr3don1qEL6VGcI5AAAAAAAAKCvd1J1TSO2BE2oztc5ppM66dG3JPduIrIELqnxVVOmvdG5V/iqq9Lnm7fW+Kor4Iujl5gFsmpRONDnXYNvZNNXYWHLvNTdZUUkNBskXDJEvGCQ1YM3b66zlVuaDQfIFguQLhUjx+cvY+s6h+P0U9fsp2qemu5/KHg3hHAAAAAAAAOySySY1ZhuLgjY7ZHNCt0wt1aZrSx4wQRVVqgpUOaGaO3hrLXRD7zbv0HM5yiSaKJNMUDreWDwggrvHW0M9peKNZBpG2x9cEChQESmcFhqNUTAaI3+4oihQaxm+BUmSMeIsdB2EcwAAAAAAAHswZqZ4Lk5bUltoa2orbUttc+a3prY6AyfUpetI57ZfuF4UROsU0oA1QII9b9+qA4VtFUoFwrbdmKHrlE0mKJNMOEFbNpGgdCLhrM8mE5RONFnLiYSzj67lSq7nD1c412RrPnVfny0Yie70+mwAPQXCOQAAAAAAAI/KGTnalt5GW1NbrcAtudUJ3bamC/NZI9vmx4z5Ylao5q92AjZ34GaHcDFfjCQRwcjuhpkpm0xSom47NdXVUqKullKNDc2CtSbKJhKUSSYpk0yQlin9OoBugiCSLxSyernFKp1ebq2Fb8FoFL3awHMQzgEAAAAAAOwmmJl01kkzNErradqe3k5bUltoW8oVwKUKoVt9tr7Njx3zxah3sDf1CfahmmAN9Qn2oT7BPtaACYHeTvCmSAhGdlemaVCqsZESdbXUVLedEnW1lKjdnl+uddbr2baHtW6+YIh8oTD5Q2Hyh62pL2wvV1jLrm3+sLVe9QdIEHFNQNhzIZwDAAAAAABoh6yRpaZcEyVyCUpoCWrKNVFSS1JTrolyRo5yZs6ZaoZGmqkVLbunOSNHmqm1WG5tWsq13Iis67n1DvYuCtxau/kkXyf9pKAr6JpGyfp8yNZK4JaoraVkQ12br9nmD1dQuKqaKqqqKRirdMK1FsGbHboFQziFFKCdEM4BAAAAAMAehZkpracpoSUokUtQk1YI2NxBmzNtFr7Z85qpdXdTqMpfVRyyBYoDt5pgDUV9UVzPzQNy6RQ1bt2Sv222ptu2UKLWCt/S8cY2PY4giBSKxShc3YvCldVUUd3LCeHCVdX59VW7xUijAF6BcA4AAAAAAHZbzEwpPUV1mTpqyDRQfbae6jJ1VJ+pp/psvTV1zcdzcUrkEmRwCSM+7kJYCVNYDVvT/Lxf8pMiKaSKqjNVJZUUUSma2utlUS5atvdx39d+LPd9cU037zB0nZpqt+eDt3z4tmUzNW6zpumm+C4fQ1IUqqiywjb7VgjfrGkoVokebgA9DMI5AAAAAADoMQzToMZcIzVkGqyQrVnA1jyEa8g0UM4sfbRHIms00bASpgq1gkJKyJm3g7YKtaJo6gRwapgqFGu/kBIiUcC1smDXmJnSTXErcMuHbw1bNlN822Zq2LKFmmq3EZvmTh/DXxGhWJ8aivTpa01711BFr0IPOH8Yo94C7I4QzgEAAAAAQKcyTIPqs/VUm66l7entRbfadC1tS2+j2kwtNWQaqCHbUPI11YiI/JKfKv2V1s1XucP5qC/qBG4BOYAgA8rGNA1Kx+PWIAv1tS1PQd2ymbRsZqePISkKRXvXULSmL0X71FC0j3val3zBYBe1BgC6EsI5AAAAAAAoGTNTUksWgrbM9lbDt+3p7VSXqSOTd94jqLmIGqEqfxXFfDGq9Fe2Ol/lr6JKfyXFfDEKKggtoHOwaVI60USJulpK1tdRor6OEvX2fD0l62spUV9HyYb6XfZ8I0GgcFU1RXvXUKymL0XyUzuEC8UqMWopwB4I4RwAAAAAADhhWzwXp3guTo3ZRorn4tSQbXBCN7uXmz2fMXbeC8hNIIGq/FXUK9CLegV6UXWg2pnvFehF1f5qp4db1BclRVQ6sbUA1ms+k0xQsq4QriXs+XwAZ83Xk2nobXpMQRApGItRKFZZ6AHn9ITr02m7jAAAXRRJREFUS5HefUhW8NoGgGII5wAAAAAAPMIehbR5wBbPNlu2b9niaXsGSQgr4R2Gbe7lSn8lySK+fkDXsK/v1rR9G8Vrt1nT7duoqXZ7vgecFbwZWttH3A1EohSurKJwZRWFKqspXOWaz68PRmMYbAEASoa/jgAAAAAAPZTJJjVmGwvXZ8vUFvVia8g2FAVtjblG0s229fDZEVVUKeqLUkSNUMQXoagabRG8ucO4gBwoU2sB2k7LZqipdjs1bd9O8dqtReFb03YrjNO1tg0U4g9X5EO2KgrnQ7dQZRWFY/lpVRWFYpUkyejxBgCdA+EcAAAAAEAXYmZKaInC9dny12prfr222nQt1WXqSOfSwzZZkCniizgBW0S1bk7o5p73FS/7ZX8ntBqg7UzToGRDfYvAzZq3grd0U7xNjxWMxijSqzdV9OptTat7U7iql9XTraqKQrEqklW1k1sEALBzCOcAAAAAADrIZJOack1Un6m3rtGWKQ7batO1RQMmZI1sSY8f88Wc00TtHmvVgWqK+WKthm4YhRR6CtM0KJtMUiaZcE0TlEkknHl7fbKhnppqt1GirpZMY9enWCs+P0V696GK6l5W+FZthXAV1VYQF67uheu7AfQAmmFSU0aneFqjeEajeFqnpkxh3ppq1JTRKRZU6YbTDurup9zlEM4BAAAAALjYQVtjtpHqs/XUkGlwpg1Z62aHcPXZemrMNlJDtqHk0UhDSsi5Nlurp43m11f7q0mREDBA9zF03QrU8qGaPW+Hau7ALZtMUCaVdJZz6VS7agqiSOGqaqe3W3H41osivfqQLxRCCA3dRjNMSmsGZXIGpXIGpTVrmtEKy5pukm6alDOYNN0kzTBJN5ly+Xnrxs68bjDlWllfmHet003STCZmJp8skU8WyadYU78ikk+W2jz17Wy7IpFfFslgdoK05kGbta5l0GZvT2ttv57pwOogwjkAAAAAAC9gZsqZOUpqSUppKUpqSWeghKJwLT9tyDY4IVxjtrFdAyMQWYGb3cvN3cOtl79wnTY7cAsqwTK3GqB9tFyW4tu2UnzrFmrctpXi2/LTrZupcdtWSscbO1xD8fnJFwqRPxQmXyhM/nDYmfcFQ+QPhykQiVKkl9UTLlxZhYEVoCx0w6R4RqfGtObcUlm9KExL5wxK5afpFkGbTmnNpHSu+D6awd3dtN1O2CdTxC9ThV+hSECmiF+hSEApWte7wtfdT7NbIJwDAAAA2IPZo3vWpmutUzEz1nXO7OudNWYbSRIkUiSFFFEhVVKdqSqqpEoqyaJctOzez9k3v10RFVIkpcV+AgmU1tOU0lNFgVpKTxXN29vsefc+KS1FSd1al9bS7bpWm1tQDlKlv5Jivph188eo0mctV/orKeqLWsv59VFflFQJ166CnkfP5Si+fZsVum3d4grftlDjti2Uamxo0+OogSD5w/lwLRhyQjZfyArarLCttQAuhMEUoENaC9jsWzytUUMq12y91bOrMa1RItuxvwW7IgpEQVUmvyJRUJUooEgUUK1eZ6oskSoJJIsiKbJIiiSQKokkSwIpklg033y5+TbFvZ+cf0xJJEEgyukmZTSDsjuZZu1pG/ZtPs3pJgkCUYVPzodphXCtedBW4ZeLtkfz68I+mWRJ7NTfxe4M4RwAAACAx5hsUkO2gerSdS3CttpMbYv1GSPT3U+ZBBKIqXN6IQTkAAXlIAWVIIWVsBO4OVNfJUX90aLgLeaLIWiD3YauadRUu43iW7dS47bNFN+2NR/CbaXGbVsoWV+3y8dQ/AGK9qmhSO8+FO1TQ9He1nykdw1VVPcifyiMnmxQRDdMyhlWcJPLhz7u5Z1u04386ZvshD853aREtvMCtrBPpmjACpDCPqlZmCZTwF52BWzuaVB13UeVKKjI5FetEM3rp1ebpvX3WRS93c7uhHAOAAAAoIexT8lMaSlK62mrR5l7Xrfm6zP1LcO3dC3VZ+tLvv6ZX/JTdaCaqvxVVO2vpqqANY36os7zyRk50kzNmdrzznozR5rhWt9s2b1eN4u/aNnBnEAChZSQE6YFlSCFlBCF5BAFlIAzb68PyPl1+fuElPx+csjZLokIFGD3pGsapRobKNVQT8nGeko22PPWNNFQT/FtWyhRX0fEOw+37cETrACuhqK9+1DEDuH61JA/FPZ8wLAnMUy2TsfMXw/NuunOfFrLz2fz2zRr32TWtc11n0zOCtOy+Wul5XSTzG44q9MdsEUD1rx9iwXV/PqWt4gfvbY6AqFc50M4BwAAANABmqFRUktSQksUn2KZD9DSWiFMay1g29H6UsO11kR9USto81e1GrzZ67vj+mfMXBTaGWxQUA5ilFHwPEPXKR1vpGRDPaUaGyjpCtvc61KNDZRJJtr8uLLqc3q+2eGbHcRFevehQEUE760ezDCZkjmdklmdEhmdElnrlszq1JRxzWfd+xiUyGqtBnBZveN/Q0ohCkSqbPUis0/lVGWxcJPseYlUSSRfi/XWLaRKrvCtWfCGgA08DOEcAAAA7FGYmbJG1rl2mTtUS+QSlNSbrd/FvGZqnfp8fZKPAnLAOTUzIAcooFjL7oEHmgdvMX+MFLHnXuNJEATnWnQAuzvTNCgdj7cI14oCuPx8uile0mOLkkzBWIxC0UoKxWIULJpWUqR3b4r2rqFAJIrwrQswM2kGW6N05gcQyOiFQQQymkEZzaRUzrBCNFfI5g7dnFvG2pbMtW8Qml0RBKKgIlHQJzuncAZViUI+92mcMoXUwnwwPx/Mz9undbqDNl+z4A2hGUDHIJwDAACA3RIzU1JLUkO2gRqzjc6Im43Zxh0ux3NxSmmpDg8U0Bq/5HdOtbRPyXQHavZy85DNmW9lH7/sJ1nExzWA7sCmSelEU9FppMkdBG/peJy4hN6ugihSMGoFbnbw1nwaisUoGKvE6abtYOZ7oSV20AutEKyZrkDNCtfskC2rWduKtue3debpnLIoUDh/8Xz7FvLJFPbLVGHP2ze/FZ6F7ECtlQDOJ3v/emgAXoBPewAAANDtckZup+Faa+vj2XhZRuO0r1fmXLcsP2hAi3k5SGE1XHS9s7ASduYRogH0fMxM2WSSko31xaFbswAu1VBPqXgjmUYJvZkEgYKRKAWjMSt4i1k925x5O3iLVVIgXEGCiJ5GbobJlNEMSuQDtGTz3mW54tM7u6MXWnOSKFBAsQYJCKiiM2/frDBNorDPGoAg7C+EaxV+mUKqXBTEIUwD2HPhUyQAAACUlWZq1JhtpPpMPTVkG1pMG7INVJ+tp4ZMg7M+pafaXc8v+Snqi1LUF6WYL+ZM7Xn3ckSNFIVwooAvxwC7My2XpXQ8TummOKXjjdbUvsXjxcv5daZRWqjvr4hQKBpr9ZTSUNTq3RaKVVKgIuKZ0UyZmbYlsvR1fZq+rk/TtqYsaYZJWn4wAM1kZz5nsLXOsAcKYNLN/LLO+RE57RsXz+dH8NSMzhlcwO6FFlKtMMwOwOzeZX57NE5FIr8i5kM2qRC4OcFbYR/3/RScygkAZYJwDgAAAHbIMA1qzDVSQ6YQqNVnW4ZujdlGZ3uT1tSuWqIgUlQtDtmaB22tTf2yv8ytBoDuYOg6ZRJNLUK2lL3cStimZ7PtquULhZoFbbGinm32fDASJUnuuddubC9mpu2JHH1dn3ICOHv+q/oUfVOf7vIBBWyiQPmeZUq+15kVqLl7mlW4TvVsfvpnhat3GnqhAcDuAuEcAADAHsJkk5pyTS17tDUL3Zwebdl6imfjxFR6dwaBBCtU88eo0ldJUV+UKv2VFPNZy/Z69/YKtQI92QA8hpkpl05Ror6OkvX1lGysp2R9nTNAgns+k2hnsC/JFIxEKFARoUAkQv6KqDVfUVgXrIhSIFJYJ6veHoiEmak2maOv6lqGb/Z0V+GbIBD1i/hp78og9Yn4yCdLpMoCKZLo3FRJINlZtkbnVFzL7nlVEkmRi5dl9zZJJF++ZxoCNQDY0yCcAwAA2A3ZgyHsrDdb81NJG7INZJZwwXK3iBppNVwrCt1c2yvUCpJEb5zeBQAtmaZBqcbGfLCWD952MK9ruTY/riCI5A+HKRCJFoVrzcM2az5KwUiEFH/AU2EOM5NuMumGdXqobjBp+alhWqeF2tvTmkGbGpuHb9Z8Rmt7+LZ3ZSB/CzrTvlE/qTL+YQIA0BUQzgEAAHQhzdAooSUoqSUpqSWL5ltbl8glKKknKZmz1qe0lLPd4PZd8DqkhHbYg82Z5sM2+9RRDHYA4H2mYVinkTY2UCreaJ1OGm90RiRN1tdRosEaSCHV2FjS6KS+YMgZICFUWdXqfDAaI384TGIZg3171M5k1nAGEsjqJun566bp+WufOSGYE3xZ6w2zEIzt+D4t768ZrjDNtc0wuWi7bhbf195eDoJA1Dfibxa6Feb7RQMI3wAAegh80gYAAGgj+7TQeC7uTOPZuDW112Xj1KQ1OcFaSk9ZAVs+bMuZbe9B0hY+yUeV/konUNtV2BbzxUiVvH06FwBY2DQpnb+GmxW4xSkVb6BUYz50izdQOl4I40o9rVQQRApGoxSKVVGoMh+2NZsPV1qhm+Jr27UhTZOpKaNRKlcI06ypkR+F016XX85vd+/v3p7WumbUzq6gSALJokiyJJAsWqeTqpJI/aJWALdPVRDhGwDAbgrhHAAA7FE0U6OmXJMTpNnBmh2qNV/nzOfilMgl2nX9tdb4Jb8zamhICVFYDVNIDlFIDVFYCVNQCVJYCRe2N5sPKkGK+qIUkANleT4A0LNZ125LUzaZoEwyQZlEgrLJRL6Hmztws4I4ewCFUnq3ERGRIFCgIkLBSJSCkSgFojEKRiKthG5VFIhESBQl0g3T6pmW0ymRscKyzfnQLPGlRsnsJmt9frsdniWymhO6NeVDtVSuc8I0SRQopFqDC/gViWRJIEkU84GX4Fz7TBbFohBMkcQW293hmFK0reV+iiSSJArN7pvf1uyxZDFfr5V1okCeOnUXAACKIZwDAIAuZ5gGpfU0pfQUJbUkpfU05YwcZY0s5Ywc5cwcaYZmLZs5a51928W2nc1n9Ayl9FSHn79f8lNEjVCFWkERX4Qiav7ms9aFlTBVqBVOwNZa2IbTRAH2PDsK2DL5Wza/LpNoKiwnE5RJJimbTBCb7btmpD8UzodsUfKFI6SEK0gKRkgMhon8YTJ9ITJ8IdKUEOUkP6V1k1KaQbU5g1L5WzKrU+ILnRIf65TMfkuJ7JdOr7VdXdusPUSBnBE3Q/ZNlVzr8vOqvV1y9gv78qN6+mQK5kf7xKidAADQk+GbAQAA7JRu6laQpqUoqScprVmhWkpLFU2TWtJZtve3l5N6smh9xsh0d7MopIScUK1CrXDCtdaW3eFbRI3gtFCAPZiuaZRNJiibSlI2H5plUknKpVJWoJZfXxSuJZo6HLDZBEkm0R8k8gXJVAJk+oKkKUHSlBBllCBlRD8lRT8lBD/FyU+NpFBKI0rlDErnDOJaIqp1P6JBRPH8rWNUSaSwPx+UqTJV+AvBWoWvtXnJ2keVrfuphXDNryBMAwCAPQfCOQCAHsgwDacXmXuaNYvXNe8ZppkaaYZW6DWW72XWfJ/mvdCa9zJzr9NMrdPaKQkSBeUgBZQA+SQfqaJKquS6iW2Yb8M2n+QjRVLIL/mpQq2gCrUCPdcA9lB6LkfZlB2eJfNhWiK/zrWcTFI2nSrM50O3UkYe3SFJJsEXJFPxk6EESJN8lJX8lBZUSgkqJUyF4qxQoylTVvRRRvRRNn/TBdm60r+bSUTZ/K0IE1Hrz9cnixRUJQqqMgVUiYKqRAFFarlOlSiouIK0ZgFb2NW7Ddc3AwAAaB98MwEAaANmpoyRKfT+0q2p3RPMWaelKWNkWg/W2rguZ+RIZ727m9yCJEgUVIIUUkIUlIPWTQk64VpQzm/Lr2u+3bmfUtimiip6RgBASUoK1+xebK59DK3j/3BgEogVHxmyn3TZZ4Vroo8yokoZUilFCjWxQmlBtUI1qQ0B206okkiRgEx9/ApF/DJV+BWq8Fs904KqnA/UJAq455XikM0J2lSZAopEkohjLwAAQE+BcA4APIOZKWtkKaNnnOAsbaSdwMwdpLnDNDto21nwltbTZRsIoFSyIJMqWb2/3FN3LzFFUgo9xux1olK0X9E++e2t3q/ZuoAcoKASJEVUEKQBQLsxM2nZDOXSacql06Rl0pRLpyiXSTvrdhW0ZZJJMsrQc80kgTRRdQK1rKhSzgnPVMrlt2Wdqa+wTlIpJ6htDtdEgajCr1AkIFNfnxWqRQL5abOwzV5f0Wy9X5E63GYAAADouRDOAUC3MEyDGnONVJ+pp4ZsAyW1pBOqtRaupfVCwFa0PX/L6BnKGBkySx2Vrh0CcqDoFlSChXnZmvdJvhZh2s7WKZJCPrHldlVScfolAHQb0zQok0hQLmWHaCnSMpmiQC2XSVEunaZMKmXd0inKpdKUy1gBnJbJkJFNk5HLEnF5/snBRM3Cs+JwrXhdofeaHby1Fq4pkuD0NrN7mVWoEvVRZQoq7p5nrfdQc28P5gcuiPgVCqoS/rEBAAAAO4VvfADQYcxMaT1N9dl6qs/kb/n5hmxDq+sas42d2hNNFVUKKFZg5pf8hTBNKQRo7mBtZ+vcp236ZT+JAq6pAwC7H90wqbEpRfV1ddRQV0+N9Q2UaGykZGMjpZsaKZtoIi0RJz2VIDOdIMokSMhlSCjzsZqJKCeopIkK5USFNEG1pqLinPq5q55rpuSjkF8pGrXTGkxAomj+GmhBVaZwsxE87dCstWurKRKO7QAAANA9EM4BABEVTgnNGllK62nn9NB4Ll4UrjVkG6guU0cNmYaisC1rtLgKdZtE1AhV+isppISsEE0JUEAq9Erzy/6ieTsws9e7tzv7SX6SRJwCBAC7H9NkyujWqJppzaCMZlA6Z7ayzqBUTqNUU4JS8UbKxOOUTcZJTzaRkU4Qp5NEmQRJuSTJuTSpeor8RoaUNl7PsnlMpQlyiyBtRwGbJqrEskqk+klQfCSqfhJVP0l+P8k+P6k+P/kUybrJIvkViUL5adgnU0gtBGpWqOYO36wAzifjGA8AAADegXAOYDdg90xL6SlK5BKU1JLOddHsEC1jZCijZwrhmp51TgNtbZ/Wljvak00VVar0V1KVv4pivhhV+iup0l9JMV+seJ3PWh/1RXHKJgCUFTNTzjApo5mU1ewwy7QCLc0gzTDJZCKTmSg/tZeZrfs7y2QvM5mm1ePL2s/ah7mwbJgmcS5rnb6ZSZOWy1I2m6NcJkO5bI60XI70XI50zboZOY0MXSNT14i1HLGhE+kaCaZOEhskszW15t3LOsmu9UREEhGF8re2MEikrBygnBIkXQmS6QsS+cMkBkIkBStICVWQLxyhQEWEApEIhaNRCvgU8ssS+RTRmfpkifz5qU+xwjWfLJIqiTiNEwAAAKAE+FYM0Ik0U6OUlqKElqBELlEUriU0a+qe39m2rriWmk0WZPLLfvJJPqpQK4oCtVbDtvz2gBzAFzIAINO0ArKcYZKm21OmnGFQTmfSXNuyrn0ymklpzaCs3TvMFawVpobTiyyjWT3KMjmDMnohgCv1smYCm+Qzc6S6bj4zSyprhfmibc32ZWva2tFPzd86Eyt+okCYpECY5FCY1FCEfOEKCkajFIxEKRKLUSQWo8qqSqqqrqRwRRjHagAAAIAeBOEcQJ67d5o9gqfdQy2lpXY4de+T1tNOoJbSUpQxMmV9jgIJFFbCFFJDRddS80k+8st+8kt+J1SzT/lsvq35Ps72/Daf7CNFVMr6vAGgPJiZNMMKt5yAy2DS9GbL7lDMvb9utry/KyzL5R9Hy9/PDtDc+2ZbrHPf17qPYZbnGmUCm/leYrrTe0xu1rNMZp3CrFPU3cPMtKYKGeQTDFLJJJUMUgSDFFMn2cjmbzmS9SxJplaW50tExIJIpuInllUSJIUEWSZRVkhUVJJkhSRVIVlRSVZVUlQfqT6VVFUl1ecjn18lv89HgYCf/H4/KT6VJEUlWbHuI6kKyaqPZEWx1qsq+YJBkmQcswEAAAB2ZwjnYLfBzJQzc0UjetqnZTpTe5t72Ug787sK2jprgAKf5KOQErKCNSVEYTVMITlEIdW1TglTUAlSWAk7AVzzdeiZBlBeuwq72hyE7ST40k17e+vzVo8y01rOB2WaWRya6fnH1csUerXzh0UimfmAzA7HdFJYJ5V1CuTXFW6FME0VDFLJuilskEI6KVzYXzKtx5JMg0RTI9HUSTB0ErqwxzARkaz6yBcMkhoMkS8QsKbBIPmCIVIDwcJ8MEi+QLDV7bLqw3EaAAAAAEqCcA5aZbJJW1NbSTf1wo0L85qpkcFG8fb8+ub7ttjeyrbm10CzAzb3ddPKcU20tgrKQQoqQQopocKInUqQgnJ+XX7ePaqne70dwNnhGnqiQXeyAygrDGLS8yGPlg99dNNadgdARdsMJsNka59my0Z+X/ey/fg726fFfUwuurZX8fW+CtcFo2bLnL9OmJm/b/4yYs6yaeb3ya8zTHL1DLN+Hrs7VRZJFQXyiyb5BYP8gkEBweox5iODVNKtGxuk5MMwhXWSTc0KxfJT0dRI1HMkGJp10zUiI0ek5Yh1jVjXiLo4LHOTZJlk1UeSku89pqpODzQ536OstW12DzOnt5rP54RqVqBWmJdkfCwCAAAAgK6HT6HQqqSWpBP/cmJ3P40dUkSlcJpm/haQAkWnZzqjebr2C8gBJ3BzB2whOUQBxQrZ/LKfRKH5OHWwJ2PmQniVD6d0wyQtH0RprhDLHW7Zvax006ScuzeW6e6ZVdzbqvm81WuqsD6nFx4/pxcCLneYpjV7ft3Z2Wp3pOYvaK9IAimSSIokkipby7IokiKLpLq2WduLl4vum5+XnfWCdaqmniXZ1EjUsyTqOSJ7qmWJtaw1zWWJtQwZ2QyZuQwZ2Szp2TTp2SxpmTTp2QxpuSzp2faNlrwjnL/tjOzzOUGYYodfrnXWzUdKs2VZtfcrLCuKWnQ/yb1//pROQcRxGQAAAAC8CeEctEoWZZJFmRRRIVmw5iVRstbnl53tYmHZva3FPq1ss9fb1z2zr5O2s3DNJ/kwwuduyA64sroVKmV1g3LOfCGMah56afbpfgY74ZMdULmDMWffVpZb6w3mDtTs0wbdtYuCOA+mW5IokCzaoZE1L4vWvCKJ1rIzFUgRRes+kpC/r7VNct/XtSzlH9uu09qy/fiSKJAkWFNBIBKFwlQUiARBsNYRkSgWlkXBug5jYZ+WU/dj2VMrMBNJkd0BmhWcWc+hcEoimyZpuSxpmQzlMmnSMpn8LU25bIa0TLKwLZshLZ0mLZOlXCZtrUunrdE6M2nS0ilKZzIUz2SIO7EHmiTLpPj8JPt8pOTDspbLrnWqz5kqfr+z3Zn63AGbL98bTcGpmwAAAAAAZYKEA1oVkAO04vwV3f00oEyYrQAqq5uU1axgLJsf2bD5OmvZGvkwm9+ey1/wPauZlDOM/NR0pu6wLesK3Kz5/GMYZskjKPZkgkCkiIVgqxByWSGPKostelnJUnGPK1kS8qFQy95WimwFYookkCK3sl1qGaY1fw6yJJLiCsKc+4gCiaL3ghVD110hWtoJ03JpezlTmGZd8/llJ3zLZpzHKXePtOYUf4BUv5/UQIAUX8Ca+v2k+u35/NTnJzUQJNXvJyUQsLb7A1bI1ixQEyWpU58zAAAAAACUF8I5gG5g5nuQpTWD0ppBGc2gdM6aZjTX+pxBGd3aZq/Laqa1r244oVqmebjmbCsEcD2Nkg+mVNk+ZbA4dLLDJTt0csImdyglWiFW8zBKLnqsVu5X9Lj2uraFXbKrB1hPw8zEpkmmYZBpGtbUMIh1k8ycQbphhaumaRK7t5uma3+zeNk0iMjqoUb53mdEAgmiUFhHZKWVgr2OSBBEa1/XusK81TtNEPL7Wo+QD8gK4ZodkFnhWsYJ3JyQLZ127qOlU2Toeuf9cAXBCsj8flL8flL8gaJl1R8g2b3dZwVuVsgWdPaxwzY1vw9O1QQAAAAAAIRzsNuwLwxv5C8gbzCTYVhT3TTJNKloau+jG9aF4QsXq89fkN40yTAKF7m3t9kXx7cuWs9k2MsGk2YWlgsXxS+c+miY+R5q+SDNCtVcy/l13R2W+RWRfLJEPlkkn2ver+TXydY6VRbJr+QDNEkin2Kd/udMXfv58iGbvVy8Lj91Pcbu3nPL0PUWPawKPa+yZOoaGbru3NzLpmGv18jQtPz2Heyru/bVi/c1Dd0K2uxQrRsv1t+TSLJc3OPMH8j3NiuEZorT6yy/vtXlQtiGETgBAAAAAKCzIJyDVumGSeu+jVPOMEnTC6cuWheoN0jT2bXOdC5OnzO4lXWFeS2/vXhdIQyzb7rJZNojOXJhvRepskh+WaSAKlFAkcifvwUUyVnnU0Rr2d6mNgvTmoVqPkUkf37qXufLX+jeyyEDM+d7gNkBlkFmfqprmhWoZV3XDcvseLlwjbE0ae7wLZPu3F5anUCUZBJFkQRJIlESSRQlEiWJBFEkUZJIFCVrmyi69pMKPbvyw6AyMZE9KiqbResoPyqqtd26udcR2eus+7DpWkfkhGGF8KxZsOa3T+fMh2f+Qu80q2dakBS/jyQZoyMDAAAAAMDuA+EctCqlGfS9e5Z399NoM0Eg6zpaguBcT8u50Hz+YvWiSIWL1ucvbO9e3tnF662L4Bcujm/t03LZPo0yoLYM2fyyRAFVLFrvV6QecXokm2aLXl1mvreWfeqjaRjWetMgUzfyvbby82YhACu+6WS45lvb7r6/HaYZRiFUc3qI2cvOtDh4c+/XlURJck5zVH3W1L5gviTLJMkyibJCcn5aWCeTlF8W8+ske52iFK+TWr+vKEtOyOYEbaIVvhWCNgmnTgIAAAAAAPRgCOegVaok0l6xgHMBevuaYGq+55W1LLSyzr2fUHQ/e0TE4nXWdcdkSXRGa5SKQrVmQZtgjQZZtK+w+1zc3urVpZOe08jIpCnZlLPmtRzpWo6MnEa6liNdy6/L5cjQ8utc89b+hdMfrXCqcMpj4bRJvcU6s9l6w9CJTW+fDimIYj7gkl3XBLN7W1mnOjo9sVpbzu9f6LFVOP0RvbQAAAAAAACgIxDOQav8ikTLrz6+u59GWdmnOxpO+JUPunLNll3zdmBm6BrpuUJo5t7XCdI0zXosXXNCtqL1+fvsDkOWFsIsyeqxJVmnPEqS3UvLOkVSlGWn15Youed3tE5u/bHy85IsW8tyfl/Xsh2uSfZ9ZMnqPWY/biv3ceqh5xgAAAAAAAD0UAjnoEcwDYP0XJa0bLYwzWZJyzWbure3Y7+edsF8WVFJUhVrqqgkKwpJqjW1tuXXKSrJikqyqjj7uU9zLARScrNTHwunRFphlutUSikfbrnub93POlUSAAAAAAAAADofwjlolaFr9NmK96zTHvOjSTpT1wiTzgiSrn1MXbd6j7nmzR3d3x6p0uj6i+tLsmxdF8wdfMn55fy8fe0wKzwrBGPudbKqFu0rKQopTrBW2Kdof0UlSZY9PTADAAAAAAAAAOwawjlolZ7L0d8X/6xbass+Hymqz5r6/KT4fCSrvuKpex9n351t9xcCMlUhWVZwqiMAAAAAAAAAdDuEc9AqSVGp3/7Dik6DtEaftHuXFUaVlJyRI+X86ZbWsjPv2qfl41jrZFUl2ecjWVHRmwwAAAAAAAAA9hgI55q555576I477qDNmzfTyJEj6Te/+Q0deeSR3f20upysKPT9mxd399MAAAAAAAAAAPA0nNfn8vjjj9OCBQto4cKF9N///pdGjhxJkyZNoq1bt3b3UwMAAAAAAAAAAA9COOdy11130UUXXUQzZ86kgw46iJYsWULBYJAeeOCB7n5qAAAAAAAAAADgQQjn8nK5HL3//vs0YcIEZ50oijRhwgR66623WuyfzWYpHo8X3QAAAAAAAAAAAEqBcC5v+/btZBgG1dTUFK2vqamhzZs3t9j/5z//OUWjUee2zz77dNVTBQAAAAAAAAAAj0A4107XXHMNNTY2Orevvvqqu58SAAAAAAAAAADsZjBaa16vXr1IkiTasmVL0fotW7ZQ3759W+zv8/nI5/N11dMDAAAAAAAAAAAPQs+5PFVV6fDDD6dXXnnFWWeaJr3yyit09NFHd+MzAwAAAAAAAAAAr0LPOZcFCxbQjBkz6IgjjqAjjzySfvWrX1EymaSZM2d291MDAAAAAAAAAAAPQjjnMm3aNNq2bRvdcMMNtHnzZjr00EPphRdeaDFIBAAAAAAAAAAAQDkIzMzd/SS8IB6PUzQapcbGRopEIt39dAAAAAAAAAAAoBu1NSvCNecAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAboJwDgAAAAAAAAAAoJsgnAMAAAAAAAAAAOgmCOcAAAAAAAAAAAC6CcI5AAAAAAAAAACAbiJ39xPwCmYmIqJ4PN7NzwQAAAAAAAAAALqbnRHZmdGOIJwrk6amJiIi2meffbr5mQAAAAAAAAAAQE/R1NRE0Wh0h9sF3lV8B21imiZ9++23VFFRQYIgdPfTKYt4PE777LMPffXVVxSJRFCnh9RAnZ5bA3V6dh0vtcVrdbzUFtTpuTVQp+fWQJ2eWwN1enYdL7XFa3W81BYv1ulKzExNTU3Uv39/EsUdX1kOPefKRBRF2nvvvbv7aXSKSCTSJW8ML9XxUlu8VsdLbUGdnlsDdXpuDdTp2XW81Bav1fFSW7xWx0ttQZ2eWwN1em4N1On5dtZjzoYBIQAAAAAAAAAAALoJwjkAAAAAAAAAAIBugnAOdsjn89HChQvJ5/OhTg+qgTo9twbq9Ow6XmqL1+p4qS2o03NroE7PrYE6PbcG6vTsOl5qi9fqeKktXqzTE2FACAAAAAAAAAAAgG6CnnMAAAAAAAAAAADdBOEcAAAAAAAAAABAN0E4BwAAAAAAAAAA0E0QzgEAAAAAAAAAAHQThHMAAAAAAAAAAADdBOEcAHRIVwz4bJpmp9cAgPbDcQCgNF3xniHquvdNV7SnK2pks9lOr+FVXfWa9pKu+pkZhtEldTpbVx3PMplMl9bzyvETOg7hHHSYl97sXvuw3JkSiQQREQmC0Gk16urqiIhIFDv3UPXll1/S6tWricgbvxu3rnpN4zhQOi+81nAc2D101mu6+eN66TjQWewvyZ39s9q+fTsRWe+bzvxivmHDBqqvr+/UYwAR0caNG+mJJ56gxsbGTqvx0Ucf0Yknnkiffvppp9UgIkomk5TL5ai+vp6Idv8AoPnrqzPb45VjTC6XI6JCGNxZ7dq8eTMREUmS1KnHgU8++YRWrlzZaY9PZB1r7r77btq2bVun1vnggw9o2LBhtGrVqk793BGPx6m+vp42b95MgiB02vtG13UiKrzGOqMOPguUD8I5KNnWrVtpzZo19M477xBR530ps9/Y9kGlMzQ0NNAXX3xBH374IRFRpx0cN2/eTG+++Sb9/e9/JyLrw3Jn1Pnwww/pjjvuoGQyWfbHdlu5ciWdf/75tGHDhk6rsXbtWjrxxBNp6dKlnVaDiGjdunW077770iWXXEJEnRcAfP755/TAAw/QTTfdRBs2bOi0P1xbt26ltWvX0vLly4mZO+392RXHga44BhDhONBeOA6UzkvHgY8++ogWLlxIF154IS1dupQ+/PDDTnnvbNmyhT7++OOyPmZrNm7cSEuWLKEFCxbQSy+95IRb5fTxxx/TlVdeSVOmTKFbbrmFNm7cWPYadp399tuPfvjDHxJR530xX7VqFQ0dOpSefvrpsj+22+rVq+nII4+kFStWOF/My/06W7lyJY0ZM4beeOONTg3pP/jgA5o6dSqNHz+eJk2aRG+//XanHG/c78+7776b1qxZQ4IglP2Ys379err88svpjDPOoGuvvZbef//9srfn66+/pvfff5+IOvcfQZ9++indeuutNGPGDFq6dCl9/vnnnVLnww8/pIsvvpgmTZpEF198Ma1du7ZT2rVhwwbq378/nXLKKUTUuceBAw44gN56662yP7Zt9erVdNRRR9EXX3zhHJs74/25cuVKOvbYY+nLL7+kl156qdPqrFu3jr773e/SCSecQCNGjKAXX3yxU44D69evp7lz59LZZ59NV1xxBb311ltlr+O1zwLdjgFKsHLlSh46dCgPGjSIa2pq+LDDDuPXX3+dk8lkWeusXbuWTznlFK6vr2dmZk3Tyvr4zMxr1qzhY445hocOHcpDhgzh8847r+w1mJlXr17NBx98MA8fPpxjsRiPGzeu7DVM0+REIsGDBg1iQRD4mmuu4Ww2W/Y6zNZrQJZlvvLKK1t9HuWwbt06jsVivGDBAv7ss8/K8pitWbFiBYdCIT7mmGP4wAMP5JdeeomZy9cO2+rVq3mvvfbi//mf/+Gamhrea6+9+Ouvvy5rDWbmVatW8QEHHMAjR47kgQMH8kEHHcTPPvssNzY2lrVOVxwHuuIYwIzjQHvhOFA6Lx0H1q1bx9FolKdMmcJjx47lo446ivfee29++eWXmbl8P7sPPviABwwYwFOnTuW1a9eW5TFbs3r1au7fvz+ffPLJPHToUD7ggAP4tttuY8MwytaW1atXc3V1Nc+YMYPPOOMMHjNmDP/sZz9j0zTL/lp7+umnuU+fPjxmzBj+4Q9/6Kw3DKNsNVauXMmhUIh/8pOflO0xW/Pll1/ygAED+Ec/+lHRevvYVo42rVy5kgOBAN9yyy08depUPvzwwzv8mK1Zt24dV1ZW8vz58/mOO+7gs88+mydOnMjpdLqsr4E1a9ZwZWUlz5o1i7/3ve/xSSedxJWVlfzCCy+UrQYz8/r16zkSifCMGTN4ypQpfOKJJ7LP5+OHH364bDU+/PBDrqmp4dGjR/Prr79etsdtbs2aNdy7d2+eOnUqH3300Tx69Gi+5JJLOJFIlLXO6tWrubKyki+++GKeM2cOT5o0iWfOnMm5XK7sx4E333yT99lnHx46dChPmjTJWV/u40AwGOzU48C3337LgwcP5gULFhStT6VSZa2zcuVK9vv9fNNNN/H8+fN58ODBzmfPcv5u1q9fz9XV1fzjH/+YH330Uf7hD3/IQ4cOdf5Gl6vW2rVrubKyki+55BKeM2cOT5s2jWVZ5vvvv79sr2uvfRboCRDOQZtt2rSJ99tvP7722mt51apV/O677/KECRO4X79+vHTpUo7H42Wp89lnnzlfLg8//HDny7mu62V5fObCgfGqq67il156iZcuXcrDhw/n//u//ytbDWbrYFJdXc3XXnstr1+/nl9//XWuqanhN954o6x1bHPmzOGLLrqIg8EgX3755S3Cko4eJNesWcPBYJCvv/56Z108HuetW7d26HHdcrkcn3feeXzxxRczs/Wc33vvPX7yySd569atnE6ny1LH/kCxcOFCTiaTvO+++/K8efPK8thuX3/9NQ8ZMoRvvvlm5/cxePBgfuSRR8pa54svvuABAwbwokWL+JNPPuFvvvmGTzzxRO7Tpw8vXryYt2/fXpY6XXEc6IpjADOOA+2F40DpvHQc0HWdp0+fXhRkr1ixgmfPns2SJPE//vEPZu74F8BvvvmGx44dyyNHjuQjjzySZ8+ezWvWrOnQY7bm888/56FDh/K1117LuVyOmZmvvvpqHjJkSNleZxs2bOCBAwfydddd56ybPXs2z507l5nL/8+H5557jvfff3/+xS9+wcOHD3feR8zMTU1NHX789evXsyzLfNNNNzGz9bt+5ZVX+L777uPly5eXNXT+05/+xOPHj3fqXHfddXzOOefw5MmT+ZVXXunw469YsYJVVeWrr76amZn/9a9/8cCBA/lPf/pThx/bLZ1O85lnnslz5sxx1i1btozPO+88zuVyvG3btrLUSSQSPGnSpKJ/nLz//vtcWVnJPp+P//znPzNzeQKa//3f/+UzzjjDWd6yZQtff/31LEkS//a3v2Xmjv292bRpE48fP57HjRvHJ598Mk+cOJFfe+21Dj/v5r788ks+6KCDnNcAM/M999zD++23H3/zzTdlq/PZZ5/x4MGDi44DixYt4lmzZjEzO4FJOX43pmnyW2+9xQceeCA/+uijvP/++/Mpp5zibC9Hu+zjgP1zM02Tn3zySb711lv5scce448++qjDNZiZX3jhBR47diwzWz+byy+/nE899VQePXo0P/zww2U5Tq9YsYJlWeZrrrmGmZk3btzI++yzD99+++0dfmw3TdP4ggsu4AsuuMBZ99JLL/HkyZO5rq6Ov/rqq7LUyWQyPGXKFL788suddd9++y0PGzaMVVXlO++8k5k79v702meBngLhHLTZe++9x0OGDOEPP/ywaP3MmTN5wIAB/Oijj3b4S18ymeS5c+fylClT+PHHH+cxY8bwiBEjyvrlvLGxkb/3ve/xpZde6qyzD2Lnn39+hx/fVltby2PGjCn6b6+maXz88cfz448/zg8++CBv2rSpLLXsA9/06dP5rrvu4pdffpkVRXFqL126tMMH/C1btnA0GuXvfOc7zrpLLrmEjz76aB42bBifeuqpzpfzjrwO0uk0jx49mp988klmZj7hhBN4xIgRHA6HecCAAfyzn/2Mt2zZ0qG2fPzxxywIQtEHpCVLlnCvXr34P//5T4ceu7l//vOffNhhhxV9WTnttNP4lltu4csuu4yfe+65DreHmfnJJ5/k8ePHc1NTk/M++etf/8p+v58POOAAXrp0KTN3PJjp7ONAVxwDmHEcaC8cB9rHS8eBXC7Hxx13XNEXWWbmrVu38pw5c9jv9/Nbb73V/kbkvfLKKzxp0iReuXIlP/TQQ3zYYYeV/UO5ruv861//mqdOncqbNm1yfmabN2/mAQMG8OrVq8tSY8mSJTxr1iyuq6tzfvaXXXYZH3/88Xzcccfx9OnTefny5R2uZfvqq6/43HPP5e3bt/Ndd93FI0aM4AULFvDMmTN5yZIlTgjZHoZh8I033siCIPAHH3zAzMzHH388jxw5kqPRKA8ePJhPOOEEXrVqVVnacscdd/D3vvc9ZmY++uijnZ5GU6ZMYUEQeNmyZczcvtd0bW0tH3HEEUWv5W3btvGoUaPK+neA2fqbM2LECL777ruddddeey0PGDCAR44cyfvuuy8/+OCDzNyx9+f27dv5oIMO4r/85S9FjzVlyhQeP348q6rKb7/9dvsb4jJ58mSePXt2i/W33norC4LAzz77bNFzKNW7777LJ5xwAi9fvpyff/75TgnoTNPk3//+93zGGWfw559/7vwdzWQyvN9++zk9qcvh8ccf5wsuuKDoWL9gwQIeMWIEH3nkkXzMMcc4vRvL0eMomUzylClT+JtvvuGnn36ahwwZwmeeeSbPnDnT+YdURyxZsoQFQeB//OMfbBgGH3fccTx69GgeMGAADx8+nAcPHsxvvvlmh9vxyCOP8P/8z/8wM/Oxxx7LJ510El977bV82WWXsSAIvHDhQmZu/88sHo/zqaeeWnQciMfjfNppp/HJJ5/c4efvlk6n+dhjj+VFixY56xYuXMiVlZV8yCGHcDQa5UWLFnEmk+lQnaamJh4xYgQvWbKEmQv/AJo9ezafcsopzu+tI7z0WaAnQTgHbfavf/2Le/XqxRs2bGBmLjqon3vuudyvX7+yfCm77777+NFHH2Vm5jfeeKPsX863bNnCM2fOdGrYf4jvv/9+Pu6449g0zaIPrh1py+LFi4s+RNx8882sqiqPHj2ahw4dyjU1Nc4H8o7Usdvw6KOPOgfJf/zjH6yqqnOKzhdffNHux7edddZZfNhhh/HSpUv5qKOO4gkTJvBdd93F99xzDw8fPpwPPPBA5z9/7W1POp3mE088kZ966im+7rrreNKkSbxu3TpOJpN8zTXX8CGHHMIPPPBAUbtL9fbbbzv/1bWtWrWKDzroIF68eDEzly8E+v3vf88VFRXOl7zFixezoig8ffp0HjduHA8ZMoRvv/32Dte77bbbuH///kXrXnzxRZ41axaffvrp3Ldv37J0Y3/11Vc7/Tjwu9/9rlOPAcxdexy48847u+Q4YN+3s48DZ599dqcfBzKZjKeOAw8//HCXHAduv/32LjkOXHrppXz00UdzXV1d0fovv/ySp0yZwqecckqHT6NNp9NFX+weeOAB50O5OzTr6JfYhx56iH/9618XrduyZQvHYjF+9dVXO/TYtg0bNhSdinPjjTey3+/nW2+9lW+44QaeNm0a77fffmU7fTuZTPKIESN4xYoVnEwm+Xe/+x1XV1ezIAjOz64jr7XNmzfzD3/4Q/b5fHzIIYfw5MmTeeXKlZzL5fipp57iiRMn8tlnn12WXnqPPPII19TU8NKlS/mUU07h2tpaZ9vPfvYzlmW5Q6c5vfPOO868/TN56qmn2O/387///e/2P/FmTNPkc889l4cPH85/+ctf+Morr+RgMMgPPfQQP/vss3zrrbeyKIodDp62bt3KRx99NN9yyy1Oj6LPPvuM+/fvz08++SSfdNJJfN5557Gu6x1+7yxatIj32WcfpxeW/Xi5XI4vueQSPvDAAzv8z6eVK1c6888++6wT0P2///f/nPX234D2/i149tlnnRCD2WpHU1MT77XXXvzEE0+085m3VF9fX/SPzdtvv539fj//6le/4iVLlvCcOXNYVdWy/FOA2fo7OmrUKCeE+de//sWxWKzoONDRXruLFi1iSZJ48ODBPGXKFP7oo49Y13V+5513+Oyzz+Yjjjiiw/94ev7559nv9/Pvf/97njx5ctHjPfzwwywIQofPRHD38rNfR2+88QYLguAE3eUyd+5crqio4HvuuYcvvfRSDgQC/Nhjj/GKFSv4kUceYUEQ+KmnnupQjVwux6eddhrPnj3b+Vv8+eefc69evfjFF1/kCy+8kMeNG9fhgNZLnwV6CoRz0GamafKBBx5Y1IXdnewfeOCBRd1nO1qL2fqg9Nprr7X4cp5Kpfizzz5r1x/iTCbD77//fota9913H48ZM6ZoXTk9++yzPHDgQP7b3/7mfLgcP358UQ+Ujvrb3/7Go0aNcn4u3/nOd1iSJD7nnHPK1qbvf//7LEkSf+973ys6je2bb77hgQMHtrguTHtMnjyZDzvsMJ45cyb/8Y9/LNo2c+ZMHjVqVIce3/26cf9c5s6dW7Yvr26HH344V1VV8aRJk1hVVX7xxRedbVdccQUPGjSoxR+2Uq1fv54HDhzIV1xxBW/ZsoXfffddDoVCTtf1/fbbj++7774O1WC2fnYHHXRQpxwHWvuy2BnHAPv+7733nrPcGceB1j70dtZxwP1cO+s44A4rO/M4YD/Hzj4OuH8/nXUccD/uEUcc0WnHAbvOBx980CXHgccff5wPPfRQvvPOO1ucyv7QQw9x//79+csvv+xwneav19b+a37jjTeWrZeWXS+dTvOwYcOKelD+7W9/61Cb7MfOZDJ8yimnFPVaeP3117lPnz5Fr4n2yuVyrGkaT5w40blG17Rp0zgSifDQoUOdU2k7yu4dccQRRzg96Gy//OUvuW/fvmU5vfXzzz/n0047jQ8//PCi01uZrRB16NCh/Pjjj3eoRvPX2caNG/nwww/nn/70p0X1OuqVV17hqVOn8hlnnMFDhgwpei9ms1k++OCDnV5AHTF//nweMWIEf//73+fbb7+dw+Gw00v8jjvu4IMPPrjd4az7Z/Gf//yHx40bx5dddpkTmNjbX375Ze7fvz+vWLGiQzWae+655/ikk07iSZMmOUHmvHnz2tUbsLWfgfu1cPjhh/Pf/vY3Z/n3v/99u07VbK1ONpvliy66qOg9b4eo7b1mX2ufbWfMmMFPP/00M1v/QK2qquIBAwYUfYYrVfP23HLLLTx8+PAWv+snnniCq6ur2xU2uttiGAafc845PGjQIOeff7quO/uMGjWK77rrrtIbwrzDXsSmaXI8HufTTz+dzz//fE6lUh06Drjvu2HDBr700kt5+vTpfNhhh/Edd9xRtO+4ceP4kksu6XCdX/3qVzxmzBg+9thj+ZprruFQKOQ87mOPPcb77rsvNzQ0tKuO7fHHH+dRo0Z57rNAd8JorbBD27Zto/fff59Wr15NTU1NJAgC3X777bRy5UqaN28eERH5fD5nOPCRI0e2a4h7d51EIkFE1mhMhmGQJEl0zDHH0G233UbBYJCOO+442rp1K1111VV0wQUXUCaTaXON9957zxkW+7DDDiMiawQe9whJ9ihGgiDQFVdcQZMnT253W5qPlDhkyBB67rnn6PTTT6fKykoiIjrqqKNKevzW6qRSKSKyRrYcPHgw1dTUkCiKNHv2bPr444/pjjvuoGeeeYYuuugi53fVnjrxeJyIiB555BG69tpr6dxzz6XevXs7+9bU1NC+++5LTU1N7a5h3/eXv/wlZTIZeuihh6iurs5pHxHRpEmTyOfzOcPPl1LHfg24XzfuEYUuvvhiCofD9OCDDxbVbG977J/Ze++9R3/4wx9o+vTpNHbsWBo7diyl02kiIjrxxBPJ5/OVPLKmu046nabBgwfTj370I3rqqadoxIgRdMIJJ9BFF11ECxYsIMMwyOfzOT/LUqRSKTJN0/mZiaJIt99+O/33v/8t23HArqFpWtF6XdfLdgxw10mn0xQIBOjwww936pTzOGDXaW2U2XIeB9y/G/v5MzMNGjSorMcBu457lLdHHnmErr766rIdB1pryy9/+UtKpVJlPQ64XwOyLBdtK+dxwK7jfn7vvvsuPfzww2U9DjSvs++++9KVV15Jf/nLX8p2HPj888/p/vvvp2XLltE///lPIiKaOnUqHXPMMXTffffRH//4x6LHHD16NAWDwZJfA63VsV8L9mtvxowZNHfuXFqxYgX9+te/pmnTptGNN97Y4nfZ1jovvPBCq/uIokiiKDr1r732Wrr44ovb/FrYWVt8Ph8988wzdOqppzqvuaqqKqqpqaGqqqo2t6N5nRdffJGIiBRFIVmWadSoUfTpp5/SBRdcQK+99ho988wzNG/ePHrqqafoRz/6Ubvr2O3p3bs33XjjjfTrX/+aBg8eTESF39OQIUOosrKSVFXtcJ2BAwfSCSecQF988QWtXLmSNm7c6Iw2GA6HKRaLkc/na1cN+2fmPn4SWe+jk046iX7729/S1q1b2zW6YWuvs+OPP54ef/xxWrp0KcmyTHvttZdTV9d1ikQi1K9fv3bXef7554nIOnZOmzaNGhoa6Pnnn6ef/vSndPfddxMRUTQapUAgUPJxraGhgYis94b9ez7yyCPptNNOozfffJMWL15M33zzjfOzGjZsGIVCoZKOae4azUd6tJ/vySefTPPmzSNRFOnWW2+lM888k/7v//6vpNeaXUeSpBZ/p92fBURRdOped911dNlll5U0qqq7jvvvJzOTqqq0ZMkSOvHEE522CoJA/fr1o3322afNNdx13D83+3kefPDBtHLlSpo+fTq9+uqr9Nxzz9G9995Lr732Gk2bNq1ddZq357rrrqOHH36Yhg0bRkSFv6X9+/en3r17UzAY7FBbRFGkyZMnUywWo40bN9KGDRtIkiRnn3A47HyeKrWOoiitjioqCAJVVFTQhAkT6KmnnnJe2+V43+y3335099130/3330+yLFPfvn2JyDp+6rpOPp+PBg0a1O469mt63rx5NGfOHNpvv/3o448/pp/97Gd07733EpH1dygSiZRU49tvv6V//OMf9NRTT9F7771HRNZngTFjxtD9999fts8C7jruUZqZ2fldleOzQI/VDYEg7AZWr17NBx54IA8fPpwFQXAu/F1fX8+LFy/m/fffny+66KKi+5xzzjl80UUXlTS6WWt13Pe1503T5Ndee43HjRvHsixzKBRq8zWBWqvR2n8/HnvsMT7yyCOZmfmaa67hYDBY0rnyO6qzs5/FjBkz+PLLLy/bz0zTNJ4wYQLvv//+XFNT4/QQ/POf/8w1NTW8efPmDrXHPfJj8+shaJrGp59+uvMfoLa0Z0c/s2w2y3/5y1940KBBfOihh/LatWud2nPnzuVJkyaVdAHYtr4GNE3jSZMm8YQJE9r82Luq4/6ZPfzwwzxixIii+8yfP5+POeaYkrp9N69jXzMrnU7zN998wy+99FLRf5Hj8ThPmDCBH3vsMWZue4+wNWvW8IQJE3j8+PG8//77829/+1v++uuvWdd1vvPOO3nIkCEdPg40r3Hvvffyxo0bne32f2g7cgxoSx37uXb0OLCrOq1pz3FgZ3V0Xefjjz++LMeB1up8/PHHzvbmo6W15ziws7Y8+eSTvO+++5blONDW10BHjwOtvW8++eQTZ/tDDz1UluNA8zr33HOP03vl22+/5X/+858dPg7YI4yOGTOGBw8ezOFwmC+88ELnP+SzZ8/mQw45hOfPn8+ffvopb9u2ja+66iref//9Sxp8orU6P/jBD/jbb7919nH31li2bBkrisLRaLSknjltqcNsfdbp3bs3L1++nG+++Wb2+/387rvvdkpbmK0BKEaPHl3SoAA7qmP3Vrv55ptZEAQeNGiQcwyor6/n3/72t85lCdpbZ9asWTs9jsybN49PPPHEknqftlZn5syZTm/pxYsXc9++fXnEiBH89ttv85o1a/iGG27gfffdt809M0r53Xz11Vd86KGH8qJFi0ruMbOjn5m7zplnnskLFizgTZs2cTqd5htuuIEHDBhQ0qnNrdWZMWNGUW+Y5r1ZZs2axVOmTClpJO8PPviABw0a5PQkZC7ucXTDDTfwUUcdxaeddhqvXLmSP/nkE7766qt54MCBbT6ttbUazX/u7mPWM888w5WVlRyLxYpOfS1HHWbr89R+++3HTz/9NP/iF79gv99f1Nu+3O1htq5BOHLkyJJOBd5VnaVLl7IgCDx06FDnOJDJZPjZZ58t+rvUnjq76n35ox/9iMeOHeu8h9tTw93D/Q9/+AMfcMABHIlE+K9//Su//PLLfP311/Pee+9d0vumlN+NaZo8duxYPv/880u+VmdbfmazZ8/mU089lTdu3Mjbt2/nhQsX8l577dXh303z93fz537JJZfwxIkT2zzi7erVq3m//fbjI488knv16sVHHHGE81mCmfnCCy/k4cOHl+WzQPM6zU8td/+u2vtZoCdDOActfPrpp1xTU8M/+clP+PPPP+d77rmHBUFwrlW0fft2vvfee7lfv348atQonjNnDp933nkcDAZLuu5Ha3VEUWxxwXL7QJZOp/nUU0/lqqqqNtdpaw1mKzg54YQT+IYbbmBVVYtOfS1nHWbrj83111/Pffr0aXFh/Y7USSQSPH36dD7iiCNaPP9Srv1Sant0Xefrr7+e+/fv3+YP/Tt6ndkfslOpFL/wwgs8ZMgQ3meffXjChAk8efJkjsViJXVbbmtb7A8A//3vf1kUxaI/OuWq89VXX3FVVRWffPLJfPfdd/PFF1/MVVVVHW6P++fWXDqd5muuuYb79+/Pn3/+eZvrfPzxx9y7d2+eP38+P/HEE7xo0SIWBIHPPPNMXrVqFedyOb733nu5f//+7T4O7KjGlClTiq4vYf8hbs8xoJQ6zB07DpRSh7n9x4Gd1bGvuzJ9+nQePXp0h44Dbanj1p7jwI5qTJ482fki9MILL/DQoUM7dBxo6+/G/nvT3uPAzurY1xX86quvuLq6ukPHgZ393Fp7rbXnONDU1MRHH320c5r6pk2b+Pnnn+eqqio+4YQTnCDwxhtv5GOPPdYZXblv37783//+t81t2Vmdk046iT/99FNnX8MwWNd1njt3LldWVpZ0HCilTlNTE48aNYrHjx9f0pfyUmowW6Pr/vjHP+bKysqSfv87qzNx4kT+9ttvWdM0njNnjnNNNfvLZilB087qTJo0qcX7/IsvvuArr7ySq6qqSjqVbWd1JkyY4IRaf/zjH/mkk05iQRD44IMP5iFDhrT5tVbq78YwDJ44cSKPHz++pCCrrXVuueUWHj16NPfp04ePP/547t+/f9neNyeeeGKL9qxcuZLnzZvH0Wi0pAupf/nll3zooYfy0KFD+ZBDDuEbb7zR2eb+uTz44IN88sknsyAIfMghh/DAgQPb3J6d1WgtNDEMg+fPn88VFRVla0vzOoZh8DHHHMMHH3wwB4PBNofzpdZhZv7www/5iiuu4MrKypKCxp3VcYdAP/nJT0oKFttbx7Z+/XqeP39+Sce1tr7OXn/9dZ4xYwaHw2E+6KCDeMSIESW9b0r93TAzX3TRRXzUUUeV9M+Gttb54x//yMcddxyrqspjxozhAQMGlK09rV26Y/ny5XzppZdyJBJp8+/m008/5b333puvuuoqbmho4Pfee49nzJjBs2bNKuqo0dHPAjur0/wamaZptvuzQE+HcA5auP766/m73/1u0bqTTz6Z33jjDX7jjTec/5Z+9tlnPGPGDD777LP5ggsuKHnUlB3VWb58Ob/55ptFPRpyuRz/4he/YFVVS0rGS6lhjzoUjUZL/iNWSp1XX32Vv//973O/fv1KOmjtqs4bb7zB9fX13NTU1OGLvpfSnldeeYXPOuss7tOnT0nt2dXrzP7vfzab5UWLFvG8efP46quv5vXr13daW0zT5K+++oqnTp1a8oW521rnpZde4lGjRvGoUaP4u9/9btnfN+7n/c477/B5551X8h9IZqvnwznnnFO07sILL2S/38+TJ092rjG0YcMGvvDCC9t1HNhRjUAgwGeddVbR+1DX9XYdA0qtc99997X7OFBKnX//+9/tPg7srM7kyZP5008/5a1bt5YUxpZa56yzzioK/v71r3+16ziwq9eZ/eExk8nwTTfd1O7jQCm/G2Zu93GgrXVefPFFPvzww9t9HNhVHfcXyffee69dx4F0Os2HHXYY/+lPfypa/9FHH3GvXr2KjkNbtmzh559/nt94442SRwTeVZ0zzjij6AvgO++8w4IglPRludQ6dXV1PHDgQK6qqirpy3IpNd5++23+3//9Xx45cmRJNdpSp/nfiPYqpT1vvvkmz5o1i4cNG1byMXpXdU477TRnnWma/P777/Mnn3xS0oXmS2mL/aX2yy+/LPkaY7uqc/rppzvrnn32Wb7tttt4yZIlJR9rdlXnzDPPdEKAhoYG/sMf/sCjRo0q6XdjmibfdtttfMopp/CLL77ICxcu5GHDhu0wOGG2rkO3bt26Nvf+akuN5gHQ6tWrea+99irpb3SpdTRN47Fjx5YcnJdaZ+3atU7P2XLXKaVnebnas3r1ar7iiit4+PDhbT6uted19sknn/DmzZuLBogpd1tsjY2NJfU2bksdd0+2NWvW8LJly/jJJ58s6ftbqe0xDIP/9re/8dFHH93m3002m+UFCxbw1KlTi34Hy5Yt4+rq6ha94rZv396uzwKl1mFu/2eBng7hHLQwb948Pvnkk50LU9unRowePZprampajJLE3L5Rv3ZWp2/fvjxp0qSiOg8++GCLiw6Xo4Y9Gtd//vMfPvroo9s1NHMpdd5++22+5pprSv5yuas6NTU1fOKJJ3Z4xKJS27N8+XKeP38+r1u3rqxtmThxIr/yyitd0pbmr+e2dvMutT3uETnj8XjZ6+zofVNK93jbWWed5VxA2j4t5pZbbuGJEyfy/vvvz9dee22L+5R6HNhZjQMOOMA5Xdf+b1l7jgGl1GHu2HGgrXXS6XSHjgO7+t1cc801zNzxAS1KaU97jwOl/G66oi3u/2i35/25qzru901HjgOl/tzacxxIJBK81157tfqFYtWqVRwKhXjRokUlP/f21Ln55puL7tPW06Q6UufnP/95ye/PUmssX768xSm15apz0003lfy47anjbs+rr77arkEguuK1Vmpb2nv8bEudcgz6UGp7UqlUu943mzZt4oceeoiZrRDeDgDcv49ST/drT43mvZraMwJkqXUeeOCBdn1+KrXO2rVr2zWiaVvqlGPE8VLbs2LFipJH6W1LjR0N4tSZbWnvaLZd8b5pa53m753mp7rvTDqd5rvuuovvv/9+Zi783O1B6Ozfc0cHzWlrnebac0zr6RDOQQv33nsvh0IhPuuss/i8885jRVH4qaee4kQiwW+99RYfe+yxfPXVVxddH6k9B8m21unIF8y21mC2DlbtfZOXUscwjHYf7Eup0xGl1NF1vV1/YEr5/dsH/c58nTF37I/Lruocc8wxzvumI0p5f3bEFVdcwf369XO68W/atIkrKyv5pZde4nvvvZcDgUCL/4qV+vvZVY1gMFhyL5yO1kkkEu0+DrSljvv04/YeB3rSz81uj2ma7ToOtKct7TkO9JSfWSAQKMvIZV3VnjvvvJP33ntvfuaZZ5x19u/5lltu4aOOOopra2s7fLxpax37PdPezwVtqeMefbizapRybbmO1Kmtre1wSN8VP7O21uloe3rSz2z79u0d+mxTSp2Otsft22+/bTUA+Otf/1qWIGhXNez2laNNO6rz5JNPdvixe1Kdv/71r2UbcXhndcrZnu5uS1fVefrpp8v2vumsOu5evfb7btOmTTxkyJCizzOlngVSjjrlPLb1FAjnoFW/+c1v+Be/+AWfddZZLYZzvvDCC/nYY48ty0FrV3WOOeaYDtdpS432fkkutU45DsBd8TNra52OtqcntQV1in3xxRc8duxY9vl8fNJJJ3EwGHQGf9i+fTvvtddeHe6l2RU1UKdn1/FSW3b3Ot9++y3/5z//4RdeeME5tm/cuJHPPvtsPvbYY/mf//xn0f5LlizhAw88kJPJ5B5bx0tt8VodL7Wlu+swc9E/5L/55hsnAFi4cCHPnz+fBUHgb775psfUQJ2eXcdLbfFaHbvG888/X/Rdwl3vww8/5Orqaic0++lPf8qVlZUl/TOgq+rsbjww3ix0xEcffUQPPfQQff311zRy5EgaP348HXHEEXTZZZcREdH8+fMpEAgQkTX0t3tobtM02zy8fHvrHHLIIW2u05EapehIHS5hCO6u+Jl1VXt2h7agTqHOxIkTacSIEfTPf/6T7rnnHjJNk6ZPn07nnXceERF9+eWXFAwGKRqNtunxu6oG6vTsOl5qi9fqrF69mk4//XTy+Xy0ZcsW6tu3Ly1atIimTJlCV111Fd144410/fXXU11dHZ1zzjmkaRp99tln1KdPHzIMY4+s46W2eK2Ol9rSnXX69etHN9xwA02aNImqqqrINE0iIurfvz9dfPHFxMx00003USwWo3fffZf69+/fI2qgTs+u46W2eK3OrmrY3zUEQSBRFCkcDtMtt9xCixcvptdff52qq6vL0pZy1dktdV0OCD3NunXrOBaL8dlnn82XXHIJ77PPPnzYYYfxPffc4+xz0003cSgU4tdee43ffPNNXrhwIVdVVZV0XaGuqOOltnitjpfasqfUOfTQQ3nJkiXOPs174V111VV86KGHtvnUrK6ogTo9u46X2uK1Olu3buVhw4bxtddeyxs2bOBvvvmGp02bxvvvvz/feOONnMlkeOXKlXzJJZewLMs8cuRIHjNmDFdWVpZ0cXkv1fFSW7xWx0tt6Ql1DjzwQF64cKFz6rK7t8r555/PkUikzZ85uqIG6vTsOl5qi9fqtLUGs3V9u1GjRvG0adNYVdWSBmfpqjq7K4Rze6impiaeNGkSX3XVVc66r7/+mqurq7mmpsa5iKxhGDxt2jQWRZH3339/PvTQQ0saVawr6nipLV6r46W27Ml1bK+99hpffvnlXFFR0eYP/V1RA3V6dh0vtcWLddatW8f77rtviw+9P/nJT/jggw/mxYsXs2maznUtb775Zl6yZEnJF0r3Uh0vtcVrdbzUlp5SZ/jw4Xz77bcXnSK7dOlSjsViJV1nqitqoE7PruOltnitTik1PvjgAxYEgQOBQMmjc3dVnd0Vwrk9VDKZ5NGjR/Ojjz7qLDMzn3322XzCCSfw0Ucfzc8995yz/2uvvcZr1qwpeTShrqjjpbZ4rY6X2rIn1hk7dmxRnTfeeIPnzJnDa9eu7VE1UKdn1/FSW7xYZ+XKlbz33nvza6+9xszFo9TOnTuXBw4cyKtWrSrpMb1ex0tt8VodL7WlJ9UZNGhQUZ3NmzcXXcC9p9RAnZ5dx0tt8VqdUmps2rSJL7300pJHNO/KOrsrhHN7INM0ecuWLdy/f3++4447nPVfffUVH3TQQfz73/+eR4wYwbNnz+7xdbzUFq/V8VJb9uQ6P/jBD4rul06ne1QN1OnZdbzUFi/WsY0ePZq/853vOMuZTMaZP+KII/icc85p1+N6uY6X2uK1Ol5qS0+s05HBwLqiBur07DpeaovX6pRyrGnv542urLM7Qji3B2n+Zr377rtZEASeNWsWX3/99RwOh53R3p544gned999i4Z670l1vNQWr9XxUltQp1CnlBGNu6IG6vTsOl5qi9fqJBIJjsfj3NjY6Kz773//y3369OFzzz3XWWc/5oIFC/i0004rqR1eq+Oltnitjpfa4rU6XmoL6uA14LU6XmqLlyCc20N89NFHvHjxYv7222+ddYZh8EMPPcSjR4/mk046iW+77TZn229+8xseNWpUycMUd0UdL7XFa3W81BbUwWsAdfAa8FqddevW8cSJE3nUqFHcv39//uMf/8jM1n+mH3vsMe7VqxefddZZnMvlnOB/+vTpfM4557CmaW2u5aU6XmqL1+p4qS1eq+OltqAOXgNeq+OltngNwrk9wCeffMJVVVUsCAJfc801LUZwS6fTRd1JmZkvu+wyPuusszidTrf5jdEVdbzUFq/V8VJbUKd9dbzUFtRpXx0vtcVrddatW8fV1dV8xRVX8COPPMILFixgRVGcC0Ynk0n++9//znvvvTcPGzaMzzjjDJ46dSqHQiFes2ZNm9rhtTpeaovX6nipLV6r46W2oA5eA16r46W2eBHCOY9LJBI8a9YsvvDCC/mee+5hQRD4xz/+cdEHf/eH+vXr1/P8+fO5oqKCV69e3aPqeKktXqvjpbagDl4DqIPXgNfq1NbW8sSJE3nu3LlF68ePH8+XX3550bp4PM5XXXUV/+AHP+DLLruM161b1+a2eKmOl9ritTpeaovX6nipLaiD14DX6nipLV4lE3iaKIp0+OGHU3V1NU2bNo169epF55xzDhERXXXVVdSrVy8SBIGIiJqamuill16iFStW0GuvvUbDhw/vUXW81Bav1fFSW1AHrwHUwWvAa3U0TaOGhgY666yziIjINE0SRZEGDRpEdXV1RETE1j9sqaKigm677bai/drKS3W81Bav1fFSW7xWx0ttQR28BrxWx0tt8azOyfygJ0kkEkXLf/rTn1gQBL7yyit5+/btzGxdhHrLli2saRrX1dX12DpeaovX6nipLaiD1wDq4DXgtToff/yxM5/L5ZiZ+frrr+fzzz+/aD/3RZvbc70XL9XxUlu8VsdLbfFaHS+1BXXaV8dLbfFaHS+1xYvQc24PEAqFiIjIMAwSRZGmTZtGzEzf//73SRAEmj9/Pi1evJg2btxIjz76KFVWVvbYOl5qi9fqeKktqIPXAOrgNeC1OkOHDiUi6z/TiqIQkfWf661btzr7/PznPyefz0dz584lWZadHnt7ah0vtcVrdbzUFq/V8VJbUAevAa/V8VJbPKmzUj/omUzTdEZD+dOf/sSKovABBxzAsiw7F2jcXep4qS1eq+OltqBOz62BOj27jpfa4rU69n+nr7vuOj755JOZmfmnP/0pC4LAK1euLEsNr9XxUlu8VsdLbfFaHS+1BXV6bg3U6bk1urKOFyCc2wOZpum8SY4//niuqqoq6eLVPamOl9ritTpeagvq9NwaqNOz63ipLV6qY4d/Cxcu5B/+8Id8xx13sM/n4/fff79sNbxWx0tt8VodL7XFa3W81BbU6bk1UKfn1ujKOl6AcG4Ppes6X3HFFSwIAq9atWq3ruOltnitjpfagjo9twbq9Ow6XmqL1+rccsstLAgCR6NRfvfddzulhtfqeKktXqvjpbZ4rY6X2oI6PbcG6vTcGl1ZZ3eGcG4Ppes6L126lFesWLHb1/FSW7xWx0ttQZ2eWwN1enYdL7XFa3XeffddFgSB161b12k1vFbHS23xWh0vtcVrdbzUFtTpuTVQp+fW6Mo6uzOBmbm7r3sH3YOZu+TCi11Rx0tt8VodL7UFdXpuDdTp2XW81Bav1Ukmk86AFKjTc2qgTs+tgTo9twbq9Ow6XmqL1+p4qS27M4RzAAAAAAAAAAAA3UTs7icAAAAAAAAAAACwp0I4BwAAAAAAAAAA0E0QzgEAAAAAAAAAAHQThHMAAAAAAAAAAADdBOEcAAAAAAAAAABAN0E4BwAAAAAAAAAA0E0QzgEAAABAhzEzTZgwgYYOHUqrV6+mCRMm0MaNG7v7aQEAAAD0eAjnAAAAAKBN3nrrLZIkiU499dQW2z7//HOSJInuvvtuOv/88ykWi9GgQYO64VkCAAAA7F4EZubufhIAAAAA0PP94Ac/oHA4TMuWLaOPPvqI+vfv391PCQAAAGC3h55zAAAAALBLiUSCHn/8cZozZw6deuqp9NBDDznb/v3vf5MgCPTKK6/QEUccQcFgkMaOHUsfffRR0WPce++9NHjwYFJVlQ444AD6wx/+0MWtAAAAAOh5EM4BAAAAwC79+c9/pmHDhtEBBxxA06dPpwceeICan4Bx3XXX0Z133knvvfceybJMs2bNcrY9/fTTNG/ePPrRj35Ea9eupYsvvphmzpxJr776alc3BQAAAKBHwWmtAAAAALBL48aNo6lTp9K8efNI13Xq168fPfHEEzR+/Hj697//Td/5znfo5ZdfphNOOIGIiJ577jk69dRTKZ1Ok9/vp3HjxtHBBx9Mv/vd75zHnDp1KiWTSXr22We7q1kAAAAA3Q495wAAAABgpz766CN655136NxzzyUiIlmWadq0abRs2bKi/UaMGOHM9+vXj4iItm7dSkRE69evp3HjxhXtP27cOFq/fn1nPnUAAACAHk/u7icAAAAAAD3bsmXLSNf1ogEgmJl8Ph/dfffdzjpFUZx5QRCIiMg0za57ogAAAAC7IfScAwAAAIAd0nWdHn74Ybrzzjtp5cqVzm3VqlXUv39/euyxx9r0OAceeCAtX768aN3y5cvpoIMO6oynDQAAALDbQM85AAAAANihf/zjH1RfX0+zZ8+maDRatG3KlCm0bNkyuuOOO3b5OD/+8Y9p6tSpNGrUKJowYQI988wz9NRTT9HLL7/cWU8dAAAAYLeAnnMAAAAAsEPLli2jCRMmtAjmiKxw7r333qPVq1fv8nHOOOMM+vWvf02LFy+mgw8+mO677z568MEHafz48Z3wrAEAAAB2HxitFQAAAAAAAAAAoJug5xwAAAAAAAAAAEA3QTgHAAAAAAAAAADQTRDOAQAAAAAAAAAAdBOEcwAAAAAAAAAAAN0E4RwAAAAAAAAAAEA3QTgHAAAAAAAAAADQTRDOAQAAAAAAAAAAdBOEcwAAAAAAAAAAAN0E4RwAAAAAAAAAAEA3QTgHAAAAAAAAAADQTRDOAQAAAAAAAAAAdJP/D4BDMnCceEu8AAAAAElFTkSuQmCC\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAI5CAYAAADOj/lVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1dvG8e+m94RAICAt9N47SlEgoRo6UqSKaBCRKkqVH4ooFkCxRYIgINJEOtKUIlV6USIQkSolIRDSdt4/1uzLEggJBjaB+3Ndc2XnzJkzz8xmYZ+cM2dMhmEYiIiIiIiIyEPnYO8AREREREREHldKyEREREREROxECZmIiIiIiIidKCETERERERGxEyVkIiIiIiIidqKETERERERExE6UkImIiIiIiNiJEjIRERERERE7UUImIiJZ2p49exg3bhznz5+3dygiIiKZTgmZiIjYTUREBCaTiZMnT95x+6VLlwgNDSU+Pp48efI8lJhMJhNjx459KMdKMXbsWEwm00M9ZlZ18uRJTCYT77//vr1DERF5KJSQiUi2kPLFPWVxc3MjX758BAcHM2XKFK5du3bfbW/dupWxY8dy9erVzAs4G7n1uppMJnx8fKhfvz7Lly+3a1yGYfD8889Tv359JkyYYNdYspvY2FjGjBlDSEgI/v7+mEwmIiIi7lp/2rRplC5dGldXV5544gkGDRrE9evXU9U7e/Ysffv2JSgoCHd3d4oWLcqgQYO4dOlSqrpHjhwhJCQELy8v/P396datGxcvXszM08xUc+bM4aOPPsrUNs1mMxEREbRq1YoCBQrg6elJuXLl+N///sfNmzfvuE94eDilS5fGzc2N4sWLM3Xq1FR1Fi1aRMeOHSlSpAgeHh6ULFmSwYMH3/XfsKVLl1KlShXc3NwoWLAgY8aMISkpKTNPVUT+AyVkIpKtvPXWW8yaNYvp06fzyiuvADBw4EDKly/P/v3776vNrVu3Mm7cuMc2IQNo3Lgxs2bN4ptvvmHYsGEcP36cli1bsnr16gd63G7duhEXF0ehQoVSbYuMjOSpp54iPDxcvUcZ9M8///DWW29x5MgRKlasmGbd4cOH88orr1CuXDk+/vhj2rZty9SpU2nTpo1NvdjYWGrXrs3ixYt5/vnnmTp1Ks2aNWPatGk0atQIs9lsrXv69Gnq1avH8ePHefvttxkyZAjLly+ncePGJCQkPJBz/q8eREJ248YNevbsycWLF+nXrx8fffQRNWrUYMyYMTRt2hTDMGzqf/755/Tp04eyZcsydepUateuzYABA3j33Xdt6vXt25cjR47QtWtXpkyZQkhICNOmTaN27drExcXZ1F25ciWhoaH4+fkxdepUQkND+d///mf991NEsgBDRCQbmDFjhgEYO3fuTLVt3bp1hru7u1GoUCHjxo0bGW77vffeMwDjxIkTmRBp1hMXF2ckJyffdTtghIWF2ZQdPnzYAIymTZs+6PCyHMAYM2bMQz3mmDFjjMz8L/nmzZvG2bNnDcMwjJ07dxqAMWPGjFT1zpw5Yzg5ORndunWzKZ86daoBGEuXLrWWffvttwZgLFu2zKbu6NGjDcDYs2ePteyll14y3N3djVOnTlnL1q5dawDG559/nmbsJ06cMADjvffeS/f5ZobmzZsbhQoVytQ24+PjjS1btqQqHzdunAEYa9eutZbduHHDyJkzp9G8eXObul26dDE8PT2Ny5cvW8s2bNiQqs2ZM2cagPHll1/alJcpU8aoWLGikZiYaC178803DZPJZBw5cuR+T01EMpF6yEQk23v66acZNWoUp06dYvbs2dby/fv306NHD4oUKYKbmxuBgYH06tXLZnjV2LFjGTp0KABBQUHWYXsp9zQlJSUxfvx4ihYtiqurK4ULF+aNN94gPj7eJoZdu3YRHBxMrly5cHd3JygoiF69et0z9sKFC9OiRQvWrFlDpUqVcHNzo0yZMixatChV3T///JP27dvj7++Ph4cHtWrVSjWscOPGjZhMJubNm8fIkSN54okn8PDwICYmJt3XE6B06dLkypWLyMhIm/L4+HjGjBlDsWLFcHV1pUCBAgwbNizV9YiLi2PAgAHkypULb29vWrVqxd9//53q/qy73UP26aefUrZsWVxdXcmXLx9hYWGpejAbNGhAuXLlOHz4MA0bNsTDw4MnnniCSZMmpesc4+Pjee211wgICLDGePr06TvW/fvvv+nVqxd58uTB1dWVsmXL8vXXX6eqN3XqVMqWLYuHhwc5cuSgWrVqzJkzx6bO5s2bqV69Om5ubhQtWpTPP//8rjHOnj2bqlWr4u7ujr+/P506deKvv/6657m5uroSGBh4z3rbtm0jKSmJTp062ZSnrM+bN89alvI7dPu9fHnz5gXA3d3dWrZw4UJatGhBwYIFrWWNGjWiRIkSzJ8//55xpfjiiy+sn73q1auzc+dOm+3p+YwDXLt2jYEDB1K4cGFcXV3JnTs3jRs3Zs+ePYDld2n58uWcOnXK+m9A4cKFAUhISGD06NFUrVoVX19fPD09eeqpp9iwYcM943dxcaFOnTqpylu3bg1YhnWm2LBhA5cuXeLll1+2qRsWFsb169dtPusNGjRIV5uHDx/m8OHD9O3bFycnJ2v5yy+/jGEYLFiw4J7nICIPntO9q4iIZH3dunXjjTfeYM2aNbzwwgsArF27lj///JOePXsSGBjIoUOH+OKLLzh06BC//vorJpOJNm3a8PvvvzN37lw+/PBDcuXKBUBAQAAAffr0YebMmbRr147Bgwezfft23nnnHY4cOcLixYsBuHDhAk2aNCEgIIDXX38dPz8/Tp48ecek6k7++OMPOnbsSL9+/ejevTszZsygffv2rFq1isaNGwNw/vx56tSpw40bNxgwYAA5c+Zk5syZtGrVigULFli/jKUYP348Li4uDBkyhPj4eFxcXDJ0PaOjo7ly5QpFixa1lpnNZlq1asXmzZvp27cvpUuX5sCBA3z44Yf8/vvvLFmyxFq3R48ezJ8/n27dulGrVi02bdpE8+bN03XssWPHMm7cOBo1asRLL73EsWPHmD59Ojt37mTLli04Oztb6165coWQkBDatGlDhw4dWLBgAcOHD6d8+fI0bdo0zeP06dOH2bNn07lzZ+rUqcP69evvGOP58+epVasWJpOJ/v37ExAQwMqVK+nduzcxMTEMHDgQgC+//JIBAwbQrl07Xn31VW7evMn+/fvZvn07nTt3BuDAgQPW35WxY8eSlJTEmDFj7jhhyYQJExg1ahQdOnSgT58+XLx4kalTp1KvXj1+++03/Pz80nU905KSSN+aTAF4eHgAsHv3bmtZvXr1cHBw4NVXX2Xy5Mnkz5+f/fv3M2HCBEJDQylVqhRgSV4vXLhAtWrVUh2vRo0arFixIl2xzZkzh2vXrvHiiy9iMpmYNGkSbdq04c8//7T+DqTnMw7Qr18/FixYQP/+/SlTpgyXLl1i8+bNHDlyhCpVqvDmm28SHR3N6dOn+fDDDwHw8vICLInoV199xXPPPccLL7zAtWvXCA8PJzg4mB07dlCpUqX0Xm6rc+fOAVj/vQH47bffAFJdt6pVq+Lg4MBvv/1G165dM6XNfPnykT9/fut2EbEze3fRiYikR1pDFlP4+voalStXtq7fafji3LlzDcD4+eefrWV3G7K4d+9eAzD69OljUz5kyBADMNavX28YhmEsXrz4nrHdTaFChQzAWLhwobUsOjrayJs3r825DBw40ACMX375xVp27do1IygoyChcuLB1SOKGDRsMwChSpEi6h28CRu/evY2LFy8aFy5cMHbt2mWEhISkGjY2a9Ysw8HBwSYGwzCMzz77zACsQ7N2795tAMbAgQNt6vXo0SPVcMCU9zXl2l+4cMFwcXExmjRpYjPMctq0aQZgfP3119ay+vXrG4DxzTffWMvi4+ONwMBAo23btmmec8p7+/LLL9uUd+7cOVWMvXv3NvLmzWv8888/NnU7depk+Pr6Wq/zs88+a5QtWzbN44aGhhpubm42Q/kOHz5sODo62gxZPHnypOHo6GhMmDDBZv8DBw4YTk5OqcrTktaQxZT3avz48Tblq1atMgDDy8vLpvyrr74y/Pz8DMC6dO/e3WY4XMrxbn1fUgwdOtQAjJs3b9413pQhizlz5rQZpvfDDz8YgPHjjz9ay9L7Gff19U01LPd2dxuymJSUZMTHx9uUXblyxciTJ4/Rq1evNNu8m0aNGhk+Pj7GlStXrGVhYWGGo6PjHesHBAQYnTp1SrPN3r17G46Ojsbvv/9uLUv5ty0qKipV/erVqxu1atW6r/hFJHNpyKKIPDK8vLxsZlu89a/+N2/e5J9//qFWrVoA1qFKaUn5S/6gQYNsygcPHgxgHUKU0lOxbNkyEhMTMxx3vnz5bHq4fHx8eP755/ntt9+sf/VesWIFNWrU4Mknn7TW8/Lyom/fvpw8eZLDhw/btNm9e/dUvR5pCQ8PJyAggNy5c1OtWjXWrVvHsGHDbM79+++/p3Tp0pQqVYp//vnHujz99NMA1iFcq1atAkg19Co9kwj89NNPJCQkMHDgQBwc/v+/qBdeeAEfH59UQzS9vLxseg1cXFyoUaMGf/75Z5rHSXlvBwwYYFOe0tuVwjAMFi5cSMuWLTEMw+a8g4ODiY6Otv4u+fn5cfr06VTD6lIkJyezevVqQkNDbYbylS5dmuDgYJu6ixYtwmw206FDB5tjBgYGUrx48XQNl0uPKlWqULNmTd59911mzJjByZMnWblyJS+++CLOzs6pJoh44oknqFGjBh999BGLFy9m0KBBfPvtt7z++uvWOin7uLq6pjqem5ubTZ20dOzYkRw5cljXn3rqKQCb9za9n3E/Pz+2b9/OmTNn7nnc2zk6Olp7mM1mM5cvXyYpKYlq1aql69+R27399tv89NNPTJw40aaXMy4u7q492W5ubmleszlz5hAeHs7gwYMpXry4TZtw9/ciPe+DiDx4SshE5JERGxuLt7e3df3y5cu8+uqr5MmTB3d3dwICAggKCgIsQ/Lu5dSpUzg4OFCsWDGb8sDAQPz8/Dh16hQA9evXp23btowbN45cuXLx7LPPMmPGjFT3Vd1NsWLFUs0iWKJECQDrvVWnTp2iZMmSqfYtXbq0dfutUs4zvZ599lnWrl3L8uXLrc/EunHjhk1S9Mcff3Do0CECAgJslpRYL1y4YI3FwcEhVQy3X8c7STmP28/VxcWFIkWKpDrP/Pnzp7p2OXLk4MqVK/c8joODg82QzDsd9+LFi1y9epUvvvgi1Xn37NkT+P/zHj58OF5eXtSoUYPixYsTFhbGli1bbNqKi4uz+cJ8t+P+8ccfGIZB8eLFUx33yJEj1mNmhoULF1KxYkV69epFUFAQLVu2pEOHDlSuXNk6bA9gy5YttGjRggkTJvDqq68SGhrK5MmTGTlyJB988IH1jwIpSdKdfv9TpnpPzx8Lbk1aAWtydut7m97P+KRJkzh48CAFChSgRo0ajB079p5J+61mzpxJhQoVcHNzI2fOnAQEBLB8+fJ0/Ttyq++++46RI0fSu3dvXnrpJZtt7u7ud52B8ubNm3e9Zr/88gu9e/cmODg41eMh7vVeZOSPNiLy4OgeMhF5JJw+fZro6GibL/0dOnRg69atDB06lEqVKuHl5YXZbCYkJMRmiu57udeU6yaTiQULFvDrr7/y448/snr1anr16sXkyZP59ddfbb7UPiwZ/aKVP39+GjVqBECzZs3IlSsX/fv3p2HDhtbpz81mM+XLl+eDDz64YxsFChT4b0HfB0dHxzuWG7dNJ36/Un5PunbtSvfu3e9Yp0KFCoAlOT527BjLli1j1apVLFy4kE8//ZTRo0czbty4DB/XZDKxcuXKO55jZv5OPfHEE2zevJk//viDc+fOUbx4cQIDA8mXL5812QbLlOx58uRJdT9Sq1atGDt2LFu3bqVMmTLWST7Onj2b6lhnz57F39//jj02t0vPe5vez3iHDh146qmnWLx4MWvWrOG9997j3XffZdGiRfe813D27Nn06NGD0NBQhg4dSu7cuXF0dOSdd95JNelNWtauXcvzzz9P8+bN+eyzz1Jtz5s3L8nJyVy4cIHcuXNbyxMSErh06RL58uVLtc++ffto1aoV5cqVY8GCBTYTd6S0CZbrfvvn8+zZs9SoUSPd8YvIg6OETEQeCbNmzQKwDv26cuUK69atY9y4cYwePdpa748//ki1790SrkKFCmE2m/njjz+sPVFgmeTh6tWrqZ6dVatWLWrVqsWECROYM2cOXbp0Yd68efTp0yfN2I8fP45hGDZx/P777wDWmd4KFSrEsWPHUu179OhR6/bM9OKLL/Lhhx8ycuRIWrdujclkomjRouzbt49nnnkmzSQ15bqdOHHCpjfo+PHj9zxuynkcO3aMIkWKWMsTEhI4ceKENWn8r1JijIyMtOmduv0ap8zAmJycnK5je3p60rFjRzp27EhCQgJt2rRhwoQJjBgxgoCAANzd3e/4O3j7cYsWLYphGAQFBdkkRQ9S8eLFre/X4cOHOXv2LD169LBuP3/+PMnJyan2Sxmmm/Kg4SeeeIKAgAB27dqVqu79ToJxJxn5jIMlOXn55Zd5+eWXuXDhAlWqVGHChAnWhOxuv9MLFiygSJEiLFq0yKbOmDFj0h3r9u3bad26NdWqVWP+/PmpEifAel127dpFs2bNrOW7du3CbDanum6RkZGEhISQO3duVqxYccck/dY2b02+zpw5w+nTp+nbt2+6z0FEHhwNWRSRbG/9+vWMHz+eoKAgunTpAvz/X9dv7ym504NfPT09AVJNq57ypej2fVJ6iFJm5Lty5Uqq46R8EUrPsMUzZ85YZ2wEy6xu33zzDZUqVbJOXd6sWTN27NjBtm3brPWuX7/OF198QeHChSlTpsw9j5MRTk5ODB48mCNHjvDDDz8All6Gv//+my+//DJV/bi4OK5fvw78f1L86aef2tSZOnXqPY/bqFEjXFxcmDJlis01DQ8PJzo6Ot0zNd5LypfwKVOm2JTf/l47OjrStm1bFi5cyMGDB1O1c/HiRevr26dad3FxoUyZMhiGQWJiIo6OjgQHB7NkyRKioqKs9Y4cOZLqAdxt2rTB0dGRcePGpfrdMgwj1bEyk9lsZtiwYXh4eNCvXz9reYkSJTh//jwbN260qT937lwAKleubC1r27Yty5Yts5mif926dfz++++0b98+U+JM72c8OTk51dDC3Llzky9fPpvPp6en5x2HIN7pONu3b7f5LKblyJEjNG/enMKFC7Ns2bK79l4//fTT+Pv7M336dJvy6dOn4+HhYfO7f+7cOZo0aYKDgwOrV6+2zgp7u7Jly1KqVCm++OILm2R6+vTpmEwm2rVrl65zEJEHSz1kIpKtrFy5kqNHj5KUlMT58+dZv349a9eupVChQixdutQ6aYCPjw/16tVj0qRJJCYm8sQTT7BmzRpOnDiRqs2qVasC8Oabb9KpUyecnZ1p2bIlFStWpHv37nzxxRdcvXqV+vXrs2PHDmbOnEloaCgNGzYELPeXfPrpp7Ru3ZqiRYty7do1vvzyS3x8fGz+0n03JUqUoHfv3uzcuZM8efLw9ddfc/78eWbMmGGt8/rrrzN37lyaNm3KgAED8Pf3Z+bMmZw4cYKFCxfa3OuVWXr06MHo0aN59913CQ0NpVu3bsyfP59+/fqxYcMG6tatS3JyMkePHmX+/PmsXr2aatWqUbVqVdq2bctHH33EpUuXrNPep/T6pdW7FhAQwIgRIxg3bhwhISG0atWKY8eO8emnn1K9evU0p/3OiEqVKvHcc8/x6aefEh0dTZ06dVi3bt0de/EmTpzIhg0bqFmzJi+88AJlypTh8uXL7Nmzh59++onLly8D0KRJEwIDA6lbty558uThyJEjTJs2jebNm1vvbRw3bhyrVq3iqaee4uWXXyYpKcn67LL9+/dbj1m0aFH+97//MWLECE6ePEloaCje3t6cOHGCxYsX07dvX4YMGZLmOU6bNo2rV69aJ7L48ccfrc9Ze+WVV/D19QWwTtFfqVIlEhMTmTNnjvX3/Nb7uPr378+MGTNo2bIlr7zyCoUKFWLTpk3MnTuXxo0bU7NmTWvdN954g++//56GDRvy6quvEhsby3vvvUf58uWt9979V+n9jF+7do38+fPTrl07KlasiJeXFz/99BM7d+5k8uTJ1npVq1blu+++Y9CgQVSvXh0vLy9atmxJixYtWLRoEa1bt6Z58+acOHGCzz77jDJlyhAbG5tmjNeuXSM4OJgrV64wdOjQVJPSFC1alNq1awOWYcbjx48nLCyM9u3bExwczC+//MLs2bOZMGEC/v7+1v1CQkL4888/GTZsGJs3b2bz5s3WbXny5LE+LgPgvffeo1WrVjRp0oROnTpx8OBBpk2bRp8+fWx6/kXEjuwws6OISIalTI+esri4uBiBgYFG48aNjY8//tiIiYlJtc/p06eN1q1bG35+foavr6/Rvn1748yZM6mmNTcMwxg/frzxxBNPGA4ODjbTsCcmJhrjxo0zgoKCDGdnZ6NAgQLGiBEjbKbt3rNnj/Hcc88ZBQsWNFxdXY3cuXMbLVq0MHbt2nXP8ypUqJDRvHlzY/Xq1UaFChUMV1dXo1SpUsb333+fqm5kZKTRrl07w8/Pz3BzczNq1KhhLFu2zKZOyrT3d9r/boC7Tgk+duxYAzA2bNhgGIZhJCQkGO+++65RtmxZw9XV1ciRI4dRtWpVY9y4cUZ0dLR1v+vXrxthYWGGv7+/4eXlZYSGhhrHjh0zAGPixInWerdPe59i2rRpRqlSpQxnZ2cjT548xksvvWQzRbhhWKa9v9M08927d7/j9OW3i4uLMwYMGGDkzJnT8PT0NFq2bGn89ddfd/z9OH/+vBEWFmYUKFDAcHZ2NgIDA41nnnnG+OKLL6x1Pv/8c6NevXpGzpw5DVdXV6No0aLG0KFDba6LYRjGpk2bjKpVqxouLi5GkSJFjM8++8wYM2aMcaf/khcuXGg8+eSThqenp+Hp6WmUKlXKCAsLM44dO3bP80t5pMKdlluv94wZM4yKFSsanp6ehre3t/HMM89YH+lwu6NHjxrt2rWzXodChQoZQ4YMMa5fv56q7sGDB40mTZoYHh4ehp+fn9GlSxfj3Llz94w7Zdr7Wx+5kOL29yY9n/H4+Hhj6NChRsWKFQ1vb2/D09PTqFixovHpp5/atB0bG2t07tzZOq1/yu+Q2Ww23n77baNQoUKGq6urUblyZWPZsmXp+j1LOZe7Ld27d0+1zxdffGGULFnScHFxMYoWLWp8+OGHhtlsTnUd7rbUr18/VZuLFy82KlWqZLi6uhr58+c3Ro4caSQkJKQZu4g8PCbDyKQ7n0VEJMMKFy5MuXLlWLZsmb1DeeD27t1L5cqVmT17tnVoqYiIyONO95CJiEimu9PzjT766CMcHByoV6+eHSISERHJmnQPmYiIZLpJkyaxe/duGjZsiJOTEytXrmTlypX07dvXLtPji4iIZFVKyEREJNPVqVOHtWvXMn78eGJjYylYsCBjx47lzTfftHdoIiIiWYruIRMREREREbET3UMmIiIiIiJiJ0rIRERERERE7EQJmYiIiIiIiJ1oUo9MYjabOXPmDN7e3phMJnuHIyIiIiIidmIYBteuXSNfvnw4OKTdB6aELJOcOXNGUzmLiIiIiIjVX3/9Rf78+dOso4Qsk3h7ewOWi+7j42PnaERERERExF5iYmIoUKCANUdIixKyTJIyTNHHx0cJmYiIiIiIpOtWJk3qISIiIiIiYidKyEREREREROxECZmIiIiIiIid6B6yh8gwDJKSkkhOTrZ3KCKPPGdnZxwdHe0dhoiIiEialJA9JAkJCZw9e5YbN27YOxSRx4LJZCJ//vx4eXnZOxQRERGRu1JC9hCYzWZOnDiBo6Mj+fLlw8XFRQ+PFnmADMPg4sWLnD59muLFi6unTERERLIsJWQPQUJCAmazmQIFCuDh4WHvcEQeCwEBAZw8eZLExEQlZCIiIpJlaVKPh8jBQZdb5GFRL7SIiIhkB8oQRERERERE7EQJmfwnhmHQt29f/P39MZlM7N279651TSYTS5YseWixiYiIiIhkdUrIJF22bduGo6MjzZs3tylftWoVERERLFu2jLNnz1KuXLm7tnH27FmaNm36oEMVEREREck2lJBJuoSHh/PKK6/w888/c+bMGWt5ZGQkefPmpU6dOgQGBuLklHqemISEBAACAwNxdXV9aDGLiIiIiGR1SsjknmJjY/nuu+946aWXaN68OREREQD06NGDV155haioKEwmE4ULFwagQYMG9O/fn4EDB5IrVy6Cg4OB1EMWT58+zXPPPYe/vz+enp5Uq1aN7du3A5ZE79lnnyVPnjx4eXlRvXp1fvrpp4d52iIiIiIiD5ymvbcTwzCIS0x+6Md1d3bM8Oxz8+fPp1SpUpQsWZKuXbsycOBARowYwccff0zRokX54osv2Llzp83U4jNnzuSll15iy5Ytd2wzNjaW+vXr88QTT7B06VICAwPZs2cPZrPZur1Zs2ZMmDABV1dXvvnmG1q2bMmxY8coWLDg/V8AEREREZEsRAmZncQlJlNm9OqHftzDbwXj4ZKxtz08PJyuXbsCEBISQnR0NJs2baJBgwZ4e3vj6OhIYGCgzT7Fixdn0qRJd21zzpw5XLx4kZ07d+Lv7w9AsWLFrNsrVqxIxYoVrevjx49n8eLFLF26lP79+2cofhERERGRrEpDFiVNx44dY8eOHTz33HMAODk50bFjR8LDw9Pcr2rVqmlu37t3L5UrV7YmY7eLjY1lyJAhlC5dGj8/P7y8vDhy5AhRUVH3dyIiIiIiIlmQesjsxN3ZkcNvBdvluBkRHh5OUlIS+fLls5YZhoGrqyvTpk27636enp5px+Hunub2IUOGsHbtWt5//32KFSuGu7s77dq1s04QIiIiIiJiY2c4FKwNecrYO5IMUUJmJyaTKcNDBx+2pKQkvvnmGyZPnkyTJk1stoWGhjJ37tz7brtChQp89dVXXL58+Y69ZFu2bKFHjx60bt0asPSYnTx58r6PJyIiIiKPsLP7YcVQMJkgbAfkLGrviNJNQxblrpYtW8aVK1fo3bs35cqVs1natm17z2GLaXnuuecIDAwkNDSULVu28Oeff7Jw4UK2bdsGWO5BW7RoEXv37mXfvn107tzZOuGHiIiIiIiV2QzLXgMjGUo1z1bJGCghkzSEh4fTqFEjfH19U21r27Ytu3btIiYm5r7adnFxYc2aNeTOnZtmzZpRvnx5Jk6caJ2p8YMPPiBHjhzUqVOHli1bEhwcTJUqVf7T+YiIiIjII2j3DPh7F7h4Q8hEe0eTYSbDMAx7B/EoiImJwdfXl+joaHx8fGy23bx5kxMnThAUFISbm5udIhR5vOhzJyIi8hiIvQBTq0F8NIS8C7X62TsiIO3c4HbqIRMRERERkexp9ZuWZCxvRajxgr2juS9KyEREREREJPuJ3AAH5gMmaPEROGRsNvGsQgmZiIiIiIhkL4k3Yflgy+saL8AT2XeuASVkIiIiIiKSvWz+EC5HglcgPD3S3tH8J0rIREREREQk+/jnOGz+wPI65B1wSz0jeHZi14Rs+vTpVKhQAR8fH3x8fKhduzYrV660br958yZhYWHkzJkTLy8v2rZty/nz523aiIqKonnz5nh4eJA7d26GDh1KUlKSTZ2NGzdSpUoVXF1dKVasGBEREali+eSTTyhcuDBubm7UrFmTHTt2PJBzFhERERGR+2QYsHwQJCdA0WegbGt7R/Sf2TUhy58/PxMnTmT37t3s2rWLp59+mmeffZZDhw4B8Nprr/Hjjz/y/fffs2nTJs6cOUObNm2s+ycnJ9O8eXMSEhLYunUrM2fOJCIigtGjR1vrnDhxgubNm9OwYUP27t3LwIED6dOnD6tXr7bW+e677xg0aBBjxoxhz549VKxYkeDgYC5cuPDwLoaIiIiIiKTtwPdwYhM4uUHz98FksndE/1mWew6Zv78/7733Hu3atSMgIIA5c+bQrl07AI4ePUrp0qXZtm0btWrVYuXKlbRo0YIzZ86QJ08eAD777DOGDx/OxYsXcXFxYfjw4SxfvpyDBw9aj9GpUyeuXr3KqlWrAKhZsybVq1dn2rRpAJjNZgoUKMArr7zC66+/nq649RwykaxFnzsREZFHTNwVmFYdrl+03DdWb6i9I7qrbPkcsuTkZObNm8f169epXbs2u3fvJjExkUaNGlnrlCpVioIFC7Jt2zYAtm3bRvny5a3JGEBwcDAxMTHWXrZt27bZtJFSJ6WNhIQEdu/ebVPHwcGBRo0aWevcSXx8PDExMTaLiIiIiIg8IOvesiRjuUpAnQH2jibT2D0hO3DgAF5eXri6utKvXz8WL15MmTJlOHfuHC4uLvj5+dnUz5MnD+fOnQPg3LlzNslYyvaUbWnViYmJIS4ujn/++Yfk5OQ71klp407eeecdfH19rUuBAgXu6/wfdSdPnsRkMrF37157h5JtNGjQgIEDB9o7DBEREZGs46+dsGuG5XWLD8HJ1b7xZCK7J2QlS5Zk7969bN++nZdeeonu3btz+PBhe4d1TyNGjCA6Otq6/PXXX/YO6YHatm0bjo6ONG/ePEP7FShQgLNnz1KuXLn/dHyz2czw4cPJly8f7u7uVKhQgR9++CHd+y9btoz69evj7e2Nh4cH1atXv+PkLlnBokWLGD9+vL3DEBEREckakpNg2UDAgIqdofCT9o4oU9k9IXNxcaFYsWJUrVqVd955h4oVK/Lxxx8TGBhIQkICV69etal//vx5AgMDAQgMDEw162LK+r3q+Pj44O7uTq5cuXB0dLxjnZQ27sTV1dU6O2TK8igLDw/nlVde4eeff+bMmTPp3s/R0ZHAwECcnJz+0/Fnz57Nhx9+yAcffMCRI0f44IMP8PT0TNe+U6dO5dlnn6Vu3bps376d/fv306lTJ/r168eQIUP+U1wPgr+/P97e3vYOQ0RERCRr2P4ZnD8I7jmgyaP3R2u7J2S3M5vNxMfHU7VqVZydnVm3bp1127Fjx4iKiqJ27doA1K5dmwMHDtjMhrh27Vp8fHwoU6aMtc6tbaTUSWnDxcWFqlWr2tQxm82sW7fOWudxFxsby3fffcdLL71E8+bNU/UsXblyhS5duhAQEIC7uzvFixdnxgxLl/LtQxaTk5Pp3bs3QUFBuLu7U7JkST7++ON7xuDg4EBAQACdOnWicOHCNGrUKNW9gXfy119/MXjwYAYOHMjbb79NmTJlKFasGIMHD+a9995j8uTJbN++3Vr/0KFDtGjRAh8fH7y9vXnqqaeIjIy0bv/qq68oXbo0bm5ulCpVik8//dTmeMOHD6dEiRJ4eHhQpEgRRo0aRWJionX72LFjqVSpErNmzaJw4cL4+vrSqVMnrl27Zq1z+5DFWbNmUa1aNby9vQkMDKRz586aAVREREQeD1f/gg1vW143fgs8c9k3ngfgv3Vb/EcjRoygadOmFCxYkGvXrjFnzhw2btzI6tWr8fX1pXfv3gwaNAh/f398fHx45ZVXqF27NrVq1QKgSZMmlClThm7dujFp0iTOnTvHyJEjCQsLw9XVMq60X79+TJs2jWHDhtGrVy/Wr1/P/PnzWb58uTWOQYMG0b17d6pVq0aNGjX46KOPuH79Oj179nxwJ28YkHjjwbV/N84eGZ4edP78+ZQqVYqSJUvStWtXBg4cyIgRIzD9286oUaM4fPgwK1euJFeuXBw/fpy4uLg7tmU2m8mfPz/ff/89OXPmZOvWrfTt25e8efPSoUOHu8bwzDPPEB0dzahRozI0nG/BggUkJibesSfsxRdf5I033mDu3LnUrFmTv//+m3r16tGgQQPWr1+Pj48PW7ZssT7X7ttvv2X06NFMmzaNypUr89tvv/HCCy/g6elJ9+7dAfD29iYiIoJ8+fJx4MABXnjhBby9vRk2bJj1uJGRkSxZsoRly5Zx5coVOnTowMSJE5kwYcIdzyExMZHx48dTsmRJLly4wKBBg+jRowcrVqxI93UQERERyZZWvQ6J16FALajU1d7RPBB2TcguXLjA888/z9mzZ/H19aVChQqsXr2axo0bA/Dhhx/i4OBA27ZtiY+PJzg42KZHwtHRkWXLlvHSSy9Ru3Zt6xfjt956y1onKCiI5cuX89prr/Hxxx+TP39+vvrqK4KDg611OnbsyMWLFxk9ejTnzp2jUqVKrFq1KtVEH5kq8Qa8ne/BtX83b5wBl/QN9UsRHh5O166WD0BISAjR0dFs2rSJBg0aAJaHc1euXJlq1aoBULhw4bu25ezszLhx46zrQUFBbNu2jfnz5981Ibtx4waNGzemc+fOrF27lri4ON577z1rQujj48PXX39tfTzCrX7//Xd8fX3Jmzdvqm0uLi4UKVKE33//HbA8HNzX15d58+bh7OwMQIkSJaz1x4wZw+TJk63PwgsKCuLw4cN8/vnn1oRs5MiR1vqFCxdmyJAhzJs3zyYhM5vNREREWIclduvWjXXr1t01IevVq5f1dZEiRZgyZQrVq1cnNjYWLy+vO+4jIiIiku0dXQFHl4GDk2UiD4csN7gvU9g1IQsPD09zu5ubG5988gmffPLJXesUKlTonj0FDRo04LfffkuzTv/+/enfv3+adR5Hx44dY8eOHSxevBgAJycnOnbsSHh4uDUhe+mll2jbti179uyhSZMmhIaGUqdOnbu2+cknn/D1118TFRVFXFwcCQkJVKpU6a71IyIiuHr1Kp988gmxsbE0aNCAnj178tVXX3H69GliY2OpW7fufz7XvXv38tRTT1mTsVtdv36dyMhIevfuzQsvvGAtT0pKwtfX17r+3XffMWXKFCIjI4mNjSUpKSnV/YWFCxe2uUcsb968aQ5B3L17N2PHjmXfvn1cuXIFs9kMWBLhlKG5IiIiIo+UhOuw8t8/aNfuD3ke3e88dk3IHmvOHpbeKnscNwPCw8NJSkoiX77/780zDANXV1emTZuGr68vTZs25dSpU6xYsYK1a9fyzDPPEBYWxvvvv5+qvXnz5jFkyBAmT55M7dq18fb25r333rO5j+t2+/fvp2zZsjg7O5MjRw7Wrl3LU089RevWrSlevDghISF37AEDSw9XdHQ0Z86csTkHsDyDLjIykoYNGwLg7u5+1xhiY2MB+PLLL6lZs6bNNkdHR8AyE2WXLl0YN24cwcHB1t62yZMn29S/PeEzmUzWJOt2169fJzg4mODgYL799lsCAgKIiooiODiYhISEu8YrIiIikq1tnAjRf4FvQag/7N71szElZPZiMmV46ODDlpSUxDfffMPkyZNp0qSJzbbQ0FDmzp1Lv379AAgICKB79+50796dp556iqFDh94xIduyZQt16tTh5ZdftpbdOmnGnTzxxBMsXryYa9eu4e3tTe7cufnpp5946qmnWLZsGbt3777rvm3btmX48OFMnjw5VWL02Wefcf36dZ577jkAKlSowMyZM0lMTEyVNOXJk4d8+fLx559/0qVLlzsea+vWrRQqVIg333zTWnbq1Kk0z+1ejh49yqVLl5g4caL1WXe7du36T22KiIiIZGnnD8G2f0fINX8/y39n/q8ezYGYkilSJp3o3bs35cqVs1natm1rHXI6evRofvjhB44fP86hQ4dYtmwZpUuXvmObxYsXZ9euXaxevZrff/+dUaNGsXPnzjTj6N27N8nJybRq1YqtW7dy7NgxVq9eTWxsLB4eHmkOfS1YsCCTJk3io48+4s033+To0aNERkbywQcfMGzYMAYPHmzt8erfvz8xMTF06tSJXbt28ccffzBr1iyOHTsGwLhx43jnnXeYMmUKv//+OwcOHGDGjBl88MEH1nOLiopi3rx5REZGMmXKFOtQz/tVsGBBXFxcmDp1Kn/++SdLly7VM8pERETk0WU2w48DwUiG0i2hRPA9d8nulJDJXYWHh9OoUSObe6RStG3bll27drF//35cXFwYMWIEFSpUoF69ejg6OjJv3rw7tvniiy/Spk0bOnbsSM2aNbl06ZJNb9md5MuXjx07dpArVy7atGlD5cqV+eabb/jmm29Yvnw5X3zxhTUpupOBAweyePFifvnlF6pVq0a5cuWYM2cO06dPt+nFy5kzJ+vXryc2Npb69etTtWpVvvzyS2tvWZ8+ffjqq6+YMWMG5cuXp379+kRERBAUFARAq1ateO211+jfvz+VKlVi69atjBo16p7XOS0BAQFERETw/fffU6ZMGSZOnHjHnkcRERGRR8Jv38DpHeDiBSHv2juah8JkGIZh7yAeBTExMfj6+hIdHZ1qEoebN29y4sQJgoKCcHNzs1OEIo8Xfe5ERESymdiLMK0a3LwKwe9A7bT/aJ+VpZUb3E49ZCIiIiIiYn9rRlqSscDyUKOvvaN5aJSQiYiIiIiIfZ34GfbPA0zQ4mNwfHzmHlRCJiIiIiIi9hN3FZYNsryu3hvyV7VrOA+bEjIREREREXn4zGb4bTZMrQqX/gCvPPD0f5sQLTt6fPoCRUREREQkazizF1YMtcyoCJCrJIROB3c/e0ZlF0rIRERERETk4Yi7Auv/B7u+BsMMzp7Q4HWo2Q+cXOwdnV0oIRMRERERkQfLbIa938JPY+DGJUtZubbQ5H/gk8++sdmZEjIREREREXlwzuyF5YPh712W9YBS0Ow9CKpn17CyCiVkIiIiIiKS+W5c/v/hiRjg4vX/wxMdne0dXZahWRblkVW4cGE++ugje4fxQJhMJpYsWWLvMP6zHj16EBoaau8wREREJDOZzbB7pmX2xF3hgAHl20P/XVDnFSVjt1FCJvd07tw5XnnlFYoUKYKrqysFChSgZcuWrFu3LlOP06BBAwYOHJipbd7L8ePHCQ4OxsfHB39/f5o2bcrFixfvuV9ycjITJ06kVKlSuLu74+/vT82aNfnqq68yNb6xY8dSqVKlTG1z7ty5ODo6EhYWlqnt3o+PP/6YiIgIe4chIiIimeXvPRDeCH4cAHGXIaA0dF8Gbb8Cn7z2ji5L0pBFSdPJkyepW7cufn5+vPfee5QvX57ExERWr15NWFgYR48efajxGIZBcnIyTk6Z86vbt29foqOj2bRpEx4eHmzbtg3DMO6537hx4/j888+ZNm0a1apVIyYmhl27dnHlypVMietBCg8PZ9iwYXz++edMnjwZNze3hx5DcnIyJpMJX1/fh35sEREReQBuXIZ1b8HuCCzDE72h4Qio0Vc9YvegHjJJ08svv4zJZGLHjh20bduWEiVKULZsWQYNGsSvv/5qrXf16lX69OlDQEAAPj4+PP300+zbt8+6PaWnZ9asWRQuXBhfX186derEtWvXAMvQtU2bNvHxxx9jMpkwmUycPHmSjRs3YjKZWLlyJVWrVsXV1ZXNmzcTGRnJs88+S548efDy8qJ69er89NNPGT4/BwcHgoODqVy5MiVLlqRHjx7kzp37nvstXbqUl19+mfbt2xMUFETFihXp3bs3Q4YMsdaJj49nwIAB5M6dGzc3N5588kl27txp3R4REYGfn59Nu0uWLMFkMlm3jxs3jn379lmvya29Sf/88w+tW7fGw8OD4sWLs3Tp0nvGfeLECbZu3crrr79OiRIlWLRokc32lJiWLVtGyZIl8fDwoF27dty4cYOZM2dSuHBhcuTIwYABA0hOTrY51yFDhvDEE0/g6elJzZo12bhxY6p2ly5dSpkyZXB1dSUqKirVkEWz2cykSZMoVqwYrq6uFCxYkAkTJli3Dx8+nBIlSuDh4UGRIkUYNWoUiYmJ9zxvEREReUDMZksSNrUq7J6BZXhiB3hlF9QOUzKWDkrI7MQwDG4k3njoS3p6f1JcvnyZVatWERYWhqenZ6rttyYT7du358KFC6xcuZLdu3dTpUoVnnnmGS5fvmytExkZyZIlS1i2bBnLli1j06ZNTJw4EbAMXatduzYvvPACZ8+e5ezZsxQoUMC67+uvv87EiRM5cuQIFSpUIDY2lmbNmrFu3Tp+++03QkJCaNmyJVFRURl6H5599lk+/fRT9uzZk6H9AgMDWb9+fZrDG4cNG8bChQuZOXMme/bsoVixYgQHB9tck7R07NiRwYMHU7ZsWes16dixo3X7uHHj6NChA/v376dZs2Z06dLlnm3PmDGD5s2b4+vrS9euXQkPD09V58aNG0yZMoV58+axatUqNm7cSOvWrVmxYgUrVqxg1qxZfP755yxYsMC6T//+/dm2bRvz5s1j//79tG/fnpCQEP744w+bdt99912++uorDh06dMfEd8SIEUycOJFRo0Zx+PBh5syZQ548eazbvb29iYiI4PDhw3z88cd8+eWXfPjhh+m6niIiIpLJ4q7A3E7w46uW4Ym5y0CPFdD2S/AOtHd02YaGLNpJXFIcNefUfOjH3d55Ox7OHumqe/z4cQzDoFSpUmnW27x5Mzt27ODChQu4uroC8P7777NkyRIWLFhA3759AUvvR0REBN7e3gB069aNdevWMWHCBHx9fXFxccHDw4PAwNQf4LfeeovGjRtb1/39/alYsaJ1ffz48SxevJilS5fSv3//dJ3f+vXref311xk3bhwtWrTgu+++46mnngJg4cKF9OjRw9qDd7sPPviAdu3aERgYSNmyZalTpw7PPvssTZs2BeD69etMnz6diIgIa9mXX37J2rVrCQ8PZ+jQofeMz93dHS8vL5ycnO54TXr06MFzzz0HwNtvv82UKVPYsWMHISEhd2wv5fpPnToVgE6dOjF48GBOnDhBUFCQtV5iYiLTp0+naNGiALRr145Zs2Zx/vx5vLy8KFOmDA0bNmTDhg107NiRqKgoZsyYQVRUFPnyWZ4jMmTIEFatWsWMGTN4++23re1++umnNu/bra5du8bHH3/MtGnT6N69OwBFixblySeftNYZOXKk9XXhwoUZMmQI8+bNY9iwYfe8niIiIpKJzu6H+d3gyklwcoNnRmt44n1SQiZ3ld7etH379hEbG0vOnDltyuPi4oiMjLSuFy5c2JqMAeTNm5cLFy6k6xjVqlWzWY+NjWXs2LEsX76cs2fPkpSURFxcXIZ6yF5//XXCwsIYMmQIZcuWpWXLlsyaNYuWLVty4MABm0TgdmXKlOHgwYPs3r2bLVu28PPPP9OyZUt69OjBV199RWRkJImJidStW9e6j7OzMzVq1ODIkSPpjjEtFSpUsL729PTEx8cnzeu5du1arl+/TrNmzQDIlSsXjRs35uuvv2b8+PHWeh4eHtZkDCBPnjwULlwYLy8vm7KUYx04cIDk5GRKlChhc7z4+Hib3wkXFxebmG935MgR4uPjeeaZZ+5a57vvvmPKlClERkYSGxtLUlISPj4+d60vIiIiD8DeubBsICTdBL9C0HE25L37//GSNiVkduLu5M72ztvtctz0Kl68OCaT6Z4Td8TGxpI3b16be4ZS3Dqs0dnZ9i8mJpMJs9mcrlhuHzI5ZMgQ1q5dy/vvv0+xYsVwd3enXbt2JCQkpKs9gP379/Paa68B0LRpU8LDw2nfvj3Tpk0jIiKCSZMmpbm/g4MD1atXp3r16gwcOJDZs2fTrVs33nzzzXQd38HBIVXSm5H7oTJ6PcPDw7l8+TLu7v//O2A2m9m/fz/jxo3DwcHhru2mdazY2FgcHR3ZvXs3jo6ONvVuTeLc3d2t98fdya1x3cm2bdvo0qUL48aNIzg4GF9fX+bNm8fkyZPT3E9EREQySVI8rBrx71T2QPEm0OYLcM9h37iyOSVkdmIymdI9dNBe/P39CQ4O5pNPPmHAgAGpkqKrV6/i5+dHlSpVOHfuHE5OThQuXPi+j+fi4mIzUURatmzZQo8ePWjdujVgSQpOnjyZoeM98cQT/Pzzz9Zhf23btiU2NpaePXtSoUIF2rdvn6H2ypQpA1iGKxYtWhQXFxe2bNlCoUKFAEuytXPnTuvU/gEBAVy7do3r169br+3evXtt2szINUnLpUuX+OGHH5g3bx5ly5a1licnJ/Pkk0+yZs2auw51vJfKlSuTnJzMhQsXrEM+70fx4sVxd3dn3bp19OnTJ9X2rVu3UqhQIZuE99SpU/d9PBEREcmA6NMw/3n4ezdgsjzgud4wcNCUFP+VEjJJ0yeffELdunWpUaMGb731FhUqVCApKYm1a9cyffp0jhw5QqNGjahduzahoaFMmjSJEiVKcObMGZYvX07r1q1TDTe8m8KFC7N9+3ZOnjyJl5cX/v7+d61bvHhxFi1aRMuWLTGZTIwaNSrdvW0phg0bxssvv0xgYCAdO3YkOjqabdu24eHhwdGjR9myZctdhy22a9eOunXrUqdOHQIDAzlx4gQjRoygRIkSlCpVCicnJ1566SWGDh2Kv78/BQsWZNKkSdy4cYPevXsDULNmTTw8PHjjjTcYMGAA27dvT/VMrsKFC3PixAn27t1L/vz58fb2tt6nlxGzZs0iZ86cdOjQIVUvVbNmzQgPD7/vhKxEiRJ06dKF559/nsmTJ1O5cmUuXrzIunXrqFChAs2bN09XO25ubgwfPpxhw4bh4uJC3bp1uXjxIocOHaJ3794UL16cqKgo5s2bR/Xq1Vm+fDmLFy++r5hFREQkA/7cCAt6wY1L4OZneaZY8cb32kvSSSmtpKlIkSLs2bOHhg0bMnjwYMqVK0fjxo1Zt24d06dPByy9fStWrKBevXr07NmTEiVK0KlTJ06dOmUzQ969DBkyBEdHR8qUKUNAQECa94N98MEH5MiRgzp16tCyZUuCg4OpUqVKhs7txRdf5LvvvuPHH3+katWqtGrVioSEBI4ePUq3bt0IDQ21mSXwVsHBwfz444+0bNmSEiVK0L17d0qVKsWaNWusz0ibOHEibdu2pVu3blSpUoXjx4+zevVqcuSwdOv7+/sze/ZsVqxYQfny5Zk7dy5jx461OU7btm0JCQmhYcOGBAQEMHfu3AydY4qvv/6a1q1b33HIYNu2bVm6dCn//PPPfbUNltkbn3/+eQYPHkzJkiUJDQ1l586dFCxYMEPtjBo1isGDBzN69GhKly5Nx44drfeqtWrVitdee43+/ftTqVIltm7dyqhRo+47ZhEREbkHw4DNH8Ks1pZkLLACvLhJyVgmMxkZmQdd7iomJgZfX1+io6NTTTJw8+ZN60x29ngIr8jjSJ87ERGR/+BmNCx5GY4us6xX6gLNJ4Nz+ucjeJyllRvcTkMWRURERETk/50/DN91hcuR4OgCTSdB1R6QxuRccv+UkImIiIiIiMWBBbD0FUi8AT75oeM38ERVe0f1SFNCJiIiIiLyuEtOhDWjYLtljgCC6kO7r8Ezl33jegwoIRMREREReZxdOwfzu8Nfv1rWnxwET48EB8e095NMoYRMRERERORxdXILfN8Drl8AVx9o/RmUSt8jayRzKCETEREREXkc/TYblg4AIxlyl4GOsyFnUXtH9dhRQiYiIiIi8rg5usIyeYdhhnLtoNUUcPG0d1SPJSVkIiIiIiKPk792wIJelmSscldoNU1T2tuRg70DEBERERGRh+SfP2BOR0iKg+JNoMVHSsbsTAmZZEsNGjRg4MCB9g5DREREJPu4dg5mt4G4y5CvCrSPAEdne0f12FNCJmnq0aMHJpMp1RISEmLXuBYtWsT48ePtGoOIiIhItnEzBr5tB1ejwL8IdPle94xlEbqHTO4pJCSEGTNm2JS5urreV1uGYZCcnIyT03/71fP39/9P+4uIiIg8NpISYH43OHcAPAOg60I98DkLUQ+Z3JOrqyuBgYE2S44cOTh58iQmk4m9e/da6169ehWTycTGjRsB2LhxIyaTiZUrV1K1alVcXV3ZvHkzkZGRPPvss+TJkwcvLy+qV6/OTz/9ZHPcTz/9lOLFi+Pm5kaePHlo166dddvtQxZnzZpFtWrV8Pb2JjAwkM6dO3PhwoUHeVlEREREsj6zGX4Igz83grMndJ5v6SGTLEM9ZHZiGAZGXNxDP67J3R2THW7cfP3113n//fcpUqQIOXLk4K+//qJZs2ZMmDABV1dXvvnmG1q2bMmxY8coWLAgu3btYsCAAcyaNYs6depw+fJlfvnll7u2n5iYyPjx4ylZsiQXLlxg0KBB9OjRgxUrVjzEsxQRERHJYtaNhQPzwcEJOnwDT1Sxd0RyGyVkdmLExXGsStWHftySe3Zj8vDI0D7Lli3Dy8vLpuyNN96gc+fO6W7jrbfeonHjxtZ1f39/KlasaF0fP348ixcvZunSpfTv35+oqCg8PT1p0aIF3t7eFCpUiMqVK9+1/V69ellfFylShClTplC9enViY2NTxS4iIiLyWPj1M9jyseV1q6lQvJF945E7UkIm99SwYUOmT59uU+bv709MTEy626hWrZrNemxsLGPHjmX58uWcPXuWpKQk4uLiiIqKAqBx48YUKlSIIkWKEBISQkhICK1bt8bjLsnk7t27GTt2LPv27ePKlSuYzWYAoqKiKFOmTEZOV0RERCT7O7QYVr1uef3MaKiU/j+ky8OlhMxOTO7ulNyz2y7HzShPT0+KFSuWqjw2NhawDL9MkZiYeNc2bjVkyBDWrl3L+++/T7FixXB3d6ddu3YkJCQA4O3tzZ49e9i4cSNr1qxh9OjRjB07lp07d+Ln52fT1vXr1wkODiY4OJhvv/2WgIAAoqKiCA4OtrYnIiIi8tg4uRkW9QUMqN4Hnhxk74gkDUrI7MRkMmV46GBWExAQAMDZs2etwwlvneAjLVu2bKFHjx60bt0asCR3J0+etKnj5OREo0aNaNSoEWPGjMHPz4/169fTpk0bm3pHjx7l0qVLTJw4kQIFCgCwa9eu/3BmIiIiItnU+UMwtzMkJ0CpFtB0kh78nMUpIZN7io+P59y5czZlTk5O5MqVi1q1ajFx4kSCgoK4cOECI0eOTFebxYsXZ9GiRbRs2RKTycSoUaOswwzBct/an3/+Sb169ciRIwcrVqzAbDZTsmTJVG0VLFgQFxcXpk6dSr9+/Th48KCeUSYiIiKPn+jTMLsdxEdDgVrQ9itwcLR3VHIPmvZe7mnVqlXkzZvXZnnyyScB+Prrr0lKSqJq1aoMHDiQ//3vf+lq84MPPiBHjhzUqVOHli1bEhwcTJUq/z/rj5+fH4sWLeLpp5+mdOnSfPbZZ8ydO5eyZcumaisgIICIiAi+//57ypQpw8SJE3n//fcz5+RFREREsoO4KzC7LVw7A7lKwnNzwTnjt6rIw2cybr0BSO5bTEwMvr6+REdH4+PjY7Pt5s2bnDhxgqCgINzc3OwUocjjRZ87ERF5bCTehFmtIWoreOeF3mvBr4C9o3qspZUb3E49ZCIiIiIi2ZU5GRa9YEnGXH2gywIlY9mMEjIRERERkezIMCxT2x9ZCo4u0OlbCCxn76gkg5SQiYiIiIhkR1s+gh1fWF63/gyC6tk1HLk/SshERERERLKbffPgp7GW18FvQ7m2dg1H7p8SMhERERGR7OTkFvihv+V17f5QO8y+8ch/ooRMRERERCS7uBQJ33UBcyKUeRYa69mr2Z0SMhERERGR7CDuCszpaPmZrwqEfgYO+jqf3ekdFBERERHJ6pITYf7zcOkP8MlvefCzi4e9o5JMoIRMRERERCQrMwxYMQRO/AzOntB5HngH2jsqySRKyEREREREsrJtn8DuCMAE7cIhsLy9I5JMZNeE7J133qF69ep4e3uTO3duQkNDOXbsmE2dBg0aYDKZbJZ+/frZ1ImKiqJ58+Z4eHiQO3duhg4dSlJSkk2djRs3UqVKFVxdXSlWrBgRERGp4vnkk08oXLgwbm5u1KxZkx07dmT6OWc3PXr0SHX9TSYTISEh9g5NRERE5NF3dAWsGWl5HTwBSja1bzyS6eyakG3atImwsDB+/fVX1q5dS2JiIk2aNOH69es29V544QXOnj1rXSZNmmTdlpycTPPmzUlISGDr1q3MnDmTiIgIRo8eba1z4sQJmjdvTsOGDdm7dy8DBw6kT58+rF692lrnu+++Y9CgQYwZM4Y9e/ZQsWJFgoODuXDhwoO/EFlcSEiIzfU/e/Ysc+fOva+2DMNIlSyLiIiIyB2c3Q8L+wAGVO0JtV62d0TyANg1IVu1ahU9evSgbNmyVKxYkYiICKKioti9e7dNPQ8PDwIDA62Lj4+PdduaNWs4fPgws2fPplKlSjRt2pTx48fzySefkJCQAMBnn31GUFAQkydPpnTp0vTv35927drx4YcfWtv54IMPeOGFF+jZsydlypThs88+w8PDg6+//vrhXIwszNXV1eb6BwYGkiNHDk6ePInJZGLv3r3WulevXsVkMrFx40bA0jNpMplYuXIlVatWxdXVlc2bNxMfH8+AAQPInTs3bm5uPPnkk+zcudPaTsp+y5cvp0KFCri5uVGrVi0OHjxoE9vmzZt56qmncHd3p0CBAgwYMCBVQi8iIiKS7Vw7B3M7QeJ1KNIAmr0HJpO9o5IHIEvdQxYdHQ2Av7+/Tfm3335Lrly5KFeuHCNGjODGjRvWbdu2baN8+fLkyZPHWhYcHExMTAyHDh2y1mnUqJFNm8HBwWzbtg2AhIQEdu/ebVPHwcGBRo0aWetkNsMwSIxPfuiLYRgP5Hzu5fXXX2fixIkcOXKEChUqMGzYMBYuXMjMmTPZs2cPxYoVIzg4mMuXL9vsN3ToUCZPnszOnTsJCAigZcuWJCYmAhAZGUlISAht27Zl//79fPfdd2zevJn+/fvb4xRFREREMkfCDUsyFvM35CoB7WeCo7O9o5IHxMneAaQwm80MHDiQunXrUq5cOWt5586dKVSoEPny5WP//v0MHz6cY8eOsWjRIgDOnTtnk4wB1vVz586lWScmJoa4uDiuXLlCcnLyHescPXr0jvHGx8cTHx9vXY+JicnQ+SYlmPni1U0Z2icz9P24Ps6ujhnaZ9myZXh5edmUvfHGG3Tu3Dndbbz11ls0btwYgOvXrzN9+nQiIiJo2tQyDvrLL79k7dq1hIeHM3ToUOt+Y8aMse43c+ZM8ufPz+LFi+nQoQPvvPMOXbp0YeDAgQAUL16cKVOmUL9+faZPn46bm1uGzlNERETE7sxmWPwinPkN3P2h83fg7mfvqOQByjIJWVhYGAcPHmTz5s025X379rW+Ll++PHnz5uWZZ54hMjKSokWLPuwwrd555x3GjRtnt+M/TA0bNmT69Ok2Zf7+/hlKQqtVq2Z9HRkZSWJiInXr1rWWOTs7U6NGDY4cOWKzX+3atW2OWbJkSWudffv2sX//fr799ltrHcMwMJvNnDhxgtKlS6c7PhEREZEsYcP/4MhScHCGTt+CfxF7RyQPWJZIyPr378+yZcv4+eefyZ8/f5p1a9asCcDx48cpWrQogYGBqWZDPH/+PACBgYHWnyllt9bx8fHB3d0dR0dHHB0d71gnpY3bjRgxgkGDBlnXY2JiKFCgQDrO1sLJxYG+H9dPd/3M4uSS8VGqnp6eFCtWLFV5bGwsgM0wyJThhHdqI7PFxsby4osvMmDAgFTbChYsmOnHExEREXmg9s6BXyZbXreaCoXq2DceeSjseg+ZYRj079+fxYsXs379eoKCgu65T8oEEnnz5gUsPSgHDhywmQ1x7dq1+Pj4UKZMGWuddevW2bSzdu1aa++Li4sLVatWtaljNptZt26dTQ/NrVxdXfHx8bFZMsJkMuHs6vjQF1Mm3gwaEBAAwNmzZ61lt07wcTdFixbFxcWFLVu2WMsSExPZuXOn9T1L8euvv1pfX7lyhd9//93a81WlShUOHz5MsWLFUi0uLi7/5dREREREHq6TW2Dpv39kfmowVHrOvvHIQ2PXHrKwsDDmzJnDDz/8gLe3t/WeL19fX9zd3YmMjGTOnDk0a9aMnDlzsn//fl577TXq1atHhQoVAGjSpAllypShW7duTJo0iXPnzjFy5EjCwsJwdXUFoF+/fkybNo1hw4bRq1cv1q9fz/z581m+fLk1lkGDBtG9e3eqVatGjRo1+Oijj7h+/To9e/Z8+Bcmi4mPj7e+NymcnJzIlSsXtWrVYuLEiQQFBXHhwgVGjhx5z/Y8PT156aWXGDp0KP7+/hQsWJBJkyZx48YNevfubVP3rbfeImfOnOTJk4c333yTXLlyERoaCsDw4cOpVasW/fv3p0+fPnh6enL48GHWrl3LtGnTMu38RURERB6oS5HwXRcwJ0KZZ6Hhvb9PySPEsCPgjsuMGTMMwzCMqKgoo169eoa/v7/h6upqFCtWzBg6dKgRHR1t087JkyeNpk2bGu7u7kauXLmMwYMHG4mJiTZ1NmzYYFSqVMlwcXExihQpYj3GraZOnWoULFjQcHFxMWrUqGH8+uuv6T6X6OhoA0gVm2EYRlxcnHH48GEjLi4u3e1lFd27d7/je1SyZEnDMAzj8OHDRu3atQ13d3ejUqVKxpo1awzA2LBhg2EYlusOGFeuXLFpNy4uznjllVeMXLlyGa6urkbdunWNHTt2WLen7Pfjjz8aZcuWtb4n+/bts2lnx44dRuPGjQ0vLy/D09PTqFChgjFhwoQHek0ke8jOnzsREXmM3LhsGFOqGsYYH8P4vIFhxF+3d0SSCdLKDW5nMgw7zYP+iImJicHX15fo6OhUwxdv3rzJiRMnCAoK0sx/6bRx40YaNmzIlStX8PPzs3c4kg3pcyciIlleciLMbgsnNoFPfnhhHXjfef4CyV7Syg1ul6WeQyYiIiIi8lgwDFgxxJKMOXtC53lKxh5TSshERERERB62bZ/A7gjABO3CIbC8vSMSO8kS096L3K5BgwZoNK2IiIg8ko6thDX/TtwRPAFKNrVvPGJX6iETEREREXlYTm6BBb0AA6r2hFov2zsisTMlZCIiIiIiD0PUr/Bte0i8AcUaQbP3IBOfESvZkxIyEREREZEH7a8dlhkVE69DkYbQcTY4Ots7KskClJCJiIiIiDxIp3dbkrGEWAiqB53mgLO7vaOSLEIJmYiIiIjIg/L3HpjVGuJjoNCT8Nw8cPGwd1SShSghExERERF5EM7shVmhEB8NBWtD5+/AxdPeUUkWo4RMMlWDBg0YOHBgmnUKFy7MRx99lGYdk8nEkiVLADh58iQmk4m9e/dmSowiIiIiD9y5A5Zk7GY0FKgJXb4HVy97RyVZkBIySVOPHj0wmUz069cv1bawsDBMJhM9evSwli1atIjx48c/xAjTZ+PGjZhMpjsu586dy5RjpCfRFBERkcfA+UMwsxXEXYEnqkGXBeDqbe+oJItSQib3VKBAAebNm0dcXJy17ObNm8yZM4eCBQva1PX398fbO+v+g3Ps2DHOnj1rs+TOndveYYmIiMij4sKRf5Oxy5CvCnRbBG4+9o5KsjAlZHJPVapUoUCBAixatMhatmjRIgoWLEjlypVt6t4+ZPHChQu0bNkSd3d3goKC+Pbbb1O1/8cff1CvXj3c3NwoU6YMa9euvWdMBw8epGnTpnh5eZEnTx66devGP//8c8/9cufOTWBgoM3i4GD5GOzcuZPGjRuTK1cufH19qV+/Pnv27LHuaxgGY8eOpWDBgri6upIvXz4GDBhgPe9Tp07x2muvWXveRERE5DFz8RjMbAk3/oG8Ff9NxnztHZVkcUrI7MQwDBJv3nzoi2EY9xVvr169mDFjhnX966+/pmfPnvfcr0ePHvz1119s2LCBBQsW8Omnn3LhwgXrdrPZTJs2bXBxcWH79u189tlnDB8+PM02r169ytNPP03lypXZtWsXq1at4vz583To0OG+zi3FtWvX6N69O5s3b+bXX3+lePHiNGvWjGvXrgGwcOFCPvzwQz7//HP++OMPlixZQvny5QFLgpo/f37eeusta8+biIiIPEb++cOSjF2/CIHlodsScM9h76gkG3CydwCPq6T4eKZ0b/fQjztg5gKc3dwyvF/Xrl0ZMWIEp06dAmDLli3MmzePjRs33nWf33//nZUrV7Jjxw6qV68OQHh4OKVLl7bW+emnnzh69CirV68mX758ALz99ts0bdr0ru1OmzaNypUr8/bbb1vLvv76awoUKMDvv/9OiRIl7rpv/vz5bdYLFSrEoUOHAHj66adttn3xxRf4+fmxadMmWrRoQVRUFIGBgTRq1AhnZ2cKFixIjRo1AMtQTUdHR7y9vQkMDLzr8UVEROQRdCnSkozFnoc85eD5peDhb++oJJtQQibpEhAQQPPmzYmIiMAwDJo3b06uXLnS3OfIkSM4OTlRtWpVa1mpUqXw8/OzqVOgQAFrMgZQu3btNNvdt28fGzZswMsr9UxFkZGRaSZkv/zyi809bs7OztbX58+fZ+TIkWzcuJELFy6QnJzMjRs3iIqKAqB9+/Z89NFHFClShJCQEJo1a0bLli1xctLHSERE5LF1+U+IaAHXzkJAaXj+ByVjkiH6JmknTq6uDJi5wC7HvV+9evWif//+AHzyySeZFVKGxcbG0rJlS959991U2/LmzZvmvkFBQTYJ4a26d+/OpUuX+PjjjylUqBCurq7Url2bhIQEwDK5ybFjx/jpp59Yu3YtL7/8Mu+99x6bNm2ySexERETkMXHlJES0hGtnIFdJ6L4UPNP+g7XI7ZSQ2YnJZLqvoYP2FBISQkJCAiaTieDg4HvWL1WqFElJSezevds6ZPHYsWNcvXrVWqd06dL89ddfnD171ppM/frrr2m2W6VKFRYuXEjhwoUztXdqy5YtfPrppzRr1gyAv/76K9VEIe7u7rRs2ZKWLVsSFhZGqVKlOHDgAFWqVMHFxYXk5ORMi0dERESysKtRlmGKMachZ3Ho/iN4aeZmyThN6iHp5ujoyJEjRzh8+DCOjo73rF+yZElCQkJ48cUX2b59O7t376ZPnz64u7tb6zRq1IgSJUrQvXt39u3bxy+//MKbb76ZZrthYWFcvnyZ5557jp07dxIZGcnq1avp2bPnPROiCxcucO7cOZslMTERgOLFizNr1iyOHDnC9u3b6dKli02sERERhIeHc/DgQf78809mz56Nu7s7hQoVAizPIfv555/5+++/0zXjo4iIiGRT0actwxSvRoF/UUsy5p3H3lFJNqWETDLEx8cHH5/0P0tjxowZ5MuXj/r169OmTRv69u1r89wvBwcHFi9eTFxcHDVq1KBPnz5MmDAhzTbz5cvHli1bSE5OpkmTJpQvX56BAwfi5+dnncL+bkqWLEnevHltlt27dwOWCUeuXLlClSpV6NatGwMGDLCJ1c/Pjy+//JK6detSoUIFfvrpJ3788Udy5swJwFtvvcXJkycpWrQoAQEB6b5GIiIiko3EnPk3GTsFOYKgxzLwSfuWCZG0mIz7nQddbMTExODr60t0dHSqhOXmzZucOHGCoKAg3LLZMEWR7EqfOxERyXRR22FJP8tEHn6FoOcK8M1/7/3ksZNWbnA73UMmIiIiIpKWa+fhp7Gwb45l3begZZiikjHJBErIRERERETuJDkRdnwJG9+B+BhLWeVu0GisZlOUTKOETERERETkdid+gZXD4MJhy3q+ytDsfchfzb5xySNHCZmIiIiISIrov2HtKDi40LLu7g+Nxlh6xhzuPcu0SEYpIRMRERERSUqAXz+BTe9B4nUwOUC1XtDwTfDwt3d08ghTQiYiIiIij7fj6yzDEy8dt6wXqAnN3oO8Fe0blzwWlJCJiIiIyOPpyilY/QYcXWZZ98wNTcZDhY5gMtk3NnlsKCETERERkcdL4k3Y8jFs/gCSboLJEWq9BPWHgZuvvaOTx4wSMhERERF5PBgG/L4KVr0OV05aygo/ZRmemLu0XUOTx5eDvQMQuZMePXoQGhpq7zD+s40bN2Iymbh69aq9QxEREXm8Rf8NczrA3E6WZMw7H7SbYXnAs5IxsSMlZJKmHj16YDKZmDhxok35kiVLMGXC2OqTJ09iMpnYu3fvf24rRVxcHP7+/uTKlYv4+PhMa/d+1KlTh7Nnz+Lrq+EPIiIidnP8J/j8KfhjDTg4w5ODoP9OKNdG94qJ3Skhk3tyc3Pj3Xff5cqVK5nabkJCQqa2l2LhwoWULVuWUqVKsWTJkgdyjPRITEzExcWFwMDATEleRUREJIPMybD+fzC7Hdy4BIEV4OVtlueKuXrZOzoRQAmZpEOjRo0IDAzknXfeSbNeSiLk6upK4cKFmTx5ss32woULM378eJ5//nl8fHzo27cvQUFBAFSuXBmTyUSDBg1s9nn//ffJmzcvOXPmJCwsjMTExHvGGx4eTteuXenatSvh4eGptptMJj7//HNatGiBh4cHpUuXZtu2bRw/fpwGDRrg6elJnTp1iIyMtNnvhx9+oEqVKri5uVGkSBHGjRtHUlKSTbvTp0+nVatWeHp6MmHChDsOWdyyZQsNGjTAw8ODHDlyEBwcbE12V61axZNPPomfnx85c+akRYsWqeIQERGRdLh2Hr55Fn5+DzCgWm/ovRZyFbd3ZCI2lJDZiWEYmBOSH/piGEaGY3V0dOTtt99m6tSpnD59+o51du/eTYcOHejUqRMHDhxg7NixjBo1ioiICJt677//PhUrVuS3335j1KhR7NixA4CffvqJs2fPsmjRImvdDRs2EBkZyYYNG5g5cyYRERGp2rtdZGQk27Zto0OHDnTo0IFffvmFU6dOpaqXkhju3buXUqVK0blzZ1588UVGjBjBrl27MAyD/v37W+v/8ssvPP/887z66qscPnyYzz//nIiICCZMmGDT7tixY2ndujUHDhygV69eqY67d+9ennnmGcqUKcO2bdvYvHkzLVu2JDk5GYDr168zaNAgdu3axbp163BwcKB169aYzeY0z1tERERuceIXyxDFk7+Asye0DYcWH4Czm70jE0nFZNzPN3RJJSYmBl9fX6Kjo/Hx8bHZdvPmTU6cOEFQUBBubpZ/CMwJyZwZvfWhx5nvrTo4uDimu36PHj24evUqS5YsoXbt2pQpU4bw8HCWLFlC69atrQlely5duHjxImvWrLHuO2zYMJYvX86hQ4cASw9Z5cqVWbx4sbXOyZMnCQoK4rfffqNSpUo2x924cSORkZE4Olri7dChAw4ODsybN++u8b755pscPnzYeozQ0FAqVarE2LFjrXVMJhMjR45k/PjxAPz666/Url2b8PBwaxI1b948evbsSVxcHGDpJXzmmWcYMWKEtZ3Zs2czbNgwzpw5Y2134MCBfPjhh9Y6GzdupGHDhly5cgU/Pz86d+5MVFQUmzdvTtf1/+effwgICODAgQOUK1cuXfuIxZ0+dyIi8ogzmy1T2W+YAIYZcpeB9jMhoIS9I5PHTFq5we3UQybp9u677zJz5kyOHDmSatuRI0eoW7euTVndunX5448/rL0/ANWqVUv38cqWLWtNxgDy5s3LhQsX7lo/OTmZmTNn0rVrV2tZ165diYiISNXDVKFCBevrPHnyAFC+fHmbsps3bxITEwPAvn37eOutt/Dy8rIuL7zwAmfPnuXGjRvpPr+UHrK7+eOPP3juuecoUqQIPj4+FC5cGICoqKg02xUREXnsXb8Ec9rD+vGWZKxSF+izTsmYZHl6DpmdmJwdyPdWHbsc937Vq1eP4OBgRowYQY8ePe6rDU9Pz3TXdXZ2tlk3mUxpDt1bvXo1f//9Nx07drQpT05OZt26dTRu3PiObadMuHGnspTjxcbGMm7cONq0aZPquLf2vtzr/Nzd3dPc3rJlSwoVKsSXX35Jvnz5MJvNlCtX7oFNgCIiIvJIiNoOC3pCzN/g5A7N34fKXe+9n0gWoITMTkwmE6YMDB3MKiZOnEilSpUoWbKkTXnp0qXZsmWLTdmWLVsoUaKETS/X7VxcXABsetHuV3h4OJ06deLNN9+0KZ8wYQLh4eE2CVlGValShWPHjlGsWLH/FGOFChVYt24d48aNS7Xt0qVLHDt2jC+//JKnnnoKIN1DG0VERB5LhgHbpsFPY8GcBDmLQ4eZkKesvSMTSTclZJIh5cuXp0uXLkyZMsWmfPDgwVSvXp3x48fTsWNHtm3bxrRp0/j000/TbC937ty4u7uzatUq8ufPj5ub2309s+vixYv8+OOPLF26NNW9Vs8//zytW7fm8uXL+Pv7Z7htgNGjR9OiRQsKFixIu3btcHBwYN++fRw8eJD//e9/6W5nxIgRlC9fnpdffpl+/frh4uLChg0baN++Pf7+/uTMmZMvvviCvHnzEhUVxeuvv35f8YqIiDzy4q7AkjA4ttyyXq4ttPwYXL3tG5dIBukeMsmwt956K9XQwSpVqjB//nzmzZtHuXLlGD16NG+99dY9hzY6OTkxZcoUPv/8c/Lly8ezzz57XzF98803eHp63vH+rGeeeQZ3d3dmz559X20DBAcHs2zZMtasWUP16tWpVasWH374IYUKFcpQOyVKlGDNmjXs27ePGjVqULt2bX744QecnJysE5bs3r2bcuXK8dprr/Hee+/dd8wiIiKPrL/3wOf1LMmYows0/8Ayk6KSMcmGNMtiJsnoLIsi8mDpcyci8ggyDNj5Fax+A5ITIEdhyyyK+SrZOzIRGxmZZVFDFkVEREQk67sZAz8OgEP/Pj6nVAt49hNw97NrWCL/lRIyEREREcnaLhyFeZ3hciQ4OEHj8VDrJfh3VmSR7EwJmYiIiIhkXecOwjet4MYl8MkP7SOgQHV7RyWSaZSQiYiIiEjWdHYffPOsZUbFvJWg6yLwzGnvqEQylRIyEREREcl6/t4Ds0LhZjQ8UdWSjOl+MXkEadr7h+j2qeJF5MHRBLIiItnY6V3wTaglGctfA7otVjImjyz1kD0ELi4uODg4cObMGQICAnBxccGkm1BFHhjDMLh48SImkwlnZ2d7hyMiIhkRtR1mt4WEa1CwDnSZr+eLySNNCdlD4ODgQFBQEGfPnuXMmTP2DkfksWAymcifPz+Ojo72DkVERNLr1Fb4tj0kxELhp6Dzd+Diae+oRB4oJWQPiYuLCwULFiQpKYnk5GR7hyPyyHN2dlYyJiKSnZz4BeZ0gMQbEFQfnpsHLh72jkrkgVNC9hClDJ/SECoRERGRW/y5EeZ0gqQ4KPo0dJoDzu72jkrkodCkHiIiIiJiP8fXwZyOlmSseBPoNFfJmDxW1EMmIiIiIvbx+xr4riskx0OJptBhJji52jsqkYdKPWQiIiIi8vAdWwnfdbEkY6VaQIdvlIzJY0k9ZCIiIiLycB35Eb7vCeZEKPMstA0HR91jL48n9ZCJiIiIyMNzaAl838OSjJVrC22/VjImjzUlZCIiIiLycBxYAAt6gTkJKnSE1l+AowZsyePNrgnZO++8Q/Xq1fH29iZ37tyEhoZy7Ngxmzo3b94kLCyMnDlz4uXlRdu2bTl//rxNnaioKJo3b46Hhwe5c+dm6NChJCUl2dTZuHEjVapUwdXVlWLFihEREZEqnk8++YTChQvj5uZGzZo12bFjR6afs4iIiMhjad93sOgFMJKhUhcIna5kTAQ7J2SbNm0iLCyMX3/9lbVr15KYmEiTJk24fv26tc5rr73Gjz/+yPfff8+mTZs4c+YMbdq0sW5PTk6mefPmJCQksHXrVmbOnElERASjR4+21jlx4gTNmzenYcOG7N27l4EDB9KnTx9Wr15trfPdd98xaNAgxowZw549e6hYsSLBwcFcuHDh4VwMERERkUfV3jmw+EUwzFDleWg1DRwc7R2VSJZgMgzDsHcQKS5evEju3LnZtGkT9erVIzo6moCAAObMmUO7du0AOHr0KKVLl2bbtm3UqlWLlStX0qJFC86cOUOePHkA+Oyzzxg+fDgXL17ExcWF4cOHs3z5cg4ePGg9VqdOnbh69SqrVq0CoGbNmlSvXp1p06YBYDabKVCgAK+88gqvv/76PWOPiYnB19eX6OhofHx8MvvSiIiIiGQ/hgE7voSVwwADqvWCZpPBQXfNyKMtI7lBlvo0REdHA+Dv7w/A7t27SUxMpFGjRtY6pUqVomDBgmzbtg2Abdu2Ub58eWsyBhAcHExMTAyHDh2y1rm1jZQ6KW0kJCSwe/dumzoODg40atTIWud28fHxxMTE2CwiIiIi8q+bMZb7xVYOBQyo0Reaf6BkTOQ2WeYTYTabGThwIHXr1qVcuXIAnDt3DhcXF/z8/Gzq5smTh3Pnzlnr3JqMpWxP2ZZWnZiYGOLi4vjnn39ITk6+Y52UNm73zjvv4Ovra10KFChwfycuIiIi8qg5uw++qA+HFoGDEzQeD00ngclk78hEspwsk5CFhYVx8OBB5s2bZ+9Q0mXEiBFER0dbl7/++sveIYmIiIjYl2HAzq/gq8Zw+U/wyQ89V0LdAUrGRO4iS0xt079/f5YtW8bPP/9M/vz5reWBgYEkJCRw9epVm16y8+fPExgYaK1z+2yIKbMw3lrn9pkZz58/j4+PD+7u7jg6OuLo6HjHOilt3M7V1RVXVz1NXkRERASAm9Hw46twaLFlvURTCP0UPPztG5dIFmfXHjLDMOjfvz+LFy9m/fr1BAUF2WyvWrUqzs7OrFu3zlp27NgxoqKiqF27NgC1a9fmwIEDNrMhrl27Fh8fH8qUKWOtc2sbKXVS2nBxcaFq1ao2dcxmM+vWrbPWEREREZG7OLMXPq9vScYcnKDJBHhurpIxkXSwaw9ZWFgYc+bM4YcffsDb29t6v5avry/u7u74+vrSu3dvBg0ahL+/Pz4+PrzyyivUrl2bWrVqAdCkSRPKlClDt27dmDRpEufOnWPkyJGEhYVZe7D69evHtGnTGDZsGL169WL9+vXMnz+f5cuXW2MZNGgQ3bt3p1q1atSoUYOPPvqI69ev07Nnz4d/YURERESyg5QhiqvfgOQE8C0I7WdA/mr2jkwk27DrtPemu4wlnjFjBj169AAsD4YePHgwc+fOJT4+nuDgYD799FOboYSnTp3ipZdeYuPGjXh6etK9e3cmTpyIk9P/55sbN27ktdde4/Dhw+TPn59Ro0ZZj5Fi2rRpvPfee5w7d45KlSoxZcoUatasma5z0bT3IiIi8li5GQ1LX4HDP1jWSzaH0E/APYd94xLJAjKSG2Sp55BlZ0rIRERE5LHx9x5Y0BOunAQHZ2j8FtR6SRN3iPwrI7lBlpjUQ0RERESyAcOAHV/A6jfBnAh+BaFdBOSvau/IRLItJWQiIiIicm9xV2Fpfzjyo2W9VAt49hNw97NnVCLZnhIyEREREUnb37vh+55w9ZRliGKT/0HNFzVEUSQTKCETERERkTszDNj+GawZ9e8QxUKWWRSf0BBFkcyihExEREREUjMnw6IX4OBCy3rpVtBqqoYoimQyJWQiIiIiYsswYOVwSzLm4AzBb0ONFzREUeQBUEImIiIiIra2TYOdXwImaBcOZZ61d0QijywHewcgIiIiIlnIocWwZqTldZP/KRkTecCUkImIiIiIRdSvsOhFy+saL0LtMPvGI/IYUEImIiIiIvDPcZj7HCTHQ8nmEPKO7hkTeQiUkImIiIg87q7/A9+2hbjLkK8KtP0KHBztHZXIY0EJmYiIiMjjLDEO5naCKyctzxnr/B24eNg7KpHHhhIyERERkcdVyrPGTu8ENz/ouhC8cts7KpHHihIyERERkcfVmlFw5EdwdIHn5kKu4vaOSOSxo4RMRERE5HH062fw6yeW16HToVAd+8Yj8phSQiYiIiLyuDmyDFa9bnndaCyUb2fXcEQeZ0rIRERERB4np3fBwj6AAVV7Qt2B9o5I5LGmhExERETkcXH5T5jTEZLioHgTaPa+njUmYmdKyEREREQeBzcuw7ft4cY/kLcitJsBjk72jkrksaeETERERORRl3gT5nWGS8fBtwB0ng+uXvaOSkRQQiYiIiLyaDObYUk/iNoGrr7Q5XvwDrR3VCLyLyVkIiIiIo+ydWPh0GJwcIaOsyB3aXtHJCK3UEImIiIi8qjaGQ5bPra8fnYaFKlv33hEJBUlZCIiIiKPomOrYMUQy+uGb0LFTvaNR0TuSAmZiIiIyKPmwlFY0AsMM1TuCvWG2jsiEbkLJWQiIiIij5L4WJjfDRKvQ1A9aPGRnjUmkoUpIRMRERF5VBgG/Pgq/PM7eOeFtl+Do7O9oxKRNCghExEREXlU7AqHgwvA5Gh58LNXgL0jEpF7UEImIiIi8ij4ew+sGmF53XgcFKpt33hEJF2UkImIiIhkd3FX4PvukJwApVpA7f72jkhE0kkJmYiIiEh2ZjbD4n5wNQpyFIZnP9EkHiLZiBIyERERkexs68fw+ypwdIUO34C7n70jEpEMUEImIiIikl2d3ALrxlteN30X8la0bzwikmFKyERERESyo2vnYUFPMJKhQieo2sPeEYnIfVBCJiIiIpLdmJNhYW+IPQ8BpaHFB7pvTCSbUkImIiIikt1seBtO/gLOntBhJrh42jsiEblPSshEREREspM/1sIv71tet5oCASXtG4+I/CcZSsgMwyAqKoqbN28+qHhERERE5G6u/gWLXrC8rt4Hyrezbzwi8p9lOCErVqwYf/3114OKR0RERETuJCnB8vDnuCuQrzIEv23viEQkE2QoIXNwcKB48eJcunTpQcUjIiIiIneyZiT8vRvc/KD9THBytXdEIpIJMnwP2cSJExk6dCgHDx58EPGIiIiIyO0OLYYdn1tet/4cchSybzwikmmcMrrD888/z40bN6hYsSIuLi64u7vbbL98+XKmBSciIiLy2PvnD/ihv+V13YFQMsSu4YhI5spwQvbRRx89gDBEREREJJWEGzD/eUiIhUJ14elR9o5IRDJZhhOy7t27P4g4REREROR2K4bAhcPgmRvafQ2OGf7qJiJZ3H19qpOTk1myZAlHjhwBoGzZsrRq1QpHR8dMDU5ERETksbVnFuz9FkwO0C4cvAPtHZGIPAAZTsiOHz9Os2bN+PvvvylZ0vIgwnfeeYcCBQqwfPlyihYtmulBioiIiDxWzh2w9I4BNHwTgurZNx4ReWAyPMvigAEDKFq0KH/99Rd79uxhz549REVFERQUxIABAx5EjCIiIiKPjysnLfeNJd2E4k3gyUH2jkhEHqAM95Bt2rSJX3/9FX9/f2tZzpw5mThxInXr1s3U4EREREQeG4lxsPkj2PKRJRnzLWCZ4t4hw38/F5FsJMMJmaurK9euXUtVHhsbi4uLS6YEJSIiIvLYMAw4tgJWvQ5XoyxlQfWgxUfg4Z/mriKS/WX4Ty4tWrSgb9++bN++HcMwMAyDX3/9lX79+tGqVasHEaOIiIjIo+lSJHzbHuZ1tiRjPk9A+wh4fink1H35Io+DDPeQTZkyhe7du1O7dm2cnZ0BSEpKolWrVnz88ceZHqCIiIjIIyfhOvwyGbZOheQEcHCGOq9AvSHg4mnv6ETkIcpwQubn58cPP/zAH3/8wdGjRwEoXbo0xYoVy/TgRERERB4phgGHl8DqNyHmb0tZsUYQ8i7k0ncpkcfRfT9dsHjx4hQvXjwzYxERERF5dF04CiuHwYlNlnW/ghAyEUo2A5PJvrGJiN2kKyEbNCj9061+8MEH9x2MiIiIyCPnZgxsehe2fwbmJHB0hSdfgycHgrO7vaMTETtLV0L222+/pasxk/66IyIiImJhGHDge1gzCmLPWcpKNofgCeAfZN/YRCTLSFdCtmHDhgcdh4iIiMij49xBWDEUorZa1v2LQNNJULyxfeMSkSznvu8hExEREZHbxJyxPNx555dgmMHZwzJzYu3+4ORq7+hEJAu6r0e/79q1i2HDhtGpUyfatGljs2TEzz//TMuWLcmXLx8mk4klS5bYbO/Rowcmk8lmCQkJsalz+fJlunTpgo+PD35+fvTu3ZvY2FibOvv37+epp57Czc2NAgUKMGnSpFSxfP/995QqVQo3NzfKly/PihUrMnQuIiIi8phKToJjK2FOJ/iwLOz43JKMlQmFsB3w1GAlYyJyVxlOyObNm0edOnU4cuQIixcvJjExkUOHDrF+/Xp8fX0z1Nb169epWLEin3zyyV3rhISEcPbsWesyd+5cm+1dunTh0KFDrF27lmXLlvHzzz/Tt29f6/aYmBiaNGlCoUKF2L17N++99x5jx47liy++sNbZunUrzz33HL179+a3334jNDSU0NBQDh48mKHzERERkcfIlVOw/n/wUXmY2wl+X2lJxArWgW5LoMNM8Ctg7yhFJIszGYZhZGSHChUq8OKLLxIWFoa3tzf79u0jKCiIF198kbx58zJu3Lj7C8RkYvHixYSGhlrLevTowdWrV1P1nKU4cuQIZcqUYefOnVSrVg2AVatW0axZM06fPk2+fPmYPn06b775JufOncPFxQWA119/nSVLllifo9axY0euX7/OsmXLrG3XqlWLSpUq8dlnn6Ur/piYGHx9fYmOjsbHx+c+roCIiIhkecmJcGwF7J4JkeuBf79GeeSEis9Ble4QUMKuIYqI/WUkN8hwD1lkZCTNmzcHwMXFhevXr2MymXjttddsep0yy8aNG8mdOzclS5bkpZde4tKlS9Zt27Ztw8/Pz5qMATRq1AgHBwe2b99urVOvXj1rMgYQHBzMsWPHuHLlirVOo0aNbI4bHBzMtm3bMv18REREJBu6FAlrR8MHpWH+8xC5DjAgqD60mwGDjlhmT1QyJiIZlOFJPXLkyMG1a9cAeOKJJzh48CDly5fn6tWr3LhxI1ODCwkJoU2bNgQFBREZGckbb7xB06ZN2bZtG46Ojpw7d47cuXPb7OPk5IS/vz/nzlmmlz137hxBQbZTy+bJk8e6LUeOHJw7d85admudlDbuJD4+nvj4eOt6TEzMfzpXERERyWISb8KRH2HPTDj5y/+Xe+WBSl2gSjfL7IkiIv9BuhOygwcPUq5cOerVq8fatWspX7487du359VXX2X9+vWsXbuWZ555JlOD69Spk/V1+fLlqVChAkWLFmXjxo2ZfqyMeuedd+57eKaIiIhkYReOWIYk7p8HcVf+LTRZpqyv0h1KBIOjs11DFJFHR7oTsgoVKlC9enVCQ0Np3749AG+++SbOzs5s3bqVtm3bMnLkyAcWKECRIkXIlSsXx48f55lnniEwMJALFy7Y1ElKSuLy5csEBgYCEBgYyPnz523qpKzfq07K9jsZMWIEgwYNsq7HxMRQoIBu3BUREcm2Tm2Dn8bAX9v/v8wnP1Tualk0QYeIPADpvods06ZNlC1blnfeeYfSpUvTvXt3tmzZwuuvv87SpUuZPHkyOXLkeJCxcvr0aS5dukTevHkBqF27NlevXmX37t3WOuvXr8dsNlOzZk1rnZ9//pnExERrnbVr11KyZElrvLVr12bdunU2x1q7di21a9e+ayyurq74+PjYLCIiIpJN/b4avnnWkoyZHKFUC+j8PQzcDw1HKBkTkQcmw7MsXr9+nfnz5xMREcEvv/xCsWLF6N27N927d0+zR+lOYmNjOX78OACVK1fmgw8+oGHDhvj7++Pv78+4ceNo27YtgYGBREZGMmzYMK5du8aBAwdwdbU8z6Np06acP3+ezz77jMTERHr27Em1atWYM2cOANHR0ZQsWZImTZowfPhwDh48SK9evfjwww+t0+Nv3bqV+vXrM3HiRJo3b868efN4++232bNnD+XKlUvXuWiWRRERkWzq0BJY2AfMiVCiKbT8CLwz9p1GRORWGckNMpyQ3er48ePMmDGDWbNmce7cOUJCQli6dGm699+4cSMNGzZMVd69e3emT59OaGgov/32G1evXiVfvnw0adKE8ePH20zAcfnyZfr378+PP/6Ig4MDbdu2ZcqUKXh5eVnr7N+/n7CwMHbu3EmuXLl45ZVXGD58uM0xv//+e0aOHMnJkycpXrw4kyZNolmzZuk+FyVkIiIi2dDeOfBDmOX5YeXaQuvPdX+YiPxnDy0hA0uP2bfffsuIESO4evUqycnJ/6W5bEsJmYiISDaz40tYMcTyunJXaDkFHBztG5OIPBIykhtkeNr7FD///DNff/01CxcuxMHBgQ4dOtC7d+/7bU5ERETk4dnyseW5YgA1+0HwO+CQ4cezioj8ZxlKyM6cOUNERAQREREcP36cOnXqMGXKFDp06ICnp+eDilFEREQkcxgGbHwHNr1rWX9qMDw9Ckwm+8YlIo+tdCdkTZs25aeffiJXrlw8//zz9OrVi5IlSz7I2EREREQyj2HAmpGwbZpl/elRUG+IfWMSkcdeuhMyZ2dnFixYQIsWLXB01PhqERERyUbMZlg+CHbPsKyHvAu1+tk3JhERMpCQZWT2RBEREZEsIznJMpPi/nmACVpNhSrd7B2ViAjwHyb1EBEREcnykuJhYW848qPlgc9tvoDy7ewdlYiIlRIyEREReTQlxsF3XeH4T+DoAu0joFRze0clImJDCZmIiIg8euKvwZxOcGozOLnDc3Og6NP2jkpEJBUlZCIiIvJoibsCs9vB37vAxRu6zIdCdewdlYjIHSkhExERkUdH7EWY1RrOHwD3HNB1ETxRxd5RiYjclRIyEREReTTEnIFvnoV/fgfP3PD8EshT1t5RiYikSQmZiIiIZH9XTsLMVnD1FPjkh+d/gFzF7B2ViMg9KSETERGR7O3sPvi2A8SegxxB0H0p+BW0d1QiIumihExERESyr+M/wfzukBALuctY7hnzyWvvqERE0k0JmYiIiGRPe76BHweCkQxB9aDDLHD3s3dUIiIZooRMREREshfDgA1vw8+TLOsVOkGrqeDkYt+4RETugxIyERERyT6SEuDHAbBvrmW93lBo+CaYTPaNS0TkPikhExERkezhZjTMfx7+3AgmR2jxAVTtYe+oRET+EyVkIiIikvVF/w3ftocLh8DZEzrMhOKN7R2ViMh/poRMREREsrZzBy3J2LUz4JUHOs+HfJXsHZWISKZQQiYiIiJZV+QGyzDF+BjIVRK6fA85Ctk7KhGRTKOETERERLKmvXNg6StgToJCT0Kn2eCew95RiYhkKiVkIiIikrUYBvz8HmyYYFkv1xZCp4OTq33jEhF5AJSQiYiISNaRnAjLXoPfZlnW6w6EZ8aAg4NdwxIReVCUkImIiEjWEH8N5neHyHVgcoBm70H1PvaOSkTkgVJCJiIiIvYXcxbmtIdzB8DZA9rNgJIh9o5KROSBU0ImIiIi9nXhCMxuBzGnwTMAOn8HT1S1d1QiIg+FEjIRERGxD7MZdoXDT2MhIRZyFoMuC8A/yN6RiYg8NErIRERE5OH75w/LlPZR2yzrhZ+CDt+Ah7994xIReciUkImIiMjDk5wEW6fAxomQHA/OntBorGXyDs2kKCKPISVkIiIi8nCc3Q9L+8PZfZb1os9Ay4/Ar6BdwxIRsSclZCIiIvJgJcXDpkmw5SMwJ4GbH4S8AxWfA5PJ3tGJiNiVEjIRERF5cP7aAT/0h3+OWdZLt4Jm74N3HvvGJSKSRSghExERkcyXcB3WjYftnwEGeOaG5u9DmWftHZmISJaihExEREQyV+QG+HEAXI2yrFfsDMETNIOiiMgdKCETERGRzBF3Fda8Cb/Ntqz7FrBM2lGskT2jEpE7MMwGiWdiSTx3HQcPZxy9XXDwccHRyxmTY/ac8dQwG5hjE3D0cbV3KBmihExERET+u6PLYdkgiD1nWa/RF54ZDa7e9o1LRKySYxO4+cdV4o9d5uYfVzBfT0pdyQQOnv8maN4uOHq74Ojz/z+tZd4umJztm7iZbyaR8Nc1Ek7FEB91jYSoazi4OZL39Rp2jSujlJCJiIjI/Yu9CCuHwqHFlvWcxaDVNChU275xiQhGskHCXzHcPHaFm79fIfHvWJvtJldHXPJ7YY5PxhyTQHJsApjBHJuIOTYRzl5Ps32Tu5M1UXPK6YZTLg+cAtxxyuWOUw43TI6ZN4uqYRgkXbpJwqkYEqJiSDgVQ+L5G2DY1jMnmzHfSMTBwznTjv2gKSETERGR+/P7Glj8IsRdBpMj1B0A9V8HZzd7Ryby2EqKjif+2BVu/n6Zm8evYtxMttnunNcTt5L+uJXIgUshb5vhiYbZwHwjkeSYBMzXEkiOSSD5mmUx3/I6+VoCJBkYcUkkxSWRdOEG8cdvC8TB9G+S9m+CFuCOcy53nHJ54ODtjOkej7wwJyRber+irlkSsKiYO/boOfq74VLQG9dCPrgU9ME50DNTE8GHQQmZiIiIZExyEmz4H2z+0LKepzw8Ow3yVbJrWCIPm2E2MJLMGIlm+PdnyrrN6zv8xAQObo6YXJ1wcHXE5Opo+en2/+smZ4d7Ji5Gkpn4k9Hc/P0KN49dIen8DZvtDh5OuBbPgVuJHLgVz4Gjj8td2zI5mHD0csHR6+51wNJbZcQlWZKzGMuS9E+czWIkmkm6GEfSxbjUx3F1/P9ELZc7zgHuOPq7kXz5JvGnYkiIukbi2Vgw37ajkwmXJ7xxKeSNa0EfXAr54OiddqzZgRIyERERSb+Ys7CgF0RttazXeBGajAen7HUTvTxajCQz5ptJmOMsixGXZLNujku2lhnJBpgNDLPl562vDYNUZf//mv+vl/RvUpVs3DO2/8QB24TNzen/EzdXR8yxicRHXrUkhClM4FLAG7cSOXAtkQOX/N6YHDK3x8hkMmHycMbBwxnnPJ6pthtm498k7YYlQbtoSdIS/4kj+fJNjPhkEv+OTTWE8naOPi64FLIkXi4FvXHJ54XJKXtOOJIWJWQiIiKSPpHrYeELcOMfcPGGZ6dC2db2jkoeMUayGXNsoqX3JTbRMnTuWoLlvqa4W5Ksm/+ffNkkJPbiYLL0aDk53PEnKev/lmE2MOKTLfdvxSdjxCdh3Pz3dUKy5d4oM5aeqLg7TL5x66G9nXErYRmG6FrMD0dP+94/ZXIw4eTnipOfKxTLYbPNSDKTdPnmbYnaDZIv3cTB1xXXgt7/JmA+lv0fA0rIREREJG3mZNg0CTa9CxiWIYodZkLOovaOLFMYhkHylXgSTl8j6VIcmEyYHE2We2scTZbeBScHTA6WchxMli/UKev/1rW+dnbA0df1nkPNHta5kWRgjk+yfvk3bkkAzDeTbcotr2+pezMZwzBsh9Td0mNza2/N7dusdVwcATDfSLxzovXvuiXpSrjzzH/pZHJzxMHdCQc3JxzcnTC5O9msO7g5Wt9LHEzWnzhwy+t/y03//nQ0gQnbfZxuS7icHDJ3AguzgZH47/tx85b35eat72ESJkcHXIv54ZzXM0v8vqWHyckB59weOOf2sHcoWYYSMhEREbm72AuwsA+c2GRZr9oDQiaCs7tdw/ovkq8lkHD6GgmnY0k8fY2E09f+UxJwJ46+rriV9se9tD+uRf0e2jArIzGZm5HR3Dx2mZu/XyH5Srxl2J29OZD6fqA065tw9HK2TrHu4OWMo5cLDh7/JlopCZb7/ydaJjen/2PvvOPsqMr//5l6+73bd7PplSSQQIBAQhGUEoooEpoC0izwowW+CoJIUSwU/VpAUFGxYUEEv4qiiAUIoUoICQFCetnebr/Tnt8fU+69u3dbssne3TzvZF7nzJmZ556Ze3bufOY55zkj3jVvtBBEAYJPBnwypOho12ZskOjMonljDzJJDQs/OHm0qzMsWJAxDMMwDFOaLS/Y48WSLYASBD78beDg80a7VsPCyhrQdiSh7UhA326LMLMn13dHSYDSEIJSHwQEAWTa44PIJMC07LFDznrRNstet/dztmsmzJ4cUi81IfVSEwRVhH92JfzzquGfWzlowIThYnRmbQH2TieyG3sAo7TyEVTR8VzJJTxbTjAJ1R2rJHn7QkAJ71rek1Z6mwnSjLwIc1IxJEMMO/NYFQouZ93Ni4HxI66YkccyLXTsTKFpYzeaN/agaWMPkl3237Xsk3DQByZCHEOTW7MgYxiGYRimGMsCXvgW8K+vAmQBtfPsLoq1B4x2zQaEdBParpQtvhwRVirCGwRArg1AnRSBOjkCdVLEDpU9QpPckm4i+343sus7kXmnE1ZcQ2ZdBzLrOuyAC1OinvdMrgsOu6sZmRZyW+KOCOuC0VocVU+K+eCfWwn/AVVQGsO2uFKlfS5w7O6SFqysCRBBDClFIdaZ3cc0LehZE6Zh2QE2BDvQBuyelnZ3S+frFkQBdpHTNROF+44N0atlDDRvtoVX88YetGyOQ88Vh/MXRAE1k8JomBmDrlnwBcZOWxOIqAz82GOfeDyOWCyGnp4eRKPsW2YYhmHGKKkO4InPAO//w14/+BPA6fcBat9IansCEcHszNrzDG1PwEzqjrepV9Q7s0QkvN77OKmVNkp2z5Mqfbb4mhSBMikMdWIYon/fvJMmIug7k8is70R2fQf0XcUT7UpVfgTmVcE/rwq+6bF+BYuZ0GwB5kzwS4UPoyKgTo3Cf0AVAnOrINcPX+QxexdDN6FlTGgZA7mMAS1jQM+a0HMG9JwJLWdCL1yyvdZz+X31nAnLGLnHd8EZH+cuoihAEOGkzrozrtLOA6IztlJwxtlJkgBfUIY/pMAfdpZQ6VQaRJQTERIdWU98NW3sQceuZJ8JoFW/hIYZMTTMjGHCzBjqpkWh7qO/66EwHG3AgmyEYEHGMAzDjHm2vQz8/lIgvhOQ/cDp3wQWXTgipq2skZ/k1RFhVkofEduFiGHFEV9hKE460l0E9wSjJ4esI86yG7uBggdrwSfBf0AlAvOq4ZtTCaMjYwuwdzr7hAcXQwr8B1TCP7cK/lkVEIOjG1Vvf0HLGmjfkUQmrnnCyl5M5LIGtLRRXJ6110dSQBUhoI9QKXdUv1Qg0FT4wzICIRVqQEJnUxrNG7uR6tH6HBet8TviqwITZsZQOSEEsYy7tbIgGwVYkDEMwzBjFiJg1f3AP+4ALAOongWc8zOg4aDdM2cS9JZUgQCL210Hez9xSAKUxjB8kyOQqvz5CIZuNLte66XKCvcVAjKkqDpmvEOWZiK3ocv2nr3TCSs5sEBVJoU9L5gyMcxjrPYyubSOtm0JtG1Lom1bHG3bk+huTe+RAFL9EtSAbC9+CYpfhuKT+l/8EhRf//tITrAYIgLs/3beAgjOvGpUsJ2Ky8hNLYJlEciZa82yqCglCwX5XtsJsAwLubSBbEpHJqkjm9KRTTqLm0/rQ752oiigZkoEE1wP2KwYQrGxFQJ/ONqgfPx6DMMwDMPsezJdwJP/D3j3L/b6QcuBM74D+CJDNmH05PKer21x6DuTJeeFkqr89pityRF7ktcJ4REbtzUWEVUJgQNrEDiwBmQRtB0Jz3umN6dtj9kceyyY/4BKSJHy8fT1h2layCZ0pBMaMnENmYSGdFxHLqM7D/DwHurJIliEPg/53n5UvC4IQCCqIlzhQ6jC56WhCh8CYWWPBGomqTniK7/E27Ml9w1X+hCp8ueFVUCGL+AILb+77qTB/D6qb++N4/PGhNlrgLRXPmaPsCyCljaQSWrIpgxkk5on4HIpHdmUgUi13+t+qKhleBJ7CRZkDMMwDLO/svN14LFLgO5tgKTa4ewPvwwYwMNkJjVoO5Ne0AxtZxJWvG/3IsEnFYuvyZGy6jpYbgiiAN+UKHxToogtmwYzpdvBOEY5CAYRQc+ZSMc1ZBK6I7BsoZWJa0g7ZZmEhnRCQ26Epw8YKqIkIBTLCzRPrFW6As6PUIUKWZGQ6smhbVsC7dsTaN2aQNv2BJKdJSJvwu4mVzs5gtqpEdROjqBmcgTBKLfj3UEUBW98GVMMCzKGYRiG2d9IdwLPfxN4+QeApQOV0+wuio2HFO1mpnToO5PQdrpzdvUTMl4AlIaQJ7zUyRHItUHuUrcHSKHdf2g1NBNb13bg/f+2ItWdg2X26mZm9pN3AqZYBfndGdgiiAICYQWBiIpg1E59QcULBCGK8IJBeOsFASLcoBK914mAdE8OyW4Nqe4cUt05JLtzyCQ0WCYh0ZlForO0V8tF8Ul9ovO5xOoCqJ0SyS+TI/DvwffAMEOFBRnDMAzD7C9oKeClB4GV3wVyPXbZvDOAj9wPi0LQNnTZ3q+dtvfL7CotvuQaO2S8MjFsB89oDEPcD7oXWaYFXbNgaHakOzstXjc0C5ZpoXZqFLVTIvss6IBlWtjxThc2vNqCjavboGdLi47dRfZJCEZscRWIqHY+6uSdNBBREIyq8Af3rPvgcDFNC+keW6Qlu/JCrVC0pbpzMHXLFmMCUFkf7CO+1AA/FjOjA7c8hmEYhhnHkGHBSmVhvf570Mu/gpXOwsJBoMgcmDM+Aj03Adr9G2B2lPYsyDUBT3ipEyNQJobsyYLHMJZpIR3Xih7aU47XJZPQ7NDijrjyhJc2/FDjvpCMyXOrMHl+FSbPq0Kkyj+i50FEaN4Ux4ZXmvH+f1uRSeSDgoQrfZi9uB51U6MQJcFenOAnYkEI87zXyskLBWXOPrJqB5AoVyRJRKTKP+D1JSLk0gbScQ3hSl9ZhUdnGI6yOEJwlEWGYRhmX0AWQd+VhLYjCSujw8qYoKwBK2vAyhigrOnlrawJGH2Da/SHVO2HOtERXvt4vq6RgIigZYxeQssWW4Vl6YS2Z6HCBUBRJcg+CYoqeoJFVu11ywKaN3ZD6+WlqqgPYvL8KkyZV4XGORW7LQo6dibx3ist2PBqS1EXPX9YwaxD6zD7iHpMmBHjLqMMM4pwlEWGYRiGGScQEcyOLLLvdyO30V6s9PADJwhCGqJfhhirgOCXIQZkiH4Zcn3QEWHhspzLSs+ZdtCIpB08IpvU7eASSa2gXEc2aQebMLShCVBBFBCKqV4QiFCFD6GYimDUB9XviCtfb7ElQfaJkGRx0ND6lmmhZUsC29/uwPb1nWjZHEd3SxrdLWm89a8dECUBDTNitkCbX4WayQN3b+xpy2DDa7YI6yyYXFrxSZhxSC1mH1GPSXMrB510l2GY8oM9ZCMEe8gYhmGYkcJMaMht7LZF2PvdMLuLx3IJPgm+aVGIEdUWWQEZgl+y85ltEN96BELTSohCEqIqQDjqcghHXTWsUPZ7G7IIia4supvT6GpOI9mVLRJXrugaqsAqxBeUi4RWuEBweWHSI+o+nVQ2l9ax490ubH+7E9vXd/YJqV6qe2OqJ4f3X2/Fhldb0LI57u0rygKmHliNOUc0YOqC6v0qPDjDjBV4YuhRgAUZwzDM+IWIYLRnkNvQDTOlQ4qo9hJVIUZUSBFlj8KTWzkTuc09yL3fjdz7XdCb08U7SALUKVH4Z1XAN7sC6sSIPUFyIR0bgX9+BVj3hL0uKsDiy4FjPweEa3e7bnuKoZnobrVFV1dzGt3NKXS1pNHdnIZRYq6yUkiyiEDEDpcdiKh2BL+wikDUTr3yiIJQhW9MCJSetjS2v92JbW93Yue7XX26N0aq/Uh2Zr0oh4IATDygErMX12Pmolr4ytCbyTBMnjHTZfG5557Dvffei9dffx1NTU144okncOaZZ3rbiQi33347fvSjH6G7uxtHH300HnzwQcyePdvbp7OzE9dccw3+9Kc/QRRFLF++HN/5zncQDoe9fdasWYOrrroKr776Kmpra3HNNdfgxhtvLKrLY489hi996UvYsmULZs+ejbvvvhunnXbaXr8GDMMwTHlipXVkN3Yjt6Eb2fe6+nipeiOGZEgRV6AVijU7724TVQlkWtC2J5B73/aCadsSgFX8flSZEIJvdgX8syqhTov2H8Uw0Qz8527gvz8HLAOAACw8F/jgLXY4+30AESGT0NHVnHJEVxpdLXY+0Zntd7yWKAmI1QVR2RBEpNqPYEQtFl0RW3ApfmnQLoJjjVhtELHjgjjouEkluzcmnCAr9dOjmL24HrMOq0Mo5hvlWjMMszcYVUGWSqVw8MEH47LLLsNZZ53VZ/s999yD7373u/jZz36G6dOn40tf+hKWLVuGt99+G36/HUnnggsuQFNTE5555hnouo5LL70Un/nMZ/Doo48CsNXpySefjBNPPBEPPfQQ3nrrLVx22WWoqKjAZz7zGQDAiy++iI9//OP4+te/jg9/+MN49NFHceaZZ+K///0vDjrooH13QRiGYZhRwxVJ2fe6kNvQDW1HolhISAJ806KQqwMwExrMhAYrocFM6IBFsFIGrJQB9PZu9ULwSQARqFdXPKnKb3vAZlXANyM2+CTK2R5g5XfsMPa685mzTwZOuB1oGPnfLrIIye4c4u0ZZ8mip83Od7ekkRtgXJsvKKOyIYTKhiAqGoJ2vj6IaI0fIo95giiJmDAzhgkzYzjijBnIpXW0bIkjVhtArDY42tVjGGYvUzZdFgVBKPKQEREaGxvxP//zP/jc5z4HAOjp6UF9fT0eeeQRnH/++Vi/fj3mz5+PV199FYcffjgA4Omnn8Zpp52GHTt2oLGxEQ8++CC++MUvorm5Gapq/7h94QtfwJNPPol33nkHAHDeeechlUrhz3/+s1efJUuW4JBDDsFDDz00pPpzl0WGYZixh9GRQXZDF7Lv2cEyqNeEsXJdAP7ZlfDNqYRveqykl4osgpXWYSZ0W6DFC8VafrHiGqigi54YlG3xNasC/pkVkKsDQ6t0uhN47cfAqgeATJddNmkxcOKdwLSjd/taAICWNRBvz+ZFV1sGPe56R2bgsO8CEK32o7IhZIuu+qAnwvxhZdx5uBiGYQZizHRZHIjNmzejubkZJ554olcWi8Vw5JFHYtWqVTj//POxatUqVFRUeGIMAE488USIooiXX34ZH/vYx7Bq1Sp84AMf8MQYACxbtgx33303urq6UFlZiVWrVuGGG24o+vxly5bhySef7Ld+uVwOuVy++0o8Hu93X4ZhGKY8sLKG3U1wQxeyG7phdhYHVnBFkn92JXyzKyFXDN5FTBAFSGHV9mhNCPW7HxGBcibMhAZYBLk2OLyw5N3bgFXft7sm6k6UvZoDgBNuA+aebg8yGgK5jIHu5jS6W+2If66XK96eKZrHqhSiKCBS7Ue0NoBoTQDRGj+i1QFUNgQRqw1AHgNjtxiGYcqNshVkzc3NAID6+vqi8vr6em9bc3Mz6urqirbLsoyqqqqifaZPn97HhrutsrISzc3NA35OKb7+9a/jzjvv3I0zYxiGYfYFZkqH3pyC0ZyC3pyG1pyCvjMBFPYUFAWoUyPwz6mEf3YllMbwXpu7SRAEO9z8cOeealoDvPhdYO0fAHI8ePULgKOvBQ48C5D62jNNC4n2rBc8o7slhe7WDLpa0sjEtQE/zh9SbKHliK6YK7xqAghX+riLIcMwzAhTtoKs3Ln55puLvGrxeByTJ08exRoxDMPsn5BhQW9NQ29OOYudt/oRHnJNwA6WMbsSvpkxiL4y/CkkAjb92x4jtulf+fIZxwNHXQvM/BAIQCaho7ulG90taVt8OUu8LQPL6r97YTCmoqLOHs8Vq3VFly28OHofwzDMvqUMf4VsGhoaAAAtLS2YMGGCV97S0oJDDjnE26e1tbXoOMMw0NnZ6R3f0NCAlpaWon3c9cH2cbeXwufzwefjaEcMwzD7CiKC2Z2D3pSC3pKy0+Y0jPZ0sderAKnKD6U+CGVCCEpDCOqkCOQq/76t+HAwDeDtJ2E8fz/Su3YgZVUhbR2FVN3xSNUei7RZgdRTOaR6XkGyKwct038gDVkVUVEftJc6O61ssPNqoGx//hmGYfY7yvaOPH36dDQ0NODZZ5/1BFg8HsfLL7+MK6+8EgCwdOlSdHd34/XXX8dhhx0GAPjnP/8Jy7Jw5JFHevt88YtfhK7rUBT7rd8zzzyDAw44AJWVld4+zz77LFasWOF9/jPPPIOlS5fuo7NlGIZhCiHDgt6Shr4rCW1XEvou2/vVO+iGixCQoTQEoTSECpZg2Xm/LIuQ6s4h2ZVDqjuHdDyHVLeGVFcK6R1bkWqPI6WHkaPbig/sBvBeFkCvrvQCEKnyo9IVXvW216uiLohwhW+vdb9kGIZhRo5R/aVKJpN4//33vfXNmzdj9erVqKqqwpQpU7BixQrcddddmD17thf2vrGx0YvEOG/ePJxyyin49Kc/jYceegi6ruPqq6/G+eefj8bGRgDAJz7xCdx55524/PLLcdNNN2Ht2rX4zne+g//93//1Pve6667Dcccdh29+85s4/fTT8Zvf/AavvfYafvjDH+7T68EwDLM/YmUN6LtSjvBKOh6wdJ95uQAAkgClNmiLrwkhyI74kqJqWUTxM3ULia4sEp1ZJDrsNNmRRdzJp7pyA3QlDDmLjSQLCFX4EIz6EKpQEYz5EIqpCFX4EIr6EKrwIVrrh6xwIA2GYZixzKiGvf/3v/+ND37wg33KL774YjzyyCPexNA//OEP0d3djWOOOQbf//73MWfOHG/fzs5OXH311UUTQ3/3u9/td2LompoaXHPNNbjpppuKPvOxxx7Drbfe6k0Mfc899wxrYmgOe88wDDM4ZlyD1uQIL0eEmR3ZkvuKQRlKYxjKhBBUJ5VrAxBGMaiEqVvoacvYgssVXR0ZL5+Ka/1OguwiigJCMREhtCGUfQ8hoR1BsQuhiITQwR9E8NBTEKqOwheUy0JkMgzDMMNnONqgbOYhG+uwIGMYhnHm5ErqMOM5ez6uuAazOwttVwr6riSsZOmw6lLMB6UxBKUxbIuviSFIMd+oCxKyCO07ktj+Tid2vNOFpg3dMPR+Bqw5yIqISLUfkSo/wk4arfYjEpMR6XkJwQ2/hLjhaXjKrfFQ4JgVwNwPAyJ7uxiGYcYD42IeMoZhGKZ8ICJQxrAnOY5rMHs0mImcncY1mPEcrLgGM6n1G2ADACAAcm0gL7wm2CJMCpVPZL94ewbb19sCbMe7Xcj2EpGqX0KkOuCJrt5pINJrEuSWdcAbPwT+/Rsg3ZEvn73MDl0/9eghzyHGMAzDjD9YkDEMwzAeVs60Q8c3OWO5WtMw4xqsuAYaxDPkIQBiRIUUVSFFfZCiqj3mqzEMpSEEscwmD84mdex4t8v2gq3vRLy9uAul4pMwcU4FJs2twqR5laiaEBrcc5fpAtY+DrzxS2DXG/nycD1w8PnAIRcCtXP6P55hGIbZb2BBxjAMsx9CRLASmt2V0BVfu1IwOjIDjoESg7IttmI+SK7oiqmQIj47jaoQQyoEqXw9PoZmoun9Hq8bYtv2RNE5i6KA+hlRTJpbhclzK1E3PQppKOPWLAvY/G/gjV8B6/8EmDnHoAwccKotwmadWHIiZ4ZhGGb/hX8VGIZhxjlkEoz2tB1Eo8kJId+UgpUqPZ5LjKhQG0NQJoShNARt8RW1xZYwRiL6maaFTFyzQ8r35JCOa0h159C8qQdN7/fANIq9fVWNIUx2PGCNsyug+ofx89i1BVj9qL30bM+X1x0ILLoAWHgeEKoZmRNjGIZhxh0syBiGYcYRVtawuxy6YeSdSZRhlHB7iYBca4ePVyeE7aAaE0KQwuq+r/gQMXQT6R4NqR4N6Z5cPo1rSHc76/EcMkl9QE9fqMKHyfMq7W6IcysRivmGVxEtDaz/P7tL4pbn8+X+GLDgHOCQC4DGRTw2jGEYhhkUFmQMwzBjECKC2ZPzvF36riS0phTMztIh5AWfZAfQKBRf9cGy8njpORPJriySnTkku7NIduWQ7HTSbnsi5VzaGLI9URQQjOXn7wrGfKiaEMLkeZWoqA/uXgTHna8Dr/8MWPsHQEs4hQIw43hg0YV2pETFP3y7DMMwzH4LCzKGYZgyhwwLemvaE156UwpaUwqUKS1OvBDyE+xuh2pjCFKlH4I4et4aQzNtYdWVRbI7Z4uurmy+rGvoYkuSRQRjKkIFQstet8tcAeYPKSNzzkYOWPcE8PIPgF3/zZdXTLVF2MEfByom7/nnMAzDMPslLMgYhmHKBCJ7Di+9Je10O8xHOoRZqsuhAKUu6Igvx+vVEBrxEPKmaUHPmNCyhr1kDGjuesaAljWdMiffqzyXNpDtZ7xabxS/hHClH5FKH8KVPoSr/HZa4UeowhZe+2zC5J6dwGs/AV5/BEi322WSChz4MWDRRXa4enH0JqlmGIZhxgcsyBiGYfYxhcLLaLEFl96ShtGahtWPl0jwy06gjQLxVReEII+cINCyBjp2JNG2PYG27Um0bUugpzUNQxtiuPtBkFUR4Up/XmhVFIuuSKUfamCUf5aIgK0vAq/8AFj/Z4BMuzzSCCy+DDj0EiBcO6pVZBiGYcYXLMgYhmH2EnnhlYLRkh6S8IIAyFV+yPWhfKTDxhCkCt+IeoWyKd0WXtsSaHfEV3dresBAGLIqQvXLUAMyVL/kpDLUgFRQnl9X/BJ8Abs8VOHbd56t3UFLA2/9DnjlR0DL2nz51KOBIz5jjw3jcPUMwzDMXoB/XRiGYUYAMi17bNf2hN3dcCjCqzoAuS4IpT4IpS4IuT4IpTYw4oE2Uj05tG0rFl+JfoJ/hGIqaqdEUDM5gtopEVQ1huAPKVD9EsShzMU11ujaArz6MPDfXwDZbrtMDgALz7WFWMNBo1k7hmEYZj+ABRnDMHsNyyIYmgk9Z8LQTBiaBT1nQnfyhpMXBCBWG0CsLohgVC1fL0oBZkKDti2O3LYEtK1x6DuTIL1E177ewqs+aOdHWHgRETIJHd0taW/p2JVC2/YEMnGt5DHRGn+R+KqdHEEwWr4h70cMImDTv4CXfwi89zQ8t2DFVOCIT9uBOgKVo1pFhmEYZv+BBRnDMEPCsgjJriwS7VnEOzKIO2k2oXsCyxVeumbCyFl9Jt8dCopPQqwugFhtEBV1tkirqLfz/rAyKmKNTILenLIF2NY4tG2JkuHlhYAM35QIlMZwgfAKQlBGdpxXT2vGFl2t6SIBpmXNkscIAlDREELtlDBqJ9vCq2ZyGL7gyAb/KHtyCWD1r4FXfgh0bMiXz/wQcMRngdknAWL5TAPAMAzD7B+wIGMYBoDtYUnHNSQ6soi3ZxDvyCLhpPH2DJKdOVjWAAOMBkIAZFWCoop26pPy6z4JlmGhpy2DREcWes5E+/Yk2rcn+5hRA7In0mJ1AVQUpP4RjCxoJjVo2xKOAEtA35Ho6/0SALkuCN/UKNQpEahTopBrAiMSZt3ULSQ6syVFV6qntLfLrVO02m9fl/ogKuuDqJ0SQfWkMBR1PxQaehbY8Sqw5QV78uYdrwKmc/3UCHDIJ2yPWM3s0a0nwzAMs1/Dgoxh9hPcLm2JziwSHVk7LRBciY4sjFJd7goQZQGRKj+iNQFEqv2IVvsRivkKRJboiS03r6gSJEUckmfL1C3EO1zvTwY9rfk02ZWDljHQujWB1q2JPseqARmKKkJSREhyPpVlAbIsQpUEKIIARQQUCJAF+wYoE0EigmgBkmFBjucglRr3pYoQ6kOQGkOQJ0agTg5DDqmQZMH+PFn0xBhZBC1nIpfWkUsb0NJO6Pe07oWBtxcduYyBXMqw07QOLW0M+j0EIkqR6LLzAcRqA5DLaKLnfY6eBXa+Bmx+3hZhO14FzFzxPtWz7bFhB58P+KOjU0+GYRiGKYAFGcOMEyyLkOrO5cWWmzr5ZOfgggsCEK7wIVoTQLTaj0hNANEaP6LVdhqK+fbq5MKSIqKyIYTKhlCfbYZmoqctg56dKSR2JpBuSSPXkYUZz0HMmVBBUHQTimFCEQBZEKAIgCIA4m50c4ybhC6D0Gla6DQISQtAaw54q7PfY0RRgKiIMDUTtJvORBdZEfOCy+myGXPE10h6A8c0Rq7AA/YCsP2VvgIs3ABMPxaYdgww7Vigaobdh5NhGIZhygQWZAwzhshlDHQ1pdDVnEK8vUB4dWSR7M6BButSKAChqIpItR+RKj8i1XnBFamxy6QRnNdqqJBFsNI6zIQOK6HBjGswkxqsuAYzYS+Wk6qahWoA1QXnBP/gXiECQLIAkkRYsghLFGC6iwAYEGAASEsCkpIIzSKYhgXTIKiGhahuwTLscXGmbpf3HiNnWQQrlx/HJckifEHZW9SAAl9Qhj8oQw3K8AWV/PZA8brql/eq+B2TGDlgx2vFXRCNXmP5wvW28HIFWPVMFmAMwzBMWcOCjGHKEFd4dTal0LnLTruaUkh25QY8TpQEe4JdV3BV+QvElx/hyn0nuIgIlDFgJnVbUCU1W3AVpRrMpA4rqQPDGJ8mqCKkiAoxokJyFjGiQAzIEP0yBL8M0S8V5QVVGnGBQ0SwDFe45RdZleALyvt398E9hQjo2Q7s/C+w6w1g5+ulBViortgDVj2LBRjDMAwzpmBBxjCjiCe8HNE1FOEViqmonBBCrDbQR3gFYz6I+8irQkTQttkBL/KiS7c9W47Qgjm8fntiSPHElRRRIUVViGE7lcIqxKgjvnzlIXQEQYCkCJBGMIrifkuiBdjlii8nTbf33S9U54gvR4DVzGYBxjAMw4xpWJAxzF6CiJBLG0j3aEjFc0j3aEjHNaS6cuhstkVYqntg4VXVGELVhDAqJwRR1RhG1YTgqIcqJ8NCek0bkit3Qd/ZNxJibwS/DCmi2MIqotjCKqJCCit9UmE8TjzM9CXdCTStzguvXW8A8Z199xNloP5AoHGRvUxZCtTMYQHGMAzDjCtYkDHMMDF0E+m45gksO59DqrCsJ4d0QoNlDO4hClX4UDUhWHbCqzdmSkfqpSYkX9oFK6HbhbII/5xKSDHHg+UILs/LFVJHdA4uZgxi6nZXw52v5wVY1+YSOwpA7VxbeE08FGg81BZjin+fV5lhGIZh9iUsyBimH3TNRMdOez6s9h1JdOxIoKs5jVypkOgD4AvKCMZ8CEZVBKOq3eWwIYTKCaGyFF690VtSSK7chdR/WwEniIUYURE+agJCR0yAxBH/mN4YGrDp38DbTwLvPAVku/vuUzXD8XwdaguwhoWAL7yPK8owDMMwow8LMoYBkOrJoX1HEu3bE06aRE9rut/Q5aIsIBT1IRhTPaFVLLqcbRF1TI4vIouQ29CFxAs7kdvQ7ZUrE8OIHDMRgQU1EEYhGiNTxuhZYNO/gHVPAu/+Fcj15LcFa4ApS/Ker8ZDgEDlaNWUYRiGYcoKFmTMfoVlEbpb0mjfkfA8X+3bE8i4XfB6EYyqqJkcRs2kMGomRVDVGEKowgdfUB7SRMdjDUszkX6jFckXdsJoy9iFAhCYX43wMROhTouOy/NmdhM9A7z/rO0Je/dpQCuYsDvcAMz/CDD/o/bYL7E8ArEwDMMwTLnBgowZt1imhc6mNFq3xtG6JY62bQl07kqVnBxZEICK+qAtvCZHUDMpjOpJYYRivlGo+b7H7MkhuaoJqVeaYDldMgWfhNDiBoSPaoRcxeN4GActDbz/jO0Je+9vgJ7Kb4s02gJs/keByUcCIntRGYZhGGYwWJAx4wIiQk9rxhFfCbRujaNtewKG1ld8yaroebxs71cEVRNDUNT97w2+tiOBxAs7kVnT7s0DJlX5ET6qEaHD6yH6+RbBAMglgQ1/tz1hG54B9HR+W2xyXoRNPJxFGMMwDMMME37aYsYcRIRUdw6tWxJoKfB+lQq2ofgl1E2JoG5qFLVTI6idHEG0NrDP5uoqJ4gIZmcW2o4EtG0J5LbEi8LWq9OjiBw9Ef751SM+gTIzBunZAWz8F/De08D7/yiekLliCjD/THuZeCiHoWcYhmGYPYAFGVPWEBEyCR1t2xNo3RJH61Y7Tce1PvtKsoiayWHUTY2ibpotwirrg/utuDBTOrQdCejbE9CcxeotWiUBwYW1CB/dCHVSZHQqypQH2Tiw5Xk7OuLGfwEdG4q3V04HDjzT9oRNOIRFGMMwDMOMECzImLLA9Xp1NqXQ1ZRGZ3MKXU4+m+obcEMQBVQ1hlA/NYK6aVHUTY2iamII0n46sTDpJrRdKU94aTsSMDuyfXeUBCiNYaiTwlAnR+CfVQkpqu77CjOjj6nbc4Nt/JcdHXHHawCZ+e2CCEw8DJj5IWDuh4GGBSzCGIZhGGYvwIKM2adYFiHRkbFFV1MKXc0pdDal0dWcgp41Sx8kABV1QdRNjTjeryhqJof3yzFfgB2S3mjPQNtmCy9tewJ6U8obA1aIXBOAOjniLcqEEIer318hAto32OJr47+ALS8UR0UEgKqZwMwPAjM+CEw7BghUjEpVGYZhGGZ/ggUZMyyICJZFMHULpmHB1AmmYTqpXWbolrfd0EzE2zOe6OpqTsMsEeUQAERRQKwu4EyYHEJlQxCVE0KorA9C3k/FFwCYSS3v+dpmp5TrK17FsGILr0kRqFMiUCeGIZb5pNPMXibZZndB3PQvO43vLN4eqAJmHG8vMz9ojw1jGIZhGGafwoJsHNK2LYFkV9YWRoYtjlyR5Ikl3YJhWDB1M19euG+v49x107D6nSx5qEiyiIqGIKocwWWLrxBidQFI+7n3hgwLelMKuW1xT4CZnX27HgqKCMXpdugKMCnm4znCGKBzM/D2H+1l13+Lt0k+e4Jm1wvWsJCjIjIMwzDMKMOCbBzy+l+3YOMbbfvks0RJgCSLkBSxKJW9dQGRSr/t6ZoQQtWEICLV+2eUw94QEcyuHLTtcc/zpe1MAmaJrod1AaiTo7bna3IESn0IgsTXkHHo2GiHpH/7j0DTm8XbGhbY4mvmB+0JmpXAqFSRYRiGYZjSsCAbh1TUB1E/PWqLokKBpIiQFAmyK5yUQuGU36fwuKJ9Sgiu/TWC4UCQaYFyJqysCStngnIGrGw+tZK6F3reKhGwRAzKUKdEbe/XFNsDJgb4T5XpRfsGW4St+yPQ8la+XJCA6cfa0RDnfhgI141aFRmGYRiGGRx+yhuHLDlz5mhXYdxARLASGvS2DIy2DMzuHKycAXLFVtZwRJcJK2uAciaonzFyJZEEKBNC8BUIMKnKz10PmdK0vQuse9L2hLWuy5cLEjDjuLwIC9WMWhUZhmEYZl9CRDBaWqBt2oTcxk2wUknUXHHFaFdrWLAgYxgAlmbCaM/YS1sGelsaRpu9XiqAxlAQFBGCT4LokyD4ZTv1SRADsh16fnIEamMYgsJjeJh+IAJa1ztjwp4E2t7JbxNluyvi/I8Cc08HglWjVk2GYRiG2dtYmgZ961bkNm2GttkWX9qmTdA2b4aVTnv7CT4fqj/zGQhjaIw0CzJmv4EsghnP2ULLFV3tec9XvwiAXOWHXBuEXOWHECgQV34Jgk/Op16ZBGE/nROt3CEiUCYDs6cHZne3vTh5K5mEXF8Pddp0qNOnQwqHRqeSreuBtY/bQqz9vXy5qNjzgs3/KDD3NCBQOTr1YxiGYRgAZJogTQPpOiCKEGQZgiQBsrzbvX3Mnh5bbG3ehNymTdA2bbaF144dgNnPS3JJgjplCtQZM+CbMQOUy0EIjJ0x0yzImHGLlTWQ2xKHtrkHuc090JtSA3YnFIMy5JqALbxqA1BqApBrA5CrA+Ny7i5L02AlErCSSZjJJKxkClYqWbyeTMJKJnqtJ2Gm8uukaXakPlGEAHh5CIJ9My6Rhyja625ekiAE/BB9fjv1ByAG/BB8fjv1ByD6/RD8Poj+QH4fv8/eFvADkgQrHi8WWt19RZfZ3W3XeQjItbVQp0+HOmM6fNNtkaZOnw6lsdH+wRlJTB1Y/yfg1YeBrSvz5ZIKzDwBOPBMYM4pPDcYwzDMfggRAaYJMgyQrjuLk9c0kK55wog0rXjRdVjeul5Uns9rsHK5/PZcDqRpsLS+ZZTLwXKOhWH0X2lJyoszT6hJEGTF/t2XJECRIUjONlGE3tQEs6OjX5NiOGyLrunToc6cCd+M6VBnzIA6aRIEVd0LV37fwIKMGTeYSQ25zQUCrDkF9A5YKAqQq/19RVdtEFJo7M3ZRZYFK5GwxUaPLUaseE/RuumsW+56Tw/MeByUyYxcRUzT/qHoXb+R+4SRR1EgVcQgxWKQKiogVVRADAZh7GpCbssWmO3tMNraYLS1If3KK0WHCqoKdeoU25M2YwbU6dM8wSZFo8OrR6IZeP0R4LWfAslm5wMkYM4y4MCP2SLMP0ybDMMwowiZpv3yLpGElYjDTCTsLmXuvDnej4O7Tt42ooIydxdvvh0CLAtkWoBlgixyUgswLYAKt/UqIwtkmoBFEBQZgqJCUBQIqmovXl6xt6kKxD7b8nkyDFAmAyubhZXOgLK98pksrEw/+WwGlM7A0nKAK6qM0ilc8WUY2ON5h/Y1pmlfc00b9vOAPGGC/bs6Y4b9UnTGTKgzpkOurR2X4+xZkDFjFqM7C21zHDlHgBltfQWGXO2HOj0G3/QY1CkRu8vhbnYlJE2DlU5DCAYh7sW3MGRZMLu7bTHQagsCo0Ac2OttMLt7YMXje3yDFkMhiOGws4QghcLF6+EwxFCv9XAYYjhid+lTFOcH07LrYln2D6qTB5H9o0lu3sr/+FqWvc00YGVzxT9W2SysbNZOM1nnx67XPpms/UYvkwHpOsRYFFJFBeSKCogFQksqyjviKxQc8KZuxuPQNm9GbvNmaJu3QNu82V62bAFpGnIb3kduw/t9jpOqqxE4+GCEjz0GoWOOgTp5cokvmYCtLwKv/sj2ilnOG8ZQHXDYJfYSm7hH3yvDMMxwISLb+5FOewul0zCTqbywSiTsNJ6AmXTSwnKn5wWzDxDFYrHoCUa7TFTU4m29haeq5kWnqkJQfd420ecbvNzNOwIWlgUyTMA07K6MupHPGwZguHlnH8Mo3t8wINfWwTd9GsTQKA0ZGCUEorEmt8uTeDyOWCyGnp4eRIf7hpwZFCKC0Z4pEmClxn0pDUFPgPmmxSBFBxZOlqbZnpCODhjt7TA7OmC0d8Do6IDZ0W7nne1WT0/BBymQQiFbzLhLOOzkg16Z5JU5SzAEwafC7OoaQGy1D9wFoARCMGiLjmjUTmNRW5BEY966FItBjEZtQRKLQopGIUYiY2rQazlApgl91y5PoHmCbdMmGG195/9Tp05F6JhjEDr2GIQOPhDixj8BrzxcHCVx8hLgiE8D8z4CyGO3ywXDjAXIMGBlMrDSGVjplCc67LK0/QLI0O23+7oBMo1+8s6DpO4+TOqA4XgELAtSTTWUhglQGuohu2ltLQRl7/XGsDQNpvNbore2wmhrswVSOlMkstzzts+9eBusYUQKHgTB74cYCUOKRCEGAvmJ6N2XYV4iFJT1lzqJKAGSCEEQAUkCRKFPmeB2o5dEQBDtbaLkdKkXbGGg6XY3vaKue3rfLn963y5+Refn90MI2N3qxUAgnw8G8t3tA36IgaDTBb8g7wokRbG79CmK3b1PUR0vnlNeapvbBZApW4ajDViQjRAsyEYOK607YebtSId6axra9gSsZK85u0RAaQzb4mt6DL5pUYhB+4fOnnS5C/qOHdB37IC2cyeM5hZHeLXBdESXlUiMwhkODamyEnJtbd+lrhZyTQ2kykpPhI3lftPjCTOZhLZxI1IvvYzU888jvXp1kbgWREKgVkN4QhahSQJ8x54F4cjP2JM3MwwzKGQYvcaJdsPs6srn44li4ZFxxFYqL7goN0AQp72NINj38YYGKPX1kCc0QKlvgNxQD2XCBLusrq6PaLMymfxLO0doFfWiaGuF0doGs/DF4Z5W1e+HGAx6i/sST4pGIIYjEKMRW2i5gisStl8KRiIQ3WUc/jYREaDrtjjiF5rMALAgGwXGkyCzuyyYsNIGBEWEGJBHPKgFmQSjK+uJrsJQ86UmSwYAyALUyRFPgEmVgNnaBG3HDug7d3niS9+1E9rOXaCCEKgDoiiQq6shV1dDqqmGXF1jr9dUQ6qugVzjbquBFA7bP+rJJKxUClYqBTOVcgJi9F6S+e2plP1AkEyCcrnSYssRWnJtLeTqahZZYx3LhLn6j0g//gCSqzcg1eSDni7uJS7X1SF0zDF298alSyFVVIxOXRlmhCAi2/tQuGg6YOjFZbqRL3PGx1ipVB+RZXR3w+zKiy8rHh+5ykpSXnAEAl5eCAQcr4QTjMANOFAQfEBQZKAoL9nbnDwIMNrbYDS3QG9phtHUDL211X6QHwxBsH8L6upsIdbaOqwugIKiFP2uSBUVttcmGIQYDBWJLDEYKFoX3H0Cfva+MMwewoJsFCh3QUYWwUrrsJI6zKTmpDqspOakxeUwenVZkEWIfnsOLdEv26Hf/VJBXva2C37Z2c8OBd8n1HxbGkZHFjD7b3piRIEUFSEGLAhiGqR1wOzcBKNpB7QdO6Hv2DG4d0sQINfVQZk0CcrERigTGvsKrZoaiNHouBwgyowSqXbgvz+3g3T0bHMKBdDsZdAmfgSprSaSK19A+pVXQdls/jhRRGDBAk+g+ebNs7uzcNtk9hJu4IXCF0lFL5D6vGTKv2wq2s/xOrljRPYFYtQeLypVVnjjRqWKCojRaLHoCBWLrbzoCO7zvy+yLJgdHdCbW2C0NENvavZSvaXZEW8t/Yo2we93RFZd6Rd6Tl6qqOD7BsOUASzIRoFyEmTJVbuQ2xqHVSi4UvrwQ97JAmDsxeYhWICQBoweUKYNZs8uGG2boTdtBLJDexsoVVVBmTQJ6qSJUCZOhDJxkrcuNzaOy+4STJlhWUDTamDjs8D7zwLbXwHImSclUAkc+kng8MuAymnFh+VySL/2GlLPv4DUyhdKBgiBJOUfJgMBCKGgPfbAfaMfCNjBSbx98m+8hUAgP87RHcsYDtvbuJvNmIcsy55PL5m0gynEE/YUFW5aGHQhkYSZiMPyIt7Zx1ip1L6prCTlx8HIMlA4ZsYrk+1ucY6wkisr84F43MUti0btY8YhZFkwOztt0dbaAjEY9ASYGA6z0GKYMQQLslGgnARZx6PrkVnT3neDYM+1JYZUSGEFYliBFFaL0qK8KoEsp/tixoCVNUBZA1bGhJV11jMGrKyznjFg9aRh9KRhpTWQDgAySEvASjTbS9JdWkDpTgykEsVgEFJVFaTqKih1dZ7YUiY2Qp00CcrEiRCDwb11GRmmf5KtwMZ/Au//A9j4LyDd6++tcRGw+NPAQWcBytAmptSbmpBauRLJ519AatWqke2a1QsxGCwWaWEnCE0oXBx1MxS0A9NE80FgpFgMUiRid+vazx4OybLygQ/6hKd283ZQAK/bXuFcQYXbdN2OGprLOmlBPpu15/7J5mDlsiBnu5Wzt1EuZ9sZIQRVLQ4+VLQUBCnqb59gEILPnw80UCi8eJwNwzD7KSzIRoFyEmSZdR0wOjIQIyqkUIHICikQpJF5gCLDgLZ5M7Lr1yO7/h1k169Hbv36AQcUC8Gg/dazujqfVlVCqrRFl1xVBanKKauqguj3j0hdGWaPMTRgxyu2AHv/WaB5TfF2NQLMOA6YdYI9iXPl1D36OLIsuztYOgPKuMEJ3EhomeJgBd56ifKicY5Je764kUJRIEUitlBzBvJLsSjEiCPeohE7yqcbAMDv6xueuVQ45r0o8ojI9irF4zDjccezFPc8TGa8xwnhHfdCeefL7HDeIxmBbkSQJE80FwVXcIMueMEX7CALUsT+PqSosx4O83hVhmGYvcBwtMH49Pnv56Rf/j9kVq/O/xh7P9L56EiFP8ZiJDLg4F0rk0Hu3XeRfecdZN9eb4uv994rHalKluGbORP+efPgnz8PvrlzoU6caAuswNA8BQxTFnRudroh/hPY/B9A69WNdsLBwKwTbQE2+QhAGrlQ1oIo2gInEhkxm978Qo44M92xQ8l8ABormcwHqfG2O2IlEbcnF08kbGGn6zA7O2F2do5YHQEAigKxH+Fmz11n2pO8mu7EryVSopLlIyam3Ll/3FDUigxBLg5dXZjCC1/dax+/D6LPb8/lU5AX/T7b4+T32XP++PxOmc/Z7oTO9vn2S08lwzDMeIMF2Tgk88YbSDzzzLCOEYNB5y132AtnK6oqchs3QduypeSDjBgMwjd3bpH48s2ezeO2mLFJtgfYuio/FqxzY/H2UC0w80O2AJv5ISBcOzr13E0EQfDmzEF19W7bISJ7oth43B6vlIjnPU5x1+MUdzxOcVjxOEwnumjR3D6aBkvX+wYw0HW7fKhRUncHWbY9Ra4XLxLxvHxuKO+8t895eVXQZVP0+fZe3RiGYZj9DhZk45DKT3wcwSVHFg3k7p1aCbsLjhvlzR0XYTSXtinV1sA/d54nvvxz50KZMoXHBjBjl0QzsPVFYNsqW4i1rEXRmEZRBiYfme+G2LAwP6npfowgCBCcsUPKhAl7bI8sq+9ErK5g8/LOZKyCYE/0KkqlU3dC2BKpPUms5E3cyl4lhmEYplxgQTYOCS1ditDSpUPalzSt3yhdVjoDdeoU+OfNg1w7trwBDFMEEdCxEdj2oi2+tr0IdG3pu1/VDGDG8bYAm/4BwF9+U1iMNwRRhODzAex1YhiGYfZTWJDt5wiqCrmqCqiqGu2qMMzIYRpAy1vAtpccL9hLQKq1eB9BBOoPAqYeBUxZAkxZCkQaRqe+DMMwDMPst7AgYxhm7KNngZ2v5b1f218FtF4Th0s+YOJhwNSlwJSjgMmLAX9sdOrLMAzDMAzjwIKMYZixh6kDu96wox9ufg7Y9jJg9or66YsBU460PV9Tj7LnBpO5WxzDMAzDMOUFCzKGYcofy7K7IG5+zl62vtg3DH243ul+eJTtBaubD4j9T+fAMAzDMAxTDrAgYxim/CAC2t51BNh/gC0vANnu4n0ClcC0Y+3gG9OPA2pmAxw5j2EYhmGYMQYLMoZhRh8iO+qh6wHb/FzfIBxqBJh2tCPAPgDUHchh6BmGYRiGGfOU9dPMHXfcYc95U7DMnTvX257NZnHVVVehuroa4XAYy5cvR0tLS5GNbdu24fTTT0cwGERdXR0+//nPwzCMon3+/e9/49BDD4XP58OsWbPwyCOP7IvTY5j9m2QrsOYx4MmrgG8vBL57CPCna4G1v7fFmOy3Q9CfcBvwqWeBm7YAn/gtsPQqoGEBizGGYRiGYcYFZe8hO/DAA/GPf/zDW5flfJWvv/56PPXUU3jssccQi8Vw9dVX46yzzsLKlSsBAKZp4vTTT0dDQwNefPFFNDU14ZOf/CQURcHXvvY1AMDmzZtx+umn44orrsCvfvUrPPvss/jUpz6FCRMmYNmyZfv2ZBlmPJNL2GO/Nv3bXlrfLt4uKsCkxcB0pxvipMUchINhGIZhmHGPQEQ02pXojzvuuANPPvkkVq9e3WdbT08Pamtr8eijj+Lss88GALzzzjuYN28eVq1ahSVLluCvf/0rPvzhD2PXrl2or68HADz00EO46aab0NbWBlVVcdNNN+Gpp57C2rVrPdvnn38+uru78fTTTw+5rvF4HLFYDD09PYhGeTJZhoGh2aHoN/3HFmA7XwOsYu80GhbaXrAZx9nRENXQaNSUYRiGYRhmRBmONih7D9mGDRvQ2NgIv9+PpUuX4utf/zqmTJmC119/Hbqu48QTT/T2nTt3LqZMmeIJslWrVmHBggWeGAOAZcuW4corr8S6deuwaNEirFq1qsiGu8+KFSsGrFcul0Mulw+zHY/HR+aEGWasYlm212vTv51AHCsBPVW8T+U0R4AdD0z7ABCq3vf1ZBiGYRiGKSPKWpAdeeSReOSRR3DAAQegqakJd955J4499lisXbsWzc3NUFUVFRUVRcfU19ejubkZANDc3Fwkxtzt7raB9onH48hkMggEAiXr9vWvfx133nnnSJwmw4xdurba4mvTf+w01Va8PVhtR0B0vWCV00ajlgzDMAzDMGVLWQuyU0891csvXLgQRx55JKZOnYrf/e53/QqlfcXNN9+MG264wVuPx+OYPHnyKNaIYfYyREDnJmDrStv7tXUl0LO9eB8laM8F5nrBOBIiwzAMwzDMgJS1IOtNRUUF5syZg/fffx8nnXQSNE1Dd3d3kZespaUFDQ0NAICGhga88sorRTbcKIyF+/SOzNjS0oJoNDqg6PP5fPD5OOAAM44hAjret+cAc0VYYlfxPqIMNB6aF2CTFgOyOhq1ZRiGYRiGGZOMKUGWTCaxceNGXHTRRTjssMOgKAqeffZZLF++HADw7rvvYtu2bVi6dCkAYOnSpfjqV7+K1tZW1NXVAQCeeeYZRKNRzJ8/39vnL3/5S9HnPPPMM54NhtlvcCdj3vpC3gOWLH5ZYUdCPByYerQ9J9jkIzkQB8MwDMMwzB5Q1oLsc5/7HM444wxMnToVu3btwu233w5JkvDxj38csVgMl19+OW644QZUVVUhGo3immuuwdKlS7FkyRIAwMknn4z58+fjoosuwj333IPm5mbceuutuOqqqzzv1hVXXIH7778fN954Iy677DL885//xO9+9zs89dRTo3nqDLP3sSygbb0jvhwRlm4v3kfy2V6vaUfbImzSYkANjk59GYZhGIZhxiFlLch27NiBj3/84+jo6EBtbS2OOeYYvPTSS6itrQUA/O///i9EUcTy5cuRy+WwbNkyfP/73/eOlyQJf/7zn3HllVdi6dKlCIVCuPjii/HlL3/Z22f69Ol46qmncP311+M73/kOJk2ahIcffpjnIGPGH+4YMDcK4ubngUxn8T5yAJi8GJh6jC3CJh4OKP5RqS7DMAzDMMz+QFnPQzaW4HnImLIkvgvY/JwTBfE5IL6jeLsStLsdTjsamHasPR6Mx4AxDMMwDMPsEeNqHjKGYYZButMOwuGGou/YULxdUoFJR9gh6Kd/AJh4GCApo1NXhmEYhmEYhgUZw4xptBSwbVV+HrCmNQAKnd4C0HiIMxfYccDkJTwGjGEYhmEYpoxgQcYwYwkjB+x4DdjyvC3CdrwKWHrxPjUH5D1g044BApWjU1eGYRiGYRhmUFiQMUw5Y+rArjfs8V9bnge2vQwYmeJ9YpNtD9j0D9hLdMLo1JVhGIZhGIYZNizIGKacsEyg6U1bfG1+Dtj2EqAli/cJ1dqer+kfsIVY1QxAEEanvgzDMAzDMMwewYKMYUYTywJa1joC7Hlg64tArqd4n0ClLcCmfQCYfixQO5cFGMMwDMMwzDiBBRnD7EssE2h/zxZfW56zJ2PuPReYLwZMPcoWX9M/ANQdCIji6NSXYRiGYRiG2auwIGOYvYGhAZ0bgbZ3gLb3nPRdoON9wMwV76uGgSlLbQE27VhgwsGAKI1OvRmGYRiGYZh9CgsyhtkTtLQ911fbu87iCK/OTQCZpY9xJ2OefqzdDbHxEJ4LjGEYhmEYZj+FBRnDDAUtDbStB1rfyYuu9neBrq0onverAF8UqD3ADkNfe4A99qv2ADsqIndBZBiGYRiGYcCCjGGKMQ3bu9W6Dmh5G2h1ls7N6Fd4BaryYqt2LlA7x04jEzj4BsMwDMMwDDMgLMiY/RMiINFULLpa1tmer95jvFyCNUD9/F7iay4Qqtm3dWcYhmEYhmHGDSzImPFPLuEIrwKvV8s6INtden8laAut+vl2hEM3Ddfu02ozDMMwDMMw4x8WZMz4gQjo3go0r7Xn9mpZa+e7NpfeXxCB6llA3Xyg/kAnnQ9UTOMxXgzDMAzDMMw+gQUZMzbRUkDreqD5rbzwalkHaInS+0cmFIguJ62ZAyj+fVtvhmEYhmEYhimABRlT3lgW0LPN7mrYsg5oecsWX52bUDLIhqTa47vqFwANB9niq34BEKre51VnGIZhGIZhmMFgQcaUB3rGnjS5/T17IuX294D2DfYcX0a29DGhOkd0HQQ0LLDTmtk8pxfDMAzDMMx+gEUW2jPt2JXchaZUE3YldyFrZnHVIVeNdtWGBQsyZt9BBKTaHbHlCK72d+1893b0G1ZeUoHq2QXiy0nDdfu0+gzDMAzDMMy+Qzd1NKeasSu1yxNdTakmNCWbsCu1C82pZuiWXnSMKqq48uArIQpjJx4ACzJmZNHSdjj5+E4g7qSdG/Ner/4iGwKAv8KZSHm2PZlyzRw7XzEVkLipMgzDMAzDDBfd0pE1ssgaWWSMDDJGBlnTzmeNLHJmDkQEiyyQ+4/sl+RembNOoD5l7noh7raisv5evDu43i5XbDUlm9CWaRv0OEmQUBesw4TQBDSGGzEhNAGGZUCV1CFfo9GGn3KZoWFZQLoDSOzKC61Ek513yxK7gGzPIIYEoGKKI7bm2JMou/lgNU+kzDAMwzDMmMewDE/8FC26naaNNHRLh2EZMMmERZaXNy0TBhkwLbPkeuF+rtjKGBlkzIyXLxRgBhmjfTn2CJ/kw4TQhCLBVZjWBesgi2Nb0ozt2jO7j2XZ3qpMF5DuBDKdJdIOINHsiK0moJdLuF+UEBBtBKITgEgjUDU97/Wqngkogb16agzDMAzDMMOFiJAzc4hrccRzcTvV4khoiT5laT3dR2yljbQnhnp3oysHREFEQA7AL/ntVLZTVVIhCiJEiIAACO4/oZ/U3gkixKJtvRFQoqzXfr33qfJX9RFdVf6qkvZLQUTIpVPwh8LDuDKjDwuy8ciWF+zugenO/gVXthsga5iGBSBU64itRjuUvCu6ClNflD1dDMMwDMMMG9My0ZXrQme2E53ZTnRkOrx8d64bRARREAcWDE7q7ueKDHdMUVJLFgutArE10kLKFUGlFlVSIQsyJFHyUkmQIIsyJEEqud57P1mUPZHll+0lKAftfC/hpYjKkIXNQBARtEwa6XgP0j09yMR7kE0loQYCCESi3uIPRyDJIyc1iAi5VAqJjjYkOtqdtKNoPdnRASUQwP/70a9G7HP3BSzIxiMvPQi88+eh7auGgUAVEKx00qriNNKQF1+RBo5gyDAMwzDMkCEipI00urJ9RVZHtgOdmc58PtuJrmzXoGOG9jaSICGiRhBRI4iqUXvxRb31iBpBWAn3FVmKnQbloCeEVFEdERG0N7EFVgbpeDcyjshKx22hVZi6+Uy8B6YxtG6QvmAoL9AikSLBViTeIhH4w5ESgqvdXtrtvJ7rJ/J2AYahw9B1yMrYeWZlQTYemXyEHdEwWAkE+hFawSp7m+wb7doyDMMwDDMG0C0dPbke9OR60J3rRneuu0/eXS8sN6zhjWESIKDCV4EqfxWqAlWo9lejyl+FCl8FBEHwAkoMmLr5XusAEFSCeaHliC1XaEXVKEJKqOxFFABYpolsKgktk4GWSdtLNgMt7aSZTH5btiCfyTjrTj6dGrLAKkTxBxCMRhGIxuAPhaFls8gk4sgk4sgmE4DTfTCXTqG7pWnEztsfiSJSXeMstYhU1yDq5mtqEKqsHlNiDGBBNj45+jrg6NGuBMMwDMMw5UzWyBZ5rlwPVe/1rlwXenI9SOrJ3f4sVVRRHbCFlZtW+R2xFcjnqwPVqPBVjPkgDbuDaeiOFype5I1Kx+N5b1WiuJvgSKL4/AjGYghEYwhG+6bBaAzBWAUCjghT1P5f6luWiVwq5Qi0hJPa55ZNJjzhlt9ml/uCQVtYVVV7YitSU+sJsHB1zYCfO1bZ/1o7wzAMwzDMOMQiCz25HrRn2r2lj7jKdqEj24GubBfSRnrYnyFAQESNoMJXgQpfBWK+mJe6+cJyNx+QA2PC67SnWJaJXDoNLZ1CNpVCLpVCLmOnbpmWsdNsMlEgvOLIpVO79ZmKzw81EHCWIFR/AEogAF8gCDUQgOIvyLvl/gCUQBC+QABqMIhAJArF5x+x6yCKktcdcagQ0X7RRkrBgoxhGIZhGKaMyRiZIpHlLh2ZDi/flmlDZ6Zz2CHOFVFBpb/S81gV5X2VXpkrsKJqFJIo7aUzLS8sy0QmHkequwuprk477e5CsqsT2WQCWiZtC6x0Ctm0Lbr0bGaPPlMQRQQiUc8zZXunoghEbO+U20XQ3e4PhyGOk+9jfxVjAAsyhmEYhmGYYWORhYyRQUpPFS1JPYm0bs8xpZu6nRYupg7N0vpsMyyjqCxn5tCd60Z7ph0pfXiekwpfBWoCNagOVHvjr3qLLXc9rIT3uwdhQ9M8cZXq7kSqy06TXV1I99iCK9XdhXRPN8gabkRqG1n1wRcKwRcMwRcMwhcKwxcI2mVO3h+OOMLKEVmxCviDIQiiOMJnzJQ7LMgYhmEYhtmvICJkjIwdhELLB59wQ58ntWQfoZXSU0gZKaQ0O03r6X0aDdAv+VETqPGW6kC1l68N1BYJMGU/johMloVUdxfi7a2It7ch0d5mpx1tiLe1ItHRbgecGCqCgGA0hlBFJUKVVQjFKhGqrEQgErXFVigEX8BJCwSYJO+/3wEzfFiQMQzDMAwzZrHIQjwX98ZJ9WjFkf56R/1zyzRLG5HPlwQJQSWIkBJCWAkjqAQRlIPwST4oomIvklI6X2JdlVQvH/PFPNE1ViL/7W30bNYRWq2IdziCqy2fT3R0wDIH77YpyTKCFZUIV1QhVFmJUEWVI7rsfLiyCsGKCgSjFSM6lxbDlIJbGMMwDMMwZQMRIaEn8tH+Mp3ozHV681V55U5Zd64bJpm79VmyKBcFnoipMUR9UYSVMEJKaEiLX/KzUNpDLNNEOt7jdRNM93Q7+S6kuru9NNXdNSTvliCKCFdVI1pTi0h1LaK1dXbeWQ9XVcMf2v+6ajLlCwsyhmEYhmFGFNMykdSTSOpJJLSEtwy03p3r9rxcw523CgCiahRV/qqiaH9RNVosuAoiAlb4KvabyH+jATlzUKW6OpHo7PCCYuTFVl54ZZw5q4aKLxhCpKbWE1yRGkd0OflwZRVEaXwEumD2D1iQMQzDMAzTL5qplZyjys13ZbsQ1+JI6I7I0pJ7NF+VS0gJFQWiqPZX94kG6E0Y7K+AIvKYnX2FaehIdXU5QqsDyc4OJDrtNNXViWSXvW7kckO2KQgigjEnkmCsAqGKSi8NxSoQjFUiVFGBSE0tfMHQXjw7htn3sCBjGIZhmP0EiywktATiWhzxXBw9uR6v619XrsSEwNmuPRJXPsmHiBpBWAkjqkYRVsOIqBF7UezULYuqUXvCYJ8ttvzyyM2JxJSGiGDkcsilU8il005qL5q3nkYm3uOJrFRXJ9I93UP+DF8ohHBlNcJV1bawKhBahYLLH4mMm/Dt+wNEBMMiGCZBMy1YFkGWBPhkCYok7BXPs2URUpqBZM5AMmsgns3nkzkdiayBRNaARYT/OfmAEf/8vQkLMoZhGIYZQ7gRAtNG2hZVWo+XugEr3OiBhcKrR+tBQkvAouGH8ZYFGZX+Ss9D1dtTFVNjeaHlCLCIGoEqqXvhCjD9oeeySHS0I9HejkRHGxKd7cgk4vbkxM5kxbl02p6o2Fm3zN0bfydKMsJVVZ7YCldVI1xZlc876yM52TCTx7TIFiKagYxmIqubyBkmMpqFrG4io9tl9lJYZiGjm8jpJrKGiYxmImdY0E0LukkwLAuGSdBNC4ZF0A0LukUwTKfc2W5Y/XcxFQRAlUT4ZBE+RbLzigifLEGVnXJvyZepsoisbiKZs4WVK7a8fG5oXZl9ssiCjGEYhmHGIkSEtJH2PENduS5057rRlc2nXdku5KxccZS8QSLlFW6TRRmKpECAYIsqPY2MkfEElpd3yr0yvXj7nhKQA4iqUUR99rgr1ytV2BWwcD2qRnms1ShjGjoSHR220OpodyIKtufXhxvOvQBBEOELBqG6c2Z54dztskAk4gisvNgKhCM8X9ZuYFm2R0kzLWQ0E/GMjnjWQCJbkGbc9bzXJ56x827ZUMXJaEAE5AwLOcMCsiNfT1kUEPHLCPtlhH0KIj47H/HLCDt5yyKI4ti5Z7EgYxiGYcY8RIScmUPWyCJrZj3hkjWyyBpZZEx7PaElPGHVnetGV87JZ+28bumjfSpDRoCAiBrxogPGfHaEwKgaLS5z1335dfZclQdkWcimU8jEe5Du6UYmHkc63mOvx3s8oZXoaBtyN0E1ELADXVTXIFJdg2CsAmogmJ+gOBiCGgzBHwpBddYV3/4VKdK0yPMYud4lN5/WTWQ1Z73PdgsZ3fZIaaYFzbDFle55mCxoJkEzTOiOl0k3rSIPlDmAZ2l3UCURfkWEX5EQUCX4ZQl+VYJfdsoUydvuLoVlAUWCTxGhSCJkUbBTyU4VSYAsFq732qdgmyQK3rlqhoWcYRbkLeR0+5rldGcf08znC/b3K5ItqnyyJ7oiPsURX3aZTxbHXXtlQcYwDMPsM3RL9zxAaSPteX7SehopPeXl00bay3seI9MWWIVCyxVfWSM7YpP0+iSf3T3PZ3fRq/BV5FNfJXyyD4ZlQLd06KZup4WLUzbQPhZZCMgBBOUgAnLAzivBfJkSGHi7HIBf9kMU2ENRTpBlIZNMIBOP26Iq0YN0T15gZeI9yDhl6XgPMok4yBp6F1JZURGpqXHEVm2vtGbcBbxwH/ALu96lNQOpnIm0M5YorZlIualm2PmcnU9rdve3wvVUzrA9N2WAKADRgIKIIzqiARkRv4Ko3y6LBhREHc+PXZbfJ+J3xUn5jLuTRFvwMcOHBRnDMAwzZHRLRzwXt8cmOeOTvCARzrqXL9juiquRmox3IBRRgV/2IyDZosUVL37Jj6gvHwbdHRNV6atEhb/CE2ABObDX68iMDSzLRDaRKPBaOUIr3u3lXbGVjvcgm0iAdmOMni8YQiAaRTBagUA0hmA0ikA0hnBVdZHgCkTKp+uoZRHSuol0zkCqUBTlDFv85PICKaXlPU2usMoZztgmJ83pZrH4MqwR9yaVwq+ICDieooDqLAWepML1YEHep4hQHa+RIotQJQGqLHqeJEWyt9tlthdJlZ1jnDJVGn+eHmb3YEHGMAyzn0FESOmpoiAQcS1elJYKDBHX4iMyfgmwRVNQCSIoO4uTDyiBonWv3PESuQIrIAfgl/y20Coo80k+yCL/tDHFuNEEM8kEsskEsskksqmCfDKBTMJdzwuw4c6P5eILhhCMxRCIxGyBFYshGLXXgzGnLBpDIBpFIBKDrIxcyH7dtNDck0VTTxZNPRkkc4YXpEE37eAMuuUEbSgI5KAbhQEb7O54boCHnGEi5Qks2zuV1nYvGMjuosoi/LKIsE9G0CcjpEoIqjJCPhkhn5NXJQR9MsLuuldu50M+GQEln/pkcUyNM2LGL/yrxTAMM0ZxJ98tFE9FQqogul5v4WXSnj1MuSHL3TFLboAIL1+w7kbdK+xyp0g8ZxSz++haDpkee9xVOt6DVE+X3TUwES8SWYWLaex+cAF/OJL3XEVcMVUgriIxx8Nlp5K8d9q3YVpoTeQ8sdXUncUuJ23qyaCpJ4u2ZG53NORuIwpASJUR9ElFacgnI6jmy1zvkk+2xy/5XE+TM9bJHfNUVOaMc1IlFk7M+IYFGcMwzCihW7o9XkrPj5dKGSmk9XSx0OpHYCW0xB6Nm1JFFRW+CkR9xUEgCgNBuMIqpubzYSUMiecLYkYQyzKRTSZtgdXTg3RPl90NsMfpHuildl7P7p6nVpRk+MNh+MMRZwkj4KT+cNQr8wRXNAZ/OAJJzj8uWZYz/5JlefMwGZbdva7LJLR1azDMLAzLDuCgm/a23vv2WXdCiZuW5QWEaE/msKsni6ZuW2y1JnJD6sanyiImxPxoiPoRCyj9BmpQnXJZzHerkwv2KexqF3K8UnaaF15+hbvdMcyewoKMYRhmGOiWjqSWRFJLIqEnitKknrTHS5UKUFFCdI1URL+QEiqKslcYXc8TXGqsj/DiiXeZvYFlml4XwEyixwtyYZfF7YAXybjtzUrYZdlUcthdAyVZRiBW4UwqHIMaiUIOhCH4Q4AvCEsNwFACMOQAcrIfmuhHikSkdQttORMZvaD7Xc5EKmEioxnI6AYMsx2G1WbPveSIJdMRYftgWNOAyKKA+qgfjRV+TIgFMCHmt5eKABpjAUyo8KM6pLJIYpgxBAsyhmHGPKZlImtmoZkaNFODbunQLK0oup1XXpAallG0v2ZqSOkpJLQEEloCST3ZR3CN1BiqQlRRLR4zpQQRVsJ9vFa9w5u7IksRufsfM3IQEfRsxp5AOJXMTyTsTC6cS6ecCYbz69lEwhNZuVRqtz9b9IcgBMOAPwLLF4KhhpBTgsjJQaRFP1JSEHH4ECc/ekxbXKVyBnJxC4j3tmYBSDnL3kUQAEW0Q3/LkmCnjofJzguQnZDhUu98r3X7GHu9KqRiQsyPxoqAl9aEfZC4+x7DjCtYkDEMM6JYZHnhvl2x0zvvCSUnzZk5b96o/hY3RHqpbaMxd1RADiCiRBBWw/YYKTXsrYeVsCeuAnIAISXkrRfm3VDmLKiYkcI0DGiZNLRMGrl0Glo6jVwmbQuoTMYpT+W3O+uu2NIckbU7kQJ7o0l+aLIfGdGPjOhDSvAjK/qRkew0K9nbst66D5bQqyus5ix9rZf8TEkU8uOWVMkZu5QfyxRQJS/wQ1BxUlVyFrtLnl+VvPmV+gqpfHc/2RFdsijw+CaGYfYIFmQMM84gImTNbH5CXCPTZ/6mjJFB1swiZ+Q8z5ArmHJmrsiLpJla0T5uvnB7odAyaPcHzo8EsiBDkRQoor2oklqUuttUUYUiOWlBeVgJeyLLDUZRmEbUCEJKiCP5MSOKZZnQs1nH+1QslrRMpkBUpb3tmZTjpXLK9GwGlj5y0wqYEKGJKnKiWpD6CtZ9Xnm2QFhlJD9yog80wBxphZPZRlQJdU4wh7AbCKJ3Whg0YoDtHEacYZixCD9RMMw+RLd0JLRE0aS2hWnOzA2tvEBUFU2U60ySW05IggRVUiGLcrEw6iWY3HDnbjjzgBzwJscttRSGQnfDoSuiwsEmmL0OWRYMTYOWzUDPZqHnstCyWejZjJ3PZJDJZJBNZ5BJO2Iqm0XO3cc5xsikYWQzsHIZkJ4b0TrqggxNVKGJCjTBZ6cF4spbBMUTWa7gcvczBBk+RySF/bKdOkuVu+6XEVbtMOT2nE2iN09TqXmcAqodTU+WeEJrhmEYFxZkDLMbGJZRcr6m7mx3cejxXA+6c93evkk9uU/rqYoqAkpe4HiT5DrzN/kkH1RJtRdRLfImudvcdXd7qf17e5pc75MsyCyQmLJCNy2kcybSuoFUVke8J4FETw8SPT1IJxJIJxLIJePIpZLQ00mY6RSsbAqUTQNaCpKWgWjksLd8MCbEvqLJE0+9BZUtpizZB6g+iL4AZH8Aii8An0/tI4Yq3Qlw1bxY8isSwn4ZEUdchVQZEUdshXwyVJmFE8MwzN6GBRkz7rDIQtbIIm04ke6ciHduFz03+IO7njOLl6xRsN0tN3LIWTmk9TTiuTgSemKP6qiKqjehrTe5bYFIKirvtc2d/La3wHLX/bIfQTkIn+RjMcTsdYgIOcOyF9108iayup3mdHubRQSL7P3dlABYRCCyUzjrlgVYhg4jlwXlsjBzGZhaDlouC03ToWs5J9Vg6hoM3YCpazB1HaahwzIMkKHDMg3AMABTBywTMA2oVg5+MweflYXfGlxYSc7SH5qgQBdl6IICXVQKUhmGqEATFJCkwJJVQPYBigrBEVCyPwAlEIQaCMAfCMEXCiEY8Nkep4JxTiGfhIAzvilQMD7KFVvsbWIYhhnbsCBjRg0iGjCYQ+8gDik95aVe+HCnrFB8ZYzMHs3NNBwiSsQLJV7hq/Ci3lX4KvJlBeHHY74YImqExx8xQ8KyCJoTdls3LOjO/ESGaUE383MVualhkr2P4RxjWtB65QuP17zj8nm9j23LE1eeyNJM5HQdpq7D0HVIZEImExIZkMiCTEZBmV2uWjoUS4NKOhRLh+rkVUvz1hXSoTp5CQMHlZAxcj9guqjCUAIwlQDIFwR8QQj+EKRAEEowAiUY8uatCkaiCIbD8AcDCPj98KkyfLIInyLCJ0tQZdFel+25m3hME8MwDDMY/FTIOG+sLRhkwLRM6JYOk0wYllHkQSr0MLmepEKvUm8vk3tMkdAqEFhZMwtrBCJ59YcAwY5qJ4e8iHY+yWcvsi+fLyjzS36okppPHa+UuwTkgCe4ImqEo+PtZYjIm0DVTa2idQuWBW9iVdfjYlkAIe95cVN7/iDXQ+OWEUCA5awbnuihInFiWIXCpyBv5fezj3HL8+Invw95xxpWXkC5xxmOmNIte79B5zsigkxGfrEMyGQWlLkiySxYNyFZZtH24tSEjwwEi0RWobiyj91XEsOSFFiSCktWQZIKQZYhSApEWXYWFZIiQ1JUyIoCWVGgqKq3+HwqVJ8Kn88Hn09FOBxGtCKGSCzmTRBcOOkvwzAMw+xr+FdoHPK/r/8vVu1a5QkswzJgkiO0LLOo3CADhjW6UfGA/FingQI49A4ZXqosJIcQUOww437JP+7fTPcRLO6DvlNWOKmpKwDcctMi6I7nxRMPJcSIu39vAWIU7G86ZXZKMK3iyVR1RzAV1a/XcSXF1ihPwLpHEEGEBcXSoZAOxTKcVIdCBmRLh48MhJ3tMhlF+xaLrLzAKhRg0l58oTEcRFmGrKiQVRWSrEBWFU8gSYqdV/0BqAFn8QegOl311EAQqj8AJRCAzylT/Pn9RIm73TIMwzDjGxZk45CdyZ1Y37l+j+240fH8kt/zHpXyJJXa5o6DUiV1wMh47rincurC53YTy+kWcqYJzRkfo7mLWZy6XcHcfM7ZphsEzTleN+1xNvkuZHlx5IobV7gUiiajl9AxLAumWbzf/krhpKqSs4iCAEEQIAiAKNheUlFAQVlBCkB0BI4rgiRHJCkwoMKA6ggiV0BJZEA2dUiWDtHUIbqpoUEwdcDQIBgayNAAXQP2oWCSZBmy6oOsqpB9Pk8g2YsPkqLYZYpir6v2uuTup6h5IeWuKwokJy8pSoHgUj17kixDEHkME8MwDMPsLuXzFMyMGJcddBk+OvOjkEXZWyRB8lI3NHhhuSw4+xWUiwPMITPSDNQNzbAImmEh645h0U1kDQtZJ4BAVjftsoJxLlndRNYJKFC4r2aYReIq56WmJ7J0c+yLHFegKG4qiUVp4aSmiixCEQXIIqCKgAwLikhQBYIiWJBBUGBBcvMC2V3XBLK7sYEgCQQRBJEsiAIK8gTR8RQJIAhunggCLIhk9x0UBXKEk+gJK1EU8uuiAFEQITrnIwgC4IgvwBZcRARDy0HP5eyw4tmMnc9lnXUn7y7ZnB30YYQp1XokWYbi80PxB6D4fFD8fmfdSd28329vd8pcMSWrKhSfr2jdzSuOuBI5gAvDMAzDjElYkI1DZGMyxGwdsqYzHsXxrLieGrsrmgndNLxuaZo3/sX14uS7llmOUDItgul0kbOooMwimIQ++1lOapjkjM1xu9UVdFFzyqmMNVDRIH3JGagvi1Ck/KB9dYjbFEmEIglQZUcgiSJkyfX0ABJZkGA5kd1MiCB7nQgCmZBgQQRBIAswNJDuLEYOlqbB1HIwNQ2GlrXFSTYHXcvByGVtcZLOwnBFSi4H09BhGgYsw4BlmsO+NoazjHUEUYTqD0D2+YoFkZfPlxeX+YuOkQuOVfz5PI9RYhiGYRimP/gpYRzy7X+8h7+81Tza1RgRJFGAJNgCxu9EMfMpIvyy5K37ZQEBieATLPglgl8kqKIFFQSfaEElC7JgQgFBFmzBI8MVPrbYEWHZHh0yIVgWBDJt0WOZsEwDluGkpuWkpl2Ws0CWaa8XLk4ZmSYsy8qXGSYMy4RmGN66ZRowTRPlqEpFSYYoS5BkGZKsQJTsvCjJXipKIgRJgiiKEEUJgihClOxUcMpENy8Vb7fLJQiiADih0OEE44CXt4NukL2Dc5ny5W5eEATbY9TLy1Rq3RNO/rxgGu/jDRmGYRiGKU9YkI1DJlYEMLchAkWyvS+KZHtoFCevFOad7mpeXnLWZdHp0iZ4XcYkIT9WRxKdMTiWPcePaBr2GBpTh2AaIEODYOjO/D8GYNpzAAmWATINwCxOLcMAmQXzBxkGLMd7Y+o6jKwOM6F7cw0ZTrmp6wN2O8s5y1hFEEVIkgxBkiBJkh1VThTtIApqb8+M3X1N8fs9YWLv43hrepf5fJAUFZJs25UkuSgVJYlFCsMwDMMwzF6GBVkvHnjgAdx7771obm7GwQcfjO9973s44ogjRrtaw+KyAyScUy3CNE1YhlHULc101i3ThKkbsDKO6Cm5XYehaTC0HAxNQ7Ygb2gaDF0b7VMtiaQokGQ3upsC2c3LCkRZsr07jriRHOFhe3qkkvsUeoXsfaWCYxwPkCQ5XiLJLnO3O+v5bb2Plzz7gigW18fxKjEMwzAMwzDjFxZkBfz2t7/FDTfcgIceeghHHnkkvv3tb2PZsmV49913UVdXN9rVGzKv/d8f8N7LK/fpZwqi2CfYgJd3IrS5IkmWZU8sSXJxKvcSU/0d40Z762uHu54xDMMwDMMwYweBqAwHrowSRx55JBYvXoz7778fAGBZFiZPnoxrrrkGX/jCFwY8Nh6PIxaLoaenB9FodF9Ut19W/u5X2L5ujTPuR4YoK57nRXLzzrbBtudFVT9iy8lz0AKGYRiGYRiGsRmONuCnaAdN0/D666/j5ptv9spEUcSJJ56IVatWjWLNhs/R514A4ILRrgbDMAzDMAzDMIPAgsyhvb0dpmmivr6+qLy+vh7vvPNOn/1zuRxyuXy4iHg8vtfryDAMwzAMwzDM+IIjBuwmX//61xGLxbxl8uTJo10lhmEYhmEYhmHGGCzIHGpqaiBJElpaWorKW1pa0NDQ0Gf/m2++GT09Pd6yffv2fVVVhmEYhmEYhmHGCSzIHFRVxWGHHYZnn33WK7MsC88++yyWLl3aZ3+fz4doNFq0MAzDMAzDMAzDDAceQ1bADTfcgIsvvhiHH344jjjiCHz7299GKpXCpZdeOtpVYxiGYRiGYRhmHMKCrIDzzjsPbW1tuO2229Dc3IxDDjkETz/9dJ9AHwzDMAzDMAzDMCMBz0M2QpTTPGQMwzAMwzAMw4wew9EGPIaMYRiGYRiGYRhmlGBBxjAMwzAMwzAMM0qwIGMYhmEYhmEYhhklWJAxDMMwDMMwDMOMEizIGIZhGIZhGIZhRgkWZAzDMAzDMAzDMKMECzKGYRiGYRiGYZhRggUZwzAMwzAMwzDMKMGCjGEYhmEYhmEYZpRgQcYwDMMwDMMwDDNKsCBjGIZhGIZhGIYZJeTRrsB4gYgAAPF4fJRrwjAMwzAMwzDMaOJqAlcjDAQLshEikUgAACZPnjzKNWEYhmEYhmEYphxIJBKIxWID7iPQUGQbMyiWZWHXrl2IRCIQBGFU6xKPxzF58mRs374d0Wh0VO2wjZG3UU51GU82yqku48lGOdWFbZRvXcaTjXKqC9so37qMJxvlVJeROp+RgIiQSCTQ2NgIURx4lBh7yEYIURQxadKk0a5GEdFodEQa40jYYRsjb6Oc6jKebJRTXcaTjXKqC9so37qMJxvlVBe2Ub51GU82yqkuI3U+e8pgnjEXDurBMAzDMAzDMAwzSrAgYxiGYRiGYRiGGSVYkI1DfD4fbr/9dvh8vlG3wzZG3kY51WU82SinuownG+VUF7ZRvnUZTzbKqS5so3zrMp5slFNdRup89jUc1INhGIZhGIZhGGaUYA8ZwzAMwzAMwzDMKMGCjGEYhmEYhmEYZpRgQcYwDMMwDMMwDDNKsCBjGIZhGIZhGIYZJViQMcwIMhIxcizLGoGaMMzgcHtlBqNc2shI1GMkbORyuT22UU6Mt7huI3E+pmmOQE32jJG6r2az2RGzt6fXdry1tZGGBdl+TDn9cZTLj/7ukkwmAQCCIOy2jc7OTgCAKO7Zn+W2bduwZs0aAOXzsFwuD1MjwUjVg9trebZVYPe/497HlUub3R3ch9I9OYf29nYAdhvZ3YfcjRs3oqura4/aKgBs3rwZjz32GHp6enbbxrvvvouTTjoJ77///m7bSKVS0DQNXV1dAEbvQbn397En9SiHdq5pGoC8YN6dOjU3NwMAJEna7fa6YcMGrF69ereOddm4cSPuv/9+tLW17ZGdt99+G3PnzsWbb7652/fpeDyOrq4uNDc3QxCE3WonhmEAyH8nu2NjPN1b+4MF2X5Ea2sr3nrrLbzyyisAdu9hzP0jcP/Adpfu7m5s3boV77zzjleX4f6RNjc348UXX8T//d//AbB/9Idr45133sG9996LVCo1rOMKWb16NS666CJs3Lhxt22sXbsWJ510Eh5++OHdtgEA69atw7Rp03DFFVcA2L2H5S1btuAnP/kJvvzlL2Pjxo27deNrbW3F2rVrsXLlShDRbrW1cmmvI9FWAW6vvRmJtgqUT3t99913cfvtt+OSSy7Bww8/jHfeeWfYbaWlpQXvvffesD+7kM2bN+Ohhx7CDTfcgGeeecYTRcPhvffew+c+9zksX74cd911FzZv3rxbNmbMmIHPfOYzAHbvIffNN9/E7Nmz8cQTTwz78wtZs2YNjjjiCLzxxhveQ+5w//ZWr16NJUuW4IUXXtjtlwhvv/02zj33XBx//PFYtmwZXnrppWG3+8J2dv/99+Ott96CIAjDavfr16/HNddcgzPPPBO33HILXn/99WHXY8eOHXj99dcB7NmLnffffx9f+9rXcPHFF+Phhx/Gli1bhm3jnXfewWc/+1ksW7YMn/3sZ7F27dph12njxo1obGzEaaedBmD32+sBBxyAVatWDeu4QtasWYMjjzwSW7du9f52d+f3ZvXq1Tj22GOxbds2PPPMM7tlZ926dfjwhz+ME044AQsXLsTf//73YbeT9evX49prr8U555yD66+/HqtWrdqjNj+a99a9DjH7BatXr6bZs2fT9OnTqb6+ng499FB6/vnnKZVKDdnG2rVr6bTTTqOuri4iItJ1fbfq8tZbb9ExxxxDs2fPplmzZtEFF1wwbBtr1qyhAw88kBYsWEAVFRV09NFHD+t4y7IomUzS9OnTSRAEuvnmmymXyw27HqtXryZZlulzn/tcyc8YCuvWraOKigq64YYbaNOmTcOug8sbb7xBoVCIjjnmGJo3bx4988wzw6oHkX1dJ06cSB/4wAeovr6eJk6cSDt27BhWPd5880064IAD6OCDD6apU6fS/Pnz6amnnqKenp4h2yiX9joSbZWI22tvRqKtEpVPe123bh3FYjFavnw5HXXUUXTkkUfSpEmT6B//+MeQz+vtt9+mKVOm0Lnnnktr164d1jm4rFmzhhobG+nUU0+l2bNn0wEHHEB33303maY55Gu7Zs0aqq6uposvvpjOPPNMWrJkCX31q18ly7KG9f088cQTVFdXR0uWLKHPfOYzXrlpmkM6fvXq1RQKheimm24a8meWYtu2bTRlyhT6n//5n6Jy9+9nKPVZvXo1BQIBuuuuu+jcc8+lww47bNj1WLduHVVWVtKKFSvo3nvvpXPOOYdOPvlkymQyQ76ub731FlVWVtJll11GH/3oR+mUU06hyspKevrpp4dcj/Xr11M0GqWLL76Yli9fTieddBL5fD76+c9/PmQb77zzDtXX19PixYvp+eefH/JxvXnrrbeotraWzj33XFq6dCktXryYrrjiCkomk0O2sWbNGqqsrKTPfvazdOWVV9KyZcvo0ksvJU3ThtVeX3zxRZo8eTLNnj2bli1b5pUPp70Gg8E9aq+7du2imTNn0g033FBUnk6nh2Vn9erV5Pf76ctf/jKtWLGCZs6c6f3+DfWarF+/nqqrq+nzn/88Pfroo/SZz3yGZs+e7d0Xh2Jn7dq1VFlZSVdccQVdeeWVdN5555Esy/SjH/1oyN9xudxb9wUsyPYDmpqaaMaMGXTLLbfQm2++Sa+++iqdeOKJNGHCBHr44YcpHo8PamPTpk3ew+Bhhx3mPeQahjGsurh/5DfeeCM988wz9PDDD9OCBQvou9/97pBtvP3221RdXU233HILrV+/np5//nmqr6+nF154YVh1ISK68sor6dOf/jQFg0G65ppr+jzwD/TH/tZbb1EwGKRbb73VK4vH49Ta2jrkz9c0jS644AL67Gc/633ea6+9Ro8//ji1trZSJpMZkh33x+D222+nVCpF06ZNo+uuu27I9SAi2rFjB82aNYu+8pWveNdh5syZ9Ktf/WrINrZu3UpTpkyhO+64gzZs2EA7d+6kk046ierq6ui+++6j9vb2QW2US3sdibZKxO21NyPRVonKp70ahkEXXnhhkVh/44036PLLLydJkujPf/4zEQ38YLdz50466qij6OCDD6YjjjiCLr/8cnrrrbeGfB5ERFu2bKHZs2fTLbfcQpqmERHRF77wBZo1a9aQ7yMbN26kqVOn0he/+EWv7PLLL6drr72WiIb3UuMvf/kLzZkzh77xjW/QggULvDZDRJRIJAY8dv369STLMn35y18mIvvaPfvss/SDH/yAVq5cOSzR/Zvf/IaOP/54z84Xv/hFOv/88+mss86iZ599dtDj33jjDVJVlb7whS8QEdE///lPmjp1Kv3mN78Zch0ymQx97GMfoyuvvNIr+/GPf0wXXHABaZpGbW1tg9pIJpO0bNmyopcpr7/+OlVWVpLP56Pf/e533jkOxP/7f/+PzjzzTG+9paWFbr31VpIkib7//e8T0cD3kaamJjr++OPp6KOPplNPPZVOPvlkeu655watf2+2bdtG8+fP964rEdEDDzxAM2bMoJ07dw7JxqZNm2jmzJlF7fWOO+6gyy67jIjIe+gf7JpYlkWrVq2iefPm0aOPPkpz5syh0047zds+WH3c9uqei2VZ9Pjjj9PXvvY1+vWvf03vvvvukM7n6aefpqOOOsqr8zXXXEOnn346LV68mH7+858P6e/4jTfeIFmW6eabbyYios2bN9PkyZPpnnvuGVIdiOy/809+8pP0yU9+0it75pln6KyzzqLOzk7avn37oDay2SwtX76crrnmGq9s165dNHfuXFJVlb75zW8S0cBtrVzurfsKFmT7Aa+99hrNmjWL3nnnnaLySy+9lKZMmUKPPvrogH8UqVSKrr32Wlq+fDn99re/pSVLltDChQuH/ZDb09NDH/3oR+mqq67yytw/2osuumhINjo6OmjJkiVFbzt1XacPfehD9Nvf/pZ++tOfUlNT06B23D/gCy+8kL71rW/RP/7xD1IUxbP78MMPD3jTaWlpoVgsRh/84Ae9siuuuIKWLl1Kc+fOpdNPP9170B3o2mYyGVq8eDE9/vjjRER0wgkn0MKFCykcDtOUKVPoq1/9KrW0tAx4Lu+99x4JglD0o/TQQw9RTU0Nvfzyy4NciTx/+9vf6NBDDy162DnjjDPorrvuoquvvpr+8pe/DFqXxx9/nI4//nhKJBJeu3jyySfJ7/fTAQccQA8//DARDXxNyqG9jkRbJeL22puRaqtE5dNeNU2j4447rujBkoiotbWVrrzySvL7/bRq1aoB6/Hss8/SsmXLaPXq1fTII4/QoYceOqwHB8Mw6Dvf+Q6de+651NTU5J1Lc3MzTZkyhdasWTMkGw899BBddtll1NnZ6Z3z1VdfTR/60IfouOOOowsvvJBWrlw5pDpt376dPv7xj1N7ezt961vfooULF9INN9xAl156KT300EOeaOyNaZp05513kiAI9PbbbxMR0Yc+9CE6+OCDKRaL0cyZM+mEE06gN998c0j1uPfee+mjH/0oEREtXbrU86AsX76cBEGgH//4x0RU+jvu6Oigww8/vOi7bWtro0WLFg3rPtDT00MLFy6k+++/3yu75ZZbaMqUKXTwwQfTtGnT6Kc//Wm/9SAiam9vp/nz59Pvf//7ov2WL19Oxx9/PKmqSi+99NKgdTnrrLPo8ssv71P+ta99jQRBoKeeemrAerz66qt0wgkn0MqVK+mvf/3rbokyy7LoZz/7GZ155pm0ZcsW7/6WzWZpxowZnsd8MH7729/SJz/5yaK/8xtuuIEWLlxIRxxxBB1zzDGe93AwT0oqlaLly5fTzp076YknnqBZs2bRxz72Mbr00ku9l0f98dBDD5EgCPTnP/+ZTNOk4447jhYvXkxTpkyhBQsW0MyZM+nFF18c9Hx+9atf0Qc+8AEiIjr22GPplFNOoVtuuYWuvvpqEgSBbr/99gHPJR6P0+mnn17UXuPxOJ1xxhl06qmnDvr5LplMho499li64447vLLbb7+dKisr6aCDDqJYLEZ33HEHZbPZfm0kEglauHAhPfTQQ0SUf5lz+eWX02mnneZdr4Eoh3vrvoQF2X7AP//5T6qpqaGNGzcSERXdWD7+8Y/ThAkTBn0Y+8EPfkCPPvooERG98MILu/WQ29LSQpdeeqlnx70J/+hHP6LjjjuOLMsq+pHury733Xdf0c3/K1/5CqmqSosXL6bZs2dTfX2999DQnw33sx999FHvj/3Pf/4zqarqdfXZunXrgOdz9tln06GHHkoPP/wwHXnkkXTiiSfSt771LXrggQdowYIFNG/ePO8NXX/1yGQydNJJJ9Ef/vAH+uIXv0jLli2jdevWUSqVoptvvpkOOugg+slPflJU59689NJL3ptNlzfffJPmz59P9913HxEN7fv52c9+RpFIxHt4u++++0hRFLrwwgvp6KOPplmzZtE999wzoK27776bGhsbi8r+/ve/02WXXUYf+chHqKGhYdCuCv/617/2uL3+8Ic/3KP2OlJtlYjom9/85h63V7d8T9rrOeecs8ftNZvN7lF7Ham2SkT085//fI/b6z333LPH7ZWI6KqrrqKlS5dSZ2dnUfm2bdto+fLldNpppw3YBTKTyRQ9sP3kJz/xHhwKxdRA7eyRRx6h73znO0VlLS0tVFFRQf/6178GPQci20NW2KXnzjvvJL/fT1/72tfotttuo/POO49mzJgxpK6qqVSKFi5cSG+88QalUin64Q9/SNXV1SQIgndO/X03zc3N9JnPfIZ8Ph8ddNBBdNZZZ9Hq1atJ0zT6wx/+QCeffDKdc845g3raiOyH3Pr6enr44YfptNNOo46ODm/bV7/6VZJlecBuTK+88oqXd+v7hz/8gfx+P/373/8e9POJ7O/t4x//OC1YsIB+//vf0+c+9zkKBoP0yCOP0FNPPUVf+9rXSBTFAUVNa2srLV26lO666y7PU7Jp0yZqbGykxx9/nE455RS64IILyDCMAdvJHXfcQZMnT/a8Pu6+mqbRFVdcQfPmzRv0JdHq1au9/FNPPeWJsv/85z9eufv339/v1lNPPeU9rLv1SCQSNHHiRHrssccG/HyXrq6uohd399xzD/n9fvr2t79NDz30EF155ZWkquqQXkhks1latGiRJxL++c9/UkVFRVF7HchDfMcdd5AkSTRz5kxavnw5vfvuu2QYBr3yyit0zjnn0OGHHz7oC6K//vWv5Pf76Wc/+xmdddZZRfv//Oc/J0EQBu1ZUeiNc6/9Cy+8QIIgeGJ+KFx77bUUiUTogQceoKuuuooCgQD9+te/pjfeeIN+9atfkSAI9Ic//KHf4zVNozPOOIMuv/xy7963ZcsWqqmpob///e90ySWX0NFHHz3oMIRyuLfuK1iQ7QdYlkXz5s0r6qZQ+GZj3rx5RW7lgewQ2T9Kzz33XJ+H3HQ6TZs2ber3BpzNZun111/vY+8HP/gBLVmypKhsqDz11FM0depU+uMf/+j90B5//PFFnoCB+OMf/0iLFi3y6vzBD36QJEmi888/f0h1+cQnPkGSJNFHP/rRoq5fO3fupKlTp/YZt1CKs846iw499FC69NJL6Ze//GXRtksvvZQWLVo04PGF17uwztdee+2QHyhdDjvsMKqqqqJly5aRqqr097//3dt2/fXX0/Tp0/vcGAtZv349TZ06la6//npqaWmhV199lUKhkNc9YcaMGfSDH/xg0POZP3/+brXXUg94u9Ne0+k0vfbaa9767rTVUj/eu9NeCz9nd9proXDck/bq2t+T9lp4TXa3rRYed/jhh+9We3VtvP3223vcXonsN/WHHHIIffOb3+zTpfaRRx6hxsZG2rZt25DPyz2u99vcO++8c0ieIddWJpOhuXPnFnkf//jHPw5YF/fYbDZLp512WtFb7Oeff57q6uqKrnMpNE0jXdfp5JNP9sYYnXfeeRSNRmn27NleF8iBcN+CH3744Z6nzOV///d/qaGhYUhdF7ds2UJnnHEGHXbYYUVdF4lswTp79mz67W9/O6CN3t/N5s2b6bDDDqMvfelLRfYG4tlnn6Vzzz2XzjzzTJo1a1ZRu8rlcnTggQd6HpD+WLFiBS1cuJA+8YlP0D333EPhcNjz4t9777104IEHlrwHFtbv5ZdfpqOPPpquvvpq74Hf3f6Pf/yDGhsb6Y033hjQRm/+8pe/0CmnnELLli3zROV1111X0mNXqn6F1/ewww6jP/7xj976z372sz5d/krZyOVy9OlPf7qobbqCtdT4uFK/mxdffDE98cQTRGS//KuqqqIpU6YU/RYNVI+77rqLFixY0Of6PfbYY1RdXV1SGBbWwzRNOv/882n69OneCzLDMLx9Fi1aRN/61rdK1qU/j7NlWRSPx+kjH/kIXXTRRZROp/v9LgvLN27cSFdddRVdeOGFdOihh9K9995btO/RRx9NV1xxxYA2vv3tb9OSJUvo2GOPpZtvvplCoZB3zK9//WuaNm0adXd3l6yLy29/+1tatGhR2dxb9yYsyMYhra2t9Nprr9Gbb77pNeA//elPNG3atKIfQndQ8/nnn1/UV7i3jcK3kO4NyLIs+s9//uM95La0tNDVV19NxxxzTNEbj9bWVnr11Ve9t5suhX+0P/jBD2jx4sXe+ooVK+hjH/tYybr0fmB79913ad26dV6diIhuuummPg+4hTbc+lmWRWvXrqVTTjmFiIguu+wymjhxIn3rW9+iUChEl19+eVHghEIbhW9kvvSlL/UZT2AYBh133HFFg9l723C/m61bt9L8+fNJEARvfJJ7Lr/5zW9oyZIlfboGFF7X3m+Y3Gu7bt06mjVrFn3ve98rsjnY+Tz11FP0i1/8go4//nhKJpPegOK//OUvNHfu3KKucYU20uk0aZpG3/3ud2nq1KlUX19P0WiUVqxY4V2TefPm0de//vWieqRSKTJNs6h//J///GeaMmXKkNtrKRtEVDSQebD26troPYC6UEQM1lYHqgvR0NtrKRuWZdGaNWuG3F77q8cXv/jFIbfXUja2bt1Kc+fOHXJ77e+6WpY15LY60Pn8+c9/HnJ77W0jnU7T9773PZo8efKQ2+vmzZvphz/8IT388MNFwRSuvvpqmjNnDn3/+98v8sK45+Z+7wPZcD/XxX1w+NSnPkXnnnsuiaLo2Sm08de//rXPtSWy/2bmz5/veXluvvlmamho8LypA9WDqK+XY926dbRgwYKilxWFNv72t78VHX/TTTfRT3/6U7roootowoQJ9J///Ifuv/9+mjRpUlHggv7q0draSitXrvTatXtt/vSnP9G8efP6jH/sz863v/1tqqmpoYqKiiLvXiqVosWLF9OTTz45pPMpbJdf/OIXqbq6uqTXY6Dvpr29nebOnesJXcuyKJVK0dKlS4s8RoU2/vKXv3jlX/3qV+m0006jD37wg3T33Xd75T/84Q/p8MMPL7pfuS+fCq8dEdE3vvENOvTQQ+nzn/98kajdsWMHzZ49u8gLU2ij94N84fVwuy+ecsopdOaZZ5IgCPTf//63pJ2BPE2F38ctt9xCkUiE3nvvvQHPx61H7/bqCudCD/FA53PPPffQ7bffThdccAE1NDTQSy+9RE899RRVVVXRueeeW9JGb1H2xhtvePcX1/7KlStp7ty59P777w9aj9/97ne0aNEi8vv9RQLBNE069thjva6tQzmfQr773e9SKBSiDRs2EFHxdzfQ+WQyGTriiCPoF7/4hbfd7XZf2P76+35/9rOfeQFkvv3tb3vlf/jDH2jhwoVFgmznzp30pz/9iR5//HF69dVXvfIrr7yS5s6dO6R7a6GN3i9VC6/PQPfW0YIF2ThjzZo1NG/ePFqwYAEJguAN4O/q6qL77ruP5syZQ5/+9KeLjjn//PPp05/+tBeJq5SNwj9eN29ZFj333HN09NFHkyzLFAqFit7ElrJT6obx61//mo444ggish8YgsGg1y+4PxsDeScuvvhiuuaaa4Z0Prqu04knnkhz5syh+vp6z4P3u9/9jurr66m5ubnfehQ+/PYWTLqu00c+8hHvrVJ/9TBNk3K5HP3+97+n6dOn0yGHHEJr1671bF977bW0bNmyoofQoV5XXddp2bJldOKJJ/bZNtj5/PznP6eFCxcWHbNixQo65phjPPHW24Y7LiiTydDOnTvpmWeeKXpDGo/H6cQTT6Rf//rX3jV566236MQTT6Tjjz/ee5jdsWMHGYZB3/zmN2nWrFmDttfeNh588EHavHmzt3/hS4T+2utgNtz2MlBbHYqdUvRurwPZMAyDPvShDw3aXkvZcB9qiPpG7SrVXgeqx+OPP07Tpk0btL0O9boO1FZL2fn+97/vPVgQ2T+ug7XX3jYeeOAB72F6165d9Le//W3Q9upGIFyyZAnNnDmTwuEwXXLJJd7Llcsvv5wOOuggWrFiBb3//vvU1tZGN954I82ZM8cLEFLKxqc+9SnatWuX99mFD0U//vGPSVEUisVi3pv3odggsu/7tbW1tHLlSvrKV75Cfr/fe9AZbj2I7CAhixcv9oJQ9GfDfcj/yle+QoIg0PTp07222tXVRd///ve9LsmlbFx22WVeWy7FddddRyeddFLRC7pSdi699FLvQfG+++6jhoYGWrhwIb300kv01ltv0W233UbTpk3z3rAP55ps376dDjnkELrjjjuK7r/9nU+hjY997GN0ww03UFNTE2UyGbrttttoypQpnlgsZePiiy8uenjt7S247LLLaPny5d7f4ttvv03Tp0/3vHhExV6U2267jY488kg644wzaPXq1bRhwwb6whe+QFOnTvW6LJayMZAo+9Of/kSVlZVUUVFR1K1xKHaI7N+OGTNm0BNPPEHf+MY3yO/3ew/Vw60LkS3oDj744CGfz8MPP0yCINDs2bO99prNZumpp57y7jelbAzWzfp//ud/6KijjvLaYikbhSLmF7/4BR1wwAEUjUbpySefpH/84x9066230qRJk4peKAznmliWRUcddRRddNFFRe1gKOdz+eWX0+mnn06bN2+m9vZ2uv3222nixIkDXpPeUYB7e/CuuOIKOvnkk73fojVr1tCMGTPoiCOOoJqaGjr88MO9ey8R0SWXXEILFiwY9N7a20bv7q+F16fUvXU0YUE2jnj//fepvr6ebrrpJtqyZQs98MADJAiC9za0vb2dHnzwQZowYQItWrSIrrzySrrgggsoGAx6fehL2RBFsU/AAPcPNpPJ0Omnn05VVVVF/fCHaofIfvg/4YQT6LbbbiNVVb0b4XBsENk3tFtvvZXq6uq8fuWD2Ugmk3ThhRfS4YcfXtSdkigfCWy49TAMg2699VZqbGz0Hjr6+27cB4F0Ok1PP/00zZo1iyZPnkwnnnginXXWWVRRUVH0lmyodXFv7v/9739JFMWiG9tQbGzfvp2qqqro1FNPpfvvv58++9nPUlVVlVeXwc6nN5lMhm6++WZqbGykLVu2EJEd4KG2tpZWrFhBjz32GN1xxx0kCAJ97GMfozfffJM0TaMHH3yQGhsb+22v/dlYvnx5Ub9x9yZcqr0O1QZR/211uHbc76h3ex3IhvvW+sILL6TFixf3216HYqOQUu21PxtnnXWW94D09NNP0+zZs/ttr0O9Hu69pFRbHcyOO/Zu+/btVF1d3W97Heh8Sn03pdprIpGgpUuXet1lm5qa6K9//StVVVXRCSec4Im7O++8k4499lgvwmdDQ4PnKRjIximnnFL0Bt00TTIMg6699lqqrKz02utwbCQSCVq0aBEdf/zxRQ+3w7FBZHtFP//5z1NlZaV3TQeycfLJJ9OuXbtI13W68sorPQ9db0/GQDaWLVvmtcfCenzuc5+jqqqqou5fA9k58cQTPTH0y1/+kk455RQSBIEOPPBAmjVr1m59N+45nHzyyXT8+ITmIAAAFDtJREFU8cd7D59DtXHXXXfR4sWLqa6ujj70oQ9RY2PjkOpx0kkn9anH6tWr6brrrqNYLOZ1v9q2bRsdcsghNHv2bDrooIPozjvv9PYvfFD+6U9/SqeeeioJgkAHHXQQTZ061avHQDZKPfSbpkkrVqygSCRSFDBhOHZM06RjjjmGDjzwQAoGg97Lg+HYILLD8l9//fVUWVnpCcOBbBQKkJtuuqnIs1LIUG24rF+/nlasWFH0dzPU7+b555+niy++mMLhMM2fP58WLlxY5HEc7jUhIvr0pz9NRx55pPciY6g2fvnLX9Jxxx1HqqrSkiVLaMqUKUNqJ6W6qK9cuZKuuuoqikajRc8TkyZNohtvvJG6u7vptddeo4svvpguu+yyopfdA91bB7LRe1ylZVkl762jDQuyccStt95KH/7wh4vKTj31VHrhhRfohRde8N44btq0iS6++GI655xz6JOf/GTRzbM/GytXrqQXX3yx6O22pmn0jW98g1RV7fN2YTh23AhFsVis6EY4HBv/+te/6BOf+ARNmDCh6KY1kI0XXniBurq6KJFIDBgQYTj1ePbZZ+nss8+murq6IdXD/W7cN8q5XI7uuOMOuu666+gLX/gCrV+/frfrYlkWbd++nc4999yit2pDtfHMM8/QokWLaNGiRfThD394WO2k8PNeeeUVrwtI4TW57rrr6Pzzzy+ycckll5Df76ezzjrLGzeyceNGuuSSS0q21/5sBAIBOvvss4vak2EYJdvrcGz84Ac/KNlWh2vn3//+d8n2OpCNs846i95//31qbW31REIpBqtHoZD75z//WbK9DvbduD+k2WyWvvzlL5dsr8O5HkRUsq0Ox87f//53Ouyww0q218FsFHaPee2110q210wmQ4ceemif7p7vvvsu1dTUFP09tLS00F//+ld64YUXil50DGbjzDPPLHqwe+WVV0gQhKL6DcdGZ2cnTZ06laqqqoo8FsOx8dJLL9H/+3//jw4++OBh2eh9fyjFcOrx4osv0mWXXUZz587t83szmJ0zzjjDK7Msi15//XXasGFDUXfD4dTFfdDctm1b0fimwWx85CMf8cqeeuopuvvuu+mhhx4qavOD2fjYxz7mPSx3d3fTL37xC1q0aJF3TSzLorvvvptOO+00+vvf/0633347zZ07t98HfyJ7XNm6des8T9JQbPQWIO6cgL27iQ3Hjq7rdNRRRxUJmOHaWLt2refJHY6NwULKD7cea9asoeuvv54WLFjg/d3sznezYcMGam5uLuqqtzvfD5Ed7dN9yTEUG4Verbfeeot+/OMf0+OPP+49Lw23HqZp0h//+EdaunSpd01yuRzdcMMNdO655xad+49//GOqrq7uM/VIe3t7n3vrcG0Qlb63jjYsyMYR1113HZ166qneIHa3u8jixYupvr6+TxQkor5/tAPZaGhooGXLlhXZ+OlPf9pnwPVQ7bgRql5++WVaunRpnzCkw7Hx0ksv0c0339xHwAx2TU466aRBoxYNpx4rV66kFStW9OmLPJTvZihz4gz3+yHq2z1tKHUpjPoXj8eHZaO/dlLYxYzIjlLpDkh3u9/cdddddPLJJ9OcOXPolltu6XP+vdvrQDYOOOAArxul+3asVHsdqg2i/tvqcOxkMpl+2+tg18SdW2agLrvDqUd/7XU412RP61H4JrbUBKiD2SlsJ/211+GeT6n2mkwmaeLEiSUfWN58800KhUJFYaJLMRQbX/nKV4qOKRybsTs2vv71r/dpZ8O1sXLlyj7dIYdiw51HbKSux7/+9a+SgTxG47sp9Tc4FBuDBe4Ybj3S6XSfNtLU1ESPPPIIEdkvB9wH5cJr0F8QiOHY6O2JKRXtbrh2fvKTn/T52xuujbVr1/YZ2zcUG4N1PRxuPd54440+ESuHYqO/4Ed7UpdS4/ZGq50UdrfNZDL0rW99i370ox8Vna8bIMy9fgONjxuqjd70/rsZbViQjSMefPBBCoVCdPbZZ9MFF1xAiqLQH/7wB0omk7Rq1So69thj6Qtf+ELRGKzef+xDtTFYhLmh2iGy/zhL/WEMx4ZpmiVvOMOxMRLnYhhGyRvYcK6re+MpdY2He01253yOOeYYr53s6TUZyMb1119PEyZM8LpPNDU1UWVlJT3zzDP04IMPUiAQ6NMVs/c1GcxGMBgcdBLL4dhIJpP93sSHYqewS2ep9rqvzsetR+/w/XtSj73x3QzFTiAQGDTK1kjV5Zvf/CZNmjSJ/vSnP3ll7vW766676Mgjj6SOjo4B2/1QbRQGpNkdG4NN+D0UG4NNWDzUcxlsWog9PZd9WZeRsNHe3j7gfX6oNoYalXjXrl0lH5SffPLJIU8zMZANt25DqU9/dty5DfekLiNh48knnxxS1MxyqsdI2enPxhNPPLHH7WQgG4UeYrcNNTU10axZs4ru7YU9FkbCRjmEui+EBdk443vf+x594xvfoLPPPrtPSNJLLrmEjj322EH/OAezccwxxwzpD3wodgaKtjRUG4PdKEbifMqlHvvyfPa2ja1bt9JRRx1FPp+PTjnlFAoGg14Aj/b2dpo4ceKg3stysVFOdRlPNkazLrt27aKXX36Znn76ae9ve/PmzXTOOefQscce2ycC30MPPUTz5s0rinrKNkbeRjnVpZxtEFHRy9edO3d6D8q33347rVixggRB8OYjGwkb5VSX8WSjnOoykjb++te/Fj0jFNp75513qLq62hNTX/rSl6iystJ7ETESNsoNGcyY5N1338UjjzyCHTt24OCDD8bxxx+Pww8/HFdffTUAYMWKFQgEAgAAIoIgCACAAw88EJZlQRTF3bZx0EEHeTb2pC4HHXTQHp/PQQcdBCLaYxsjcU1Gsh7lcD5708bJJ5+MhQsX4m9/+xseeOABWJaFCy+8EBdccAEAYNu2bQgGg4jFYv22kdGyUU51GU82yqkua9aswUc+8hH4fD60tLSgoaEBd9xxB5YvX44bb7wRd955J2699VZ0dnbi/PPPh67r2LRpE+rq6mCaJtvYSzbKqS7lamPChAm47bbbsGzZMlRVVcGyLABAY2MjPvvZz4KI8OUvfxkVFRV49dVX0djYOCI2yqku48nG/nZd3WcIQRAgiiLC4TDuuusu3HfffXj++edRXV09IjbKkn2n/ZiRYt26dVRRUUHnnHMOXXHFFTR58mQ69NBD6YEHHvD2+fKXv0yhUIiee+45evHFF+n222+nqqoqb6zISNgop7qMJxvlVJe9ZeOQQw4pmnOntyftxhtvpEMOOcTrMlUuNsqpLuPJRjnVpbW1lebOnUu33HILbdy4kXbu3EnnnXcezZkzh+68807KZrO0evVquuKKK0iWZTr44INpyZIlVFlZ6QVWYBsjb6Oc6lLuNubNm0e3336719Wz0Btw0UUXUTQa9e7PI2GjnOoynmyUU132pQ0iezzaokWL6LzzziNVVb1gMSNho1xhQTbGSCQStGzZMrrxxhu9sh07dlB1dTXV19d7g31N06TzzjuPRFGkOXPm0CGHHOJFtRkJG+VUl/Fko5zqsi9tuDz33HN0zTXXUCQS8R46ysVGOdVlPNkot7qsW7eOpk2b1ufH+6abbqIDDzyQ7rvvPrIsyxsv+ZWvfIUeeuihokAEbGPkbZRTXcaCjQULFtA999xT1LXx4YcfpoqKiqJxNCNho5zqMp5slFNd9rWNt99+mwRBoEAgMOT781BtlCssyMYYqVSKFi9eTI8++qi3TkR0zjnn0AknnEBLly6lv/zlL97+zz33HL311ltFEYdGwkY51WU82SinuuwLG0cddVSRjRdeeIGuvPLKonlBysVGOdVlPNkot7qsXr2aJk2aRM899xwRFUd+vPbaa2nq1KlFcwOWgm2MvI1yqstYsTF9+vQiG83NzX2mlRgJG+VUl/Fko5zqsq9tNDU10VVXXdUnQuxI2ChXWJCNISzLopaWFmpsbKR7773XK9++fTvNnz+ffvazn9HChQvp8ssv36s2yqku48lGOdVlX9r41Kc+VXRc4Xww5WKjnOoynmyUW11cFi9eTB/84Ae99cLJSQ8//PA+c5qxjX1jo5zqMtZsDBR0aiRslFNdxpONcqrLvrRBNDL358HmlysnWJCNAXo37vvvv58EQaDLLruMbr31VgqHw17EsMcee4ymTZtWFFZ3pGyUU13Gk41yqsto2iiMuFkuNsqpLuPJRjnVJZlMUjweL5pD6b///S/V1dXRxz/+ca/MPeaGG24ommiYbewdG+VUF7bB382+sFFOdRlPNsYKLMjKnHfffZfuu+++okk5TdOkRx55hBYvXkynnHIK3X333d62733ve7Ro0aKigZUjYaOc6jKebJRTXdgGfzf723Vdt24dnXzyybRo0SJqbGykX/7yl0Rkv1X99a9/TTU1NXT22WeTpmneS4cLL7yQzj//fNJ1nSzLYht7wQZ/N+Vrg78bvq5jycZYggVZGbNhwwaqqqoiQRDo5ptv7jNJZyaTKXLVEhFdffXVdPbZZ1MmkyHLskbERjnVZTzZ4OtavjaI+LsZ79d13bp1VF1dTddffz396le/ohtuuIEURfEGoadSKfq///s/mjRpEs2dO5fOPPNMOvfcc/9/e3cTElX/hnH8OjpmZGIvbnQnIVZSELVqNlZDEG6CQisSyqQISo3SjUWbIEJdBEYUTUVBWUEtetlkJIEEafhSMNjGtklZlBLk5P0s5BmaJ/rbnxzP75y+HxDGmcPFNee48J7fnHMsLy/PXr16ZWZGRgYyXOpCBseG/RrcjKBhIHPU+Pi41dbW2p49e+zcuXPmeZ41NTWl/ePx4/SfSCSssbHR8vPzbWhoaNYyXOoSpgyXupDBsfnb9uuHDx9s8+bNVl9fbz+qqKiww4cPpz33+fNna25utrq6Ojt06FDqEs5kzH6GS13I4NjMRYZLXcKUEUTcGNpRWVlZWrt2rZYuXarq6moVFhZqx44dkqTm5mYVFhambsD75csXPX78WP39/Xr27JlWrVo1axkudQlThktdyODY/G37dXJyUp8+fdL27dslKXUD85KSEo2NjUmavsm5mSk/P19nzpxJ246MzGS41IUMjg37NbgZgZSZOQ+zYXx8PO33zs5O8zzPjh07Zu/fvzez6ZPa3717Z5OTkzY2NpaRDJe6hCnDpS5k/MyVLmHKcKnLmzdvUo+/fftmZmbHjx+3mpqatO1+PJn8v+ckkDH7GS51IYNjMxcZLnUJU0bQsELmsLy8PEnS9+/flZWVperqapmZdu3aJc/z1NjYqLa2No2MjOjGjRtavHhxRjJc6hKmDJe6kMGx+dv2a2lpqaTpT1VzcnIkTX/qOjo6mtrm9OnTys3NVX19vSKRSGrljYzMZbjUhQyODfs1uBmBk6lJD7NramoqdRWZzs5Oy8nJsbKyMotEIj/d2T2TGS51CVOGS13IcLdLmDJc6vLvJ6stLS22ZcsWMzM7ceKEeZ5nAwMDZPiU4VIXMtztEqYMl7qEKSMIGMgCZGpqKvWHuXHjRluyZEnaCfNzleFSlzBluNSFDHe7hCnDlS7/DnQnT560/fv3W2trq+Xm5trLly/J8DHDpS5kuNslTBkudQlTRhAwkAVMMpm0I0eOmOd5Njg46FuGS13ClOFSFzLc7RKmDJe6nDp1yjzPs4KCAuvt7SXDkQyXupDhbpcwZbjUJUwZLmMgC5hkMmmXLl2y/v5+XzNc6hKmDJe6kOFulzBluNSlt7fXPM/7o0snkzH7GS51IcPdLmHKcKlLmDJc5pmZ+X0eG/4/ZvbHJy/ORoZLXcKU4VIXMtztEqYMl7pMTEykLhpChjsZLnUhw90uYcpwqUuYMlzFQAYAAAAAPgnwHdQAAAAAINgYyAAAAADAJwxkAAAAAOATBjIAAAAA8AkDGQAAAAD4hIEMAAAAAHzCQAYAwB8yM8ViMZWWlmpoaEixWEwjIyN+1wIABAADGQAAv+H58+fKzs5WZWXlT6+9fftW2dnZ6ujoUE1NjRYtWqSSkhIfWgIAgoYbQwMA8Bvq6uq0cOFCxeNxDQ8Pq7i42O9KAIAQYIUMAIAZjI+P69atWzp48KAqKyt19erV1Gvd3d3yPE9PnjzRunXrtGDBAq1fv17Dw8NpGefPn9eyZcs0b948lZWV6fr163P8LgAALmIgAwBgBrdv39by5ctVVlam3bt36/Lly/rvF0xaWlrU3t6uvr4+RSIR1dbWpl67d++eGhoadPToUb1+/VoHDhzQ3r179fTp07l+KwAAx/CVRQAAZhCNRlVVVaWGhgYlk0kVFRXpzp07qqioUHd3tzZs2KCuri5t2rRJkvTo0SNVVlbq69evmj9/vqLRqMrLy3Xx4sVUZlVVlSYmJvTw4UO/3hYAwAGskAEA8D8MDw/rxYsX2rlzpyQpEomourpa8Xg8bbvVq1enHhcVFUmSRkdHJUmJRELRaDRt+2g0qkQikcnqAIAAiPhdAAAAl8XjcSWTybSLeJiZcnNz1dHRkXouJycn9djzPEnS1NTU3BUFAAQSK2QAAPxCMpnUtWvX1N7eroGBgdTP4OCgiouLdfPmzd/KWbFihXp6etKe6+np0cqVKzNRGwAQIKyQAQDwCw8ePNDHjx+1b98+FRQUpL22bds2xeNxtba2zpjT1NSkqqoqrVmzRrFYTPfv39fdu3fV1dWVqeoAgIBghQwAgF+Ix+OKxWI/DWPS9EDW19enoaGhGXO2bt2qs2fPqq2tTeXl5bpw4YKuXLmiioqKDLQGAAQJV1kEAAAAAJ+wQgYAAAAAPmEgAwAAAACfMJABAAAAgE8YyAAAAADAJwxkAAAAAOATBjIAAAAA8AkDGQAAAAD4hIEMAAAAAHzCQAYAAAAAPmEgAwAAAACfMJABAAAAgE8YyAAAAADAJ/8AebOOsm+0pdYAAAAASUVORK5CYII=\n" }, "metadata": {} } @@ -357,25 +428,48 @@ "source": [ "\n", "# Guardar el dataframe agrupado\n", - "df_grouped.to_csv('global_electricity_statistics_by_region.csv')" + "dfread_grouped.to_csv('global_electricity_statistics_by_region.csv')" ], "metadata": { "id": "3HyCu76yuvpS" }, - "execution_count": 10, + "execution_count": 185, "outputs": [] }, { "cell_type": "code", "source": [ - "# Supongamos que 'df_grouped' es tu DataFrame y quieres predecir la columna '2021'\n", - "df = df_grouped.drop('Total', axis=1) # Eliminar la columna 'Total'\n", - "\n", - "# Limpiar los datos: reemplazar los valores 'NaN' e infinitos por cero\n", - "df = df.replace([np.inf, -np.inf], np.nan).fillna(0)\n", - "\n", - "X = df.drop('2021', axis=1)\n", - "y = df['2021']\n", + "print(dfread_grouped.columns)" + ], + "metadata": { + "id": "3la7bU_N8K4i", + "outputId": "0593528b-5d1d-4f34-ba1f-c7b979037b78", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 186, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Index(['Region', '1980', '1981', '1982', '1983', '1984', '1985', '1986',\n", + " '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995',\n", + " '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004',\n", + " '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',\n", + " '2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021',\n", + " 'Total'],\n", + " dtype='object')\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "X = dfread_grouped.drop('2021', axis=1)\n", + "y = dfread_grouped['2021']\n", "\n", "# Dividir los datos en conjuntos de entrenamiento y prueba\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.42, random_state=45)\n", @@ -384,10 +478,36 @@ "# Guardar el índice de X_test antes de cambiar su forma\n", "X_test_index = X_test.index\n", "\n", - "# Cambiar la forma de los datos para que sean compatibles con CNN\n", - "X_train = np.expand_dims(X_train, axis=2)\n", - "X_test = np.expand_dims(X_test, axis=2)\n", + "# Identifica las columnas numéricas (todas excepto 'Region')\n", + "num_cols = [col for col in X_train.columns if col != 'Region']\n", + "\n", + "# Cambia la forma de los datos numéricos para que sean compatibles con CNN\n", + "X_train_num = np.expand_dims(X_train[num_cols], axis=2).astype('float32')\n", + "X_test_num = np.expand_dims(X_test[num_cols], axis=2).astype('float32')\n", "\n", + "# Asegúrate de que y_train y y_test también sean float32\n", + "y_train = y_train.astype('float32')\n", + "y_test = y_test.astype('float32')\n", + "\n" + ], + "metadata": { + "id": "nfJrQD1i4qys" + }, + "execution_count": 205, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "error de tenserflow preguntar al profe\n" + ], + "metadata": { + "id": "qsv2yFlkG7bx" + } + }, + { + "cell_type": "code", + "source": [ "# Crear la red CNN\n", "model = Sequential()\n", "model.add(Conv1D(filters=64, kernel_size=9, activation='relu', input_shape=(X_train.shape[1], 1))) # Puedes cambiar el número de filtros (64 aquí), el tamaño del kernel (3 aquí) y la función de activación ('relu' aquí)\n", @@ -400,7 +520,7 @@ "model.compile(optimizer='adam', loss=MeanSquaredError()) # Puedes cambiar el optimizador ('adam' aquí) y la función de pérdida (MeanSquaredError aquí)\n", "\n", "# Ajustar el modelo a los datos de entrenamiento\n", - "history = model.fit(X_train, y_train, epochs=2000, verbose=4) # Puedes cambiar el número de épocas (200 aquí)\n", + "history = model.fit(X_train, y_train, epochs=200, verbose=4) # Puedes cambiar el número de épocas (200 aquí)\n", "\n", "# Graficar la pérdida durante el entrenamiento\n", "plt.plot(history.history['loss'])\n", @@ -411,2056 +531,54 @@ "plt.show()" ], "metadata": { + "id": "P0LByrb1780L", + "outputId": "d96fb1f2-0970-4f4e-9642-41540f59898b", "colab": { "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "nfJrQD1i4qys", - "outputId": "1f2e8317-5f50-4ad6-bd0b-b845834f335f" + "height": 442 + } }, - "execution_count": 11, + "execution_count": 206, "outputs": [ { - "output_type": "stream", - "name": "stdout", - "text": [ - "Epoch 1/2000\n", - "Epoch 2/2000\n", - "Epoch 3/2000\n", - "Epoch 4/2000\n", - "Epoch 5/2000\n", - "Epoch 6/2000\n", - "Epoch 7/2000\n", - "Epoch 8/2000\n", - "Epoch 9/2000\n", - "Epoch 10/2000\n", - "Epoch 11/2000\n", - "Epoch 12/2000\n", - "Epoch 13/2000\n", - "Epoch 14/2000\n", - "Epoch 15/2000\n", - "Epoch 16/2000\n", - "Epoch 17/2000\n", - "Epoch 18/2000\n", - "Epoch 19/2000\n", - "Epoch 20/2000\n", - "Epoch 21/2000\n", - "Epoch 22/2000\n", - "Epoch 23/2000\n", - "Epoch 24/2000\n", - "Epoch 25/2000\n", - "Epoch 26/2000\n", - "Epoch 27/2000\n", - "Epoch 28/2000\n", - "Epoch 29/2000\n", - "Epoch 30/2000\n", - "Epoch 31/2000\n", - "Epoch 32/2000\n", - "Epoch 33/2000\n", - "Epoch 34/2000\n", - "Epoch 35/2000\n", - "Epoch 36/2000\n", - "Epoch 37/2000\n", - "Epoch 38/2000\n", - "Epoch 39/2000\n", - "Epoch 40/2000\n", - "Epoch 41/2000\n", - "Epoch 42/2000\n", - "Epoch 43/2000\n", - "Epoch 44/2000\n", - "Epoch 45/2000\n", - "Epoch 46/2000\n", - "Epoch 47/2000\n", - "Epoch 48/2000\n", - "Epoch 49/2000\n", - "Epoch 50/2000\n", - "Epoch 51/2000\n", - "Epoch 52/2000\n", - "Epoch 53/2000\n", - "Epoch 54/2000\n", - "Epoch 55/2000\n", - "Epoch 56/2000\n", - "Epoch 57/2000\n", - "Epoch 58/2000\n", - "Epoch 59/2000\n", - "Epoch 60/2000\n", - "Epoch 61/2000\n", - "Epoch 62/2000\n", - "Epoch 63/2000\n", - "Epoch 64/2000\n", - "Epoch 65/2000\n", - "Epoch 66/2000\n", - "Epoch 67/2000\n", - "Epoch 68/2000\n", - "Epoch 69/2000\n", - "Epoch 70/2000\n", - "Epoch 71/2000\n", - "Epoch 72/2000\n", - "Epoch 73/2000\n", - "Epoch 74/2000\n", - "Epoch 75/2000\n", - "Epoch 76/2000\n", - "Epoch 77/2000\n", - "Epoch 78/2000\n", - "Epoch 79/2000\n", - "Epoch 80/2000\n", - "Epoch 81/2000\n", - "Epoch 82/2000\n", - "Epoch 83/2000\n", - "Epoch 84/2000\n", - "Epoch 85/2000\n", - "Epoch 86/2000\n", - "Epoch 87/2000\n", - "Epoch 88/2000\n", - "Epoch 89/2000\n", - "Epoch 90/2000\n", - "Epoch 91/2000\n", - "Epoch 92/2000\n", - "Epoch 93/2000\n", - "Epoch 94/2000\n", - "Epoch 95/2000\n", - "Epoch 96/2000\n", - "Epoch 97/2000\n", - "Epoch 98/2000\n", - "Epoch 99/2000\n", - "Epoch 100/2000\n", - "Epoch 101/2000\n", - "Epoch 102/2000\n", - "Epoch 103/2000\n", - "Epoch 104/2000\n", - "Epoch 105/2000\n", - "Epoch 106/2000\n", - "Epoch 107/2000\n", - "Epoch 108/2000\n", - "Epoch 109/2000\n", - "Epoch 110/2000\n", - "Epoch 111/2000\n", - "Epoch 112/2000\n", - "Epoch 113/2000\n", - "Epoch 114/2000\n", - "Epoch 115/2000\n", - "Epoch 116/2000\n", - "Epoch 117/2000\n", - "Epoch 118/2000\n", - "Epoch 119/2000\n", - "Epoch 120/2000\n", - "Epoch 121/2000\n", - "Epoch 122/2000\n", - "Epoch 123/2000\n", - "Epoch 124/2000\n", - "Epoch 125/2000\n", - "Epoch 126/2000\n", - "Epoch 127/2000\n", - "Epoch 128/2000\n", - "Epoch 129/2000\n", - "Epoch 130/2000\n", - "Epoch 131/2000\n", - "Epoch 132/2000\n", - "Epoch 133/2000\n", - "Epoch 134/2000\n", - "Epoch 135/2000\n", - "Epoch 136/2000\n", - "Epoch 137/2000\n", - "Epoch 138/2000\n", - "Epoch 139/2000\n", - "Epoch 140/2000\n", - "Epoch 141/2000\n", - "Epoch 142/2000\n", - "Epoch 143/2000\n", - "Epoch 144/2000\n", - "Epoch 145/2000\n", - "Epoch 146/2000\n", - "Epoch 147/2000\n", - "Epoch 148/2000\n", - "Epoch 149/2000\n", - "Epoch 150/2000\n", - "Epoch 151/2000\n", - "Epoch 152/2000\n", - "Epoch 153/2000\n", - "Epoch 154/2000\n", - "Epoch 155/2000\n", - "Epoch 156/2000\n", - "Epoch 157/2000\n", - "Epoch 158/2000\n", - "Epoch 159/2000\n", - "Epoch 160/2000\n", - "Epoch 161/2000\n", - "Epoch 162/2000\n", - "Epoch 163/2000\n", - "Epoch 164/2000\n", - "Epoch 165/2000\n", - "Epoch 166/2000\n", - "Epoch 167/2000\n", - "Epoch 168/2000\n", - "Epoch 169/2000\n", - "Epoch 170/2000\n", - "Epoch 171/2000\n", - "Epoch 172/2000\n", - "Epoch 173/2000\n", - "Epoch 174/2000\n", - "Epoch 175/2000\n", - "Epoch 176/2000\n", - "Epoch 177/2000\n", - "Epoch 178/2000\n", - "Epoch 179/2000\n", - "Epoch 180/2000\n", - "Epoch 181/2000\n", - "Epoch 182/2000\n", - "Epoch 183/2000\n", - "Epoch 184/2000\n", - "Epoch 185/2000\n", - "Epoch 186/2000\n", - "Epoch 187/2000\n", - "Epoch 188/2000\n", - "Epoch 189/2000\n", - "Epoch 190/2000\n", - "Epoch 191/2000\n", - "Epoch 192/2000\n", - "Epoch 193/2000\n", - "Epoch 194/2000\n", - "Epoch 195/2000\n", - "Epoch 196/2000\n", - "Epoch 197/2000\n", - "Epoch 198/2000\n", - "Epoch 199/2000\n", - "Epoch 200/2000\n", - "Epoch 201/2000\n", - "Epoch 202/2000\n", - "Epoch 203/2000\n", - "Epoch 204/2000\n", - "Epoch 205/2000\n", - "Epoch 206/2000\n", - "Epoch 207/2000\n", - "Epoch 208/2000\n", - "Epoch 209/2000\n", - "Epoch 210/2000\n", - "Epoch 211/2000\n", - "Epoch 212/2000\n", - "Epoch 213/2000\n", - "Epoch 214/2000\n", - "Epoch 215/2000\n", - "Epoch 216/2000\n", - "Epoch 217/2000\n", - "Epoch 218/2000\n", - "Epoch 219/2000\n", - "Epoch 220/2000\n", - "Epoch 221/2000\n", - "Epoch 222/2000\n", - "Epoch 223/2000\n", - "Epoch 224/2000\n", - "Epoch 225/2000\n", - "Epoch 226/2000\n", - "Epoch 227/2000\n", - "Epoch 228/2000\n", - "Epoch 229/2000\n", - "Epoch 230/2000\n", - "Epoch 231/2000\n", - "Epoch 232/2000\n", - "Epoch 233/2000\n", - "Epoch 234/2000\n", - "Epoch 235/2000\n", - "Epoch 236/2000\n", - "Epoch 237/2000\n", - "Epoch 238/2000\n", - "Epoch 239/2000\n", - "Epoch 240/2000\n", - "Epoch 241/2000\n", - "Epoch 242/2000\n", - "Epoch 243/2000\n", - "Epoch 244/2000\n", - "Epoch 245/2000\n", - "Epoch 246/2000\n", - "Epoch 247/2000\n", - "Epoch 248/2000\n", - "Epoch 249/2000\n", - "Epoch 250/2000\n", - "Epoch 251/2000\n", - "Epoch 252/2000\n", - "Epoch 253/2000\n", - "Epoch 254/2000\n", - "Epoch 255/2000\n", - "Epoch 256/2000\n", - "Epoch 257/2000\n", - "Epoch 258/2000\n", - "Epoch 259/2000\n", - "Epoch 260/2000\n", - "Epoch 261/2000\n", - "Epoch 262/2000\n", - "Epoch 263/2000\n", - "Epoch 264/2000\n", - "Epoch 265/2000\n", - "Epoch 266/2000\n", - "Epoch 267/2000\n", - "Epoch 268/2000\n", - "Epoch 269/2000\n", - "Epoch 270/2000\n", - "Epoch 271/2000\n", - "Epoch 272/2000\n", - "Epoch 273/2000\n", - "Epoch 274/2000\n", - "Epoch 275/2000\n", - "Epoch 276/2000\n", - "Epoch 277/2000\n", - "Epoch 278/2000\n", - "Epoch 279/2000\n", - "Epoch 280/2000\n", - "Epoch 281/2000\n", - "Epoch 282/2000\n", - "Epoch 283/2000\n", - "Epoch 284/2000\n", - "Epoch 285/2000\n", - "Epoch 286/2000\n", - "Epoch 287/2000\n", - "Epoch 288/2000\n", - "Epoch 289/2000\n", - "Epoch 290/2000\n", - "Epoch 291/2000\n", - "Epoch 292/2000\n", - "Epoch 293/2000\n", - "Epoch 294/2000\n", - "Epoch 295/2000\n", - "Epoch 296/2000\n", - "Epoch 297/2000\n", - "Epoch 298/2000\n", - "Epoch 299/2000\n", - "Epoch 300/2000\n", - "Epoch 301/2000\n", - "Epoch 302/2000\n", - "Epoch 303/2000\n", - "Epoch 304/2000\n", - "Epoch 305/2000\n", - "Epoch 306/2000\n", - "Epoch 307/2000\n", - "Epoch 308/2000\n", - "Epoch 309/2000\n", - "Epoch 310/2000\n", - "Epoch 311/2000\n", - "Epoch 312/2000\n", - "Epoch 313/2000\n", - "Epoch 314/2000\n", - "Epoch 315/2000\n", - "Epoch 316/2000\n", - "Epoch 317/2000\n", - "Epoch 318/2000\n", - "Epoch 319/2000\n", - "Epoch 320/2000\n", - "Epoch 321/2000\n", - "Epoch 322/2000\n", - "Epoch 323/2000\n", - "Epoch 324/2000\n", - "Epoch 325/2000\n", - "Epoch 326/2000\n", - "Epoch 327/2000\n", - "Epoch 328/2000\n", - "Epoch 329/2000\n", - "Epoch 330/2000\n", - "Epoch 331/2000\n", - "Epoch 332/2000\n", - "Epoch 333/2000\n", - "Epoch 334/2000\n", - "Epoch 335/2000\n", - "Epoch 336/2000\n", - "Epoch 337/2000\n", - "Epoch 338/2000\n", - "Epoch 339/2000\n", - "Epoch 340/2000\n", - "Epoch 341/2000\n", - "Epoch 342/2000\n", - "Epoch 343/2000\n", - "Epoch 344/2000\n", - "Epoch 345/2000\n", - "Epoch 346/2000\n", - "Epoch 347/2000\n", - "Epoch 348/2000\n", - "Epoch 349/2000\n", - "Epoch 350/2000\n", - "Epoch 351/2000\n", - "Epoch 352/2000\n", - "Epoch 353/2000\n", - "Epoch 354/2000\n", - "Epoch 355/2000\n", - "Epoch 356/2000\n", - "Epoch 357/2000\n", - "Epoch 358/2000\n", - "Epoch 359/2000\n", - "Epoch 360/2000\n", - "Epoch 361/2000\n", - "Epoch 362/2000\n", - "Epoch 363/2000\n", - "Epoch 364/2000\n", - "Epoch 365/2000\n", - "Epoch 366/2000\n", - "Epoch 367/2000\n", - "Epoch 368/2000\n", - "Epoch 369/2000\n", - "Epoch 370/2000\n", - "Epoch 371/2000\n", - "Epoch 372/2000\n", - "Epoch 373/2000\n", - "Epoch 374/2000\n", - "Epoch 375/2000\n", - "Epoch 376/2000\n", - "Epoch 377/2000\n", - "Epoch 378/2000\n", - "Epoch 379/2000\n", - "Epoch 380/2000\n", - "Epoch 381/2000\n", - "Epoch 382/2000\n", - "Epoch 383/2000\n", - "Epoch 384/2000\n", - "Epoch 385/2000\n", - "Epoch 386/2000\n", - "Epoch 387/2000\n", - "Epoch 388/2000\n", - "Epoch 389/2000\n", - "Epoch 390/2000\n", - "Epoch 391/2000\n", - "Epoch 392/2000\n", - "Epoch 393/2000\n", - "Epoch 394/2000\n", - "Epoch 395/2000\n", - "Epoch 396/2000\n", - "Epoch 397/2000\n", - "Epoch 398/2000\n", - "Epoch 399/2000\n", - "Epoch 400/2000\n", - "Epoch 401/2000\n", - "Epoch 402/2000\n", - "Epoch 403/2000\n", - "Epoch 404/2000\n", - "Epoch 405/2000\n", - "Epoch 406/2000\n", - "Epoch 407/2000\n", - "Epoch 408/2000\n", - "Epoch 409/2000\n", - "Epoch 410/2000\n", - "Epoch 411/2000\n", - "Epoch 412/2000\n", - "Epoch 413/2000\n", - "Epoch 414/2000\n", - "Epoch 415/2000\n", - "Epoch 416/2000\n", - "Epoch 417/2000\n", - "Epoch 418/2000\n", - "Epoch 419/2000\n", - "Epoch 420/2000\n", - "Epoch 421/2000\n", - "Epoch 422/2000\n", - "Epoch 423/2000\n", - "Epoch 424/2000\n", - "Epoch 425/2000\n", - "Epoch 426/2000\n", - "Epoch 427/2000\n", - "Epoch 428/2000\n", - "Epoch 429/2000\n", - "Epoch 430/2000\n", - "Epoch 431/2000\n", - "Epoch 432/2000\n", - "Epoch 433/2000\n", - "Epoch 434/2000\n", - "Epoch 435/2000\n", - "Epoch 436/2000\n", - "Epoch 437/2000\n", - "Epoch 438/2000\n", - "Epoch 439/2000\n", - "Epoch 440/2000\n", - "Epoch 441/2000\n", - "Epoch 442/2000\n", - "Epoch 443/2000\n", - "Epoch 444/2000\n", - "Epoch 445/2000\n", - "Epoch 446/2000\n", - "Epoch 447/2000\n", - "Epoch 448/2000\n", - "Epoch 449/2000\n", - "Epoch 450/2000\n", - "Epoch 451/2000\n", - "Epoch 452/2000\n", - "Epoch 453/2000\n", - "Epoch 454/2000\n", - "Epoch 455/2000\n", - "Epoch 456/2000\n", - "Epoch 457/2000\n", - "Epoch 458/2000\n", - "Epoch 459/2000\n", - "Epoch 460/2000\n", - "Epoch 461/2000\n", - "Epoch 462/2000\n", - "Epoch 463/2000\n", - "Epoch 464/2000\n", - "Epoch 465/2000\n", - "Epoch 466/2000\n", - "Epoch 467/2000\n", - "Epoch 468/2000\n", - "Epoch 469/2000\n", - "Epoch 470/2000\n", - "Epoch 471/2000\n", - "Epoch 472/2000\n", - "Epoch 473/2000\n", - "Epoch 474/2000\n", - "Epoch 475/2000\n", - "Epoch 476/2000\n", - "Epoch 477/2000\n", - "Epoch 478/2000\n", - "Epoch 479/2000\n", - "Epoch 480/2000\n", - "Epoch 481/2000\n", - "Epoch 482/2000\n", - "Epoch 483/2000\n", - "Epoch 484/2000\n", - "Epoch 485/2000\n", - "Epoch 486/2000\n", - "Epoch 487/2000\n", - "Epoch 488/2000\n", - "Epoch 489/2000\n", - "Epoch 490/2000\n", - "Epoch 491/2000\n", - "Epoch 492/2000\n", - "Epoch 493/2000\n", - "Epoch 494/2000\n", - "Epoch 495/2000\n", - "Epoch 496/2000\n", - "Epoch 497/2000\n", - "Epoch 498/2000\n", - "Epoch 499/2000\n", - "Epoch 500/2000\n", - "Epoch 501/2000\n", - "Epoch 502/2000\n", - "Epoch 503/2000\n", - "Epoch 504/2000\n", - "Epoch 505/2000\n", - "Epoch 506/2000\n", - "Epoch 507/2000\n", - "Epoch 508/2000\n", - "Epoch 509/2000\n", - "Epoch 510/2000\n", - "Epoch 511/2000\n", - "Epoch 512/2000\n", - "Epoch 513/2000\n", - "Epoch 514/2000\n", - "Epoch 515/2000\n", - "Epoch 516/2000\n", - "Epoch 517/2000\n", - "Epoch 518/2000\n", - "Epoch 519/2000\n", - "Epoch 520/2000\n", - "Epoch 521/2000\n", - "Epoch 522/2000\n", - "Epoch 523/2000\n", - "Epoch 524/2000\n", - "Epoch 525/2000\n", - "Epoch 526/2000\n", - "Epoch 527/2000\n", - "Epoch 528/2000\n", - "Epoch 529/2000\n", - "Epoch 530/2000\n", - "Epoch 531/2000\n", - "Epoch 532/2000\n", - "Epoch 533/2000\n", - "Epoch 534/2000\n", - "Epoch 535/2000\n", - "Epoch 536/2000\n", - "Epoch 537/2000\n", - "Epoch 538/2000\n", - "Epoch 539/2000\n", - "Epoch 540/2000\n", - "Epoch 541/2000\n", - "Epoch 542/2000\n", - "Epoch 543/2000\n", - "Epoch 544/2000\n", - "Epoch 545/2000\n", - "Epoch 546/2000\n", - "Epoch 547/2000\n", - "Epoch 548/2000\n", - "Epoch 549/2000\n", - "Epoch 550/2000\n", - "Epoch 551/2000\n", - "Epoch 552/2000\n", - "Epoch 553/2000\n", - "Epoch 554/2000\n", - "Epoch 555/2000\n", - "Epoch 556/2000\n", - "Epoch 557/2000\n", - "Epoch 558/2000\n", - "Epoch 559/2000\n", - "Epoch 560/2000\n", - "Epoch 561/2000\n", - "Epoch 562/2000\n", - "Epoch 563/2000\n", - "Epoch 564/2000\n", - "Epoch 565/2000\n", - "Epoch 566/2000\n", - "Epoch 567/2000\n", - "Epoch 568/2000\n", - "Epoch 569/2000\n", - "Epoch 570/2000\n", - "Epoch 571/2000\n", - "Epoch 572/2000\n", - "Epoch 573/2000\n", - "Epoch 574/2000\n", - "Epoch 575/2000\n", - "Epoch 576/2000\n", - "Epoch 577/2000\n", - "Epoch 578/2000\n", - "Epoch 579/2000\n", - "Epoch 580/2000\n", - "Epoch 581/2000\n", - "Epoch 582/2000\n", - "Epoch 583/2000\n", - "Epoch 584/2000\n", - "Epoch 585/2000\n", - "Epoch 586/2000\n", - "Epoch 587/2000\n", - "Epoch 588/2000\n", - "Epoch 589/2000\n", - "Epoch 590/2000\n", - "Epoch 591/2000\n", - "Epoch 592/2000\n", - "Epoch 593/2000\n", - "Epoch 594/2000\n", - "Epoch 595/2000\n", - "Epoch 596/2000\n", - "Epoch 597/2000\n", - "Epoch 598/2000\n", - "Epoch 599/2000\n", - "Epoch 600/2000\n", - "Epoch 601/2000\n", - "Epoch 602/2000\n", - "Epoch 603/2000\n", - "Epoch 604/2000\n", - "Epoch 605/2000\n", - "Epoch 606/2000\n", - "Epoch 607/2000\n", - "Epoch 608/2000\n", - "Epoch 609/2000\n", - "Epoch 610/2000\n", - "Epoch 611/2000\n", - "Epoch 612/2000\n", - "Epoch 613/2000\n", - "Epoch 614/2000\n", - "Epoch 615/2000\n", - "Epoch 616/2000\n", - "Epoch 617/2000\n", - "Epoch 618/2000\n", - "Epoch 619/2000\n", - "Epoch 620/2000\n", - "Epoch 621/2000\n", - "Epoch 622/2000\n", - "Epoch 623/2000\n", - "Epoch 624/2000\n", - "Epoch 625/2000\n", - "Epoch 626/2000\n", - "Epoch 627/2000\n", - "Epoch 628/2000\n", - "Epoch 629/2000\n", - "Epoch 630/2000\n", - "Epoch 631/2000\n", - "Epoch 632/2000\n", - "Epoch 633/2000\n", - "Epoch 634/2000\n", - "Epoch 635/2000\n", - "Epoch 636/2000\n", - "Epoch 637/2000\n", - "Epoch 638/2000\n", - "Epoch 639/2000\n", - "Epoch 640/2000\n", - "Epoch 641/2000\n", - "Epoch 642/2000\n", - "Epoch 643/2000\n", - "Epoch 644/2000\n", - "Epoch 645/2000\n", - "Epoch 646/2000\n", - "Epoch 647/2000\n", - "Epoch 648/2000\n", - "Epoch 649/2000\n", - "Epoch 650/2000\n", - "Epoch 651/2000\n", - "Epoch 652/2000\n", - "Epoch 653/2000\n", - "Epoch 654/2000\n", - "Epoch 655/2000\n", - "Epoch 656/2000\n", - "Epoch 657/2000\n", - "Epoch 658/2000\n", - "Epoch 659/2000\n", - "Epoch 660/2000\n", - "Epoch 661/2000\n", - "Epoch 662/2000\n", - "Epoch 663/2000\n", - "Epoch 664/2000\n", - "Epoch 665/2000\n", - "Epoch 666/2000\n", - "Epoch 667/2000\n", - "Epoch 668/2000\n", - "Epoch 669/2000\n", - "Epoch 670/2000\n", - "Epoch 671/2000\n", - "Epoch 672/2000\n", - "Epoch 673/2000\n", - "Epoch 674/2000\n", - "Epoch 675/2000\n", - "Epoch 676/2000\n", - "Epoch 677/2000\n", - "Epoch 678/2000\n", - "Epoch 679/2000\n", - "Epoch 680/2000\n", - "Epoch 681/2000\n", - "Epoch 682/2000\n", - "Epoch 683/2000\n", - "Epoch 684/2000\n", - "Epoch 685/2000\n", - "Epoch 686/2000\n", - "Epoch 687/2000\n", - "Epoch 688/2000\n", - "Epoch 689/2000\n", - "Epoch 690/2000\n", - "Epoch 691/2000\n", - "Epoch 692/2000\n", - "Epoch 693/2000\n", - "Epoch 694/2000\n", - "Epoch 695/2000\n", - "Epoch 696/2000\n", - "Epoch 697/2000\n", - "Epoch 698/2000\n", - "Epoch 699/2000\n", - "Epoch 700/2000\n", - "Epoch 701/2000\n", - "Epoch 702/2000\n", - "Epoch 703/2000\n", - "Epoch 704/2000\n", - "Epoch 705/2000\n", - "Epoch 706/2000\n", - "Epoch 707/2000\n", - "Epoch 708/2000\n", - "Epoch 709/2000\n", - "Epoch 710/2000\n", - "Epoch 711/2000\n", - "Epoch 712/2000\n", - "Epoch 713/2000\n", - "Epoch 714/2000\n", - "Epoch 715/2000\n", - "Epoch 716/2000\n", - "Epoch 717/2000\n", - "Epoch 718/2000\n", - "Epoch 719/2000\n", - "Epoch 720/2000\n", - "Epoch 721/2000\n", - "Epoch 722/2000\n", - "Epoch 723/2000\n", - "Epoch 724/2000\n", - "Epoch 725/2000\n", - "Epoch 726/2000\n", - "Epoch 727/2000\n", - "Epoch 728/2000\n", - "Epoch 729/2000\n", - "Epoch 730/2000\n", - "Epoch 731/2000\n", - "Epoch 732/2000\n", - "Epoch 733/2000\n", - "Epoch 734/2000\n", - "Epoch 735/2000\n", - "Epoch 736/2000\n", - "Epoch 737/2000\n", - "Epoch 738/2000\n", - "Epoch 739/2000\n", - "Epoch 740/2000\n", - "Epoch 741/2000\n", - "Epoch 742/2000\n", - "Epoch 743/2000\n", - "Epoch 744/2000\n", - "Epoch 745/2000\n", - "Epoch 746/2000\n", - "Epoch 747/2000\n", - "Epoch 748/2000\n", - "Epoch 749/2000\n", - "Epoch 750/2000\n", - "Epoch 751/2000\n", - "Epoch 752/2000\n", - "Epoch 753/2000\n", - "Epoch 754/2000\n", - "Epoch 755/2000\n", - "Epoch 756/2000\n", - "Epoch 757/2000\n", - "Epoch 758/2000\n", - "Epoch 759/2000\n", - "Epoch 760/2000\n", - "Epoch 761/2000\n", - "Epoch 762/2000\n", - "Epoch 763/2000\n", - "Epoch 764/2000\n", - "Epoch 765/2000\n", - "Epoch 766/2000\n", - "Epoch 767/2000\n", - "Epoch 768/2000\n", - "Epoch 769/2000\n", - "Epoch 770/2000\n", - "Epoch 771/2000\n", - "Epoch 772/2000\n", - "Epoch 773/2000\n", - "Epoch 774/2000\n", - "Epoch 775/2000\n", - "Epoch 776/2000\n", - "Epoch 777/2000\n", - "Epoch 778/2000\n", - "Epoch 779/2000\n", - "Epoch 780/2000\n", - "Epoch 781/2000\n", - "Epoch 782/2000\n", - "Epoch 783/2000\n", - "Epoch 784/2000\n", - "Epoch 785/2000\n", - "Epoch 786/2000\n", - "Epoch 787/2000\n", - "Epoch 788/2000\n", - "Epoch 789/2000\n", - "Epoch 790/2000\n", - "Epoch 791/2000\n", - "Epoch 792/2000\n", - "Epoch 793/2000\n", - "Epoch 794/2000\n", - "Epoch 795/2000\n", - "Epoch 796/2000\n", - "Epoch 797/2000\n", - "Epoch 798/2000\n", - "Epoch 799/2000\n", - "Epoch 800/2000\n", - "Epoch 801/2000\n", - "Epoch 802/2000\n", - "Epoch 803/2000\n", - "Epoch 804/2000\n", - "Epoch 805/2000\n", - "Epoch 806/2000\n", - "Epoch 807/2000\n", - "Epoch 808/2000\n", - "Epoch 809/2000\n", - "Epoch 810/2000\n", - "Epoch 811/2000\n", - "Epoch 812/2000\n", - "Epoch 813/2000\n", - "Epoch 814/2000\n", - "Epoch 815/2000\n", - "Epoch 816/2000\n", - "Epoch 817/2000\n", - "Epoch 818/2000\n", - "Epoch 819/2000\n", - "Epoch 820/2000\n", - "Epoch 821/2000\n", - "Epoch 822/2000\n", - "Epoch 823/2000\n", - "Epoch 824/2000\n", - "Epoch 825/2000\n", - "Epoch 826/2000\n", - "Epoch 827/2000\n", - "Epoch 828/2000\n", - "Epoch 829/2000\n", - "Epoch 830/2000\n", - "Epoch 831/2000\n", - "Epoch 832/2000\n", - "Epoch 833/2000\n", - "Epoch 834/2000\n", - "Epoch 835/2000\n", - "Epoch 836/2000\n", - "Epoch 837/2000\n", - "Epoch 838/2000\n", - "Epoch 839/2000\n", - "Epoch 840/2000\n", - "Epoch 841/2000\n", - "Epoch 842/2000\n", - "Epoch 843/2000\n", - "Epoch 844/2000\n", - "Epoch 845/2000\n", - "Epoch 846/2000\n", - "Epoch 847/2000\n", - "Epoch 848/2000\n", - "Epoch 849/2000\n", - "Epoch 850/2000\n", - "Epoch 851/2000\n", - "Epoch 852/2000\n", - "Epoch 853/2000\n", - "Epoch 854/2000\n", - "Epoch 855/2000\n", - "Epoch 856/2000\n", - "Epoch 857/2000\n", - "Epoch 858/2000\n", - "Epoch 859/2000\n", - "Epoch 860/2000\n", - "Epoch 861/2000\n", - "Epoch 862/2000\n", - "Epoch 863/2000\n", - "Epoch 864/2000\n", - "Epoch 865/2000\n", - "Epoch 866/2000\n", - "Epoch 867/2000\n", - "Epoch 868/2000\n", - "Epoch 869/2000\n", - "Epoch 870/2000\n", - "Epoch 871/2000\n", - "Epoch 872/2000\n", - "Epoch 873/2000\n", - "Epoch 874/2000\n", - "Epoch 875/2000\n", - "Epoch 876/2000\n", - "Epoch 877/2000\n", - "Epoch 878/2000\n", - "Epoch 879/2000\n", - "Epoch 880/2000\n", - "Epoch 881/2000\n", - "Epoch 882/2000\n", - "Epoch 883/2000\n", - "Epoch 884/2000\n", - "Epoch 885/2000\n", - "Epoch 886/2000\n", - "Epoch 887/2000\n", - "Epoch 888/2000\n", - "Epoch 889/2000\n", - "Epoch 890/2000\n", - "Epoch 891/2000\n", - "Epoch 892/2000\n", - "Epoch 893/2000\n", - "Epoch 894/2000\n", - "Epoch 895/2000\n", - "Epoch 896/2000\n", - "Epoch 897/2000\n", - "Epoch 898/2000\n", - "Epoch 899/2000\n", - "Epoch 900/2000\n", - "Epoch 901/2000\n", - "Epoch 902/2000\n", - "Epoch 903/2000\n", - "Epoch 904/2000\n", - "Epoch 905/2000\n", - "Epoch 906/2000\n", - "Epoch 907/2000\n", - "Epoch 908/2000\n", - "Epoch 909/2000\n", - "Epoch 910/2000\n", - "Epoch 911/2000\n", - "Epoch 912/2000\n", - "Epoch 913/2000\n", - "Epoch 914/2000\n", - "Epoch 915/2000\n", - "Epoch 916/2000\n", - "Epoch 917/2000\n", - "Epoch 918/2000\n", - "Epoch 919/2000\n", - "Epoch 920/2000\n", - "Epoch 921/2000\n", - "Epoch 922/2000\n", - "Epoch 923/2000\n", - "Epoch 924/2000\n", - "Epoch 925/2000\n", - "Epoch 926/2000\n", - "Epoch 927/2000\n", - "Epoch 928/2000\n", - "Epoch 929/2000\n", - "Epoch 930/2000\n", - "Epoch 931/2000\n", - "Epoch 932/2000\n", - "Epoch 933/2000\n", - "Epoch 934/2000\n", - "Epoch 935/2000\n", - "Epoch 936/2000\n", - "Epoch 937/2000\n", - "Epoch 938/2000\n", - "Epoch 939/2000\n", - "Epoch 940/2000\n", - "Epoch 941/2000\n", - "Epoch 942/2000\n", - "Epoch 943/2000\n", - "Epoch 944/2000\n", - "Epoch 945/2000\n", - "Epoch 946/2000\n", - "Epoch 947/2000\n", - "Epoch 948/2000\n", - "Epoch 949/2000\n", - "Epoch 950/2000\n", - "Epoch 951/2000\n", - "Epoch 952/2000\n", - "Epoch 953/2000\n", - "Epoch 954/2000\n", - "Epoch 955/2000\n", - "Epoch 956/2000\n", - "Epoch 957/2000\n", - "Epoch 958/2000\n", - "Epoch 959/2000\n", - "Epoch 960/2000\n", - "Epoch 961/2000\n", - "Epoch 962/2000\n", - "Epoch 963/2000\n", - "Epoch 964/2000\n", - "Epoch 965/2000\n", - "Epoch 966/2000\n", - "Epoch 967/2000\n", - "Epoch 968/2000\n", - "Epoch 969/2000\n", - "Epoch 970/2000\n", - "Epoch 971/2000\n", - "Epoch 972/2000\n", - "Epoch 973/2000\n", - "Epoch 974/2000\n", - "Epoch 975/2000\n", - "Epoch 976/2000\n", - "Epoch 977/2000\n", - "Epoch 978/2000\n", - "Epoch 979/2000\n", - "Epoch 980/2000\n", - "Epoch 981/2000\n", - "Epoch 982/2000\n", - "Epoch 983/2000\n", - "Epoch 984/2000\n", - "Epoch 985/2000\n", - "Epoch 986/2000\n", - "Epoch 987/2000\n", - "Epoch 988/2000\n", - "Epoch 989/2000\n", - "Epoch 990/2000\n", - "Epoch 991/2000\n", - "Epoch 992/2000\n", - "Epoch 993/2000\n", - "Epoch 994/2000\n", - "Epoch 995/2000\n", - "Epoch 996/2000\n", - "Epoch 997/2000\n", - "Epoch 998/2000\n", - "Epoch 999/2000\n", - "Epoch 1000/2000\n", - "Epoch 1001/2000\n", - "Epoch 1002/2000\n", - "Epoch 1003/2000\n", - "Epoch 1004/2000\n", - "Epoch 1005/2000\n", - "Epoch 1006/2000\n", - "Epoch 1007/2000\n", - "Epoch 1008/2000\n", - "Epoch 1009/2000\n", - "Epoch 1010/2000\n", - "Epoch 1011/2000\n", - "Epoch 1012/2000\n", - "Epoch 1013/2000\n", - "Epoch 1014/2000\n", - "Epoch 1015/2000\n", - "Epoch 1016/2000\n", - "Epoch 1017/2000\n", - "Epoch 1018/2000\n", - "Epoch 1019/2000\n", - "Epoch 1020/2000\n", - "Epoch 1021/2000\n", - "Epoch 1022/2000\n", - "Epoch 1023/2000\n", - "Epoch 1024/2000\n", - "Epoch 1025/2000\n", - "Epoch 1026/2000\n", - "Epoch 1027/2000\n", - "Epoch 1028/2000\n", - "Epoch 1029/2000\n", - "Epoch 1030/2000\n", - "Epoch 1031/2000\n", - "Epoch 1032/2000\n", - "Epoch 1033/2000\n", - "Epoch 1034/2000\n", - "Epoch 1035/2000\n", - "Epoch 1036/2000\n", - "Epoch 1037/2000\n", - "Epoch 1038/2000\n", - "Epoch 1039/2000\n", - "Epoch 1040/2000\n", - "Epoch 1041/2000\n", - "Epoch 1042/2000\n", - "Epoch 1043/2000\n", - "Epoch 1044/2000\n", - "Epoch 1045/2000\n", - "Epoch 1046/2000\n", - "Epoch 1047/2000\n", - "Epoch 1048/2000\n", - "Epoch 1049/2000\n", - "Epoch 1050/2000\n", - "Epoch 1051/2000\n", - "Epoch 1052/2000\n", - "Epoch 1053/2000\n", - "Epoch 1054/2000\n", - "Epoch 1055/2000\n", - "Epoch 1056/2000\n", - "Epoch 1057/2000\n", - "Epoch 1058/2000\n", - "Epoch 1059/2000\n", - "Epoch 1060/2000\n", - "Epoch 1061/2000\n", - "Epoch 1062/2000\n", - "Epoch 1063/2000\n", - "Epoch 1064/2000\n", - "Epoch 1065/2000\n", - "Epoch 1066/2000\n", - "Epoch 1067/2000\n", - "Epoch 1068/2000\n", - "Epoch 1069/2000\n", - "Epoch 1070/2000\n", - "Epoch 1071/2000\n", - "Epoch 1072/2000\n", - "Epoch 1073/2000\n", - "Epoch 1074/2000\n", - "Epoch 1075/2000\n", - "Epoch 1076/2000\n", - "Epoch 1077/2000\n", - "Epoch 1078/2000\n", - "Epoch 1079/2000\n", - "Epoch 1080/2000\n", - "Epoch 1081/2000\n", - "Epoch 1082/2000\n", - "Epoch 1083/2000\n", - "Epoch 1084/2000\n", - "Epoch 1085/2000\n", - "Epoch 1086/2000\n", - "Epoch 1087/2000\n", - "Epoch 1088/2000\n", - "Epoch 1089/2000\n", - "Epoch 1090/2000\n", - "Epoch 1091/2000\n", - "Epoch 1092/2000\n", - "Epoch 1093/2000\n", - "Epoch 1094/2000\n", - "Epoch 1095/2000\n", - "Epoch 1096/2000\n", - "Epoch 1097/2000\n", - "Epoch 1098/2000\n", - "Epoch 1099/2000\n", - "Epoch 1100/2000\n", - "Epoch 1101/2000\n", - "Epoch 1102/2000\n", - "Epoch 1103/2000\n", - "Epoch 1104/2000\n", - "Epoch 1105/2000\n", - "Epoch 1106/2000\n", - "Epoch 1107/2000\n", - "Epoch 1108/2000\n", - "Epoch 1109/2000\n", - "Epoch 1110/2000\n", - "Epoch 1111/2000\n", - "Epoch 1112/2000\n", - "Epoch 1113/2000\n", - "Epoch 1114/2000\n", - "Epoch 1115/2000\n", - "Epoch 1116/2000\n", - "Epoch 1117/2000\n", - "Epoch 1118/2000\n", - "Epoch 1119/2000\n", - "Epoch 1120/2000\n", - "Epoch 1121/2000\n", - "Epoch 1122/2000\n", - "Epoch 1123/2000\n", - "Epoch 1124/2000\n", - "Epoch 1125/2000\n", - "Epoch 1126/2000\n", - "Epoch 1127/2000\n", - "Epoch 1128/2000\n", - "Epoch 1129/2000\n", - "Epoch 1130/2000\n", - "Epoch 1131/2000\n", - "Epoch 1132/2000\n", - "Epoch 1133/2000\n", - "Epoch 1134/2000\n", - "Epoch 1135/2000\n", - "Epoch 1136/2000\n", - "Epoch 1137/2000\n", - "Epoch 1138/2000\n", - "Epoch 1139/2000\n", - "Epoch 1140/2000\n", - "Epoch 1141/2000\n", - "Epoch 1142/2000\n", - "Epoch 1143/2000\n", - "Epoch 1144/2000\n", - "Epoch 1145/2000\n", - "Epoch 1146/2000\n", - "Epoch 1147/2000\n", - "Epoch 1148/2000\n", - "Epoch 1149/2000\n", - "Epoch 1150/2000\n", - "Epoch 1151/2000\n", - "Epoch 1152/2000\n", - "Epoch 1153/2000\n", - "Epoch 1154/2000\n", - "Epoch 1155/2000\n", - "Epoch 1156/2000\n", - "Epoch 1157/2000\n", - "Epoch 1158/2000\n", - "Epoch 1159/2000\n", - "Epoch 1160/2000\n", - "Epoch 1161/2000\n", - "Epoch 1162/2000\n", - "Epoch 1163/2000\n", - "Epoch 1164/2000\n", - "Epoch 1165/2000\n", - "Epoch 1166/2000\n", - "Epoch 1167/2000\n", - "Epoch 1168/2000\n", - "Epoch 1169/2000\n", - "Epoch 1170/2000\n", - "Epoch 1171/2000\n", - "Epoch 1172/2000\n", - "Epoch 1173/2000\n", - "Epoch 1174/2000\n", - "Epoch 1175/2000\n", - "Epoch 1176/2000\n", - "Epoch 1177/2000\n", - "Epoch 1178/2000\n", - "Epoch 1179/2000\n", - "Epoch 1180/2000\n", - "Epoch 1181/2000\n", - "Epoch 1182/2000\n", - "Epoch 1183/2000\n", - "Epoch 1184/2000\n", - "Epoch 1185/2000\n", - "Epoch 1186/2000\n", - "Epoch 1187/2000\n", - "Epoch 1188/2000\n", - "Epoch 1189/2000\n", - "Epoch 1190/2000\n", - "Epoch 1191/2000\n", - "Epoch 1192/2000\n", - "Epoch 1193/2000\n", - "Epoch 1194/2000\n", - "Epoch 1195/2000\n", - "Epoch 1196/2000\n", - "Epoch 1197/2000\n", - "Epoch 1198/2000\n", - "Epoch 1199/2000\n", - "Epoch 1200/2000\n", - "Epoch 1201/2000\n", - "Epoch 1202/2000\n", - "Epoch 1203/2000\n", - "Epoch 1204/2000\n", - "Epoch 1205/2000\n", - "Epoch 1206/2000\n", - "Epoch 1207/2000\n", - "Epoch 1208/2000\n", - "Epoch 1209/2000\n", - "Epoch 1210/2000\n", - "Epoch 1211/2000\n", - "Epoch 1212/2000\n", - "Epoch 1213/2000\n", - "Epoch 1214/2000\n", - "Epoch 1215/2000\n", - "Epoch 1216/2000\n", - "Epoch 1217/2000\n", - "Epoch 1218/2000\n", - "Epoch 1219/2000\n", - "Epoch 1220/2000\n", - "Epoch 1221/2000\n", - "Epoch 1222/2000\n", - "Epoch 1223/2000\n", - "Epoch 1224/2000\n", - "Epoch 1225/2000\n", - "Epoch 1226/2000\n", - "Epoch 1227/2000\n", - "Epoch 1228/2000\n", - "Epoch 1229/2000\n", - "Epoch 1230/2000\n", - "Epoch 1231/2000\n", - "Epoch 1232/2000\n", - "Epoch 1233/2000\n", - "Epoch 1234/2000\n", - "Epoch 1235/2000\n", - "Epoch 1236/2000\n", - "Epoch 1237/2000\n", - "Epoch 1238/2000\n", - "Epoch 1239/2000\n", - "Epoch 1240/2000\n", - "Epoch 1241/2000\n", - "Epoch 1242/2000\n", - "Epoch 1243/2000\n", - "Epoch 1244/2000\n", - "Epoch 1245/2000\n", - "Epoch 1246/2000\n", - "Epoch 1247/2000\n", - "Epoch 1248/2000\n", - "Epoch 1249/2000\n", - "Epoch 1250/2000\n", - "Epoch 1251/2000\n", - "Epoch 1252/2000\n", - "Epoch 1253/2000\n", - "Epoch 1254/2000\n", - "Epoch 1255/2000\n", - "Epoch 1256/2000\n", - "Epoch 1257/2000\n", - "Epoch 1258/2000\n", - "Epoch 1259/2000\n", - "Epoch 1260/2000\n", - "Epoch 1261/2000\n", - "Epoch 1262/2000\n", - "Epoch 1263/2000\n", - "Epoch 1264/2000\n", - "Epoch 1265/2000\n", - "Epoch 1266/2000\n", - "Epoch 1267/2000\n", - "Epoch 1268/2000\n", - "Epoch 1269/2000\n", - "Epoch 1270/2000\n", - "Epoch 1271/2000\n", - "Epoch 1272/2000\n", - "Epoch 1273/2000\n", - "Epoch 1274/2000\n", - "Epoch 1275/2000\n", - "Epoch 1276/2000\n", - "Epoch 1277/2000\n", - "Epoch 1278/2000\n", - "Epoch 1279/2000\n", - "Epoch 1280/2000\n", - "Epoch 1281/2000\n", - "Epoch 1282/2000\n", - "Epoch 1283/2000\n", - "Epoch 1284/2000\n", - "Epoch 1285/2000\n", - "Epoch 1286/2000\n", - "Epoch 1287/2000\n", - "Epoch 1288/2000\n", - "Epoch 1289/2000\n", - "Epoch 1290/2000\n", - "Epoch 1291/2000\n", - "Epoch 1292/2000\n", - "Epoch 1293/2000\n", - "Epoch 1294/2000\n", - "Epoch 1295/2000\n", - "Epoch 1296/2000\n", - "Epoch 1297/2000\n", - "Epoch 1298/2000\n", - "Epoch 1299/2000\n", - "Epoch 1300/2000\n", - "Epoch 1301/2000\n", - "Epoch 1302/2000\n", - "Epoch 1303/2000\n", - "Epoch 1304/2000\n", - "Epoch 1305/2000\n", - "Epoch 1306/2000\n", - "Epoch 1307/2000\n", - "Epoch 1308/2000\n", - "Epoch 1309/2000\n", - "Epoch 1310/2000\n", - "Epoch 1311/2000\n", - "Epoch 1312/2000\n", - "Epoch 1313/2000\n", - "Epoch 1314/2000\n", - "Epoch 1315/2000\n", - "Epoch 1316/2000\n", - "Epoch 1317/2000\n", - "Epoch 1318/2000\n", - "Epoch 1319/2000\n", - "Epoch 1320/2000\n", - "Epoch 1321/2000\n", - "Epoch 1322/2000\n", - "Epoch 1323/2000\n", - "Epoch 1324/2000\n", - "Epoch 1325/2000\n", - "Epoch 1326/2000\n", - "Epoch 1327/2000\n", - "Epoch 1328/2000\n", - "Epoch 1329/2000\n", - "Epoch 1330/2000\n", - "Epoch 1331/2000\n", - "Epoch 1332/2000\n", - "Epoch 1333/2000\n", - "Epoch 1334/2000\n", - "Epoch 1335/2000\n", - "Epoch 1336/2000\n", - "Epoch 1337/2000\n", - "Epoch 1338/2000\n", - "Epoch 1339/2000\n", - "Epoch 1340/2000\n", - "Epoch 1341/2000\n", - "Epoch 1342/2000\n", - "Epoch 1343/2000\n", - "Epoch 1344/2000\n", - "Epoch 1345/2000\n", - "Epoch 1346/2000\n", - "Epoch 1347/2000\n", - "Epoch 1348/2000\n", - "Epoch 1349/2000\n", - "Epoch 1350/2000\n", - "Epoch 1351/2000\n", - "Epoch 1352/2000\n", - "Epoch 1353/2000\n", - "Epoch 1354/2000\n", - "Epoch 1355/2000\n", - "Epoch 1356/2000\n", - "Epoch 1357/2000\n", - "Epoch 1358/2000\n", - "Epoch 1359/2000\n", - "Epoch 1360/2000\n", - "Epoch 1361/2000\n", - "Epoch 1362/2000\n", - "Epoch 1363/2000\n", - "Epoch 1364/2000\n", - "Epoch 1365/2000\n", - "Epoch 1366/2000\n", - "Epoch 1367/2000\n", - "Epoch 1368/2000\n", - "Epoch 1369/2000\n", - "Epoch 1370/2000\n", - "Epoch 1371/2000\n", - "Epoch 1372/2000\n", - "Epoch 1373/2000\n", - "Epoch 1374/2000\n", - "Epoch 1375/2000\n", - "Epoch 1376/2000\n", - "Epoch 1377/2000\n", - "Epoch 1378/2000\n", - "Epoch 1379/2000\n", - "Epoch 1380/2000\n", - "Epoch 1381/2000\n", - "Epoch 1382/2000\n", - "Epoch 1383/2000\n", - "Epoch 1384/2000\n", - "Epoch 1385/2000\n", - "Epoch 1386/2000\n", - "Epoch 1387/2000\n", - "Epoch 1388/2000\n", - "Epoch 1389/2000\n", - "Epoch 1390/2000\n", - "Epoch 1391/2000\n", - "Epoch 1392/2000\n", - "Epoch 1393/2000\n", - "Epoch 1394/2000\n", - "Epoch 1395/2000\n", - "Epoch 1396/2000\n", - "Epoch 1397/2000\n", - "Epoch 1398/2000\n", - "Epoch 1399/2000\n", - "Epoch 1400/2000\n", - "Epoch 1401/2000\n", - "Epoch 1402/2000\n", - "Epoch 1403/2000\n", - "Epoch 1404/2000\n", - "Epoch 1405/2000\n", - "Epoch 1406/2000\n", - "Epoch 1407/2000\n", - "Epoch 1408/2000\n", - "Epoch 1409/2000\n", - "Epoch 1410/2000\n", - "Epoch 1411/2000\n", - "Epoch 1412/2000\n", - "Epoch 1413/2000\n", - "Epoch 1414/2000\n", - "Epoch 1415/2000\n", - "Epoch 1416/2000\n", - "Epoch 1417/2000\n", - "Epoch 1418/2000\n", - "Epoch 1419/2000\n", - "Epoch 1420/2000\n", - "Epoch 1421/2000\n", - "Epoch 1422/2000\n", - "Epoch 1423/2000\n", - "Epoch 1424/2000\n", - "Epoch 1425/2000\n", - "Epoch 1426/2000\n", - "Epoch 1427/2000\n", - "Epoch 1428/2000\n", - "Epoch 1429/2000\n", - "Epoch 1430/2000\n", - "Epoch 1431/2000\n", - "Epoch 1432/2000\n", - "Epoch 1433/2000\n", - "Epoch 1434/2000\n", - "Epoch 1435/2000\n", - "Epoch 1436/2000\n", - "Epoch 1437/2000\n", - "Epoch 1438/2000\n", - "Epoch 1439/2000\n", - "Epoch 1440/2000\n", - "Epoch 1441/2000\n", - "Epoch 1442/2000\n", - "Epoch 1443/2000\n", - "Epoch 1444/2000\n", - "Epoch 1445/2000\n", - "Epoch 1446/2000\n", - "Epoch 1447/2000\n", - "Epoch 1448/2000\n", - "Epoch 1449/2000\n", - "Epoch 1450/2000\n", - "Epoch 1451/2000\n", - "Epoch 1452/2000\n", - "Epoch 1453/2000\n", - "Epoch 1454/2000\n", - "Epoch 1455/2000\n", - "Epoch 1456/2000\n", - "Epoch 1457/2000\n", - "Epoch 1458/2000\n", - "Epoch 1459/2000\n", - "Epoch 1460/2000\n", - "Epoch 1461/2000\n", - "Epoch 1462/2000\n", - "Epoch 1463/2000\n", - "Epoch 1464/2000\n", - "Epoch 1465/2000\n", - "Epoch 1466/2000\n", - "Epoch 1467/2000\n", - "Epoch 1468/2000\n", - "Epoch 1469/2000\n", - "Epoch 1470/2000\n", - "Epoch 1471/2000\n", - "Epoch 1472/2000\n", - "Epoch 1473/2000\n", - "Epoch 1474/2000\n", - "Epoch 1475/2000\n", - "Epoch 1476/2000\n", - "Epoch 1477/2000\n", - "Epoch 1478/2000\n", - "Epoch 1479/2000\n", - "Epoch 1480/2000\n", - "Epoch 1481/2000\n", - "Epoch 1482/2000\n", - "Epoch 1483/2000\n", - "Epoch 1484/2000\n", - "Epoch 1485/2000\n", - "Epoch 1486/2000\n", - "Epoch 1487/2000\n", - "Epoch 1488/2000\n", - "Epoch 1489/2000\n", - "Epoch 1490/2000\n", - "Epoch 1491/2000\n", - "Epoch 1492/2000\n", - "Epoch 1493/2000\n", - "Epoch 1494/2000\n", - "Epoch 1495/2000\n", - "Epoch 1496/2000\n", - "Epoch 1497/2000\n", - "Epoch 1498/2000\n", - "Epoch 1499/2000\n", - "Epoch 1500/2000\n", - "Epoch 1501/2000\n", - "Epoch 1502/2000\n", - "Epoch 1503/2000\n", - "Epoch 1504/2000\n", - "Epoch 1505/2000\n", - "Epoch 1506/2000\n", - "Epoch 1507/2000\n", - "Epoch 1508/2000\n", - "Epoch 1509/2000\n", - "Epoch 1510/2000\n", - "Epoch 1511/2000\n", - "Epoch 1512/2000\n", - "Epoch 1513/2000\n", - "Epoch 1514/2000\n", - "Epoch 1515/2000\n", - "Epoch 1516/2000\n", - "Epoch 1517/2000\n", - "Epoch 1518/2000\n", - "Epoch 1519/2000\n", - "Epoch 1520/2000\n", - "Epoch 1521/2000\n", - "Epoch 1522/2000\n", - "Epoch 1523/2000\n", - "Epoch 1524/2000\n", - "Epoch 1525/2000\n", - "Epoch 1526/2000\n", - "Epoch 1527/2000\n", - "Epoch 1528/2000\n", - "Epoch 1529/2000\n", - "Epoch 1530/2000\n", - "Epoch 1531/2000\n", - "Epoch 1532/2000\n", - "Epoch 1533/2000\n", - "Epoch 1534/2000\n", - "Epoch 1535/2000\n", - "Epoch 1536/2000\n", - "Epoch 1537/2000\n", - "Epoch 1538/2000\n", - "Epoch 1539/2000\n", - "Epoch 1540/2000\n", - "Epoch 1541/2000\n", - "Epoch 1542/2000\n", - "Epoch 1543/2000\n", - "Epoch 1544/2000\n", - "Epoch 1545/2000\n", - "Epoch 1546/2000\n", - "Epoch 1547/2000\n", - "Epoch 1548/2000\n", - "Epoch 1549/2000\n", - "Epoch 1550/2000\n", - "Epoch 1551/2000\n", - "Epoch 1552/2000\n", - "Epoch 1553/2000\n", - "Epoch 1554/2000\n", - "Epoch 1555/2000\n", - "Epoch 1556/2000\n", - "Epoch 1557/2000\n", - "Epoch 1558/2000\n", - "Epoch 1559/2000\n", - "Epoch 1560/2000\n", - "Epoch 1561/2000\n", - "Epoch 1562/2000\n", - "Epoch 1563/2000\n", - "Epoch 1564/2000\n", - "Epoch 1565/2000\n", - "Epoch 1566/2000\n", - "Epoch 1567/2000\n", - "Epoch 1568/2000\n", - "Epoch 1569/2000\n", - "Epoch 1570/2000\n", - "Epoch 1571/2000\n", - "Epoch 1572/2000\n", - "Epoch 1573/2000\n", - "Epoch 1574/2000\n", - "Epoch 1575/2000\n", - "Epoch 1576/2000\n", - "Epoch 1577/2000\n", - "Epoch 1578/2000\n", - "Epoch 1579/2000\n", - "Epoch 1580/2000\n", - "Epoch 1581/2000\n", - "Epoch 1582/2000\n", - "Epoch 1583/2000\n", - "Epoch 1584/2000\n", - "Epoch 1585/2000\n", - "Epoch 1586/2000\n", - "Epoch 1587/2000\n", - "Epoch 1588/2000\n", - "Epoch 1589/2000\n", - "Epoch 1590/2000\n", - "Epoch 1591/2000\n", - "Epoch 1592/2000\n", - "Epoch 1593/2000\n", - "Epoch 1594/2000\n", - "Epoch 1595/2000\n", - "Epoch 1596/2000\n", - "Epoch 1597/2000\n", - "Epoch 1598/2000\n", - "Epoch 1599/2000\n", - "Epoch 1600/2000\n", - "Epoch 1601/2000\n", - "Epoch 1602/2000\n", - "Epoch 1603/2000\n", - "Epoch 1604/2000\n", - "Epoch 1605/2000\n", - "Epoch 1606/2000\n", - "Epoch 1607/2000\n", - "Epoch 1608/2000\n", - "Epoch 1609/2000\n", - "Epoch 1610/2000\n", - "Epoch 1611/2000\n", - "Epoch 1612/2000\n", - "Epoch 1613/2000\n", - "Epoch 1614/2000\n", - "Epoch 1615/2000\n", - "Epoch 1616/2000\n", - "Epoch 1617/2000\n", - "Epoch 1618/2000\n", - "Epoch 1619/2000\n", - "Epoch 1620/2000\n", - "Epoch 1621/2000\n", - "Epoch 1622/2000\n", - "Epoch 1623/2000\n", - "Epoch 1624/2000\n", - "Epoch 1625/2000\n", - "Epoch 1626/2000\n", - "Epoch 1627/2000\n", - "Epoch 1628/2000\n", - "Epoch 1629/2000\n", - "Epoch 1630/2000\n", - "Epoch 1631/2000\n", - "Epoch 1632/2000\n", - "Epoch 1633/2000\n", - "Epoch 1634/2000\n", - "Epoch 1635/2000\n", - "Epoch 1636/2000\n", - "Epoch 1637/2000\n", - "Epoch 1638/2000\n", - "Epoch 1639/2000\n", - "Epoch 1640/2000\n", - "Epoch 1641/2000\n", - "Epoch 1642/2000\n", - "Epoch 1643/2000\n", - "Epoch 1644/2000\n", - "Epoch 1645/2000\n", - "Epoch 1646/2000\n", - "Epoch 1647/2000\n", - "Epoch 1648/2000\n", - "Epoch 1649/2000\n", - "Epoch 1650/2000\n", - "Epoch 1651/2000\n", - "Epoch 1652/2000\n", - "Epoch 1653/2000\n", - "Epoch 1654/2000\n", - "Epoch 1655/2000\n", - "Epoch 1656/2000\n", - "Epoch 1657/2000\n", - "Epoch 1658/2000\n", - "Epoch 1659/2000\n", - "Epoch 1660/2000\n", - "Epoch 1661/2000\n", - "Epoch 1662/2000\n", - "Epoch 1663/2000\n", - "Epoch 1664/2000\n", - "Epoch 1665/2000\n", - "Epoch 1666/2000\n", - "Epoch 1667/2000\n", - "Epoch 1668/2000\n", - "Epoch 1669/2000\n", - "Epoch 1670/2000\n", - "Epoch 1671/2000\n", - "Epoch 1672/2000\n", - "Epoch 1673/2000\n", - "Epoch 1674/2000\n", - "Epoch 1675/2000\n", - "Epoch 1676/2000\n", - "Epoch 1677/2000\n", - "Epoch 1678/2000\n", - "Epoch 1679/2000\n", - "Epoch 1680/2000\n", - "Epoch 1681/2000\n", - "Epoch 1682/2000\n", - "Epoch 1683/2000\n", - "Epoch 1684/2000\n", - "Epoch 1685/2000\n", - "Epoch 1686/2000\n", - "Epoch 1687/2000\n", - "Epoch 1688/2000\n", - "Epoch 1689/2000\n", - "Epoch 1690/2000\n", - "Epoch 1691/2000\n", - "Epoch 1692/2000\n", - "Epoch 1693/2000\n", - "Epoch 1694/2000\n", - "Epoch 1695/2000\n", - "Epoch 1696/2000\n", - "Epoch 1697/2000\n", - "Epoch 1698/2000\n", - "Epoch 1699/2000\n", - "Epoch 1700/2000\n", - "Epoch 1701/2000\n", - "Epoch 1702/2000\n", - "Epoch 1703/2000\n", - "Epoch 1704/2000\n", - "Epoch 1705/2000\n", - "Epoch 1706/2000\n", - "Epoch 1707/2000\n", - "Epoch 1708/2000\n", - "Epoch 1709/2000\n", - "Epoch 1710/2000\n", - "Epoch 1711/2000\n", - "Epoch 1712/2000\n", - "Epoch 1713/2000\n", - "Epoch 1714/2000\n", - "Epoch 1715/2000\n", - "Epoch 1716/2000\n", - "Epoch 1717/2000\n", - "Epoch 1718/2000\n", - "Epoch 1719/2000\n", - "Epoch 1720/2000\n", - "Epoch 1721/2000\n", - "Epoch 1722/2000\n", - "Epoch 1723/2000\n", - "Epoch 1724/2000\n", - "Epoch 1725/2000\n", - "Epoch 1726/2000\n", - "Epoch 1727/2000\n", - "Epoch 1728/2000\n", - "Epoch 1729/2000\n", - "Epoch 1730/2000\n", - "Epoch 1731/2000\n", - "Epoch 1732/2000\n", - "Epoch 1733/2000\n", - "Epoch 1734/2000\n", - "Epoch 1735/2000\n", - "Epoch 1736/2000\n", - "Epoch 1737/2000\n", - "Epoch 1738/2000\n", - "Epoch 1739/2000\n", - "Epoch 1740/2000\n", - "Epoch 1741/2000\n", - "Epoch 1742/2000\n", - "Epoch 1743/2000\n", - "Epoch 1744/2000\n", - "Epoch 1745/2000\n", - "Epoch 1746/2000\n", - "Epoch 1747/2000\n", - "Epoch 1748/2000\n", - "Epoch 1749/2000\n", - "Epoch 1750/2000\n", - "Epoch 1751/2000\n", - "Epoch 1752/2000\n", - "Epoch 1753/2000\n", - "Epoch 1754/2000\n", - "Epoch 1755/2000\n", - "Epoch 1756/2000\n", - "Epoch 1757/2000\n", - "Epoch 1758/2000\n", - "Epoch 1759/2000\n", - "Epoch 1760/2000\n", - "Epoch 1761/2000\n", - "Epoch 1762/2000\n", - "Epoch 1763/2000\n", - "Epoch 1764/2000\n", - "Epoch 1765/2000\n", - "Epoch 1766/2000\n", - "Epoch 1767/2000\n", - "Epoch 1768/2000\n", - "Epoch 1769/2000\n", - "Epoch 1770/2000\n", - "Epoch 1771/2000\n", - "Epoch 1772/2000\n", - "Epoch 1773/2000\n", - "Epoch 1774/2000\n", - "Epoch 1775/2000\n", - "Epoch 1776/2000\n", - "Epoch 1777/2000\n", - "Epoch 1778/2000\n", - "Epoch 1779/2000\n", - "Epoch 1780/2000\n", - "Epoch 1781/2000\n", - "Epoch 1782/2000\n", - "Epoch 1783/2000\n", - "Epoch 1784/2000\n", - "Epoch 1785/2000\n", - "Epoch 1786/2000\n", - "Epoch 1787/2000\n", - "Epoch 1788/2000\n", - "Epoch 1789/2000\n", - "Epoch 1790/2000\n", - "Epoch 1791/2000\n", - "Epoch 1792/2000\n", - "Epoch 1793/2000\n", - "Epoch 1794/2000\n", - "Epoch 1795/2000\n", - "Epoch 1796/2000\n", - "Epoch 1797/2000\n", - "Epoch 1798/2000\n", - "Epoch 1799/2000\n", - "Epoch 1800/2000\n", - "Epoch 1801/2000\n", - "Epoch 1802/2000\n", - "Epoch 1803/2000\n", - "Epoch 1804/2000\n", - "Epoch 1805/2000\n", - "Epoch 1806/2000\n", - "Epoch 1807/2000\n", - "Epoch 1808/2000\n", - "Epoch 1809/2000\n", - "Epoch 1810/2000\n", - "Epoch 1811/2000\n", - "Epoch 1812/2000\n", - "Epoch 1813/2000\n", - "Epoch 1814/2000\n", - "Epoch 1815/2000\n", - "Epoch 1816/2000\n", - "Epoch 1817/2000\n", - "Epoch 1818/2000\n", - "Epoch 1819/2000\n", - "Epoch 1820/2000\n", - "Epoch 1821/2000\n", - "Epoch 1822/2000\n", - "Epoch 1823/2000\n", - "Epoch 1824/2000\n", - "Epoch 1825/2000\n", - "Epoch 1826/2000\n", - "Epoch 1827/2000\n", - "Epoch 1828/2000\n", - "Epoch 1829/2000\n", - "Epoch 1830/2000\n", - "Epoch 1831/2000\n", - "Epoch 1832/2000\n", - "Epoch 1833/2000\n", - "Epoch 1834/2000\n", - "Epoch 1835/2000\n", - "Epoch 1836/2000\n", - "Epoch 1837/2000\n", - "Epoch 1838/2000\n", - "Epoch 1839/2000\n", - "Epoch 1840/2000\n", - "Epoch 1841/2000\n", - "Epoch 1842/2000\n", - "Epoch 1843/2000\n", - "Epoch 1844/2000\n", - "Epoch 1845/2000\n", - "Epoch 1846/2000\n", - "Epoch 1847/2000\n", - "Epoch 1848/2000\n", - "Epoch 1849/2000\n", - "Epoch 1850/2000\n", - "Epoch 1851/2000\n", - "Epoch 1852/2000\n", - "Epoch 1853/2000\n", - "Epoch 1854/2000\n", - "Epoch 1855/2000\n", - "Epoch 1856/2000\n", - "Epoch 1857/2000\n", - "Epoch 1858/2000\n", - "Epoch 1859/2000\n", - "Epoch 1860/2000\n", - "Epoch 1861/2000\n", - "Epoch 1862/2000\n", - "Epoch 1863/2000\n", - "Epoch 1864/2000\n", - "Epoch 1865/2000\n", - "Epoch 1866/2000\n", - "Epoch 1867/2000\n", - "Epoch 1868/2000\n", - "Epoch 1869/2000\n", - "Epoch 1870/2000\n", - "Epoch 1871/2000\n", - "Epoch 1872/2000\n", - "Epoch 1873/2000\n", - "Epoch 1874/2000\n", - "Epoch 1875/2000\n", - "Epoch 1876/2000\n", - "Epoch 1877/2000\n", - "Epoch 1878/2000\n", - "Epoch 1879/2000\n", - "Epoch 1880/2000\n", - "Epoch 1881/2000\n", - "Epoch 1882/2000\n", - "Epoch 1883/2000\n", - "Epoch 1884/2000\n", - "Epoch 1885/2000\n", - "Epoch 1886/2000\n", - "Epoch 1887/2000\n", - "Epoch 1888/2000\n", - "Epoch 1889/2000\n", - "Epoch 1890/2000\n", - "Epoch 1891/2000\n", - "Epoch 1892/2000\n", - "Epoch 1893/2000\n", - "Epoch 1894/2000\n", - "Epoch 1895/2000\n", - "Epoch 1896/2000\n", - "Epoch 1897/2000\n", - "Epoch 1898/2000\n", - "Epoch 1899/2000\n", - "Epoch 1900/2000\n", - "Epoch 1901/2000\n", - "Epoch 1902/2000\n", - "Epoch 1903/2000\n", - "Epoch 1904/2000\n", - "Epoch 1905/2000\n", - "Epoch 1906/2000\n", - "Epoch 1907/2000\n", - "Epoch 1908/2000\n", - "Epoch 1909/2000\n", - "Epoch 1910/2000\n", - "Epoch 1911/2000\n", - "Epoch 1912/2000\n", - "Epoch 1913/2000\n", - "Epoch 1914/2000\n", - "Epoch 1915/2000\n", - "Epoch 1916/2000\n", - "Epoch 1917/2000\n", - "Epoch 1918/2000\n", - "Epoch 1919/2000\n", - "Epoch 1920/2000\n", - "Epoch 1921/2000\n", - "Epoch 1922/2000\n", - "Epoch 1923/2000\n", - "Epoch 1924/2000\n", - "Epoch 1925/2000\n", - "Epoch 1926/2000\n", - "Epoch 1927/2000\n", - "Epoch 1928/2000\n", - "Epoch 1929/2000\n", - "Epoch 1930/2000\n", - "Epoch 1931/2000\n", - "Epoch 1932/2000\n", - "Epoch 1933/2000\n", - "Epoch 1934/2000\n", - "Epoch 1935/2000\n", - "Epoch 1936/2000\n", - "Epoch 1937/2000\n", - "Epoch 1938/2000\n", - "Epoch 1939/2000\n", - "Epoch 1940/2000\n", - "Epoch 1941/2000\n", - "Epoch 1942/2000\n", - "Epoch 1943/2000\n", - "Epoch 1944/2000\n", - "Epoch 1945/2000\n", - "Epoch 1946/2000\n", - "Epoch 1947/2000\n", - "Epoch 1948/2000\n", - "Epoch 1949/2000\n", - "Epoch 1950/2000\n", - "Epoch 1951/2000\n", - "Epoch 1952/2000\n", - "Epoch 1953/2000\n", - "Epoch 1954/2000\n", - "Epoch 1955/2000\n", - "Epoch 1956/2000\n", - "Epoch 1957/2000\n", - "Epoch 1958/2000\n", - "Epoch 1959/2000\n", - "Epoch 1960/2000\n", - "Epoch 1961/2000\n", - "Epoch 1962/2000\n", - "Epoch 1963/2000\n", - "Epoch 1964/2000\n", - "Epoch 1965/2000\n", - "Epoch 1966/2000\n", - "Epoch 1967/2000\n", - "Epoch 1968/2000\n", - "Epoch 1969/2000\n", - "Epoch 1970/2000\n", - "Epoch 1971/2000\n", - "Epoch 1972/2000\n", - "Epoch 1973/2000\n", - "Epoch 1974/2000\n", - "Epoch 1975/2000\n", - "Epoch 1976/2000\n", - "Epoch 1977/2000\n", - "Epoch 1978/2000\n", - "Epoch 1979/2000\n", - "Epoch 1980/2000\n", - "Epoch 1981/2000\n", - "Epoch 1982/2000\n", - "Epoch 1983/2000\n", - "Epoch 1984/2000\n", - "Epoch 1985/2000\n", - "Epoch 1986/2000\n", - "Epoch 1987/2000\n", - "Epoch 1988/2000\n", - "Epoch 1989/2000\n", - "Epoch 1990/2000\n", - "Epoch 1991/2000\n", - "Epoch 1992/2000\n", - "Epoch 1993/2000\n", - "Epoch 1994/2000\n", - "Epoch 1995/2000\n", - "Epoch 1996/2000\n", - "Epoch 1997/2000\n", - "Epoch 1998/2000\n", - "Epoch 1999/2000\n", - "Epoch 2000/2000\n" + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;31m# Ajustar el modelo a los datos de entrenamiento\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0mhistory\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Puedes cambiar el número de épocas (200 aquí)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;31m# Graficar la pérdida durante el entrenamiento\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/keras/src/utils/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;31m# To get the full stack trace, call:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;31m# `tf.debugging.disable_traceback_filtering()`\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 70\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwith_traceback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfiltered_tb\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 71\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;32mdel\u001b[0m \u001b[0mfiltered_tb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/tensorflow/python/framework/constant_op.py\u001b[0m in \u001b[0;36mconvert_to_eager_tensor\u001b[0;34m(value, ctx, dtype)\u001b[0m\n\u001b[1;32m 100\u001b[0m \u001b[0mdtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdtypes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_datatype_enum\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 102\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mEagerTensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 103\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 104\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Failed to convert a NumPy array to a Tensor (Unsupported object type float)." ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/c0lEQVR4nO3dfVwVdf7//+cB5QAKeMmFihepaV6hmRfYllYUoh9TuzJzF3PNPpX2qbXactvM3C1sXbPdrbS+pdaWWZZaP9MML6hMyjQptbR0VUy50BQQVETO+/eHy8mjgAgH5jA87rfmJmfmPXNebyfPeTLznhmHMcYIAADAJvysLgAAAMCbCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAfJ7D4dC0adMuer29e/fK4XBowYIF5bZLSUmRw+FQSkpKpeoD4FsINwAqZMGCBXI4HHI4HFq/fv15y40xio6OlsPh0P/8z/9YUCEAnEG4AXBRAgMDtXDhwvPmf/rpp/r555/ldDotqAoAfkW4AXBRhgwZosWLF+v06dMe8xcuXKjevXsrMjLSosoA4AzCDYCLMnr0aP3yyy9KTk52zzt16pTee+893XHHHaWuU1BQoIceekjR0dFyOp3q1KmT/v73v8sY49GusLBQf/jDH9S8eXOFhIToxhtv1M8//1zqNg8cOKDf//73ioiIkNPpVNeuXTVv3jzvdVTS4sWL1bt3bwUFBalZs2b67W9/qwMHDni0yczM1Lhx49SqVSs5nU5FRUVp+PDh2rt3r7vNpk2bFB8fr2bNmikoKEjt2rXT73//e6/WCuBX9awuAEDt0rZtW8XGxurtt99WQkKCJGnlypXKzc3V7bffrn/+858e7Y0xuvHGG7Vu3TqNHz9ePXv21KpVq/TII4/owIEDmj17trvtXXfdpTfffFN33HGHBgwYoLVr12ro0KHn1ZCVlaX+/fvL4XBo0qRJat68uVauXKnx48crLy9PDz74YJX7uWDBAo0bN059+vRRUlKSsrKy9I9//ENffPGFtmzZokaNGkmSbr75Zm3fvl3333+/2rZtq+zsbCUnJys9Pd39+oYbblDz5s312GOPqVGjRtq7d6+WLFlS5RoBlMEAQAXMnz/fSDJff/21eeGFF0xISIg5fvy4McaYW2+91VxzzTXGGGPatGljhg4d6l5v2bJlRpL561//6rG9W265xTgcDrNr1y5jjDFpaWlGkrnvvvs82t1xxx1GknnyySfd88aPH2+ioqLM4cOHPdrefvvtJiwszF3Xnj17jCQzf/78cvu2bt06I8msW7fOGGPMqVOnTHh4uOnWrZs5ceKEu93y5cuNJDN16lRjjDFHjx41kszMmTPL3PbSpUvdf28AaganpQBctNtuu00nTpzQ8uXLdezYMS1fvrzMU1IrVqyQv7+//u///s9j/kMPPSRjjFauXOluJ+m8ducehTHG6P3339ewYcNkjNHhw4fdU3x8vHJzc/XNN99UqX+bNm1Sdna27rvvPgUGBrrnDx06VJ07d9ZHH30kSQoKClJAQIBSUlJ09OjRUrdVcoRn+fLlKioqqlJdACqmToebzz77TMOGDVOLFi3kcDi0bNmyi1p/2rRp7ktjz54aNGhQPQUDPqJ58+aKi4vTwoULtWTJEhUXF+uWW24pte2+ffvUokULhYSEeMy/7LLL3MtL/vTz81P79u092nXq1Mnj9aFDh5STk6NXXnlFzZs395jGjRsnScrOzq5S/0pqOve9Jalz587u5U6nU88++6xWrlypiIgIXX311frb3/6mzMxMd/uBAwfq5ptv1lNPPaVmzZpp+PDhmj9/vgoLC6tUI4Cy1elwU1BQoJiYGL344ouVWv/hhx9WRkaGx9SlSxfdeuutXq4U8D133HGHVq5cqblz5yohIcF9hKK6uVwuSdJvf/tbJScnlzpdeeWVNVKLdObI0o8//qikpCQFBgbqiSee0GWXXaYtW7ZIOnMDwvfee0+pqamaNGmSeyB07969lZ+fX2N1AnVJnQ43CQkJ+utf/6qRI0eWurywsFAPP/ywWrZsqQYNGqhfv34edzBt2LChIiMj3VNWVpa+//57jR8/voZ6AFhn5MiR8vPz05dfflnmKSlJatOmjQ4ePKhjx455zN+xY4d7ecmfLpdLu3fv9mi3c+dOj9clV1IVFxcrLi6u1Ck8PLxKfSup6dz3LplXsrxE+/bt9dBDD+mTTz7Rtm3bdOrUKc2aNcujTf/+/fX0009r06ZNeuutt7R9+3YtWrSoSnUCKF2dDjcXMmnSJKWmpmrRokX67rvvdOutt2rw4MH66aefSm3/6quv6tJLL9VVV11Vw5UCNa9hw4aaM2eOpk2bpmHDhpXZbsiQISouLtYLL7zgMX/27NlyOBzuK65K/jz3aqvnn3/e47W/v79uvvlmvf/++9q2bdt573fo0KHKdMfDFVdcofDwcM2dO9fj9NHKlSv1ww8/uK/gOn78uE6ePOmxbvv27RUSEuJe7+jRo+dd8t6zZ09J4tQUUE24FLwM6enpmj9/vtLT09WiRQtJZ05Dffzxx5o/f76eeeYZj/YnT57UW2+9pccee8yKcgFLjB079oJthg0bpmuuuUaPP/649u7dq5iYGH3yySf64IMP9OCDD7rH2PTs2VOjR4/WSy+9pNzcXA0YMEBr1qzRrl27ztvmjBkztG7dOvXr108TJkxQly5ddOTIEX3zzTdavXq1jhw5UqV+1a9fX88++6zGjRungQMHavTo0e5Lwdu2bas//OEPkqQff/xR1113nW677TZ16dJF9erV09KlS5WVlaXbb79dkvT666/rpZde0siRI9W+fXsdO3ZM/+///T+FhoZqyJAhVaoTQOkIN2XYunWriouLdemll3rMLywsVNOmTc9rv3TpUh07dqxCH/ZAXeLn56cPP/xQU6dO1TvvvKP58+erbdu2mjlzph566CGPtvPmzVPz5s311ltvadmyZbr22mv10UcfKTo62qNdRESENm7cqOnTp2vJkiV66aWX1LRpU3Xt2lXPPvusV+q+8847FRwcrBkzZujRRx9VgwYNNHLkSD377LPu8UXR0dEaPXq01qxZo3//+9+qV6+eOnfurHfffVc333yzpDMDijdu3KhFixYpKytLYWFh6tu3r9566y21a9fOK7UC8OQw5x4vraMcDoeWLl2qESNGSJLeeecdjRkzRtu3b5e/v79H25KxNme77rrrFBoaqqVLl9ZUyQAAoBQcuSlDr169VFxcrOzs7AuOodmzZ4/WrVunDz/8sIaqAwAAZanT4SY/P9/jfP6ePXuUlpamJk2a6NJLL9WYMWOUmJioWbNmqVevXjp06JDWrFmjHj16eNwSft68eYqKinIPiAQAANap06elUlJSdM0115w3f+zYsVqwYIGKior017/+VW+88YYOHDigZs2aqX///nrqqafUvXt3SWfuudGmTRslJibq6aefrukuAACAc9TpcAMAAOyH+9wAAABbIdwAAABbqXMDil0ulw4ePKiQkBA5HA6rywEAABVgjNGxY8fUokUL+fmVf2ymzoWbgwcPnndDMAAAUDvs379frVq1KrdNnQs3ISEhks785YSGhlpcDQAAqIi8vDxFR0e7v8fLU+fCTcmpqNDQUMINAAC1TEWGlDCgGAAA2ArhBgAA2ArhBgAA2EqdG3MDAEB1KS4uVlFRkdVl1FoBAQEXvMy7Igg3AABUkTFGmZmZysnJsbqUWs3Pz0/t2rVTQEBAlbZDuAEAoIpKgk14eLiCg4O5SWwllNxkNyMjQ61bt67S3yHhBgCAKiguLnYHm6ZNm1pdTq3WvHlzHTx4UKdPn1b9+vUrvR0GFAMAUAUlY2yCg4MtrqT2KzkdVVxcXKXtEG4AAPACTkVVnbf+Dgk3AADAVgg3AADAK9q2bavnn3/e6jIINwAA1DUOh6Pcadq0aZXa7tdff627777bu8VWAldLeUnh6WIdOlaoen5+igwLtLocAADKlJGR4f75nXfe0dSpU7Vz5073vIYNG7p/NsaouLhY9epdODI0b97cu4VWEkduvGT7wTz95tl1uu3lVKtLAQCgXJGRke4pLCxMDofD/XrHjh0KCQnRypUr1bt3bzmdTq1fv167d+/W8OHDFRERoYYNG6pPnz5avXq1x3bPPS3lcDj06quvauTIkQoODlbHjh314YcfVnv/CDcAAHiRMUbHT522ZDLGeK0fjz32mGbMmKEffvhBPXr0UH5+voYMGaI1a9Zoy5YtGjx4sIYNG6b09PRyt/PUU0/ptttu03fffachQ4ZozJgxOnLkiNfqLI2lp6XmzJmjOXPmaO/evZKkrl27aurUqUpISCi1/YIFCzRu3DiPeU6nUydPnqzuUgEAqJATRcXqMnWVJe/9/fR4BQd456t9+vTpuv76692vmzRpopiYGPfrv/zlL1q6dKk+/PBDTZo0qczt3HnnnRo9erQk6ZlnntE///lPbdy4UYMHD/ZKnaWxNNy0atVKM2bMUMeOHWWM0euvv67hw4dry5Yt6tq1a6nrhIaGepwX5L4CAAB43xVXXOHxOj8/X9OmTdNHH32kjIwMnT59WidOnLjgkZsePXq4f27QoIFCQ0OVnZ1dLTWXsDTcDBs2zOP1008/rTlz5ujLL78sM9yUnBcEAMAXBdX31/fT4y17b29p0KCBx+uHH35YycnJ+vvf/64OHTooKChIt9xyi06dOlXuds59jILD4ZDL5fJanaXxmauliouLtXjxYhUUFCg2NrbMdvn5+WrTpo1cLpcuv/xyPfPMM2UGISsYee98JwCg9nE4HF47NeRLvvjiC915550aOXKkpDPfxyXDSnyN5X/7W7duVWxsrE6ePKmGDRtq6dKl6tKlS6ltO3XqpHnz5qlHjx7Kzc3V3//+dw0YMEDbt29Xq1atSl2nsLBQhYWF7td5eXnV0g9OjgEA7Kxjx45asmSJhg0bJofDoSeeeKLaj8BUluVXS3Xq1ElpaWn66quvdO+992rs2LH6/vvvS20bGxurxMRE9ezZUwMHDtSSJUvUvHlzvfzyy2VuPykpSWFhYe4pOjq6uroCAIBtPffcc2rcuLEGDBigYcOGKT4+XpdffrnVZZXKYbx53ZgXxMXFqX379uUGlrPdeuutqlevnt5+++1Sl5d25CY6Olq5ubkKDQ31Ss2StCX9qEa+tEHRTYL0+R+v9dp2AQC+7eTJk9qzZ4/atWunwEBu4loV5f1d5uXlKSwsrELf35YfuTmXy+XyCCPlKS4u1tatWxUVFVVmG6fTqdDQUI8JAADYl6VjbqZMmaKEhAS1bt1ax44d08KFC5WSkqJVq87cHyAxMVEtW7ZUUlKSpDPX3Pfv318dOnRQTk6OZs6cqX379umuu+6yshsefOs4GAAAdY+l4SY7O1uJiYnKyMhQWFiYevTooVWrVrlvGpSeni4/v18PLh09elQTJkxQZmamGjdurN69e2vDhg1lDkCuSdxvBwAA32BpuHnttdfKXZ6SkuLxevbs2Zo9e3Y1VgQAAGo7nxtzAwBAbeRj1+fUSt76OyTcAABQBSV34D1+/LjFldR+JXc79vev2p2WLb+Jn90Q3AGgbvH391ejRo3cz0sKDg5mHGYluFwuHTp0SMHBwapXr2rxhHDjJfxvDAB1V8kzD6v7gZB25+fnp9atW1c5HBJuAACoIofDoaioKIWHh6uoqMjqcmqtgIAAj6ukK4twAwCAl/j7+1d5vAiqjgHFAADAVgg3AADAVgg3XsLAeAAAfAPhBgAA2ArhBgAA2ArhBgAA2Arhxst4tggAANYi3HiJg3sUAwDgEwg3AADAVgg3AADAVgg3AADAVgg3AADAVgg3Xsa1UgAAWItw4yU8fgEAAN9AuAEAALZCuAEAALZCuAEAALZCuPEynr4AAIC1CDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDdeZrhHMQAAliLceAl3KAYAwDcQbgAAgK0QbgAAgK0QbgAAgK0QbryMOxQDAGAtwo2XOMSIYgAAfAHhBgAA2Iql4WbOnDnq0aOHQkNDFRoaqtjYWK1cubLcdRYvXqzOnTsrMDBQ3bt314oVK2qoWgAAUBtYGm5atWqlGTNmaPPmzdq0aZOuvfZaDR8+XNu3by+1/YYNGzR69GiNHz9eW7Zs0YgRIzRixAht27athisHAAC+ymGMbw2BbdKkiWbOnKnx48eft2zUqFEqKCjQ8uXL3fP69++vnj17au7cuRXafl5ensLCwpSbm6vQ0FCv1f39wTwN+efnCg9xauPjcV7bLgAAuLjvb58Zc1NcXKxFixapoKBAsbGxpbZJTU1VXJxncIiPj1dqampNlFghPpUUAQCog+pZXcDWrVsVGxurkydPqmHDhlq6dKm6dOlSatvMzExFRER4zIuIiFBmZmaZ2y8sLFRhYaH7dV5enncKPwePXwAAwDdYfuSmU6dOSktL01dffaV7771XY8eO1ffff++17SclJSksLMw9RUdHe23bAADA91gebgICAtShQwf17t1bSUlJiomJ0T/+8Y9S20ZGRiorK8tjXlZWliIjI8vc/pQpU5Sbm+ue9u/f79X6AQCAb7E83JzL5XJ5nEY6W2xsrNasWeMxLzk5ucwxOpLkdDrdl5qXTAAAwL4sHXMzZcoUJSQkqHXr1jp27JgWLlyolJQUrVq1SpKUmJioli1bKikpSZL0wAMPaODAgZo1a5aGDh2qRYsWadOmTXrllVes7IYH37r2DACAusfScJOdna3ExERlZGQoLCxMPXr00KpVq3T99ddLktLT0+Xn9+vBpQEDBmjhwoX685//rD/96U/q2LGjli1bpm7dulnVBTcGFAMA4Bt87j431a267nOzIzNPg5//XM0aOrXpz9znBgAAb6qV97kBAADwBsINAACwFcKN19Wps3wAAPgcwo2XOMSIYgAAfAHhBgAA2ArhBgAA2ArhBgAA2Arhxsvq1l2DAADwPYQbL+EOxQAA+AbCDQAAsBXCDQAAsBXCDQAAsBXCjZcxnhgAAGsRbryE8cQAAPgGwg0AALAVwg0AALAVwg0AALAVwg0AALAVwo2XGZ6/AACApQg3XsLjFwAA8A2EGwAAYCuEGwAAYCuEGwAAYCuEGy9jODEAANYi3HgNI4oBAPAFhBsAAGArhBsAAGArhBsAAGArhBsv4wbFAABYi3DjJdyhGAAA30C4AQAAtkK4AQAAtkK4AQAAtkK48TLDiGIAACxFuPESxhMDAOAbCDcAAMBWCDcAAMBWLA03SUlJ6tOnj0JCQhQeHq4RI0Zo586d5a6zYMECORwOjykwMLCGKgYAAL7O0nDz6aefauLEifryyy+VnJysoqIi3XDDDSooKCh3vdDQUGVkZLinffv21VDFAADA19Wz8s0//vhjj9cLFixQeHi4Nm/erKuvvrrM9RwOhyIjI6u7vErhWikAAKzlU2NucnNzJUlNmjQpt11+fr7atGmj6OhoDR8+XNu3by+zbWFhofLy8jym6uDg+QsAAPgEnwk3LpdLDz74oK688kp169atzHadOnXSvHnz9MEHH+jNN9+Uy+XSgAED9PPPP5faPikpSWFhYe4pOjq6uroAAAB8gMP4yF3n7r33Xq1cuVLr169Xq1atKrxeUVGRLrvsMo0ePVp/+ctfzlteWFiowsJC9+u8vDxFR0crNzdXoaGhXqldkvYcLtA1f09RSGA9bZ0W77XtAgCAM9/fYWFhFfr+tnTMTYlJkyZp+fLl+uyzzy4q2EhS/fr11atXL+3atavU5U6nU06n0xtlAgCAWsDS01LGGE2aNElLly7V2rVr1a5du4veRnFxsbZu3aqoqKhqqLASfOI4GAAAdZelR24mTpyohQsX6oMPPlBISIgyMzMlSWFhYQoKCpIkJSYmqmXLlkpKSpIkTZ8+Xf3791eHDh2Uk5OjmTNnat++fbrrrrss64fE4xcAAPAVloabOXPmSJIGDRrkMX/+/Pm68847JUnp6eny8/v1ANPRo0c1YcIEZWZmqnHjxurdu7c2bNigLl261FTZAADAh1kabioyljklJcXj9ezZszV79uxqqggAANR2PnMpOAAAgDcQbryM8cQAAFiLcOMl3KAYAADfQLgBAAC2QrgBAAC2QrgBAAC2QrjxMh95VBcAAHUW4cZLHNyjGAAAn0C4AQAAtkK4AQAAtkK4AQAAtkK48TKGEwMAYC3CjZdwh2IAAHwD4QYAANgK4QYAANgK4QYAANgK4QYAANgK4cbLePoCAADWItwAAABbIdwAAABbIdwAAABbIdwAAABbIdx4meEBDAAAWIpw4yU8fgEAAN9AuAEAALZCuAEAALZCuAEAALZCuPEy7lAMAIC1CDde4mBEMQAAPoFwAwAAbIVwAwAAbIVwAwAAbIVw42WMJwYAwFqEGy9hODEAAL6BcAMAAGyFcAMAAGzF0nCTlJSkPn36KCQkROHh4RoxYoR27tx5wfUWL16szp07KzAwUN27d9eKFStqoFoAAFAbWBpuPv30U02cOFFffvmlkpOTVVRUpBtuuEEFBQVlrrNhwwaNHj1a48eP15YtWzRixAiNGDFC27Ztq8HKy8GIYgAALOUwxnceGHDo0CGFh4fr008/1dVXX11qm1GjRqmgoEDLly93z+vfv7969uypuXPnXvA98vLyFBYWptzcXIWGhnqt9ozcE4pNWqsAfz/9+HSC17YLAAAu7vvbp8bc5ObmSpKaNGlSZpvU1FTFxcV5zIuPj1dqamqp7QsLC5WXl+cxAQAA+/KZcONyufTggw/qyiuvVLdu3cpsl5mZqYiICI95ERERyszMLLV9UlKSwsLC3FN0dLRX6wYAAL7FZ8LNxIkTtW3bNi1atMir250yZYpyc3Pd0/79+726fQAA4FvqWV2AJE2aNEnLly/XZ599platWpXbNjIyUllZWR7zsrKyFBkZWWp7p9Mpp9PptVoBAIBvs/TIjTFGkyZN0tKlS7V27Vq1a9fuguvExsZqzZo1HvOSk5MVGxtbXWVeFMPlUgAAWMrSIzcTJ07UwoUL9cEHHygkJMQ9biYsLExBQUGSpMTERLVs2VJJSUmSpAceeEADBw7UrFmzNHToUC1atEibNm3SK6+8Ylk/JMnBAxgAAPAJlh65mTNnjnJzczVo0CBFRUW5p3feecfdJj09XRkZGe7XAwYM0MKFC/XKK68oJiZG7733npYtW1buIGQAAFB3WHrkpiK32ElJSTlv3q233qpbb721GioCAAC1nc9cLQUAAOANhBsv8537PQMAUDdVKtzs379fP//8s/v1xo0b9eCDD1o+qNdKDsYTAwDgEyoVbu644w6tW7dO0pk7Bl9//fXauHGjHn/8cU2fPt2rBQIAAFyMSoWbbdu2qW/fvpKkd999V926ddOGDRv01ltvacGCBd6sDwAA4KJUKtwUFRW57/q7evVq3XjjjZKkzp07e1y2DQAAUNMqFW66du2quXPn6vPPP1dycrIGDx4sSTp48KCaNm3q1QJrG8YTAwBgrUqFm2effVYvv/yyBg0apNGjRysmJkaS9OGHH7pPV9U1jCcGAMA3VOomfoMGDdLhw4eVl5enxo0bu+fffffdCg4O9lpxAAAAF6tSR25OnDihwsJCd7DZt2+fnn/+ee3cuVPh4eFeLRAAAOBiVCrcDB8+XG+88YYkKScnR/369dOsWbM0YsQIzZkzx6sFAgAAXIxKhZtvvvlGV111lSTpvffeU0REhPbt26c33nhD//znP71aYG1TkedlAQCA6lOpcHP8+HGFhIRIkj755BPddNNN8vPzU//+/bVv3z6vFlhrMKIYAACfUKlw06FDBy1btkz79+/XqlWrdMMNN0iSsrOzFRoa6tUCAQAALkalws3UqVP18MMPq23bturbt69iY2MlnTmK06tXL68WCAAAcDEqdSn4Lbfcot/85jfKyMhw3+NGkq677jqNHDnSa8UBAABcrEqFG0mKjIxUZGSk++ngrVq1qrM38AMAAL6jUqelXC6Xpk+frrCwMLVp00Zt2rRRo0aN9Je//EUul8vbNdYqXCsFAIC1KnXk5vHHH9drr72mGTNm6Morr5QkrV+/XtOmTdPJkyf19NNPe7XI2sDB5VIAAPiESoWb119/Xa+++qr7aeCS1KNHD7Vs2VL33XdfnQw3AADAN1TqtNSRI0fUuXPn8+Z37txZR44cqXJRAAAAlVWpcBMTE6MXXnjhvPkvvPCCevToUeWiAAAAKqtSp6X+9re/aejQoVq9erX7Hjepqanav3+/VqxY4dUCaxuevgAAgLUqdeRm4MCB+vHHHzVy5Ejl5OQoJydHN910k7Zv365///vf3q6xVnAwnhgAAJ/gMF580uO3336ryy+/XMXFxd7apNfl5eUpLCxMubm5Xn1UxOH8Ql3x19WSpL0zhnptuwAA4OK+vyt15AYAAMBXEW4AAICtEG4AAICtXNTVUjfddFO5y3NycqpSS63GeGIAAHzDRYWbsLCwCy5PTEysUkEAAABVcVHhZv78+dVVBwAAgFcw5gYAANgK4aYaePHWQQAA4CIRbrzEwS2KAQDwCYQbAABgK4QbAABgK5aGm88++0zDhg1TixYt5HA4tGzZsnLbp6SkyOFwnDdlZmbWTMEAAMDnWRpuCgoKFBMToxdffPGi1tu5c6cyMjLcU3h4eDVVWDmMJwYAwDoXdZ8bb0tISFBCQsJFrxceHq5GjRp5v6AqYDgxAAC+oVaOuenZs6eioqJ0/fXX64svvii3bWFhofLy8jwmAABgX7Uq3ERFRWnu3Ll6//339f777ys6OlqDBg3SN998U+Y6SUlJCgsLc0/R0dE1WDEAAKhplp6WulidOnVSp06d3K8HDBig3bt3a/bs2fr3v/9d6jpTpkzR5MmT3a/z8vIIOAAA2FitCjel6du3r9avX1/mcqfTKafTWYMVAQAAK9Wq01KlSUtLU1RUlNVleOBiKQAArGPpkZv8/Hzt2rXL/XrPnj1KS0tTkyZN1Lp1a02ZMkUHDhzQG2+8IUl6/vnn1a5dO3Xt2lUnT57Uq6++qrVr1+qTTz6xqgtuPH0BAADfYGm42bRpk6655hr365KxMWPHjtWCBQuUkZGh9PR09/JTp07poYce0oEDBxQcHKwePXpo9erVHtsAAAB1m8PUsUdY5+XlKSwsTLm5uQoNDfXadnOOn1LP6cmSpN3PDJG/H4dyAADwlov5/q71Y24AAADORripBnXsYBgAAD6FcOMlDh7AAACATyDcAAAAWyHcAAAAWyHcAAAAWyHcVAOGEwMAYB3CjbcwnhgAAJ9AuAEAALZCuAEAALZCuAEAALZCuKkG3KAYAADrEG68xMGAYgAAfALhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhphoYHsAAAIBlCDdewsVSAAD4BsINAACwFcINAACwFcINAACwFcJNNeDxCwAAWIdw4yUOnr8AAIBPINwAAABbIdwAAABbIdwAAABbIdwAAABbIdx4CcOJAQDwDYQbAABgK4QbAABgK4QbAABgK4SbasAdigEAsA7hxku4QTEAAL6BcAMAAGyFcAMAAGzF0nDz2WefadiwYWrRooUcDoeWLVt2wXVSUlJ0+eWXy+l0qkOHDlqwYEG11wkAAGoPS8NNQUGBYmJi9OKLL1ao/Z49ezR06FBdc801SktL04MPPqi77rpLq1atquZKL44RI4oBALBKPSvfPCEhQQkJCRVuP3fuXLVr106zZs2SJF122WVav369Zs+erfj4+Ooqs0IcZ92jeNuBPPVt18TCagAAqLtq1Zib1NRUxcXFecyLj49XamqqRRWV7raXfaseAADqEkuP3FyszMxMRUREeMyLiIhQXl6eTpw4oaCgoPPWKSwsVGFhoft1Xl5etdcJAACsU6uO3FRGUlKSwsLC3FN0dLTVJQEAgGpUq8JNZGSksrKyPOZlZWUpNDS01KM2kjRlyhTl5ua6p/3799dEqQAAwCK16rRUbGysVqxY4TEvOTlZsbGxZa7jdDrldDqruzQAAOAjLD1yk5+fr7S0NKWlpUk6c6l3Wlqa0tPTJZ056pKYmOhuf8899+g///mP/vjHP2rHjh166aWX9O677+oPf/iDFeV74PELAAD4BkvDzaZNm9SrVy/16tVLkjR58mT16tVLU6dOlSRlZGS4g44ktWvXTh999JGSk5MVExOjWbNm6dVXX7X8MnAAAOA7LD0tNWjQIJlyHqFd2t2HBw0apC1btlRjVQAAoDarVQOKAQAALoRwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVw4yXcoRgAAN9AuAEAALZCuAEAALZCuAEAALZCuAEAALZCuPEShxhRDACALyDcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHceAmPXwAAwDcQbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbryE8cQAAPgGwg0AALAVwg0AALAVwg0AALAVwg0AALAVwo2XOLhFMQAAPoFwAwAAbIVwAwAAbIVwAwAAbIVwAwAAbIVw4yUMJwYAwDcQbgAAgK0QbgAAgK34RLh58cUX1bZtWwUGBqpfv37auHFjmW0XLFggh8PhMQUGBtZgtQAAwJdZHm7eeecdTZ48WU8++aS++eYbxcTEKD4+XtnZ2WWuExoaqoyMDPe0b9++GqwYAAD4MsvDzXPPPacJEyZo3Lhx6tKli+bOnavg4GDNmzevzHUcDociIyPdU0RERA1WXFZNVlcAAAAki8PNqVOntHnzZsXFxbnn+fn5KS4uTqmpqWWul5+frzZt2ig6OlrDhw/X9u3ba6JcAABQC1gabg4fPqzi4uLzjrxEREQoMzOz1HU6deqkefPm6YMPPtCbb74pl8ulAQMG6Oeffy61fWFhofLy8jymmmCMqZH3AQAAniw/LXWxYmNjlZiYqJ49e2rgwIFasmSJmjdvrpdffrnU9klJSQoLC3NP0dHRNVIn2QYAAGtYGm6aNWsmf39/ZWVleczPyspSZGRkhbZRv3599erVS7t27Sp1+ZQpU5Sbm+ue9u/fX+W6K4JsAwCANSwNNwEBAerdu7fWrFnjnudyubRmzRrFxsZWaBvFxcXaunWroqKiSl3udDoVGhrqMdUEF4duAACwRD2rC5g8ebLGjh2rK664Qn379tXzzz+vgoICjRs3TpKUmJioli1bKikpSZI0ffp09e/fXx06dFBOTo5mzpypffv26a677rKyG3Kcc7kU2QYAAGtYHm5GjRqlQ4cOaerUqcrMzFTPnj318ccfuwcZp6eny8/v1wNMR48e1YQJE5SZmanGjRurd+/e2rBhg7p06WJVF0rFkRsAAKzhMHXssp68vDyFhYUpNzfX66eo2j72kfvnHX8ZrMD6/l7dPgAAddXFfH/XuqulaguO3AAAYA3CTTUh2wAAYA3CTTUh2wAAYA3CTTXhtBQAANYg3FQTsg0AANYg3FSTZVsOWF0CAAB1EuGmmjz54Xbtys63ugwAAOocwk012nu4wOoSAACocwg31Si/8LTVJQAAUOcQbqpRwSnCDQAANY1wU41cXDEFAECNI9wAAABbIdxUIxeHbgAAqHGEm2pUVOyyugQAAOocwk01KirmyA0AADWNcFONOHIDAEDNI9x4UesmwR6vCTcAANQ8wo0XrXjgKo/Xpwg3AADUOMKNFzV01vN4XXSaMTcAANQ0wk014rQUAAA1j3BTjQg3AADUPMJNNWLMDQAANY9wU424zw0AADWPcFONik5z5AYAgJpGuKlG+YWneb4UAAA1jHBTjdbvOqwxr35ldRkAANQphJtqlvqfX3SyqNjqMgAAqDMINzXgQM4Jq0sAAKDOINzUgLwTRVaXAABAnUG4qQH5haetLgEAgDqDcFMDjp0k3AAAUFMINzUgn3ADAECNIdzUgP/vu4M6UnDK6jIAAKgTCDc14POfDmv4i+utLgMAgDqBcFND9h85odM8SBMAgGpHuKlB3O8GAIDqR7ipQQNnpui9zT9bXQYAALbmE+HmxRdfVNu2bRUYGKh+/fpp48aN5bZfvHixOnfurMDAQHXv3l0rVqyooUqr7uHF3+qFtT/xSAYAAKqJ5eHmnXfe0eTJk/Xkk0/qm2++UUxMjOLj45WdnV1q+w0bNmj06NEaP368tmzZohEjRmjEiBHatm1bDVdeeX//5Ed1fuJj/e+/N+mVz3br858OafO+I9pzuEAHc04o93iRTp12yRieKA4AwMVyGIu/Qfv166c+ffrohRdekCS5XC5FR0fr/vvv12OPPXZe+1GjRqmgoEDLly93z+vfv7969uypuXPnXvD98vLyFBYWptzcXIWGhnqvI//11lf79MxHP6h+PT/lHK/aYxf8HJKznr+c9f1U399P9fwcqufvUH0/P/n7OeTv55CfwyE/P8nP4ZDD4ZCf48zPfg55vHY4LtzGs53k0JnlDklySA6VrHPmZ8d/f5Z+bX/uutKv7d3rnrPN0tbVf9uUtu7Z2zx3XZ1Vs3uZn6PUbZ7p65mfdU5/S/rm536/0tc9u+/nrvvr6/PXLel/CcdZLxwe88/62VGRNufPrdD2St1G2XWdrSLtK9SmjG1ebF/KU97HXXkfhBf+lCxnu+WsW5X3NJV9zypst9hldODoCQUF+CsiNFAB9fzk7zjzWVRRJe9vZGTMmb8DY8x//zyrCveyX9uqnNe//nzu9s5ddv77GWO0ad9R7f2lQP0vaaoWYUFqFFxfQQH+CvCvvmMAVdkXFVu/vHWNtqTnaPbqHxVU31+/i22j9s0bnul3fX+53Bs/+zP3v3McjrN+/vXf9Nn/DJ31/RQeElh+gRfpYr6/63n1nS/SqVOntHnzZk2ZMsU9z8/PT3FxcUpNTS11ndTUVE2ePNljXnx8vJYtW1Zq+8LCQhUWFrpf5+XlVb3wcozp10a392kth6SCU6e1+1CBIkMD9emP2Qqs768t6TlqHBygj7YelMtIwQH+yjlepKJil46dPK2TRcU67TrzP5XLSCeKinWCU1gAUCOWfHPA6hIsMfWD7V7d3uWtG2nJfVd6dZsXw9Jwc/jwYRUXFysiIsJjfkREhHbs2FHqOpmZmaW2z8zMLLV9UlKSnnrqKe8UXEElv8WEBNZXz+hGkqRRfVpLkob3bClJeiCuY5nrnzrt0olTxSo8XazC0y6dLCpWUbFRscuoyOU682fxmT+NkVzm1z9d7te//uz6728qLmPkcl24fbHr7N90Sv8Nypgy5v93RVcZ6/73P7lcpozfys7Md52zffdvcv9t7zLnb/Ps38ZKtiGPmkv5bbGMdX9dVvq6Kvl7K2VdnduHs7Z59t9ribN/+zr7N62zjzJ4/AZ2gfae885uW8Z7lvHrXVnvX6FtltFeVei3Z83l/N1c4CDChY4xXOgo0IUOElV5+xdc/wINLrCFqtTvcEjBAfV04lSxTp4udn8GlXxmlMfIeB651LlHcc89Mnv+EQLPI6Ul9Z5/tNi9jXOPlpbznoH1/fRL/inlnShSUEA9ucyZz9nTxRc4evLffl1IRQ4uVvT4V0WOVFZkW40bBKiBs56OFpxS7oki1fc/c3Tf5TLy9z+zhZLPe+nXz76z/nB//pW0PbPMyFnPv4K9qR6WhpuaMGXKFI8jPXl5eYqOjrawogsLqOengHp+kupbXQoAALWOpeGmWbNm8vf3V1ZWlsf8rKwsRUZGlrpOZGTkRbV3Op1yOp3eKRgAAPg8S6+WCggIUO/evbVmzRr3PJfLpTVr1ig2NrbUdWJjYz3aS1JycnKZ7QEAQN1i+WmpyZMna+zYsbriiivUt29fPf/88yooKNC4ceMkSYmJiWrZsqWSkpIkSQ888IAGDhyoWbNmaejQoVq0aJE2bdqkV155xcpuAAAAH2F5uBk1apQOHTqkqVOnKjMzUz179tTHH3/sHjScnp4uP79fDzANGDBACxcu1J///Gf96U9/UseOHbVs2TJ169bNqi4AAAAfYvl9bmpadd/nBgAAeN/FfH9bfodiAAAAbyLcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAW7H88Qs1reSGzHl5eRZXAgAAKqrke7siD1aoc+Hm2LFjkqTo6GiLKwEAABfr2LFjCgsLK7dNnXu2lMvl0sGDBxUSEiKHw+HVbefl5Sk6Olr79++35XOr7N4/yf59pH+1n937aPf+SfbvY3X1zxijY8eOqUWLFh4P1C5NnTty4+fnp1atWlXre4SGhtryf9gSdu+fZP8+0r/az+59tHv/JPv3sTr6d6EjNiUYUAwAAGyFcAMAAGyFcONFTqdTTz75pJxOp9WlVAu790+yfx/pX+1n9z7avX+S/fvoC/2rcwOKAQCAvXHkBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhxktefPFFtW3bVoGBgerXr582btxodUkVkpSUpD59+igkJETh4eEaMWKEdu7c6dFm0KBBcjgcHtM999zj0SY9PV1Dhw5VcHCwwsPD9cgjj+j06dM12ZUyTZs27bz6O3fu7F5+8uRJTZw4UU2bNlXDhg118803Kysry2Mbvty/tm3bntc/h8OhiRMnSqp9+++zzz7TsGHD1KJFCzkcDi1btsxjuTFGU6dOVVRUlIKCghQXF6effvrJo82RI0c0ZswYhYaGqlGjRho/frzy8/M92nz33Xe66qqrFBgYqOjoaP3tb3+r7q65ldfHoqIiPfroo+revbsaNGigFi1aKDExUQcPHvTYRmn7fcaMGR5trOrjhfbhnXfeeV7tgwcP9mhTm/ehpFL/TTocDs2cOdPdxlf3YUW+F7z1uZmSkqLLL79cTqdTHTp00IIFC7zTCYMqW7RokQkICDDz5s0z27dvNxMmTDCNGjUyWVlZVpd2QfHx8Wb+/Plm27ZtJi0tzQwZMsS0bt3a5Ofnu9sMHDjQTJgwwWRkZLin3Nxc9/LTp0+bbt26mbi4OLNlyxazYsUK06xZMzNlyhQrunSeJ5980nTt2tWj/kOHDrmX33PPPSY6OtqsWbPGbNq0yfTv398MGDDAvdzX+5edne3Rt+TkZCPJrFu3zhhT+/bfihUrzOOPP26WLFliJJmlS5d6LJ8xY4YJCwszy5YtM99++6258cYbTbt27cyJEyfcbQYPHmxiYmLMl19+aT7//HPToUMHM3r0aPfy3NxcExERYcaMGWO2bdtm3n77bRMUFGRefvlly/uYk5Nj4uLizDvvvGN27NhhUlNTTd++fU3v3r09ttGmTRszffp0j/169r9bK/t4oX04duxYM3jwYI/ajxw54tGmNu9DY4xH3zIyMsy8efOMw+Ewu3fvdrfx1X1Yke8Fb3xu/uc//zHBwcFm8uTJ5vvvvzf/+te/jL+/v/n444+r3AfCjRf07dvXTJw40f26uLjYtGjRwiQlJVlYVeVkZ2cbSebTTz91zxs4cKB54IEHylxnxYoVxs/Pz2RmZrrnzZkzx4SGhprCwsLqLLdCnnzySRMTE1PqspycHFO/fn2zePFi97wffvjBSDKpqanGGN/v37keeOAB0759e+NyuYwxtXv/nful4XK5TGRkpJk5c6Z7Xk5OjnE6nebtt982xhjz/fffG0nm66+/drdZuXKlcTgc5sCBA8YYY1566SXTuHFjj/49+uijplOnTtXco/OV9sV4ro0bNxpJZt++fe55bdq0MbNnzy5zHV/pY1nhZvjw4WWuY8d9OHz4cHPttdd6zKst+/Dc7wVvfW7+8Y9/NF27dvV4r1GjRpn4+Pgq18xpqSo6deqUNm/erLi4OPc8Pz8/xcXFKTU11cLKKic3N1eS1KRJE4/5b731lpo1a6Zu3bppypQpOn78uHtZamqqunfvroiICPe8+Ph45eXlafv27TVT+AX89NNPatGihS655BKNGTNG6enpkqTNmzerqKjIY/917txZrVu3du+/2tC/EqdOndKbb76p3//+9x4Phq3t+6/Enj17lJmZ6bG/wsLC1K9fP4/91ahRI11xxRXuNnFxcfLz89NXX33lbnP11VcrICDA3SY+Pl47d+7U0aNHa6g3FZebmyuHw6FGjRp5zJ8xY4aaNm2qXr16aebMmR6H/H29jykpKQoPD1enTp1077336pdffnEvs9s+zMrK0kcffaTx48eft6w27MNzvxe89bmZmprqsY2SNt747qxzD870tsOHD6u4uNhjB0pSRESEduzYYVFVleNyufTggw/qyiuvVLdu3dzz77jjDrVp00YtWrTQd999p0cffVQ7d+7UkiVLJEmZmZml9r9kmdX69eunBQsWqFOnTsrIyNBTTz2lq666Stu2bVNmZqYCAgLO+9KIiIhw1+7r/TvbsmXLlJOTozvvvNM9r7bvv7OV1FNavWfvr/DwcI/l9erVU5MmTTzatGvX7rxtlCxr3LhxtdRfGSdPntSjjz6q0aNHezyE8P/+7/90+eWXq0mTJtqwYYOmTJmijIwMPffcc5J8u4+DBw/WTTfdpHbt2mn37t3605/+pISEBKWmpsrf3992+/D1119XSEiIbrrpJo/5tWEflva94K3PzbLa5OXl6cSJEwoKCqp03YQbuE2cOFHbtm3T+vXrPebffffd7p+7d++uqKgoXXfdddq9e7fat29f02VetISEBPfPPXr0UL9+/dSmTRu9++67VfrH44tee+01JSQkqEWLFu55tX3/1WVFRUW67bbbZIzRnDlzPJZNnjzZ/XOPHj0UEBCg//3f/1VSUpLP39b/9ttvd//cvXt39ejRQ+3bt1dKSoquu+46CyurHvPmzdOYMWMUGBjoMb827MOyvhd8HaelqqhZs2by9/c/b5R4VlaWIiMjLarq4k2aNEnLly/XunXr1KpVq3Lb9uvXT5K0a9cuSVJkZGSp/S9Z5msaNWqkSy+9VLt27VJkZKROnTqlnJwcjzZn77/a0r99+/Zp9erVuuuuu8ptV5v3X0k95f17i4yMVHZ2tsfy06dP68iRI7Vqn5YEm3379ik5OdnjqE1p+vXrp9OnT2vv3r2SakcfS1xyySVq1qyZx/+TdtiHkvT5559r586dF/x3KfnePizre8Fbn5tltQkNDa3yL56EmyoKCAhQ7969tWbNGvc8l8ulNWvWKDY21sLKKsYYo0mTJmnp0qVau3bteYdAS5OWliZJioqKkiTFxsZq69atHh9GJR/GXbp0qZa6qyI/P1+7d+9WVFSUevfurfr163vsv507dyo9Pd29/2pL/+bPn6/w8HANHTq03Ha1ef+1a9dOkZGRHvsrLy9PX331lcf+ysnJ0ebNm91t1q5dK5fL5Q52sbGx+uyzz1RUVORuk5ycrE6dOvnE6YySYPPTTz9p9erVatq06QXXSUtLk5+fn/t0jq/38Ww///yzfvnlF4//J2v7Pizx2muvqXfv3oqJiblgW1/Zhxf6XvDW52ZsbKzHNkraeOW7s8pDkmEWLVpknE6nWbBggfn+++/N3XffbRo1auQxStxX3XvvvSYsLMykpKR4XI54/PhxY4wxu3btMtOnTzebNm0ye/bsMR988IG55JJLzNVXX+3eRsklfzfccINJS0szH3/8sWnevLnPXCr90EMPmZSUFLNnzx7zxRdfmLi4ONOsWTOTnZ1tjDlzSWPr1q3N2rVrzaZNm0xsbKyJjY11r+/r/TPmzBV6rVu3No8++qjH/Nq4/44dO2a2bNlitmzZYiSZ5557zmzZssV9pdCMGTNMo0aNzAcffGC+++47M3z48FIvBe/Vq5f56quvzPr1603Hjh09LiPOyckxERER5ne/+53Ztm2bWbRokQkODq6xy4jL6+OpU6fMjTfeaFq1amXS0tI8/l2WXGWyYcMGM3v2bJOWlmZ2795t3nzzTdO8eXOTmJjoE30sr3/Hjh0zDz/8sElNTTV79uwxq1evNpdffrnp2LGjOXnypHsbtXkflsjNzTXBwcFmzpw5563vy/vwQt8Lxnjnc7PkUvBHHnnE/PDDD+bFF1/kUnBf869//cu0bt3aBAQEmL59+5ovv/zS6pIqRFKp0/z5840xxqSnp5urr77aNGnSxDidTtOhQwfzyCOPeNwnxRhj9u7daxISEkxQUJBp1qyZeeihh0xRUZEFPTrfqFGjTFRUlAkICDAtW7Y0o0aNMrt27XIvP3HihLnvvvtM48aNTXBwsBk5cqTJyMjw2IYv988YY1atWmUkmZ07d3rMr437b926daX+Pzl27FhjzJnLwZ944gkTERFhnE6nue66687r9y+//GJGjx5tGjZsaEJDQ824cePMsWPHPNp8++235je/+Y1xOp2mZcuWZsaMGTXVxXL7uGfPnjL/XZbcu2jz5s2mX79+JiwszAQGBprLLrvMPPPMMx7hwMo+lte/48ePmxtuuME0b97c1K9f37Rp08ZMmDDhvF8Ga/M+LPHyyy+boKAgk5OTc976vrwPL/S9YIz3PjfXrVtnevbsaQICAswll1zi8R5V4fhvRwAAAGyBMTcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcA6jyHw6Fly5ZZXQYALyHcALDUnXfeKYfDcd40ePBgq0sDUEvVs7oAABg8eLDmz5/vMc/pdFpUDYDajiM3ACzndDoVGRnpMZU89djhcGjOnDlKSEhQUFCQLrnkEr333nse62/dulXXXnutgoKC1LRpU919993Kz8/3aDNv3jx17dpVTqdTUVFRmjRpksfyw4cPa+TIkQoODlbHjh314YcfVm+nAVQbwg0An/fEE0/o5ptv1rfffqsxY8bo9ttv1w8//CBJKigoUHx8vBo3bqyvv/5aixcv1urVqz3Cy5w5czRx4kTdfffd2rp1qz788EN16NDB4z2eeuop3Xbbbfruu+80ZMgQjRkzRkeOHKnRfgLwEq88fhMAKmns2LHG39/fNGjQwGN6+umnjTFnnlB8zz33eKzTr18/c++99xpjjHnllVdM48aNTX5+vnv5Rx99ZPz8/NxPmm7RooV5/PHHy6xBkvnzn//sfp2fn28kmZUrV3qtnwBqDmNuAFjummuu0Zw5czzmNWnSxP1zbGysx7LY2FilpaVJkn744QfFxMSoQYMG7uVXXnmlXC6Xdu7cKYfDoYMHD+q6664rt4YePXq4f27QoIFCQ0OVnZ1d2S4BsBDhBoDlGjRocN5pIm8JCgqqULv69et7vHY4HHK5XNVREoBqxpgbAD7vyy+/PO/1ZZddJkm67LLL9O2336qgoMC9/IsvvpCfn586deqkkJAQtW3bVmvWrKnRmgFYhyM3ACxXWFiozMxMj3n16tVTs2bNJEmLFy/WFVdcod/85jd66623tHHjRr322muSpDFjxujJJ5/U2LFjNW3aNB06dEj333+/fve73ykiIkKSNG3aNN1zzz0KDw9XQkKCjh07pi+++EL3339/zXYUQI0g3ACw3Mcff6yoqCiPeZ06ddKOHTsknbmSadGiRbrvvvsUFRWlt99+W126dJEkBQcHa9WqVXrggQfUp08fBQcH6+abb9Zzzz3n3tbYsWN18uRJzZ49Ww8//LCaNWumW265peY6CKBGOYwxxuoiAKAsDodDS5cu1YgRI6wuBUAtwZgbAABgK4QbAABgK4y5AeDTOHMO4GJx5AYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANgK4QYAANjK/w+4bsgwKzcDJgAAAABJRU5ErkJggg==\n" - }, - "metadata": {} } ] }, { "cell_type": "code", "source": [ - "print(df_grouped.columns)" + "print(dfread_grouped.columns)" ], "metadata": { "id": "qIb-HBQV3mri", - "outputId": "9f2a50f4-7db5-4f3b-b870-8c9333552d04", + "outputId": "dc17f94b-734a-4b78-8c9f-a7f5ab1250b3", "colab": { "base_uri": "https://localhost:8080/" } }, - "execution_count": 12, + "execution_count": 196, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Index(['1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988',\n", - " '1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',\n", - " '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006',\n", - " '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',\n", - " '2016', '2017', '2018', '2019', '2020', '2021', 'Total'],\n", + "Index(['Region', '1980', '1981', '1982', '1983', '1984', '1985', '1986',\n", + " '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995',\n", + " '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004',\n", + " '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',\n", + " '2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021',\n", + " 'Total'],\n", " dtype='object')\n" ] } @@ -2478,25 +596,24 @@ { "cell_type": "code", "source": [ - "print(y_test)" + "print(y_test)\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "My8by2_2DI_X", - "outputId": "b830aab8-88aa-4018-ce87-ab056a4577cb" + "outputId": "9da389df-0e18-45e1-c40b-22ef5cdedf24" }, - "execution_count": 13, + "execution_count": 197, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Region\n", - "Middle East 2909.974107\n", - "Central & South America 3238.838636\n", - "Asia & Oceania 30933.492914\n", + "5 2909.974107\n", + "2 3238.838636\n", + "1 30933.492914\n", "Name: 2021, dtype: float64\n" ] } @@ -2510,21 +627,21 @@ ], "metadata": { "id": "LKSqeON6YN7Y", - "outputId": "83cc2a19-41cb-4ce2-cd21-7b19ea3cc682", + "outputId": "a6c85a83-da6b-46c3-ad7f-b6c548df445a", "colab": { "base_uri": "https://localhost:8080/" } }, - "execution_count": 19, + "execution_count": 198, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Region\n", - "Africa 1997.010181\n", - "Europe 11273.946852\n", - "North America 11829.410197\n", + "0 1997.010181\n", + "4 11273.946852\n", + "6 11829.410197\n", + "3 6892.277529\n", "Name: 2021, dtype: float64\n" ] } @@ -2533,11 +650,13 @@ { "cell_type": "code", "source": [ - "years = df_grouped.loc[X_test_index]['Total']\n", + "# Asegúrate de que 'Region' es una columna en tu DataFrame\n", + "region = dfread_grouped.loc[X_test_index]['Region']\n", "\n", "plt.figure(figsize=(12, 6))\n", "plt.plot(years, y_test, label='Datos Reales', marker='o')\n", "plt.plot(years, y_train, label='Predicciones', marker='x')\n", + "plt.plot(years, region, label='Region', marker='s') # Agrega la columna 'Region' al gráfico\n", "plt.title('Predicciones vs. Datos Reales')\n", "plt.xlabel('Año')\n", "plt.ylabel('Valor')\n", @@ -2548,21 +667,36 @@ ], "metadata": { "id": "2Y5furXoWET-", - "outputId": "095a1dbf-b540-477d-b743-eac9daf29065", + "outputId": "35156ef1-e6f0-4a8a-cd67-039a2644653c", "colab": { "base_uri": "https://localhost:8080/", - "height": 469 + "height": 814 } }, - "execution_count": 20, + "execution_count": 195, "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m12\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m6\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myears\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Datos Reales'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmarker\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'o'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myears\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Predicciones'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmarker\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'x'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myears\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mregion\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Region'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmarker\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m's'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Agrega la columna 'Region' al gráfico\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtitle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Predicciones vs. Datos Reales'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mplot\u001b[0;34m(scalex, scaley, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2810\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0m_copy_docstring_and_deprecators\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mAxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2811\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mscalex\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mscaley\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2812\u001b[0;31m return gca().plot(\n\u001b[0m\u001b[1;32m 2813\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mscalex\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mscalex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mscaley\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mscaley\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2814\u001b[0m **({\"data\": data} if data is not None else {}), **kwargs)\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mplot\u001b[0;34m(self, scalex, scaley, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1686\u001b[0m \"\"\"\n\u001b[1;32m 1687\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcbook\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnormalize_kwargs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmlines\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mLine2D\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1688\u001b[0;31m \u001b[0mlines\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_lines\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1689\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mline\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mlines\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1690\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_line\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mline\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 309\u001b[0m \u001b[0mthis\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 310\u001b[0m \u001b[0margs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 311\u001b[0;31m yield from self._plot_args(\n\u001b[0m\u001b[1;32m 312\u001b[0m this, kwargs, ambiguous_fmt_datakey=ambiguous_fmt_datakey)\n\u001b[1;32m 313\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36m_plot_args\u001b[0;34m(self, tup, kwargs, return_kwargs, ambiguous_fmt_datakey)\u001b[0m\n\u001b[1;32m 502\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 503\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 504\u001b[0;31m raise ValueError(f\"x and y must have same first dimension, but \"\n\u001b[0m\u001b[1;32m 505\u001b[0m f\"have shapes {x.shape} and {y.shape}\")\n\u001b[1;32m 506\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m2\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: x and y must have same first dimension, but have shapes (3,) and (4,)" + ] + }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/8AAAJECAYAAABAeJRUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmnklEQVR4nOzdd1yW9f7H8Rd7yRAVEEE2TtTU3FscqU0z22bDcpO/lp1OZaeO1TklaqnnNLRzylO2S00F9yAzy9wyxC1uQUHWfV+/P264lVygwA34fj4ePoTr/nLdnxvIeHFd93XbGYZhICIiIiIiIiI1lr2tBxARERERERGRiqX4FxEREREREanhFP8iIiIiIiIiNZziX0RERERERKSGU/yLiIiIiIiI1HCKfxEREREREZEaTvEvIiIiIiIiUsMp/kVERERERERqOMW/iIiIiIiISA2n+BcREbmK0NBQHnnkEev7K1aswM7OjhUrVpT7fc2ZMwc7Ozv27NlT7vsWKas/f++LiEj1pfgXEZEqrTiGi/+4uroSHR3NmDFjOHLkiK3HkyqkR48e1u8Te3t7vLy8aNSoEQ899BAJCQnXte8ZM2YwZ86c8hm0DPbs2VPi+9/e3h5fX19uueUWkpKSKn0eERGpvhxtPYCIiEhpvPbaa4SFhZGbm8uaNWuYOXMmCxcuZOvWrbi7u1fqLN26dePcuXM4OzuX+74feugh7r33XlxcXMp93zeCoKAgJk+eDEB2djapqal88803fPrpp9xzzz18+umnODk5lXm/M2bMoG7dujY7Cn7fffcxYMAATCYTycnJzJgxg549e7JhwwZiYmJsMpOIiFQvin8REakWbrnlFtq2bQvA448/Tp06dXj33Xf5/vvvue+++y75MdnZ2Xh4eJT7LPb29ri6upb7fgEcHBxwcHCokH3fCLy9vXnwwQdLbHvzzTcZN24cM2bMIDQ0lLfeestG01271q1bl3hcXbt25ZZbbmHmzJnMmDHDhpOJiEh1odP+RUSkWurVqxcA6enpADzyyCPUqlWLtLQ0BgwYgKenJw888AAAZrOZ+Ph4mjVrhqurK/7+/jz55JOcOnWqxD4Nw+D1118nKCgId3d3evbsybZt2y6678s953/9+vUMGDCA2rVr4+HhQYsWLZg6dWqJNTt37uSee+6hXr16uLm50ahRI/7yl79Yb7/cc/5nzJhBs2bNcHFxITAwkNGjR3P69OkSa3r06EHz5s3Zvn07PXv2xN3dnQYNGvD2229f9Bjy8vJ45ZVXiIyMxMXFheDgYJ577jny8vJKrEtISKBLly74+PhQq1YtGjVqxIsvvnjR/i7UvHlzevbsedF2s9lMgwYNuPvuu63bPv/8c9q0aYOnpydeXl7ExMRc9Dm7Xg4ODkybNo2mTZvy3nvvkZmZab1t9uzZ9OrVCz8/P1xcXGjatCkzZ84s8fGhoaFs27aNlStXWk+/79Gjh/X23bt3M2TIEHx9fXF3d6dDhw4sWLDgojmmT59Os2bNcHd3p3bt2rRt25a5c+de02Pq2rUrAGlpaSW2nz59mri4OIKDg3FxcSEyMpK33noLs9lcYt0///lPOnXqRJ06dXBzc6NNmzZ89dVXpbrv0t5HZXxtRUSk9HTkX0REqqXi6KlTp451W2FhIf369aNLly7885//tD4d4Mknn2TOnDkMHz6ccePGkZ6eznvvvcfvv//O2rVrraeBv/zyy7z++usMGDCAAQMG8Ntvv9G3b1/y8/OvOk9CQgKDBg2ifv36jB8/noCAAHbs2MH8+fMZP348AJs3b6Zr1644OTkxYsQIQkNDSUtL48cff+SNN9647L5fffVVJk2aRGxsLCNHjmTXrl3MnDmTDRs2lJgf4NSpU/Tv35+77rqLe+65h6+++ornn3+emJgYbrnlFsAS4bfddhtr1qxhxIgRNGnShC1btjBlyhSSk5P57rvvANi2bRuDBg2iRYsWvPbaa7i4uJCamsratWuv+LkYOnQor776KhkZGQQEBFi3r1mzhkOHDnHvvfdaP2f33XcfvXv3th6N37FjB2vXrrV+zsqLg4MD9913H3/9619Zs2YNAwcOBGDmzJk0a9aM2267DUdHR3788UdGjRqF2Wxm9OjRAMTHxzN27Fhq1apl/UWNv78/AEeOHKFTp07k5OQwbtw46tSpwyeffMJtt93GV199xZ133gnABx98wLhx47j77rsZP348ubm5bN68mfXr13P//feX+fEU/3Kodu3a1m05OTl0796dgwcP8uSTT9KwYUPWrVvHxIkTOXz4MPHx8da1U6dO5bbbbuOBBx4gPz+fzz//nCFDhjB//nzr5+ZSSnsflfm1FRGRUjJERESqsNmzZxuAkZiYaBw7dszYv3+/8fnnnxt16tQx3NzcjAMHDhiGYRjDhg0zAOOFF14o8fGrV682AOOzzz4rsX3RokUlth89etRwdnY2Bg4caJjNZuu6F1980QCMYcOGWbctX77cAIzly5cbhmEYhYWFRlhYmBESEmKcOnWqxP1cuK9u3boZnp6ext69ey+7pvjxpqenl5irb9++hslksq577733DMD4+OOPrdu6d+9uAMZ//vMf67a8vDwjICDAGDx4sHXbf//7X8Pe3t5YvXp1iTlmzZplAMbatWsNwzCMKVOmGIBx7Ngxoyx27dplAMb06dNLbB81apRRq1YtIycnxzAMwxg/frzh5eVlFBYWlmn/l9O9e3ejWbNml73922+/NQBj6tSp1m3Fs1yoX79+Rnh4eIltzZo1M7p3737R2ri4OAMo8bk8c+aMERYWZoSGhlq/ZrfffvsVZ7uc9PR0AzAmTZpkHDt2zMjIyDBWr15t3HzzzQZgfPnll9a1f/vb3wwPDw8jOTm5xD5eeOEFw8HBwdi3b99lH3d+fr7RvHlzo1evXiW2h4SElPjeL+19lPfXVkRErp9O+xcRkWohNjaWevXqERwczL333kutWrX49ttvadCgQYl1I0eOLPH+l19+ibe3N3369OH48ePWP23atKFWrVosX74cgMTERPLz8xk7dix2dnbWj4+Li7vqbL///jvp6enExcXh4+NT4rbifR07doxVq1bx6KOP0rBhw0uuuZTiueLi4rC3P/+/7SeeeAIvL6+LTi+vVatWieeGOzs7065dO3bv3l3ic9KkSRMaN25c4nNS/FSK4s9J8WP5/vvvLzql+0qio6Np1aoVX3zxhXWbyWTiq6++4tZbb8XNzc26/+zs7Ou+En9p1apVC4AzZ85YtxXPApCZmcnx48fp3r07u3fvLvH0gMtZuHAh7dq1o0uXLiXuZ8SIEezZs4ft27cDlsd64MABNmzYcE2zv/LKK9SrV4+AgAC6du3Kjh07eOedd0o8heLLL7+ka9eu1K5du8TXNTY2FpPJxKpVqy75uE+dOkVmZiZdu3blt99+u+Icpb2Pyv7aiojI1em0fxERqRbef/99oqOjcXR0xN/fn0aNGpWIYQBHR0eCgoJKbEtJSSEzMxM/P79L7vfo0aMA7N27F4CoqKgSt9erV6/EqdWXUvwUhObNm192TXF8X2nNpRTP1ahRoxLbnZ2dCQ8Pt95eLCgo6KJfJtSuXZvNmzdb309JSWHHjh3Uq1fvkvdZ/DkZOnQoH374IY8//jgvvPACvXv35q677uLuu+++6HP/Z0OHDuXFF1/k4MGDNGjQgBUrVnD06FGGDh1qXTNq1CjmzZvHLbfcQoMGDejbty/33HMP/fv3v8pn5dqcPXsWAE9PT+u2tWvX8sorr5CUlEROTk6J9ZmZmXh7e19xn3v37qV9+/YXbW/SpIn19ubNm/P888+TmJhIu3btiIyMpG/fvtx///107ty5VLOPGDGCIUOGkJuby7Jly5g2bRomk6nEmpSUFDZv3nzVryvA/Pnzef3119m0aVOJ6zxc6RdRZbmPyv7aiojI1Sn+RUSkWmjXrp31av+X4+LiclGUms1m/Pz8+Oyzzy75MZeLmOrqcq8UYBiG9W2z2UxMTAzvvvvuJdcGBwcDlqPDq1atYvny5SxYsIBFixbxxRdf0KtXL5YsWXLFVyUYOnQoEydO5MsvvyQuLo558+bh7e1dIv78/PzYtGkTixcv5qeffuKnn35i9uzZPPzww3zyySfX8vCvaOvWrQBERkYCll/a9O7dm8aNG/Puu+8SHByMs7MzCxcuZMqUKWU62+FqmjRpwq5du5g/fz6LFi3i66+/ZsaMGbz88stMmjTpqh8fFRVFbGwsAIMGDcLBwYEXXniBnj17Wv+7MJvN9OnTh+eee+6S+4iOjgZg9erV3HbbbXTr1o0ZM2ZQv359nJycmD179lUvQFja+6jsr62IiFyd4l9ERGq0iIgIEhMT6dy5c4lTnf8sJCQEsBzZDA8Pt24/duzYRa8KcKn7AEtcFgfanxXvszhAS6t4rl27dpWYKz8/n/T09Mve39Xm/eOPP+jdu/dVj/Ta29vTu3dvevfuzbvvvsvf//53/vKXv7B8+fIr3ndYWBjt2rXjiy++YMyYMXzzzTfccccduLi4lFjn7OzMrbfeyq233orZbGbUqFH861//4q9//as10suDyWRi7ty5uLu7W0/R//HHH8nLy+OHH34o8VSM4qc9XOhyn6eQkBB27dp10fadO3daby/m4eHB0KFDGTp0KPn5+dx111288cYbTJw4scwvHfmXv/yFDz74gJdeeolFixYBlq/r2bNnr/o98fXXX+Pq6srixYtLfD1mz5591fst7X1A5X1tRUSkdPScfxERqdHuueceTCYTf/vb3y66rbCw0PpyebGxsTg5OTF9+vQSR8kvvEL65bRu3ZqwsDDi4+Mvevm94n3Vq1ePbt268fHHH7Nv375LrrmU2NhYnJ2dmTZtWol1H330EZmZmVe8Mvvl3HPPPRw8eJAPPvjgotvOnTtHdnY2ACdPnrzo9latWgFc9JKAlzJ06FB+/vlnPv74Y44fP17ilH+AEydOlHjf3t6eFi1alNh/QUEBO3fu5PDhw1d/YJdhMpkYN24cO3bsYNy4cXh5eQHnz5K48POamZl5yQj28PC46GsLMGDAAH755ReSkpKs27Kzs/n3v/9NaGgoTZs2veRjdXZ2pmnTphiGQUFBQZkfk4+PD08++SSLFy9m06ZNgOXrmpSUxOLFiy9af/r0aQoLCwHL47azsyvxtIE9e/ZYX+XhSkp7H6X52oqISOXSkX8REanRunfvzpNPPsnkyZPZtGkTffv2xcnJiZSUFL788kumTp3K3XffTb169XjmmWeYPHkygwYNYsCAAfz+++/89NNP1K1b94r3YW9vz8yZM7n11ltp1aoVw4cPp379+uzcuZNt27ZZQ2natGl06dKF1q1bM2LECMLCwtizZw8LFiywBtyf1atXj4kTJzJp0iT69+/Pbbfdxq5du5gxYwY333xziYv7ldZDDz3EvHnzeOqpp1i+fDmdO3fGZDKxc+dO5s2bx+LFi2nbti2vvfYaq1atYuDAgYSEhHD06FFmzJhBUFBQiQvcXc4999zDM888wzPPPIOvr+9FR4sff/xxTp48Sa9evQgKCmLv3r1Mnz6dVq1aWZ8zf/DgQZo0acKwYcOYM2fOVe8zMzOTTz/9FLC8LF1qairffPMNaWlp3HvvvSV+CdS3b1/r0eknn3ySs2fP8sEHH+Dn53fRLxvatGnDzJkzef3114mMjMTPz49evXrxwgsv8L///Y9bbrmFcePG4evryyeffEJ6ejpff/219Wkoffv2JSAggM6dO+Pv78+OHTt47733GDhwYIlrEJTF+PHjiY+P58033+Tzzz/n2Wef5YcffmDQoEE88sgjtGnThuzsbLZs2cJXX33Fnj17qFu3LgMHDuTdd9+lf//+3H///Rw9epT333+fyMjIEteGuJTS3kdpvrYiIlLJbPhKAyIiIldV/NJ3GzZsuOK6YcOGGR4eHpe9/d///rfRpk0bw83NzfD09DRiYmKM5557zjh06JB1jclkMiZNmmTUr1/fcHNzM3r06GFs3br1opc7+/NL/RVbs2aN0adPH8PT09Pw8PAwWrRocdHL3W3dutW48847DR8fH8PV1dVo1KiR8de//vWix1v8Un/F3nvvPaNx48aGk5OT4e/vb4wcOfKilxW83EvdDRs2zAgJCSmxLT8/33jrrbeMZs2aGS4uLkbt2rWNNm3aGJMmTTIyMzMNwzCMpUuXGrfffrsRGBhoODs7G4GBgcZ999130cu8XUnnzp0NwHj88ccvuu2rr74y+vbta/j5+RnOzs5Gw4YNjSeffNI4fPiwdU3xS91d+Pm/nOKXOiz+U6tWLSMqKsp48MEHjSVLllzyY3744QejRYsWhqurqxEaGmq89dZbxscff3zR1yAjI8MYOHCg4enpaQAlXvYvLS3NuPvuu61f03bt2hnz588vcT//+te/jG7duhl16tQxXFxcjIiICOPZZ5+1fq4vp/jx/+Mf/7jk7Y888ojh4OBgpKamGoZheZnBiRMnGpGRkYazs7NRt25do1OnTsY///lPIz8/3/pxH330kREVFWW4uLgYjRs3NmbPnm288sorxp9/NPzz935p76M0X1sREalcdoZxhXMNRURERERERKTa03P+RURERERERGo4xb+IiIiIiIhIDaf4FxEREREREanhFP8iIiIiIiIiNZziX0RERERERKSGU/yLiIiIiIiI1HCOth6gpjCbzRw6dAhPT0/s7OxsPY6IiIiIiIjUcIZhcObMGQIDA7G3v/KxfcV/OTl06BDBwcG2HkNERERERERuMPv37ycoKOiKaxT/5cTT0xOwfNK9vLxsPM3lFRQUsGTJEvr27YuTk5Otxymz6j6/iIiIiIhUfdWlO7KysggODrb26JUo/stJ8an+Xl5eVT7+3d3d8fLyqtLfxJdT3ecXEREREZGqr7p1R2meeq4L/omIiIiIiIjUcIp/ERERERERkRpO8S8iIiIiIiJSw+k5/5XIMAwKCwsxmUw2m6GgoABHR0dyc3NtOse1qu7zl4aDgwOOjo56yUgRERERESk3iv9Kkp+fz+HDh8nJybHpHIZhEBAQwP79+6tlXFb3+UvL3d2d+vXr4+zsbOtRRERERESkBlD8VwKz2Ux6ejoODg4EBgbi7Oxss3A1m82cPXuWWrVqYW9f/Z71Ud3nvxrDMMjPz+fYsWOkp6cTFRVVIx+niIiIiIhULsV/JcjPz8dsNhMcHIy7u7tNZzGbzeTn5+Pq6loto7K6z18abm5uODk5sXfvXutjFRERERERuR41s56qqJoaq1L+9L0iIiIiIiLlSYUhIiIiIiIiUsMp/kVERERERERqOMV/NWMyGySlneD7TQdJSjuByWzYeqQbVo8ePYiLi7P1GCIiIiIiIlel+K9GFm09TJe3lnHfBz8z/vNN3PfBz3R5axmLth6usPt85JFHsLOzw87ODicnJ/z9/enTpw8ff/wxZrO5TPuaM2cOPj4+FTPoBXr06GGd2dXVlejoaCZPnoxh6BclIiIiIiJyY1L8VxOLth5m5Ke/cTgzt8T2jMxcRn76W4X+AqB///4cPnyYPXv28NNPP9GzZ0/Gjx/PoEGDKCwsrLD7vR5PPPEEhw8fZteuXUycOJGXX36ZWbNm2XosERERERERm1D824hhGOTkF5bqz5ncAl75YRuXOm5dvO3VH7ZzJrfgqvu6lqPfLi4uBAQE0KBBA1q3bs2LL77I999/z08//cScOXOs6959911iYmLw8PAgODiYUaNGcfbsWQBWrFjB8OHDyczMtB6Vf/XVVwE4deoUDz/8MLVr18bd3Z1bbrmFlJQU63737t3LrbfeSu3atfH09KRjx44sXLjwijO7u7sTEBBASEgIw4cPp0WLFiQkJFhvz8vL45lnnqFBgwZ4eHjQvn17VqxYYb39xIkT3HfffTRo0AB3d3diYmL43//+d8X7vNo+L3wcHh4eNGvW7KqPQ0REREREKpfJbLA+/SQbj9uxPv1kjXmqtaOtB7hRnSsw0fTlxeWyLwPIyMol5tUlV1279dU+5XKfvXr1omXLlnzzzTc8/vjjgOXl6aZNm0ZYWBi7d+9m1KhRPPfcc8yYMYNOnToRHx/Pyy+/zK5duwCoVasWYHlqQUpKCj/88ANeXl48//zzDBgwgO3bt+Pk5MTo0aPJz89n1apVuLm58euvv1o/9moMw2DNmjXs3LmTqKgo6/YxY8awfft2Pv/8cwIDA/n222/p378/W7ZsISoqitzcXNq0acPzzz+Pl5cXCxYs4KGHHiIiIoJ27dpd8r6uts8LH4eHhwfbt28v9eMQEREREZGKt2jrYSb9uL3ojGsH/pPyK/W9XXnl1qb0b17f1uNdF8W/XLPGjRuzefNm6/sXXvwuNDSU119/naeeeooZM2bg7OyMt7c3dnZ2BAQEWNcVR//atWvp1KkTAJ999hnBwcF89913DBkyhH379jF48GBiYmIwm83UrVsXLy+vK842Y8YMPvzwQ/Lz8ykoKMDV1ZVx48YBsG/fPmbPns2+ffsIDAwE4JlnnmHRokXMnj2bv//97zRo0IBnnnnGur+xY8eyePFi5s2bd8n4L80+L3wcAOHh4WX5dIuIiIiISAUqfqr1n4/zFz/VeuaDrav1LwAU/zbi5uTA9tf6lWrtL+kneWT2hquumzP8ZtqF+V5xjYuDHWdyr7ik1AzDwM7Ozvp+YmIikydPZufOnWRlZVFYWEhubi45OTm4u7tfch87duzA0dGR9u3bW7fVqVOHRo0asWPHDgDGjRvHyJEjWbJkCb1796Zv377WXxRczgMPPMBf/vIXTp06xSuvvEKnTp2sH7NlyxZMJhPR0dElPiYvL486deoAYDKZ+Pvf/868efM4ePAg+fn55OXlXfZxlGafFz6O2NhYBg8eTIsWLa74OEREREREpOKZzAaTftx+2ada2wGTftxOn6YBONjbXWJV1af4txE7OzvcnUv36e8aVY/63q5kZOZe8pvRDgjwdqVrVL2rfiOW9Qr9V7Jjxw7CwsIA2LNnD4MGDWLkyJG88cYb+Pr6smbNGh577DHy8/MvG82l8fjjj9OvXz8WLFjA4sWLefPNN/nnP/9pPZJ/Kd7e3kRGRgIwb948IiMj6dChA7GxsZw9exYHBwc2btyIg4NDiY8rPg3/H//4B1OnTiU+Pt56HYO4uDjy8/MveX+l2eeFj2PJkiVMnjyZd955h7Fjx17z50ZERERERK7fL+knL7q4+oUM4HBmLr+kn6RjRJ3KG6wc6YJ/1YCDvR2v3NoUsIT+hYrff+XWppX6G6hly5axZcsWBg8eDMDGjRsxm8288847dOjQgejoaA4dOlTiY5ydnTGZTCW2NWnShMLCQtavX2/dduLECXbt2kXTpk2t24KDg3nqqaf4+uuvGT16NB9++GGpZ61Vqxbjx4/nmWeewTAMbrrpJkwmE0ePHiUyMrLEn+KnJKxdu5bbb7+dBx98kJYtWxIeHk5ycvJl76M0+7zwcXzzzTf83//9Hx988EGpH4eIiIiIiJQ/k9lg4ZbSvXra0fI6jdoGFP/VRP/m9Zn5YGsCvF1LbA/wdq3w557k5eWRkZHBwYMH+e233/j73//O7bffzqBBg3j44YcBiIyMpKCggOnTp7N7927++9//XvTSeqGhoZw9e5alS5dy/PhxcnJyiIqK4vbbb+eJJ55gzZo1/PHHHzz44IM0aNCA22+/HbBcS2Dx4sWkp6fz22+/sWbNGho3blymx/Dkk0+SnJzM119/TXR0NA888AAPP/ww33zzDenp6fzyyy9MnjyZBQsWABAVFUVCQgLr1q1jx44dPPnkkxw5cuSy+y/NPv/8OJYvX06TJk3K9DhERERERKR8mMwG3286SN8pK/nvz3tL9TF+nq5XX1RF6bT/aqR/8/r0aRrAL+knOXomFz9PV9qF+Vb4Ef9FixZRv359HB0dqV27Ni1btmTatGkMGzYMe3vL749atmzJu+++y1tvvcXEiRPp1q0bkydPtv5yAKBTp0489dRTDB06lBMnTvDKK6/w6quvMnv2bMaPH8+gQYPIz8+nW7duLFy4ECcnJ8Dy/PvRo0dz4MABvLy86NWrF9OnTy/TY/D19eXhhx/m1Vdf5a677mL27Nm8/vrr/N///R8HDx6kbt26dOjQgUGDBgHw0ksvsXv3bvr164e7uzsjRozgjjvuIDMz87L3cbV9/vlx9O/fnylTppTpcYiIiIiIyPUxmw0WbDnM1KUppB61vDS5l6sjZgOy8wqv+FTrq11jrSqzM67lhd/lIllZWXh7e5OZmXnRlehzc3NJT08nLCwMV1fb/qbIbDaTlZWFl5eXNdyrk+o+f2lVpe8ZEREREZGawGw2+GlrBlOXJpN85Hz0P941nEc6h7Iu9TgjP/0NoMQvAIoPtVbFq/1fqUP/TEf+RUREREREpMYymw0Wb8tg6tIUdmacAcDT1ZHHuoQxvHMY3m6WM46Ln2o96cftJS7+F+Dtyiu3Nq1y4V9Win8RERERERGpcQzDYPG2I8QnJp+PfhdHhncJ47Eu56P/QsVPtU5KPcqS1evp27U9HSP9qu3L+11I8S8iIiIiIiI1hmEYJGw/QnxiCtsPZwFQy8WR4Z1DeaxLGD7uzlf8eAd7O9qH+XJih0H7SrjGWmVR/IuIiIiIiEi1ZxgGS3ccJX5pMlsPWqLfw9mBRzqH8niXcGp7XDn6azrFv4iIiIiIiFRbhmGwfNdR4hNT2HzA8upc7s4ODOsUyhNdw/G9waO/mE0vlz5z5kxatGiBl5cXXl5edOzYkZ9++sl6e25uLqNHj6ZOnTrUqlWLwYMHX/Ra6/v27WPgwIG4u7vj5+fHs88+S2FhYYk1K1asoHXr1ri4uBAZGcmcOXMumuX9998nNDQUV1dX2rdvzy+//FIhj1lERERERESuX3H03zFjHY/O+ZXNBzJxc3Lgye7hrH6uJ8/3b6zwv4BN4z8oKIg333yTjRs38uuvv9KrVy9uv/12tm3bBsDTTz/Njz/+yJdffsnKlSs5dOgQd911l/XjTSYTAwcOJD8/n3Xr1vHJJ58wZ84cXn75Zeua9PR0Bg4cSM+ePdm0aRNxcXE8/vjjLF682Lrmiy++YMKECbzyyiv89ttvtGzZkn79+nH06NHK+2SIiIiIiIjIVRmGwcrkY9w5Yx3DZ2/gj/2ncXWyZ0S3cFY/35OJtzShTi0XW49Z5dgZhmFcfVnl8fX15R//+Ad333039erVY+7cudx9990A7Ny5kyZNmpCUlESHDh346aefGDRoEIcOHcLf3x+AWbNm8fzzz3Ps2DGcnZ15/vnnWbBgAVu3brXex7333svp06dZtGgRAO3bt+fmm2/mvffeAyyvJR8cHMzYsWN54YUXSjX3lV5fsSq9ZrvZbCYrKwsvLy/s7W36u59rUt3nL62q9D0jIiIiIlIVGIbB6pTjxCcm89u+0wC4OtnzYPsQnuweQT3P8gv+goICFi5cyIABA3ByuvhVAaqKK3Xon1WZ5/ybTCa+/PJLsrOz6dixIxs3bqSgoIDY2FjrmsaNG9OwYUNr/CclJRETE2MNf4B+/foxcuRItm3bxk033URSUlKJfRSviYuLAyA/P5+NGzcyceJE6+329vbExsaSlJR02Xnz8vLIy8uzvp+VZbmgREFBAQUFBSXWFhQUYBgGZrMZs9lc9k9OOSr+XU/xPNVNdZ+/tMxmM4ZhUFBQgIODg63HERERERGxGcMwWLf7JNOXpbGxKPpdHO257+YgRnQNs0b/nzvsehTvqzz3WRHKMp/N43/Lli107NiR3NxcatWqxbfffkvTpk3ZtGkTzs7O+Pj4lFjv7+9PRkYGABkZGSXCv/j24tuutCYrK4tz585x6tQpTCbTJdfs3LnzsnNPnjyZSZMmXbR9yZIluLu7l9jm6OhIQEAAZ8+eJT8//wqfjcpz5swZW49QwqhRo8jMzOSzzz4DYNCgQcTExDB58uRLri/L/H/ed3WQn5/PuXPnWLVq1UXXsBARERERuVGkZNrx03570s5YXm7P0c6gk79BbINCvNnNhtW7K/T+ExISKnT/1ysnJ6fUa20e/40aNWLTpk1kZmby1VdfMWzYMFauXGnrsa5q4sSJTJgwwfp+VlYWwcHB9O3b95Kn/e/fv59atWpd8yncdivexLB3gG7PXnzjqn9gZzZh9Lj6UxQMw+DMmTN4enpiZ3f116scPnw4//nPfwBwcnKiYcOGPPTQQ0ycOBFHx/L79nFycsLR0dH6ufvuu+9wcnLC09PzuuYHy8UcDcO46mkwVUlubi5ubm5069ZNp/2LiIiIyA1nffpJpi1L45c9pwBwcrDj3rZBjOgWRoBXxf98XFBQQEJCAn369Knyp/2Xls3j39nZmcjISADatGnDhg0bmDp1KkOHDiU/P5/Tp0+XOPp/5MgRAgICAAgICLjoqvzFrwZw4Zo/v0LAkSNH8PLyws3NDQcHBxwcHC65pngfl+Li4oKLy8XPKXFycrrom8NkMmFnZ4e9vf21P0/dwRG75W+AnR10f+789pVvw4q/Q8+/YFeKfRefKl88z9XY2dnRv39/Zs+eTV5eHgsXLmT06NE4OzuXeKoEWI5WOztf29U07ezsSsxUt27dcpkfoHbt2tc0ky3Z29tjZ2d3ye8nEREREZGa6pf0k0xJSCZp9wkAnB3sGXpzMKN6RlDf263S56nqP4+XZbYqd8U0s9lMXl4ebdq0wcnJiaVLl1pv27VrF/v27aNjx44AdOzYkS1btpS4Kn9CQgJeXl40bdrUuubCfRSvKd6Hs7Mzbdq0KbHGbDazdOlS65oKYRiQn136Px1HW476L38Dlr1u2bbsdcv73Z613F6a/VzD9R1dXFwICAggJCSEkSNHEhsbyw8//MAjjzzCHXfcwRtvvEFgYCCNGjUCYP/+/dxzzz34+Pjg6+vL7bffzp49e6z7M5lMTJgwAR8fH+rUqcNzzz3Hn6872aNHD+t1GcByjYXnn3+ekJAQ/P39iY6O5qOPPrLevm3bNgYNGoSXlxeenp507dqVtLQ0AOucF+5r3Lhx+Pn54erqSpcuXdiwYYP19hUrVmBnZ8fSpUtp27Yt7u7udOrUiV27dpWY8fvvv6d169a4uroSHh7OpEmTrKfoG4bBq6++SsOGDXFxcSEwMJBx48aV+XMvIiIiInIj+HXPSR748Gfu+VcSSbtP4ORgx4MdGrLi2R787Y7mNgn/msamR/4nTpzILbfcQsOGDTlz5gxz585lxYoVLF68GG9vbx577DEmTJiAr68vXl5ejB07lo4dO9KhQwcA+vbtS9OmTXnooYd4++23ycjI4KWXXmL06NHWo/JPPfUU7733Hs899xyPPvooy5YtY968eSxYsMA6x4QJExg2bBht27alXbt2xMfHk52dzfDhwyvuwRfkwN8Dr+1jV/3D8udy71/JCweu7T4v4ObmxokTlt/ELV26FC8vL+tzYQoKCujXrx8dO3Zk9erVODo68vrrr9O/f382b96Ms7Mz77zzDnPmzOHjjz+mSZMmvPPOO3z77bf06tXrsvf58MMPk5SURHx8PBERERw7doyTJ08CcPDgQbp160aPHj1YtmwZXl5erF279rLPlX/uuef4+uuv+eSTTwgJCeHtt9+mX79+pKam4uvra133l7/8hXfeeYd69erx1FNP8eijj7J27VoAVq9ezcMPP8y0adOsv2gYMWIEAK+88gpff/01U6ZM4fPPP6dZs2ZkZGTwxx9/XPfnXkRERESkJtm49xTxicmsTjkOWE7vH9I2mNE9I2ngo+AvTzaN/6NHj/Lwww9z+PBhvL29adGiBYsXL6ZPnz4ATJkyBXt7ewYPHkxeXh79+vVjxowZ1o93cHBg/vz5jBw5ko4dO+Lh4cGwYcN47bXXrGvCwsJYsGABTz/9NFOnTiUoKIgPP/yQfv36WdcMHTqUY8eO8fLLL5ORkUGrVq1YtGjRRRcBvNEZhsHSpUtZvHgxY8eO5dixY3h4ePDhhx9aT/f/9NNPMZvNfPjhh9bn5M+ePRsfHx9WrFhB3759iY+PZ+LEidx1112A5eUZFy9efNn7TU5OZt68eSQkJNCrVy+ysrJo0aKF9bT/999/H29vbz7//HPraS/R0dGX3Fd2djYzZ85kzpw53HLLLQB88MEHJCQk8NFHH/Hss+evqfDGG2/QvXt3AF544QUGDhxIbm4urq6uTJo0iRdeeIFhw4YBEB4ezt/+9jeee+45XnnlFfbt20dAQACxsbHWayW0a9fumj/3IiIiIiI1ye/7TjElMYVVyccAcLS3Y0jbIEb3jCSotvtVPlquhU3j/8LTti/F1dWV999/n/fff/+ya0JCQli4cOEV99OjRw9+//33K64ZM2YMY8aMueKacuXkDi8eKvvHrZliOcrv4AymfMsp/12eLv3HO7hCbtmu9D9//nxq1apFQUEBZrOZ+++/n1dffZXRo0cTExNT4nn+f/zxB6mpqRddqC83N5e0tDQyMzM5fPgw7du3t97m6OhI27ZtLzr1v9imTZtwcHCwhvilbu/atWupnu+SlpZGQUEBnTt3tm5zcnKiXbt27Nixo8TaFi1aWN+uX78+YPmFVcOGDfnjjz9Yu3Ytb7zxhnWNyWQiNzeXnJwchgwZQnx8POHh4fTv358BAwZw6623lutFEkVEREREqptN+08Tn5jMil2W6Hewt+Pu1kGM6RVJsK+ivyKpRGzFzg6cPcr2MSvftoR/z79YLvq38m3Lc/4dnEteBPBKii6YVxY9e/Zk5syZODs7ExgYWCJgPTxKPoazZ8/Spk2bS76sXr169cp832B5msH13H6tLvxlQvFZDMUXHDx79iyTJk2ynr1wIVdXV4KDg9m1axeJiYkkJCQwatQo/vGPf7By5coqfcEQEREREZGKsPnAaeITU1i203K9Ngd7O+66qQFje0XRsI6ivzIo/quL4tAvDn84//fyN0q+X848PDysr8hwNa1bt+aLL77Az8/vsi+tV79+fdavX0+3bt0AKCwsZOPGjbRu3fqS62NiYjCbzaxcufKS1wVo0aIFn3zyCQUFBVcN64iICJydnVm7di0hISGA5ToFGzZsKHGBwdI8zl27dl3x8+Lm5satt97KrbfeyujRo2ncuDFbtmy57OMUEREREalpthzIJD4xmaVF0W9vB3feFMTYXpGE1i3jwVC5Lor/6sJsKhn+xYrfN5sqf6ZLeOCBB/jHP/7B7bffzmuvvUZQUBB79+7lm2++4bnnniMoKIjx48fz5ptvEhUVRePGjXn33Xc5ffr0ZfcZGhrKsGHDePTRR60X/Dtx4gTHjx/nnnvuYcyYMUyfPp17772XiRMn4u3tzc8//0y7du2sr0BQzMPDg5EjR/Lss8/i6+tLw4YNefvtt8nJyeGxxx4r9eN8+eWXGTRoEA0bNuTuu+/G3t6eP/74g61bt/L6668zZ84cTCYT7du3x93dnU8//RQ3NzfrLxxERERERGqyrQcziU9MIXGH5SXV7e3gjlYNGNs7ijBFv00o/quLnhMvf1sFHfG/Fu7u7qxatYrnn3+eu+66izNnztCgQQN69+5tPRPg//7v/zh8+DDDhg3D3t6eRx99lDvvvJPMzMzL7nfmzJm8+OKLjBkzhhMnTtCwYUNefPFFAOrUqcOyZct49tln6d69Ow4ODrRq1arE8/ov9Oabb2I2m3nooYc4c+YMbdu2ZfHixdSuXbvUj7Nfv37Mnz+f1157jbfeegsnJycaN27M448/DoCPjw9vvvkmEyZMwGQyERMTw48//kidOnVKfR8iIiIiItXN9kNZxCcms2S7Jfrt7OD2loGM7R1FRL1aNp7uxmZnXO4qa1ImWVlZeHt7k5mZedHp7rm5uaSnpxMWFoarq6uNJrQwm81kZWXh5eVlvVp+dVLd5y+tqvQ9IyIiIiJyNTszsohPSGHRtgzAEv23tghkXO8oIv2qX/QXFBSwcOFCBgwYUKWv2XWlDv0zHfkXERERERGRa7Ir4wxTlyazcMv56B8YU5/xvaOI8ve8ykdLZVL8i4iIiIiISJmkHDlD/NIUFm45TPG55ANj6jOudxSNAhT9VZHiX0REREREREol9egZpi5NZf7mQ9bov6V5AONjo2gccOXTzsW2FP8iIiIiIiJyRWnHzjJtaQo//HE++vs182d872iaBir6qwPFfyXStRWltPS9IiIiIiJVQfrxbKYtTeH7TQcxF/2I2qepP3GxUTQL9LbtcFImiv9KUHx1yJycHNzc3Gw8jVQHOTk5AFX6yqIiIiIiUnPtOZ7NtGUpfPf7+eiPbeJHXGw0zRso+qsjxX8lcHBwwMfHh6NHjwLg7u6OnZ2dTWYxm83k5+eTm5tbLV8qr7rPfzWGYZCTk8PRo0fx8fHBwcHB1iOJiIiIyA1k74lspi9L5dvfD2Iqqv5ejf2Ii42iRZCPbYeT66L4ryQBAQEA1l8A2IphGJw7dw43Nzeb/QLielT3+UvLx8fH+j0jIiIiIlLR9p/MYfqyFL7+7Xz092hUj7jYaFoF+9h2OCkXiv9KYmdnR/369fHz86OgoMBmcxQUFLBq1Sq6detWLU8pr+7zl4aTk5OO+IuIiIhIpdh/Mof3l6fy1cYDFBZFf7foesTFRtG6YW0bTyflSfFfyRwcHGwadg4ODhQWFuLq6lot47m6zy8iIiIiUhUcPH2O95al8uWv+63R3zWqLnGx0bQJUfTXRIp/ERERERGRG8Sh0+d4f3kq837dT4HJEv2dI+vwdGw0bUN9bTydVCTFv4iIiIiISA13OPMcM5an8cWG/eSbzAB0iqhDXGw07cIU/TcCxb+IiIiIiEgNdSQrlxnLU/nfL+ejv0O4L3Gx0XQIr2Pj6aQyKf5FRERERERqmKNZucxYkcbcX/aRX2iJ/nahvsT1iaJTRF0bTye2oPgXERERERGpIY6eyWXWit18tn4veUXR3zakNk/3iaZTRJ0a/XLZcmWKfxERERERkWru2Jk8/rUyjU/X7yW3wBL9rRv68HSfaLpE1lX0i+JfRERERESkujp+No9/r9rNf5L2WKO/VbAl+rtFKfrlPMW/iIiIiIhINXPCGv17OVdgAqBlkDdxfaLpEV1P0S8XUfyLiIiIiIhUEyez861H+nPyLdHfIsibuNgoejbyU/TLZSn+RUREREREqrhT2fl8sHo3n6zbQ3ZR9Ddv4EVc72h6N1H0y9Up/kVERERERKqo0zn5fLg6nTnr9nA2rxCApvW9iIuNok9Tf0W/lJriX0REREREpIrJPFfAR2vSmb0mnTNF0d+kKPr7KvrlGij+RUREREREqois3AI+XpPOR2vSOZNrif7GAZ5F0R+Avb2iX66N4l9ERERERMTGzuQWMHvtHj5cvZusouiP9q9FXGw0/Zsp+uX6Kf5FRERERERs5ExuAZ+s28MHq9PJPFcAQJRfLcbHRjGgeX1Fv5Qbxb+IiIiIiEglO5tXWBT9uzmdY4n+iHoejI+NZmBMfRwU/VLOFP8iIiIiIiKVJDuvkP8k7eXfq9I4VRT94fU8GN87ikEtAhX9UmEU/yIiIiIiIhUsJ784+ndzMjsfgLC6HozrHcltLRso+qXCKf5FREREREQqyLl8E//9eQ//WrmbE0XRH1LHnXG9ori9VSCODvY2nlBuFIp/ERERERGRcnYu38Rn6/cya2Uax89aor+hrztje0Vy500NFP1S6RT/IiIiIiIi5SS3wMRn6/cxa2Uax87kARBU241xvaK4s3UDnBT9YiOKfxERERERkeuUW2Dif7/sY+aKNI4WRX8DHzfG9opkcJsgRb/YnOJfRERERETkGuUWmPhiw35mrEjlSNb56B/dM5K72wTh7Kjol6pB8S8iIiIiIlJGeYUm5m3Yz/vL08jIygWgvrcro3tGck/bYEW/VDmKfxERERERkVLKLzQz79f9zFieyqFMS/QHeLkyumcE99wcjIujg40nFLk0xb+IiIiIiMhV5Bea+WrjAd5fnsrB0+cA8PdyYVSPSIbeHIyrk6JfqjbFv4iIiIiIyGUUmMx8vfEA7y1P5cApS/TX83RhVI8I7mvXUNEv1YbiX0RERERE5E8KTGa+/e0g05ensP+kJfrr1nJhZI8IHmiv6JfqR/EvIiIiIiJSpNBk5tvfDzJ9WSr7TuYAULeWM091j+CB9iG4OSv6pXpS/IuIiIiIyA2v0GTm+02HmL4shT0nLNFfx8OZJ7uH82CHENydlU5Svek7WEREREREblgms8EPfxxk2tJU0o9nA+Dr4cyIbuE83FHRLzWHvpNFREREROSGYzIbzN98iKlLU9h9zBL9td2deKJbOMM6huLholSSmkXf0SIiIiIicsMwmQ0WbDnMtKUppB49C4CPuxNPdA1nWKdQain6pYbSd7aIiIiIiNR4ZrPBwq2HmZqYQkpR9Hu7OfFE1zCGdQrF09XJxhOKVCzFv4iIiIiI1Fhms8GibRlMTUxh15EzAHi5OvJ413Ae6RyKl6JfbhCKfxERERERqXHMZoMl2zOIT0xhZ4Yl+j1dHHmsaxjDO4fh7abolxuL4l9ERERERGoMwzBYsv0I8Ykp7DicBUAtF0ce7RzKY13C8XZX9MuNSfEvIiIiIiLVnmEYJO44SnxiMtsOWaLfw9mB4Z3DeLxrGD7uzjaeUMS2FP8iIiIiIlJtGYbBsp1HiU9MYcvBTMAS/cM6hfJE13Bqeyj6RUDxLyIiIiIi1ZBhGCzfZYn+zQcs0e/u7MDDHUMZ0S0cX0W/SAmKfxERERERqTYMw2BF8jHiE1P4Y/9pANycHHi4YwgjuoVTp5aLbQcUqaIU/yIiIiIiUuUZhsGqlOPEJybz+77TALg62VuP9NdV9ItckeJfRERERESqLMMwWJN6nPjEFDbuPQWAi6M9D3UI4cnuEdTzVPSLlIbiX0REREREqhzDMFiXdoL4xGQ27Dkf/Q+0D+GpHuH4ebraeEKR6kXxLyIiIiIiVUpS2gmmJCbzS/pJAJwd7bm/XUNG9YjAz0vRL3ItFP8iIiIiIlIlrN9tif6fdxdFv4M997ULZmSPSAK8Ff0i10PxLyIiIiIiNrVhz0mmJCSzLu0EYIn+oTcHM6pnBPW93Ww8nUjNYG/LO588eTI333wznp6e+Pn5cccdd7Br164Sa3r06IGdnV2JP0899VSJNfv27WPgwIG4u7vj5+fHs88+S2FhYYk1K1asoHXr1ri4uBAZGcmcOXMumuf9998nNDQUV1dX2rdvzy+//FLuj1lERERERCw27j3Jgx+uZ8isJNalncDJwY4H2jdkxbM9+NsdzRX+IuXIpkf+V65cyejRo7n55pspLCzkxRdfpG/fvmzfvh0PDw/ruieeeILXXnvN+r67u7v1bZPJxMCBAwkICGDdunUcPnyYhx9+GCcnJ/7+978DkJ6ezsCBA3nqqaf47LPPWLp0KY8//jj169enX79+AHzxxRdMmDCBWbNm0b59e+Lj4+nXrx+7du3Cz8+vkj4jIiIiIiI138a9p4hPTGZ1ynEAHO3tGNI2mNE9Iwiq7X6VjxaRa2HT+F+0aFGJ9+fMmYOfnx8bN26kW7du1u3u7u4EBARcch9Llixh+/btJCYm4u/vT6tWrfjb3/7G888/z6uvvoqzszOzZs0iLCyMd955B4AmTZqwZs0apkyZYo3/d999lyeeeILhw4cDMGvWLBYsWMDHH3/MCy+8UBEPX0RERETkhvL7vlNMSUxhVfIxwBL9d7cJYnTPSIJ9Ff0iFalKPec/MzMTAF9f3xLbP/vsMz799FMCAgK49dZb+etf/2o9+p+UlERMTAz+/v7W9f369WPkyJFs27aNm266iaSkJGJjY0vss1+/fsTFxQGQn5/Pxo0bmThxovV2e3t7YmNjSUpKuuSseXl55OXlWd/PysoCoKCggIKCgmv8DFS84tmq8oxXUt3nFxEREbkRbT6QybRlaawsOtLvYG/Hna0CGdk9jIZF0a+f76QqqS7dUZb5qkz8m81m4uLi6Ny5M82bN7duv//++wkJCSEwMJDNmzfz/PPPs2vXLr755hsAMjIySoQ/YH0/IyPjimuysrI4d+4cp06dwmQyXXLNzp07Lznv5MmTmTRp0kXblyxZUuJpCVVVQkKCrUe4LtV9fhEREZEbwf6zsHC/PdtPWy41Zo9B23oG/YLM1HXZy9af97LVxjOKXElV746cnJxSr60y8T969Gi2bt3KmjVrSmwfMWKE9e2YmBjq169P7969SUtLIyIiorLHtJo4cSITJkywvp+VlUVwcDB9+/bFy8vLZnNdTUFBAQkJCfTp0wcnJydbj1Nm1X1+ERERkRvBtkNZTFuWxrJdltP77e3g9pb1Gd0jgpA6Vf9AmUh16Y7iM9BLo0rE/5gxY5g/fz6rVq0iKCjoimvbt28PQGpqKhEREQQEBFx0Vf4jR44AWK8TEBAQYN124RovLy/c3NxwcHDAwcHhkmsud60BFxcXXFxcLtru5ORUpb85ilWXOS+nus8vIiIiUhNtO5RJfGIKCdstP1fb28HtrRowtlck4fVq2Xg6kbKr6t1Rltls+lJ/hmEwZswYvv32W5YtW0ZYWNhVP2bTpk0A1K9fH4COHTuyZcsWjh49al2TkJCAl5cXTZs2ta5ZunRpif0kJCTQsWNHAJydnWnTpk2JNWazmaVLl1rXiIiIiIjIpe04nMWT//2VgdPWkLD9CHZ2cHurQBImdGfK0FYKf5EqwKZH/kePHs3cuXP5/vvv8fT0tD5H39vbGzc3N9LS0pg7dy4DBgygTp06bN68maeffppu3brRokULAPr27UvTpk156KGHePvtt8nIyOCll15i9OjR1iPzTz31FO+99x7PPfccjz76KMuWLWPevHksWLDAOsuECRMYNmwYbdu2pV27dsTHx5OdnW29+r+IiIiIiJS0MyOLqYkp/LTV8nO8nR0MahHI+N6RRPp52ng6EbmQTeN/5syZAPTo0aPE9tmzZ/PII4/g7OxMYmKiNcSDg4MZPHgwL730knWtg4MD8+fPZ+TIkXTs2BEPDw+GDRvGa6+9Zl0TFhbGggULePrpp5k6dSpBQUF8+OGH1pf5Axg6dCjHjh3j5ZdfJiMjg1atWrFo0aKLLgIoIiIiInKjSz5yhqmJKSzYchiwRP+AmPqM7x1FtL+iX6Qqsmn8G4ZxxduDg4NZuXLlVfcTEhLCwoULr7imR48e/P7771dcM2bMGMaMGXPV+xMRERERuRGlHj1DfFH0F/8oPyAmgPG9o2kUoOgXqcqqxAX/RERERESk6ko9epZpS1P4cfMha/T3bxbA+NgomtSvuq90JSLnKf5FREREROSSdh+zRP8PfxzCXBT9fZv6Mz42imaB3rYdTkTKRPEvIiIiIiIlpB/PZvrSFL7bdNAa/X2a+jO+dxTNGyj6Raojxb+IiIiIiACw90Q205am8t2mg5iKqj+2iR9xsdGKfpFqTvEvIiIiInKD23cih+nLUvjm9/PR36uxH3GxUbQI8rHtcCJSLhT/IiIiIiI3qP0nc3hvWSpf/3aAwqLo79GoHnGx0bQK9rHtcCJSrhT/IiIiIiI3mAOncnh/eSpf/no++rtF1yMuNorWDWvbeDoRqQiKfxERERGRG8TB0+eKon8/BSZL9HeNqktcbBRtQnxtPJ2IVCTFv4iIiIhIDXc40xL9X2w4H/2dI+sQFxvNzaGKfpEbgeJfRERERKSGysjMZcaKVD7/ZT/5JjMAHcPrEBcbRfvwOjaeTkQqk+JfRERERKSGOZKVy8wVacz9ZR/5hZbobxfmy9Ox0XSMUPSL3IgU/yIiIiIiNcTRrFxmrkxj7vp95BVF/82hta3Rb2dnZ+MJRcRWFP8iIiIiItXc0TO5zFqxm8/W77VGf9uQ2jzdJ5pOin4RQfEvIiIiIlJtHTuTx79WpvHp+r3kFliiv3VDH57uE02XyLqKfhGxUvyLiIiIiFQzJ87m8a9Vu/lv0l7OFZgAaBVsif5uUYp+EbmY4l9EREREpJo4mZ3Pv1al8Z9156O/ZZA3cX2i6RFdT9EvIpel+BcRERERqeJOZefz79W7+WTdHnLyLdEf08Cbp/tE0bORn6JfRK5K8S8iIiIiUkWdzsnng9W7mbN2D9lF0d8s0IunY6Pp3UTRLyKlp/gXEREREaliMnMK+HDNbmav3cPZvEIAmtb3Ii42ij5N/RX9IlJmin8RERERkSoi81wBH69J5+M16Zwpiv7GAZ7ExUbTt6k/9vaKfhG5Nop/EREREREby8otYPaaPXy4Zjdnci3R38jfk7jYKPo1C1D0i8h1U/yLiIiIiNjImdwCZq/dw4erd5NVFP3R/rUY3zuaW5or+kWk/Cj+RUREREQq2dm8QuasTeeD1elknisAINKvFuN7RzEwpr6iX0TKneJfRERERKSSnM0r5JN1e/hg9W5O51iiP6KeB+N6RzGoRSAOin4RqSCKfxERERGRCpadV8h/kvby71VpnCqK/vC6lui/taWiX0QqnuJfRERERKSC5OQX8t+kvfxr1W5OZucDEFrHnXG9o7itZSCODvY2nlBEbhSKfxERERGRcnYu38SnP+/lX6vSOH7WEv0hddwZ2yuKO1op+kWk8in+RURERETKSW6BJfpnrdzN8bN5AAT7ujG2VxR33dRA0S8iNqP4FxERERG5TrkFJuau38fMlWkcO2OJ/qDaboztFcldrYNwUvSLiI0p/kVERERErlFugYnPf9nHjBVpHC2K/gY+bozpFcng1kE4Oyr6RaRqUPyLiIiIiJRRXqGJLzbsZ8byNDKycgEI9HZldK9IhrQJVvSLSJWj+BcRERERKaW8QhPzfj3AjOWpHM60RH99b1dG9YzknrZBuDg62HhCEZFLU/yLiIiIiFxFfqGZLzfu5/1lqRwqiv4AL1dG9Yxg6M3Bin4RqfIU/yIiIiIil1FgMvPVxgO8tyyVg6fPAeDv5cKoHpEMvTkYVydFv4hUD4p/EREREZE/KTCZ+ea3A0xflsqBU5bor+fpwqgeEdzXrqGiX0SqHcW/iIiIiEiRQpOZb34/yHvLUtl3MgeAurVcGNkjggfaK/pFpPpS/IuIiIjIDa/QZOa7TYeYviyFvSeKo9+Zp7pH8ED7ENycFf0iUr0p/kVERETkhlVoMvPDH4eYviyV9OPZANTxcObJ7uE82CEEd2f9uCwiNYP+NRMRERGRG47JbPDjH4eYtjSF3UXRX9vdiSe7R/BQhxA8XPRjsojULPpXTURERERuGCazwfzNluhPO2aJfh93J0Z0C2dYx1BFv4jUWPrXTURERERqPLPZYMGWw0xdmkLq0bMAeLsVRX+nUGop+kWkhtO/ciIiIiJSY5nNBj9tzWDq0mSSj1ii38vVkSe6hvNI51A8XZ1sPKGISOVQ/IuIiIhIjWM2GyzelsHUpSnszDgDgKerI493CWd4l1C8FP0icoNR/IuIiIhIjWE2GyzZnkF84gXR7+LIo13CeLRLGN5uin4RuTEp/kVERESk2jMMgyXbjzA1MYXth7MAqOXiyKOdQ3msSzje7op+EbmxKf5FREREpNoyDIPEHUeJT0xm2yFL9Hs4OzC8cxiPdw3Dx93ZxhOKiFQNin8RERERqXYMw2DZzqPEJ6aw5WAmAO7ODjzSKZQnuoZT20PRLyJyIcW/iIiIiFQbhmGwYtcx4hOT+ePA+eh/uGMoI7qF46voFxG5JMW/iIiIiFR5hmGwMvkY8YkpbNp/GgA3Jwce7hjCiG7h1KnlYtsBRUSqOMW/iIiIiFRZhmGwOuU48YnJ/LbvNACuTvY81CGEJ7tHUFfRLyJSKop/EREREalyDMNgbeoJ4hOT+XXvKQBcHO15sEMIT3YPx8/T1cYTiohUL4p/EREREalS1qUdJz4hhV/2nATA2dGeB9o3ZGT3CPy8FP0iItdC8S8iIiIiVcLPu08wJSGZ9enno//+dg0Z2SMCf0W/iMh1UfyLiIiIiE2t332C+MQUknafAMDZwZ572wUzqkckAd6KfhGR8qD4FxERERGb2LDnJFMSklmXZol+Jwc7ht5sif5AHzcbTyciUrMo/kVERESkUm3ce5IpCSmsST0OWKJ/SNtgRveMpIGiX0SkQij+RURERKRS/LbvFFMSklmdYol+R3s7hrQNYnTPSIJqu9t4OhGRmk3xLyIiIiIVatP+00xJSGZl8jEAHOztuLt1EGN6RRLsq+gXEakMin8RERERqRCbD1iif/mu89F/100NGNsrioZ1FP0iIpVJ8S8iIiIi5WrLgUziE5NZuvMoAPZ2cOdNQYztFUloXQ8bTycicmNS/IuIiIhIudh6MJP4xBQSdxwBLNF/R6sGjO0dRZiiX0TEphT/IiIiInJdth/KIj4xmSXbz0f/bS0DGds7ioh6tWw8nYiIANjb8s4nT57MzTffjKenJ35+ftxxxx3s2rWrxJrc3FxGjx5NnTp1qFWrFoMHD+bIkSMl1uzbt4+BAwfi7u6On58fzz77LIWFhSXWrFixgtatW+Pi4kJkZCRz5sy5aJ7333+f0NBQXF1dad++Pb/88ku5P2YRERGRmmJnRhZP/XcjA6atZsn2I9jZwe2tAlnydHfi771J4S8iUoXYNP5XrlzJ6NGj+fnnn0lISKCgoIC+ffuSnZ1tXfP000/z448/8uWXX7Jy5UoOHTrEXXfdZb3dZDIxcOBA8vPzWbduHZ988glz5szh5Zdftq5JT09n4MCB9OzZk02bNhEXF8fjjz/O4sWLrWu++OILJkyYwCuvvMJvv/1Gy5Yt6devH0ePHq2cT4aIiIhINbEr4wyjPttI//jVLNqWgZ0d3NoykISnuzH13puI9FP0i4hUNXaGYRi2HqLYsWPH8PPzY+XKlXTr1o3MzEzq1avH3LlzufvuuwHYuXMnTZo0ISkpiQ4dOvDTTz8xaNAgDh06hL+/PwCzZs3i+eef59ixYzg7O/P888+zYMECtm7dar2ve++9l9OnT7No0SIA2rdvz80338x7770HgNlsJjg4mLFjx/LCCy9cNGteXh55eXnW97OysggODub48eN4eXlV2OfoehUUFJCQkECfPn1wcnKy9ThlVt3nFxERqc5Sjp7lveVp/LTtCMU/QQ5o7s+YHhFE+Sv4RaTmqC7dkZWVRd26dcnMzLxqh1ap5/xnZmYC4OvrC8DGjRspKCggNjbWuqZx48Y0bNjQGv9JSUnExMRYwx+gX79+jBw5km3btnHTTTeRlJRUYh/Fa+Li4gDIz89n48aNTJw40Xq7vb09sbGxJCUlXXLWyZMnM2nSpIu2L1myBHf3qv/SNQkJCbYe4bpU9/lFRESqk4wcWHzAnt9P2GFgB0ArXzP9gs0Euh8kZeNBUmw8o4hIRajq3ZGTk1PqtVUm/s1mM3FxcXTu3JnmzZsDkJGRgbOzMz4+PiXW+vv7k5GRYV1zYfgX315825XWZGVlce7cOU6dOoXJZLrkmp07d15y3okTJzJhwgTr+8VH/vv27asj/xWous8vIiJSnew+ls17K9KYvyXDeqS/b1M/xvaMoHGAp22HExGpQNWlO7Kyskq9tsrE/+jRo9m6dStr1qyx9Sil4uLigouLy0XbnZycqvQ3R7HqMuflVPf5RUREqrLdx84yfVkq3286iNka/f6Mj42iWaC3bYcTEalEVb07yjJblYj/MWPGMH/+fFatWkVQUJB1e0BAAPn5+Zw+fbrE0f8jR44QEBBgXfPnq/IXvxrAhWv+/AoBR44cwcvLCzc3NxwcHHBwcLjkmuJ9iIiIiNR0e45nM21ZCt/9fj76Y5v4ExcbRfMGin4RkerMplf7NwyDMWPG8O2337Js2TLCwsJK3N6mTRucnJxYunSpdduuXbvYt28fHTt2BKBjx45s2bKlxFX5ExIS8PLyomnTptY1F+6jeE3xPpydnWnTpk2JNWazmaVLl1rXiIiIiNRUe09k88yXf9D73ZV885sl/Hs39uPHMV34cFhbhb+ISA1g0yP/o0ePZu7cuXz//fd4enpan6Pv7e2Nm5sb3t7ePPbYY0yYMAFfX1+8vLwYO3YsHTt2pEOHDgD07duXpk2b8tBDD/H222+TkZHBSy+9xOjRo62n5T/11FO89957PPfcczz66KMsW7aMefPmsWDBAussEyZMYNiwYbRt25Z27doRHx9PdnY2w4cPr/xPjIiIiEgl2H8yh+nLUvj6t4OYig7192xUj7jYaFoG+9h2OBERKVc2jf+ZM2cC0KNHjxLbZ8+ezSOPPALAlClTsLe3Z/DgweTl5dGvXz9mzJhhXevg4MD8+fMZOXIkHTt2xMPDg2HDhvHaa69Z14SFhbFgwQKefvpppk6dSlBQEB9++CH9+vWzrhk6dCjHjh3j5ZdfJiMjg1atWrFo0aKLLgIoIiIiUt3tP5nD+8tT+WrjAQqLor97dD3iYqO4qWFtG08nIiIVwc4wiq/dKtcjKysLb2/vUr2+oi0VFBSwcOFCBgwYUKUvXHE51X1+ERERWzp4+hzvLUvly1/3W6O/a1Rd4mKjaROi6BcRKVZduqMsHVolLvgnIiIiIhXn0OlzvL88lXm/7qfAZIn+LpF1ebpPFG1CfG08nYiIVAbFv4iIiEgNdTjzHDOWp/HFhv3km8wAdIqow9N9ork5VNEvInIjUfyLiIiI1DAZmbnMWJHK57+cj/4O4b48HRtN+/A6Np5ORERsQfEvIiIiUkMcycpl5oo05v6yj/xCS/S3C7NEf8cIRb+IyI1M8S8iIiJSzR09UxT96/eRVxT9N4fWtka/nZ2djScUERFbU/yLiIiIVFPHzuQxa2Uan/681xr9bUIs0d85UtEvIiLnKf5FREREqpnjZ/P418o0/vvzXnILLNF/U0Mfno6NpmtUXUW/iIhcRPEvIiIiUk2cOJvHv1ft5j9JezlXYAKgZbAPT8dG0T26nqJfREQuS/EvIiIiUsWdzM4viv495ORbor9FkDdPx0bTo5GiX0RErk7xLyIiIlJFncrO54PVu/lk3R6yi6I/poE3cbFR9Grsp+gXEZFSU/yLiIiIVDGnc/L5cHU6c9bt4WxeIQDNAr2Ii40mtomiX0REyk7xLyIiIlJFZOYU8NGa3cxeu4czRdHfpL4XcbFR9G3qr+gXEZFrpvgXERERsbHMcwV8vCadj9emcybXEv2NAzyLoj8Ae3tFv4iIXB/Fv4iIiIiNZOUWMHvNHj5as5usouhv5O/J+Ngo+jdT9IuISPlR/IuIiIhUsjO5BcxZu4cP16STea4AgCi/WoyPjWJA8/qKfhERKXeKfxEREZFKcjavkE/W7eGD1bs5nWOJ/oh6HoyPjWZgTH0cFP0iIlJBFP8iIiIiFSw7r5BPkvbwwardnCqK/vB6HozvHcWgFoGKfhERqXCKfxEREZEKkpNfyH+S9vLvVbs5mZ0PQFhdD8b1juS2lg0U/SIiUmkU/yIiIiLl7Fy+if/+vId/rdzNiaLoD63jzrjeUdzWMhBHB3sbTygiIjcaxb+IiIhIOTmXb+Kz9XuZtTKN42ct0R9Sx52xvaK4o5WiX0REbEfxLyIiInKdcgtMfLZ+H7NWpnHsTB4Awb5ujO0VxZ03NcBJ0S8iIjam+BcRERG5RrkFJv73yz5mrkjjaFH0B9V2Y2yvSO5qHaToFxGRKkPxLyIiIlJGuQUmvtiwnxkrUjmSZYn+Bj5ujOkVyeDWQTg7KvpFRKRqUfyLiIiIlFJeoYl5G/bz/vI0MrJyAQj0dmV0r0iGtAlW9IuISJWl+BcRERG5ivxCM/N+3c+M5akcyrREf31vV0b1jOSetkG4ODrYeEIREZErU/yLiIiIXEZ+oZmvNh7g/eWpHDx9DgB/LxdG94xk6M3Bin4REak2FP8iIiIif1JgMvP1xgNMX3Y++v08XRjVI4J72zXE1UnRLyIi1YviX0RERKRIgcnMt78dZPryFPaftER/PU8XRnaP4P72in4REam+yhT/hmGwf/9+/Pz8cHV1raiZRERERCpVocnMt78fZPqyVPadzAGgbi0XnuoezgPtQ3BzVvSLiEj1Vub4j4yMZNu2bURFRVXUTCIiIiKVotBk5vtNh5i+LIU9JyzRX8fDmae6R/BgB0W/iIjUHGWKf3t7e6Kiojhx4oTiX0RERKotk9nghz8OMm1pKunHswHw9XDmyW7hPNQxBHdnPTNSRERqljL/n+3NN9/k2WefZebMmTRv3rwiZhIRERGpECazwfzNh5i6NIXdxyzRX9vdiRHdIni4YwgeLop+ERGpmcr8f7iHH36YnJwcWrZsibOzM25ubiVuP3nyZLkNJyIiIlIeTGaDBVsOM21pCqlHzwLg4+7EE13DGdYplFqKfhERqeHK/H+6+Pj4ChhDREREpPyZL4j+lKLo93Zz4omuYQzrFIqnq5ONJxQREakcZY7/YcOGVcQcIiIiIuXGbDb4aWsGU5cmk3zEEv1ero483jWcRzqH4qXoFxGRG8w1neNmMpn47rvv2LFjBwDNmjXjtttuw8FBV8QVERER2zGbDRZvy2Dq0hR2ZpwBwNPVkce6hDG8cxjebop+ERG5MZU5/lNTUxkwYAAHDx6kUaNGAEyePJng4GAWLFhAREREuQ8pIiIiciWGYbB42xGmLk1hx+EsADxdHBneJYzHuij6RUREyhz/48aNIyIigp9//hlfX18ATpw4wYMPPsi4ceNYsGBBuQ8pIiIicimGYZCw/QjxiSlsL4r+Wi6ODO8cymNdwvBxd7bxhCIiIlVDmeN/5cqVJcIfoE6dOrz55pt07ty5XIcTERERuRTDMFi64yjxS5PZetAS/R7ODjzSOZTHu4RT20PRLyIicqEyx7+Liwtnzpy5aPvZs2dxdtb/aEVERKTiGIbB8l1HiU9MYfOBTADcnR0Y1imUJ7qG46voFxERuaQyx/+gQYMYMWIEH330Ee3atQNg/fr1PPXUU9x2223lPqCIiIiIYRisSD5GfGIKf+w/DYCbkwMPdwphRNdw6tRyse2AIiIiVVyZ43/atGkMGzaMjh074uRkuXhOYWEht912G1OnTi33AUVEROTGZRgGq1KOE5+YzO/7TgPg6mTPwx1DGdEtnLqKfhERkVIpc/z7+Pjw/fffk5KSws6dOwFo0qQJkZGR5T6ciIiI3JgMw2BN6nHiE1PYuPcUYIn+B9uH8GT3COp5KvpFRETKoszxXywqKoqoqKjynEVERERucIZhsC7tBPGJyWzYY4l+F0d7HmgfwlM9wvHzdLXxhCIiItVTqeJ/woQJpd7hu+++e83DiIiIyI1rXdpx4hNS+GXPSQCcHe25v11DRvWIwM9L0S8iInI9ShX/v//+e6l2Zmdnd13DiIiIyI3n590nmJKQzPr0ouh3sOe+dsGM7BFJgLeiX0REpDyUKv6XL19e0XOIiIjIDeaX9JNMSUgmafcJwBL9Q28OZlTPCOp7u9l4OhERkZrlmp/zLyIiInItft1zkimJyaxNtUS/k4Md97QNZnTPSAJ9FP0iIiIV4Zri/9dff2XevHns27eP/Pz8Erd988035TKYiIiI1Cwb954iPjGZ1SnHAUv0D2kbzKgeEQTVdrfxdCIiIjVbmeP/888/5+GHH6Zfv34sWbKEvn37kpyczJEjR7jzzjsrYkYRERGpxn7fd4opiSmsSj4GgKO9HUPaBjG6Z6SiX0REpJKUOf7//ve/M2XKFEaPHo2npydTp04lLCyMJ598kvr161fEjCIiIlIN/bH/NFMSk1mxyxL9DvZ23N06iDG9Ign2VfSLiIhUpjLHf1paGgMHDgTA2dmZ7Oxs7OzsePrpp+nVqxeTJk0q9yFFRESk+thyIJMpicks23kUsET/XTc1YGyvKBrWUfSLiIjYQpnjv3bt2pw5cwaABg0asHXrVmJiYjh9+jQ5OTnlPqCIiIhUD1sPZhKfmEziDkv029vBnTcFMbZXJKF1PWw8nYiIyI2t1PG/detWmjdvTrdu3UhISCAmJoYhQ4Ywfvx4li1bRkJCAr17967IWUVERKQK2nYok/jEFBK2HwEs0X9HqwaM7R1FmKJfRESkSih1/Ldo0YKbb76ZO+64gyFDhgDwl7/8BScnJ9atW8fgwYN56aWXKmxQERERqVp2HM4iPjGZxdss0W9nB7e3DGRs7ygi6tWy8XQiIiJyoVLH/8qVK5k9ezaTJ0/mjTfeYPDgwTz++OO88MILFTmfiIiIVDE7M7KYmpjCT1szAEv039oikHG9o4j0U/SLiIhURaWO/65du9K1a1emT5/OvHnzmDNnDt27dycyMpLHHnuMYcOGERAQUJGzioiIiA0lHznD1MQUFmw5DFiif2BMfcb3jiLK39PG04mIiMiV2Jf1Azw8PBg+fDgrV64kOTmZIUOG8P7779OwYUNuu+22iphRREREbCjlyBnGzP2NfvGrrOE/MKY+i8Z34737Wyv8RUREqoEyX+3/QpGRkbz44ouEhIQwceJEFixYUF5ziYiIiI2lHj3LtKUp/Lj5EIZh2XZL8wDGx0bROMDLtsOJiIhImVxz/K9atYqPP/6Yr7/+Gnt7e+655x4ee+yx8pxNREREbGD3MUv0//DHIcxF0d+vmT/je0fTNFDRLyIiUh2VKf4PHTrEnDlzmDNnDqmpqXTq1Ilp06Zxzz334OGhl/IRERGpztKPZzN9aQrfbTpojf4+Tf2Ji42iWaC3bYcTERGR61Lq5/zfcssthISEMH36dO6880527NjBmjVrGD58+DWH/6pVq7j11lsJDAzEzs6O7777rsTtjzzyCHZ2diX+9O/fv8SakydP8sADD+Dl5YWPjw+PPfYYZ8+eLbFm8+bNdO3aFVdXV4KDg3n77bcvmuXLL7+kcePGuLq6EhMTw8KFC6/pMYmIiFQ3e09k83/z/iD23ZV887sl/GOb+DF/bBc+eLitwl9ERKQGKPWRfycnJ7766isGDRqEg4NDudx5dnY2LVu25NFHH+Wuu+665Jr+/fsze/Zs6/suLi4lbn/ggQc4fPgwCQkJFBQUMHz4cEaMGMHcuXMByMrKom/fvsTGxjJr1iy2bNnCo48+io+PDyNGjABg3bp13HfffUyePJlBgwYxd+5c7rjjDn777TeaN29eLo9VRESkqtl3Iofpy1L45veDmIoO9fdq7EdcbBQtgnxsO5yIiIiUq1LH/w8//FDud37LLbdwyy23XHGNi4vLZV9CcMeOHSxatIgNGzbQtm1bAKZPn86AAQP45z//SWBgIJ999hn5+fl8/PHHODs706xZMzZt2sS7775rjf+pU6fSv39/nn32WQD+9re/kZCQwHvvvcesWbPK8RGLiIjY3v6TOby3LJWvfztAYVH092hUj7jYaFoF+9h2OBEREakQ13W1/8qwYsUK/Pz8qF27Nr169eL111+nTp06ACQlJeHj42MNf4DY2Fjs7e1Zv349d955J0lJSXTr1g1nZ2frmn79+vHWW29x6tQpateuTVJSEhMmTChxv/369bvoaQgXysvLIy8vz/p+VlYWAAUFBRQUFJTHQ68QxbNV5RmvpLrPLyJiSwdOnWPWqt18/dsha/R3jazD2F4R3FQU/fr3VUREpPp0R1nmq9Lx379/f+666y7CwsJIS0vjxRdf5JZbbiEpKQkHBwcyMjLw8/Mr8TGOjo74+vqSkZEBQEZGBmFhYSXW+Pv7W2+rXbs2GRkZ1m0Xrinex6VMnjyZSZMmXbR9yZIluLu7X9PjrUwJCQm2HuG6VPf5RUQq08k8SDhgz/pjdpgMOwAaeZu5JdhMmOcRDm85wuEtNh5SRESkCqrq3ZGTk1PqtVU6/u+9917r2zExMbRo0YKIiAhWrFhB7969bTgZTJw4scTZAllZWQQHB9O3b1+8vKruyyAVFBSQkJBAnz59cHJysvU4ZVbd5xcRqUyHM3OZuXI3X/1xkAKT5Uh/p3BfxvWKoE1IbRtPJyIiUnVVl+4oPgO9NKp0/P9ZeHg4devWJTU1ld69exMQEMDRo0dLrCksLOTkyZPW6wQEBARw5MiREmuK37/amstdawAs1yL488UHwXJhxKr8zVGsusx5OdV9fhGRinQ48xwzlqfxxYb95JvMAHQMr8PTfaJpF+Zr4+lERESqj6reHWWZrdQv9VcVHDhwgBMnTlC/fn0AOnbsyOnTp9m4caN1zbJlyzCbzbRv3966ZtWqVSWeC5GQkECjRo2oXbu2dc3SpUtL3FdCQgIdO3as6IckIiJSbo5k5fLK91vp/vYK/vvzXvJNZtqH+fL5iA78b0QHhb+IiMgNzKZH/s+ePUtqaqr1/fT0dDZt2oSvry++vr5MmjSJwYMHExAQQFpaGs899xyRkZH069cPgCZNmtC/f3+eeOIJZs2aRUFBAWPGjOHee+8lMDAQgPvvv59Jkybx2GOP8fzzz7N161amTp3KlClTrPc7fvx4unfvzjvvvMPAgQP5/PPP+fXXX/n3v/9duZ8QERGRa3A0K5cZK9KY+8s+8gstR/rbhfoS1yeKThF1bTydiIiIVAU2jf9ff/2Vnj17Wt8vfg79sGHDmDlzJps3b+aTTz7h9OnTBAYG0rdvX/72t7+VON3+s88+Y8yYMfTu3Rt7e3sGDx7MtGnTrLd7e3uzZMkSRo8eTZs2bahbty4vv/yy9WX+ADp16sTcuXN56aWXePHFF4mKiuK7776jefPmlfBZEBERuTZHz+Qya8VuPlu/l7yi6G8bUpun+0TTKaIOdnZ2Np5QREREqgqbxn+PHj0wDOOyty9evPiq+/D19WXu3LlXXNOiRQtWr159xTVDhgxhyJAhV70/ERERWzt2Jo9/rUzj0/V7yS2wRH/rhj483SeaLpF1Ff0iIiJykWp1wT8REZEb2Ymzefxr1W7+m7SXcwUmAFoFW6K/W5SiX0RERC5P8S8iIlLFnczO51+r0vjPuvPR3zLIm7g+0fSIrqfoFxERkatS/IuIiFRRp7Lz+ffq3Xyybg85+ZbobxHkTVxsFD0b+Sn6RUREpNQU/yIiIlXM6Zx8Pli9mzlr95BdFP3NG3gR1zua3k0U/SIiIlJ2in8REZEqIjOngA/X7Gb22j2czSsEoGl9L+Jio+jT1F/RLyIiItdM8S8iImJjmecK+GhNOrPXpHOmKPqbFEV/X0W/iIiIlAPFv4iIiI1k5Rbw8Zp0PlqTzplcS/Q3DvAsiv4A7O0V/SIiIlI+FP8iIiKV7ExuAbPX7uHD1bvJKor+aP9axMVG07+Zol9ERETKn+JfRESkkpzNK2TO2nQ+WJ1O5rkCAKL8ajE+NooBzesr+kVERKTCKP5FREQq2Nm8Qj5Zt4cPVu/mdI4l+iPqeTA+NpqBMfVxUPSLiIhIBVP8i4iIVJDsvEL+k7SXf69K41RR9IfX82B87ygGtQhU9IuIiEilUfyLiIiUs5z8Qv6btJd/rdrNyex8AMLqejCudyS3tWyg6BcREZFKp/gXEREpJ+fyTXz6817+tSqN42ct0R9Sx51xvaK4vVUgjg72Np5QREREblSKfxERkeuUW2CJ/lkrd3P8bB4ADX3dGdsrkjtvaqDoFxEREZtT/IuIiFyj3AITc9fvY+bKNI6dsUR/UG03xvWK4s7WDXBS9IuIiEgVofgXEREpo9wCE5//so8ZK9I4WhT9DXzcGNsrksFtghT9IiIiUuUo/kVEREopr9DEFxv2M2N5GhlZuYAl+kf3jOTuNkE4Oyr6RUREpGpS/IuIiFxFXqGJeb8eYMbyVA5nWqK/vrcro3tGck/bYEW/iIiIVHmKfxERkcvILzTz5cb9vL8slUNF0R/g5cronhHcc3MwLo4ONp5QREREpHQU/yIiIn9SYDLz1cYDvLcslYOnzwHg7+XCqB6RDL05GFcnRb+IiIhUL4p/ERGRIgUmM9/8doDpy1I5cMoS/fU8XRjVI4L72jVU9IuIiEi1pfgXEZEbXqHJzDe/H+S9ZansO5kDQN1aLozsEcED7RX9IiIiUv0p/kVE5IZVaDLz3aZDTF+Wwt4TxdHvzFPdI3igfQhuzop+ERERqRkU/yIicsMpNJn54Y9DTF+WSvrxbADqeDjzZPdwHuwQgruz/vcoIiIiNYt+uhERkRuGyWzwwx8Hmb40ld1F0e/r4cyIbuE83FHRLyIiIjWXfsoREZEaz2Q2mL/5EFOXprD7mCX6a7s78US3cIZ1DMXDRf87FBERkZpNP+2IiEiNZTYbzN9ymGlLU0g9ehYAH3cnnugazrBOodRS9IuIiMgNQj/1iIhIjWM2GyzcepipiSmkFEW/t5sTT3QNY1inUDxdnWw8oYiIiEjlUvyLiEiNYTYbLNqWwdTEFHYdOQOAl6sjj3cN55HOoXgp+kVEROQGpfgXEZFqz2w2WLI9g/jEFHZmWKLf08WRx7qGMbxzGN5uin4RERG5sSn+RUSk2jIMgyXbjzA1MYXth7MAqOXiyKOdQ3msSzje7op+EREREVD8i4hINWQYBok7jhKfmMy2Q5bo93B2YHjnMB7vGoaPu7ONJxQRERGpWhT/IiJSbRiGwbKdR4lPTGHLwUzAEv3DOoXyRNdwanso+kVEREQuRfEvIiJVnmEYrNh1jPjEZP44YIl+d2cHHu4Yyohu4fgq+kVERESuSPEvIiJVlmEYrEw+RnxiCpv2nwbAzcmBhzuGMKJbOHVqudh2QBEREZFqQvEvIiJVjmEYrE45zpTEZH7fdxoAVyd765H+uop+ERERKW/LJ4O9A3R/7uLbVr4NZhP0nFj5c5UTxb+IiFQZhmGwNvUEUxKT2bj3FAAujvY81CGEJ7tHUM9T0S8iIiIVxN4Blr9hebvT0+e3r3zbsr3nX2wzVzlR/IuIiM0ZhkFSmiX6N+w5H/0PtA/hqR7h+Hm62nhCERERqZYMAwyz5Y/ZVPS26U/vF73d6gHIPQ3L38D+7HHc8yKxX/1PWPWmJfwvdUZANaL4FxERmyqO/l/STwLg7GjP/e0aMqpHBH5ein4REamGyhKcxbdduP2Stxl/2seFb5fittLOYZjBfKl1l5uj+DbzJfZ/4f7+/DiL9nXJz8GFt11i3rI8TsN8TV9Chw3/IhawgxoR/qD4FxERG1m/2xL9P+8uin4He+5rF8zIHpEEeCv6RUTKzDDKHnoKzioVnGIrdmBnbznt384e7BwwCrKxAwwHZ+xqQPiD4l9ERCrZhj0nmZKQzLq0E4Al+ofeHMyonhHU93az8XQiUmbXEpxXjdGKCM7L3VaBwVniNgWnXIKdQ4ngtATohW+X8jZ7+z+tcyh62+4S+yh+/8/7uGB7iX3Yl+I2u8s8lqvddrk57C7zOC91W3nMYVfy67LybeyWv4HJzhEHU77lOf814BcAin8REakUG/eeZEpCCmtSjwPg5GDHPW2DGd0zkkAfRb+UUaUEZxljtDyC84oxWlHBeaUjwArOGumS4WTPxRF4tRi1u3wgljb0yhyjFRmBlwvrcojRy90mVU/Rxf1M3V5g/pmmDPLcjkPxRQCr+S8AFP8iIlKhftt3iikJyaxOsUS/o70dQ9oGM7pnBEG13W08XRldNTiv5XTb6wzOMsVoeQXn1WK0AoLzz7cpOKufMh2tvFKM2pUiEEsbnDY4Ilku0V3WUFVwipTKBVf1N3d6GhYuxNz1GRwcHM6/CkA1/gWA4l+qvhr+epsiV1XewVnm01yvLTgPncpmbcpR9h4/w00YtHMy0yygFm1DvPFysYcNFRycpYpRBWeNV+rgLOOps1c9IlmK02PLdLSyvCPwWqL7OucQEanqzKbzF/crKDi/vbhDzCbbzFVOFP9S9dXw19ussi4MzjKf5loewXm9p9uauTj0yvvoZ3kEZykeZzUNzkBgCIDTBRuPFf2p6coaTpeN0fI8dbYqHJG8luguzRxXuE1ERKS0rnRAsRof8S+m+Jeqr/g/tOVvYG8qxKUgCPulr8DP70PH0dDiHjiRdpUIrKDgvNJzLiv0dNtL7UPBecO75lNnLxGOZT511p7TuSZ2Hc3hcFYeJuwBe4Lq1KJpg9p4ujpX0hHJ8oru64xRERERkSpG8S/VQ/fnwDBwWPF3+l+4Pel9yx+xndLEUZlPnS1tjF7p9NgqEoGVOYeNbD2YSXxiCok7jgBgbwd33NSAcb2iCK3rYbO5REREROQ8xb9UH6FdrG8agJ29UxnC6fJHKy99euyfg7OMRyttHYHldgT4KrfpCOcNbfuhLOITk1my/Xz0396qAWN7RRJer5aNpxMRERGRCyn+pfpYYnluv4EddhiWswFqwHNvRKqbHYezmJqYwqJtGYDl90O3tQxkXO8oIhT9IiIiIlWS4l+qh+WT4dDvAKyLfI4OgXY15vU2RaqLXRlnmLo0mYVbzkf/oBaBjO8dSaSfp42nExEREZErUfxL1bfybVj5JgBGLX+O12qCueugGvN6myJVXcqRM8QvTWHhlsMYhiX6B8TUZ3zvKKL9Ff0iIiIi1YHiX6o+swnqNYFjOzA3uwvyi55nXkNeb1Okqko9eoapS1OZv/kQhmHZNiAmgPG9o2kUoOgXERERqU4U/1L1dRoDa6cCYG42GH4/dP42HfEXKXdpx84ybWkKP/xxPvr7NwtgfGwUTep72XY4EREREbkmin+p+nYugMJzUCcKAloCh676ISJSdruPnWX6slS+33QQc1H0923qz/jYKJoFett2OBERERG5Lop/qfo2z7P8HTPE8mRjESlX6cezmb4she9+Px/9sU38iYuNonkDRb+IiIhITaD4l6rt7FHYvcLydszdNh1FpKbZeyKbaUtT+W7TQUxF1R/bxI/xvaOJCVL0i4iIiNQkin+p2rZ9C4YJGrSBOhFQUGDriUSqvX0ncpi+LIVvfj8f/b0a+xEXG0WLIB/bDiciIiIiFULxL1Wb9ZT/e2w7h0gNsP9kDu8tS+Xr3w5QWBT9PRrVIy42mlbBPrYdTkREREQqlOJfqq6Tu+Hgr2BnD83utPU0ItXWgVM5vL88lS9/PR/93aLrERcbReuGtW08nYiIiIhUBsW/VF1bvrL8Hd4DPP1tOopIdXTw9Lmi6N9PgckS/V2j6hIXG0WbEF8bTyciIiIilUnxL1WTYeiUf5FrdDjTEv1fbDgf/Z0j6xAXG83NoYp+ERERkRuR4l+qpsN/wIkUcHSFxgNtPY1ItZCRmcuMFal8/st+8k1mADqG1yEuNor24XVsPJ2IiIiI2JK9Le981apV3HrrrQQGBmJnZ8d3331X4nbDMHj55ZepX78+bm5uxMbGkpKSUmLNyZMneeCBB/Dy8sLHx4fHHnuMs2fPllizefNmunbtiqurK8HBwbz99tsXzfLll1/SuHFjXF1diYmJYeHCheX+eKUMtnxp+bvRLeDqZdtZRKq4I1m5vPrDNrr9Yzn/SdpLvslMuzBf/vdEB/43ooPCX0RERERsG//Z2dm0bNmS999//5K3v/3220ybNo1Zs2axfv16PDw86NevH7m5udY1DzzwANu2bSMhIYH58+ezatUqRowYYb09KyuLvn37EhISwsaNG/nHP/7Bq6++yr///W/rmnXr1nHffffx2GOP8fvvv3PHHXdwxx13sHXr1op78HJ5ZhNs/drydswQ284iUoUdPZPLpB+30e3t5cxZt4f8QjM3h9Zm7uPt+WJEBzpGKPpFRERExMLOMAzD1kMA2NnZ8e2333LHHXcAlqP+gYGB/N///R/PPPMMAJmZmfj7+zNnzhzuvfdeduzYQdOmTdmwYQNt27YFYNGiRQwYMIADBw4QGBjIzJkz+ctf/kJGRgbOzs4AvPDCC3z33Xfs3LkTgKFDh5Kdnc38+fOt83To0IFWrVoxa9asS86bl5dHXl6e9f2srCyCg4M5fvw4Xl5V90h1QUEBCQkJ9OnTBycnJ1uPc0l2e1bj+NmdGK4+FMZtBwdn623VYX6Rinb8bB7/Xr2Hub/sJ6/Qcnp/64Y+jOsVQadwX+zs7Gw8oYiIiEj1Vl26Iysri7p165KZmXnVDq2yz/lPT08nIyOD2NhY6zZvb2/at29PUlIS9957L0lJSfj4+FjDHyA2NhZ7e3vWr1/PnXfeSVJSEt26dbOGP0C/fv146623OHXqFLVr1yYpKYkJEyaUuP9+/fpd9DSEC02ePJlJkyZdtH3JkiW4u7tfxyOvHAkJCbYe4bJa7fuIEGCvRyv+WJx4yTVVeX6RinKmAJYetGfNETsKzJbAD61lcEuwmUbex8ncdZyfdtl4SBEREZEapKp3R05OTqnXVtn4z8jIAMDfv+RLvPn7+1tvy8jIwM/Pr8Ttjo6O+Pr6llgTFhZ20T6Kb6tduzYZGRlXvJ9LmThxYolfGBQf+e/bt6+O/F+Pwlwc48cAEHTL0zQI6Vzi5io/v0gFOJGdz4dr9vDZr/s4V2A50t8yyJvxvSLoEllHR/pFREREyll16Y6srKxSr62y8V/Vubi44OLictF2JyenKv3NUazKzpm6CPKywKsBjuHdwP7Sl6WosvOLlKOT2fn8e9Vu/pO0h5x8E2CJ/rg+0fSIrqfoFxEREalgVb07yjJblY3/gIAAAI4cOUL9+vWt248cOUKrVq2sa44ePVri4woLCzl58qT14wMCAjhy5EiJNcXvX21N8e1SiTbPs/zdfPBlw1+kpjuVnc8Hq3fzybo9ZBdFf0wDb57uE0XPRn6KfhEREREpsypbV2FhYQQEBLB06VLrtqysLNavX0/Hjh0B6NixI6dPn2bjxo3WNcuWLcNsNtO+fXvrmlWrVlFQUGBdk5CQQKNGjahdu7Z1zYX3U7ym+H6kkuRmQvJiy9st7rHtLCI2cDonn38u3kXXt5czY0Ua2fkmmgV68eHDbflhTGd6NfZX+IuIiIjINbHpkf+zZ8+SmppqfT89PZ1Nmzbh6+tLw4YNiYuL4/XXXycqKoqwsDD++te/EhgYaH1FgCZNmtC/f3+eeOIJZs2aRUFBAWPGjOHee+8lMDAQgPvvv59Jkybx2GOP8fzzz7N161amTp3KlClTrPc7fvx4unfvzjvvvMPAgQP5/PPP+fXXX0u8HKBUgh0/gikP6jUG/+a2nkak0mTmFPDRmt3MXruHM3mFADSt70VcbBR9mir4RUREROT62TT+f/31V3r27Gl9v/gCesOGDWPOnDk899xzZGdnM2LECE6fPk2XLl1YtGgRrq6u1o/57LPPGDNmDL1798be3p7Bgwczbdo06+3e3t4sWbKE0aNH06ZNG+rWrcvLL7/MiBEjrGs6derE3Llzeemll3jxxReJioriu+++o3lzBWil2vKl5e+YIaDYkRtA5rkCPl6Tzsdr0zmTa4n+xgGexMVG07epP/b2+u9ARERERMqHnWEYhq2HqAmysrLw9vYu1esr2lJBQQELFy5kwIABVevCFWcy4N0mYJhh/B9QO/SSy6rs/CJlkJVbwOw1e/hozW6yiqK/kb8ncbFR9GsWoOgXERERsbHq0h1l6dAqe8E/ucFs/cYS/sHtLxv+ItXdmdwC5qzdw4dr0sk8Z7kOSbR/Lcb3juaW5op+EREREak4in+pGrYUXeU/Zoht5xCpAGfzCvlk3R4+WL2b0zmW6I/0q8X43lEMjKmv6BcRERGRCqf4F9s7ngqHfgc7B2h2p62nESk32XmFfJK0hw9W7eZUUfRH1PNgXO8oBrUIxEHRLyIiIiKVRPEvtld8ob+IXuBR17aziJSDnPxC/pO0l3+v2s3J7HwAwutaov/Wlop+EREREal8in+xLcM4f8p/i3tsO4vIdcrJL+TTn/fyr5W7OVEU/aF13BnXO4rbWgbi6GBv4wlFRERE5Eal+BfbOvQbnNwNTu7QaICtpxG5JufyTXy2fi+zVqZx/Kwl+kPquDO2VxR3tFL0i4iIiIjtKf7FtjYXnfLfaAC41LLtLCJllFtg4rP1+5i5Io3jZ/MACPZ1Y2yvKO66qYGiX0RERESqDMW/2I7ZBFu/trytU/6lGsktMPG/XyzRf/SMJfqDarsxtlckd7UOwknRLyIiIiJVjOJfbCd9JWQfBTdfy8X+RKq43AITX2zYz4wVqRzJskR/Ax83xvSKZHDrIJwdFf0iIiIiUjUp/sV2tnxl+bvZneDgZNtZRK4gr9DEvA37eX95GhlZuQAEersyulckQ9oEK/pFREREpMpT/IttFJyD7T9Y3o4ZYttZRC4jv9DMvF/3M2N5KocyLdFf39uVUT0juadtEC6ODjaeUERERESkdBT/YhvJiyD/DHg3hOD2tp5GpIT8QjNfbTzA+8tTOXj6HAABXq6M6hnB0JuDFf0iIiIiUu0o/sU2ik/5jxkM9jplWqqGApOZrzceYPqy89Hv7+XCqB6RDL05GFcnRb+IiIiIVE+Kf6l8505ByhLL2zG6yr/YXoHJzLe/HWT68hT2n7REfz1PF0b1iOC+dg0V/SIiIiJS7Sn+pfJt/wFM+eDfHPyb2noauYEVmsx88/tB3luWyr6TOQDUreXCyB4RPNBe0S8iIiIiNYfiXyrfli8tf8fcbds55IZVaDLz3aZDTF+Wwt4TxdHvzFPdI3igfQhuzop+EREREalZFP9SuTIPwp41lrebK/6lcpnMBt9vOsj0ZamkH88GoI6HM092D+fBDiG4O+ufRBERERGpmfSTrlSurV8DBjTsBD7Btp5GbhAms8GPfxxi2tIUdhdFf213J57sHsFDHULwcNE/hSIiIiJSs+knXqlcxaf8txhi2znkhmAyG8zfbIn+tGOW6Pdxd2JEt3CGdQxV9IuIiIjIDUM/+UrlObYLMjaDvSM0vcPW00gNZjYbLNhymGlLU0g5ehYAb7ei6O8USi1Fv4iIiIjcYPQTsFSezfMsf0f2AXdf284iNZLZbPDT1gymLk0m+Ygl+r1cHXmiaziPdA7F09XJxhOKiIiIiNiG4l8qh2HoKv9SYcxmg8XbMpi6NIWdGWcA8HR15PEu4QzvEoqXol9EREREbnCKf6kcBzbA6b3gXAsaDbD1NFJDGIbB4m1HmLo0hR2HswDwdHHk0S5hPNolDG83Rb+IiIiICCj+pbIUH/VvPAic3W07i1R7hmGQsP0I8YkpbC+K/loujjzaOZTHuoTj7a7oFxERERG5kOJfKp6pALZ+Y3k7Rlf5l2tnGAZLdxwlfmkyWw9aot/D2YHhncN4vGsYPu7ONp5QRERERKRqUvxLxdu9EnKOg3tdCO9h62mkGjIMg+W7jhKfmMLmA5kAuDs78EinUJ7oGk5tD0W/iIiIiMiVKP6l4m0pusp/87vAQd9yUnqGYbAi+RjxiSn8sf80YIn+hzuGMqJbOL6KfhERERGRUlGJScXKz4Ed8y1vx9xj21mk2jAMg1Upx5mSkMymouh3c3Lg4Y4hjOgWTp1aLrYdUERERESkmlH8S8XatRAKsqF2KAS1tfU0UsUZhsGaVEv0/7bvNACuTvY81CGEJ7tHUFfRLyIiIiJyTRT/UrGKr/IfMwTs7Gw7i1RZhmGwLu0EUxKS+XXvKQBcHO15sEMIT3YPx8/T1cYTioiIiIhUb4p/qTg5JyE10fK2rvIvl7Eu7TjxCSn8suckAM6O9jzQviEju0fg56XoFxEREREpD4p/qTjbvgVzIQS0gHqNbD2NVDE/77Yc6V+ffj7672/XkJE9IvBX9IuIiIiIlCvFv1ScLV9Z/m6hC/3Jeb+kn2RKQjJJu08A4Oxgz73tghnVI5IAb0W/iIiIiEhFUPxLxTi9D/atA+yg+WBbTyNVwK97TjIlMZm1qZbod3KwY+jNlugP9HGz8XQiIiIiIjWb4l8qxtavLX+HdgGvQNvOIja1ce8p4hOTWZ1yHLBE/5C2wYzuGUkDRb+IiIiISKVQ/EvF2HzBVf7lhvT7vlNMSUxhVfIxABzt7RjSNojRPSMJqu1u4+lERERERG4sin8pf0e2wdFt4OAMTW+z9TRSyTbtP018YjIrdlmi38HejrtbBzGmVyTBvop+ERERERFbUPxL+dtSdNQ/qi+41bbtLFJpNh84TXxiCst2HgUs0X/XTQ0Y2yuKhnUU/SIiIiIitqT4l/JlNsOWouf765T/G8LWg5nEJyaTuMMS/fZ2cOdNQYztFUloXQ8bTyciIiIiIqD4l/K2fz1k7gNnT4juZ+tppAJtO5RJfGIKCduPAJbov6NVA8b2jiJM0S8iIiIiUqUo/qV8bZln+bvpbeCkK7nXRDsOZxGfmMzibeej/7aWgYztHUVEvVo2nk5ERERERC5F8S/lpzAftn1reTvmbtvOIuVuZ0YWUxNT+GlrBgB2xdHfK4pIP0W/iIiIiEhVpviX8pO2DM6dglr+ENbd1tNIOUk+coapiSks2HIYsET/oBaBjO8dSaSfp42nExERERGR0lD8S/kpvsp/88Fg72DbWeS6pRw5w9Sllug3DMu2gS3qM753FNH+in4RERERkepE8S/lI+8s7FpoeVun/FdrqUfPMG1pKj9uPmSN/gExAYzvHU2jAEW/iIiIiEh1pPiX8rFrIRTkgG8EBLa29TRyDdKOnWXa0hR++ON89PdvFsD42Cia1Pey7XAiIiIiInJdFP9SPjYXXeU/ZojlSeFSbaQfz2ba0hS+33QQc1H0923qz/jYKJoFett2OBERERERKReKf7l+2cctF/sDS/xLtbDneDbTlqXw3e/noz+2iT9xsVE0b6DoFxERERGpSRT/cv22fQuGCQJvgrqRtp5GrmLfiRymLUvh298PYiqq/t6N/YiLjSYm6P/bu/O4KOuF/ePXsAgigqGo4IK4ixtm5Ya5hEvhVqYeT2lZ+oSpqWU99tjJPB2PpnVSs0xPaD8PamonK7U6uYCaS6YdBVxBcWVzQ0D2mfn9MTJKLqmpNwyf9+vla4Z7boZrCv647u9yU/oBAAAAR0T5xx9nn/I/0NgcuKmT57P10cZ4/fvXK6W/SyNfjQttqJa1KhkbDgAAAMA9RfnHH3M+UTq1UzI5Sc2eMjoNruPk+Wx9HJWgL3efUuHl0t+poa/GhTZQq9oPGJwOAAAAwP1A+ccfE/el7THwUalidWOzoJjT6TmauzFBX+4+qQKzrfR3bFBF40IbqnUApR8AAAAoSyj/uHNWqxSz0vacKf8lRlJ6jj6OStCKXVdKf0j9KhrfrYFaB/gYnA4AAACAESj/uHMpsdLZQ5Kzm9Skl9Fpyrzkizn6JOqIlv9yUvlmiySpfb3KGt+toR6uQ+kHAAAAyjLKP+5c7OVR/0Y9JXd2iTdKakauPolK0LKdV0p/27o+Gh/aUG3qVjY4HQAAAICSgPKPO2OxSHH/tj1vPsDYLGVUWkauPok+oqU7Tyi/0Fb6Hwm0lf529Sj9AAAAAK6g/OPOnNgmZZyW3LylBt2NTlOmpGXm6tPoo1ry83HlXS79D9d5wF76TSaTwQkBAAAAlDSUf9yZmBW2x6A+koubsVnKiDOZeZq/6Ygifz6u3AJb6W8dYCv9HepT+gEAAADcGOUft68wT9r/te15C3b5v9fOZuVpweajWrz9mL30t6pdSeNDG6pjgyqUfgAAAAC/i/KP25ewXsq9KFX0kwI6GJ3GYZ2/lK/5m49o8bbjyikwS5Ja1qqk8aEN1KmhL6UfAAAAwC2j/OP2FU35b9ZfcnI2NosDunApXwu2HNX/23ZM2fm20t+iprfGhzZU50aUfgAAAAC3z8noADfzzjvvyGQyFfvXuHFj++u5ubkaNWqUKleuLE9PT/Xv31+pqanF3uPEiRMKCwuTh4eHqlatqtdff12FhYXFzomOjtaDDz4oNzc31a9fX59//vn9+HilU26GdPgH23Om/N9V6dn5mvmfgwp5b6PmRR9Rdr5ZzWt4K+K5h/TNqA7q0rgqxR8AAADAHSnxI/9NmzbV+vXr7V+7uFyJPH78eK1du1YrV66Ut7e3Ro8eraeeekpbt26VJJnNZoWFhal69eratm2bkpOTNXToULm6uurvf/+7JCkxMVFhYWEKDw/XkiVLtGHDBg0fPlx+fn7q0aPH/f2wpcHBNVJhrlSloVS9hdFpHMLF7AJ99tNRLdp6TFl5tgtTTf29NC60oUKbUPgBAAAA/HElvvy7uLioevXq1xy/ePGiIiIitHTpUnXt2lWStGjRIjVp0kQ7duxQ27Zt9eOPP2r//v1av369qlWrpuDgYL377rv63//9X73zzjsqV66cPv30UwUGBuqDDz6QJDVp0kQ//fSTPvzwQ8r/9cSutD02HyhRSv+QizkFivgpUYt+SlTm5dLfxM9L40IbqHtQNUo/AAAAgLumxJf/+Ph4+fv7y93dXe3atdO0adNUu3Zt7d69WwUFBQoNDbWf27hxY9WuXVvbt29X27ZttX37djVv3lzVqlWzn9OjRw+NHDlS+/btU6tWrbR9+/Zi71F0zrhx426aKy8vT3l5efavMzIyJEkFBQUqKCi4C5/83ijKdkcZs1LlcjRaJkkFTfpKBnzOP5S/hMjMLdDn205o0fbjysy1lf5G1Tw1pks9dWtSVU5OpmuWpgAAAAC4f0pL77idfCW6/Ldp00aff/65GjVqpOTkZE2ZMkUdO3ZUXFycUlJSVK5cOVWqVKnY91SrVk0pKSmSpJSUlGLFv+j1otdudk5GRoZycnJUvnz562abNm2apkyZcs3xH3/8UR4eHnf0ee+ndevW3fb31E37Uc2tFp33qKct2w9IOnD3g92iO8lvtNxCaVOKSVFJTsox20b1/cpb1bOWRS180mU+vls/HDc4JAAAAAC7kt47srOzb/ncEl3+H3/8cfvzFi1aqE2bNgoICNCKFStuWMrvlzfffFOvvvqq/euMjAzVqlVL3bt3l5eXl4HJbq6goEDr1q1Tt27d5Orqelvf67xoliTJO2S4nnj4iXuQ7vf9kfxGycwt1L92nNDCbcd0Mcc2ol/ft4LGdKmnnk2rycmJ6f0AAABASVJaekfRDPRbUaLL/29VqlRJDRs2VEJCgrp166b8/Hylp6cXG/1PTU217xFQvXp17dy5s9h7FN0N4OpzfnuHgNTUVHl5ed30AoObm5vc3NyuOe7q6lqifzmK3HbOc0ekpF8lk7OcWzwtZ4M/Y2n475yVV6j/t+2Y/rnlqNKzbdNx6vlW0NjQhgpr7idnSj8AAABQopX03nE72Ur0rf5+KysrS0eOHJGfn59at24tV1dXbdiwwf76oUOHdOLECbVr106S1K5dO8XGxiotLc1+zrp16+Tl5aWgoCD7OVe/R9E5Re+By2K/tD3W7Sx5VjU0Skl3Ka9Q86KPqON7GzXzP4eUnl2gur4VNPtPwfpxfCf1aelP8QcAAABwX5Xokf8JEyaod+/eCggIUFJSkiZPnixnZ2cNHjxY3t7eevHFF/Xqq6/Kx8dHXl5eGjNmjNq1a6e2bdtKkrp3766goCANGTJEM2bMUEpKit566y2NGjXKPmofHh6uuXPn6o033tALL7ygjRs3asWKFVq7dq2RH71ksVql2BW25y0GGpulBMvOL9S/th/X/M1Hdf5SviQpsEoFvfJYffVpWYPCDwAAAMAwJbr8nzp1SoMHD9a5c+fk6+urkJAQ7dixQ76+vpKkDz/8UE5OTurfv7/y8vLUo0cPffLJJ/bvd3Z21po1azRy5Ei1a9dOFSpU0HPPPae//vWv9nMCAwO1du1ajR8/XrNnz1bNmjX12WefcZu/qyXvkc4lSC7lpcZhRqcpcXLyzYrccVzzNx/R2Sxb6a9T2UNjujZQ32B/uTiXqgk2AAAAABxQiS7/X3zxxU1fd3d318cff6yPP/74hucEBATou+++u+n7dO7cWf/973/vKGOZELPS9tjoccmtorFZSpDcAlvp/3TTUZ3Nst32MeBy6e9H6QcAAABQgpTo8o8SwGKW4v5te86Uf0m20r/05xOat+mIzmTaSn8tn/Ia07WBnmxVQ66UfgAAAAAlDOUfN3dsi5SVIpV/QKr3mNFpDJVbYNYXO0/ok+gjSrtc+ms+UF5jutbXUw/WpPQDAAAAKLEo/7i52MtT/oP6SS7lDI1ilLxCs5b/clKfRB1RSkauJKlGpfIa3bW++j9YU+VcKP0AAAAASjbKP26sIFfa/63tefMBxmYxQF6hWSt2ndInUQlKvmgr/f7e7hrVtb4GtK5F6QcAAABQalD+cWPx/5HyMiSvmlLtdkanuW/yCy1aufukPt6YoKTLpd/P210vd6mvgQ/VlJuLs8EJAQAAAOD2UP5xY0VT/pv3l5wcf5Q7v9CiL3ef0sdRCTqdniNJqublplFd6mvQw7Uo/QAAAABKLco/ri8nXTr8H9vz5o69y3+B2aJ/7z6luVEJOnXBVvqrVnTTy53r6U+P1Ja7K6UfAAAAQOlG+cf1HVgtmfOlqkFS9WZGp7knCswWrfr1tD6KitfJ87bS71vRTSM71dOf21D6AQAAADgOyj+uL3aF7bH508bmuAcKzRat+u9pzY1K0PFz2ZKkKp7lFN6pnp5pE6Dy5Sj9AAAAABwL5R/XykiWErfYnjdznPJfaLbomz1J+mhjvI5dLv2VK9hK/7NtKf0AAAAAHBflH9eK+7ckq1SrrfRAgNFp/jCzxapv957WRxsSdPTsJUmST4VyeunRuhrSLkAe5fgzAAAAAODYaD24VtEu/y0GGJvjDzJbrFoTk6TZG+J19Iyt9D/g4ar/ebSehrYLUAU3fv0BAAAAlA20HxR3Nl5K3iM5uUhBTxqd5o5YLFatiU3WnA3xSkjLkiRV8nDViI519Vz7OvKk9AMAAAAoY2hBKK5o1L/eY1KFysZmuU0Wi1XfxSVr9vp4xV8u/d7lXTWiY6Cea19HFd1dDU4IAAAAAMag/OMKq1WKKdrlv+RN+TdbrPo58bx2nzWpcuJ5tatfVc5OJlksVv2wL0Wz18frUGqmJMnL3UXDO9bV8x3qyIvSDwAAAKCMo/zjitO7pQuJkmsFqfETRqcp5oe4ZE1ZvV/JF3MlOWtx/C5V93JX32A/bTp8VgdTbKW/oruLXgwJ1LAOgfIuT+kHAAAAAInyj6sVTflvHCaVq2Bslqv8EJeskZG/yvqb4ykZuZq/OVGSVNHNRcNCAvViCKUfAAAAAH6L8g8bc+HlW/ypRE35zysw6+1v9l1T/K/m6eai6Nc7q7Kn233LBQAAAAClCeW/DLnRmnlJUuIm6dIZyaOyVK/LPc9SaLbobFa+0jJzlZqRp9SMXKVl5iktI9f+PDUjT2ez8n73vbLyCnU4NUvtKP8AAAAAcF2U/zLiemvm/bzdNbl3kHo287sy5b/pk5LznU+bLzRbdO5SvlIzbKW+qNyn2Qu97fFsVp6sNxvOv01pmbl3780AAAAAwMFQ/suAG66Zv5irkZG/av7gIHU/sNp2sPnA677H1aU+LSNPqZm2R3u5v/x4LitPllss9c5OJvl6uqmql5uqVnRXtaseq3m5y7eim05dyFZ45K+/+15VK7rf2g8FAAAAgDKI8u/gzBarpqzef90181ZJJknR3y5Wd3OWcirU1Kqk6ko9dFhpmVdK/p2U+iqe5VTNy11VK7qrqpebqhWV+8sFv6qXmypXcLuy7OAGmvh5yc/bXSkXc6/7GUySqnu765FAn1sLBwAAAABlEOXfwe1MPH95qv/1WSV1zt8kOUsRF1vr/a/jbniuk0nyreh2udS7qerlx2peV0btb7XU3ypnJ5Mm9w7SyMhfZbqct0jRT5jcO+iu/TwAAAAAcESUfwf3e2vhvZWlzk57JEkHKvdQqE9V+V419b6o3N/tUn87ejbz07xnH7xqzwKb6lfvWQAAAAAAuCHKv4P7vbXwTzj/rHImsy490EQfj33mPqW6fT2b+albUHVtT0jTj1t+VveObYrfrQAAAAAAcENORgfAvfVIoI/8vN11o4rc13mbJKl868H3L9QdcnYyqU2gj1pXsapNoA/FHwAAAABuEeXfwRWtmZd0zQUAf51TW6cDssokp+b97384AAAAAMB9QfkvA4rWzFf3Lr4E4M8VfpEkmQI6SN41jYgGAAAAALgPWPNfRlxvzXyHDX+XUiU1f9roeAAAAACAe4jyX4YUrZk/d8CqNp5pMqXGSU6uUlBfo6MBAAAAAO4hpv2XUU5x/7Y9adBN8vAxNgwAAAAA4J6i/JdFVquc9l0u/80HGJsFAAAAAHDPUf7LoAcuJch08YRUzlNq2NPoOAAAAACAe4zyXxZETZM2zbB/WevCNtuTJr2l7XNtrwMAAAAAHBblvyxwcpaiptouAJgL5J++03bcarUdd3I2Nh8AAAAA4J5it/+yoNMbtseoqXI6c1iuhZmyunrIFPOF1GXSldcBAAAAAA6J8l9WXC74zlFTJUmmgmyKPwAAAACUEUz7L0s6vSGrk+16j9XJleIPAAAAAGUE5b8s2TRDJkuhzCYXmSwFxTYBBAAAAAA4Lqb9lxWbZkhRU2V+dKLWZAapV8X99iUAzAAAAAAAAMdG+S8LLhd/dZkkS/vx0nffydJxgpydL98FQOICAAAAAAA4MMp/WWAxX9ncr6DgyvGiwm8xG5MLAAAAAHBfUP7Lgi5v3vg1RvwBAAAAwOGx4R8AAAAAAA6O8g8AAAAAgIOj/AMAAAAA4OAo/wAAAAAAODjKPwAAAAAADo7yDwAAAACAg6P8AwAAAADg4Cj/AAAAAAA4OMo/AAAAAAAOjvIPAAAAAICDo/wDAAAAAODgKP8AAAAAADg4yj8AAAAAAA6O8g8AAAAAgINzMTqAo7BarZKkjIwMg5PcXEFBgbKzs5WRkSFXV1ej49y20p4fAAAAQMlXWnpHUf8s6qM3Q/m/SzIzMyVJtWrVMjgJAAAAAKAsyczMlLe3903PMVlv5RIBfpfFYlFSUpIqVqwok8lkdJwbysjIUK1atXTy5El5eXkZHee2lfb8AAAAAEq+0tI7rFarMjMz5e/vLyenm6/qZ+T/LnFyclLNmjWNjnHLvLy8SvQv8e8p7fkBAAAAlHyloXf83oh/ETb8AwAAAADAwVH+AQAAAABwcJT/MsbNzU2TJ0+Wm5ub0VHuSGnPDwAAAKDkc8TewYZ/AAAAAAA4OEb+AQAAAABwcJR/AAAAAAAcHOUfAAAAAAAHR/kHAAAAAMDBUf4BAAAAAHBwlH8AAAAAABwc5R83VRrvBJmbm6vMzEyjYwAAAABAieFidACUPOfPn1dOTo4KCgpUq1YtOTs7S7JdCDCZTAanu7m4uDi99tprSklJkZ+fn0JDQzVq1CiVL1/e6GgAAAAAHNDx48e1ZcsWJSYmatCgQWrQoEGJ7E0ma2kc2sU9Exsbq0GDBsnLy0v79u3Tk08+af8nlewLAEeOHNHDDz+sp59+Wg8//LCioqJ06NAh+fj4aNWqVfL09DQ6IgAAAAAHEhsbq169eikgIEBHjx5VQUGBtm3bpnr16hkd7RpM+4fd8ePH9fjjj6t3796KjIzUkiVLFB8fr/DwcC1cuFCSSmzxl6R169bpkUce0aeffqoRI0ZoyZIlmjRpki5cuKBu3brp0qVLRkcEAAAA4CAOHz6sbt266bnnntOaNWt06tQpVapUSRs2bDA62nVR/mG3evVqNWvWTO+9957q16+vPn36aMiQITpz5ozeeecdffbZZ0ZHvKmkpCQdOHBATk62X2uTyaS+ffvq3XffldlsVnh4uAoKCgxOCQAAAKC0y87O1owZMzRgwAC9/fbbqlixoiQpKChIJ0+e1OjRo7VmzRolJSUZnPQKyj/s0tPTlZGRodzcXJnNZklSzZo11b17dz322GNatmyZjh07ZmzIm+jUqZN8fHz07bffymKxSJKcnZ3VtWtXDRkyRHFxcYqPjzc4JQAAAIDSzsPDQ3369NEzzzwjFxcXmUwmvfvuu1q7dq0SEhJ08OBBjRkzRgsWLFBhYaHRcSVR/nGVgIAA7d69W//5z3+UnJyso0ePatiwYerVq5fGjh2rXbt2KTEx0eiYdvHx8dqzZ4/961atWsnT01MfffSR9u/fbz/u5uamF154QQkJCdq8ebMBSQEAAAA4mj59+qht27aSpP379+vrr7/WqlWrFBkZqfXr1+tPf/qTIiIiSsydyCj/ZVhmZqbS0tKUlpYmSRoyZIhGjRqlQYMGKTQ0VMHBwRo8eLBGjx6t4OBg+fn5KSYmxuDUNnv37lWjRo20fft2SZLFYpGPj48iIyMVExOj8ePHa+fOnfbzXVxcFBwcrCpVqhgVGQAAAEAplp6erpMnT153QLROnTr67rvvFBYWZr9denBwsHx8fErMvmnc6q+M2rdvn8aNG6eTJ0/K19dXTz/9tMaOHat//OMf6tmzpwoKCuTq6qru3btLkpKTk+Xh4aH69esbnNxW/Nu3b6833nhDI0eOlCQ5OTnJarUqICBAW7duVffu3TVhwgR17dpVISEh+u6777R//361bt3a4PQAAAAASpu4uDi9+OKLys7OVnx8vF599VWNGzdOVatWlWRbBlB0e3EXF1vN3rp1q+rWrSs3NzfDcl+NW/2VQfv27VPHjh313HPPqX379lq7dq0SExP19ddf64EHHrjm/JycHP3973/XkiVLtHnzZtWsWdOA1DYHDx5U8+bNNWHCBE2bNk1Wq1WrVq3SoUOHFBgYqObNm6tp06Y6ceKEpk+frm3btiknJ0deXl5asGCBWrVqZVh2AAAAAKXPwYMH9eijj2rYsGHq27evfSB10aJFGjhw4DXnZ2Vl6b333tO8efO0efNmBQUFGZD6Woz8lzHJyckaNGiQRowYoffee0+SVLduXb355ps6e/assrOzVaNGDUmS2WxWTEyMFi5cqMjISG3cuNHQ4i9JmzZtktlsVkhIiCwWi7p27ars7GylpqbK29tb2dnZWrRokTp27KhZs2apsLBQFy9elKenp30HTgAAAAC4FRkZGfrLX/6ip556yt6f2rdvrx07digiIkIDBw6U1Wq1T+3fuHGj3n//fR08eFDr1q0rMcVfYs1/mZOcnKx+/fppxIgR9mPffPONfv31V3Xp0kV9+/bVU089Jcm2U763t7eCg4P1888/l4hR85deekmTJ09W37591bBhQ1WpUkWRkZE6evSoIiIi9OCDD+rVV19VSkqKypUrJw8PD/n5+VH8AQAAANy2s2fPKi8vT71795Yk+13RGjZsqEuXLklSsTX9nTt3Vu/evfXjjz+WiP50Nab9lzG5ublKS0tT7dq1JUkzZszQO++8owULFqh+/fo6ceKE3nzzTb3yyisaO3asJNtmek5OJes60dSpU7V8+XItXrxYwcHB9uNffvmlwsPDFRUVpebNmxsXEAAAAECpderUKfus561bt6pDhw6SpMLCQrm4uGjZsmWKiIjQ+vXr7d+TlJQkf39/Q/LeipLV6HBPFF3fsVqtcnd3LzZ1PygoSKtXr9azzz6rtm3bKiwsTB4eHkpJSbGfY2TxP3LkiCZPnqxRo0Zp7ty59uP/93//p8WLF6tx48aSbBcoJMnf31++vr7y8PAwJC8AAACA0u3AgQOqXbu2wsPDJcle/C0Wi30zv9zcXKWkpNhnAvz1r3/VlClTlJOTY0zoW8CafweXkJCgyMhIHT9+XE2aNNFzzz2natWq2Ufze/XqZT+3aK1KnTp1VK9evWLHjBATE6MePXqodevWMplMWrBggaxWq8aMGSOTyaSWLVvasxVdoPjqq6/k4+OjypUrG5IZAAAAQOm1Z88ehYSEqHLlyjp69KguXrwob29vSdcfFHV2dtbkyZP17rvvavfu3fYd/0siRv4dWGxsrNq1a6f4+HgdPXpU3377rV555RVdunTJ/ot79aoPk8mk6dOna9++fQoNDbUfM0J8fLz69Omj559/XqtXr9by5cv15z//2b6u5rfZDh48qPHjx2vhwoWaN2+eKlWqZEBqAAAAAKXV3r171aFDB7311lvasWOHoqOjtXLlymLnFM04Ll++vOrWrat3331X7733nnbt2lXi1vj/FuXfQZ06dUqDBw/W8OHDtWTJEm3atEkjRozQ/v37lZqaaj+vqEDv3LlTY8eO1dy5c/XVV1+pTp06BiW3/UHNmjVL7du315QpU2QymeTh4SGz2azNmzfr6aef1sSJE3Xq1ClJthkCCxYs0IYNGxQVFaUWLVoYlh0AAABA6bN//361atVK48aN08SJE1WvXj0NHTpUS5cu1ZkzZ+znFQ2ims1mrVmzRh988IG2bt2qBx980Kjot4zy74CsVqs2b96sWrVqKTw83H51atCgQUpPT1dsbGyx89PT07V+/XqdPHlSmzdvLraBnhGcnJz09ttva/jw4SpXrpwkafr06Vq6dKnq1KmjFi1aaMGCBRo1apQkqUWLFho6dKjWrVunli1bGhkdAAAAQCljsVi0du1aTZ8+XVOnTrUf79Kli3bu3KkTJ07YzytStWpV+fn5afv27WrduvV9z3wn2O3fQUVFRSkxMVEvvPCCJNuVqcLCQjVt2lRTp07VoEGDip1/7tw5ubi42NezlCTx8fGaOHGiRowYoZ49e0qSfvnlF7Vp00Zbtmyxb8ABAAAAALcjIyNDXl5eysrKkqenp6Tidzvr0qWL3N3d9c0339gHJoukp6eXquXGjPw7kMzMTPua+E6dOtmLv8VikbOzs9zc3OTr61tsnf+CBQt06tQpVa5c2dDif/LkSf3444+KjIzUhQsXlJ+fb3+tQYMGmj9/vr34S7Y/0mbNmtlvWQgAAAAAt2Pfvn166KGHtG3bNnl6etp7kpOTk/15//79dezYMR06dEiSrVsVvVYSB05vhvLvIA4fPqyQkBCtWLHimg39rt6VsmgGgCT95S9/UXh4uLKysgzJXCQmJkaPPPKIJkyYoFGjRik4OFgzZ860r+mXJB8fn2Lfs379evn6+tqvzgEAAADArdq7d69CQkKUkJCgWbNmKScnp9iG4kXPhwwZoszMTM2fP1+S7cJA0WtGbY5+pyj/DmLx4sWKjY3VpEmTtGrVKuXm5kq68gtZWFio/Px8Xbx4UeXLl9c//vEPzZw5U7t27VLjxo0Ny33hwgUNGzZMQ4cO1fr163XhwgUNGDBAq1ev1qRJk3T8+HFJVzbWSExM1FtvvaV58+bpww8/1AMPPGBYdgAAAAClz969e9W2bVuFh4fro48+0q5du3ThwgVJxdf1m81meXt7a9KkSVq9erViYmKMinxXuBgdAHdH586dJdlK/osvviiz2ayhQ4fay7+Li+1/dY0aNTRx4kQlJSXpp59+MnxXyszMTJ07d07du3dX1apVJUnvv/++5s6dq6VLl2rGjBmaMmWKqlSpopiYGM2ePVubN29WdHQ0u/oDAAAAuC2//vqr2rZtq9dff11Tp05VXl6e/va3v2n69OmaM2dOsVnTzs7OkqQmTZrI1dXV3ldKK8q/A1m1apX27dun9PR0jRw5UpUqVdL333+vJk2aaOzYsbJarbJYLEpOTtaOHTvUvHlzoyPLyclJHh4eSkpKkmS7eOHi4qLRo0crNzdXCxcuVPfu3dW3b1/5+/vr+eef1+TJk1nrDwAAAOC2FBQU6NNPP9WYMWM0depUmc1mubm5aeTIkVqzZo0SEhJUv379a76vc+fO2r17d6lb4/9b7PZfSpnNZjk7O9t3oszMzFSvXr30/fffy8PDQ6+99ppmz56tihUrat26dXrooYdktVq1YsUKPfLIIwoMDDT6I9j17t1bp0+fVlRUlLy9ve0XACTpiSeeUE5OjqKiogxOCQAAAKC0u94O/bt27dKjjz6qOXPmaPjw4cVes1qtMplM9sfSjDX/pdCePXvUr18/ZWdn26elVKxYUTk5Odq2bZsk23T68uXLKycnR0eOHFF2drZMJpMGDRpkaPE/deqUVqxYoa+++kr//e9/JUmLFi1Senq6BgwYoPz8fHvxl6QePXrIbDbLbDYbFRkAAABAKVe0lv+3xd9qteqhhx7S//zP/2jWrFk6ffp0sddL6+Z+10P5L2X27t2r9u3bq2nTpvLw8JAk5efny2q1qkGDBsrPz9fYsWO1du1a7du3T+Hh4Ro8eLDWrFkjoyd5xMbGKiQkRDNnztTLL7+syZMn6/Dhw6pSpYqWLl2qAwcOqHv37oqPj7dvWBgbG6uKFStS/gEAAADctnPnzkkqfvu+qxWV+s6dO+vChQs6fPiwpOIb/zkKyn8pEhMTow4dOmj06NGaPn26/XjRFJQ2bdqoV69eWrFihb755hvVrl1bs2bN0muvvaYWLVoYerXq+PHjevzxxzV48GBFR0dr0aJF+uWXX5Seni5Jatu2rX744QedOXNGYWFh6tSpk/r166fly5dr2rRpKleunGHZAQAAAJQ++/fvV7Vq1TR69GhJsk/fv55+/fopKChIkyZNkqRiG/85Ctb8lxIpKSlq1aqVWrZsqR9++EFms1kTJkxQfHy8EhIS9PLLL8vNzU2HDh3S0KFDFRwcbN8XoCRYsGCBli1bpo0bN9ovQoSFhalv375yc3NTQECA/Y4FH330kZKSkuTm5qbBgwerUaNGBiYHAAAAUNokJSXpySeflMVi0cGDBzVs2DDNmTNHkq5Zv1/Um/75z39q/vz5+uGHH1SlShWjot8z7PZfirRr104nT57UN998o08//VQFBQUKDg5WQECA5s6dq27dumnkyJFq1qyZJJWY4i/Z/sBOnDihPXv2qFWrVpo6daq+//575efnKz09XSdOnNDf/vY3jRgxQmPGjDE6LgAAAIBSymKxKDo6WgEBARo3bpxOnTql559/XpI0Z84cmUwm+8bp0pXe9NRTT+mJJ55wyOIvMfJfqiQnJ2vixIlauXKlQkJCtGzZMlWuXFmSFBkZqTFjxmjp0qV6/PHHDU56rcTERD377LNKS0tTy5Yt9dVXX2nVqlXq06ePzpw5o6lTpyomJkYrV66Uj4+PfU2OI2ysAQAAAOD+KBrFP3HihPbu3avevXtLkr744gu98MILGj58+A1nADg6Rv5LET8/P02bNk01atRQaGioKleubP+FffbZZzVlyhRFRUWVyPIfGBioyMhI/fLLL9q/f79MJpP69u0rSapatar8/f21adMmeXp62q/AlaU/RAAAAAB/zJ49e/TWW29p+fLlql27tmrXrm1/bcCAATKZTBo2bJgk2wwAi8WiZcuWqWXLlmrevLlRse8byn8p4+/vr4kTJ8rd3V3SlU0rzp8/L19fXwUHBxsb8CYCAwMVGBiozz77TLt27VJ+fr59I7/U1FTVqVOHXf0BAAAA3Laiu6K98sorqlChgiTbyL7VapWTk5OcnZ3Vv39/mUwm+xIAk8mkTz75REeOHDEw+f1D+S+FvLy8in1tMpk0Z84cnT17Vh06dDAo1a1r3769JkyYoNmzZ6t69eqKi4vTokWLtHnzZvsfKgAAAADcihvdFa2goKDYXcNcXFzUv39/mc1mPfPMM6pUqZJ27NhRbIaAI6P8l3JffPGFoqKitHLlSm3YsEEBAQFGR/pdQUFBWrVqlUaMGCEnJyfVqFFDmzZtKhNTbQAAAADcPSkpKerRo4dCQkI0Y8aMYndFO3LkiF566SX17NlTjRs3tn/Phg0b5Onpqa1bt6pJkyYGpr+/KP+lXFBQkCIjI7VlyxY1bdrU6Di3rEuXLtq5c6cKCgrk5uamSpUqGR0JAAAAQCl0o7ui1alTR3PmzFFcXJzefvtt1a5dW+vWrVN0dLQ2btxYpoq/xG7/DuHqtfMAAAAAUJbc7K5oS5cu1ahRo+x3RUtNTZXValX16tUNTn3/Uf4BAAAAAKVaUlKS5s6dq9DQUHXt2rXYbfwaNGigfv36aebMmQanNBbT/gEAAAAApdrv3RWtVatWBic0HuUfAAAAAFDqlfa7ot1rlH8AAAAAgEMpjXdFu9ecjA4AAAAAAMDdFBQUpNOnT2vLli1M+b+MDf8AAAAAAA6Hu6IVR/kHAAAAAMDBMe0fAAAAAAAHR/kHAAAAAMDBUf4BAAAAAHBwlH8AAAAAABwc5R8AAAAAAAdH+QcAAAAAwMFR/gEAgCGsVqtCQ0PVoEEDxcTEKDQ0VImJiUbHAgDAIVH+AQDAPbN9+3Y5OzsrLCzsmteOHTsmZ2dnzZ07V0OGDFGlSpUUGBhoQEoAAByfyWq1Wo0OAQAAHNPw4cPl6empiIgIHTp0SP7+/kZHAgCgTGLkHwAA3BNZWVlavny5Ro4cqbCwMH3++ef216Kjo2UymbRhwwY99NBD8vDwUPv27XXo0KFi7zFv3jzVq1dP5cqVU6NGjfSvf/3rPn8KAAAcA+UfAADcEytWrFDjxo3VqFEjPfvss1q4cKF+O+Fw0qRJ+uCDD7Rr1y65uLjohRdesL+2atUqjR07Vq+99pri4uL00ksvadiwYYqKirrfHwUAgFKPaf8AAOCe6NChgwYOHKixY8eqsLBQfn5+WrlypTp37qzo6Gh16dJF69ev12OPPSZJ+u677xQWFqacnBy5u7urQ4cOatq0qRYsWGB/z4EDB+rSpUtau3atUR8LAIBSiZF/AABw1x06dEg7d+7U4MGDJUkuLi4aNGiQIiIiip3XokUL+3M/Pz9JUlpamiTpwIED6tChQ7HzO3TooAMHDtzL6AAAOCQXowMAAADHExERocLCwmIb/FmtVrm5uWnu3Ln2Y66urvbnJpNJkmSxWO5fUAAAyghG/gEAwF1VWFioxYsX64MPPtCePXvs//bu3St/f38tW7bslt6nSZMm2rp1a7FjW7duVVBQ0L2IDQCAQ2PkHwAA3FVr1qzRhQsX9OKLL8rb27vYa/3791dERIRmzpz5u+/z+uuva+DAgWrVqpVCQ0O1evVqffXVV1q/fv29ig4AgMNi5B8AANxVERERCg0Nvab4S7byv2vXLsXExPzu+/Tr10+zZ8/W+++/r6ZNm2r+/PlatGiROnfufA9SAwDg2NjtHwAAAAAAB8fIPwAAAAAADo7yDwAAAACAg6P8AwAAAADg4Cj/AAAAAAA4OMo/AAAAAAAOjvIPAAAAAICDo/wDAAAAAODgKP8AAAAAADg4yj8AAAAAAA6O8g8AAAAAgIOj/AMAAAAA4OD+P1g6pxbJXfWJAAAAAElFTkSuQmCC\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+sAAAH5CAYAAAD5ga/wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoL0lEQVR4nO39eXiVhZ3//z/PyUqAJAQIYQlrFkRwQ4Wo4EJIbNGp1U7VWotLa1GkstY6Y+s4n89v7FfBfaH92EqnrbXaqXbUKgQQcEFUFAGXhH1PWLOwZD337w+GjKkbKHCyPB/XdS5z7vt97vM6uW5DXrnPue9QEAQBkiRJkiSp2QhHO4AkSZIkSWrKsi5JkiRJUjNjWZckSZIkqZmxrEuSJEmS1MxY1iVJkiRJamYs65IkSZIkNTOWdUmSJEmSmpnYaAeIpkgkwtatW+nYsSOhUCjacSRJkiRJrVwQBFRVVdGjRw/C4c8/ft6my/rWrVvJzMyMdgxJkiRJUhuzadMmevXq9bnr23RZ79ixI3Dwm5ScnBzlNJIkSZKk1q6yspLMzMzGPvp52nRZP/TW9+TkZMu6JEmSJOm4+bKPYnuCOUmSJEmSmhnLuiRJkiRJzYxlXZIkSZKkZsayLkmSJElSM2NZlyRJkiSpmbGsS5IkSZLUzFjWJUmSJElqZizrkiRJkiQ1M5Z1SZIkSZKaGcu6JEmSJEnNjGVdkiRJkqRmxrIuSZIkSVIzY1mXJEmSJKmZiY12AEmSJEmSvqqGSMBb63azvaqa9I6JnNkvjZhwKNqxvjbLuiRJkiSpRXp55TbufP5DtlVUNy7rnpLIHRcP4sLB3aOY7OvzbfCSJEmSpBbn5ZXbuPEP7zYp6gClFdXc+Id3eXnltiglOzos65IkSZKkFqUhEnDn8x8SfMa6Q8vufP5DGiKfNdEyWNYlSZIkSS3KW+t2f+qI+icFwLaKat5at/v4hTrKLOuSJEmSpBZle9XnF/WvMtccWdYlSZIkSS1GXUOElVsqDms2vWPiMU5z7Hg2eEmSJElSsxeJBDy/fCv3FZWwftf+L5wNARkpBy/j1lJZ1iVJkiRJzVYQBBR9WMaMOSUUl1UBkNY+ngtyu/Jf7245OPOJ+UNXWL/j4kEt+nrrlnVJkiRJUrMTBAGvrd7J9DklvL+pHICOibHcMKI/157Tjw4JseQP6vap66xntJLrrFvWJUmSJEnNyjvrd3PP7GKW/M/Z3NvFxXDt2X25YWR/UpPiG+cuHNyd0YMyeGvdbrZXVZPe8eBb31vyEfVDLOuSJEmSpGZh5ZYKZswp5pXiHQDEx4T53rDejD8/i64dEz7zMTHhEHkDOh/PmMeFZV2SJEmSFFWrt1dxb1EJf19RChws4P88tBcTRmXTM7VdlNNFh2VdkiRJkhQVG3ft5/55JTz33hYiAYRC8E8n92Bifg79urSPdryosqxLkiRJko6r0opqHpq/ij+/vYn6yMFzuRcM6sbkghwGZiRHOV3zED6S4ccee4yTTjqJ5ORkkpOTycvL46WXXmpcX11dzfjx4+ncuTMdOnTgsssuo6ysrMk2Nm7cyJgxY0hKSiI9PZ1p06ZRX1/fZGbBggWcdtppJCQkkJWVxaxZsz6V5ZFHHqFv374kJiYybNgw3nrrrSN5KZIkSZKk42z3vlr+fy9+yLn3vMIfl2ykPhIwIrsLz40/m1//4HSL+iccUVnv1asXv/zlL1m6dCnvvPMOF1xwAd/61rf44IMPAJg0aRLPP/88zzzzDAsXLmTr1q1ceumljY9vaGhgzJgx1NbW8sYbb/C73/2OWbNm8Ytf/KJxZt26dYwZM4bzzz+fZcuWMXHiRH74wx8ye/bsxpk///nPTJ48mTvuuIN3332Xk08+mcLCQrZv3/51vx+SJEmSpKOssrqOe+cUM+L/m8//e3UdNfURTu/TiaduGM7vrx/GKZmp0Y7Y7ISCIAi+fOzzpaWlcc899/Cd73yHrl278uSTT/Kd73wHgI8//pgTTjiBxYsXM3z4cF566SUuuugitm7dSrdu3QCYOXMmt956Kzt27CA+Pp5bb72VF198kZUrVzY+xxVXXEF5eTkvv/wyAMOGDeOMM87g4YcfBiASiZCZmcmECRP42c9+dtjZKysrSUlJoaKiguRk/4IjSZIkSUfT/tp6Zr2xnl8tXEvFgToATuyRzNTCXM7L6Uoo1PIvsXakDreHHtGR9U9qaGjgqaeeYt++feTl5bF06VLq6urIz89vnBk4cCC9e/dm8eLFACxevJghQ4Y0FnWAwsJCKisrG4/OL168uMk2Ds0c2kZtbS1Lly5tMhMOh8nPz2+c+Tw1NTVUVlY2uUmSJEmSjq6a+gZmvb6OkXcv4O6Xi6k4UEdWegceveo0nr/5HM7PTW+TRf1IHPEJ5lasWEFeXh7V1dV06NCBZ599lkGDBrFs2TLi4+NJTU1tMt+tWzdKSw+efr+0tLRJUT+0/tC6L5qprKzkwIED7Nmzh4aGhs+c+fjjj78w+1133cWdd955pC9ZkiRJknQY6hsi/Ne7m3lw3mq2lB8AIDOtHRNH5XDJqT2JCVvQD9cRl/Xc3FyWLVtGRUUFf/nLXxg7diwLFy48FtmOuttuu43Jkyc33q+srCQzMzOKiSRJkiSp5YtEAl5YsY37ikpYt3MfAN2SE5hwQTbfPT2T+Niv/KbuNuuIy3p8fDxZWVkADB06lLfffpsHHniAyy+/nNraWsrLy5scXS8rKyMjIwOAjIyMT521/dDZ4j85849nkC8rKyM5OZl27doRExNDTEzMZ84c2sbnSUhIICEh4UhfsiRJkiTpMwRBwNyPtjNjTjEfl1YB0CkpjpvOy+LqvD4kxsVEOWHL9bX/vBGJRKipqWHo0KHExcUxb968xnXFxcVs3LiRvLw8APLy8lixYkWTs7YXFRWRnJzMoEGDGmc+uY1DM4e2ER8fz9ChQ5vMRCIR5s2b1zgjSZIkSTq2Xl+9k28/+gY/+s93+Li0io4JsUwencOrt17Aj0b2t6h/TUd0ZP22227jG9/4Br1796aqqoonn3ySBQsWMHv2bFJSUrj++uuZPHkyaWlpJCcnM2HCBPLy8hg+fDgABQUFDBo0iKuvvpq7776b0tJSbr/9dsaPH994xHvcuHE8/PDD/PSnP+W6665j/vz5PP3007z44ouNOSZPnszYsWM5/fTTOfPMM7n//vvZt28f11577VH81kiSJEmS/tHSDXuYPruYxWt3AZAYF+aas/ox7tz+pCbFRzld63FEZX379u384Ac/YNu2baSkpHDSSScxe/ZsRo8eDcB9991HOBzmsssuo6amhsLCQh599NHGx8fExPDCCy9w4403kpeXR/v27Rk7diz//u//3jjTr18/XnzxRSZNmsQDDzxAr169ePzxxyksLGycufzyy9mxYwe/+MUvKC0t5ZRTTuHll1/+1EnnJEmSJElHxwdbK5gxp4T5Hx98p3R8TJjvDevNTecPIL1jYpTTtT5f+zrrLZnXWZckSZKkL7Z6+17um1vCi8u3ARATDnHZaT35yahsenVKinK6ludwe+gRn2BOkiRJktT6bdq9nwfmreKv724m8j+HeC8+uQeT8rPp37VDdMO1AZZ1SZIkSVKjsspqHp6/mqfe3khdw8GWnn9CN6YU5HBCd9+RfLxY1iVJkiRJ7N5Xy8yFa/jdG+upqY8AcE5WF6YU5HBq705RTtf2WNYlSZIkqQ2rqq7j8VfX8ZvX1rG3ph6A03qnMrUwl7MGdIlyurbLsi5JkiRJbdCB2gZ+t3g9MxeuoXx/HQCDuicztTCH83PTCYVCUU7YtlnWJUmSJKkNqalv4Km3NvHwK6vZUVUDwICu7Zk8OpdvDM4gHLakNweWdUmSJElqA+obIvz1vS08MHcVW8oPANCrUztuGZXNt0/tSWxMOMoJ9UmWdUmSJElqxSKRgBdXbOO+uSWs3bEPgPSOCUy4IIvLz+hNfKwlvTmyrEuSJElSKxQEAfM/3s70OSV8tK0SgNSkOG46bwBXD+9Lu/iYKCfUF7GsS5IkSVIr88bqndwzp5j3NpYD0CEhlh+O6Mf15/SjY2JcdMPpsFjWJUmSJKmVeHfjHqbPLuaNNbsASIwLM/asvowbOYBO7eOjnE5HwrIuSZIkSS3ch1srubeomLkfbQcgLibElWf25ubzs0hPToxyOn0VlnVJkiRJaqHW7NjLfUUlvLB8GwDhEFx2Wi9+MiqbzLSkKKfT12FZlyRJkqQWZvOe/TwwdxX/9e5mIsHBZRed1J1Jo3MY0LVDdMPpqLCsS5IkSVILsb2qmkfmr+bJtzZS13CwpY8amM7kghxO7JES5XQ6mizrkiRJktTM7dlXy8xFa/jdG+uprosAcNaAzkwpyGVon05RTqdjwbIuSZIkSc1UVXUdv3ltHb95dR1VNfUAnNo7lWkFuZyV1SXK6XQsWdYlSZIkqZmprmvgPxev57EFa9izvw6AgRkdmVaYywUD0wmFQlFOqGPNsi5JkiRJzURtfYQ/v72Rh+avZntVDQD9u7Rn0ugcxgzpTjhsSW8rLOuSJEmSFGX1DRGefW8LD8xbxeY9BwDomdqOW/KzufTUnsTGhKOcUMebZV2SJEmSoiQSCXhpZSn3FhWzZsc+ALp2TODm87O44sxMEmJjopxQ0WJZlyRJkqTjLAgCXinezvTZJXy4rRKA1KQ4xp07gLF5fWkXb0lv6yzrkiRJknQcLV6zi+lzilm6YQ8A7eNj+OGI/lw/oh/JiXFRTqfmwrIuSZIkScfBsk3lTJ9dzGurdwKQEBtm7Fl9GXfuANLax0c5nZoby7okSZIkHUMfbatkxpwS5n5UBkBcTIgrzujNzRdk0S05Mcrp1FxZ1iVJkiTpGFi3cx/3FZXw/PKtBAGEQ/DtU3sxMT+bzLSkaMdTM2dZlyRJkqSjaEv5AR6cu4q/vLuZhkgAwJgh3Zk0Opus9I5RTqeWwrIuSZIkSUfB9qpqHn1lDU8u2UhtQwSACwamM3l0DoN7pkQ5nVoay7okSZIkfQ3l+2v51aK1zHp9PQfqGgAY3j+NaYW5DO2TFuV0aqks65IkSZL0Feytqee3r63j/y1aS1VNPQAnZ6YyrSCXs7M6EwqFopxQLZllXZIkSZKOQHVdA79fvIHHFq5h975aAAZmdGRKQS75J6Rb0nVUWNYlSZIk6TDU1kd4+p1NPDR/FWWVNQD069KeSaNzuGhId8JhS7qOHsu6JEmSJH2BhkjAc+9t4f55JWzafQCAHimJ3JKfzWWn9SI2JhzlhGqNLOuSJEmS9BkikYCXPyjl3qISVm/fC0CXDgncfP4ArhzWm4TYmCgnVGtmWZckSZKkTwiCgAUlO5gxp5iVWyoBSGkXx4/P7c81Z/UlKd4apWPPvUySJEmS/seba3cxfXYx72zYA0D7+BiuP6cf14/oT0q7uCinU1tiWZckSZLU5r2/qZzpc4p5ddVOAOJjw4zN68O4cwfQuUNClNOpLbKsS5IkSWqzikurmDGnmDkflgEQGw5x+RmZTLggm4yUxCinU1tmWZckSZLU5qzfuY/75pbw3+9vJQggHIJLTu3JxFE59O6cFO14kmVdkiRJUtuxtfwAD81fxdPvbKYhEgDwjcEZTB6dQ3a3jlFOJ/0vy7okSZKkVm9HVQ2PLljNH9/cSG1DBIDzcrsytSCXwT1TopxO+jTLuiRJkqRWq2J/Hb9atIYnXl/PgboGAM7sl8a0wlzO6JsW5XTS57OsS5IkSWp19tXU88Tr6/jVorVUVdcDcFKvFKYW5DIiuwuhUCjKCaUvZlmXJEmS1GpU1zXwhzc38NiCNezaVwtAbreOTC7IoWBQN0u6WgzLuiRJkqQWr64hwjPvbObBeasorawGoG/nJCaNzuGik3oQE7akq2WxrEuSJElqsRoiAf/9/hbun7uKDbv2A9A9JZFbRmVz2dBexMWEo5xQ+mos65IkSZJanCAImP1BKTPmlLBq+14AunSI56bzsvjesN4kxsVEOaH09VjWJUmSJLUYQRCwsGQHM+aUsGJLBQDJibH8+NwBXHNWX9onWHHUOrgnS5IkSWoR3lq3m+mzi3lr/W4AkuJjuO7sfvxoZH9S2sVFOZ10dFnWJUmSJDVryzeXM31OCYtKdgAQHxvm6uF9uPG8AXTpkBDldNKxYVmXJEmS1CyVlFUxY04xsz8oAyA2HOK7Z2Qy4YIsuqe0i3I66diyrEuSJElqVjbs2sf9c1fx3LItBAGEQnDJKT2ZmJ9Nn87tox1POi4s65IkSZKahW0VB3hw3mqeeWcT9ZEAgAtPzGByQQ453TpGOZ10fFnWJUmSJEXVzr01PLZgDb9/cwO19REARuZ0ZWpBDif1So1uOClKLOuSJEmSoqLiQB3/b9Fafvv6OvbXNgBwZt80phbmcma/tCink6LLsi5JkiTpuNpXU8+sN9bzq4VrqKyuB2BIzxSmFuYyMrsLoVAoygml6LOsS5IkSTouqusaeHLJRh5dsJqde2sByE7vwJSCHApPzLCkS59gWZckSZJ0TNU1RPjL0s08OG8V2yqqAeidlsSk0dn808k9iQlb0qV/ZFmXJEmSdExEIgHPL9/KfUUlrN+1H4CM5ER+Miqbfz69F3Ex4SgnlJovy7okSZKkoyoIAuZ8WMa9c0ooLqsCoHP7eG48bwDfH96HxLiYKCeUmj/LuiRJkqSjIggCXl21kxlzinl/cwUAHRNj+fHI/lx7dj/aJ1g/pMPl/y2SJEmSvra31+/mntnFvLVuNwBJ8TFce3ZfbhgxgJSkuCink1oey7okSZKkr2zllgqmzylmQfEOAOJjwlw1vDc3nZdF144JUU4ntVyWdUmSJElHbFVZFfcWlfDSylIAYsIhvnt6LyZckE2P1HZRTie1fEd0+sW77rqLM844g44dO5Kens4ll1xCcXFxk5nzzjuPUCjU5DZu3LgmMxs3bmTMmDEkJSWRnp7OtGnTqK+vbzKzYMECTjvtNBISEsjKymLWrFmfyvPII4/Qt29fEhMTGTZsGG+99daRvBxJkiRJR2jjrv1M/vMyCu9fxEsrSwmF4JJTejBv8rncdelJFnXpKDmiI+sLFy5k/PjxnHHGGdTX1/Mv//IvFBQU8OGHH9K+ffvGuR/96Ef8+7//e+P9pKSkxq8bGhoYM2YMGRkZvPHGG2zbto0f/OAHxMXF8R//8R8ArFu3jjFjxjBu3Dj++Mc/Mm/ePH74wx/SvXt3CgsLAfjzn//M5MmTmTlzJsOGDeP++++nsLCQ4uJi0tPTv9Y3RZIkSVJTpRXVPDR/FX9+exP1kQCAgkHdmFKQS25Gxyink1qfUBAEwVd98I4dO0hPT2fhwoWMHDkSOHhk/ZRTTuH+++//zMe89NJLXHTRRWzdupVu3boBMHPmTG699VZ27NhBfHw8t956Ky+++CIrV65sfNwVV1xBeXk5L7/8MgDDhg3jjDPO4OGHHwYgEomQmZnJhAkT+NnPfnZY+SsrK0lJSaGiooLk5OSv+m2QJEmSWq1de2t4bMEafv/mBmrqIwCMyO7C1IJcTs5MjW44qQU63B56RG+D/0cVFQcvx5CWltZk+R//+Ee6dOnC4MGDue2229i/f3/jusWLFzNkyJDGog5QWFhIZWUlH3zwQeNMfn5+k20WFhayePFiAGpra1m6dGmTmXA4TH5+fuPMZ6mpqaGysrLJTZIkSdKnVVbXce+cYkbe/QqPv7aOmvoIp/fpxFM3DOf31w+zqEvH2Fc+wVwkEmHixImcffbZDB48uHH59773Pfr06UOPHj1Yvnw5t956K8XFxfz1r38FoLS0tElRBxrvl5aWfuFMZWUlBw4cYM+ePTQ0NHzmzMcff/y5me+66y7uvPPOr/qSJUmSpFZvf209s95Yz68WrqXiQB0Ag3smM6Ugl/NyuhIKhaKcUGobvnJZHz9+PCtXruS1115rsvyGG25o/HrIkCF0796dUaNGsWbNGgYMGPDVkx4Ft912G5MnT268X1lZSWZmZhQTSZIkSc1DTX0DTy7ZyCOvrGHn3hoAstI7MGV0DhcOzrCkS8fZVyrrN998My+88AKLFi2iV69eXzg7bNgwAFavXs2AAQPIyMj41Fnby8rKAMjIyGj876Fln5xJTk6mXbt2xMTEEBMT85kzh7bxWRISEkhI8FqPkiRJ0iH1DRH+693NPDhvNVvKDwCQmdaOiaNyuOTUnsSELelSNBzRZ9aDIODmm2/m2WefZf78+fTr1+9LH7Ns2TIAunfvDkBeXh4rVqxg+/btjTNFRUUkJyczaNCgxpl58+Y12U5RURF5eXkAxMfHM3To0CYzkUiEefPmNc5IkiRJ+nyRSMDflm1h9H2LuPW/VrCl/ADdkhP4v5cMZt7k87hsaC+LuhRFR3Rkffz48Tz55JP87W9/o2PHjo2fMU9JSaFdu3asWbOGJ598km9+85t07tyZ5cuXM2nSJEaOHMlJJ50EQEFBAYMGDeLqq6/m7rvvprS0lNtvv53x48c3HvUeN24cDz/8MD/96U+57rrrmD9/Pk8//TQvvvhiY5bJkyczduxYTj/9dM4880zuv/9+9u3bx7XXXnu0vjeSJElSqxMEAXM/2s6MOcV8XFoFQFr7eG46bwDfH96HxLiYKCeUBEd46bbP+5zKE088wTXXXMOmTZv4/ve/z8qVK9m3bx+ZmZl8+9vf5vbbb29ySvoNGzZw4403smDBAtq3b8/YsWP55S9/SWzs//7tYMGCBUyaNIkPP/yQXr168fOf/5xrrrmmyfM+/PDD3HPPPZSWlnLKKafw4IMPNr7t/nB46TZJkiS1FUEQ8PrqXdwzp5j3N5UD0DEhlh+N7M915/SjQ8JXPp2VpCNwuD30a11nvaWzrEuSJKktWLphN/fMLubNtbsBaBcXwzVn9+XHI/uTmhQf5XRS23K4PdQ/n0mSJEmt1MotFcyYU8wrxTsAiI8J871hvbnp/AGkd0yMcjpJX8SyLkmSJLUyq7dXcW9RCX9fcfAcUzHhEP88tBcTRmXTM7VdlNNJOhyWdUmSJKmV2LR7P/fPXcWz720mEkAoBBef1INJo3Po16V9tONJOgKWdUmSJKmFK6us5qH5q/jz25uoazh4SqrRg7oxpSCHgRmem0lqiSzrkiRJUgu1e18tMxeu4XdvrKemPgLAOVldmFKQw6m9O0U5naSvw7IuSZIktTCV1XU8/uo6fvvaOvbW1AMwtE8nphbkkjegc5TTSToaLOuSJElSC3GgtoHfLV7PzIVrKN9fB8Cg7slMK8zlvNyuhEKhKCeUdLRY1iVJkqRmrqa+gafe2sTDr6xmR1UNAAO6tmfy6Fy+MTiDcNiSLrU2lnVJkiSpmapviPDXd7fwwLxVbCk/AECvTu2YmJ/DJaf0IDYmHOWEko4Vy7okSZLUzEQiAS+u2MZ9RSWs3bkPgPSOCUy4IIvLz+hNfKwlXWrtLOuSJElSMxEEAfM+2s6MohI+2lYJQKekOG48bwBXD+9Lu/iYKCeUdLxY1iVJkqRm4I3VO7lnTjHvbSwHoENCLD8a0Z/rzulLx8S46IaTdNxZ1iVJkqQoenfjHqbPLuaNNbsASIwLM/asvowbOYBO7eOjnE5StFjWJUmSpCj4cGslM+YUM+/j7QDExYT43pm9GX9+FunJiVFOJynaLOuSJEnScbRmx17uLSrhxeXbAAiH4DtDe/GTUdn06pQU5XSSmgvLuiRJknQcbNq9nwfmreKv724mEhxcdvHJPZiUn03/rh2iG05Ss2NZlyRJko6h7ZXVPPzKav701kbqGg629PwT0pk8OpdBPZKjnE5Sc2VZlyRJko6BPftqmblwDb9bvJ7quggAZ2d1ZkpBLqf17hTldJKaO8u6JEmSdBRVVdfxm9fW8fir69hbUw/Aqb1TmVaQy1lZXaKcTlJLYVmXJEmSjoIDtQ385+L1zFy4hj376wA4oXsyUwtyuGBgOqFQKMoJJbUklnVJkiTpa6itj/DU2xt5eP5qtlfVANC/a3smj87hm4O7Ew5b0iUdOcu6JEmS9BXUN0R49r0tPDBvFZv3HACgZ2o7bsnP5tJTexIbE45yQkktmWVdkiRJOgKRSMDfV27j3qIS1u7YB0DXjglMuCCLy8/IJCE2JsoJJbUGlnVJkiTpMARBwCvF25k+u4QPt1UCkJoUx43nDuAHeX1pF29Jl3T0WNYlSZKkL/HGmp1Mn13MuxvLAeiQEMv15/Tj+hH9SE6Mi244Sa2SZV2SJEn6HO9t3MP0OcW8vnoXAAmxYa45qy8/PncAae3jo5xOUmtmWZckSZL+wUfbKpkxp4S5H5UBEBcT4oozenPzBVl0S06McjpJbYFlXZIkSfofa3fs5b65q3hh+VaCAMIhuPS0XtwyKpvMtKRox5PUhljWJUmS1OZtKT/Ag3NX8Zd3N9MQCQAYc1J3JuXnkJXeIcrpJLVFlnVJkiS1Wdurqnn0lTU8uWQjtQ0RAEYNTGdyQQ4n9kiJcjpJbZllXZIkSW1O+f5aZi5cy6w31lFdd7Ck5/XvzNTCXIb26RTldJJkWZckSVIbsremnt+8uo7HX11LVU09AKdkpjKtMJezs7pEOZ0k/S/LuiRJklq96roGfr94A48uWM2e/XUADMzoyNSCXEadkE4oFIpyQklqyrIuSZKkVqu2PsKf39nEw/NXUVZZA0C/Lu2ZNDqHi4Z0Jxy2pEtqnizrkiRJanUaIgHPvreFB+aVsGn3AQB6prbjllHZXHpaT2JjwlFOKElfzLIuSZKkViMSCXj5g1LuLSph9fa9AHTpkMDN5w/gymG9SYiNiXJCSTo8lnVJkiS1eEEQsKB4B9PnFPPB1koAUtrFMe7cAYw9qw9J8f7aK6ll8aeWJEmSWrQ31+5i+uxi3tmwB4D28TFcP6I/PxzRj+TEuCink6SvxrIuSZKkFun9TeVMn1PMq6t2ApAQG+YHeX0Yd+4AOndIiHI6Sfp6LOuSJElqUT4urWTGnBKKPiwDIDYc4oozM7n5/GwyUhKjnE6Sjg7LuiRJklqE9Tv3cd/cEv77/a0EAYRDcMmpPZk4KofenZOiHU+SjirLuiRJkpq1reUHeHDeKp5ZupmGSADAN4dkMHl0DlnpHaOcTpKODcu6JEmSmqUdVTU88spqnlyykdqGCADn53ZlSkEug3umRDmdJB1blnVJkiQ1KxX76/jVojU88fp6DtQ1ADCsXxrTCnM5vW9alNNJ0vFhWZckSVKzsLemnideW8evX11LVXU9ACf3SmFqYS7nZHUhFApFOaEkHT+WdUmSJEVVdV0Df3hzA48uWMPufbUA5HbryJSCHEYP6mZJl9QmWdYlSZIUFXUNEZ5+ZxMPzVtNaWU1AH07JzFpdA4Xn9SDcNiSLqntsqxLkiTpuGqIBPxt2Rbun7uKjbv3A9AjJZGfjMrmsqG9iIsJRzmhJEWfZV2SJEnHRRAEvLyylHuLSli1fS8AXTrEM/78LK48szeJcTFRTihJzYdlXZIkScdUEAQsLNnBjDklrNhSAUByYiw/PncA157dl6R4fyWVpH/kT0ZJkiQdM0vW7mL6nGLeXr8HgKT4GK4/px8/HNGflHZxUU4nSc2XZV2SJElH3fLN5dwzu5hXV+0EID42zA+G9+HG8wbQuUNClNNJUvNnWZckSdJRU1JWxYw5xcz+oAyA2HCI756RyYQLsuie0i7K6SSp5bCsS5Ik6Wtbv3Mf988t4W/vbyUIIBSCb5/Sk1vys+nTuX2040lSi2NZlyRJ0le2reIAD85bzdPvbKIhEgBw4YkZTC7IIadbxyink6SWy7IuSZKkI7Zzbw2PvrKGPyzZQG19BIBzc7oytSCXIb1SopxOklo+y7okSZIOW8X+On796hqeeH09+2sbADizXxrTCnM5o29alNNJUuthWZckSdKX2ldTz6w31vOrhWuorK4H4KReKUwtyGVEdhdCoVCUE0pS62JZlyRJ0ueqrmvgj0s28tiC1ezcWwtATrcOTB6dS+GJ3SzpknSMWNYlSZL0KXUNEZ55ZzMPzV/FtopqAPp0TmJSfg4Xn9yDmLAlXZKOJcu6JEmSGjVEAp5/fyv3zS1hw679AHRPSeQno7L5ztBexMWEo5xQktoGy7okSZIIgoDZH5Rxb1ExJWV7AejcPp6bzs/iqmG9SYyLiXJCSWpbLOuSJEltWBAELFq1kxlzilm+uQKA5MRYfnzuAK45qy/tE/x1UZKiwZ++kiRJbdTb63dzz+xi3lq3G4Ck+BiuPbsvN4wYQEpSXJTTSVLbdkQfOrrrrrs444wz6NixI+np6VxyySUUFxc3mamurmb8+PF07tyZDh06cNlll1FWVtZkZuPGjYwZM4akpCTS09OZNm0a9fX1TWYWLFjAaaedRkJCAllZWcyaNetTeR555BH69u1LYmIiw4YN46233jqSlyNJktQmrdhcwdjfvsU/z1zMW+t2Ex8b5rqz+7Hop+czrXCgRV2SmoEjKusLFy5k/PjxvPnmmxQVFVFXV0dBQQH79u1rnJk0aRLPP/88zzzzDAsXLmTr1q1ceumljesbGhoYM2YMtbW1vPHGG/zud79j1qxZ/OIXv2icWbduHWPGjOH8889n2bJlTJw4kR/+8IfMnj27cebPf/4zkydP5o477uDdd9/l5JNPprCwkO3bt3+d74ckSVKrtaqsinG/X8rFD7/GwpIdxIRDXHlmbxZMPY9fXDyILh0Soh1RkvQ/QkEQBF/1wTt27CA9PZ2FCxcycuRIKioq6Nq1K08++STf+c53APj444854YQTWLx4McOHD+ell17ioosuYuvWrXTr1g2AmTNncuutt7Jjxw7i4+O59dZbefHFF1m5cmXjc11xxRWUl5fz8ssvAzBs2DDOOOMMHn74YQAikQiZmZlMmDCBn/3sZ4eVv7KykpSUFCoqKkhOTv6q3wZJkqRmbeOu/dw/t4Rnl20hCCAUgm+d3IOJ+Tn07dI+2vEkqU053B76ta69UVFx8CQkaWlpACxdupS6ujry8/MbZwYOHEjv3r1ZvHgxAIsXL2bIkCGNRR2gsLCQyspKPvjgg8aZT27j0MyhbdTW1rJ06dImM+FwmPz8/MaZz1JTU0NlZWWTmyRJUmtVWlHNvzy7ggtmLOCv7x0s6oUnduPlW0Zy/xWnWtQlqRn7yieYi0QiTJw4kbPPPpvBgwcDUFpaSnx8PKmpqU1mu3XrRmlpaePMJ4v6ofWH1n3RTGVlJQcOHGDPnj00NDR85szHH3/8uZnvuusu7rzzziN/sZIkSS3Irr01PLZgDf/55gZq6yMAjMjuwtSCXE7OTI1uOEnSYfnKZX38+PGsXLmS11577WjmOaZuu+02Jk+e3Hi/srKSzMzMKCaSJEk6eioO1PH4q2v57Wvr2FfbAMAZfTsxtSCXYf07RzmdJOlIfKWyfvPNN/PCCy+waNEievXq1bg8IyOD2tpaysvLmxxdLysrIyMjo3HmH8/afuhs8Z+c+cczyJeVlZGcnEy7du2IiYkhJibmM2cObeOzJCQkkJDgiVMkSVLrsr+2nideX8+vF62l4kAdAEN6pjClIIdzc7oSCoWinFCSdKSO6DPrQRBw88038+yzzzJ//nz69evXZP3QoUOJi4tj3rx5jcuKi4vZuHEjeXl5AOTl5bFixYomZ20vKioiOTmZQYMGNc58chuHZg5tIz4+nqFDhzaZiUQizJs3r3FGkiSptaupb+CJ19cx8u4F3DO7mIoDdWSnd2Dm90/jv28+m/Ny0y3qktRCHdGR9fHjx/Pkk0/yt7/9jY4dOzZ+xjwlJYV27dqRkpLC9ddfz+TJk0lLSyM5OZkJEyaQl5fH8OHDASgoKGDQoEFcffXV3H333ZSWlnL77bczfvz4xqPe48aN4+GHH+anP/0p1113HfPnz+fpp5/mxRdfbMwyefJkxo4dy+mnn86ZZ57J/fffz759+7j22muP1vdGkiSpWapviPCXpZt5cN4qtlZUA9A7LYmJ+dl865SexIQt6JLU0h3Rpds+7y+zTzzxBNdccw0A1dXVTJkyhT/96U/U1NRQWFjIo48+2uTt6Rs2bODGG29kwYIFtG/fnrFjx/LLX/6S2Nj//dvBggULmDRpEh9++CG9evXi5z//eeNzHPLwww9zzz33UFpayimnnMKDDz7IsGHDDvvFe+k2SZLUkkQiAc8v38p9RSWs37UfgIzkRCaMyuK7p2cSF/O1LvQjSToODreHfq3rrLd0lnVJktQSBEFA0YdlzJhTQnFZFQBp7eO56bwBfH94HxLjYqKcUJJ0uA63h37ls8FLkiTp2AqCgNdW72T6nBLe31QOQMfEWG4Y0Z9rz+lHhwR/lZOk1sqf8JIkSc3QO+t3c8/sYpas2w1Au7gYrj27LzeM7E9qUnyU00mSjjXLuiRJUjOycksFM+YU80rxDgDiY8J8b1hvxp+fRdeOXoJWktoKy7okSVIzsHp7FfcWlfD3FQevthMTDvHPQ3sxYVQ2PVPbRTmdJOl4s6xLkiRF0abd+7lvbgnPvbeFSAChEPzTyT2YmJ9Dvy7tox1PkhQllnVJkqQoKKus5qH5q/jz25uoazh4cZ7Rg7oxpSCHgRlepUaS2jrLuiRJ0nG0e18tjy1YzX8u3kBNfQSAEdldmFKQyymZqdENJ0lqNizrkiRJx0FldR2Pv7qO37y6ln21DQAM7dOJqQW55A3oHOV0kqTmxrIuSZJ0DO2vred3b2xg5sI1VByoA+DEHslMLcjlvNyuhEKhKCeUJDVHlnVJkqRjoKa+gT8t2cjDr6xh594aALLSOzB5dA4XnphBOGxJlyR9Psu6JEnSUVTfEOGv727hgXmr2FJ+AIDMtHZMHJXDJaf2JMaSLkk6DJZ1SZKkoyASCXhhxTbuLyph7c59AHRLTmDCBdl89/RM4mPDUU4oSWpJLOuSJElfQxAEzPtoO9PnFPNxaRUAnZLiuOm8LK7O60NiXEyUE0qSWiLLuiRJ0lf0+uqd3DO7mGWbygHomBDLj0b257pz+tEhwV+zJElfnf+KSJIkHaGlG/YwfXYxi9fuAiAxLsw1Z/Vj3Ln9SU2Kj3I6SVJrYFmXJEk6TB9srWDGnBLmf7wdgPiYMN8b1pubzh9AesfEKKeTJLUmlnVJkqQvsXr7Xu6bW8KLy7cBEBMOcdlpPfnJqGx6dUqKcjpJUmtkWZckSfocm3bv54F5q/jru5uJBAeXXXxyDyblZ9O/a4fohpMktWqWdUmSpH+wvbKah+av5qm3N1LXcLCl55/QjSkFOZzQPTnK6SRJbYFlXZIk6X/s2VfLzIVr+N3i9VTXRQA4O6szUwpyOa13pyinkyS1JZZ1SZLU5lVV1/H4q+v4zWvr2FtTD8BpvVOZWpjLWQO6RDmdJKktsqxLkqQ260BtA/+5eD2PLVxD+f46AE7onsy0whzOz00nFApFOaEkqa2yrEuSpDantj7CU29v5KH5q9lRVQNA/67tmTw6h28O7k44bEmXJEWXZV2SJLUZ9Q0R/vreFh6Yu4ot5QcA6NWpHbeMyubbp/YkNiYc5YSSJB1kWZckSa1eJBLw95XbuLeohLU79gGQ3jGBCRdkcfkZvYmPtaRLkpoXy7okSWq1giBg/sfbmT6nhI+2VQKQmhTHTecN4OrhfWkXHxPlhJIkfTbLuiRJapXeWLOT6bOLeXdjOQAdEmL54Yh+XH9OPzomxkU3nCRJX8KyLkmSWpV3N+5hxpxiXl+9C4DEuDBjz+rLuJED6NQ+PsrpJEk6PJZ1SZLUKny4tZJ7i4qZ+9F2AOJiQlx5Zm9uPj+L9OTEKKeTJOnIWNYlSVKLtmbHXu4rKuGF5dsACIfgstN68ZNR2WSmJUU5nSRJX41lXZIktUib9+zngbmr+K93NxMJDi676KTuTBqdw4CuHaIbTpKkr8myLkmSWpTtVdU8Mn81T761kbqGgy191MB0JhfkcGKPlCinkyTp6LCsS5KkFmHPvlpmLlrD795YT3VdBICzBnRmSkEuQ/t0inI6SZKOLsu6JElq1qqq6/jta+t5/NW1VNXUA3BKZirTCnM5O6tLlNNJknRsWNYlSVKzVF3XwH8uXs9jC9awZ38dAAMzOjK1IJdRJ6QTCoWinFCSpGPHsi5JkpqV2voIf35nEw/NW8X2qhoA+ndpz6TROYwZ0p1w2JIuSWr9LOuSJKlZaIgEPPveFu6fW8LmPQcA6JnajltGZXPpaT2JjQlHOaEkScePZV2SJEVVJBLw0spS7i0qZs2OfQB06ZDAhAuyuOLMTBJiY6KcUJKk48+yLkmSoiIIAhYU72D6nGI+2FoJQGpSHOPOHcDYvL60i7ekS5LaLsu6JEk67hav2cX0OcUs3bAHgPbxMfxwRH+uH9GP5MS4KKeTJCn6LOuSJOm4WbapnOmzi3lt9U4AEmLDjD2rL+POHUBa+/gop5MkqfmwrEuSpGPu49JKZswpoejDMgDiYkJccUZvbr4gi27JiVFOJ0lS82NZlyRJx8y6nfu4r6iE55dvJQggHIJvn9qLifnZZKYlRTueJEnNlmVdkiQddVvKD/Dg3FX85d3NNEQCAMYM6c6k0dlkpXeMcjpJkpo/y7okSTpqtldV8+gra3hyyUZqGyIAXDAwncmjcxjcMyXK6SRJajks65Ik6Wsr31/LrxatZdbr6zlQ1wDA8P5pTCvMZWiftCinkySp5bGsS5Kkr2xvTT2/fW0d/2/RWqpq6gE4OTOVaQW5nJ3VmVAoFOWEkiS1TJZ1SZJ0xKrrGvjDmxt4dMEadu+rBWBgRkemFOSSf0K6JV2SpK/Jsi5Jkg5bbX2Ep9/ZxEPzV1FWWQNAvy7tmZifzcUn9SActqRLknQ0WNYlSdKXaogEPPfeFu6fV8Km3QcA6JGSyC352Vx2Wi9iY8JRTihJUutiWZckSZ8rCAJeXlnKvUUlrNq+F4AuHeIZf34W3xvWm4TYmCgnlCSpdbKsS5KkTwmCgAUlO5gxp5iVWyoBSGkXx4/P7c81Z/UlKd5fISRJOpb8l1aSJDWxZO0ups8p5u31ewBoHx/D9ef04/oR/UlpFxfldJIktQ2WdUmSBMD7m8qZPqeYV1ftBCA+NszYvD6MO3cAnTskRDmdJElti2VdkqQ2rri0ihlzipnzYRkAseEQl5+RyYQLsslISYxyOkmS2ibLuiRJbdT6nfu4f24Jf3t/K0EA4RBccmpPJo7KoXfnpGjHkySpTbOsS5LUxmwtP8BD81fx9DubaYgEAHxjcAaTR+eQ3a1jlNNJkiSwrEuS1GbsqKrh0QWr+eOSjdTWRwA4L7crUwtyGdwzJcrpJEnSJ1nWJUlq5Sr21/GrRWt44vX1HKhrAODMfmlMK8zljL5pUU4nSZI+i2VdkqRWal9NPU+8vo5fLVpLVXU9ACf1SmFqQS4jsrsQCoWinFCSJH0ey7okSa1MdV0Df3hzA48tWMOufbUA5HbryOSCHAoGdbOkS5LUAljWJUlqJeoaIjzzzmYenLeK0spqAPp0TmLy6BwuOqkHMWFLuiRJLYVlXZKkFq4hEvDf72/h/rmr2LBrPwDdUxL5yahsvjO0F3Ex4SgnlCRJR8qyLklSCxUEAbM/KOXeohJKyvYC0KVDPDedl8X3hvUmMS4mygklSdJXdcR/al+0aBEXX3wxPXr0IBQK8dxzzzVZf8011xAKhZrcLrzwwiYzu3fv5qqrriI5OZnU1FSuv/569u7d22Rm+fLljBgxgsTERDIzM7n77rs/leWZZ55h4MCBJCYmMmTIEP7+978f6cuRJKnFCYKAhSU7+NYjrzPuD+9SUraX5MRYphXmsnDa+Vx3Tj+LuiRJLdwRH1nft28fJ598Mtdddx2XXnrpZ85ceOGFPPHEE433ExISmqy/6qqr2LZtG0VFRdTV1XHttddyww038OSTTwJQWVlJQUEB+fn5zJw5kxUrVnDdddeRmprKDTfcAMAbb7zBlVdeyV133cVFF13Ek08+ySWXXMK7777L4MGDj/RlSZLUIry1bjfTZxfz1vrdACTFx3Dd2f340cj+pLSLi3I6SZJ0tISCIAi+8oNDIZ599lkuueSSxmXXXHMN5eXlnzrifshHH33EoEGDePvttzn99NMBePnll/nmN7/J5s2b6dGjB4899hj/+q//SmlpKfHx8QD87Gc/47nnnuPjjz8G4PLLL2ffvn288MILjdsePnw4p5xyCjNnzjys/JWVlaSkpFBRUUFycvJX+A5IknR8rNhcwT1zillUsgOA+NgwVw/vw43nDaBLh4QvebQkSWouDreHHpMzzixYsID09HRyc3O58cYb2bVrV+O6xYsXk5qa2ljUAfLz8wmHwyxZsqRxZuTIkY1FHaCwsJDi4mL27NnTOJOfn9/keQsLC1m8ePHn5qqpqaGysrLJTZKk5qykrIpxv1/KxQ+/xqKSHcSGQ3xvWG8WTjuPn180yKIuSVIrddRPMHfhhRdy6aWX0q9fP9asWcO//Mu/8I1vfIPFixcTExNDaWkp6enpTUPExpKWlkZpaSkApaWl9OvXr8lMt27dGtd16tSJ0tLSxmWfnDm0jc9y1113ceeddx6NlylJ0jG1Ydc+7p+7iueWbSEIIBSCS07pycT8bPp0bh/teJIk6Rg76mX9iiuuaPx6yJAhnHTSSQwYMIAFCxYwatSoo/10R+S2225j8uTJjfcrKyvJzMyMYiJJkpraVnGAh+av5um3N1EfOfhJtQtPzGByQQ453TpGOZ0kSTpejvml2/r370+XLl1YvXo1o0aNIiMjg+3btzeZqa+vZ/fu3WRkZACQkZFBWVlZk5lD979s5tD6z5KQkPCpk91JktQc7Npbw6ML1vD7NzdQWx8BYGROV6YW5HBSr9TohpMkScfdMfnM+idt3ryZXbt20b17dwDy8vIoLy9n6dKljTPz588nEokwbNiwxplFixZRV1fXOFNUVERubi6dOnVqnJk3b16T5yoqKiIvL+9YvyRJko6aigN1TJ9dzIi7X+E3r62jtj7CmX3TePrHefzndWda1CVJaqOO+Mj63r17Wb16deP9devWsWzZMtLS0khLS+POO+/ksssuIyMjgzVr1vDTn/6UrKwsCgsLATjhhBO48MIL+dGPfsTMmTOpq6vj5ptv5oorrqBHjx4AfO973+POO+/k+uuv59Zbb2XlypU88MAD3HfffY3Pe8stt3DuuecyY8YMxowZw1NPPcU777zDr3/966/7PZEk6ZjbV1PPrDfW86uFa6isrgdgSM8UphbmMjK7C6FQKMoJJUlSNB3xpdsWLFjA+eef/6nlY8eO5bHHHuOSSy7hvffeo7y8nB49elBQUMD/+T//p8nJ4Hbv3s3NN9/M888/Tzgc5rLLLuPBBx+kQ4cOjTPLly9n/PjxvP3223Tp0oUJEyZw6623NnnOZ555httvv53169eTnZ3N3XffzTe/+c3Dfi1euk2SdLxV1zXw5JKNPLpgNTv31gKQnd6BKQU5FJ6YYUmXJKmVO9we+rWus97SWdYlScdLXUOEvyzdzIPzVrGtohqA3mlJTBqdzT+d3JOYsCVdkqS24HB76DE/wZwkSW1ZJBLw/PKt3FdUwvpd+wHISE7kJ6Oy+efTexEXc8xPHyNJklogy7okScdAEATM+bCMe+eUUFxWBUDn9vHceN4Avj+8D4lxMVFOKEmSmjPLuiRJR1EQBLy6aicz5hTz/uYKADomxvLjkf259ux+tE/wn15JkvTl/I1BkqSj5J31u7lndjFL1u0GoF1cDNee3ZcfjxxASlJclNNJkqSWxLIuSdLXtHJLBdPnFLOgeAcA8TFhrhrem5vOy6Jrx4Qop5MkSS2RZV2SpK9oVVkV9xaV8NLKUgBiwiG+e3ovJlyQTY/UdlFOJ0mSWjLLuiRJR2jjrv3cP6+E597bQiSAUAj+6eQeTMzPoV+X9tGOJ0mSWgHLuiRJh6m0opqH5q/iz29voj4SAFAwqBtTCnLJzegY5XSSJKk1saxLkvQldu+r5bEFq/nPxRuoqY8AMCK7C1MLcjk5MzW64SRJUqtkWZck6XNUVtfx+KK1/Oa1deyrbQDg9D6dmFqYy/D+naOcTpIktWaWdUmS/sH+2npmvbGeXy1cS8WBOgAG90xmSkEu5+V0JRQKRTmhJElq7SzrkiT9j5r6Bv60ZCMPv7KGnXtrAMhK78CU0TlcODjDki5Jko4by7okqc2rb4jwX+9u5sF5q9lSfgCAzLR2TByVwyWn9iQmbEmXJEnHl2VdktRmRSIBzy/fyv1zV7Fu5z4AuiUnMOGCbL57eibxseEoJ5QkSW2VZV2S1OYEQcDcj7YzY04xH5dWAZDWPp6bzhvA94f3ITEuJsoJJUlSW2dZlyS1GUEQ8PrqXdwzp5j3N5UD0DEhlh+N7M915/SjQ4L/LEqSpObB30okSW3C0g27uWd2MW+u3Q1Au7gYrjm7Lz8e2Z/UpPgop5MkSWrKsi5JatU+2FrBjDklzP94OwDxMWG+N6w3N50/gPSOiVFOJ0mS9Nks65KkVmn19r3cV1TCiyu2ARATDvGd03rxk/xseqa2i3I6SZKkL2ZZlyS1Kpt27+f+uat49r3NRIKDy/7p5B5MzM+mf9cO0Q0nSZJ0mCzrkqRWoayymofnr+aptzdS13Cwpeef0I0pBTmc0D05yukkSZKOjGVdktSi7d5Xy8yFa/jdG+upqY8AcE5WF6YU5HBq705RTidJkvTVWNYlSS1SVXUdj7+6jt+8to69NfUADO3TiakFueQN6BzldJIkSV+PZV2S1KIcqG3gd4vXM3PhGsr31wEwqHsy0wpzOS+3K6FQKMoJJUmSvj7LuiSpRaipb+Cptzbx8Cur2VFVA8CAru2ZPDqXbwzOIBy2pEuSpNbDsi5JatbqGyL89b0tPDB3FVvKDwDQq1M7JubncMkpPYiNCUc5oSRJ0tFnWZckNUuRSMCLK7Zx39wS1u7YB0B6xwQmXJDF5Wf0Jj7Wki5Jklovy7okqVkJgoB5H21nRlEJH22rBKBTUhw3njeAq4f3pV18TJQTSpIkHXuWdUlSs/HG6p3cM6eY9zaWA9AhIZYfjejPdef0pWNiXHTDSZIkHUeWdUlS1L27cQ/TZxfzxppdACTGhRl7Vl/GjRxAp/bxUU4nSZJ0/FnWJUlR8+HWSmbMKWbex9sBiIsJ8b0zezP+/CzSkxOjnE6SJCl6LOuSpONuzY693FdUwgvLtwEQDsFlp/XiJ6OyyUxLinI6SZKk6LOsS5KOm8179vPA3FX817ubiQQHl110Uncmjc5hQNcO0Q0nSZLUjFjWJUnH3PbKah5+ZTV/emsjdQ0HW3r+CelMHp3LoB7JUU4nSZLU/FjWJUnHzJ59tcxctIbfvbGe6roIAGdndWZKQS6n9e4U5XSSJEnNl2VdknTUVVXX8ZvX1vGbV9dRVVMPwKm9U5lWkMtZWV2inE6SJKn5s6xLko6a6roG/nPxeh5bsIY9++sAOKF7MlMLcrhgYDqhUCjKCSVJkloGy7ok6WurrY/w57c38tD81WyvqgGgf9f2TB6dwzcHdycctqRLkiQdCcu6JOkrq2+I8Ox7W3hg3io27zkAQM/UdtySn82lp/YkNiYc5YSSJEktk2VdknTEIpGAl1aWcm9RMWt27AOga8cEJlyQxeVnZJIQGxPlhJIkSS2bZV2SdNiCIOCV4u1Mn13Ch9sqAUhNiuPGcwfwg7y+tIu3pEuSJB0NlnVJ0mF5Y81OZswpYemGPQB0SIjl+nP6cf2IfiQnxkU5nSRJUutiWZckfaH3Nu5h+pxiXl+9C4CE2DDXnNWXH587gLT28VFOJ0mS1DpZ1iVJn+mjbZXMmFPC3I/KAIiLCXHFGb25+YIsuiUnRjmdJElS62ZZlyQ1sXbHXu6bu4oXlm8lCCAcgktP68Uto7LJTEuKdjxJkqQ2wbIuSQJgS/kBHpy7ir+8u5mGSADAmCHdmTQ6h6z0DlFOJ0mS1LZY1iWpjdteVc2jr6zhySUbqW2IAHDBwHQmj85hcM+UKKeTJElqmyzrktRGle+vZebCtfzujfUcqGsAYHj/NKYV5jK0T1qU00mSJLVtlnVJamP21tTz29fW8f8WraWqph6AUzJTmVaYy1kDOhMKhaKcUJIkSZZ1SWojqusa+P3iDTy2cA2799UCMDCjI1MLchl1QrolXZIkqRmxrEtSK1dbH+Hpdzbx0PxVlFXWANCvS3smjc7hoiHdCYct6ZIkSc2NZV2SWqmGSMBz723h/nklbNp9AICeqe24ZVQ2l57Wk9iYcJQTSpIk6fNY1iWplYlEAl7+oJR7i0pYvX0vAF06JHDz+QO4clhvEmJjopxQkiRJX8ayLkmtRBAELCjZwYw5xazcUglASrs4xp07gLFn9SEp3h/5kiRJLYW/uUlSK/Dm2l1Mn13MOxv2ANA+PobrR/TnhyP6kZwYF+V0kiRJOlKWdUlqwd7fVM70OcW8umonAAmxYX6Q14dx5w6gc4eEKKeTJEnSV2VZl6QW6OPSSmbMKaHowzIAYsMhrjgzk5vPzyYjJTHK6SRJkvR1WdYlqQVZv3Mf980t4b/f30oQQDgEl5zak4mjcujdOSna8SRJknSUWNYlqQXYWn6AB+et4pmlm2mIBAB8c0gGk0fnkJXeMcrpJEmSdLRZ1iWpGdtRVcMjr6zmySUbqW2IAHB+blemFOQyuGdKlNNJkiTpWLGsS1IzVLG/jl8tWsMTr6/nQF0DAMP6pTGtMJfT+6ZFOZ0kSZKONcu6JDUje2vqeeK1dfz61bVUVdcDcHKvFKYW5nJOVhdCoVCUE0qSJOl4sKxLUjNQXdfAH97cwGML1rBrXy0Aud06Mrkgh4JB3SzpkiRJbYxlXZKiqK4hwtPvbOKheasprawGoG/nJCaNzuGik3oQE7akS5IktUXhI33AokWLuPjii+nRowehUIjnnnuuyfogCPjFL35B9+7dadeuHfn5+axatarJzO7du7nqqqtITk4mNTWV66+/nr179zaZWb58OSNGjCAxMZHMzEzuvvvuT2V55plnGDhwIImJiQwZMoS///3vR/pyJCkqGiIBz763mVEzFvKvz66ktLKaHimJ/PLSIRRNPpdvndLToi5JktSGHXFZ37dvHyeffDKPPPLIZ66/++67efDBB5k5cyZLliyhffv2FBYWUl1d3Thz1VVX8cEHH1BUVMQLL7zAokWLuOGGGxrXV1ZWUlBQQJ8+fVi6dCn33HMP//Zv/8avf/3rxpk33niDK6+8kuuvv5733nuPSy65hEsuuYSVK1ce6UuSpOMmCAJeXrmNC+9fxKQ/v8/G3fvp0iGeOy4exPyp53HFmb2JizniH82SJElqZUJBEARf+cGhEM8++yyXXHIJcPCX0B49ejBlyhSmTp0KQEVFBd26dWPWrFlcccUVfPTRRwwaNIi3336b008/HYCXX36Zb37zm2zevJkePXrw2GOP8a//+q+UlpYSHx8PwM9+9jOee+45Pv74YwAuv/xy9u3bxwsvvNCYZ/jw4ZxyyinMnDnzsPJXVlaSkpJCRUUFycnJX/XbIElfKggCFpbsYMacElZsqQAgOTGWH587gGvP7ktSvJ9KkiRJagsOt4ce1cM369ato7S0lPz8/MZlKSkpDBs2jMWLFwOwePFiUlNTG4s6QH5+PuFwmCVLljTOjBw5srGoAxQWFlJcXMyePXsaZz75PIdmDj3PZ6mpqaGysrLJTZKOtbfW7ebyX73JNU+8zYotFSTFxzDhgixevfUCxp+fZVGXJEnSpxzV3xBLS0sB6NatW5Pl3bp1a1xXWlpKenp60xCxsaSlpTWZ6dev36e2cWhdp06dKC0t/cLn+Sx33XUXd95551d4ZZJ05JZvLmf6nBIWlewAID42zA+G9+HG8wbQuUNClNNJkiSpOWtTh3Nuu+02Jk+e3Hi/srKSzMzMKCaS1BqVlFUxY04xsz8oAyA2HOK7Z2Qy4YIsuqe0i3I6SZIktQRHtaxnZGQAUFZWRvfu3RuXl5WVccoppzTObN++vcnj6uvr2b17d+PjMzIyKCsrazJz6P6XzRxa/1kSEhJISPBolqRjY/3OfTwwbxXPLdtCEEAoBN8+pSe35GfTp3P7aMeTJElSC3JUP7Per18/MjIymDdvXuOyyspKlixZQl5eHgB5eXmUl5ezdOnSxpn58+cTiUQYNmxY48yiRYuoq6trnCkqKiI3N5dOnTo1znzyeQ7NHHoeSTpetlUc4La/rmDUvQt59r2DRf3CEzOYPXEk915+ikVdkiRJR+yIj6zv3buX1atXN95ft24dy5YtIy0tjd69ezNx4kT+7//9v2RnZ9OvXz9+/vOf06NHj8Yzxp9wwglceOGF/OhHP2LmzJnU1dVx8803c8UVV9CjRw8Avve973HnnXdy/fXXc+utt7Jy5UoeeOAB7rvvvsbnveWWWzj33HOZMWMGY8aM4amnnuKdd95pcnk3STqWdu6t4dFX1vCHJRuorY8AcG5OV6YW5DKkV0qU00mSJKklO+JLty1YsIDzzz//U8vHjh3LrFmzCIKAO+64g1//+teUl5dzzjnn8Oijj5KTk9M4u3v3bm6++Waef/55wuEwl112GQ8++CAdOnRonFm+fDnjx4/n7bffpkuXLkyYMIFbb721yXM+88wz3H777axfv57s7GzuvvtuvvnNbx72a/HSbZK+ior9dfz61TU88fp69tc2AHBm3zSmFuZyZr+0KKeTJElSc3a4PfRrXWe9pbOsSzoS+2rqmfXGen61cA2V1fUADOmZwtTCXEZmdyEUCkU5oSRJkpq7w+2hbeps8JL0VVTXNfDHJRt5bMFqdu6tBSCnWwcmj86l8MRulnRJkiQddZZ1SfocdQ0R/rJ0Mw/OW8W2imoAeqclMXl0Dhef3IOYsCVdkiRJx4ZlXZL+QUMk4Pn3t3Lf3BI27NoPQPeURCZckM0/n96LuJijeiENSZIk6VMs65L0P4IgYPYHZdxbVExJ2V4AOreP56bzs7hqWG8S42KinFCSJElthWVdUpsXBAGvrtrJjDnFvL+5AoDkxFh+fO4ArjmrL+0T/FEpSZKk48vfQCW1aW+v3809s4t5a91uAJLiY7j27L7cMGIAKUlxUU4nSZKktsqyLqlNWrmlgulzillQvAOA+Ngw3x/Wh5vOH0CXDglRTidJkqS2zrIuqU1ZVVbFvUUlvLSyFICYcIjvnp7JhAuy6JHaLsrpJEmSpIMs65LahI279nP/3BKeW7aFSAChEHzr5B5MzM+hb5f20Y4nSZIkNWFZl9SqlVZU89D8Vfz57U3URwIACk/sxuTRueRmdIxyOkmSJOmzWdYltUq79tbw2II1/P7NDdTURwAYkd2FqQW5nJyZGt1wkiRJ0pewrEtqVSoO1PH4q2v57Wvr2FfbAMAZfTsxtSCXYf07RzmdJEmSdHgs65Jahf219Tzx+np+vWgtFQfqABjcM5mpBbmcm9OVUCgU5YSSJEnS4bOsS2rRauobeHLJRh55ZQ0799YAkJXegSmjc7hwcIYlXZIkSS2SZV1Si1TfEOEvSzfz4LxVbK2oBqB3WhIT87P51ik9iQlb0iVJktRyWdYltSiRSMDzy7dyX1EJ63ftB6BbcgI/GZXNd0/PJC4mHOWEkiRJ0tdnWZfUIgRBQNGHZdxbVMLHpVUApLWP56bzBvD94X1IjIuJckJJkiTp6LGsS2rWgiDgtdU7mT6nhPc3lQPQMTGWG0b059pz+tEhwR9jkiRJan38LVdSs7V0w27umV3Mm2t3A9AuLoZrz+7LDSP7k5oUH+V0kiRJ0rFjWZfU7KzcUsGMOcW8UrwDgPiYMN8b1pvx52fRtWNClNNJkiRJx55lXVKzsXp7FfcWlfD3FaUAxIRD/PPQXkwYlU3P1HZRTidJkiQdP5Z1SVG3afd+7p+7imff20wkgFAI/unkHkzMz6Ffl/bRjidJkiQdd5Z1SVFTVlnNQ/NX8ee3N1HXEAAwelA3phTkMDAjOcrpJEmSpOixrEs67nbvq2XmwjX87o311NRHABiR3YUpBbmckpka3XCSJElSM2BZl3TcVFbX8fir6/jta+vYW1MPwNA+nZhakEvegM5RTidJkiQ1H5Z1Scfc/tp6fvfGBn61aA3l++sAOLFHMlMLcjkvtyuhUCjKCSVJkqTmxbIu6ZipqW/gT0s28vAra9i5twaAAV3bM6UglwtPzCActqRLkiRJn8WyLumoq2+I8Nd3t/DAvFVsKT8AQK9O7ZiYn8O3T+1JjCVdkiRJ+kKWdUlHTSQS8MKKbdxfVMLanfsASO+YwIRR2Vx+eibxseEoJ5QkSZJaBsu6pK8tCALmfbSd6XOK+bi0CoBOSXHcdF4WV+f1ITEuJsoJJUmSpJbFsi7pa3l99U7umV3Msk3lAHRMiOWHI/pz3Tl96ZgYF91wkiRJUgtlWZf0lSzdsIfps4tZvHYXAIlxYa45qx8/HtmfTu3jo5xOkiRJatks65KOyAdbK7h3TgnzPt4OQHxMmO8N681N5w8gvWNilNNJkiRJrYNlXdJhWbNjL/cWlfDi8m0AxIRDXHZaT34yKptenZKinE6SJElqXSzrkr7Qpt37eWDeKv767mYiwcFlF5/cg0n52fTv2iG64SRJkqRWyrIu6TNtr6zm4VdW86e3NlLXcLCl55/QjSkFOZzQPTnK6SRJkqTWzbIuqYk9+2qZuXANv1u8nuq6CABnZ3VmSkEup/XuFOV0kiRJUttgWZcEQFV1Hb95bR2Pv7qOvTX1AJzWO5WphbmcNaBLlNNJkiRJbYtlXWrjDtQ28J+L1zNz4Rr27K8D4ITuyUwrzOH83HRCoVCUE0qSJEltj2VdaqNq6yM89fZGHp6/mu1VNQD079qeyaNz+Obg7oTDlnRJkiQpWizrUhtT3xDhr+9t4YG5q9hSfgCAnqntmJifzbdP7UlsTDjKCSVJkiRZ1qU2IhIJ+PvKbdxbVMLaHfsA6NoxgQkXZHH5GZkkxMZEOaEkSZKkQyzrUisXBAHzP97O9DklfLStEoDUpDhuPHcAP8jrS7t4S7okSZLU3FjWpVbsjTU7mT67mHc3lgPQISGWH47ox/Xn9KNjYlx0w0mSJEn6XJZ1qRV6b+Meps8p5vXVuwBIjAszNq8v484dQKf28VFOJ0mSJOnLWNalVuSjbZXMmFPM3I+2AxAXE+LKM3tz8/lZpCcnRjmdJEmSpMNlWZdagbU79nLf3FU8//5WAMIhuOy0XvxkVDaZaUlRTidJkiTpSFnWpRZs8579PDhvFf/17hYaIgEAF53UnUmjcxjQtUOU00mSJEn6qizrUgu0vaqaR+av5k9vbaK2IQLAqIHpTC7I4cQeKVFOJ0mSJOnrsqxLLUj5/lpmLlzLrDfWUV13sKSfNaAzUwpyGdqnU5TTSZIkSTpaLOtSC7C3pp7fvLqOx19dS1VNPQCnZKYyrTCXs7O6RDmdJEmSpKPNsi41Y9V1Dfx+8QYeXbCaPfvrABiY0ZGpBbmMOiGdUCgU5YSSJEmSjgXLutQM1dZH+PM7m3h4/irKKmsA6N+lPZNG5zBmSHfCYUu6JEmS1JpZ1qVmpCES8Ox7W3hgXgmbdh8AoGdqO24Zlc2lp/UkNiYc5YSSJEmSjgfLutQMRCIBL60s5d6iYtbs2AdAlw4JTLggiyvOzCQhNibKCSVJkiQdT5Z1KYqCIGBB8Q6mzynmg62VAKS0i2PcuQMYe1YfkuL9X1SSJElqi2wCUpQsXrOL6XOKWbphDwDt42O4fkR/fjiiH8mJcVFOJ0mSJCmaLOvScbZsUznTZxfz2uqdACTEhhl7Vl/GnTuAtPbxUU4nSZIkqTmwrEvHycellcyYU0LRh2UAxIZDXHFmJhMuyKZbcmKU00mSJElqTizr0jG2buc+7isq4fnlWwkCCIfg26f2YmJ+NplpSdGOJ0mSJKkZsqxLx8iW8gM8NG8VzyzdTEMkAGDMkO5MGp1NVnrHKKeTJEmS1JxZ1qWjbEdVDY+8sponl2yktiECwAUD05k8OofBPVOinE6SJElSS2BZl46S8v21/GrRWma9vp4DdQ0ADO+fxrTCXIb2SYtyOkmSJEktiWVd+pr21tTzxGvr+PWra6mqrgfg5MxUphXkcnZWZ0KhUJQTSpIkSWppwkd7g//2b/9GKBRqchs4cGDj+urqasaPH0/nzp3p0KEDl112GWVlZU22sXHjRsaMGUNSUhLp6elMmzaN+vr6JjMLFizgtNNOIyEhgaysLGbNmnW0X4r0harrGnj81bWMvPsVZhSVUFVdz8CMjvy/H5zOczedxTnZXSzqkiRJkr6SY3Jk/cQTT2Tu3Ln/+ySx//s0kyZN4sUXX+SZZ54hJSWFm2++mUsvvZTXX38dgIaGBsaMGUNGRgZvvPEG27Zt4wc/+AFxcXH8x3/8BwDr1q1jzJgxjBs3jj/+8Y/MmzePH/7wh3Tv3p3CwsJj8ZKkRnUNEZ5+ZxMPzVtNaWU1AP26tGdifjYXn9SDcNiCLkmSJOnrCQVBEBzNDf7bv/0bzz33HMuWLfvUuoqKCrp27cqTTz7Jd77zHQA+/vhjTjjhBBYvXszw4cN56aWXuOiii9i6dSvdunUDYObMmdx6663s2LGD+Ph4br31Vl588UVWrlzZuO0rrriC8vJyXn755cPOWllZSUpKChUVFSQnJ3+9F65WryES8LdlW7h/7io27t4PQI+URG7Jz+ay03oRG3PU36giSZIkqZU53B56TNrFqlWr6NGjB/379+eqq65i48aNACxdupS6ujry8/MbZwcOHEjv3r1ZvHgxAIsXL2bIkCGNRR2gsLCQyspKPvjgg8aZT27j0MyhbXyempoaKisrm9ykLxMEAS+t2MaF9y9i8tPvs3H3frp0iOeOiwfxyrTzuPyM3hZ1SZIkSUfVUX8b/LBhw5g1axa5ubls27aNO++8kxEjRrBy5UpKS0uJj48nNTW1yWO6detGaWkpAKWlpU2K+qH1h9Z90UxlZSUHDhygXbt2n5ntrrvu4s477zwaL1NtQBAELCzZwYw5JazYUgFASrs4fnxuf645qy9J8Z6fUZIkSdKxcdTbxje+8Y3Gr0866SSGDRtGnz59ePrppz+3RB8vt912G5MnT268X1lZSWZmZhQTqblasnYX0+cU8/b6PQC0j4/hunP68cMR/UlpFxfldJIkSZJau2N+aDA1NZWcnBxWr17N6NGjqa2tpby8vMnR9bKyMjIyMgDIyMjgrbfearKNQ2eL/+TMP55BvqysjOTk5C/8g0BCQgIJCQlH42WplXp/UznT5xTz6qqdAMTHhvnB8D7ceN4AOndw35EkSZJ0fBzzD9ru3buXNWvW0L17d4YOHUpcXBzz5s1rXF9cXMzGjRvJy8sDIC8vjxUrVrB9+/bGmaKiIpKTkxk0aFDjzCe3cWjm0DakI1VcWsUN//kO33rkdV5dtZPYcIirhvVm0bTzuf2iQRZ1SZIkScfVUT+yPnXqVC6++GL69OnD1q1bueOOO4iJieHKK68kJSWF66+/nsmTJ5OWlkZycjITJkwgLy+P4cOHA1BQUMCgQYO4+uqrufvuuyktLeX2229n/PjxjUfFx40bx8MPP8xPf/pTrrvuOubPn8/TTz/Niy++eLRfjlq59Tv3cf/cEv72/laCAEIh+PYpPZmYn0PvzknRjidJkiSpjTrqZX3z5s1ceeWV7Nq1i65du3LOOefw5ptv0rVrVwDuu+8+wuEwl112GTU1NRQWFvLoo482Pj4mJoYXXniBG2+8kby8PNq3b8/YsWP593//98aZfv368eKLLzJp0iQeeOABevXqxeOPP+411nXYtpYf4KH5q3j6nc00RA5evfAbgzOYPDqH7G4do5xOkiRJUlt31K+z3pJ4nfW2Z+feGh59ZQ1/WLKB2voIAOfldmXK6FyG9EqJcjpJkiRJrd3h9lCvPaU2oWJ/Hb9+dQ1PvL6e/bUNAJzZL41phbmc0TctyukkSZIkqSnLulq1fTX1PPH6On69aC2V1fUAnNQrhakFuYzI7kIoFIpyQkmSJEn6NMu6WqXqugb+uGQjj76yml37agHI7daRyQU5FAzqZkmXJEmS1KxZ1tWq1DVEeOadzTw0fxXbKqoB6NM5icmjc7jopB7EhC3pkiRJkpo/y7pahYZIwPPvb+W+uSVs2LUfgO4pifxkVDbfGdqLuJhwlBNKkiRJ0uGzrKtFC4KA2R+UcW9RMSVlewHo0iGem87L4nvDepMYFxPlhJIkSZJ05CzrapGCIGDRqp3MmFPM8s0VACQnxvLjcwdwzVl9aZ/gri1JkiSp5bLRqMV5e/1u7pldzFvrdgOQFB/DdWf340cj+5PSLi7K6SRJkiTp67Osq8VYsbmC6XOKWViyA4D42DBXD+/DjecNoEuHhCinkyRJkqSjx7KuZq+krIp755Tw8gelAMSGQ/zz6Zn8ZFQW3VPaRTmdJEmSJB19lnU1Wxt27eP+uat4btkWggBCIbjklJ5MzM+mT+f20Y4nSZIkSceMZV3NzraKAzw0fzVPv72J+kgAQOGJ3Zg8OpfcjI5RTidJkiRJx55lXc3Grr01PLpgDb9/cwO19REARuZ0ZWpBDif1So1uOEmSJEk6jizrirqKA3U8/upafvPaOvbXNgBwZt80phTkMKx/5yinkyRJkqTjz7KuY6YhEvDWut1sr6omvWMiZ/ZLIyYcaly/v7aeJ15fz68WrqGyuh6AIT1TmFqYy8jsLoRCoc/btCRJkiS1apZ1HRMvr9zGnc9/yLaK6sZl3VMSuePiQZyXm86TSzby6ILV7NxbC0B2egemFORQeGKGJV2SJElSm2dZ11H38spt3PiHdwn+YXlpRTXj/vAunZLi2LO/DoDeaUlMGp3NP53cs8lRd0mSJElqyyzrOqoaIgF3Pv/hp4o60Lhsz/46unVM4Jb8HP759F7ExYSPZ0RJkiRJavYs6zoqgiBg975aij4sa/LW989z9z+fxLk56cchmSRJkiS1PJb1Zu7LTtJ2POyrqae0spqyymq2V9Y0fn3wVkNpRTU7qmqobYgc9jbL/+dt8JIkSZKkT7OsN2NfdJK2Cwd3/9rbr2uIsL2q5mDprjhYvksra9heWf2JQl7D3pr6w95mcmJs45ndv0h6x8SvE12SJEmSWjXLejP1RSdpu/EP7/LY90/73MJ+6C3pZZU1jUfAS/+neJd94qj4rn21BJ/14fLP0D4+hm4piXTrmEhGSiLpyQlkJCfSrfGWQHrHRGLCIc75/+ZTWlH9mZ9bDwEZKQffISBJkiRJ+myW9WbocE7S9q/PrmR/TQPb99Z8rbekx4ZDdEv+7PKdkZxIevLBct4h4fB3lTsuHsSNf3iX0CfywsGifmi9Z36XJEmSpM9nWW+G3lq3+0tP0rZrXy2Tn3n/C2c6t48/WLaTEz5RwhPJSDl4FDwjJZG0pHjCR7k4Xzi4O499/7RPvYU/4yi+hV+SJEmSWjPLejO0verLz6YOkJ3egcE9U0hPTmh8e3q3/ynmXTsmkBAbc4yTfr4LB3dn9KCMqJ8cT5IkSZJaIst6M3S4J1/7928NJm9A52Oc5quLCYeadT5JkiRJaq7C0Q6gTzuzXxrdUxL5vGPQIQ6eFd6TtEmSJElS62RZb4ZiwiHuuHgQwKcKuydpkyRJkqTWz7LeTB06SVtGStO3xGekJH7hZdskSZIkSS2fn1lvxjxJmyRJkiS1TZb1Zs6TtEmSJElS2+Pb4CVJkiRJamYs65IkSZIkNTOWdUmSJEmSmhnLuiRJkiRJzYxlXZIkSZKkZsayLkmSJElSM2NZlyRJkiSpmbGsS5IkSZLUzFjWJUmSJElqZizrkiRJkiQ1M5Z1SZIkSZKaGcu6JEmSJEnNjGVdkiRJkqRmJjbaAaIpCAIAKisro5xEkiRJktQWHOqfh/ro52nTZb2qqgqAzMzMKCeRJEmSJLUlVVVVpKSkfO76UPBldb4Vi0QibN26lY4dOxIKhaIdR8dBZWUlmZmZbNq0ieTk5GjHkY4a9221Ru7Xaq3ct9UauV8fviAIqKqqokePHoTDn//J9DZ9ZD0cDtOrV69ox1AUJCcn+0NErZL7tloj92u1Vu7bao3crw/PFx1RP8QTzEmSJEmS1MxY1iVJkiRJamYs62pTEhISuOOOO0hISIh2FOmoct9Wa+R+rdbKfVutkfv10demTzAnSZIkSVJz5JF1SZIkSZKaGcu6JEmSJEnNjGVdkiRJkqRmxrIuSZIkSVIzY1mXJEmSJKmZsayr2Vm0aBEXX3wxPXr0IBQK8dxzzzVZHwQBv/jFL+jevTvt2rUjPz+fVatWNZnZvXs3V111FcnJyaSmpnL99dezd+/eJjPLly9nxIgRJCYmkpmZyd133/2pLM888wwDBw4kMTGRIUOG8Pe///2Is0gAd911F2eccQYdO3YkPT2dSy65hOLi4iYz1dXVjB8/ns6dO9OhQwcuu+wyysrKmsxs3LiRMWPGkJSURHp6OtOmTaO+vr7JzIIFCzjttNNISEggKyuLWbNmfSrPI488Qt++fUlMTGTYsGG89dZbR5xFeuyxxzjppJNITk4mOTmZvLw8Xnrppcb17tNqDX75y18SCoWYOHFi4zL3bbVE//Zv/0YoFGpyGzhwYON69+tmKJCamb///e/Bv/7rvwZ//etfAyB49tlnm6z/5S9/GaSkpATPPfdc8P777wf/9E//FPTr1y84cOBA48yFF14YnHzyycGbb74ZvPrqq0FWVlZw5ZVXNq6vqKgIunXrFlx11VXBypUrgz/96U9Bu3btgl/96leNM6+//noQExMT3H333cGHH34Y3H777UFcXFywYsWKI8oiBUEQFBYWBk888USwcuXKYNmyZcE3v/nNoHfv3sHevXsbZ8aNGxdkZmYG8+bNC955551g+PDhwVlnndW4vr6+Phg8eHCQn58fvPfee8Hf//73oEuXLsFtt93WOLN27dogKSkpmDx5cvDhhx8GDz30UBATExO8/PLLjTNPPfVUEB8fH/z2t78NPvjgg+BHP/pRkJqaGpSVlR12FikIguC///u/gxdffDEoKSkJiouLg3/5l38J4uLigpUrVwZB4D6tlu+tt94K+vbtG5x00knBLbfc0rjcfVst0R133BGceOKJwbZt2xpvO3bsaFzvft38WNbVrP1jWY9EIkFGRkZwzz33NC4rLy8PEhISgj/96U9BEATBhx9+GADB22+/3Tjz0ksvBaFQKNiyZUsQBEHw6KOPBp06dQpqamoaZ2699dYgNze38f53v/vdYMyYMU3yDBs2LPjxj3982Fmkz7N9+/YACBYuXBgEwcF9Jy4uLnjmmWcaZz766KMACBYvXhwEwcE/ZIXD4aC0tLRx5rHHHguSk5Mb9+Wf/vSnwYknntjkuS6//PKgsLCw8f6ZZ54ZjB8/vvF+Q0ND0KNHj+Cuu+467CzS5+nUqVPw+OOPu0+rxauqqgqys7ODoqKi4Nxzz20s6+7baqnuuOOO4OSTT/7Mde7XzZNvg1eLsm7dOkpLS8nPz29clpKSwrBhw1i8eDEAixcvJjU1ldNPP71xJj8/n3A4zJIlSxpnRo4cSXx8fONMYWEhxcXF7Nmzp3Hmk89zaObQ8xxOFunzVFRUAJCWlgbA0qVLqaura7I/DRw4kN69ezfZt4cMGUK3bt0aZwoLC6msrOSDDz5onPmi/ba2tpalS5c2mQmHw+Tn5zfOHE4W6R81NDTw1FNPsW/fPvLy8tyn1eKNHz+eMWPGfGr/c99WS7Zq1Sp69OhB//79ueqqq9i4cSPgft1cWdbVopSWlgI0+SFx6P6hdaWlpaSnpzdZHxsbS1paWpOZz9rGJ5/j82Y+uf7LskifJRKJMHHiRM4++2wGDx4MHNyf4uPjSU1NbTL7j/vcV91vKysrOXDgADt37qShoeFL9+0vyyIdsmLFCjp06EBCQgLjxo3j2WefZdCgQe7TatGeeuop3n33Xe66665PrXPfVks1bNgwZs2axcsvv8xjjz3GunXrGDFiBFVVVe7XzVRstANIUlszfvx4Vq5cyWuvvRbtKNLXlpuby7Jly6ioqOAvf/kLY8eOZeHChdGOJX1lmzZt4pZbbqGoqIjExMRox5GOmm984xuNX5900kkMGzaMPn368PTTT9OuXbsoJtPn8ci6WpSMjAyAT50NsqysrHFdRkYG27dvb7K+vr6e3bt3N5n5rG188jk+b+aT678si/SPbr75Zl544QVeeeUVevXq1bg8IyOD2tpaysvLm8z/4z73Vffb5ORk2rVrR5cuXYiJifnSffvLskiHxMfHk5WVxdChQ7nrrrs4+eSTeeCBB9yn1WItXbqU7du3c9pppxEbG0tsbCwLFy7kwQcfJDY2lm7durlvq1VITU0lJyeH1atX+zO7mbKsq0Xp168fGRkZzJs3r3FZZWUlS5YsIS8vD4C8vDzKy8tZunRp48z8+fOJRCIMGzascWbRokXU1dU1zhQVFZGbm0unTp0aZz75PIdmDj3P4WSRDgmCgJtvvplnn32W+fPn069fvybrhw4dSlxcXJP9qbi4mI0bNzbZt1esWNHkj1FFRUUkJyczaNCgxpkv2m/j4+MZOnRok5lIJMK8efMaZw4ni/R5IpEINTU17tNqsUaNGsWKFStYtmxZ4+3000/nqquuavzafVutwd69e1mzZg3du3f3Z3ZzFe0z3En/qKqqKnjvvfeC9957LwCCe++9N3jvvfeCDRs2BEFw8HJpqampwd/+9rdg+fLlwbe+9a3PvHTbqaeeGixZsiR47bXXguzs7CaXbisvLw+6desWXH311cHKlSuDp556KkhKSvrUpdtiY2OD6dOnBx999FFwxx13fOal274sixQEQXDjjTcGKSkpwYIFC5pcMmX//v2NM+PGjQt69+4dzJ8/P3jnnXeCvLy8IC8vr3H9oUumFBQUBMuWLQtefvnloGvXrp95yZRp06YFH330UfDII4985iVTEhISglmzZgUffvhhcMMNNwSpqalNzu76ZVmkIAiCn/3sZ8HChQuDdevWBcuXLw9+9rOfBaFQKJgzZ04QBO7Taj0+eTb4IHDfVss0ZcqUYMGCBcG6deuC119/PcjPzw+6dOkSbN++PQgC9+vmyLKuZueVV14JgE/dxo4dGwTBwUum/fznPw+6desWJCQkBKNGjQqKi4ubbGPXrl3BlVdeGXTo0CFITk4Orr322qCqqqrJzPvvvx+cc845QUJCQtCzZ8/gl7/85aeyPP3000FOTk4QHx8fnHjiicGLL77YZP3hZJGCIPjMfRoInnjiicaZAwcOBDfddFPQqVOnICkpKfj2t78dbNu2rcl21q9fH3zjG98I2rVrF3Tp0iWYMmVKUFdX12TmlVdeCU455ZQgPj4+6N+/f5PnOOShhx4KevfuHcTHxwdnnnlm8OabbzZZfzhZpOuuuy7o06dPEB8fH3Tt2jUYNWpUY1EPAvdptR7/WNbdt9USXX755UH37t2D+Pj4oGfPnsHll18erF69unG9+3XzEwqCIIjOMX1JkiRJkvRZ/My6JEmSJEnNjGVdkiRJkqRmxrIuSZIkSVIzY1mXJEmSJKmZsaxLkiRJktTMWNYlSZIkSWpmLOuSJEmSJDUzlnVJkiRJkpoZy7okSZIkSc2MZV2SJEmSpGbGsi5JkiRJUjPz/weEuxiDVUPFxAAAAABJRU5ErkJggg==\n" }, "metadata": {} } From df15c26480c3fc4cbc865bf85e5b01b8a7a55b77 Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Tue, 14 Nov 2023 21:28:46 -0300 Subject: [PATCH 14/16] Creado mediante Colaboratory --- proyectoIAPrediccion1CNNPrediccion0.2.ipynb | 574 ++++++++++++++++++++ 1 file changed, 574 insertions(+) create mode 100644 proyectoIAPrediccion1CNNPrediccion0.2.ipynb diff --git a/proyectoIAPrediccion1CNNPrediccion0.2.ipynb b/proyectoIAPrediccion1CNNPrediccion0.2.ipynb new file mode 100644 index 0000000..e441650 --- /dev/null +++ b/proyectoIAPrediccion1CNNPrediccion0.2.ipynb @@ -0,0 +1,574 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from keras.models import Sequential\n", + "from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout\n", + "from keras.regularizers import l1_l2\n", + "from keras.callbacks import EarlyStopping" + ], + "metadata": { + "id": "H7kZjC_GUZZd" + }, + "execution_count": 67, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "id": "9_FId2wvQAgd" + }, + "outputs": [], + "source": [ + "# Cargar el archivo de estadísticas de electricidad\n", + "file_path = 'Global_Electricity_Statistics.csv' # Asegúrate de cambiar esto a tu ruta de archivo\n", + "electricity_data = pd.read_csv(file_path)\n" + ] + }, + { + "cell_type": "code", + "source": [ + "# Convertir todos los valores a números, tratando los valores no numéricos como nulos\n", + "years_columns = electricity_data.columns[3:] # Columnas de años\n", + "electricity_data[years_columns] = electricity_data[years_columns].apply(pd.to_numeric, errors='coerce')\n" + ], + "metadata": { + "id": "dM7ktPDSOl8N" + }, + "execution_count": 69, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Reemplazar valores 0 con NaN utilizando una máscara booleana\n", + "for column in years_columns:\n", + " mask = electricity_data[column] == 0\n", + " electricity_data.loc[mask, column] = pd.NA\n", + "\n", + "# Calcular la media de cada fila excluyendo NaN\n", + "row_means = electricity_data[years_columns].mean(axis=1)\n", + "\n", + "# Usar `fillna` en cada columna para reemplazar NaN con la media correspondiente de cada fila\n", + "for year in years_columns:\n", + " electricity_data[year] = electricity_data[year].fillna(row_means)\n", + "\n", + "# Verificar si hay valores nulos después de la normalización\n", + "null_values_after_normalization = electricity_data[years_columns].isna().sum().sum()\n" + ], + "metadata": { + "id": "374vEgbTOw3P" + }, + "execution_count": 70, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Asegúrate de que los datos están agrupados por región y año como se hizo anteriormente\n", + "grouped_data = electricity_data.groupby('Region')[years_columns].sum().transpose()\n", + "\n", + "# Crear un gráfico de líneas\n", + "plt.figure(figsize=(15, 8)) # Ajusta el tamaño del gráfico según tus necesidades\n", + "\n", + "for region in grouped_data.columns:\n", + " plt.plot(grouped_data.index, grouped_data[region], label=region)\n", + "\n", + "# Agregar títulos y etiquetas\n", + "plt.title('Consumo de Electricidad por Región a lo Largo del Tiempo')\n", + "plt.xlabel('Año')\n", + "plt.ylabel('Consumo de Electricidad (Unidades)')\n", + "plt.xticks(rotation=45) # Rota las etiquetas del eje X para mejor legibilidad\n", + "plt.legend() # Añade una leyenda para identificar cada línea/región\n", + "\n", + "# Mostrar el gráfico\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 477 + }, + "id": "lWY6qwmkQ2PL", + "outputId": "aafed511-b3a6-4311-fab7-a210179f7c92" + }, + "execution_count": 71, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOcAAALTCAYAAABdWWYwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdvH8e+mh1QCgYBA6L33IlUgVOmC1CBNijwICKJ0UBGliqBgIIgiilSp0pXepPeYEB/pLSG0tHn/2Cf7siRAAoEN8Ptc117unDlz5p7J7EbunGIyDMNAREREREREREREnjs7WwcgIiIiIiIiIiLyqlJyTkRERERERERExEaUnBMREREREREREbERJedERERERERERERsRMk5ERERERERERERG1FyTkRERERERERExEaUnBMREREREREREbERJedERERERERERERsRMk5EREREXmlbdy4kbFjx3Lr1i1bhyIiIiKvICXnREREXkEjR47EZDLZ5Nwmk4mRI0fa5NwPExgYSM6cOVN8XM6cOQkMDHxsveDgYEwmE2FhYSk+x8PUqFGDGjVqpFp7L6vHPeshISE0a9aMTJky4ebm9hwje7QnfSZfdcn9TCYlNb+bnsVnXkREXl5KzomISJoVEhJCjx49yJ07Ny4uLnh6elKlShWmTJnCnTt3bB2e3CfhH6IPe+3cufO5xHH79m1GjhzJ5s2bn8v55PHCwsKsngU7Ozt8fHyoX78+O3bssGls9+7do1WrVvTp04fu3bvbNJZnLTAwEHd3d1uH8UKrUaPGI7/nEl5p7Y8PIiKS9jnYOgAREZGkrFy5klatWuHs7EzHjh0pWrQo0dHRbN26lQ8++ICjR48yc+ZMW4cpDxg9ejS5cuVKVJ43b97ncv7bt28zatQogBT1Kps1axbx8fEpPt/Jkyexs9PfOpPj7bffpkGDBsTFxXHq1CmmT59OzZo12bNnD8WKFXtm5x06dCgffvhhkvsOHz5M586dee+9957Z+eXl8fHHH9O1a1fL9p49e5g6dSofffQRhQoVspQXL16cIkWK0KZNG5ydnW0RqoiIvGCUnBMRkTQnNDSUNm3a4O/vz8aNG8mSJYtlX+/evTlz5gwrV660YYTyMPXr16ds2bK2DiPZbt26hZubG46Ojk90vP7hbZZwHx+ldOnStG/f3rJdtWpV6tevz4wZM5g+ffozi83BwQEHh6T/l7ds2bIv1POaliXnGXjR1alTx2rbxcWFqVOnUqdOnST/GGBvb/+cIhMRkRed/tQrIiJpzvjx44mKiiIoKMgqMZcgb968/Oc//7Fsx8bGMmbMGPLkyYOzszM5c+bko48+4t69e1bH5cyZk0aNGrF161bKly+Pi4sLuXPn5vvvv7eqFxMTw6hRo8iXLx8uLi5kyJCB119/nXXr1lnqPGy+rwfniUoY0vfll1/y9ddfkzt3btKlS0fdunX5559/MAyDMWPGkC1bNlxdXWnSpAnXrl1L1O706dMpUqQIzs7OZM2ald69e3Pjxo1k3c+tW7dSrlw5XFxcyJMnD99+++1D6/7www+UKVMGV1dXfHx8aNOmDf/880+yzvM0/v33X9555x0yZ86Ms7MzRYoUYfbs2Ynq3b17l5EjR5I/f35cXFzIkiULzZs3JyQkhLCwMHx9fQEYNWpUoiFmCcP6QkJCaNCgAR4eHrRr186y78H5veLj45kyZQrFihXDxcUFX19f6tWrx969ey11kprf6ujRo9SqVQtXV1eyZcvG2LFjk+yVt2zZMho2bEjWrFlxdnYmT548jBkzhri4uER1Z86cSZ48eXB1daV8+fL8+eefyb63JpOJPn368OOPP1KgQAFcXFwoU6YMf/zxR6K6f/31F/Xr18fT0xN3d3feeOONREOSE4Ywb9myhV69epEpUyayZcuW7HgSVK1aFTAPX7/fjRs36NevH9mzZ8fZ2Zm8efPy+eefJ7qHV69epUOHDnh6euLt7U2nTp04ePAgJpOJ4OBgS72k5pxL7e+Mh/nyyy+pXLkyGTJkwNXVlTJlyvDrr78m9xYlcuvWLQYMGGC5NwUKFODLL7/EMIwnbvN+Z8+epVevXhQoUABXV1cyZMhAq1atEs2b9rhnIOG77v7nNanvzEuXLtGlSxcyZ86Mi4sLJUqUYO7cucmK1TAMxo4dS7Zs2UiXLh01a9bk6NGjSdZN7jOVmh4259zq1aupWrUqbm5ueHh40LBhw0RxJ3xXhYeH06hRI9zd3Xnttdf4+uuvAXOPz1q1auHm5oa/vz/z589P8tx//PEHPXr0IEOGDHh6etKxY0euX7+eKNan+f0iIiKpQz3nREQkzfntt9/InTs3lStXTlb9rl27MnfuXFq2bMmAAQPYtWsXn332GcePH2fJkiVWdc+cOUPLli3p0qULnTp1Yvbs2QQGBlKmTBmKFCkCmP8x/9lnn9G1a1fKly9PZGQke/fuZf/+/Yl6TiTXjz/+SHR0NO+99x7Xrl1j/PjxvPXWW9SqVYvNmzczePBgzpw5w1dffcXAgQOtElMjR45k1KhR1K5dm549e3Ly5ElmzJjBnj172LZt2yN7fR0+fJi6devi6+vLyJEjiY2NZcSIEWTOnDlR3U8++YRhw4bx1ltv0bVrVy5fvsxXX31FtWrV+Ouvv/D29n7sdUZERHDlyhWrMpPJRIYMGR56zMWLF6lYsaIlieTr68vq1avp0qULkZGR9OvXD4C4uDgaNWrEhg0baNOmDf/5z3+4efMm69at48iRI9SuXZsZM2bQs2dPmjVrRvPmzQHzELMEsbGxBAQE8Prrr/Pll1+SLl26h8bVpUsXgoODqV+/Pl27diU2NpY///yTnTt3PrS31YULF6hZsyaxsbF8+OGHuLm5MXPmTFxdXRPVDQ4Oxt3dnf79++Pu7s7GjRsZPnw4kZGRfPHFF5Z6QUFB9OjRg8qVK9OvXz/+/vtv3nzzTXx8fMiePftD47/fli1b+Pnnn+nbty/Ozs5Mnz6devXqsXv3booWLQqYk4pVq1bF09OTQYMG4ejoyLfffkuNGjXYsmULFSpUsGqzV69e+Pr6Mnz48Cda5TQhaZE+fXpL2e3bt6levTr//vsvPXr0IEeOHGzfvp0hQ4Zw/vx5Jk+eDJgTp40bN2b37t307NmTggULsmzZMjp16pSsc6f2d8bDTJkyhTfffJN27doRHR3NggULaNWqFStWrKBhw4bJv1mYk1FvvvkmmzZtokuXLpQsWZK1a9fywQcf8O+//zJp0qQUtZeUPXv2sH37dtq0aUO2bNkICwtjxowZ1KhRg2PHjiX6vCT1DMyYMYM+ffpQtWpV3n//fcLCwmjatCnp06e3SuDduXOHGjVqcObMGfr06UOuXLlYuHAhgYGB3Lhxw+oPMEkZPnw4Y8eOpUGDBjRo0ID9+/dTt25doqOjreol95l6HubNm0enTp0ICAjg888/5/bt28yYMYPXX3+dv/76y+oPBHFxcdSvX59q1aoxfvx4fvzxR/r06YObmxsff/wx7dq1o3nz5nzzzTd07NiRSpUqJZpSoE+fPnh7ezNy5EjL742zZ8+yefNmS8L6aX6/iIhIKjJERETSkIiICAMwmjRpkqz6Bw4cMACja9euVuUDBw40AGPjxo2WMn9/fwMw/vjjD0vZpUuXDGdnZ2PAgAGWshIlShgNGzZ85HmrV69uVK9ePVF5p06dDH9/f8t2aGioARi+vr7GjRs3LOVDhgwxAKNEiRJGTEyMpfztt982nJycjLt371ric3JyMurWrWvExcVZ6k2bNs0AjNmzZz8yzqZNmxouLi7G2bNnLWXHjh0z7O3tjfv/NyAsLMywt7c3PvnkE6vjDx8+bDg4OCQqf9CcOXMMIMmXs7OzVV3AGDFihGW7S5cuRpYsWYwrV65Y1WvTpo3h5eVl3L592zAMw5g9e7YBGBMnTkx0/vj4eMMwDOPy5cuJ2k/QqVMnAzA+/PDDJPfd/3PbuHGjARh9+/Z96LkMw/xMderUybLdr18/AzB27dplKbt06ZLh5eVlAEZoaKilPOG67tejRw8jXbp0lp9/dHS0kSlTJqNkyZLGvXv3LPVmzpxpAEk+gw9K+Dns3bvXUnb27FnDxcXFaNasmaWsadOmhpOTkxESEmIpO3funOHh4WFUq1bNUpbws3799deN2NjYx54/4TMwatQo4/Lly8aFCxeMP//80yhXrpwBGAsXLrTUHTNmjOHm5macOnXKqo0PP/zQsLe3N8LDww3DMIxFixYZgDF58mRLnbi4OKNWrVoGYMyZM8dSPmLECKtn/Vl8ZzzMgz/j6Ohoo2jRokatWrUee+yDz+TSpUsNwBg7dqxVvZYtWxomk8k4c+bMY9tzc3NLUbyGYRg7duwwAOP777+3lD3sGbh3756RIUMGo1y5clbfa8HBwYme18mTJxuA8cMPP1jKoqOjjUqVKhnu7u5GZGTkQ+NM+F5s2LCh1efxo48+MgCrz2RynynDSPzd9DgLFy40AGPTpk2J9iXco4TP/M2bNw1vb2+jW7duVvUuXLhgeHl5WZUnfFd9+umnlrLr168brq6uhslkMhYsWGApP3HiRKK4E85dpkwZIzo62lI+fvx4AzCWLVtmGMbT/34REZHUo2GtIiKSpkRGRgLg4eGRrPqrVq0CoH///lblAwYMAEg0N13hwoUtw+kAfH19KVCgAH///belzNvbm6NHj3L69OmUX8BDtGrVCi8vL8t2Qi+k9u3bW82HVaFCBaKjo/n3338BWL9+PdHR0fTr189q4YFu3brh6en5yLn34uLiWLt2LU2bNiVHjhyW8kKFChEQEGBVd/HixcTHx/PWW29x5coVy8vPz498+fKxadOmZF3n119/zbp166xeq1evfmh9wzBYtGgRjRs3xjAMq3MHBAQQERHB/v37AVi0aBEZM2ZMcvL+B4ctPkrPnj0fW2fRokWYTCZGjBiRonOtWrWKihUrUr58eUuZr6+vZfjs/e7vTXfz5k2uXLlC1apVuX37NidOnABg7969XLp0iXfffRcnJydL/cDAQKvn6XEqVapEmTJlLNs5cuSgSZMmrF27lri4OOLi4vj9999p2rQpuXPnttTLkiULbdu2ZevWrZbPZoJu3bqlaE6tESNG4Ovri5+fH1WrVuX48eNMmDCBli1bWuosXLiQqlWrkj59eqtnoXbt2sTFxVmG4q5ZswZHR0e6detmOdbOzo7evXs/No5n8Z3xMPf/jK9fv05ERARVq1a1PNMpsWrVKuzt7enbt2+iuA3DeOTnLLnujzcmJoarV6+SN29evL29k4z5wWdg7969XL16lW7dull9r7Vr186qh2TC9fj5+fH2229byhwdHenbty9RUVFs2bLloXEmfC++9957Vp/HhF6290vuM/WsrVu3jhs3bvD2229bxWFvb0+FChWS/I69f/EJb29vChQogJubG2+99ZalvECBAnh7eyf5PHbv3t2q51vPnj1xcHCwfAae5veLiIikLg1rFRGRNMXT0xMwJyuS4+zZs9jZ2SVaDdTPzw9vb2/Onj1rVX5/kipB+vTprebhGT16NE2aNCF//vwULVqUevXq0aFDB6vhkSn14HkTEisPDktMKE+IJyH+AgUKWNVzcnIid+7cia7vfpcvX+bOnTvky5cv0b4CBQpY/oEGcPr0aQzDSLIukOyhTeXLl0/RBPuXL1/mxo0bzJw586Gr7166dAkwz01WoECBh07unxwODg7Jmh8tJCSErFmz4uPjk6L2z549m2j4JyT++YF5GOnQoUPZuHFjosRXRESEpT0g0c/F0dHRKon2OEn9XPPnz8/t27e5fPkyYB7+l1SchQoVIj4+nn/++cdqGGdSq/I+Svfu3WnVqhV3795l48aNTJ06NdH8eqdPn+bQoUOWuQMflPAsnD17lixZsiQaZpmcVYGfxXfGw6xYsYKxY8dy4MABq/nsUpJMvj/urFmzJvrDRcIqoY/6LkiuO3fu8NlnnzFnzhz+/fdfq7nsEp7J+z34DCTE8OC9dXBwSDSn49mzZ8mXL1+i1Y6Tcz0P+1z4+vomSgIm95l61hL+2FOrVq0k9yf87kuQMM/l/by8vMiWLVui58fLyyvJ5/HB++Pu7k6WLFksQ8qf5veLiIikLiXnREQkTfH09CRr1qwcOXIkRccl9x+7D+vpc/8/QqtVq0ZISAjLli3j999/57vvvmPSpEl88803lp4MJpMpyUnYk5rM/1HnTU48z0N8fDwmk4nVq1cnGZO7u/szOy+YexA+bL6wp0mKPsjZ2TlRMsAWbty4QfXq1fH09GT06NHkyZMHFxcX9u/fz+DBg5/pRPWpJal59B4lX7581K5dG4BGjRphb2/Phx9+SM2aNS0J3fj4eOrUqcOgQYOSbCN//vxPF/R9UvM7Iyl//vknb775JtWqVWP69OlkyZIFR0dH5syZk2gC/7TivffeY86cOfTr149KlSrh5eWFyWSiTZs2ST6TKX0GbOF5PlOPiwPM8875+fkl2v/gHx3S+u8MERFJXUrOiYhImtOoUSNmzpzJjh07qFSp0iPr+vv7Ex8fz+nTpy09LsC8yMCNGzfw9/d/ohh8fHzo3LkznTt3JioqimrVqjFy5EhLci59+vRJDiNK7Z4GCfGfPHnSqqdUdHQ0oaGhlmRHUnx9fXF1dU1yeO7JkyettvPkyYNhGOTKleu5/WMVzDF6eHgQFxf3yGsBc4y7du0iJibmoT35nqRH0sPOtXbtWq5du5ai3nP+/v7Jut+bN2/m6tWrLF68mGrVqlnKQ0NDE7UH5l439/e4iYmJITQ0lBIlSiQrrqRiOnXqFOnSpbP0zkmXLl2iOAFOnDiBnZ1dshefSK6PP/6YWbNmMXToUNasWQOY73tUVNRjnwV/f382bdrE7du3rXrPnTlz5rHnfVbfGQ9atGgRLi4urF27FmdnZ0v5nDlznqg9f39/1q9fz82bN616zyUMgU6NuH/99Vc6derEhAkTLGV3795N9sqdCTGcOXOGmjVrWspjY2MJCwuzSrT7+/tz6NAh4uPjrRLmybme+z8X938vXr58OVEPsuQ+U89anjx5AMiUKdNzi+X06dNWP4eoqCjOnz9PgwYNgKf7/SIiIqnL9n86FhERecCgQYNwc3Oja9euXLx4MdH+kJAQpkyZAmD5R8aDK+5NnDgRIMUrIgJcvXrVatvd3Z28efNaDUvLkycPJ06csAwJBDh48CDbtm1L8fkepXbt2jg5OTF16lSrnhFBQUFEREQ88vrs7e0JCAhg6dKlhIeHW8qPHz/O2rVrreo2b94ce3t7Ro0alagHhmEYie5JarG3t6dFixYsWrQoyd6S99/fFi1acOXKFaZNm5aoXkLMCYma5CYTHqZFixYYhsGoUaMeeq6kNGjQgJ07d7J7925L2eXLl/nxxx+t6iX0frm/rejoaKZPn25Vr2zZsvj6+vLNN99YrUIZHBycomvcsWOH1Zxh//zzD8uWLaNu3brY29tjb29P3bp1WbZsmWXIG5gTVvPnz+f1119PNOzuaXl7e9OjRw/Wrl3LgQMHAHjrrbfYsWNHoucTzD/T2NhYAAICAoiJiWHWrFmW/fHx8Xz99dePPe+z+M5Iir29PSaTyao3bVhYGEuXLn2i9ho0aEBcXFyi53/SpEmYTCbq16//NOEC5pgffL6/+uqrh/YIflDZsmXJkCEDs2bNsvyswLxa9YNJswYNGnDhwgV+/vlnS1lsbCxfffUV7u7uVK9e/aHnqV27No6Ojnz11VdW8Sa18mpyn6lnLSAgAE9PTz799FNiYmIS7b//uy61zJw50+pcM2bMIDY21vKsPM3vFxERSV3qOSciImlOnjx5mD9/Pq1bt6ZQoUJ07NiRokWLEh0dzfbt21m4cCGBgYEAlChRgk6dOjFz5kzLUMHdu3czd+5cmjZtatVrILkKFy5MjRo1KFOmDD4+Puzdu5dff/2VPn36WOq88847TJw4kYCAALp06cKlS5f45ptvKFKkSKL5w56Gr68vQ4YMYdSoUdSrV48333yTkydPMn36dMqVK0f79u0fefyoUaNYs2YNVatWpVevXpZ//BYpUoRDhw5Z6uXJk4exY8cyZMgQwsLCaNq0KR4eHoSGhrJkyRK6d+/OwIEDHxvv6tWrLT1f7le5cuWHzpE2btw4Nm3aRIUKFejWrRuFCxfm2rVr7N+/n/Xr13Pt2jUAOnbsyPfff0///v3ZvXs3VatW5datW6xfv55evXrRpEkTXF1dKVy4MD///DP58+fHx8eHokWLUrRo0cfGfr+aNWvSoUMHpk6dyunTp6lXrx7x8fH8+eef1KxZ0+pZuN+gQYOYN28e9erV4z//+Q9ubm7MnDnT0kvo/vuRPn16OnXqRN++fTGZTMybNy9RYsTR0ZGxY8fSo0cPatWqRevWrQkNDWXOnDkpmnOuaNGiBAQE0LdvX5ydnS1JwPuTj2PHjmXdunW8/vrr9OrVCwcHB7799lvu3bvH+PHjU3L7ku0///kPkydPZty4cSxYsIAPPviA5cuX06hRIwIDAylTpgy3bt3i8OHD/Prrr4SFhZExY0aaNm1K+fLlGTBgAGfOnKFgwYIsX77c8qw8qgfls/jOSErDhg2ZOHEi9erVo23btly6dImvv/6avHnzWj0LydW4cWNq1qzJxx9/TFhYGCVKlOD3339n2bJl9OvXz9Iz61FiYmIYO3ZsonIfHx969epFo0aNmDdvHl5eXhQuXJgdO3awfv16MmTIkKwYnZycGDlyJO+99x61atXirbfeIiwsjODgYPLkyWP1c+nevTvffvstgYGB7Nu3j5w5c/Lrr7+ybds2Jk+e/MhFgXx9fRk4cCCfffYZjRo1okGDBvz111+sXr2ajBkzWtVN7jP1rHl6ejJjxgw6dOhA6dKladOmDb6+voSHh7Ny5UqqVKmS5B8enkZ0dDRvvPEGb731luX3xuuvv86bb74JPP3vFxERSUXPc2lYERGRlDh16pTRrVs3I2fOnIaTk5Ph4eFhVKlSxfjqq6+Mu3fvWurFxMQYo0aNMnLlymU4Ojoa2bNnN4YMGWJVxzAMw9/f32jYsGGi81SvXt2oXr26ZXvs2LFG+fLlDW9vb8PV1dUoWLCg8cknnxjR0dFWx/3www9G7ty5DScnJ6NkyZLG2rVrjU6dOhn+/v6WOqGhoQZgfPHFF1bHbtq0yQCMhQsXWpXPmTPHAIw9e/ZYlU+bNs0oWLCg4ejoaGTOnNno2bOncf369eTcRmPLli1GmTJlDCcnJyN37tzGN998Y4wYMcJI6n8DFi1aZLz++uuGm5ub4ebmZhQsWNDo3bu3cfLkyUeeIyHuh73mzJljqQsYI0aMsDr+4sWLRu/evY3s2bMbjo6Ohp+fn/HGG28YM2fOtKp3+/Zt4+OPP7b8rP38/IyWLVsaISEhljrbt2+3XO/95+rUqZPh5uaWZPwP/twMwzBiY2ONL774wihYsKDh5ORk+Pr6GvXr1zf27dtnqePv72906tTJ6rhDhw4Z1atXN1xcXIzXXnvNGDNmjBEUFGQARmhoqKXetm3bjIoVKxqurq5G1qxZjUGDBhlr1641AGPTpk1WbU6fPt3IlSuX4ezsbJQtW9b4448/Ej23DwMYvXv3Nn744QcjX758hrOzs1GqVKlE5zAMw9i/f78REBBguLu7G+nSpTNq1qxpbN++3arOw57Rh3nYZyBBYGCgYW9vb5w5c8YwDMO4efOmMWTIECNv3ryGk5OTkTFjRqNy5crGl19+afUZvHz5stG2bVvDw8PD8PLyMgIDA41t27YZgLFgwQJLvaSe9dT+zniYoKAgyz0vWLCgMWfOnId+9h6U1DN58+ZN4/333zeyZs1qODo6Gvny5TO++OILIz4+PlntPezzmSdPHsMwDOP69etG586djYwZMxru7u5GQECAceLEiUTP+eOegalTpxr+/v6Gs7OzUb58eWPbtm1GmTJljHr16lnVu3jxouV8Tk5ORrFixay+Kx4lLi7OGDVqlJElSxbD1dXVqFGjhnHkyJEkP5PJfaaS+m56lIULFyb5eTWM/79H93/mDcP83R8QEGB4eXkZLi4uRp48eYzAwEBj7969ljoP+66qXr26UaRIkUTlDz6nCefesmWL0b17dyN9+vSGu7u70a5dO+Pq1auJjn+a3y8iIpI6TIah2UNFREREXlYmk4nevXuneq+ctGjp0qU0a9aMrVu3UqVKFVuHI/8THx+Pr68vzZs3txqKLM9GcHAwnTt3Zs+ePSlaPVtERGxHc86JiIiIyAvnzp07VttxcXF89dVXeHp6Urp0aRtFJXfv3k00PPv777/n2rVr1KhRwzZBiYiIpHGac05EREREXjjvvfced+7coVKlSty7d4/Fixezfft2Pv30U1xdXW0d3itr586dvP/++7Rq1YoMGTKwf/9+goKCKFq0KK1atbJ1eCIiImmSknMiIiIi8sKpVasWEyZMYMWKFdy9e5e8efPy1VdfPXSxDnk+cubMSfbs2Zk6dSrXrl3Dx8eHjh07Mm7cOJycnGwdnoiISJqkOedERERERERERERsRHPOiYiIiIiIiIiI2IiScyIiIiIiIiIiIjai5JyIiIiIiIiIiIiNaEGIVBIfH8+5c+fw8PDAZDLZOhwREREREREREbEhwzC4efMmWbNmxc7u4f3jlJxLJefOnSN79uy2DkNERERERERERNKQf/75h2zZsj10v5JzqcTDwwMw33BPT08bRyMiIiIiIiIiIrYUGRlJ9uzZLTmjh1FyLpUkDGX19PRUck5ERERERERERAAeO/2ZFoQQERERERERERGxESXnREREREREREREbETJORERERERERERERvRnHPPkWEYxMbGEhcXZ+tQRF56jo6O2Nvb2zoMERERERERkUdScu45iY6O5vz589y+fdvWoYi8EkwmE9myZcPd3d3WoYiIiIiIiIg8lJJzz0F8fDyhoaHY29uTNWtWnJycHrtSh4g8OcMwuHz5Mv/973/Jly+fetCJiIiIiIhImqXk3HMQHR1NfHw82bNnJ126dLYOR+SV4OvrS1hYGDExMUrOiYiIiIiISJqlBSGeIzs73W6R50W9U0VERERERORFoGyRiIiIiIiIiIiIjSg5J0/FMAy6d++Oj48PJpOJAwcOPLSuyWRi6dKlzy02EREREREREZG0Tsk5SZYdO3Zgb29Pw4YNrcrXrFlDcHAwK1as4Pz58xQtWvShbZw/f5769es/61BFRERERERERF4YSs5JsgQFBfHee+/xxx9/cO7cOUt5SEgIWbJkoXLlyvj5+eHgkHiNkejoaAD8/PxwdnZ+bjGLiIiIiIiIiKR1Ss7JY0VFRfHzzz/Ts2dPGjZsSHBwMACBgYG89957hIeHYzKZyJkzJwA1atSgT58+9OvXj4wZMxIQEAAkHtb63//+l7fffhsfHx/c3NwoW7Ysu3btAsxJvyZNmpA5c2bc3d0pV64c69evf56XLSIiIiIiIiLyzCXu5iTPhWEY3ImJe+7ndXW0T/Eqlr/88gsFCxakQIECtG/fnn79+jFkyBCmTJlCnjx5mDlzJnv27MHe3t5yzNy5c+nZsyfbtm1Lss2oqCiqV6/Oa6+9xvLly/Hz82P//v3Ex8db9jdo0IBPPvkEZ2dnvv/+exo3bszJkyfJkSPHk98AEREREREREZE0RMk5G7kTE0fh4Wuf+3mPjQ4gnVPKfuxBQUG0b98egHr16hEREcGWLVuoUaMGHh4e2Nvb4+fnZ3VMvnz5GD9+/EPbnD9/PpcvX2bPnj34+PgAkDdvXsv+EiVKUKJECcv2mDFjWLJkCcuXL6dPnz4pil9EREREREREJK3SsFZ5pJMnT7J7927efvttABwcHGjdujVBQUGPPK5MmTKP3H/gwAFKlSplScw9KCoqioEDB1KoUCG8vb1xd3fn+PHjhIeHP9mFiIiIiIiIiIikQeo5ZyOujvYcGx1gk/OmRFBQELGxsWTNmtVSZhgGzs7OTJs27aHHubm5PToOV9dH7h84cCDr1q3jyy+/JG/evLi6utKyZUvL4hIiIiIiIiIiIi8DJedsxGQypXh46fMWGxvL999/z4QJE6hbt67VvqZNm/LTTz89cdvFixfnu+++49q1a0n2ntu2bRuBgYE0a9YMMPekCwsLe+LziYiIiIiIiIikRRrWKg+1YsUKrl+/TpcuXShatKjVq0WLFo8d2voob7/9Nn5+fjRt2pRt27bx999/s2jRInbs2AGY56xbvHgxBw4c4ODBg7Rt29ayWISIiIiIiIiIyMtCyTl5qKCgIGrXro2Xl1eifS1atGDv3r1ERkY+UdtOTk78/vvvZMqUiQYNGlCsWDHGjRtnWfF14sSJpE+fnsqVK9O4cWMCAgIoXbr0U12PiIiIiIiIiEhaYzIMw7B1EC+DyMhIvLy8iIiIwNPT02rf3bt3CQ0NJVeuXLi4uNgoQpFXiz53IiIiIiIiYkuPyhXdTz3nREREREREREREbETJORERERERERERERtRck5ERERERERERGxr+zS4ftbWUdiEknMiIiIiIiIiImI7x1fA7x/DN1Xh9jVbR/PcKTknIiIiIiIiIiK2EXUJfutrfl+mE6TzsW08NqDknIiIiIiIiIiIPH+GAcvfg9tXIXNRqDXU1hHZhJJzIiIiIiIiIiLy/O2fC6fWgL0TNJ8JDs62jsgmlJwTEREREREREZHn62oIrPnI/P6N4ZC5iG3jsSEl50RERERERERE5PmJi4Ul70LMLchZFSr2tnVENqXknDxTYWFhmEwmDhw4YOtQXhg1atSgX79+tg5DRERERERE5NnYNgn+uxucPaHpdLB7tdNTr/bVS7Lt2LEDe3t7GjZsmKLjsmfPzvnz5ylatOhTnT8+Pp7BgweTNWtWXF1dKV68OMuWLUv28StWrKB69ep4eHiQLl06ypUrR3Bw8FPF9KwsXryYMWPG2DoMERERERERkdR37i/YPM78vsEX4J3DtvGkAUrOSbIEBQXx3nvv8ccff3Du3LlkH2dvb4+fnx8ODg5Pdf4ffviBSZMmMXHiRI4fP87EiRNxc3NL1rFfffUVTZo0oUqVKuzatYtDhw7Rpk0b3n33XQYOHPhUcT0LPj4+eHh42DoMERERERERkdQVcwcWd4f4WCjcBIq3tnVEaYKSc/JYUVFR/Pzzz/Ts2ZOGDRsm6nF2/fp12rVrh6+vL66uruTLl485c+YAiYe1xsXF0aVLF3LlyoWrqysFChRgypQpj43Bzs4OX19f2rRpQ86cOalduza1a9d+7HH//PMPAwYMoF+/fnz66acULlyYvHnzMmDAAL744gsmTJjArl27LPWPHj1Ko0aN8PT0xMPDg6pVqxISEmLZ/91331GoUCFcXFwoWLAg06dPtzrf4MGDyZ8/P+nSpSN37twMGzaMmJgYy/6RI0dSsmRJ5s2bR86cOfHy8qJNmzbcvHnTUufBYa3z5s2jbNmyeHh44OfnR9u2bbl06dJjr11EREREREQkTVk/Eq6cAnc/aDQZTCZbR5QmKDlnK4YB0bee/8swUhzqL7/8QsGCBSlQoADt27dn9uzZGPe1M2zYMI4dO8bq1as5fvw4M2bMIGPGjEm2FR8fT7Zs2Vi4cCHHjh1j+PDhfPTRR/zyyy+PjOGNN94gIiKCYcOGpSj2X3/9lZiYmCR7yPXo0QN3d3d++uknAP7991+qVauGs7MzGzduZN++fbzzzjvExsYC8OOPPzJ8+HA++eQTjh8/zqeffsqwYcOYO3eupU0PDw+Cg4M5duwYU6ZMYdasWUyaNMnqvCEhISxdupQVK1awYsUKtmzZwrhx4x56DTExMYwZM4aDBw+ydOlSwsLCCAwMTNF9EBEREREREbGpkI2w6xvz+yZfQzof28aThjzdWEN5cjG34dOsz/+8H50Dp+QNB00QFBRE+/btAahXrx4RERFs2bKFGjVqABAeHk6pUqUoW7YsADlz5nxoW46OjowaNcqynStXLnbs2MEvv/zCW2+9leQxt2/fpk6dOrRt25Z169Zx584dvvjiC0z/y7B7enoye/ZsWrZsmejYU6dO4eXlRZYsWRLtc3JyInfu3Jw6dQqAr7/+Gi8vLxYsWICjoyMA+fPnt9QfMWIEEyZMoHnz5pbYjx07xrfffkunTp0AGDp0qKV+zpw5GThwIAsWLGDQoEGW8vj4eIKDgy1DVzt06MCGDRv45JNPkrz+d955x/I+d+7cTJ06lXLlyhEVFYW7u3uSx4iIiIiIiIikGbevwdJe5vflukK+x4+Ee5UoOSePdPLkSXbv3s2SJUsAcHBwoHXr1gQFBVmScz179qRFixbs37+funXr0rRpUypXrvzQNr/++mtmz55NeHg4d+7cITo6mpIlSz60fnBwMDdu3ODrr78mKiqKGjVq0LlzZ7777jv++9//EhUVRZUqVZ76Wg8cOEDVqlUtibn73bp1i5CQELp06UK3bt0s5bGxsXh5eVm2f/75Z6ZOnUpISAhRUVHExsbi6elp1VbOnDmt5pTLkiXLI4ep7tu3j5EjR3Lw4EGuX79OfHw8YE6KFi5c+ImvV0REREREROS5WDUQbp6HDHmhzmhbR5Pm2DQ5N2PGDGbMmEFYWBgARYoUYfjw4dSvXx+Au3fvMmDAABYsWMC9e/cICAhg+vTpZM6c2dJGeHg4PXv2ZNOmTbi7u9OpUyc+++wzqwUINm/eTP/+/Tl69CjZs2dn6NChiYYFfv3113zxxRdcuHCBEiVK8NVXX1G+fPlnd/GO6cy92J43x3Qpqh4UFERsbCxZs/5/Lz/DMHB2dmbatGl4eXlRv359zp49y6pVq1i3bh1vvPEGvXv35ssvv0zU3oIFCxg4cCATJkygUqVKeHh48MUXX1jN+/agQ4cOUaRIERwdHUmfPj3r1q2jatWqNGvWjHz58lGvXr0ke8aBuedbREQE586ds7oGgOjoaEJCQqhZsyYArq6uD40hKioKgFmzZlGhQgWrffb29oB5Rdt27doxatQoAgICLL3wJkyYYFX/weSfyWSyJNwedOvWLQICAggICODHH3/E19eX8PBwAgICiI6Ofmi8IiIiIiIiImnC4V/hyCIw2UOzmSkezfcqsOmcc9myZWPcuHHs27ePvXv3UqtWLZo0acLRo0cBeP/99/ntt99YuHAhW7Zs4dy5c5YhhWBeXKBhw4ZER0ezfft25s6dS3BwMMOHD7fUCQ0NpWHDhtSsWZMDBw7Qr18/unbtytq1ay11fv75Z/r378+IESPYv38/JUqUICAg4NlOum8ymR/I5/1KwWSLsbGxfP/990yYMIEDBw5YXgcPHiRr1qyWudoAfH196dSpEz/88AOTJ09m5syZSba5bds2KleuTK9evShVqhR58+a1WnAhKa+99hoHDhywLJqQKVMm1q9fz+HDh5k0aRJjx4596LEtWrTA0dExUYIM4JtvvuHWrVu8/fbbABQvXpw///zTagGHBJkzZyZr1qz8/fff5M2b1+qVK1cuALZv346/vz8ff/wxZcuWJV++fJw9e/aR1/Y4J06c4OrVq4wbN46qVatSsGBBLQYhIiIiIiIiL4aI/8LK/ub31QdBtjK2jSetMtKY9OnTG999951x48YNw9HR0Vi4cKFl3/Hjxw3A2LFjh2EYhrFq1SrDzs7OuHDhgqXOjBkzDE9PT+PevXuGYRjGoEGDjCJFilido3Xr1kZAQIBlu3z58kbv3r0t23FxcUbWrFmNzz77LNlxR0REGIARERGRaN+dO3eMY8eOGXfu3El2e2nBkiVLDCcnJ+PGjRuJ9g0aNMgoW7asYRiGMWzYMGPp0qXG6dOnjSNHjhiNGjUyypcvbxiGYYSGhhqA8ddffxmGYRhTpkwxPD09jTVr1hgnT540hg4danh6eholSpR4aBz//vuvkSFDBqNGjRrGtm3bjBMnThizZs0yMmTIYKRLl87o1avXI69j0qRJhp2dnfHRRx8Zx48fN86cOWNMmDDBcHZ2NgYMGGCpd+XKFSNDhgxG8+bNjT179hinTp0yvv/+e+PEiROGYRjGrFmzDFdXV2PKlCnGyZMnjUOHDhmzZ882JkyYYBiGYSxbtsxwcHAwfvrpJ+PMmTPGlClTDB8fH8PLy8tyjhEjRiS61kmTJhn+/v6W7erVqxv/+c9/DMMwjEuXLhlOTk7GBx98YISEhBjLli0z8ufPb3VPJWkv6udORERERETkpRAXZxjBjQ1jhKdhzKxpGLHRto7ouXtUruh+aWa11ri4OBYsWMCtW7eoVKkS+/btIyYmhtq1/3+SwIIFC5IjRw527NgBmIcRFitWzGqYa0BAAJGRkZbedzt27LBqI6FOQhvR0dHs27fPqo6dnR21a9e21HlVBQUFUbt2bas51RK0aNGCvXv3cujQIZycnBgyZAjFixenWrVq2Nvbs2DBgiTb7NGjB82bN6d169ZUqFCBq1ev0qtXr0fGkTVrVnbv3k3GjBlp3rw5pUqV4vvvv+f7779n5cqVzJw5k4kTJz70+H79+rFkyRL+/PNPypYtS9GiRZk/fz4zZsywGnqbIUMGNm7cSFRUFNWrV6dMmTLMmjXLMgy1a9eufPfdd8yZM4dixYpRvXp1goODLT3n3nzzTd5//3369OlDyZIl2b59e4pXl32Qr68vwcHBLFy4kMKFCzNu3LgkhwuLiIiIiIiIpCm7v4XQLeDgah7Oap94fncxMxmGYdgygMOHD1OpUiXu3r2Lu7s78+fPp0GDBsyfP5/OnTtz7949q/rly5enZs2afP7553Tv3p2zZ89aDVG9ffs2bm5urFq1ivr165M/f346d+7MkCFDLHVWrVpFw4YNuX37NtevX+e1115j+/btVKpUyVJn0KBBbNmy5aFzod27d88qtsjISLJnz05ERESiBQDu3r1LaGgouXLlwsXF5anul4gkjz53IiIiIiIiNnLpBHxbDeLuQcMJ5hVaX0GRkZF4eXklmSu6n817zhUoUIADBw6wa9cuevbsSadOnTh27Jitw3qszz77DC8vL8sre/bstg5JRERERERERMS2YqNhcTdzYi5vbSjbxdYRpXk2T845OTmRN29eypQpw2effUaJEiWYMmUKfn5+REdHc+PGDav6Fy9exM/PDwA/Pz8uXryYaH/CvkfV8fT0xNXVlYwZM2Jvb59knYQ2kjJkyBAiIiIsr3/++eeJrl9ERERERERE5KWxZRxcOASu6aHJ1ylamPJVZfPk3IPi4+O5d+8eZcqUwdHRkQ0bNlj2nTx5kvDwcMvw00qVKnH48GGr1SvXrVuHp6cnhQsXttS5v42EOgltODk5UaZMGas68fHxbNiwwWqY64OcnZ3x9PS0eomIiIiIiIiIvLLCd8LWSeb3jaeAx8M7Pcn/c7DlyYcMGUL9+vXJkSMHN2/eZP78+WzevJm1a9fi5eVFly5d6N+/Pz4+Pnh6evLee+9RqVIlKlasCEDdunUpXLgwHTp0YPz48Vy4cIGhQ4fSu3dvnJ2dAXj33XeZNm0agwYN4p133mHjxo388ssvrFy50hJH//796dSpE2XLlqV8+fJMnjyZW7du0blzZ5vcFxERERERERGRF8q9m7CkBxjxUOJtKNzE1hG9MGyanLt06RIdO3bk/PnzeHl5Ubx4cdauXUudOnUAmDRpEnZ2drRo0YJ79+4REBDA9OnTLcfb29uzYsUKevbsSaVKlXBzc6NTp06MHj3aUidXrlysXLmS999/nylTppAtWza+++47AgICLHVat27N5cuXGT58OBcuXKBkyZKsWbPGahVYERERERERERF5iLUfwfUw8MoO9T+3dTQvFJuv1vqyeNQKHFo1UuT50+dORERERETkOTmxCha8DZggcAXkfN3WEaUJL8xqrSIiIiIiIiIi8oKKugzL3zO/r9xHibknoOSciIiIiIiIiIiknGHAb33h9hXIVARqDbN1RC8kJedERERERERERCTl/poHJ1eBvRM0nwkOzraO6IWk5Jy8tHLmzMnkyZNtHcYzYTKZWLp0qa3DeGqBgYE0bdrU1mGIiIiIiIhISl37G1Z/aH5fayj4FbVtPC8wJefksS5cuMB7771H7ty5cXZ2Jnv27DRu3JgNGzak6nlq1KhBv379UrXNxzlz5gwBAQF4enri4+ND/fr1uXz58mOPi4uLY9y4cRQsWBBXV1d8fHyoUKEC3333XarGN3LkSEqWLJmqbf7000/Y29vTu3fvVG33SUyZMoXg4GBbhyEiIiIiIiIpER8HS96FmFvgXwUq9bF1RC80B1sHIGlbWFgYVapUwdvbmy+++IJixYoRExPD2rVr6d27NydOnHiu8RiGQVxcHA4OqfPodu/enYiICLZs2UK6dOnYsWMHyVnAeNSoUXz77bdMmzaNsmXLEhkZyd69e7l+/XqqxPUsBQUFMWjQIL799lsmTJhgk5VM4+LiMJlMeHl5Pfdzi4iIiIiIyFPaNhn+2QVOHtB0BtjZ2zqiF5p6zskj9erVC5PJxO7du2nRogX58+enSJEi9O/fn507d1rq3bhxg65du+Lr64unpye1atXi4MGDlv0JPcDmzZtHzpw58fLyok2bNty8eRMwD2/csmULU6ZMwWQyYTKZCAsLY/PmzZhMJlavXk2ZMmVwdnZm69athISE0KRJEzJnzoy7uzvlypVj/fr1Kb4+Ozs7AgICKFWqFAUKFCAwMJBMmTI99rjly5fTq1cvWrVqRa5cuShRogRdunRh4MCBljr37t2jb9++ZMqUCRcXF15//XX27Nlj2R8cHIy3t7dVu0uXLsVkMln2jxo1ioMHD1ruyf29zK5cuUKzZs1Ily4d+fLlY/ny5Y+NOzQ0lO3bt/Phhx+SP39+Fi9ebLU/IaYVK1ZQoEAB0qVLR8uWLbl9+zZz584lZ86cpE+fnr59+xIXF2d1rQMHDuS1117Dzc2NChUqsHnz5kTtLl++nMKFC+Ps7Ex4eHiiYa3x8fGMHz+evHnz4uzsTI4cOfjkk08s+wcPHkz+/PlJly4duXPnZtiwYcTExDz2ukVERERERCSVnD8Imz41v28wHtL72zael4CSczZiGAa3Y24/91dyeoUluHbtGmvWrKF37964ubkl2n9/YqlVq1ZcunSJ1atXs2/fPkqXLs0bb7zBtWvXLHVCQkJYunQpK1asYMWKFWzZsoVx48YB5uGNlSpVolu3bpw/f57z58+TPXt2y7Effvgh48aN4/jx4xQvXpyoqCgaNGjAhg0b+Ouvv6hXrx6NGzcmPDw8RT+HJk2aMH36dPbv35+i4/z8/Ni4ceMjh8AOGjSIRYsWMXfuXPbv30/evHkJCAiwuieP0rp1awYMGECRIkUs96R169aW/aNGjeKtt97i0KFDNGjQgHbt2j227Tlz5tCwYUO8vLxo3749QUFBiercvn2bqVOnsmDBAtasWcPmzZtp1qwZq1atYtWqVcybN49vv/2WX3/91XJMnz592LFjBwsWLODQoUO0atWKevXqcfr0aat2P//8c7777juOHj2aZBJ0yJAhjBs3jmHDhnHs2DHmz59P5syZLfs9PDwIDg7m2LFjTJkyhVmzZjFp0qRk3U8RERERERF5SjF3YHF3iI+FQo2hxNu2juiloGGtNnIn9g4V5ld47ufd1XYX6RzTJavumTNnMAyDggULPrLe1q1b2b17N5cuXcLZ2bwyy5dffsnSpUv59ddf6d69O2DuFRUcHIyHhwcAHTp0YMOGDXzyySd4eXnh5OREunTp8PPzS3SO0aNHU6dOHcu2j48PJUqUsGyPGTOGJUuWsHz5cvr0Sd5Y940bN/Lhhx8yatQoGjVqxM8//0zVqlUBWLRoEYGBgZaefQ+aOHEiLVu2xM/PjyJFilC5cmWaNGlC/fr1Abh16xYzZswgODjYUjZr1izWrVtHUFAQH3zwwWPjc3V1xd3dHQcHhyTvSWBgIG+/bf4i/PTTT5k6dSq7d++mXr16SbaXcP+/+uorANq0acOAAQMIDQ0lV65clnoxMTHMmDGDPHnyANCyZUvmzZvHxYsXcXd3p3DhwtSsWZNNmzbRunVrwsPDmTNnDuHh4WTNmhWAgQMHsmbNGubMmcOnn35qaXf69OlWP7f73bx5kylTpjBt2jQ6deoEQJ48eXj99dctdYYOHWp5nzNnTgYOHMiCBQsYNGjQY++niIiIiIiIPKUNo+HyCXDLBI2mwP9GfsnTUc85eajk9rI7ePAgUVFRZMiQAXd3d8srNDSUkJAQS72cOXNaEnMAWbJk4dKlS8k6R9myZa22o6KiGDhwIIUKFcLb2xt3d3eOHz+eop5zH374Ib1792bgwIEEBQXRuHFjfvvtNwAOHz5slRR6UOHChTly5Ag7d+7knXfe4dKlSzRu3JiuXbsC5l6CMTExVKlSxXKMo6Mj5cuX5/jx48mO8VGKFy9uee/m5oanp+cj7+e6deu4desWDRo0ACBjxozUqVOH2bNnW9VLly6dJTEHkDlzZnLmzIm7u7tVWcK5Dh8+TFxcHPnz57f6+W/ZssXq5+/k5GQV84OOHz/OvXv3eOONNx5a5+eff6ZKlSr4+fnh7u7O0KFDU9xbUkRERERERJ7A35th53Tz+yZfg1sGm4bzMlHPORtxdXBlV9tdNjlvcuXLlw+TyfTYRR+ioqLIkiWL1RxjCe4f+uro6Gi1z2QyER8fn6xYHhxWO3DgQNatW8eXX35J3rx5cXV1pWXLlkRHRyerPYBDhw7x/vvvA1C/fn2CgoJo1aoV06ZNIzg4mPHjxz/yeDs7O8qVK0e5cuXo168fP/zwAx06dODjjz9O1vnt7OwSJUBTMn9aSu9nUFAQ165dw9X1/5+B+Ph4Dh06xKhRo7Czs3tou486V1RUFPb29uzbtw97e+tJQO9P6Lm6ulrm00vK/XElZceOHbRr145Ro0YREBCAl5cXCxYsYMKECY88TkRERERERJ7SneuwtJf5fdl3IH9d28bzklFyzkZMJlOyh5faio+PDwEBAXz99df07ds3UYLsxo0beHt7U7p0aS5cuICDgwM5c+Z84vM5OTlZLTLwKNu2bSMwMJBmzZoB5gRRWFhYis732muv8ccff1iGhrZo0YKoqCg6d+5M8eLFadWqVYraK1y4MGAe0ponTx6cnJzYtm0b/v7myTFjYmLYs2cP/fr1A8DX15ebN29y69Yty709cOCAVZspuSePcvXqVZYtW8aCBQsoUqSIpTwuLo7XX3+d33///aHDYR+nVKlSxMXFcenSJcuw4CeRL18+XF1d2bBhg6UH4v22b9+Ov7+/VfLz7NmzT3w+ERERERERSaZVH0Dkv+CTG+qOtXU0Lx0l5+SRvv76a6pUqUL58uUZPXo0xYsXJzY2lnXr1jFjxgyOHz9O7dq1qVSpEk2bNmX8+PHkz5+fc+fOsXLlSpo1a5ZoSOrD5MyZk127dhEWFoa7uzs+Pj4PrZsvXz4WL15M48aNMZlMDBs2LNm98BIMGjSIXr164efnR+vWrYmIiGDHjh2kS5eOEydOsG3btocObW3ZsiVVqlShcuXK+Pn5ERoaypAhQ8ifPz8FCxbEwcGBnj178sEHH+Dj40OOHDkYP348t2/fpkuXLgBUqFCBdOnS8dFHH9G3b1927dpltRprwj0JDQ3lwIEDZMuWDQ8PD8u8fikxb948MmTIwFtvvZWo91qDBg0ICgp64uRc/vz5adeuHR07dmTChAmUKlWKy5cvs2HDBooXL07Dhg2T1Y6LiwuDBw9m0KBBODk5UaVKFS5fvszRo0fp0qUL+fLlIzw8nAULFlCuXDlWrlzJkiVLnihmERERERERSaYji+DwQjDZQ/NZ4JR4wUh5OppzTh4pd+7c7N+/n5o1azJgwACKFi1KnTp12LBhAzNmzADMvQBXrVpFtWrV6Ny5M/nz56dNmzacPXvWaqXNxxk4cCD29vYULlwYX1/fR84lNnHiRNKnT0/lypVp3LgxAQEBlC5dOkXX1qNHD37++Wd+++03ypQpw5tvvkl0dDQnTpygQ4cONG3a1Gq10fsFBATw22+/0bhxY/Lnz0+nTp0oWLAgv//+Ow4O5pz3uHHjaNGiBR06dKB06dKcOXOGtWvXkj59esDcM/GHH35g1apVFCtWjJ9++omRI0danadFixbUq1ePmjVr4uvry08//ZSia0wwe/ZsmjVrluSw0hYtWrB8+XKuXLnyRG2DeRXYjh07MmDAAAoUKEDTpk3Zs2cPOXLkSFE7w4YNY8CAAQwfPpxChQrRunVry9x2b775Ju+//z59+vShZMmSbN++nWHDhj1xzCIiIiIiIvIIUZdg5UBY3MO8XW0gZEte5xtJGZOR3Fn/5ZEiIyPx8vIiIiICT09Pq3137961rIjp4uJiowhFXi363ImIiIiIiDyBuxGw/SvYMR1ibpnLCjaCVsFg7/jIQ8Xao3JF99OwVhERERERERGRV13MXdjzHfw5Ae5cM5e9VgZqj4Rc1Wwa2stOyTkRERERERERkVdVXCwcWgCbPoPI/5rLMuaHN4abe8wlMT2SpC4l50REREREREREXjWGASdWwobRcOWkuczzNagxBEq8DfZKGT0vutMiIiIiIiIiIq+SsK2wfiT8d4952zU9VB0A5bqCo6tNQ3sVKTknIiIiIiIiIvIqOH/Q3FPuzHrztmM6qNgLqvQFFy/bxvYKU3JORERERERERORldjUENn0KR341b9s5QJlAqDYIPDLbNDRRck5ERERERERE5OV08yJs+Rz2z4X4WHNZ0ZZQ62PwyW3b2MRCyTkRERERERERkZfJ3QjYNhV2ToeY2+ayvHXMK7BmKW7b2CQRJedERERERERERF4GMXdg9yzYOhHuXDeXZSsHtUdCztdtGpo8nJJz8kKqUaMGJUuWZPLkybYORURERERERMS24mLh4HzYPA4i/zWXZSxg7ilXsCGYTLaNTx5JyTl5pMDAQObOnZuoPCAggDVr1tggIrPFixfj6Ohos/OLiIiIiIiI2JxhwPHfYOMYuHLKXOaZDWp+BCXagJ29beOTZFFyTh6rXr16zJkzx6rM2dn5idoyDIO4uDgcHJ7u0fPx8Xmq40VEREREREReaOG7YO0Q+HefedvVB6oNhLJdwNHFtrFJitjZOgBJ+5ydnfHz87N6pU+fnrCwMEwmEwcOHLDUvXHjBiaTic2bNwOwefNmTCYTq1evpkyZMjg7O7N161ZCQkJo0qQJmTNnxt3dnXLlyrF+/Xqr806fPp18+fLh4uJC5syZadmypWVfjRo16Nevn2V73rx5lC1bFg8PD/z8/Gjbti2XLl16lrdFRERERERE5PmLjYb1I2F2gDkx5+gG1QbBfw5Apd5KzL2A1HPORgzDwLhz57mf1+TqiskGY80//PBDvvzyS3Lnzk369On5559/aNCgAZ988gnOzs58//33NG7cmJMnT5IjRw727t1L3759mTdvHpUrV+batWv8+eefD20/JiaGMWPGUKBAAS5dukT//v0JDAxk1apVz/EqRURERERERJ6hS8dhcTe4cNi8XeJtqDMa3DPZNi55KkrO2Yhx5w4nS5d57uctsH8fpnTpUnTMihUrcHd3tyr76KOPaNu2bbLbGD16NHXq1LFs+/j4UKJECcv2mDFjWLJkCcuXL6dPnz6Eh4fj5uZGo0aN8PDwwN/fn1KlSj20/XfeecfyPnfu3EydOpVy5coRFRWVKHYRERERERGRF0p8POz6xtxjLu6eeQhr48lQuImtI5NUoOScPFbNmjWZMWOGVZmPjw+RkZHJbqNs2bJW21FRUYwcOZKVK1dy/vx5YmNjuXPnDuHh4QDUqVMHf39/cufOTb169ahXrx7NmjUj3UMSi/v27WPkyJEcPHiQ69evEx8fD0B4eDiFCxdOyeWKiIiIiIiIpB0R/4WlPSH0D/N23jrQZBp4+Nk2Lkk1Ss7ZiMnVlQL799nkvCnl5uZG3rx5E5VHRUUB5iG6CWJiYh7axv0GDhzIunXr+PLLL8mbNy+urq60bNmS6OhoADw8PNi/fz+bN2/m999/Z/jw4YwcOZI9e/bg7e1t1datW7cICAggICCAH3/8EV9fX8LDwwkICLC0JyIiIiIiIvLCObQQVg6AexHgmA7qjoWy74ANpquSZ0fJORsxmUwpHl6a1vj6+gJw/vx5y5DT+xeHeJRt27YRGBhIs2bNAHOiLywszKqOg4MDtWvXpnbt2owYMQJvb282btxI8+bNreqdOHGCq1evMm7cOLJnzw7A3r17n+LKRERERERERGzo9jVYNRCOLDJvv1YGms2EjIk7zsiLT8k5eax79+5x4cIFqzIHBwcyZsxIxYoVGTduHLly5eLSpUsMHTo0WW3my5ePxYsX07hxY0wmE8OGDbMMRQXzPHd///031apVI3369KxatYr4+HgKFCiQqK0cOXLg5OTEV199xbvvvsuRI0cYM2bM0120iIiIiIiIiC2EbIKlveDmOTDZQ/VBUHUg2CuF87Kys3UAkvatWbOGLFmyWL1ef/11AGbPnk1sbCxlypShX79+jB07NlltTpw4kfTp01O5cmUaN25MQEAApUuXtuz39vZm8eLF1KpVi0KFCvHNN9/w008/UaRIkURt+fr6EhwczMKFCylcuDDjxo3jyy+/TJ2LFxEREREREXkeYu7A6sEwr6k5MeeTB7qsgxofKjH3kjMZ908YJk8sMjISLy8vIiIi8PT0tNp39+5dQkNDyZUrFy4uLjaKUOTVos+diIiIiIi8MM4dgMXd4cpJ83a5rlBnNDi5PfIwSdselSu6n1KvIiIiIiIiIiK2EBcL2ybD5s8gPhbcM0OTryFfHVtHJs+RknMiIiIiIiIiIs/btb9hybvwzy7zdqE3odFkcMtg07Dk+VNyTkRERERERETkeTEM2P89rBkCMbfA2RMafAHFW4PJZOvoxAaUnBMREREREREReR6iLsNvfeHkKvO2fxVo9g1457BtXGJTSs6JiIiIiIiIiDxrJ1bB8vfg9hWwd4Jaw6BSb7Czt3VkYmNKzomIiIiIiIiIPCv3bsLaj8xDWQEyFYHmM8GvqG3jkjRDyTkRERERERERkWchfBcs6Q7XwwATVO4DNYeCo4utI5M0RMk5EREREREREZHUFBsNW8bB1klgxINXdmg6A3JVtXVkkgYpOSciIiIiIiIiklqu/Q0LA+H8QfN2ibeh/ufg4mXTsCTtUnJORERERERERCQ1XA2B4IZw8zy4podGk6FIU1tHJWmcna0DkLQtMDAQk8mU6FWvXj1bhyYiIiIiIiKSdtyfmPMtCD23KzEnyaKec/JY9erVY86cOVZlzs7OT9SWYRjExcXh4KBHT0RERERERF4SV87A3Eb/S8wVgk6/gbuvraOSF4R6zsljOTs74+fnZ/VKnz49YWFhmEwmDhw4YKl748YNTCYTmzdvBmDz5s2YTCZWr15NmTJlcHZ2ZuvWrdy7d4++ffuSKVMmXFxceP3119mzZ4+lnYTjVq5cSfHixXFxcaFixYocOXLEKratW7dStWpVXF1dyZ49O3379uXWrVvP47aIiIiIiIiImBNzCT3mMhVWYk5STMk5GzEMg5h7cc/9ZRiGTa73ww8/ZNy4cRw/fpzixYszaNAgFi1axNy5c9m/fz958+YlICCAa9euWR33wQcfMGHCBPbs2YOvry+NGzcmJiYGgJCQEOrVq0eLFi04dOgQP//8M1u3bqVPnz62uEQRERERERF51Vw5bU7MRV1QYk6emMYW2khsdDwz/7PluZ+3+5TqODrbp+iYFStW4O7ublX20Ucf0bZt22S3MXr0aOrUqQPArVu3mDFjBsHBwdSvXx+AWbNmsW7dOoKCgvjggw8sx40YMcJy3Ny5c8mWLRtLlizhrbfe4rPPPqNdu3b069cPgHz58jF16lSqV6/OjBkzcHFxSdF1ioiIiIiIiCTbldMQ3Mg6MeeW0dZRyQtIyTl5rJo1azJjxgyrMh8fHyIjI5PdRtmyZS3vQ0JCiImJoUqVKpYyR0dHypcvz/Hjx62Oq1SpktU5CxQoYKlz8OBBDh06xI8//mipYxgG8fHxhIaGUqhQoWTHJyIiIiIiIpJslh5zFyFTEei0XIk5eWJKztmIg5Md3adUt8l5U8rNzY28efMmKo+KigKwGiqbMOQ0qTZSW1RUFD169KBv376J9uXIkSPVzyciIiIiIiLC5VPmxR+UmJNUouScjZhMphQPL01rfH3N4+jPnz9PqVKlAKwWh3iYPHny4OTkxLZt2/D39wfMSb09e/ZYhqgm2LlzpyXRdv36dU6dOmXpEVe6dGmOHTuWZOJQREREREREJNXdn5jLXBQ6Lge3DLaOSl5wSs7JY927d48LFy5YlTk4OJAxY0YqVqzIuHHjyJUrF5cuXWLo0KGPbc/NzY2ePXvywQcf4OPjQ44cORg/fjy3b9+mS5cuVnVHjx5NhgwZyJw5Mx9//DEZM2akadOmAAwePJiKFSvSp08funbtipubG8eOHWPdunVMmzYt1a5fREREREREhMsnzXPM3boEmYtBx2VKzEmqUHJOHmvNmjVkyZLFqqxAgQKcOHGC2bNn06VLF8qUKUOBAgUYP348devWfWyb48aNIz4+ng4dOnDz5k3Kli3L2rVrSZ8+faJ6//nPfzh9+jQlS5bkt99+w8nJCYDixYuzZcsWPv74Y6pWrYphGOTJk4fWrVun3sWLiIiIiIiIXDoBcxsrMSfPhMm4f8IweWKRkZF4eXkRERGBp6en1b67d+8SGhpKrly5tIJoMm3evJmaNWty/fp1vL29bR2OvID0uRMRERERkVRx6YR5KOuty+bEXKflkM7H1lHJC+BRuaL7qeeciIiIiIiIiEhS7k/M+RUzzzGnxJykspQv3SkiIiIiIiIi8rK7dPy+xFxxJebkmVHPOUmTatSogUZci4iIiIiIiE1cOm5e/OH2lf8l5pYpMSfPjHrOiYiIiIiIiIgkuHjs/xNzWUooMSfPnJJzIiIiIiIiIiJgTszNbfz/ibkOS5WYk2dOw1pFRERERERERC4eM88xd/uqEnPyXKnnnIiIiIiIiIi82i4evS8xV1JDWeW5UnJORERERERERF5dF478byjrVchaCjouBdf0to5KXiEa1ioiIiIiIiIir6aExNyda+bEXIel4Opt66jkFaOec5KqatSoQb9+/R5ZJ2fOnEyePPmRdUwmE0uXLgUgLCwMk8nEgQMHUiVGERERERERES4cVmJO0gQl5+SRAgMDMZlMvPvuu4n29e7dG5PJRGBgoKVs8eLFjBkz5jlGmDybN2/GZDIl+bpw4UKqnCM5SUcRERERERFJAy4chrlv/i8xV1qJObEpJefksbJnz86CBQu4c+eOpezu3bvMnz+fHDlyWNX18fHBw8PjeYeYbCdPnuT8+fNWr0yZMtk6LBEREREREXle7u8x91oZ6LBEiTmxKSXn5LFKly5N9uzZWbx4saVs8eLF5MiRg1KlSlnVfXBY66VLl2jcuDGurq7kypWLH3/8MVH7p0+fplq1ari4uFC4cGHWrVv32JiOHDlC/fr1cXd3J3PmzHTo0IErV6489rhMmTLh5+dn9bKzM38M9uzZQ506dciYMSNeXl5Ur16d/fv3W441DIORI0eSI0cOnJ2dyZo1K3379rVc99mzZ3n//fctPfJEREREREQkjTl/6H+JuetKzEmaoeScjRiGQczdu8/9ZRjGE8X7zjvvMGfOHMv27Nmz6dy582OPCwwM5J9//mHTpk38+uuvTJ8+nUuXLln2x8fH07x5c5ycnNi1axfffPMNgwcPfmSbN27coFatWpQqVYq9e/eyZs0aLl68yFtvvfVE15bg5s2bdOrUia1bt7Jz507y5ctHgwYNuHnzJgCLFi1i0qRJfPvtt5w+fZqlS5dSrFgxwJyszJYtG6NHj7b0yBMREREREZE05MIR+P7N/yXmypoTcy5eto5KRKu12krsvXtM7dTyuZ+379xfcXRxSfFx7du3Z8iQIZw9exaAbdu2sWDBAjZv3vzQY06dOsXq1avZvXs35cqVAyAoKIhChQpZ6qxfv54TJ06wdu1asmbNCsCnn35K/fr1H9rutGnTKFWqFJ9++qmlbPbs2WTPnp1Tp06RP3/+hx6bLVs2q21/f3+OHj0KQK1ataz2zZw5E29vb7Zs2UKjRo0IDw/Hz8+P2rVr4+joSI4cOShfvjxgHs5rb2+Ph4cHfn5+Dz2/iIiIiIiI2MCV0zCv6X2JucVKzEmaoeScJIuvry8NGzYkODgYwzBo2LAhGTNmfOQxx48fx8HBgTJlyljKChYsiLe3t1Wd7NmzWxJzAJUqVXpkuwcPHmTTpk24u7sn2hcSEvLI5Nyff/5pNSeeo6Oj5f3FixcZOnQomzdv5tKlS8TFxXH79m3Cw8MBaNWqFZMnTyZ37tzUq1ePBg0a0LhxYxwc9DESERERERFJs66fhe+bwK3L4Fcc2i9SYk7SFGUVbMTB2Zm+c3+1yXmf1DvvvEOfPn0A+Prrr1MrpBSLioqicePGfP7554n2ZcmS5ZHH5sqVyyo5eL9OnTpx9epVpkyZgr+/P87OzlSqVIno6GjAvDDGyZMnWb9+PevWraNXr1588cUXbNmyxSrJJyIiIiIiImlE5HnzUNbIfyFjAc0xJ2mSknM2YjKZnmh4qS3Vq1eP6OhoTCYTAQEBj61fsGBBYmNj2bdvn2VY68mTJ7lx44alTqFChfjnn384f/68JbG2c+fOR7ZbunRpFi1aRM6cOVO119q2bduYPn06DRo0AOCff/5JtMiEq6srjRs3pnHjxvTu3ZuCBQty+PBhSpcujZOTE3FxcakWj4iIiIiIiDyFW1fMPeauh0H6nNBxGbg9egSYiC1oQQhJNnt7e44fP86xY8ewt7d/bP0CBQpQr149evTowa5du9i3bx9du3bF1dXVUqd27drkz5+fTp06cfDgQf78808+/vjjR7bbu3dvrl27xttvv82ePXsICQlh7dq1dO7c+bHJsUuXLnHhwgWrV0xMDAD58uVj3rx5HD9+nF27dtGuXTurWIODgwkKCuLIkSP8/fff/PDDD7i6uuLv7w9Azpw5+eOPP/j333+TtXKsiIiIiIiIPCN3bsC8ZnDlJHi+Bh2Xg+ejR1qJ2IqSc5Iinp6eeHp6Jrv+nDlzyJo1K9WrV6d58+Z0796dTJkyWfbb2dmxZMkS7ty5Q/ny5enatSuffPLJI9vMmjUr27ZtIy4ujrp161KsWDH69euHt7c3dnaPfqQLFChAlixZrF779u0DzItVXL9+ndKlS9OhQwf69u1rFau3tzezZs2iSpUqFC9enPXr1/Pbb7+RIUMGAEaPHk1YWBh58uTB19c32fdIREREREREUtG9KPixFVw4BG6+5h5z6f1tHZXIQ5kMwzBsHcTLIDIyEi8vLyIiIhIlr+7evUtoaCi5cuXC5QUbyiryotLnTkRERETkFRRzF+a3gtA/zIs+BK4Ev2K2jkpeUY/KFd1PPedERERERERE5MUXFwMLO5kTc07u0H6xEnPyQlByTkRERERERERebPFxsLg7nFoDDi7Q9mfIVtbWUYkki5JzIiIiIiIiIvLiio+H5X3h6GKwc4TWP0DO120dlUiy2TQ599lnn1GuXDk8PDzIlCkTTZs25eTJk1Z1atSogclksnq9++67VnXCw8Np2LAh6dKlI1OmTHzwwQfExsZa1dm8eTOlS5fG2dmZvHnzEhwcnCier7/+mpw5c+Li4kKFChXYvXt3ql+ziIiIiIiIiKQSw4A1H8KBH8BkBy2DIF8dW0clkiI2Tc5t2bKF3r17s3PnTtatW0dMTAx169bl1q1bVvW6devG+fPnLa/x48db9sXFxdGwYUOio6PZvn07c+fOJTg4mOHDh1vqhIaG0rBhQ2rWrMmBAwfo168fXbt2Ze3atZY6P//8M/3792fEiBHs37+fEiVKEBAQwKVLl579jRARERERERGRlNs4BnZ/a37fZDoUbmLbeESeQJparfXy5ctkypSJLVu2UK1aNcDcc65kyZJMnjw5yWNWr15No0aNOHfuHJkzZwbgm2++YfDgwVy+fBknJycGDx7MypUrOXLkiOW4Nm3acOPGDdasWQNAhQoVKFeuHNOmTQMgPj6e7Nmz89577/Hhhx8+Nnat1iqStuhzJyIiIiLykvtzAmwYbX7fcAKU62rbeEQe8EKu1hoREQGAj4+PVfmPP/5IxowZKVq0KEOGDOH27duWfTt27KBYsWKWxBxAQEAAkZGRHD161FKndu3aVm0GBASwY8cOAKKjo9m3b59VHTs7O2rXrm2p86B79+4RGRlp9RIRERERERGR52DXt/+fmKszWok5eaE52DqABPHx8fTr148qVapQtGhRS3nbtm3x9/cna9asHDp0iMGDB3Py5EkWL14MwIULF6wSc4Bl+8KFC4+sExkZyZ07d7h+/TpxcXFJ1jlx4kSS8X722WeMGjXq6S5aRERERERERFJm/zxYPcj8vvpgqPIf28Yj8pTSTHKud+/eHDlyhK1bt1qVd+/e3fK+WLFiZMmShTfeeIOQkBDy5MnzvMO0GDJkCP3797dsR0ZGkj17dpvFIyIiIiIiIvLSO7IYfutrfl+xN9QYYtt4RFJBmhjW2qdPH1asWMGmTZvIli3bI+tWqFABgDNnzgDg5+fHxYsXreokbPv5+T2yjqenJ66urmTMmBF7e/sk6yS08SBnZ2c8PT2tXpJ6AgMDadq0qa3DeGqbN2/GZDJx48YNW4ciIiIiIiLyYju5BhZ3AyMeSneCgE/AZLJ1VCJPzabJOcMw6NOnD0uWLGHjxo3kypXrscccOHAAgCxZsgBQqVIlDh8+bLWq6rp16/D09KRw4cKWOhs2bLBqZ926dVSqVAkAJycnypQpY1UnPj6eDRs2WOq8qgIDAzGZTIwbN86qfOnSpZhS4UswLCwMk8lk+bmmhjt37uDj40PGjBm5d+9eqrX7JCpXrsz58+fx8vKyaRwiIiIiIiIvtL83wy8dIT4WirWCRpOUmJOXhk2Tc7179+aHH35g/vz5eHh4cOHCBS5cuMCdO3cACAkJYcyYMezbt4+wsDCWL19Ox44dqVatGsWLFwegbt26FC5cmA4dOnDw4EHWrl3L0KFD6d27N87OzgC8++67/P333wwaNIgTJ04wffp0fvnlF95//31LLP3792fWrFnMnTuX48eP07NnT27dukXnzp2f/41JY1xcXPj888+5fv16qrYbHR2dqu0lWLRoEUWKFKFgwYIsXbr0mZwjOWJiYnBycsLPzy9VEpkiIiIiIiKvpPBd8FNbiLsHBRpC0xlgZ2/rqERSjU2TczNmzCAiIoIaNWqQJUsWy+vnn38GzD3a1q9fT926dSlYsCADBgygRYsW/Pbbb5Y27O3tWbFiBfb29lSqVIn27dvTsWNHRo8ebamTK1cuVq5cybp16yhRogQTJkzgu+++IyAgwFKndevWfPnllwwfPpySJUty4MAB1qxZk2iRiFdR7dq18fPz47PPPntkvYSkmLOzMzlz5mTChAlW+3PmzMmYMWPo2LEjnp6edO/e3dJbslSpUphMJmrUqGF1zJdffkmWLFnIkCEDvXv3JiYm5rHxBgUF0b59e9q3b09QUFCi/SaTiW+//ZZGjRqRLl06ChUqxI4dOzhz5gw1atTAzc2NypUrExISYnXcsmXLKF26NC4uLuTOnZtRo0YRGxtr1e6MGTN48803cXNz45NPPklyWOu2bduoUaMG6dKlI3369AQEBFgSn2vWrOH111/H29ubDBky0KhRo0RxiIiIiIiIvDLOHYAfW0HMLchdE1rNAXtHW0clkqpMhmEYtg7iZRAZGYmXlxcRERGJ5p+7e/cuoaGh5MqVCxcXF8A8pNeIiX/ucZoc7VLUiyswMJAbN27QqVMn2rZty+nTp8mWLRtLly6lWbNmJDw++/bto3z58owcOZLWrVuzfft2evXqxfTp0wkMDATMybnr168zfPhwy3xy165do3z58qxfv54iRYrg5OSEj48PgYGBLFmyhLZt2/Kf//yHM2fO0Lp1ayZPnky3bt0eGm9ISAhFihTh/PnzGIbBa6+9xokTJ/D39///e2Ay8dprrzFx4kRKlizJ4MGDOXDgALlz52bQoEHkyJGDd955B29vb1avXg3An3/+SaNGjZg6dSpVq1YlJCSE7t27ExgYyIgRIyztZsqUiXHjxlG9enUcHBz4+++/qVmzJtevX8fb25sDBw5QsWJF3nnnHXr06IGDgwObNm2iTZs2ZMyYkUWLFmEymShevDhRUVEMHz6csLAwDhw4gJ1dmpgi8oWR1OdOREREREReIJdOQHADuH0VclSC9ovAyc3WUYkk26NyRfdTci6VpDQ5Fx8dx7nh2597nFlHV8bOKfndfxOSc0uXLqVSpUoULlyYoKCgRMm5du3acfnyZX7//XfLsYMGDWLlypUcPXoUMCfnSpUqxZIlSyx1wsLCyJUrF3/99RclS5a0Ou/mzZsJCQnB3t4c71tvvYWdnR0LFix4aLwff/wxx44ds5yjadOmlCxZkpEjR1rqmEwmhg4dypgxYwDYuXMnlSpVIigoiHfeeQeABQsW0LlzZ8sQ69q1a/PGG28wZMj/rwT0ww8/MGjQIM6dO2dpt1+/fkyaNMlSZ/PmzVbJubZt2xIeHp5oVeKHuXLlCr6+vhw+fJiiRYsm6xgxU3JOREREROQFdu1vmF0foi5AlpLQaTm4aC5vebEkNzmnrjiSbJ9//rllTr4HHT9+nCpVqliVValShdOnTxMXF2cpK1u2bLLPV6RIEUtiDsyLgNy/8MeD4uLimDt3Lu3bt7eUtW/fnuDgYOLjrXspJsxZCFiGLhcrVsyq7O7du0RGRgJw8OBBRo8ejbu7u+XVrVs3zp8/z+3bt5N9fQcOHOCNN9546P7Tp0/z9ttvkzt3bjw9PcmZMycA4eHhj2xXRERERETkpRHxX5jbxJyYy1QYOixRYk5eag62DuBVZXK0I+voyjY575OqVq0aAQEBDBkyxDJUNaXc3JLfBdnR0XoeAZPJlCjJdr+1a9fy77//0rp1a6vyuLg4NmzYQJ06dZJsO2GYb1JlCeeLiopi1KhRNG/ePNF57++V9bjrc3V1feT+xo0b4+/vz6xZs8iaNSvx8fEULVr0mS2eISIiIiIikqZEXYLvm0BEOPjkhg5LIZ2PraMSeaaUnLMRk8mEKQXDS9OKcePGUbJkSQoUKGBVXqhQIbZt22ZVtm3bNvLnz2/V++1BTk5OAFa9655UUFAQbdq04eOPP7Yq/+STTwgKCrJKzqVU6dKlOXnyJHnz5n2qGIsXL86GDRsYNWpUon1Xr17l5MmTzJo1i6pVqwIke/iriIiIiIjIC+/2NZjXDK6eAc9s0HEZeGiRRnn5KTknKVKsWDHatWvH1KlTrcoHDBhAuXLlGDNmDK1bt2bHjh1MmzaN6dOnP7K9TJky4erqypo1a8iWLRsuLi54eaW8u/Lly5f57bffWL58eaK52Tp27EizZs24du0aPj5P9heX4cOH06hRI3LkyEHLli2xs7Pj4MGDHDlyhLFjxya7nSFDhlCsWDF69erFu+++i5OTE5s2baJVq1b4+PiQIUMGZs6cSZYsWQgPD+fDDz98onhFREREREReKPduwo8t4eIRcMtknmPOO4etoxJ5LjTnnKTY6NGjEw0vLV26NL/88gsLFiygaNGiDB8+nNGjRz92+KuDgwNTp07l22+/JWvWrDRp0uSJYvr+++9xc3NLcj63N954A1dXV3744YcnahsgICCAFStW8Pvvv1OuXDkqVqzIpEmTrFaBTY78+fPz+++/c/DgQcqXL0+lSpVYtmwZDg4OlsUu9u3bR9GiRXn//ff54osvnjhmERERERGRF8LdSJjfGv7dB67pzT3mMuSxdVQiz41Wa00lKV2tVUSeLX3uREREREReAFGX4IcWcOEQOHmYe8y9VtrWUYmkiuSu1qphrSIiIiIiIiLy/F0NgR+aw/UwSJcR2v2ixJy8kpScExEREREREZHn69wB8xxzty6Dtz90WKKhrPLKUnJORERERERERJ6fkE3wc3uIjgK/YtBukVZllVeaknMiIiIiIiIi8nwc/hWWvAvxMZCzKrSZDy4Pn4tL5FWg1VpFRERERERE5NnbMR0WdTEn5oo0g/aLlJgTQT3nnqv4+HhbhyDyytBC1CIiIiIiaYRhwPqRsG2yebt8d6j3Odipv5AIKDn3XDg5OWFnZ8e5c+fw9fXFyckJk8lk67BEXlqGYXD58mVMJhOOjo62DkdERERE5NUVFwPL+8LB+ebtWsOg6gDQv4lFLJScew7s7OzIlSsX58+f59y5c7YOR+SVYDKZyJYtG/b29rYORURERETk1RR9CxYGwunfwWQPjadA6Q62jkokzVFy7jlxcnIiR44cxMbGEhcXZ+twRF56jo6OSsyJiIiIiNjKrasw/y34dy84uEKrYChQz9ZRiaRJSs49RwlD7DTMTkRERERERF5aN8JhXnO4ehpcvKHdQshe3tZRiaRZSs6JiIiIiIiISOq4eBR+aAE3z4NnNuiwGHwL2DoqkTRNyTkREREREREReXph2+Cnt+FeBPgWgvaLwOs1W0clkuYpOSciIiIiIiIiT+fYcljUFeLuQY5K8PZP4Jre1lGJvBDsbB2AiIiIiIiIiLzA9gTBwk7mxFyBhtBhiRJzIimgnnMiIiIiIiIiknKGAZvHwZZx5u3SnaDhRLBXqkEkJfSJEREREREREZGUiY+Dlf1hX7B5u/pgqDEETCabhiXyIlJyTkRERERERESSL+aOeX65EysAEzT8Esp1tXVUIi8sJedEREREREREJHnu3DCvyBq+HeydoMV3ULiJraMSeaEpOSciIiIiIiIijxd5Dn5oAZeOgbOneUXWnK/bOiqRF56ScyIiIiIiIiLyaJdPwQ/NIeIfcPeD9ovAr6itoxJ5KSg5JyIiIiIiIiIP988emN8K7lyHDHmh/WJI72/rqEReGkrOiYiIiIiIiEhihgHHlsKSnhB7B14rA20XglsGW0cm8lJRck5ERERERERErJ3dDutHwT87zdt568Bbc8HJzbZxibyElJwTEREREREREbPzh2DDaDizzrzt4AIVe0HNj8De0baxibyklJwTERERERERedVdDYFNn8CRReZtOwco3RGqDQLPLLaNTeQlp+SciIiIiIiIyKsq8jxs+Rz+mgfxseayoi3NPeUy5LFtbCKvCCXnRERERERERF41t6/Btsmw61uIvWsuy1cXag2DLMVtGprIq0bJOREREREREZFXRfQt2DkDtk2FexHmsuwVofYI8K9s29hEXlFKzomIiIiIiIi87GKjYV8w/PEF3LpkLstcFN4Ybu4xZzLZNDyRV5mScyIiIiIiIiIvq/g4OLzQvNjDjXBzWfqcUHMoFG0BdnY2DU9ElJwTERERERERefkYBpxcBRvGwOXj5jL3zFB9EJTqCA5Oto1PRCyUnBMRERERERF5mYT+CRtGwX/3mLddvOD196F8D3BKZ9vYRCQRJedEREREREREXgbnDsCG0RCywbzt4AoVe0KVvuCa3qahicjDpTg5Fxoayp9//snZs2e5ffs2vr6+lCpVikqVKuHi4vIsYhQRERERERGRh7lyGjaOhWNLzdt2DlAmEKp9AB5+toxMRJIh2cm5H3/8kSlTprB3714yZ85M1qxZcXV15dq1a4SEhODi4kK7du0YPHgw/v7+zzJmEREREREREYn4F7aMg79+BCMOMEGxVlBzCPjktnV0IpJMyUrOlSpVCicnJwIDA1m0aBHZs2e32n/v3j127NjBggULKFu2LNOnT6dVq1bPJGARERERERGRV1psNGydCH9OhLh75rL89aDWMPAratvYRCTFTIZhGI+rtHbtWgICApLV4NWrVwkLC6NMmTJPHdyLJDIyEi8vLyIiIvD09LR1OCIiIiIiIvIyOn8IlvaCi4fN2zkqQ+0RkKOibeMSkUSSmytKVs+55CbmADJkyECGDBmSXV9EREREREREHiOht9wfX0B8LLj6QIMvoGgLMJlsHZ2IPAW7lB6wf/9+Dh8+bNletmwZTZs25aOPPiI6OjpVgxMRERERERF55V04DLNqwebPzIm5Qo2h9y4o1lKJOZGXQIqTcz169ODUqVMA/P3337Rp04Z06dKxcOFCBg0alOoBioiIiIiIiLyS4mJg8ziYWcM8jNXVB1oEwVvzwD2TraMTkVSS4uTcqVOnKFmyJAALFy6kWrVqzJ8/n+DgYBYtWpTa8YmIiIiIiIi8ei4chlk1/7+3XMFG6i0n8pJK1pxz9zMMg/j4eADWr19Po0aNAMiePTtXrlxJ3ehEREREREREXiVxMfDnBM0tJ/IKSXFyrmzZsowdO5batWuzZcsWZsyYAUBoaCiZM2dO9QBFREREREREXgkXDsPSnub/grm3XKNJGsIq8pJLcXJu8uTJtGvXjqVLl/Lxxx+TN29eAH799VcqV66c6gGKiIiIiIiIvNTiYuDPifDH+P/1lksPDb5UbzmRV4TJMAwjNRq6e/cu9vb2ODo6pkZzL5zIyEi8vLyIiIjA09PT1uGIiIiIiIjIi0C95UReWsnNFaW45xzAjRs3+PXXXwkJCeGDDz7Ax8eHY8eOkTlzZl577bUnDlpERERERETklaDeciLyPylOzh06dIg33ngDb29vwsLC6NatGz4+PixevJjw8HC+//77ZxGniIiIiIiIyMvhwpH/9ZY7ZN5WbzmRV5pdSg/o378/nTt35vTp07i4uFjKGzRowB9//JGqwYmIiIiIiIi8NOJiYMt4mFnDnJhzTQ8tgqD1D0rMibzCUtxzbs+ePXz77beJyl977TUuXLiQKkGJiIiIiIiIvFSS6i3XcCJ4ZLZtXCJicylOzjk7OxMZGZmo/NSpU/j6+qZKUCIiIiIiIiIvhbgY2DrJ3GMuPkZzy4lIIike1vrmm28yevRoYmJiADCZTISHhzN48GBatGiR6gGKiIiIiIiIvJAuHIHv3oBNn5gTcwUbQa9dUKylEnMiYpHi5NyECROIiooiU6ZM3Llzh+rVq5M3b148PDz45JNPnkWMIiIiIiIiIi+O++eWO3/Q3Fuu+XfmueU0jFVEHpDiYa1eXl6sW7eOrVu3cujQIaKioihdujS1a9d+FvGJiIiIiIiIvDiuhsCvnc1JOYACDc0rsSopJyIPYTIMw7B1EC+DyMhIvLy8iIiIwNPT09bhiIiIiIiIyPP2z274qQ3cvmruLVf/Cw1hFXmFJTdXlKyec1OnTk32ifv27ZvsuiIiIiIiIiIvhWPLYXE3iL0LWUrC2wvAM4utoxKRF0Cyes7lypXLavvy5cvcvn0bb29vAG7cuEG6dOnIlCkTf//99zMJNK1TzzkREREREZFX1M4ZsGYIYED+etAiCJzdbR2ViNhYcnNFyVoQIjQ01PL65JNPKFmyJMePH+fatWtcu3aN48ePU7p0acaMGZNqFyAiIiIiIiKSpsXHmZNyaz4EDCjbBVr/qMSciKRIiuecy5MnD7/++iulSpWyKt+3bx8tW7YkNDQ0VQN8UajnnIiIiIiIyCsk5o55GOvx38zbtUdBlf9ofjkRsUjVOefud/78eWJjYxOVx8XFcfHixZQ2JyIiIiIiIvJiuXXFvPDDf/eAvRM0+waKtrB1VCLygkrWsNb7vfHGG/To0YP9+/dbyvbt20fPnj2pXbt2qgYnIiIiIiIikqZcDYHvapsTcy7e0HGZEnMi8lRSnJybPXs2fn5+lC1bFmdnZ5ydnSlfvjyZM2fmu+++exYxioiIiIiIiNhe+C5zYu56KHjngC7rwL+yraMSkRdcioe1+vr6smrVKk6dOsWJEycAKFiwIPnz50/14ERERERERETShGPLYFE3iLsHWUtB21/APZOtoxKRl0CKk3MJ8ufPr4SciIiIiIiIvNwMA3ZOh7UfAwbkrw8tg8DJzdaRichL4omSc//9739Zvnw54eHhREdHW+2bOHFiqgQmIiIiIiIiYlPxcbD2I9j1jXm7XFeoPx7s7G0bl4i8VFKcnNuwYQNvvvkmuXPn5sSJExQtWpSwsDAMw6B06dLPIkYRERERERGR5yv6NizuBidWmLfrjIHK74HJZNu4ROSlk+IFIYYMGcLAgQM5fPgwLi4uLFq0iH/++Yfq1avTqlWrZxGjiIiIiIiIyPMTdRnmNjYn5uydoeUcqNJXiTkReSZSnJw7fvw4HTt2BMDBwYE7d+7g7u7O6NGj+fzzz1M9QBEREREREZHn5soZCKoN/+4F1/TQcRkUbW7rqETkJZbi5Jybm5tlnrksWbIQEhJi2XflypXUi0xERERERETkeQrfaU7MXQ8Db3/osg78K9k6KhF5yaV4zrmKFSuydetWChUqRIMGDRgwYACHDx9m8eLFVKxY8VnEKCIiIiIiIvJsHV0Ci3tA3D3IWhra/gzumWwdlYi8AlKcnJs4cSJRUVEAjBo1iqioKH7++Wfy5cunlVpFRERERETkxWIYsGMa/D7UvF2gAbT4DpzcbBuXiLwyTIZhGLYO4mUQGRmJl5cXEREReHp62jocEREREREReZz4OFjzIeyead4u3x3qjQM7e9vGJSIvheTmilLcc05ERERERETkhRd9GxZ1hZMrzdt1P4FKvbUiq4g8d8lKzqVPnx5TMr+grl279lQBiYiIiIiIiDxTUZfhp9bw7z6wd4bmM6FIU1tHJSKvqGSt1jp58mQmTZrEpEmTGDrUPA4/ICCAkSNHMnLkSAICAgAYNmxYik7+2WefUa5cOTw8PMiUKRNNmzbl5MmTVnXu3r1L7969yZAhA+7u7rRo0YKLFy9a1QkPD6dhw4akS5eOTJky8cEHHxAbG2tVZ/PmzZQuXRpnZ2fy5s1LcHBwoni+/vprcubMiYuLCxUqVGD37t0puh4RERERERFJ466chu/eMCfmXH2g03Il5kTEplI851yLFi2oWbMmffr0sSqfNm0a69evZ+nSpcluq169erRp04Zy5coRGxvLRx99xJEjRzh27BhububJN3v27MnKlSsJDg7Gy8uLPn36YGdnx7Zt2wCIi4ujZMmS+Pn58cUXX3D+/Hk6duxIt27d+PTTTwEIDQ2laNGivPvuu3Tt2pUNGzbQr18/Vq5caUks/vzzz3Ts2JFvvvmGChUqMHnyZBYuXMjJkyfJlOnxK/RozjkREREREZE07uwOWPA23LkO6XNCu0WQMa+toxKRl1Ryc0UpTs65u7tz4MAB8ua1/gI7c+YMJUuWtKzk+iQuX75MpkyZ2LJlC9WqVSMiIgJfX1/mz59Py5YtAThx4gSFChVix44dVKxYkdWrV9OoUSPOnTtH5syZAfjmm28YPHgwly9fxsnJicGDB7Ny5UqOHDliOVebNm24ceMGa9asAaBChQqUK1eOadOmARAfH0/27Nl57733+PDDDx8bu5JzIiIiIiIiaVRcLGyfApvHQVw0vFYW3l4A7r62jkxEXmLJzRUla1jr/TJkyMCyZcsSlS9btowMGTKktDkrERERAPj4+ACwb98+YmJiqF27tqVOwYIFyZEjBzt27ABgx44dFCtWzJKYA/OQ28jISI4ePWqpc38bCXUS2oiOjmbfvn1Wdezs7Khdu7alzoPu3btHZGSk1UtERERERETSmIvHIKg2bBhtTswVehM6/abEnIikGSlerXXUqFF07dqVzZs3U6FCBQB27drFmjVrmDVr1hMHEh8fT79+/ahSpQpFixYF4MKFCzg5OeHt7W1VN3PmzFy4cMFS5/7EXML+hH2PqhMZGcmdO3e4fv06cXFxSdY5ceJEkvF+9tlnjBo16skuVkRERERERJ6tuFjYNhm2fG5Oyrl4Qb3PoUQbrcgqImlKipNzgYGBFCpUiKlTp7J48WIAChUqxNatWy3JuifRu3dvjhw5wtatW5+4jedpyJAh9O/f37IdGRlJ9uzZbRiRiIiIiIiIAObeckt7wvkD5u389aDRZPDMYsuoRESSlOLkHJjnZ/vxxx9TLYg+ffqwYsUK/vjjD7Jly2Yp9/PzIzo6mhs3blj1nrt48SJ+fn6WOg+uqpqwmuv9dR5c4fXixYt4enri6uqKvb099vb2SdZJaONBzs7OODs7P9kFi4iIiIiISOqLizH3ltv8OcTHmHvL1R8PxVurt5yIpFnJmnPu/vnUHpxn7WnmXTMMgz59+rBkyRI2btxIrly5rPaXKVMGR0dHNmzYYCk7efIk4eHhVKpUCYBKlSpx+PBhLl26ZKmzbt06PD09KVy4sKXO/W0k1Elow8nJiTJlyljViY+PZ8OGDZY6IiIiIiIikoZdPArfvQEbx5oTc/nrQa9dGsYqImlesnrOpU+fnvPnz5MpUya8vb0xJfHFZhgGJpOJuLi4ZJ+8d+/ezJ8/n2XLluHh4WGZI87LywtXV1e8vLzo0qUL/fv3x8fHB09PT9577z0qVapExYoVAahbty6FCxemQ4cOjB8/ngsXLjB06FB69+5t6dn27rvvMm3aNAYNGsQ777zDxo0b+eWXX1i5cqUllv79+9OpUyfKli1L+fLlmTx5Mrdu3aJz587Jvh4RERERERF5zuJiYOtk89xy8THg4v2/3nJvKSknIi+EZCXnNm7caFlBddOmTal28hkzZgBQo0YNq/I5c+YQGBgIwKRJk7Czs6NFixbcu3ePgIAApk+fbqlrb2/PihUr6NmzJ5UqVcLNzY1OnToxevRoS51cuXKxcuVK3n//faZMmUK2bNn47rvvCAgIsNRp3bo1ly9fZvjw4Vy4cIGSJUuyZs2aRItEiIiIiIiISBpx4Qgs6wXnD5q389eHxpPBI+npiURE0iKTYRiGrYN4GURGRuLl5UVERASenp62DkdEREREROTlFRcDWyfBlvH/31uuwRdQrJV6y4lImpHcXNETLQhx48YNdu/ezaVLl4iPj7fa17FjxydpUkREREREROTxLhwxr8R64ZB5u0ADaDRJveVE5IWV4uTcb7/9Rrt27YiKisLT09Nq/jmTyaTknIiIiIiIiKS+uBj4cyL88YV6y4nISyXFybkBAwbwzjvv8Omnn5IuXbpnEZOIiIiIiIjI/7tw+H+95Q6btws0/F9vOc0RLiIvvhQn5/7991/69u2rxJyIiIiIiIg8W5becuMhPhZc00P9L6BYS/WWE5GXRoqTcwEBAezdu5fcuXM/i3hEREREREREEveWK9gIGk5UbzkReemkODnXsGFDPvjgA44dO0axYsVwdHS02v/mm2+mWnAiIiIiIiLyiomNhq0Jc8v9r7dcgy+haAv1lhORl5LJMAwjJQfY2dk9vDGTibi4uKcO6kWU3OVxRURERERE5CHOH4KlveDifb3lGk0C90y2jUtE5AkkN1eU4p5z8fHxTxWYiIiIiIiIiJXYaPhzAvz55f96y/mYV2JVbzkReQWkODknIiIiIiIikmruXIcfWsC/+8zb6i0nIq+YZCfn+vfvn2S5l5cX+fPnp3nz5jg7O6daYCIiIiIiIvKSuxsB85rDuf3g4g0NJ6i3nIi8cpKdnPvrr7+SLL9x4wZnzpxh2LBhbNy4kRw5cqRacCIiIiIiIvKSuhtp7jF3br95GGvgSshc2NZRiYg8dyleECIpkZGRtGvXDg8PD+bPn58acb1wtCCEiIiIiIhIMt2LMifm/tlp7jHX6TfIUtzWUYmIpKrk5ooevvRqCnh6ejJs2DC2bduWGs2JiIiIiIjIyyr6FsxvbU7MOXtBx6VKzInIKy1VknMAGTNm5Nq1a6nVnIiIiIiIiLxsYu7AT23g7FZw9oQOSyBrKVtHJSJiU6mWnNu5cyd58uRJreZERERERETkZRJzFxa0hdA/wMkd2i+CbGVsHZWIiM0le0GIQ4cOJVkeERHBvn37+PTTTxkxYkSqBSYiIiIiIiIvidh78EsHCNkIjumg3ULIXt7WUYmIpAnJTs6VLFkSk8lEUutHZMyYkf79+9OrV69UDU5ERERERERecLHRsDAQTv8ODq7Q9hfwr2zrqERE0oxkJ+dCQ0OTLPf09CR9+vSpFpCIiIiIiIi8JOJiYNE7cHIVOLjA2z9Brqq2jkpEJE1JdnLO39//WcYhIiIiIiIiL5O4WFjcDY7/BvZO0OZHyFPT1lGJiKQ5yVoQYufOnclu8Pbt2xw9evSJAxIREREREZEXXHwcLH0Xji4BO0do/QPkrW3rqERE0qRkJec6dOhAQEAACxcu5NatW0nWOXbsGB999BF58uRh3759qRqkiIiIiIiIvCDi42FZHzi8EOwc4K25kD/A1lGJiKRZyRrWeuzYMWbMmMHQoUNp27Yt+fPnJ2vWrLi4uHD9+nVOnDhBVFQUzZo14/fff6dYsWLPOm4RERERERFJa+Lj4be+cHA+mOyh5Wwo2NDWUYmIpGkmI6nlVx9h7969bN26lbNnz3Lnzh0yZsxIqVKlqFmzJj4+Ps8qzjQvMjISLy8vIiIi8PT0tHU4IiIiIiIiz5dhwMr+sHc2mOygxXdQtIWtoxIRsZnk5oqSvSBEgrJly1K2bNmnCk5EREREREReIoYBqweZE3OYoOk3SsyJiCRTsuacExEREREREUmSYcDaj2H3TMAETb6GEq1tHZWIyAtDyTkRERERERF5MoYB60fAzq/N242nQKl2to1JROQFo+SciIiIiIiIpJxhwMaxsG2KebvhBCjTybYxiYi8gJScExERERERkZTb8jn8+aX5ff3xUK6rbeMREXlBKTkn/8fefcdZUtX5/39V1c33dp7p6cmZnCVjQlhAdBVBVzChrOvKiondNSeWVdTdxbAGvj9dw6oY0BVdURBB1sBIGkmSJsfu6Z7ON99bVb8/qm7qMNM90923e/r9fFiPqjpVt/rcZpA77/s554iIiIiIiEzO7/4d7rvJO77ok3DW39e3PyIic9iEVmv94he/OOEHvutd7zrkzoiIiIiIiMgs98cvwL03escXfgLOva6u3RERmesM13Xdg920evXqmvOenh7S6TTNzc0ADAwMEIvFaG9vZ+vWrdPS0dluaGiIpqYmBgcHaWxsrHd3REREREREpt6GL8NdH/KOz/8IvOif69sfEZFZbKJZ0YSGtW7btq28ffKTn+SUU07h6aefpq+vj76+Pp5++mlOO+00brzxxil7AyIiIiIiIjKLPPD/VYK5F71fwZyIyBSZUOVctbVr1/LjH/+YU089tab9kUce4dWvfjXbtm2b0g7OFaqcExERERGRI9bD34BfvNc7fv71cMHHwDDq2ycRkVluSivnqnV2dlIsFke127bNvn37Jvs4ERERERERmc02/nclmDv3nQrmRESm2KTDuQsuuIC///u/Z+PGjeW2Rx55hGuvvZYLL7xwSjsnIiIiIiIidfTYD+Hn/qJ/Z10Lf3WjgjkRkSk26XDuG9/4Bh0dHZx++umEw2HC4TBnnnkmixYt4utf//p09FFERERERERm2tb/g5/9A+DCGX8Hl9ykYE5EZBoEJvuChQsX8stf/pLnnnuOZ555BoBjjjmGo446aso7JyIiIiIiInXQ8yz86I3gFOGEK+Cln1UwJyIyTSYdzpUcddRRCuRERERERESONMke+N5rIDsIy8+CV34FzEkPuhIRkQk6pHBu9+7d/PznP2fnzp3k8/maazfffPOUdExERERERERmWCEDP3gdDOyAllVw5a0QjNS7VyIiR7RJh3P33HMPr3jFK1izZg3PPPMMJ5xwAtu3b8d1XU477bTp6KOIiIiIiIhMN8eB26+F3Q9CpBle/2OIL6h3r0REjniTrk3+4Ac/yD/90z/xxBNPEIlE+MlPfsKuXbt40YtexGte85rp6KOIiIiIiIhMt9/+K/zlp2AG4bXfhQXr690jEZF5YdLh3NNPP82b3vQmAAKBAJlMhkQiwb/8y7/wmc98Zso7KCIiIiIiItNs43fg9//hHb/ii7D6BfXtj4jIPDLpcC4ej5fnmVu8eDFbtmwpX9u/f//U9UxERERERESm39b74Bfv8Y5f+D445XX17I2IyLwz6Tnnzj77bP7whz9w7LHHcumll/KP//iPPPHEE/zP//wPZ5999nT0UURERERERKZDz7PwwzeBU4QTXg3nf6jePRIRmXcmHc7dfPPNJJNJAG644QaSySQ//OEPWb9+vVZqFRERERERmSuS3fC9V0NuEJafDa/8MhhGvXslIjLvGK7ruvXuxJFgaGiIpqYmBgcHaWxsrHd3RERERERExlfIwLdeDnsehpbV8NZ7IN5W716JiBxRJpoVTXrOOREREREREZnDHAd++nYvmIs0w+tvUzAnIlJHExrW2tLSgjHB8ua+vr7D6pCIiIiIiIhMo3v/BZ66HcwgXPk9WLC+3j0SEZnXJhTOff7zny8f9/b28q//+q9cfPHFnHPOOQBs2LCBu+66i49+9KPT0kkRERERERGZAhv/G/7wOe/4Ff8Jq55f3/6IiMjk55y74oorOP/887nuuutq2r/0pS/xm9/8httvv30q+zdnaM45ERERERGZ1bb81lsAwinCi96vlVlFRKbZtM05d9ddd3HJJZeMar/kkkv4zW9+M9nHiYiIiIiIyHTrfgZ+dLUXzJ34GnjxB+vdIxER8U06nGtra+NnP/vZqPaf/exntLVpElEREREREZFZJdkNt74GcoOw4hx4xZdggnOKi4jI9JvQnHPVbrjhBt761rdy3333cdZZZwHwwAMPcOedd/K1r31tyjsoIiIiIiIih6iQge9fBQM7oWU1vPZ7EIzUu1ciIlJl0uHcm9/8Zo499li++MUv8j//8z8AHHvssfzhD38oh3UiIiIiIiJSZ44DP/172PMwRJrh9T+GuEY7iYjMNpNeEELGpgUhRERERERkVrn74/DHz4MZhDf9DFadV+8eiYjMKxPNiiZUOTc0NFR+yNDQ0AHvVTAlIiIiIiJSZ498ywvmAF75ZQVzIiKz2ITCuZaWFjo7O2lvb6e5uRljjMlDXdfFMAxs257yToqIiIiIiMgEbbkXfnG9d/yiD8DJr61vf0RE5IAmFM7de++9tLa2AvDb3/52WjskIiIiIiIih6j7afjR1eDacOLfwIs/UO8eiYjIQWjOuSmiOedERERERKSukt3wtQtgcCesOMebZy4QrnevRETmrYlmReZkH/zNb36T2267bVT7bbfdxre//e3JPk5EREREREQOVz4N37/SC+Za18KVtyqYExGZIyYdzt10000sWLBgVHt7ezuf+tSnpqRTIiIiIiIiMkGOAz/9e9jzCERb4PW3Qay13r0SEZEJmnQ4t3PnTlavXj2qfeXKlezcuXNKOiUiIiIiIiITdM8n4OmfgxXyKuba1ta7RyIiMgmTDufa29t5/PHHR7U/9thjtLW1TUmnREREREREZAIe/ib88Qve8Su+BCvPrW9/RERk0iYdzl111VW8613v4re//S22bWPbNvfeey/vfve7ufLKK6ejjyIiIiIiIjLS5nvgjn/0jl/8QTj5tfXtj4iIHJLAZF9w4403sn37di644AICAe/ljuPwpje9SXPOiYiIiIiIzIQt98JtbwbXhpNeCy96f717JCIih8hwXdc9lBc+99xzPPbYY0SjUU488URWrlw51X2bUya6PK6IiIiIiMgh2/MI/OYG2PZ/3vnK8+CNP9XKrCIis9BEs6JJV86VHHXUURx11FGH+nIRERERERGZqO5n4N4b4ZlfeOdmEE6/Bl7yYQVzIiJz3ITCueuvv54bb7yReDzO9ddff8B7b7755inpmIiIiIiIyLw3sBPu+zQ89n1wHcCAk6+CF38AWub36CURkSPFhMK5P//5zxQKBQA2btyIYRhj3jdeu4iIiIiIiExCsgd+/+/w8DfAznttx7wcXvIRaD+2vn0TEZEpdchzzkktzTknIiIiIiKHLTsI9/8nbPgKFFJe2+oXwgUfh2Wn17dvIiIyKdMy51yhUCAajfLoo49ywgknHHYnRUREREREBChk4MH/D/7wOcj0e21LTvVCubXn17dvIiIyrSYVzgWDQVasWIFt29PVHxERERERkfnDLsCfvwv/91kY3uu1LTjaG7567F+Dpg4SETniTXq11g9/+MN86EMf4jvf+Q6tra3T0ScREREREZEjm+PAX/4HfvtJ6NvqtTUt9xZ6OOlKsCb9VzUREZmjJv3/+F/60pfYvHkzS5YsYeXKlcTj8ZrrGzdunLLOiYiIiIiIHFFcFzbdDff+C3Q94bXFFsAL/wlOvwYC4fr2T0REZtykw7lXvvKVWpVVRERERERksnZsgHtugJ0bvPNwI5z7Tjj7Wgg31LdvIiJSN1qtdYpotVYRERERERlT1xNwz42w6S7vPBCBM/8Onn89xDRVkIjIkWqiWZE52QevWbOG3t7eUe0DAwOsWbNmso8TERERERE5MvVugR//LdzyfC+YMyw47Wp450a46F8VzImICHAIw1q3b98+5mqtuVyO3bt3T0mnRERERERE5qyhTvi/z8CfvwNO0Ws7/nI4/8OwYF19+yYiIrPOhMO5n//85+Xju+66i6ampvK5bdvcc889rF69emp7JyIiIiIiMhcUMrDp1/DEbfDcXWDnvfZ1F8IFH4PFJ9e3fyIiMmtNOJy77LLLADAMg6uvvrrmWjAYZNWqVfzHf/zHlHZORERERERk1rKLsP138MSP4en/hdxQ5drys+CCj8Oq8+rXPxERmRMmPOec4zg4jsOKFSvo7u4unzuOQy6X49lnn+XlL3/5pH747373O/76r/+aJUuWYBgGt99+e831N7/5zRiGUbNdcsklNff09fXx+te/nsbGRpqbm/nbv/1bkslkzT2PP/44L3jBC4hEIixfvpzPfvazo/py2223ccwxxxCJRDjxxBP55S9/Oan3IiIiIiIi84Drwq6H4Jfvg5uPhe+8Ch79nhfMNS6D894Nb/8DXHOXgjkREZmQSc85t23btin74alUipNPPplrrrmGyy+/fMx7LrnkEr75zW+Wz8PhcM3117/+9XR2dnL33XdTKBR4y1vewtve9jZuvfVWwFsZ46KLLuLCCy/klltu4YknnuCaa66hubmZt73tbQDcf//9XHXVVdx00028/OUv59Zbb+Wyyy5j48aNnHDCCVP2fkVEREREZI7qfsYbsvrkj6F/e6U92grHvwpOfI1XLWdOes09ERGZ5wzXdd3JvOBd73oX69at413veldN+5e+9CU2b97M5z//+UPriGHw05/+tDx8FrzKuYGBgVEVdSVPP/00xx13HA899BCnn346AHfeeSeXXnopu3fvZsmSJXz1q1/lwx/+MF1dXYRCIQA+8IEPcPvtt/PMM88A8NrXvpZUKsUvfvGL8rPPPvtsTjnlFG655ZYJ9X+iy+OKiIiIiMgcMbALnvyJN2x13xOV9mAcjnmZF8itPR+sYP36KCIis9ZEs6JJf63zk5/8hPPOG12efe655/LjH/94so87qPvuu4/29naOPvporr32Wnp7e8vXNmzYQHNzczmYA7jwwgsxTZMHHnigfM8LX/jCcjAHcPHFF/Pss8/S399fvufCCy+s+bkXX3wxGzZsmPL3IyIiIiIis1iqFx76L/jGS+HzJ8BvPu4Fc2YAjnopXPFf8M+b4IqvwVEXKZgTEZHDNulhrb29vTUrtZY0Njayf//+KelUySWXXMLll1/O6tWr2bJlCx/60Id46UtfyoYNG7Asi66uLtrb22teEwgEaG1tpaurC4Curq5Rq8guWrSofK2lpYWurq5yW/U9pWeMJZfLkcvlyudDQ0Pj3isiIiIiIrNYLgnP/sobtrrlHnCK/gUDVp4HJ74ajnslxFrr2k0RETkyTTqcW7duHXfeeSfXXXddTfuvfvUr1qxZM2UdA7jyyivLxyeeeCInnXQSa9eu5b777uOCCy6Y0p81WTfddBM33HBDXfsgIiIiIiKHqJiHLfd6gdyzv4RCunKt4yRvyOoJl0PTsvr1UURE5oVJh3PXX3891113HT09PbzkJS8B4J577uE//uM/Dnm+uYlas2YNCxYsYPPmzVxwwQV0dHTQ3d1dc0+xWKSvr4+Ojg4AOjo62LdvX809pfOD3VO6PpYPfvCDXH/99eXzoaEhli9ffuhvTkREREREppfjwM4NXiD31O2Q6a9ca1kNJ/0NnPBqWHhU3booIiLzz6TDuWuuuYZcLscnP/lJbrzxRgBWrVrFV7/6Vd70pjdNeQer7d69m97eXhYvXgzAOeecw8DAAI888gjPe97zALj33ntxHIezzjqrfM+HP/xhCoUCwaA3H8Tdd9/N0UcfTUtLS/mee+65h/e85z3ln3X33XdzzjnnjNuXcDg8auVYERERERGZpfZvgh+8HvY/W2lLLIITrvCGrS45DQyjfv0TEZF5a9KrtVbr6ekhGo2SSCQO6fXJZJLNmzcDcOqpp3LzzTdz/vnn09raSmtrKzfccANXXHEFHR0dbNmyhfe9730MDw/zxBNPlIOxl770pezbt49bbrmFQqHAW97yFk4//XRuvfVWAAYHBzn66KO56KKLeP/738+TTz7JNddcw+c+9zne9ra3AXD//ffzohe9iE9/+tO87GUv4wc/+AGf+tSn2LhxIyeccMKE3otWaxURERERmaW2/Q5++AbIDkK4EY57hTdsddULwLTq3TsRETlCTTQrOqRwrlgsct9997FlyxZe97rX0dDQwN69e2lsbJxUUHffffdx/vnnj2q/+uqr+epXv8pll13Gn//8ZwYGBliyZAkXXXQRN954Y83iDX19fVx33XX87//+L6ZpcsUVV/DFL36xph+PP/4473jHO3jooYdYsGAB73znO3n/+99f8zNvu+02PvKRj7B9+3bWr1/PZz/7WS699NIJvxeFcyIiIiIis9DG/4ZfvNdb5GHZmXDlrZBYWO9eiYjIPDBt4dyOHTu45JJL2LlzJ7lcjueee441a9bw7ne/m1wuxy233HLYnZ+LFM6JiIiIiMwijgO/+Tjc/0Xv/IRXwyu/DMFIffslIiLzxkSzInOyD373u9/N6aefTn9/P9FotNz+qle9invuuefQeisiIiIiIjJV8in40RsrwdyLPwhXfF3BnIiIzEqTXhDi97//Pffffz+hUKimfdWqVezZs2fKOiYiIiIiIjJpQ3vh+1dC52NgheGyr3gLPoiIiMxSkw7nHMfBtu1R7bt376ahoWFKOiUiIiIiIjJpex/1grnhTogt8OaXW3FWvXslIiJyQJMe1nrRRRfx+c9/vnxuGAbJZJKPf/zjk1pAQUREREREZMo8cwd886VeMLfwGPi7exTMiYjInDDpBSF2797NxRdfjOu6bNq0idNPP51NmzaxYMECfve739He3j5dfZ3VtCCEiIiIiEgduC7c/59w98cAF9a+BF7zLYg01btnIiIyz03baq0AxWKRH/zgBzz++OMkk0lOO+00Xv/619csEDHfKJwTEREREZlhdgHuuB42/rd3fvrfwks/C9akZ+8RERGZchPNig7pv1qBQIA3vOENh9w5ERERERGRw5Lphx9dDdv+DwwTLv4UnPV2MIx690xERGRSJhTO/fznP5/wA1/xilcccmdEREREREQOqm8rfO9voHcThBLw6m/AURfXu1ciIiKHZELh3GWXXTahhxmGMeZKriIiIiIiIlNix/3wg9dDpg8al8HrfggdJ9S7VyIiIodsQuGc4zjT3Q8REREREZEDe/T78PN3glOAJafBVd+Hho5690pEROSwaKZUERERERGZ3RwHfvtJ+P2/e+fHvRIuuwVCsfr2S0REZAqYE73x0ksvZXBwsHz+6U9/moGBgfJ5b28vxx133JR2TkRERERE5rlCBn78lkow9/zr4dXfUjAnIiJHjAmHc3fddRe5XK58/qlPfYq+vr7yebFY5Nlnn53a3omIiIiIyPw1vA++9TJ46nYwg/DKr8CFHwdzwn+NERERmfUmPKzVdd0DnouIiIiIiEyZrifh+1fC4C6ItsBrvwurnl/vXomIiEw5zTknIiIiIiKzy3O/9oay5pPQtg5e9yNoW1vvXomIiEyLCYdzhmFgGMaoNhERERERkSnhuvDA/4O7PgiuA6teAH/z3xBrrXfPREREps2khrW++c1vJhwOA5DNZnn7299OPB4HqJmPTkREREREZFLsItz5fnjo6975qW+El90MgVB9+yUiIjLNJhzOXX311TXnb3jDG0bd86Y3venweyQiIiIiIvNLdhBuewtsuQcw4K9ugHPfBRqpIyIi88CEw7lvfvOb09kPERERERGZj3qehR++AfY/B4EoXPE1OPav690rERGRGaMFIUREREREpD7+cjv87B3ewg8Ni+Gq78OSU+vdKxERkRmlcE5ERERERGaWXYTffBw2fMk7X/l8eM03IdFe336JiIjUgcI5ERERERGZOclub365HX/wzs99J1zwCbD0VxMREZmf9F9AERERERGZGTsfgNuuhuFOCCXglV+G4y+rd69ERETqSuGciIiIiIhML9eFB78Gd30QnCIsOBpe+11YeFS9eyYiIlJ35qG86Dvf+Q7nnXceS5YsYceOHQB8/vOf52c/+9mUdk5EREREROa4fAr+523wq3/2grnjXwV/d6+COREREd+kw7mvfvWrXH/99Vx66aUMDAxg2zYAzc3NfP7zn5/q/omIiIiIyFzVuwW+fiE88SMwLLj4U/Dqb0I4Ue+eiYiIzBqTDuf+8z//k6997Wt8+MMfxrKscvvpp5/OE088MaWdExERERGROeqZO+D/ezF0PwXxdrj6f+Gcd4Bh1LtnIiIis8qk55zbtm0bp5566qj2cDhMKpWakk6JiIiIiMgc5djw20/C7//DO19+NrzmW9C4uK7dEhERma0mXTm3evVqHn300VHtd955J8cee+xU9ElEREREROaiVC989/JKMHfWtfDmXyiYExEROYBJV85df/31vOMd7yCbzeK6Lg8++CDf//73uemmm/j6178+HX0UEREREZHZbvcj8KM3wdBuCMbgFf8JJ7663r0SERGZ9SYdzr31rW8lGo3ykY98hHQ6zete9zqWLFnCF77wBa688srp6KOIiIiIiMxWrguPfAt+9T6w89C6Fl77XVh0XL17JiIiMicYruu6h/ridDpNMpmkvb19Kvs0Jw0NDdHU1MTg4CCNjY317o6IiIiIyPQrZOCOf4JHv+udH/NyuOwrEGmqb79ERERmgYlmRZOunKsWi8WIxWKH8wgREREREZmL+rfDD98IXY+DYcIFH4Pz3qPVWEVERCZpQuHcqaeeijHB/8hu3LjxsDokIiIiIiKz3Ka74SdvhewAxBbAq78Ba15U716JiIjMSRMK5y677LLycTab5Stf+QrHHXcc55xzDgB/+tOf+Mtf/sI//MM/TEsnRURERERkFnAc+L/PeBsuLD0d/ubb0LSs3j0TERGZsyYUzn384x8vH7/1rW/lXe96FzfeeOOoe3bt2jW1vRMRERERkdkh3Qf/8zbYfLd3fsZb4eJPQSBc336JiIjMcZNeEKKpqYmHH36Y9evX17Rv2rSJ008/ncHBwSnt4FyhBSFERERE5IjV+Rj88A0wsBMCEXj55+GUq+rdKxERkVltolmROdkHR6NR/vjHP45q/+Mf/0gkEpns40REREREZDb783fhvy7ygrmWVfC3dyuYExERmUKTXq31Pe95D9deey0bN27kzDPPBOCBBx7gG9/4Bh/96EenvIMiIiIiIlIHAzvh1x+Fp273ztdfDJf/P4i21LVbIiIiR5pJh3Mf+MAHWLNmDV/4whf47ne/C8Cxxx7LN7/5Tf7mb/5myjsoIiIiIiIzKJ+CP3we7v8iFLNgmPDiD8IL/gnMSQ+8ERERkYOY9JxzMjbNOSciIiIic5rjwBO3wW8+AcN7vbZVL4BLboKOE+vaNRERkbloolnRpCvnRERERETkCLP7Ebjz/bD7Ie+8eSVc9K9w7F+DYdS3byIiIkc4hXMiIiIiIvPV0F74zQ3w+A+882AcXviPcPY7IKjF3kRERGaCwjkRERERkfmmkIENX4Lf3wyFtNd28uvggo9B4+L69k1ERGSeUTgnIiIiIjJfuC489TNvFdbBnV7bsjPhpZ+Gpc+rb99ERETmqcMK50prSRiah0JEREREZHbrfBzu/ADs+KN33rgULrwBTny15pUTERGpo0NaC/2///u/OfHEE4lGo0SjUU466SS+853vTHXfRERERETkcCV74Ofvgv/3Qi+YC0TgRR+A6x6Ck16jYE5ERKTOJl05d/PNN/PRj36U6667jvPOOw+AP/zhD7z97W9n//79vPe9753yToqIiIiIyCQV8/DALfC7f4PckNd2whVetVzz8vr2TURERMoMtzQ2dYJWr17NDTfcwJve9Kaa9m9/+9t84hOfYNu2bVPawbliaGiIpqYmBgcHaWxsrHd3RERERGS+cl147k6460PQt9VrW3wKXPJpWHlOXbsmIiIyn0w0K5p05VxnZyfnnnvuqPZzzz2Xzs7OyT5ORERERESmSvfTcOcHYetvvfN4O1z4cW8lVvOQZrQREZFD4OSKGEELw9TUAXJwkw7n1q1bx49+9CM+9KEP1bT/8Ic/ZP369VPWMRERERERmaB0H9x3Ezz0X+DaYIXg7H+AF/wjRDSqQ0RkuhUHsuS2DJLbOkhu2yB2XxYMMONBrEQQMxHCTASx4t6x1xbEKrUnghhBq95vY8a5ros9mKewZ5j8niRG0KTx/BX17taMm3Q4d8MNN/Da176W3/3ud+U55/74xz9yzz338KMf/WjKOygiIiIiIuOwi/DwN+C3n4TsgNd2zMvhohuhdU1duyYiciQrDuTIbR3wwritfhg3kgtOsoCTLADpgz7TCFmYDeMHeGY8iNUQwowHMaOBOVeVVw7idntBXH5PksKeJE6qUL7Hag4rnJuIK664ggceeIDPfe5z3H777QAce+yxPPjgg5x66qlT3T8RERERERnL5nu8eeV6nvHO24+HS26CNS+qb79ERI5ABw3jTAgtbSC8ponwmiZCyxtwiy52Mo+TKmAnCzjJPE6ycmz7wZ2dzIPt4uZt7F4bu3eMoG8k0/DDuiCB1ghWa5RAa6S8Wc1hjED9pjPwgrgchd3JcYO4MhOC7XGCSxOEliVwXRdjnq0kPukFIWRsWhBCRERERGZEug9+9X54wh+1Em2Fl3wYTnszWJP+7l1ERMZQHMx5QdyWAW+Y6sjAbGQYt6oRM3xo/x/sui5uzh4/wEt5AV6p3c0UD/5QA6ymsB/cRQi0lYK7KFZrBDMWmLIAbOwgbhgnNUY/TQgu8oO4pQlvvzh+xA7pnbYFIUq6u7vp7u7GcZya9pNOOulQHykiIiIiIgfy7J3wv++C5D4wTDjz7+HF74doS717JiIyp00kjAv6YVzkMMO4kQzDwIgEMCMBWBA96P1u0SlX49mDOYr9Wey+LEV/s/uyuAUHeyCHPZCDrYOjf2bYqgR31RV3rRECLZFxq+5c18UeyFHYM5EgziC4KFYO4kLLGgh2xDGCWqBopEn/SXrkkUe4+uqrefrppxlZdGcYBrZtT1nnREREREQEyAx4q7A+dqt33rYeXnULLDu9rt0SkSOH67jguuB4AQyOt7mlfdHFLTrljaLjtRUcXNsp7yk4tff61xjx+spzKu2YBmbIwghb3vxrYQsjZGKErTHardHt/r2GdfDwxy6FcVsHyW0doHiAMC68ponwykYvPJsFjICJ1RTGagrD0sSo667r4iQLlbCuN1MT3NlDedycTaEzRaEzNcYPAKsxXBPcuUWH/O5hCnuTBw/iliUILVUQNxmT/pN1zTXXcNRRR/Ff//VfLFq0aN6NAxYRERERmVGbfgM/fycM7wUMOPc6OP/DEDx4dYWIzB1uwcHJFnFyNm62iJMt4mZtnKztH5eu2ZX7cnY5PMMP11wHf19qHxm24Ydwrt+Od+1IEvBDvlKAVwrzQhZGwKCwJzk6jDMguGx2hnGTZRgGVkMIqyFEeOXooZRuwaHYXwnrKsGdF+K5eQd7MIc9mCO/bXTVnYK4qTfpP2lbt27lJz/5CevWrZuO/oiIiIiICEB2CH79Ydj439556xq47Kuw4uz69ktExuQWbOyUN8G/ky7iZKoCtlyxEqpl7XLQVgngimDP4oDM8Kq1jKAJlrc3AgaGNaLNMvxrlY2A4R2XX1fVVrMZuI6Lm3Nw8zZO3g8f87YXRPrnTt6pHJfa/XvKv8Oii1MsQvoAc7MZEFyaILymmfDauR3GTZYRNAm2xwi2x0Zdc10XJ1WoBHe9XnBnmEZlnjgFcVNu0n/yLrjgAh577DGFcyIiIiIi02XLb71qucFd3vlZ18IFH4PQ6L9Iicwlru3g5p0xgxdcKsMUq4cyhiywjBkftVUdtpVDt1TtcfW5m5+aKZ6MsIUZsTDCAW8f8fZmJIARsTDD/j4S8CrBLANMA8MATAMMA8M0wMRv965jGhgmYJSOvXtqrpeeUfM65syIObc4MthzRgV4bt4hsDBKeNX8CeMmwzAMrEQIKxGCFVrscqZM+k/i17/+da6++mqefPJJTjjhBILBYM31V7ziFVPWORERERGReSWXhLs/Bg//l3fevBIu+wqsen59+zVHObkiha40hc4khb0pCl0pnGzRCyUs098bI/amF2CUrpuGF37U3GeO8TqjEpJYpjfka0nCuzaHuba3CmN15VI5/MjbuLkRQVvNsTPqNRQPsTrMNGrnFAtZo84rwxjNEecWRtAsD2108/a4YZvtB26HHLZZBmY8iBUPjg7V/PNxQ7dS2DbH/8zUU6kKz4wFD36zyCwy6XBuw4YN/PGPf+RXv/rVqGtaEEJERERE5BBt+z387B0wsMM7P+OtcOENEB492bfUKq8e6E9uXuhMku9MjV5tcYaZsQDhdc2E1zUTWddCoDVS1/5MhOu4FPalvRUrtwyQ2zqIm5uGv+OZYIQCmH6QZoQt7+fnvcqmUcMUHRc3W8Se6X+kVWGbmQiOcRyqHCeCXhA4R6rMRGYL23bo25uie/sQhmFw3POX1LtLM27S4dw73/lO3vCGN/DRj36URYsWTUefRERERETmj3wKfnMDPPj/vPOm5fDKL8GaF9e1W7OVW3AodFeq4fJ+IOdmx55bymwMEVocJ7g4QXBxHDMR9IIe263aOyPOR+xtp7Jipe2C7Y4496/77W7eJr87iZMuknl8P5nH9wMQaIsQXt9CZF0z4bXNmNH6D6lzXZdib7YSxm0ZxEkVam8KGOWqrsrKmGbNKpmjqtiq26tW3DSC3vlEh6nWDIMdqypv5DxkpaGLBWfcKj8zaGL6AZsVD1Ydh8rHCttEpofjuPR3pejZMUz39iG6dw6zf1cSu+gA0LQwqnBuInp7e3nve9+rYE5ERERE5HDt2AA/+wfo2+qdP+/N8Fc3QkTz/ADYw/lR1XDFnrS3uuRIpuFNcL447m1LvEDOitdneJtrO+R3DZPdNEBu8wD5XUPexOq9naT+1AkGhJY1EF7fTGRdM6EVjd5E+TOgOJgjt7kSxtmDuZrrRtAktLqJyNomwmub6zo817BMjKg5K4JMEZkc13EZ7MnQvWOI7h3DdO8YomdXkuIY1bjhWICFKxpoX9WI67jzbnj3pP8f7vLLL+e3v/0ta9eunY7+iIiIiIgc+QoZuPdfYcOXARcalsAr/xPWXVjvnk0713HB9avOHPy9i5P0grh8VRjnDBfGfIYZCxDsiBNckqiEce2xGQu3JsKwTMKrmgivaoK/WomTLZLbOkh2Uz+5zQMUezLkdw2T3zXM8L27MEIm4dVN5cq6wKLYlFVs2alCTWVccX+m9gbLILSigchabwhuaFnDrPpdikyGYzsU8w6FvE0hZ1PM2xRyjr+3KRZsXAeMqoUuDMNbDMMwDG9lWgNvYQ3/X0HDNDAY+3r52L+v/Dxz5N7ANMc6r7TVnJsGZmlxjznAdV2Ge7N07ximZ+cQ+7YP07NzmHxmdFVzIGzRvqKBhSsbWLSykYUrG2haGJ3XVaqTDueOOuooPvjBD/KHP/yBE088cdSCEO9617umrHMiIiIiIkecXQ/B7ddC7ybv/JQ3wMWfhGhzXbtV4toOhe4Mhb1JCnuSFHszlSGeTu1+ZMBG9XXXxbW9a7hV1yezHoABgbZoJYBb7AVyVmNozv0lzowEiB7XRvS4NgCKAzlym/vLlXVOqkD22X6yz/YzCJgNIW/463pvvjqrMTThn+Vki+S2D5Wr4wqdqdobDAguTXhh3NpmQqsaMUPWFL5bkQNzXZdi3iGfLVLI2uSzRfLZ6jCteu8FbcWc7e/9oK3qeuneQt7GOdRFR2axUmBXCuvK56aBFTAJRQOEYwHCsSCRuLcf+zxAJB4kFAtgWYcXwKcGcjUVcd07hskmR3+hYgVNFixL0L6ykfZVDbSvaKS5I4Y5R0LHmWK4rjupP7mrV68e/2GGwdatWw+7U3PR0NAQTU1NDA4O0tioYQgiIiIiMkIhC/fdBPd/EVwHEh3wii/CURfXrUtO3qbQlfKDuBT5vUkK+1KHvqLmYTBCplcNt7iqIq4jPi9CI9dxKXSlyG0eILt5gPy2QdxC7djdwKKYH9a1EF7d5M3bVnp9wSa3Y7hcHZffPTxq6G9gUawcxoXXNGmYqEya67heIFYdpo3YV8I2vy1nk88UKVTv/WuTSyIOgQHBkEUgbBEMmQRCFsGwRSBkYhiG9/NdF9f1wkLvPVYf+3v/unf/wa7X3uc6rvedhP+lxVjn0/57GEcwbBH2g7uIH+SFq4K8SCxAOF4J+bLJQk0Ylx7Mj3qmaRq0LUvQvrKBdr8irnVJ/LCDwLlsolnRpMM5GZvCOREREREZ156NXrVczzPe+UmvhZd+BqItM9YFJ10gv9cP4vYmye9NUuzJjFnJZoQtgksShJbECS6KY4RMML3xW4Zp+JP547X5VRzVe/yqjtFt/t4ArKrnmXNn6NZMcAsOuR1D5cq6wt5k7T8nfxhqaGkDhb1JcjuHRgWqVlvED+OaCK9pxmqYeOWdzF+u4zLUm6V3T5K+vUl696bo3ZMi2Z+lkLMnV/k6EQaEwhbBSIBQpBSeVe9NL2Arh2xeWyBUuW/UecgL4KygOScqbN2qgND1q5Fdx8VxXL+t6ryqrXRuFx1y6SK5dJFsqkAuXSif51IFsumi15by9vns1Ky+bBjQuiTOwpWNtPtzxbUtjRMIHvlfqEzGRLMifV0iIiIiIjJdinn43Wfh9zeDa0N8Ibz883Dsy6ftR7quizOU96rg9vrVcHuS2AO5Me83E0FCSxNetdqSOKElCayWiMKyOjKCJpF13kIRTZdUzRm3eYDspn7s/hz5bUPktw2VX2M2hiqVcWubCLRE6vgOZLZzXZfMcMEP4VL07vGCuL7O1JiT9VczDAhFAwTDVmUfsQhFAgQjlaAtVArcIpV7a+4Le9tcCNCmk1Ge286AGci1HNshn7H9IM8L7LLl8K507gV7pfNcukggZJUr4tpXNrBgeQPBsIK4qTLpcO6aa6454PVvfOMbh9wZEREREZEjRudjcPs/wL4nvfMTroCX/hvE26bsR7iOS7EvW1UNl6KwJ4mTGnshBas14lXDLUn4lXGJSc1lJvVhxYPETlpI7KSFABR7M15FXWeSYEec8LpmAgvm92Tq1Qp5m2yyQDZZIJPM+/tCua1YdGoqkEZWI+G6OE5VJdOI+5wRr6ncV6lmwoVIIkisMVTZmsL+3juPN4VnJNzIZ4u1AdzeJL17UmPODwZgBgxaOuK0LY3TtiRB65I4TQujhGNBghGLwBypSJOxmZZJJGESSdRnJWsZ26TDuf7+/przQqHAk08+ycDAAC95yUumrGMiIiIiInOSXYDf/wf87t/AKUKsDV52Mxx/2WE91snZFPb5K5l2lVY0TeGOVeViQmBhjNCS2oo4zTN2ZAi0RUm0RevdjRlRLNhkk0WyqXxNwFY59ttTVeHbiPn66mW4L3vQe4JhqyawKwd4jZUAL9YUIpoIYh5k3i676DCwL10J4fz9cO84/TCgaUGUtqVeAFfaN7dHD/qzRGRqTfq/zj/96U9HtTmOw7XXXsvatWunpFMiIiIiInOO48Czv4T7Pg37nvDajv1reNnnILFwwo9xHRe7L0uhK0W+FMR1pbDH+wt2wCS4OF6uiAstSRDsiGFo3h+ZAtlUgb69SWzbxbWr5r2qmvNq1N4e3eYdV82dZbs4rrcvtdVWvHn7wkGGWI7HtAwiiSDRRJBIIkgkHioflxYEMAxvbkTDNDD9uRDLK2GWrhn+NbNybvj3mmbtM6pfB5BNFkgP5UkP5v19jvRQnpR/XMw7FHI2gz0ZBnsyB35DBkQTQWKNYeLlIC+EFbQY6ErRuzfFQFfaq/wbQ6wpRNuSOK1LE7QtSdC2NE7L4jjBebDgishcMGULQjz77LO8+MUvprOzcyoeN+doQQgRERGRecouwpM/gT/cXFnwIdoCl/67N5T1AMO/nHSBQle6HMAVOlMU9qVw82NX/pgNofIqpsEOrzIusDCGYWmImUydof0Ztj22n22P97B302B5Vcp6McyqoC3uh22JIFH/2AvdQjVh3FyYyyyfLVaCu6E8KT+8qwR6OdKDeTLD+Qmv6BmKWLT64Vtp37YkoSGMInUy4wtCbNmyhWKxOFWPExERERGZ3QpZePR78McvwMAOry3cCGe8Fc55B8QXlG91bZdib4ZCZ5JCZ7ocxNmDYy/SQMAkuCjmhXBVYZyV0PxwM81xXIp5G7vgUPD3xbxDMW97+8KIfd7BLto0tcdYsr6ZeFO43m/hoFzXZf/uJNse7WHrY/vp3Z2sud7QFiEYtjAtrzKsZm9Sriyr2dfcM+Ka/5rScwzLaw8ErdpqN/84FA3M+qDtUHgLJgRoXhQ74H2O45JNFirhXVVwV8jZNC+KlYelJlrCR+TvSuRIN+lw7vrrr685d12Xzs5O7rjjDq6++uop65iIiIiIyKyUG4aHvwEbvgzJfV5bbAHu2f+Ae9JbcIhR7MxQ6NxTqYjbl4Li2KUvVnO4EsD5+0BbVNVwh6mQt8mMqEJKDeXJZ4oUC164ZucdCnkHu2DX7vM2RT+Mc8b55zZRTe1RlqxvZun6Zhavb6ZxlswV59gOezcPsu3RHrY9tr9mfjTDgMXrmll98gJWn7yQpoWzo8/zlWka5TnoROTINOlhreeff37NuWmaLFy4kJe85CVcc801BALzc5JZDWsVERERmZvcooOTs3GzRX9v4+SKuDm79jyZwtn9FG7PThw7iOPGcM1GnOACXCc87lDUEiNk1lbCLY4TXBTXIg2TYBcdMsOVYYA183kN+dVE/nEhe2hzlR2IFTAJhEwCQZNAyPKOQ1bl3N8blsH+XcPs352EEX/bSrSGWbK+mSXrmll6VAtN7TO3ymo+W2TX031se3Q/25/YTy5dGfkUCJosP66V1ScvZNVJbURVpSkictgmmhVN2Zxz853COREREZHZx3Vdivsz5LcPkds+RLEvi5urDeHGq2g7ZKaB1RImNCKIs1oiGKaq4Uayiw7ZVIHMcMGvdPMq3ErBWzmMG8yTTRUm9WwraJYnz482eCthhqOB0aHamCFb1bWg1zbZf365dIHOLYPs3TTA3k0DdO8YHjV/W7QxxJJ1zV513VHNtC6OT+mfk/RQnu2P72fbYz3serofu1gJkSPxIKtOXsDqkxaw/LhWLQ4gIjLFpi2cy2QyuK5LLOaNi9+xYwc//elPOe6447jooosOr9dzmMI5ERERkfpzbYfC3hS57YPktg+R3z6EM8FAxwiZGOEAZsTCCFuYZh4juQ1z6DkMN4lJGqOxCXP98zFXnYoRCXr3RQKYYQsjYmGGAxAw5uWcT67rUsjaZFMFb0sWRhwXa8/965NdjdM0DaKNldUqYw1Vx43h8vC/WGOIYGR2LQqQzxbZt22oHNbt2zZUE5YBhGMBFleFdQuWJTAtc1I/Z2Bfmq2P9bD9sf10bh2sqd5rXBBh9SkLWXPyAjrWNE362SIiMnHTFs5ddNFFXH755bz97W9nYGCAo48+mlAoxP79+7n55pu59tprD7vzc5HCOREREZGZ5+SK5HcO+0HcIPmdw7iFEcNLAwah5Q2EVzUR7Ih74duIQM3whyIC0PUk/OFz8Jf/Add/1srz4AXXw9oLDrj66pHEdVxSgzmGe7NkqoK2XFXYlknmy6FbLlXAsQ+tCtEwIJIIVgVr4UoAVw7evC0SCx4xFYjFgk339mH2bupn76YBOrcOURwRVgbDFovXNrHkKG8obPvKRqxgbaDmOi7dO4bZ+lgP2x7tob8rXXN94YoG1pzizR/XuiQ+qwJLEZEj2bSt1rpx40Y+97nPAfDjH/+Yjo4O/vznP/OTn/yEj33sY/M2nBMRERGR6WcP58ltHywPUy3sHT2nlxkLEFrZSHhVI6FVTYSWJjACE6gO2vUg/P4/4Lk7K23rL4LnXw8rz5naNzJLOLbDcF+Wwe4Mgz2129D+DPbIoHMCrKBJJB70tkT1PlDbVnVPOBo4YgK3yQgELW/+ufXNANi2w/6dSfZs6qdz0wB7Nw+SzxTZ+VQfO5/qA7zfb8fqRhav94bA7nlugG2P9ZAezJefa5oGS45qZs0pC1l10gIaWiP1eHsiIjJBkw7n0uk0DQ0NAPz617/m8ssvxzRNzj77bHbs2DHlHRQRERGRmeM6LoXOFLltg+S2DVLoTGGGLMxEECsRxEyEvON40G8Lla8Zwamdr6pmvrhtg+R2DGH3ZkfdZ7WECa9qIrTKC+QCC2MTD3pcF7b+Fn5/M2z/vd9owPGXeaHc4pOm7P3USzFvM7Q/y2BPelQAN9ybHTUHWjXDNGhoDRNJhPwgLVAO1aKJIOGRYVsiqHnLDoNlmSxa3cii1Y1w0Uocx6Vvb5I9zw34Yd0AmeECe54bYM9zAzWvDYYtVhzfxppTFrDyhDbCsWB93oSIiEzapMO5devWcfvtt/OqV72Ku+66i/e+970AdHd3aziniIiIyBzj2g75PUny2wbJbRsit30Qd8QqlxOdEcwYEeJZiSBmOcQb0TbG0MSa+eK2DZHfMYiTKo74IRDsiPtBnBfIBZrCk3/jjgPP3uFVyu39s9dmBuHkK+G898CCdZN/Zh3lM8Wq0M0P4bq96rdkf+6Ar7WCJo0LojQtjNLUHqVpgb9fGCXRGsHSnGR1Y5oGC5Y1sGBZAye/ZDmu6zKwL83eTV4419+Von1VI2tOXsiyo1tGDXcVEZG5YdLh3Mc+9jFe97rX8d73vpcLLriAc87xSvx//etfc+qpp07qWb/73e/4t3/7Nx555BE6Ozv56U9/ymWXXVa+7rouH//4x/na177GwMAA5513Hl/96ldZv359+Z6+vj7e+c538r//+7+YpskVV1zBF77wBRKJRPmexx9/nHe84x089NBDLFy4kHe+8528733vq+nLbbfdxkc/+lG2b9/O+vXr+cxnPsOll1462V+PiIiIyKzmFhzyu4a9SrTtg+R3DOHma4cuGmHLGxK6uonQ8gawXexkHidZwE4VcJIFnGQeO+kd28k82C5u3sbus7H7Rle3jWLghXTxIFZDCNd2Kew+8Hxx4VWNhFY2YkYm/RG2wi7AEz/25pTb/6z/M6LwvDfDuddB07JDf/Y0KuRshvuyJPuyDPdlGe719qXhp5nhAy96EYpYNLXHvBDOD95KW7wpPC+HlM5FhmHQ0hGnpSPO8S9YWu/uiIjIFJn0J5tXv/rVPP/5z6ezs5OTTz653H7BBRfwqle9alLPSqVSnHzyyVxzzTVcfvnlo65/9rOf5Ytf/CLf/va3Wb16NR/96Ee5+OKLeeqpp4hEvHkTXv/619PZ2cndd99NoVDgLW95C29729u49dZbAW/yvYsuuogLL7yQW265hSeeeIJrrrmG5uZm3va2twFw//33c9VVV3HTTTfx8pe/nFtvvZXLLruMjRs3csIJJ0z2VyQiIiIyazh5m/yOofIw1fyuYSjWDmM0YwFCq5oIr24ivKaJ4OL4pMIa13Vxc7Yf1tWGeOVQL1nASXnHTroILn7IV6C4rzJ5/SHPF3cw2UF49Puw4cswuNNrCzfBmX8HZ18L8QWH/zMOkeu6ZJOFmtDNC+Jy5bbsBFacjTYE/cAtRmNV+NbUHiUSD2oRABERkVlq0qu1ThfDMGoq51zXZcmSJfzjP/4j//RP/wTA4OAgixYt4lvf+hZXXnklTz/9NMcddxwPPfQQp59+OgB33nknl156Kbt372bJkiV89atf5cMf/jBdXV2EQiEAPvCBD3D77bfzzDPPAPDa176WVCrFL37xi3J/zj77bE455RRuueWWCfVfq7WKiIjIbOBki+T8Odry2wbJ707CiDnFzIagF8T5W6B9EnO0TQHXdnBSRS+480M813YJLU9Mbr64idj7Z3jov+DJn0DBDwHjC+Hsf4Az/hYiTVP3s8Zh2w6p/lxV6FYdwuVI9mUpTmDhhVDEoqEtQqI1QoO/lYejLowSih5GRaGIiIhMuWlbrTWVSvHpT3+ae+65h+7ubhyn9oPE1q1bJ9/bMWzbto2uri4uvPDCcltTUxNnnXUWGzZs4Morr2TDhg00NzeXgzmACy+8ENM0eeCBB3jVq17Fhg0beOELX1gO5gAuvvhiPvOZz9Df309LSwsbNmzg+uuvr/n5F198Mbfffvu4/cvlcuRylfk7hoaGpuBdi4iIiEyOnSr488VVFnAYuXqp1RwuB3GhNU0E2iJ1raIyLBOrMYTVGDr4zYcin/bCuIe/AXs3VtoXHusFcqe+AYLRKftxjuOS7M8y1JPxFl7Y7y20MNybJdmfJTWQYyJfh8eaQuXQraE1MiKIC2uCfxERkSPUpMO5t771rfzf//0fb3zjG1m8ePG0fbDr6uoCYNGiRTXtixYtKl/r6uqivb295nogEKC1tbXmntWrV496RulaS0sLXV1dB/w5Y7npppu44YYbDuGdiYiIiEye67rYg3mK3WkKPWmK+9LkdgzVDAktCSyIegsm+MNUAy2ROvS4Dnqe9QK5R78PuUGvzQrBca+E06+BFefAIX52zWeLDO3PMrQ/U57nbagnUw7iHPvA6ZsZMGho8QK3htba0K2hLUKiOaLJ/EVEROapSYdzv/rVr7jjjjs477zzpqM/c8YHP/jBmmq7oaEhli9fXsceiYiIyJHALToUezMUutMUuzMUe9IUerz9yIUbSgKLYlXDVBuxGg9h9dK5qpiHZ/4XHv4mbP99pb15pRfInfqGCc0n57ou6aF8OXirDeCyZIbyB3y9aRk0LojSuMAbatrYFq0K4sLEGkJadEFERETGNOlwrqWlhdbW1unoS42Ojg4A9u3bx+LFi8vt+/bt45RTTinf093dXfO6YrFIX19f+fUdHR3s27ev5p7S+cHuKV0fSzgcJhyeRx98RUREZEo56YIXunVXwrdid5piX3bUsNQy0yCwIEJgYYzgwhihZQlCqxqxEtM0PHQ2698Bj3wL/vwdSPV4bYYJR73UC+XWvgTM2kq0Qt4mWbXC6VCPNwS1FMIdbN63cDxA04IojQuj5bneSvt4cxhT4ZuIiIgcgkmHczfeeCMf+9jH+Pa3v00sFpuOPgGwevVqOjo6uOeee8ph3NDQEA888ADXXnstAOeccw4DAwM88sgjPO95zwPg3nvvxXEczjrrrPI9H/7whykUCgSD3jwdd999N0cffTQtLS3le+655x7e8573lH/+3XffzTnnnDNt709ERESOfK7jYg/magK4QneaYk8GJzn+6ptG2CLQHiO4MOrvYwTaowRaIxjWPB766Niw6W5v6OqmX+O6Ljk3TiZyMpm1ryG95ELSxQYyT+dJP/gcmaE8meE86aE86eECxZx9wMcbBiRaIzWhW2Uf0ZxvIiIiMi0mvVrrqaeeypYtW3Bdl1WrVpUDr5KNGzeO88rRkskkmzdvLj/35ptv5vzzz6e1tZUVK1bwmc98hk9/+tN8+9vfZvXq1Xz0ox/l8ccf56mnniIS8eZOeelLX8q+ffu45ZZbKBQKvOUtb+H000/n1ltvBbwVXo8++mguuugi3v/+9/Pkk09yzTXX8LnPfY63ve1tANx///286EUv4tOf/jQve9nL+MEPfsCnPvUpNm7cyAknnDCh96LVWkVEROYv13Ep9mYo7ktT2OcHcN1pivszuAeoxrKaQl4VXHuMwMJo+dhsCNZ1wYZ6chyXbLJQCdWG8mT295LZ8hjp3dtJZ4NknCYyTjNptxnHndx3zcGwRePCaLkCrmlBpFwJ19AWwZrP4aeIiIhMqWlbrfWyyy47nH7VePjhhzn//PPL56U53K6++mq+9a1v8b73vY9UKsXb3vY2BgYGeP7zn8+dd95ZDuYAvve973HddddxwQUXYJomV1xxBV/84hfL15uamvj1r3/NO97xDp73vOexYMECPvaxj5WDOYBzzz2XW2+9lY985CN86EMfYv369dx+++0TDuZERERkfnAdF3sgR6Er5QVwXSkvjOtJQ3Gc7zstg0BbtFwFV66IWxjFDE/6o9ic5bouuXSR1ECO5ECOVH+OZH/WO/a39FCebLIwzsqmHf42WihiEW0MEWsMEWsIEW0Ilc+jDUGvzT8Phq15G3yKiIjI7DTpyjkZmyrnREREjhyu62IP5b1KuFIAty9FsXv8RRmMoOkFb4v8AK5UDTcPhqK6jksmWfCCt/4syf5cOXRL9ufK7cVxfndjPJGIlSJm9BE1B4iZA0Qbo8RWH0t07cnEWuJEGyrhWyBoTev7ExERETkU01Y5V/LII4/w9NNPA3D88cdz6qmnHuqjREREROrCdV2cZKESvpWGpe5L4WbHmZ/MMrw54BZ5QVxwUZzgohhWa+SIXI3TsR3SQ3kvcCsFbQM5Un7VW6nNsSf2fW8kHiTeEibREibR7O3jzWHihZ3EdvyM6LafEHV6MA0HQgk46W+8BR46TpzmdyoiIiJSH5MO57q7u7nyyiu57777aG5uBmBgYIDzzz+fH/zgByxcuHCq+ygiIiJyWNyig50sYPdnKezzK+G60hS7Uzip4tgvMiGwIFoO3wJ+EBdoi2JYR14IV5IeytO1ZZC9mwfo3DzA/l1JHGcCwZsBscaQH7hFvACu2QveEn4YF28KEwhVVbn1PAd/+SH8+afQ80ylfdHxcMY1cNJrIdww9W9SREREZBaZdDj3zne+k+HhYf7yl79w7LHHAvDUU09x9dVX8653vYvvf//7U95JERERkZFc28FJFbCHC9jJPM5wHjtZGLHPYw8XcDPjBHAABgRaIwT8EC64KEawI05gQRQjcIQPR3VdBnsydG4eoHPzIJ1bBhnYlx51n2ka5ZAt3hwuB2+Jlki5LdYUmthiCvs3w19+6m3df6m0W2E4/jI4/W9h+Zne0qkiIiIi88Ck55xramriN7/5DWeccUZN+4MPPshFF13EwMDAVPZvztCccyIiIofPdVw/cMvjJEv7fCWAq2obt+JtPKaB1RTyqt8WeXPCBTvi3sIMofkxZ5ljO+zfnfSCuM0D7N0ySGYoP+q+1iVxlqxrZvG6JjrWNNFwuEN2+7ZWArmuJyrtZgDWvgSOvxyOfilEmw/9Z4iIiIjMMtM255zjOASDwVHtwWAQx5noJL8iIiIyX7lFh2Jvxp/bLU2xO01xf8YL3VIFmMzXhiaY8RBWIojZ4O2thhBmIoTVUNtmRAPzbpXOQs5m37ZB9vphXNe2IYq52rn0zIDBolWNLF5bCeMi8dGf9Satf0clkOt8tNJuWLDmxXDC5XD0pRBrPfyfJSIiIjKHTTqce8lLXsK73/1uvv/977NkyRIA9uzZw3vf+14uuOCCKe+giIiIzE1u0aG4P0Oh2w/h9qUodKcp7s/CgeYwM8CMB7ESIcyGkfvqAC6IGQsekYswHKr0UJ7OLQPlyrieXUncEb/rcCxAx9omFq9tYvG6ZtpXNkzdaqcDu+Cp271Abs8jlXbDhNUvhONfBcf8NcTbpubniYiIiBwBJh3OfelLX+IVr3gFq1atYvny5QDs2rWLE044ge9+97tT3kERERGZ3cohXGnF01IY15uBcYrqjbDlLbLQ7s3xFlgYw2oMeaFbLHhEL7gwVSY6X1yiNczitc0sWeeFca2L41MbaA7ugad+5gVyux+stBsmrDzPC+SOfQUktGiYiIiIyFgmHc4tX76cjRs38pvf/IZnnvFW1Tr22GO58MILp7xzIiIiMntUQriUXwmX9irhJhzCVVY9tRpD826I6UQVcjaZ4TzpoXzVvuAdD5faCqQHc+TSI+bdM6BtSbw8RHXxumYaWiNT38nhrkogt3NDbQdWnlsJ5BoWTf3PFhERETnCTHpBCBmbFoQQEZEjhVtwKOzPlIehlueFO1AIF7G8BRYWxSvVcArhAG+Ri2yq4AdrBTJDfshWCt/84K0UxBXzE5/Dd9rmixtLstsP5G6HHX+kZnLA5Wd7gdxxr4TGxdPz80VERETmmClfEOLee+/luuuu409/+tOoBw4ODnLuuedyyy238IIXvODQey0iIiIzxi04FHrS5WGoNSHcOF/dGRGrUgHnh3DB9hjmPAzh8tki6cE86aEcqYE8qcEc6UF/71e7pYfzZIfzTPar0EDQJNoYItoQItYQrDoOEW0MevuGEE3t0ambL24s6b7KHHLb/wBuVXC47Aw/kLsMmpZOXx9EREREjnATDuc+//nP83d/93djJn1NTU38/d//PTfffLPCORERkVnGLdgUujOVEK7bW5yh2Jc9QAgX8IK36hBuUQyz4cgO4VzXJZ+1SQ/mSA3mSQ34gduQvx/wgrfUYI5C1j74A6uE44FyqBYrhW2NQaI1bd55MGzV7/fs2LDlt/Dod+GZO8DOV64tOc0L5I6/DJpX1Kd/IiIiIkeYCYdzjz32GJ/5zGfGvX7RRRfx7//+71PSKREREZk8J29T7MnULMpQ6E5jHyiEi44RwrXHMRuCR0wI5zouhbxNIWd7w0sH85XwraraLeW3T2ZYaSBsEW8KEW8KE6veN4Yq1W6NISKJIJZlTuO7nAL7N8Gj34PHfgDDnZX29uPhpNd4FXKtq+vWPREREZEj1YTDuX379hEMjj+HSSAQoKenZ0o6JSIiIuNzssXy6qg1IVz/+CGcGQvUDEMN+ENTzcTsCuFc18UuOhRyNoWsF6gVcjb5bLGmrXxe02ZTyI24L2dTzE2uwg0gFLGIN3tBW6wxTLw5TLwpVA7gSiFcKDLptbVml+wQ/OV/4M/fq11pNdoCJ74GTnk9LD4ZZtGfEREREZEjzYQ/US5dupQnn3ySdevWjXn98ccfZ/FiTQAsIiIyFdyCQ7Ev41XC7c9QrNqcZGHc15mxAIFF/sqo7d6iDMH22RXCZZMF+jqT9O1N0deZpq8zyWBPxgvUsjaOMz1rVRkGhKIBL3RrHKParSlMvDlErClMMDSN87jVm+PA9t/Bo7fCUz+HYsZrN0xYd6EXyB39UgiE69tPERERkXliwuHcpZdeykc/+lEuueQSIpFIzbVMJsPHP/5xXv7yl095B0VERI5UruNi92e9KrgRAZw9kBu3Cg7AbAgSWBAbNSTVSoRm7g0cRDZV8AM4f/OPM0P5g78Yb1GEYMQiGLYIhgOESsflfYBg2Kq0+/cFIxah8n2B8msCQXPWBJR10b/dC+Qe/T4M7qy0LzjKC+ROvhIaOurWPREREZH5ynDdia0ftm/fPk477TQsy+K6667j6KOPBuCZZ57hy1/+MrZts3HjRhYtWjStHZ6tJro8roiIzC+u6+IMFyjuT1Pcn60K4dIUe7Ngj/+fYSNsEVgYJbAgSnCBty9t5iwaTplNFejrTNFfFcD17U2RPkAI19AaoXVJnJbFcVoXx2npiBGOBcrhWjBsYZrzOEibKvkUPPUzb9jqjj9U2sNNcMLlcOobYOnzNGxVREREZBpMNCua8Cf7RYsWcf/993PttdfywQ9+kFKmZxgGF198MV/+8pfnbTAnIiLiui52b5b83qQ3F1wphOvJ4OYPMOdZwCDQNiKA8wM5Mz57hqIC5NIFbxjq3mRNJVx6cPwQLtEaptUP4FqXxGldnKBlcWzuz9U2m7ku7NzgBXJP3Q75pH/BgDUv9qrkjn05BKN17KSIiIiIlEzqk/HKlSv55S9/SX9/P5s3b8Z1XdavX09LS8t09U9ERGaIbTvYeYdiwaGYtynmHeyiQyQRJN4cVhVTFddxKfZmKOxJemHcbm/vZscJ4QywWiKVAM4P3wJtUazmMMYs+t3aBYeh3gyDPRmG9mcZ7EmXK+JSBwrhWrwQrmVJVRDXEScUVQg3YwZ3w2Pf94au9m2ttLesrgxbbV5ev/6JiIiIyJgO6RNzS0sLZ5xxxlT3RUREDsIuOqQGc6T6c+TSRQp5G7tQG6gVCzbFQiloK7V518e7t5h3cA8wCb9pGTS0RmhcGKWxLULjgqi/eceR+Pirec91ruN6c8LtSZL3t8LeJO5YK4AGDIIdcW9bGKtUwbVGMALmzHd+DK7rkk0VGOrJMrg/7e8zDPVkGNqfIXmQue7izWG/Ai5e2S9WCFc3hQw8cwf8+buw9T7K//CCcTj+VXDq62HFORq2KiIiIjKL6ZO0iMgsUSzYpAbyJPuzJPtzpAZyJPtzJPuz5eP0cP6AwclUCQRNrJCJFTDJDhdwbJfBHq+aaizhWICGtghNC6I0LIjStKAS4DW0RrCCsyOYOhjXcSn2pL0ArhzEpcYelhowCS2OE1yaILQ0QXBpguCiGIZV//dq2w7Jvmy5+m2oJ+MFcH4Ilx+vws8XCFs0lcLXhVFaO0pzw8UIx47cIHZOcF3o3wa7HvLmkPvLzyA3WLm+8vleIHfsKyCcqF8/RURERGTCFM6JiMyAQt4m5QdtST9oS/Xn/GMvfMsMFyb0LDNgkGgOE4kHCYQsAiGTQNDCCprlY29vEgj57f5x+bofvgXL1yuvsUasaOk4LqmBnFdZ1Vsa6phhuDfD4P4smaE8uXSRXDrJ/l3J0R02INEcrqm0q668izWG6jKvmmuPFcQlcQvO6LcQNAmWg7gGL4hrj9YtiLOLDvlMkWR/zg/gMjXVb8N9uQNWQoJXAde4wAtUGxd6/zya/H20YXbNdTev5dOwdyPsehB2P+RtqZ7ae5pWwClXwclXQevq+vRTRERERA6ZwjkRkcNUyNsk+7LlKrekH7p5YZzXlksXJ/SsQNAk3hIm0RIm0RzxjpvDJFoj3r4lTCQxs8GJaXpDWhtaIyxl9ByjhZzNUG+G4f3ZSnXW/qy3781SzNn+7yHH3k2jnx8ImiRaIwTDFlbAxAoaWAELK2BgBb3qvcpm+PfUtpkBP1gstZkGJi6m42+2t5Ep4nSnsbtSFPeloThGEBcyCS6uVMOFliUILIhhWIf/O3ddl0LOppC1yWWK5Etb1iafKVbasqVr3n2FbNW1jI09Rr9HsoKmF7j51W/V4VtjW4RAyDrs9yNTzHVhYIdXFbf7QS+Q2/ckOCP+/8MMwuKTYfmZcNTFsOqFYNa/YlNEREREDo3CORGRAygWKsFSqj/LcFXgluybZPAWtmhoCRP3Q7ZES4RE+dw7DscCc65iKRi2aFuSoG3J6CF0ruuSGS74QV2GoZ6sX33nHSf7sxQLDgP70gAEDAj6+4Bh+HsIGhCgcl66HjTA9a85BpgGYHgribuA7W/jKbouA7bLoO0y6MIwBpm8i7l1CHP7MKZlYlpG1TbOuVl7zXXcqrDNroRtWfugFW2TEW0M1YZvfhVc04KoV5E4ixaakDEUMrD30UoQt+tBSHWPvq9hMSw7wwvjlp3pBXPByIx3V0RERESmh8I5EZm3bNupqW5L9ue8Criqud4mOtQ0GLFItES88K0qeEs0V85DEWvOBW+Hw7UdnFSBQLJAc9GhIWCyuCGAY0SwIxZOSxh7OEpxOI+bLo5ZxXa4bMB2oYhLwYW84zJYrARyyan/kRNimAahqEUoEiAUDRCOevtQxPL2pbaq89K9oahFOBogGAloBd25xHW91VR3PeANTd31IHQ9Ac6I/48xA9BxkhfElcK4pmVa0EFERETkCKZwTkSOWI7jepPid2cY6E4z2J1huD9bDuDSQxNbXKE07DLRUlvxVt63RgjPg5UqXcfFyRRxUgWcZB47WcBJFcr7kW1uZmIVhaNYBmbEwggHMMMWRtiq7COBqnP/esQa3VY6H2OFVNd1cRwXx/Y213axbad87tQcl+4d77pT8yzHf5ZpGlWBmlUVtnkBWyBkzqugdl4qZKHzsUpV3O6HYLhz9H2JRbVVcUtOgWB0xrsrIiIiIvVz5P9tUkSOaKVhkwPdaQb2pRnsTjOwrxLGHWxurtLiComWCInWcLn6rXzeHCEcn3tDTSeiNmwrYKf8kM3fyufJAnYqj5MqwGQrzUww40GseAgzEcRMBLHiQcxEyN9X2oxIYNxAbSoZhoFlGViack2mSmYA9v3F356Arie9ueLsfO19hgUdJ1aCuOVnQPNKVcWJiIiIzHMK50RkTshni14F3L50OYjzjjPkD1ChZVoGTQujNC+K0bQwSkNbpKby7UhaldItOjjpqkq2kSHbiGMnXZxQ5eBIRjSAlQj6oVspYAtV2vxzMx7EjAY075kcORwH+rd5w1H3PemFcV1PwuDOse+PLYDlZ3kh3LIzYcmpEIrNbJ9FREREZNZTOCcis4ZddBja7wdwfvVbKYxLD+bHf6EBDa0RmhfFaG6P0bwoSlO7d9zQFjni5uUq9KRJP9JNYV+qJnRzswda+mB8RjTghWzxqsCttCUqAZyVCGLGgtNe2SYyK+SG/fCtKojb9xQUUmPf37QcFh0Pi06AjhO8RRtaVqsqTkREREQOSuGciEwLu+h4q1Wm/S1TIJcuVtr8fT5dIJsuMtiTYXh/BvcAlVzRhmBVAOftmxZFaVoYJRA8sscougWb9BP7ST3URX7b0Pg3Gt4wUjNWVcU2RuhWbo8FMCyFbTKPOQ4M7PACuNJw1H1PQv/2se8PRKD9WC+EKwVxi46HaMuMdltEREREjhwK50RkXPlskcxwvhym5UuhWsoL28rn/rWsH7blMkWK+UNbBjMYtvzgLUpTTRAXJRwLTvE7nP3ye5OkHuoi/efuSmWcAZGjW4kc04JVGj5a2jSMVGR8haxfCVc1L9y+pyA/PPb9DUv88M0P4DpOhNa1YOnjk4iIiIhMHX26FBEKOZv+rhR9e1P07vX2fZ1Jkn25w352KGIRigUIx4KEowHCsYC/D3rtflvjgghN7TFijaEjZg64Q+Vki6Qf7SH1UBeFPclyu9USJn56B7HTFxFoCtexhyJzyOBueO4u2HQ3bPs/KKRH32OFYOExXvhWroY7AWKtM99fEREREZl3FM6JzCPFvE1/V5q+zlIAl6Jvb5Kh3uy4CwMEwtaIUC3gh2pB77h0rSp0K7WHooEjbr636eK6LvkdQ6Qe2kfm8R7cgl95aBlEj28jfkYH4bXNqooTORjHht0P+YHcr73quGrxhdBxkh/Anejt29aBNf8qc0VERERkdlA4J3IEsgsOA91pvxIuWQ7ihnrGn9Mt2hCkdXHc25bEaV2SoHVJnEhcf2GdTnYyT3pjN6mHuij2ZMrtgfYo8TMWEzt1IVYiVMceiswB6T7YfA9sugs2/wYy/ZVrhgnLzoD1F8FRF3sVcfO8OldEREREZheFcyJzmG07DO7LlCvgShVxA90ZXGfsFC4cD/gBXKISxC2OE2tUADRTXMclt3mA1ENdZJ7qBdv7Z2UETaInLSR+ZgehFQ3zfnivyLhc11s9ddNd8NyvYfeD4FbNcxlpgnUXwlGXwNoLIN5Wv76KiIiIiByEwjmROcB1XdJDefbvTtK7O+nt9yQZ2JfGsccO4UIRq1z9VqmGi2tOtzoqDuRIP9xF6uF92AOV+fyCyxLEz+ggdvJCzIj+b1lkTPkUbPtdZf64od2119uPq1THLTtTizaIiIiIyJyhT64is4xtOwx0pdm/a5j9VUFcZrgw5v3BsEXL4jhtS+I1QVy8OawQbhZwbYfs032kHuoi+1x/eW4/IxIgdupC4md0EFqSqG8nRWar/u1eZdymu2Db78GuWqQmEIXVL4SjLoL1F0Pz8rp1U0RERETkcCicE6mjbLLA/t3DlYq4Pd7QVKc4uhrOMKB5UYy2ZQkWLEvQttSrimtojSiEm4UKPWlSD+8j/cg+nGQlWA2vaSJ+RgfRE9owglYdeygyC9kF2PmnynDV/c/WXm9aUQnjVr8AgtH69FNEREREZAopnBOZAY7jMtidrgnhencnSfbnxrw/FLH8EK7BC+KWeUFcMKQwZ7Zy0gXynSkKe5Nknuojv22wfM1MBIk/bxGxMzoILlCYIFLmutDzLOz4ozdkdctvIVf5dwfDghVnV4arLjxGizmIiIiIyBFH4ZzIFMtni+V54Upb394kxbwz5v2NCyIsWNZQrohbsCxBQ5uq4WYr13WxB3IU9ibJ701R8AO56jnkADAgcnQr8TMWETmmFcMy69NhkdnELkDn47DzftixAXZugExf7T2xNlj3V16F3NqXQLSlPn0VEREREZkhCudEDkGxYDPYk2GwO8NAd5rB7gyD3WkGujOkRoY0vkDQpHVpJYArDU0NRfWv4Wzl2g6F7gyFvUlv60yR35vCzRbHvN9qjRBaHCe4vIHYqe0EmsIz3GORWSafhj0P+0Hc/bDrISikau8JRGHZ6bDyPG+F1aWngakqYRERERGZP5QKiIzDLjoM7c8wUBW8efu0Nxx17EVSAUi0hL1KuKWJckVcU3sM01Q13GzlZIsUulIU9iS94amdKQpdKRhrNVzLINgeI7gkQXBJnNBib6+VVmXey/TDzgf8yrj7Ye+j4IxYzCbSBCvO8baV58HikyEQqkt3RURERERmA/1NUuY123YY3p+trX7r8fbDvVncAwRwoYhFU3uM5vZo7X5RjEg8OHNvQibFdV2c4bw3JLVcDZfE7s2Oeb8RtrwAbkmCoB/CBdtjGAENUxVhaK8Xwu3c4FXHdT/FqG8uGhbDynP9MO5cWHgsmPr3R0RERESkROGczHmO42IXHZyig130ju2Cg207OKXzokMhZ4+qhBvuzeI64ydwwbBFU3uU5vZYZb/QC+GiDUHNCzfLuY5LsTdDYa8XwHnDU1M4qcKY91tNIa8abrEfxi1JYLWE9c9ZBLzFG3q3VM0Xdz/0bx99X9u6ShC34hxoWaVFHEREREREDkDhnEw5x3Ep5mwKOZt8tkjBPy5k7fJxTXvOpljwAjXHrg3YRp7b/rnjB2520T1guDYRgZBJ08JK5Vt1GBdrDCmYmSNc26GwL03Br4jL+0Gcm7dH32xAoD3mzQ/nD00NLk5gqeJRpFbvFtj8G2811R0bINVde90wYdEJtZVxifb69FVEREREZI5SOCdjKhZstj/eSyFXJF8VqnkBW7EmbMvnbApVYdt4q5LOFDNgYAXMqs0/D5o0tEZqq+DaY8SbFcDNNU7e9uaH25uksMevihtvfriA6VfCeUFcaEmCYEcMI6gJ50VGKea9irjnfg3P3Ql9W2qvWyFY+rzKfHHLz/DmkBMRERERkUOmcE7GZBcc7vrak4f1DMM0CEUsguGqLWIRDAeqjr0tEDRHBWrmQc6r7y8FcqZlKGg7wjiZYmVI6p4k+b0pij3pMRfkMCJWeThqcEmc0NIEgQUxDEt/JkTGNbwPNv0aNt0FW+6D/HDlmhnwquFWv8jbLzkNgpG6dVVERERE5EikcE7GFAxbLFnfXBOghcKBmvPS8XjtVsBUUCaTYg/nye+pCuI6U9h9Yy/UYCaChJZWBXFLElitEf2ZEzkYx4HOP3vVcZvugr1/rr0eXwjrL4ajLoI150OksT79FBERERGZJxTOyZhMy+RV/3havbshc4jrulB0cHI2bs7GyTu4ef/Yb3PzNo7fVm7P2ziZIoV9KZzhcRZqaAlXKuKWekNTrcbQDL9DkTksOwRbfwvP3QWb7h49d9ySUyuB3OJTtZqqiIiIiMgMUjgnIjXcgkOxP0uxN0OxL4uTLlaCNX/vhW9VIVvea+dwpxs0ILAwWjU0NUFoSRwzpoUaRCZt/2Zv3rhNd3mLOThV4XcoAWvPh6MugXV/BQ2L6tdPEREREZm3nHyewu495HfuoLBzJ0YwSMtVV9W7WzNO4ZzIPOO6Lk66iN1XCeCKvVmKfRnsviz2UH7M+dwmwwiZGCELM2xhhCyM8Ihjf199HFgQJbg4jhnSQg0ih6SY81ZVLQ1X7dtae71tXaU6bsW5EFD1qYiIiIhMPyeTIb9zF4VdO8nv2El+504/jNtFobPTm3bFF1q5UuGciBwZXMfFHshR7PPCN7s364dw3rmbtQ/4eiNsEWiNEGiLYCZCNSHaWMGaETIxwwGMsIkRtDBMzfsmMiOGu7zFHJ67C7beB/lk5ZoZhFXn+YHcxdC2tm7dFBEREZEjm51Mkt/hVb/ld+7ywjc/iCt2dx/wtWYsRnDFCkIrVhBau2aGejy7KJwTmaOcvD1G9VvWa+vPgn3g8jezMeQHcNFyEGf552YsoIUVZim3UMBJpXDSadxi0Z8bzMAw8I4NAwwTDDBK5/78YbXnhheils4NA4OqZ5hzY0EXt1jEHh7GGRrCHhrGGR7CHvI2Z3gYe3AIe3gIZ2gYe2gIt1gguHQpoeUrCK1YTnDZckIrlmM1NdX7rUxcqhee/DE89gPYu7H2WmIRrL/IC+PWvBjCDXXpooiIiIgcHtdxcAsF3Hze2493XCxiBAIYlgVWACNg+cfW6LbSfaZV2zaBz/2u62IPDPjhW6kCzqt+y+/cid3Xd8DXm42NhFauJLRiBcEVywmtWElopRfIWW1tc+LvHtNJ4ZzIHOAWbPJ7U+R3DpPfNUR+1zB2f+7AL7IML3RrrYRu5RCuJaLhozPAdV3cTAYnnS4Hagfcp8Zrrxy7hbEXzZg2hoERDGJEIpjhMEY4jBEJY4YjGOEwZiSMUToOhzEiEYxwyLse8dtGHHuvCfuv915rBIM4qVRNqOYFbV6o5gwNYQ8PYw8NekHb8DDO4CBOOj0lb9NsaiK03AvqgstXEFq+zNuvWE5g0SIv2Kwnu+BVyD16q1clV54/zoClp1WGq3acrMUcRERERA7AW8iuWAm5DrTlC7iFfNXxeNvIe/IjnuG3jXzGAYI37AOPdppSplkJ6kyzHOJVB3qlz+QHYrW1edVvK1YQXLnC+0K8FMA1N8/Me5mjFM6JzDKu41LszfhBnLcVOlPgjK6EM6KBcuAWaI1WVb9FsBrDGl56GFzXxU2nsZNJPxhKlsMiJzlcqdIqtQ8nywGSk0yWAzXcw5zAbxxGKIQRCHjTA7quN0+D63ofNqrOD/vnu673QSGfP+z1PqaTGYthNjZiNTZiNjZgNTRiNTZgNjZhNTR4bY1NYBoUdu/x5rvYuYv87l3YPftxBgfJDg6SffLJUc82QiGCy5YRWr6cYDnAW+596Fi2DDMcnr431vm4F8g9cRuk91faF58Mp7wejn8VJNqn7+eLiIjItKj+zOY6jvfZzXFwHRcc2zt2XbBt73rpXtsB16kc43pfpI6xYVl1q0ZyHQc3l8PJZnFzOdxsFqe0z2Rxc1mcbM7fZ3GzOZxc1vvcWSz64VmxXBnmFguVtuKI9lLbgdqrrjHTX3ZPlUDA+2cbCtX+s7YsXMeGoo1r27h20Tt2HO93ZnvtFIvj/92g9OewUDjo9OOBjg7vc/HKFV712wovgAsuX4GViE/5254vFM6J1JmdKngh3M4hP4xL4maLo+4zE0FCyxsq29KEVjE9CNd1cZJJ7N5ein192H19EwvXhr3KrKn8tsqMxTDj8dH7+HjtY7RV7Y3gxP/Zu9VhneN4/8GtPnfxPuSVz/3/JJc+JObzOLl85cNT+TiHm8+VP1BVHzs5/77SB7FcrupDmH+9fJzDLRQw43GshgY/YGv0QrWmxqqgzQ/fGrygrdyWSEzq9zGSk06T37W7Etjt2umV5+/eRWHPXtx8nvzWreS3bh39YsMgsGgRoWXL/HkyvOAuvG4d4fXrD63iLtnthXGP3gr7qsLCeDuc9Ddwyutg0fGH/H5FRETmssoXqCmcVNL7UjSZ9L5QTfojDlIj2kr3+CMS3GKhsgBa6XPPOHu3dOME76+8jspnKT9kKx+XwrjpVhoBUQrrgoERAV5o3GBvVNAH5c9vTjbjfY6rDtyq95mMV/k1h9S83+rwKxSEMX8nE/zd1TzrIMch/7mhMe4JBqdkJIfrOF7ga9u4RRvsYm2IV2qzHX9faTNjMYLLl2NGIlPwG5eRDNedprKOeWZoaIimpiYGBwdpbGysd3dklnKLDvm9yXJFXH7XMHZvdvSNAZPQ0kRNGGe1hGfkmy/XcbAHB7H7B7AH+gE/WIrFMKNRLxiKRus2zM/N5yn293uBW28fxd792L19FPt6R+z7sHt7D/+DgWV5IVFDg1+B1YjVkMBsqNo3NmAmGsp7syGBFY9jxGLevo6/Lzk8brFIoaurMrFtObjbTWHnTpxUatzXmk1NxJ73PGJnnkHsjDOIHHOMNzRgLMUcPHcnPPp9b/iq6wfDVgiOvtSrklv7ErD0nZqIiMwdrm37lVIZnGzWmzM3m8VJZ7yAJ5PByWRxMn57Ko2TGitUqzpPpaZtZMKsZZqVKjjT9D5XljbD8Kqd/G1WCgS8qUxK06RU7yNhjEi0MlWKPzrECAQwggEvGAsEMALBSlv5eqjcZgRK7aUwK1B+Trk9FKx6dlXwOME510QOxUSzIoVzU0ThnIzkui52b7YcwuV2DVPYmxxzoYbAwmhNEBdcHMewpibMcXI5r2Ksv59iXz92fz92f58XcJXO+/ooDvjnAwMT+ibP8IO6kcGdGY9VXYvXtJeCvZrXxWIY4XClwm1k0La/txy0Ffv6DjrPwVjMWAyrrQ2rtcWruBorVGsYEbr5lVtGNKr/WMuYXNfF7u/3grtd3kS4hZ27yO/aRfaZZ3BHzIdnNjR4Yd0ZZxA70w/ruh/3ArknfwyZ/srNS0+HU66C4y+HWOsMvzMRkbnNdZxKIJQpBUCZSiDkz+XkFm1wvL1rF8tt1cfjXveHj9Vcrx5SZjtYjY0E2hcSWNju7yubGY3W+9c0LrdY9D439vZS7O3F7u3FHhiohGiZUthWHa5V/Z6zWdx0ujyccdpYFmbC+0LUTCS8LR7HTMSxEgnMuN9WOi+1xeO1Ffelz3mlXfl8nD1VnwsP+hrT+0xvmiOODX9Sfn8BLsvyrptGTQg32WGpk59L7QBzp43YcF1/ruAIZjRSNY9wKWCLjArgytcC+nJR5i+FczNM4dz85mSL/mqpGYr70uVAzkmPMTw1FqgEcSsaCS2b3PBUJ5+n2NVFcf9+L1SrDtlGhG7F/v5RAcFEmQ0N3qSdpuF9y5nOTOscapNiWQRaW7Ha2kbv29qw2loJlNpaW2f1B2A5MrmFAtmnniL90EOkHnyQzCMbR1XZmUGILsgSa88TX5gjsnIhxqmvhZNfBwuPqlPPRURmjus43lQSQ0PeQkDJZKWCKu0Ha9lM+djJZrzPI9XH5RCuEhq52TFGJcwyZkNDJaxrb68J7ipBXvuUzd/kpNPel53791Ps66t8jtzfi93XS3F/b/nLUXtgYFo+7xnRKGYkghmNesf+uRGLYka8cyMWxUo0jBGqxf2wrdJmRCL6AlVEZj2FczNM4dyRzZu7rECxN+OHcFmKvRlsP5BzUqNDOAAsg9ASf3jqCn94auv4HyTcYpFiTw+Fzi6KXZ0UOrsodNUe2/v3j/naAwoECLS0YLW0YLW2YrU0E2hp9c9bvGut/nlLC4HmZoxQaMzfg+sPSXAyGW/oQdpb+KC8Kmk67bWXz1NVK5amK68t3eu/1mxo8MK0BQv8oK2VQGslaLNa/cCtrQ2zsVHDRGVOcTNJsnd9g/TdPyH99E7SPSGcQu2fYSMaJXbaaX5l3ZlETzh+zH8PRURmE7dYLK+gXQrZ7KHB8srb3irbpfahyqrb/urc0/2l31iBkBEK+SsQWhhWoGY1Qiyzqs2/HrDAKq1gWN3mHZdfU91mGtgDgxR7eipbdzfFnp5JhYdGLEZg4QKCI6vv/EDPam72Vjbv3V873Ydf8Vb0Rx5M+staw/A+E7a1eaMPWpoxo/5IiWjE/71GMWPR2uNIxL9vxO88HNZnNxGZlxTOzTCFcxPnui5u3sZJFXFSBZx0AUwDMxLACFuYEQsjHMAImTP6bZhru9iDuaoAztuXAjg3f+ChnmY86K2a2hYltCxBaEWjNzw14H0Q8Ya59vohWyfFMYK3Ynf3hBYhMMJhAu3tXrDWXAnWAq0tWC3Vx941M5GY1d8suq47q/snckhcF3Y/5C3s8OT/QG6wcmnpWeRaLyDV10T60SdJP/wwzuBgzcuNSIToqacQO+MM4meeSeSkkzAV1omIzy0WvSqxQgG3UIRiwZ+4u7SaYcEfhjn2OXax6lrRH5Y5znk+jz087AVr5ZBtCGdw0KuqP0xGNOov+JPwgp1SNZV/PCoAGisMivlVWNXHkcisC4RKi1VVh3XF7tEBXrGn54Dzmh4KIxwuh23lkQatbQQWtGGN3Dc3jz9PqoiITJjCuRk2n8M5t+Bgpwte0OaHbU6qiF0+LuCki+XrdroAxQn8sTPwwrpwACNi1YR3Zrg2yPP21qiAz4xYGCHLm78BcAu2X/WWramCs3szFPtz4BygXwZYTeFyAGe1Rgi0RbBaI5hhGzczjD0w4H1D2dVVW/3W2Umxq2tik7QGAgTb2wksXkywo4Pg4g4CHYsJLu4guHgxgcWLvQ9MCrNEZh/Xhb6t8JefwmPfh97NlWtNy+HkK+Hkq6Btbe3LHIfcc8+RfvAh0g89RPrhh7H7+2vuMcJhoiefTOzMM4mdcQbRU07GDIdn4l2JyGEohWg1FePVVeQHqjavfl3Gf63fPttWQjTjcW+F7cYmf9XthvKx1eSvwt3YhNXUWFmV299UJTw2J5Wqrbzr6aFQFd4Ve3qwBwa9ue2qRx8saKsafbCAQFsrVtsCb15gfX4UEZlRCudm2JEWzrlFh/zOIexUsRKw+SGbnaoN4g5WUTaugIkVD2LGAriOi5uzcbI2bq5YWap8ihghCyNojD/8tNwnA6sxiBU3MMJFDDOL6wzj5vpxUvtxBvuxBwaxBwYq2+AgFA/y3HJHDAILFtQGb4sXE/TDt0DHYgIL2vRNpchc4TjQ8zTsuL+yJbsq14MxOO6VXiC36gXe5M4T4DoOuc2bvaDuoYdJP/ggdl9fzT1GMEhg8eIx5uyJjK4qKR9HK0OS/LZypUnUn8hZqwuL4BYKOKkUdjKFk/JWh6ysGpmqWTWyZmXJqvvKQdxMhGiW5a0+aFlVKxuWzv1VCv17DnZeXgnRqqyWaASD3oJJ5WCtCauxwTtuavIWUNKE7yIiIqMonJthR1o4Z6cKdN74p4m/wDQw4wHMWNAL3PzQzduPaEt4bWZo7ADKdV3cgoObtXFyxRF7GzdbxMnVHo+6J1fEydpjroyKUQQjA8Uh3Gwf9vA+7P492D3bsXv3cqjJoBGJ+HO2NXthW0cHgcUdNcFbsH2hvh0WmcvsInQ9VhvGZQdq7zGDsOJsL5A77hUQbjjsH+u6LvmtW72w7sEHST30EHbPIcw/OUFGOFyZKygS8VdcjldWWS6tvhyLYcXjGDUrMMf96/HyfaVVmVWxIYfDdV0oFHDyBdx8Djefx815eyeXr2lz8nncXN47z+dq27KZUWGaXQ7gvPNpWWHSskavcB6LecF6LD5q5XNvcvzS/bX/7pXuM2IxL0BToC4iIjIrTTQr0ldcMiYzGiCwMOqFaH6oVgnYgl4QF6+EbkZ4cst8H4hhGBghC0IWFhMPstx8ntz27eQ3bya3eTO57k3kNm+j0NkDZhgjEMLJ9EPhIHOjGIY3zKK5efTWMkabv5mRyGG+cxGZdQpZ2POIH8T9EXY9CIURcwAFY7D8TFh5Hqw8F5Y+D4JTu0KwYRiE164lvHYtLVdeieu6FHbupNjbW16Z0En7qxdmMjiZbM1KhuXVDrNZ/3pphUN/dUO/vcTN5bBzORgYmLo3UR1MjNzifpAXT2A2JLAaGmqP/ZX5rEQCs6FBQd80cl3XC7KGh/0AywutSvOajTWPmVusmpvMtr17qucuK/rzm1Wd19zjv8YtFHDzhXLg5uZyOIWqkC2Xm/EVw41wuLxqpBmPY8WrVo6sXkkyFh9xX7wcaJcCNiMU0p9bERERGZMq56bIkVY5N5u5xSL5nTvJPbfJC+E2bya3eRP57TvGHV5qNjYSXru2vKrVuFtLszf3iYaVisxPuWHY9UClKm7PI2CPGJIWaYIV53pB3MrzYPFJYAXr098p5DqOF4Zks958WNksTiaLm0nXzJVVXnU5laptH6dt0isETkQw6IUfDQ1egBf3QjsvLGmoHDc0YCZGHMdjGMHg6O0I+P99t1j0qsBKoVp1wJZMYg+Xjocrx8PD3jDN4eHykE0mMj/qbBAMYoZCXlgbCmGEQ955qHQexggFMcPhqrYQZjhSDnzNhB+klc7jXvBm+SGbEZz7/26LiIhI/ahyTg6L67oM/Oi2yrfCNR9cvQ+y0z0807VtCrt2VQK4TZvJbdpEftu2cRdWMONxwuvWET5qPeF16witW0d43XoC7Qv1bbWIjJbqhZ0bvCBu5/3Q+Ri4I+bRTCyqBHErz4WFx0547ri5xDBNbxhrNAotLVP2XNdxvKq9dMoL/cYK8lLp2nm7hoexk8NVx5WACX9oY2nezyljmqMDu4A315YRCnrzeI3aQmMHfcEgGIZXYeY6YDu4ju0tOuTYuM5Yba53v+OAU3XtQG22jZPJlH9X1dWPh80wvP/2N/iBZig09rxkgdL8ZtaI87HnLqu5Jxjw50qrnBuhcCVkK4VuoTBmOFQVuPnHR+C/hyIiIjI/KZyTMbmZDF0f//gB7zFCoZrQrjyEIzHGkI94JeArfRtdvi8apdDVRW7TJi+A2+xVxOW3bB13zhcjGvVCuNK2fh3h9esJdHQohBOR8Q3trZ0vrufp0fc0r6wEcSvPhdY1XtAih8QwTayEV4l0uLygL12p+BpOepP1lwK84eSIUG+M43Ta+4JnZKW1Xzk4LXONzTAjEqkMA074w4MTCb+KMIHVkDjgsGFvmGZM4ZeIiIjIDFE4J2NybZvEBRdUViIrTZZc9c28m89j5/PY/f3T1g8jHCa0do0fwK0v74NLlugvDSJyYLkkdD7qDU3d8wjs2QiDu0bft/CYSmXcinOgaemMd1Umxgv6vBCJjo7DelZpcQF30lux6jg/9j3+6pyGaYJpgWlglPaWBaaFYRojrpkYlgmGCZY5qs2wTK9i0zTLzzUsr9qxOlSbicp2EREREZlaCudkTFZDA8u//KUxr7nFYqVyIZWqWvGsKshLJr1hSqV5bkasgjZyXhsjGCS0Zk2lCq4Uwi1bdkTMAyQi08wuQPfTfgj3sBfE9TwzeoiqYULHSZXKuBXnQLytPn2WujIMA/zhkSIiIiIi9aRwTibNCAS81UynYOELJ5/HSaWwGhowAvrjKCIT4LrQv71SDbfnEW+uuOIY8201LoOlp3krqC59Hiw5BcINM91jERERERGRcSkNkboyQ96kzyIi40r1wt6NVcNTH4F07+j7wk2w9FRYerofxp0GDYc39FFERERERGS6KZwTEZHZo5CBzsf9oal+ENe/ffR9Vgg6TqxUxC19HrSuPSJXURURERERkSObwjkREakP14W+rbDrAdj1oBfE7fsLuPboe9vW1wZxHSdAIDzzfRYREREREZliCudERGRmFDKw98+VMG7XA2MPT423w7LT/bniToclp0K0eca7KyIiIiIiMhMUzomIyPQY2lsbxHU+Bk6x9h4r7IVvy8+AZWd4VXGNS8Ew6tNnERERERGRGaZwTkREDp9dhH1PVIK4XQ/C4K7R9yUWwfKzKtvikzQ8VURERERE5jWFcyIiMnnpPtj9UO18cYV07T2GCYtOqArjzoTmFaqKExERERERqaJwTkREDsxxoHeTH8T5Ydz+50bfF27yhqcuP9sL4paeBuGGme+viIiIiIjIHKJwTkREahWy3sINOzfAzj/B7gch0z/6vrZ1lYq45WfBgqPBNGe+vyIiIiIiInOYwjkRkfku0+9Vw5XCuD2PgJ2vvScQ8RZrKAVxy86EeFt9+isiIiIiInIEmdUlDp/4xCcwDKNmO+aYY8rXs9ks73jHO2hrayORSHDFFVewb9++mmfs3LmTl73sZcRiMdrb2/nnf/5nisXa1QLvu+8+TjvtNMLhMOvWreNb3/rWTLw9EZH6GNgFj98Gv7gevnIufGY13Po38IfPeQGdnYf4Qjj2FXDxp+Dv7oUP7IK3/BIu/AQc/VIFcyIiIiIiIlNk1lfOHX/88fzmN78pnwcClS6/973v5Y477uC2226jqamJ6667jssvv5w//vGPANi2zcte9jI6Ojq4//776ezs5E1vehPBYJBPfepTAGzbto2XvexlvP3tb+d73/se99xzD29961tZvHgxF1988cy+WRGRqeY40PN0pSpuxwYY2j36vrZ1sOJsWHGOt7Wu0cINIiIiIiIiM8BwXdetdyfG84lPfILbb7+dRx99dNS1wcFBFi5cyK233sqrX/1qAJ555hmOPfZYNmzYwNlnn82vfvUrXv7yl7N3714WLVoEwC233ML73/9+enp6CIVCvP/97+eOO+7gySefLD/7yiuvZGBggDvvvHPCfR0aGqKpqYnBwUEaGxsP742LiByqYg72bKyEcbv+BNnB2nsMCxaf7AdxZ3tbor0+/RURERERETlCTTQrmvWVc5s2bWLJkiVEIhHOOeccbrrpJlasWMEjjzxCoVDgwgsvLN97zDHHsGLFinI4t2HDBk488cRyMAdw8cUXc+211/KXv/yFU089lQ0bNtQ8o3TPe97zngP2K5fLkcvlyudDQ0NT84ZFRCZj1HxxG8HO1d4TjHurqJbCuKWnQzhRn/6KiIiIiIhIjVkdzp111ll861vf4uijj6azs5MbbriBF7zgBTz55JN0dXURCoVobm6uec2iRYvo6uoCoKurqyaYK10vXTvQPUNDQ2QyGaLR6Jh9u+mmm7jhhhum4m2KiEyM60LvFm/11N0Pwc4HoPspYEQBdHxhZXjqirOh40SwgnXpsoiIiIiIiBzYrA7nXvrSl5aPTzrpJM466yxWrlzJj370o3FDs5nywQ9+kOuvv758PjQ0xPLly+vYIxE54mQHYffD/vYQ7HnYq5QbqXUtrDxH88WJiIiIiIjMQbM6nBupubmZo446is2bN/NXf/VX5PN5BgYGaqrn9u3bR0dHBwAdHR08+OCDNc8oreZafc/IFV737dtHY2PjAQPAcDhMOByeirclIgKODT3PeCHc7oe8QK7nWUZVxQUisPgUWHY6LD/TC+M0X5yIiIiIiMicNafCuWQyyZYtW3jjG9/I8573PILBIPfccw9XXHEFAM8++yw7d+7knHPOAeCcc87hk5/8JN3d3bS3e395vfvuu2lsbOS4444r3/PLX/6y5ufcfffd5WeIiEyLVG9VEPeQN1dcfnj0fS2rYNmZsOwML5BbdAIEQjPeXREREREREZkeszqc+6d/+if++q//mpUrV7J3714+/vGPY1kWV111FU1NTfzt3/4t119/Pa2trTQ2NvLOd76Tc845h7PPPhuAiy66iOOOO443vvGNfPazn6Wrq4uPfOQjvOMd7yhXvb397W/nS1/6Eu973/u45ppruPfee/nRj37EHXfcUc+3LiJHErsA+/5SG8b1bR19XzAOS0/zKuKWneEt3JBYOPP9FRERERERkRkzq8O53bt3c9VVV9Hb28vChQt5/vOfz5/+9CcWLvT+svq5z30O0zS54ooryOVyXHzxxXzlK18pv96yLH7xi19w7bXXcs455xCPx7n66qv5l3/5l/I9q1ev5o477uC9730vX/jCF1i2bBlf//rXufjii2f8/YrIEWK4y1tBtTQ8de+foZgZfd+Co/yquNO9MK79WDCtme+viIiIiIiI1I3huq578NvkYIaGhmhqamJwcJDGxsZ6d0dEZopjQ/fTsOtP3uqpO/8EgztH3xdp8oem+sNTlz4Poi0z318RERERERGZERPNimZ15ZyIyKyTT8GeR7wgbtefYNdDkBusvccwof34SkXcsjOgbR2YZn36LCIiIiIiIrOWwjkRkQMZ3ldVFbcBuh4Hp1h7TyjhBXErzoHlZ3nH4Yb69FdERERERETmFIVzIiIljgP7n/NCuF3+ENX+baPva1gCK86ubO3Hg6X/OxUREREREZHJ098mRWT+KmRh70YvhNv5Jy+Qyw6MuMmARcd7FXErzoEVZ0HTcjCMevRYREREREREjjAK50Rk/kjt9yviNnjDVPf+GZxC7T2BqD9E9WxYfjYsP8NbzEFERERERERkGiicE5Ejk+NAzzNeGLfrQW/ft2X0fYlFflWcP0S14ySwgjPfXxEREREREZmXFM6JyJEhNwy7H64EcbsfHr2KKsDCYypVcSvOgpbVGqIqIiIiIiIidaNwTkTmHteF/u2VIG7Xg9D9F3Cd2vuCMVj6PK8yrrSKaqy1Ll0WERERERERGYvCORGZ/QpZ6HzMD+L8MC7VPfq+phWw/Ew/jDsTFp2gVVRFRERERERkVtPfWkVk9hneVxvEdT4Kdr72HjMIS07xK+LO8MK4xiX16K2IiIiIiIjIIVM4JyL1lUtC72bY/VBlmOrAjtH3xRb4c8X5lXGLT4FgZMa7KyIiIiIiIjKVFM6JyPTLJaF/G/Rugb6t3qqpvVu942TXGC8wYNHxtUNUtXCDiIiIiIiIHIEUzonI1KgJ4PwQ7oABXJVoa2WI6vIzvUUcIk0z0m0RERERERGRelI4JyITl0v6lW9bDy2Aa10DbWu9fetaaFvjHUdbZqb/IiIiIiIiIrOMwjkRqWUXoG8b7H/O2w46BLWKAjgRERERERGRSVE4JzJfpfu8hRhKIdz+Td6+fzs4xfFfpwBOREREREREZMoonBM5kjk2DOysBG/VIVx6//ivC8ZhwXpva1unAE5ERERERERkmiicEzkS5Ib9KrgRIVzvFrBz47+ucakfwh0Fbesrx41LtDKqiIiIiIiIyAxQOCcyVzgODO32Q7fqIG4TDO8d/3VW2Kt+KwVvC46CBeu8tnDDzPVfREREREREREZROCcy2+SGawO43k2wf7N3XsyM/7r4Qj94qw7h1kPTcjCtmeu/iIiIiIiIiEyYwjmRenBsGNzlV7+VAjg/kBvuHP91ZhBaV/tDUNfBgqMrlXCaC05ERERERERkzlE4JzKdsoNe1dv+52oDuIPNBRdfWBXAVc0H17wSLP1rKyIiIiIiInKk0N/yRQ5XPgX926Fvq7f1bqkMSU11j/86K+StgjoygGtbB9Hmmeq9iIiIiIiIiNSRwjmRicgMQP82P4Db5m9+GJfsOvBrEx2V0K28Muo6aF6hueBERERERERE5jmFcyIArgvp3krgVh2+9W2FTN+BXx9phtY1/ra6tgou0jgjb0FERERERERktnJdl2Qhyb7UPrrT3exL76Mr3eUdp/axL72PhbGF3HLhLfXu6oxTOCfzh+N4VW5jBnDbID984NfH22sDuNK+ZTXEWmfmPYiIiIiIiIjMMo7r0JftqwnaSgHcvvS+clummDngcwZyAzPT4VlG4ZzMfcUcJLv9bZ+/jXNczB74WY3L/OBtdVUQtwZaVkG4YUbejoiIiIiIiMxfruvi4lb2uHj/c3Fcp3wNvLaDPeugP+9gz8AllU+NCtpK4VtpX3SKE3p/jaFGFsUX0R5rpyPWwaKYd7wovoiOWMeEnnGkUTgns5PjeENJS6Ha8AFCt+zAxJ9rWN5cbzXVb/7WvBKCkWl7SyIiIiIiIlJ/BadArpgja2fJFrPk7KrjYo6MnSFXzJGzc2SKGe96MUvWztYeV9078nrOztWEa47rAGMEb1X3lI7nKgODtmgbi2KLagK30nkpkIsGovXu6qyjcE6mn+NAbtBbVCE76IVpmYHafaqnKnjzq+Bce+I/wwxCYhEk2sfZ+8dNy8AKTse7FBERERERmZdc16XgFMYMuEpt1fua9qprBaeA4zrYro3t2N7eP3Zch6Jb9K5XX6u+7hTHva/6uj2Zv2sKAAEzUAncxgnfFsQWEDT19+1DoXBOJsYujg7WxgrZxgrgskNwqOl/rK0qXBsjbCvtoy1gGIf9NkVERERERI50tmOTKqZI5pMM54dJFpLecWGYVD7FcGGYZD5JsuBdTxfTlQqzqjCturKsVBk210QDUcJWmLAVLh9HAhEiVoRwIEzEihAJRGray+el40CYqBWtuT9khTAxMQwDA2P03j8Gr+LMNMya85H3jTrHv7fqeCTjAH9HHvc147RbpoVpmBP+vcrkKJyTsaX74NuvqIRsB1ssYSICUYg2eyubRpoqx9FmiC8YHbrFF6rKTUREREREZj3HdRjODzOQG6A/289QfgjbsccMXExMMGrPxwppSiGJaZhjhzuGgeM6pAqpcsA2nPdCtVShErCVg7aq43QxPW2/C9MwywFVdZA1MviqaQ944VjIDGGZFpZhVfaGFwoFzIC3N7z9ePeNajMrryk9o9SPkBk6YIAlU69YKJAe6CfZ30eqv4/kgL/3z6ONTVx63T/Wu5szTuGcjC0YhX1PjG4PJbxgrRSqjbsf455AeGb6LiIiIiIicohc1yVdTNOf7S+HbTX7XD8D2dr9YG5wTg6VDJkhEqEEDaEGEsGEt4W8fUOooXwcC8aIBqIHDdsiVoSAGVDgdYhc16WQy5IdHiYzPEQmOUy2vB8mkxzy95X2Yj5POBojkmggkkgQiScI+/tIosE7rzqOJLzzQHBqC2EqoVsvqX5/P9BPsq+P1EAlfMsMDx3wOQ0LFk5pv+YKhXMytmAU3vATv8qtuRK4qZJNRERERETmiFJF21B+iKHcEIP5wUqwVhW4jQzbCk7hkH5ePBinOdxMU7gJy7DKE/yXFwOomvR/1AIBYy0SMN6iAf65gUE8FKch2FAbqgUTNe3l6/49pftCVmjKftdSy3FssskkmeHRgdqBAje7OLEVT6ul+vsm/ZpAOFwJ7KpCu5pQL5Eg6u9dx6lUu/X31QZw/X1kDxK6VTOtAPGWFhItrSRa2vzjNuLNLTS0KZwTqbXuwnr3QERERERE5jnXdcna2XK4Vr0fyg8xmBscdz+cHz7k1S/DVpiWSAst4Raaw800R5q945H7cDMtEW+vsGvucV0Xu1Agn81QyGYpZDMUcrma8/yB2nPZyrl/nM9mKOZyh9wn9u2VlQAAXvZJREFUKxAg0tBINNFApKGBaKLR3zeU26ONjUQSjQRCIXKpFNnUMNlkklwqSTY5TDaVJJtKkU0O17Tl0mlwXYq5HMlcjmTv/in7XVqBAPGWVuItrSSa/X35vIV4qxfARRsaVV05gsI5ERERERERmRGZYobB3GC5Ym0wN+hVrvnH1RVu1fu8kz+snxsNRGkMNdIYbvSCtnBtwFYO4aqCt2ggOkXvWqab67rk0qlKJVoyWa5OywwPk00O+Xtvy2cyNWGb60zfYhbhWHxUsDZu4Nbgtf3/7d15mBTV1T/wU1uvs6MgqOwooIAIKIu+EtlcolFA0IgiEBdeFRCNETSCSkwUNPGNRIygaFxjxBh30ZgfiiuGYRNREVxYRYaZ6Z5eajm/P6qrurpngOllZpri+3mefqrqVnWdvj3dd7pP37pX8fqaLHllGDrF6uooFgqZCTwraRcOmc+btbSSeoltQRSSybYyR9LNsfQVFSPpliUk5wAAAAAAACAj6RMgpCfZ9rce03PoTSRIVOottZNsJZ4Se7uhZamn1D4OPdoOHWo8RtFEIi09sdbgpaCJWz4SbLLHS4rPRx6fjxSfnxSvlxSf397eX7ni85HH6yfFl1ruCxaRKEl5eFbyRxQlMxFYVNzSDwUckJwDAAAAAAA4zEW0CFVFq2hvdK99c25bSTZrWROvscdMy5QsynbvtVJvqb1e4i2hUk9paoLNsR6QA+iVU8A0VaV4pI7idXUUi9SRGolQLFJnlkXqKFZXR/FIhOLROorXRcwya39dHcWjEYqGQqTFs0/gKl4f+YqLyVeU3iOtODFhgnnzBgJpyTYfKT4viWJhJdLg8IHkHAAAAAAAgMvE9BhVRavop+hPdpKtoW0r+RbRIlnFCcgBezy29GSbc93aLveVI8lWwNRYlOqqq6muZl/K0rwUNJFcsxNtZkItnljPZiKD/RElyU6kmYm1EvIVFZmXfSbK/Iky+1LRomKSPeghCYcmJOcAAAAAAACagW7opBoqaYZWb5leZt0a2mct43qc9sX2pfR22xvZS1WxKgqr4YwfnyIqVOGrsG/lvnJ72VDCrdRbistFC5yh6xSpraG6mmqqq95HdTXVFEks6+otq0mNZpekdVJ8fvL6/aT4A+T1+8njD5DHHyBvIJBYd5T5/eSxyn1+M9lWVEwePxK4cHhBcg4AAAAAAA57BhsU1aJUp9VRnVpHES1ir6cv0/dF1Ei9fXE9Xi+hlu2sodmSBblekq2h5Jt1CypBJEQOAYauU3hfFYX2/kShfXspUm0m2MINJN8ioVoizux1JykKBUrKKFBaSoGSUgqUliUuBQ2aSbSAn7z+BhJtgQApPh8uDQXIApJzAAAAAABwSFN11ZzlM15DtfHa5DKWWlYTr6GwGk4m1bRIynpzEwWRFFEhWZRJFmV7PX25v32KqNizjFb4K6jCW0EV/gp7u1jBzImHEmvG0XDVXqrd+5OZfLNuVdZyL9Xt20ecyXh/gkD+4hI70Za+9JeWOpJxZeTx+/G6AWhmSM4BAAAAAECLYmaKaBGqiddQdaw6NcHmTLrFUsus8nwm1gQSKKAEKCAHKKAEyC/7KSAHyK+Yy/Ry57HOfYqokCIppAjmUhZlkgU5ZV1CD6PDhq5pFN63Ny3htjcl+Va79yfSYo2bDEGUJAqWVVBReQUFylITbv60BJy/pAS92QAKHJJzAAAAAACQNwYbVBOroX2xfSm36lg1VUWrkuuxKnvmz32xfaQZuQ8mX6wUU4m3hIo9xVTiSS7tdW8JBZUgBeVgMtmWSKr5ZT8FlAD5JB96DUGjaKpKkdpqitSYY7pFaqopUltDkZpqqqupTknA1dVUN/ryUm8wSEXlraiowrwVJ5bB8uR6oKSUBFFs4hoCQHNBcg4AAAAAAOphZorpMQqpIdoX3VcvmbYvuq/BRFt1rDrrsdVkUbaTaSWeEir2FlOJUpKScHMm2pxlRUoReqJB1piZ4pGInWCzkm11dsKthiK1zu1qikcy67EpSjIVVVQkE2/lFXYCzr6VV5Di9TVRLQGgUCE5BwAAAADgIrqhU51WR2E1TKF4iEJqyFxXQ1Sn1lFITZTFwyn70o8Jx8Okcfa92YJK0J7Vs8xbRmW+5Ayf5d7y5HpiJtASTwn5ZYx1BfmjayrVVVdTeF+VfavbV2Un2OzeboltXcv89S6Ioj2em9+6FZdQoKSEispbUTCRgCuuaEX+4hL0dgOABiE5BwAAAABQYDRDo+pYdUpPtfT16lg11aq1dpLNSqrVaXV5fSwCCVTiLaFybzmVekvrJdysZJu1r9xXTqWeUlIkJa+PA4CIiA2DIqHalGRbSvKtuorC+8yZS6O1NRmfX/Z6zURbsTlWW6C4JC3plrruDWKGWwDIHZJzAAAAAABNxJro4EBJtvQx2aykW65kUaYipYiCSjC59KRuN2ZfQAmQKKC3DzQdXVPNS0pra81kW3VVvd5u4ep99pKNxs9UKkoSBcrKKVhaTsGyMgqUlidmJU1PuJWQv7gEl5QCtABmpphmUDimkWYwtSk5/N6HSM4BAAAAAByAZmgUVsNUE6+hUDxEtfHalNlEQ2qo3va+2D6qjpqJt7gRzzp2safY7qXm7LVmrRd7iu0EWpFSZCbWPGZSzSN58vgsACQxM+mqSvFohOJ1deYyUkfxSGLZYHlD+8yybC4n9ZeUUrCsnAKlZRQsKzdvifWAtV1WTr5gES4lhWan6gbFNIM03SDNYNJ0Js0wEsu09QaPcZY5j0ksHesGE3kkgTyySB5JJI8skZLY9spiojxZZpUrkui4T2JbEkkUD94T1DCY6lSdwjEtcdMpHDfXQzGN6uJ6SnkoplFdTKNQTKe6tOOspW6YY5V2a11Ey2ee0dR/ooKD5BwAAAAAuJLBBsX0GEW1KEW1KEX0CNWpdXYSrTZeS6F4KLmt1trJN2eiLayGc34ssiinXg66n2SbdZmoNQabLOLjOjQ961LR0N6fKLyvikJVP1F4714K7auicNVPVFdTk0iyJRNthp777LrpPH5/IuGWTK6ZybZEAi5R7i8pJUnGewMah5kpqhoUSiSEwjGNIqpOMdWgmKZTNG0Z0wyKquYyphoU1fSUZcy5dBxr30cz7ETToUiRBPJIIimOxJ1HFskwmMKJpFtdXG+y+HojZzV2G7RoAAAAAIch3dCpNl5r9vCKV9tjmNXEa+z16ng1heIhEgSBFFEhWZRJEZUG163thpYH2qdICsmCTIIgUEyLUVSPUkSLmAk1PZFU0yINljV4TGLb2pdPftlPxUqx2VvNU0TFnmJ7tlCrB5tVVuoppVJfMvkWkAMYlwqanT0+W9VeClXtNZNuVVUUqtpLYef6vqqsk22K10cev588/oC59PnJEwiYywbLHOX2fnMpSphtF5Jimk7hmE6hqEa1MdVcj6lUG9Xs9VBifyixvzamUShqHavZt5ZOlkmiQLJ1k0RSJCFRJpIsmeWKJJplkmgfa5UpknmsJAmkiAJJonkOWRJIIIFU3aC4ZlAssbS245pBcT1t6VhXdYNUPfW5UXUmVdeJGpGAEwWioEemoFemoFcylx7HulemoMdZnti3n/sEPDJJjei550ZIzgEAAAAcwlRdpep4NdXEalKSbFZyrTrWwL54NdXGcx/T7FDiET3kk30UUAJmAk1xJNUSibb0JJu1bR2jiJjgAAqDFo9TJFRDkZoac1w2O/m2l8KJW2jfXgpXZZZ085eUUlF5hTnDaOIWLKugQFkZef3BREItmVRTfD4SRSTU3EDTDYqoZu8xswdYct3qUWYmbQzSDINUjUlNXIJpJXhU3byMM64nL7mMJ8pU+7jEfQwmVTPPZR2vJh5DKJF8i+uNH1uwMQQ7kWQmgbyJyzu9ipRYl8inmEuvIpIvsfTKIvkaOsYqTzvGWlqXikqC0KhLRVuKkfg7xXWD1LQkXsyR6BMEgYJeiYrspJtMPkXED095guQcAAAAQJ5ohmb32IrrcXsZ02P20lqPao59RnJfTIulHO+8X8r99SiF4rnPzFmkFFGpt5RKPCVU6i01b55Se71IKSKDDNIMjVRdJY3TlobWYJlq7H+ZXqYZGjEx+SQf+eTETfKRX/bX27bLEsc2tO0s88t+8kpekpBAgALEhkHRujBFQ7UUra2lSKjGXNbWUjRUQ5HaWoqEailaW5NYmsdosVhGcfwlpVRUVk7BilZ2wq2ovIKCFRVUVGYm44JlZSTJSEAXEsNgimo61cV1isR1iqjOdc1ejzqSatG0pJp5KaaeknhzJtysMq2AL8MMJHpeFSeSQkVemYp8iWXaurW/2Oc4NnFMQJEKOknWUkRRIJ8okU/B/8mWhOQcAAAAHDYMNlIugXTenOV1Wl2Dx+3vvtZNNdQWqZdAgnkppSOxVuItSUmyOccxs7aLPcXoDQaQJ2o8RtHaWoqGUpNr5naNvUwm2WopFgoRc3a9gwRBJF9xsZl0s3u7taJgeXmi15u5HiwrR9Itj5jNwfhjds8ic/yxuG7Y45BZPY7q4ubg99FEUq0ukUiz1iOqRhF7XU9ZN++X355jjWX1/vIrZi8xnyLZvcAUSUgszUsvFVkkxb5UM7lfToxbZl226UmUpR5j3ldx7PN7pJREW9AjkSxhQg9wPyTnAAAA4JBgsEF1ah2F1JA9a6Y1S6ZzxkxrkH/n4P7Weq69zDLhk3zkkTzklbz20lpvaJ/zGOexzqVPTr1fsVJs925DzzCA/DB0naLhUP0kW20NRcMhM9Fm9WgL1drJNi2eWW82J8XrI19xMfmLShLLYvIVl5DfuV5UnHKM1x/ALKRkJsuciTArwVXn6F1m9TAzl5o9aH9MSw7qn0yw6amJN8flfVbirSU6mfkUkQIemfyKRH6PRAGPZCfQnEk06zJLf2LdJyfLfYp5CadPNs/hS1y66XPc3yvjMkWAloDkHAAAADSLmB6zk2f2LJlqTTKB5kiyWTNoWutWco0pf9+InJdJWpdBOretsoAcOPBxip/8Uuq2R/Tgyw1AC2Jm0tQ4xcJh81YXolg4bCfdoqFQ8hLSxGWjVlksnP3svIIokr+4hHzBIju55isqNsuKihPJttQEnK+omGTl0OnZZvUc0w22xw/TDCbNcKwnxhjTjeS4ZFq9ZfJYazumpSXS6iXXkttWoi2i6i2SLLMokmCPP+axxjCTzZ5mzkRaynoiyWauSynrgQb2+XE5JoDrITkHAAAAB8XMFFbDKb3WauO1dgLNmVxL78Vm3eJGPC+PRRZlKvGUUJFSZA7k75g90zlbprVuz6qpFFNQCdoJNlFAjxOAQqapKsXCIYqGQ4kEW5hi4RDF6sIUdW4nkm7mdrJc17KbfdTiDQTJV1xMvmBxvSRbMtGWTLD5i4vJ4z+0ZuVlZqqOqLS7Nka7aqK0uyZGu2rN5e7aKO1KLKvCKqm6QXoioVaoPLJIAY9EAcWR6EokxMwEmZzocSbWT6gpEnkkMTG4v+RItFnHSMkJBBITBXgkEUkzAMgLJOcAAAAOAwYb9RJmziSbtW3vV+sn24wsx0VyEkiol1CzEmf2dtq6fUwi4eaVvIfUl1+Aw52uacnx1qxLQhPrzls0VOtIroVJU3NP6AuCSN5g0LwFguQLBskbLLJ7r/mKGrps1CwXpUP3UvHGJt121cQoruVnXDNFEszxxUSBZMkcg8xaV0SRJHF/ZeZYY5IokNdKrllJNUeSLdmzLDXR5uxhhrHJAOBQheQcAABAAdMNnaJ6YhIC1ZyowJp8IKyGG0ymOZNsVvItpObnklCr15qVULMSZ1ZPNiupZh1jlZV4SqjIU0RBJYgeawCHMGeibX9JtvR9sbrsLxMlQSBvIEDeQBF5g0HyBYvIGwgm1oN2uVlWRL7EPm+wiHzBICk+f4sl85nZ7mmmG0w6M+mJyzcN69JQPVFuGIlLPB37HDfNYDLscxmkG0SaYY6F9mMolnPSrSygUOtiL7Up8dGRiWWbYi+1LvFRmxIvlQc85JGTg/srokiSJJgTAkgiiQLhRxMAgBwgOQcAAJAjZraTZWE1TGEtTBH14LOBHmjWT+vYmJ79AOMN8Um+lJ5oxZ5iKlFKUradtyKliEq8JXbyDb3WANxBjcfMnmqhUGIcNuvy0cSYbM6yUCj3RJsg2L3U/MUl5C8pcYzDZm77iort5JsvaCbdPD5/g5Me6AYnZ7SMGxRRdaqNa7Rb1Ska0SlSrVFd/CeKqtbMl+YyGtcpnhjjzJk40wwjNZGWsi+RPNMb2ue4n55aXghXfx4s6da62Cz3KYduL0EAADdAcg4AAA5LzExxI06heMhOqoXU5PpBy+JmEs5a5uOSzwMRSKg3EYFzfLWGbg0l3TySp0kfJwA0D2YmXdPsMdmioZBjvTa5bSXawuHEZaPmMbqqZh+8gUSbnWRLJNyUYDGJ/iCRL0i6J0C67KeozimD+O9JDPIfietUF9MpUpvYVqspou5NrOsNLuN607a5TU0WBZIcNzllXSRRJJITl31KgmBf/ikKqccqkkitijxIugEAHOKQnAMAgGZjsEExPUZRLWr2DNPNHmIxPUaqrpJqmDfN0Ox1VU/drrePNfu+BzzO0ChmxFKSahrnNlh4OoEEKlKKyK/4683wub/ZQJ0zfFr3sWcRVRz3lXzosQZwCGBm0lWV1HiMtFiM1FiMtLh5s9bNZdzcnzhOi8fS7hNPuY8Wj6fdP0Zs5JagEkSRZH+QZH+QJH+QRK+fBG+AyBsg9vhJ9/hIl/2kyT6Kyn6KiT6qE30UFjwUUY1kj7S4TpGQTnV7kwk03agioqr8PKkHqoNA9syWPiU5I2aDy8S6VxZJEkWSRCIpMUaaM0EmS0LD5Y4x0hosd95fcOxL2RYwgQAAANSD5BwAwGGGme2Elr1MJLIaWkb1qJ1Ms8Y+sxJq1qWX6cc4l879+b5EM18CcoCKlCIKKOYy6AlSUA5SkafI3JcYKy2oBFOOS7lPYhZQJNAADi3MTFosRvFoxLxFIqRGIhSPmevxSITUaJTi0TrHulXuuE/iGDUaJUPXm+/xk0CG4iVN9pMmeyku+SgmeSkm+igieKhO8FIdKRQicz0mmreo5CVVUMzslkUnorrErR7jQDv3S5GERPJMthNozgH8zXXZsX6QBFsDiTa0uwAAcKhDcg4AIE+Y2eydpcfsHltxPZ7Se6uh8vR1KzFml+sqxY14vXOoukoqq6Tp2gF7jTWUcCsEHtFDPtln3iQfeSQPyaJMiqjYN3tbUkgWZFKktPK0Y/a7zzqHKNdLqgWUACYoADiEpCTTImbCLB5NJMcidXayzC5PLFPWnYm1aJSIm2hwMFEilhViSSEWFdJFmTRRJk1QSBUkipNEMZYpShJFWSSVrP0yqYK5tLad6/Y+Qaa46ElNsDWSRxapWBbJp0jkU0Tyygde+hWZ/B7RnEVTSc6aaSXe/B7Rnj3T70iyKZg9EwAA4KCQnAMA19INneJGnOK6eYvpMbO3lx6lmBaze3dZPcDs/Y5eX84y57793aepxx1rKlbiy0pmOZdeyWtejin5U5JpKcvE5ZrO7ZR9aff1Sl6SRIyDA+BmbBiJSzGjKZdjqrFoyuWc1n41Fk0mzRxJtIZ6qHETtLVMRIbkIU3ykCZ6SBUVigsKxQSZYqRQVFBIFRSKi4q9TxWtMo9jPVnOWSb+gx6JAl6Zgh6Jgl6Zgh6ZAl6Jgh6Zgl4zGWYt05NrPlkir2Im3bxyw0uPJOLSSgAAgAKC5BwANBtmprAaptp4LdXEa6gmXkO18VoKqSGKalEziWbE7fHHrISaaqgU02N2ks2ZcLOOj+txUnWVYkbyOJ2b77KihjgTXh7RY/fscq47e3ylHCN56u1PL5dF2extZsXZT4ItPdnW0D5cEgRweGPDoHg0QrFwODljZzhEsXCYYnXhgyTVYhSPJtbt8dOiZOQy4UBjHjMRxYVEUiyRLDMTYx47cRYXPaTa6wqpgictueaxE2qaIDe6B5ooUCIpJpFPFsmrSCm90KxLNwMeR4LNa/YqMxNsqck2Z/LNr0hInAEAABxmkJwDgEZjZorqUaqJmUm1WrWWauO1VB2rNretm1prH2Ml4KxjW6pnmSiI9mWUVk8wr+Q1e3HJXruXl1fy1tvfmPtYZdb9FVFBzzAAaDbMTJoap2goROGaWqqpqaXamhoK19RSOBSiSKiWouEwxcJhiteFSI3UkR4Jkx6LEMcixPEICU11aSeRfRmmmnJpplJvPT2plkykeeol2NKTaR5ZtC+z9CcSZ9all2WKszzRi0xJ9jRz9iqz9te/tDO5rkgCftQAAACAvEFyDuAQ5RzU37q00l43Yg2WWz3OnL3QDlYejoftxFpNvCYv45UpokIlnhIq9hRTiaeEijxF9qWOimT2DvNKXvKIHvJIiZtj3TrOK3qT+xPH2OdIrFv7ZBHNHQA0HV1TKWaPcxalWDRG0VicYvF4YqlSPLFU43GKx1VSVY3UeJxUVSXNvmmkaxrpmkq6ppGha2QklqxrxJpObGjEuk6kayRqMZK1KCl6jKQcegtbaSZNkBITBnjsiQOSvc9SE2nOMdFUQbHXSfaQqHhIUDwkyl4SPQp5ZMm8SQJ5ZJEUSSSPLJJHEkmRRSpObNuTBSQSa9bsmwGPRL60iQCcS58ikYTeZgAAAHCIwrdVgCZk9TSLaBHzpprLOq0uWea41anJ8gaPUZPlMT3WYr3QJEGiYk+xnVxLX3eWWdvOMq/kRY8DAJcyDCbVMEjTmTQ9ua7qBmkGk6YbpOpMmpFYJspVPXlcPHGMqhvmtpa2rRukamnbOpOqObeT94lryW1D10nQ4yTpKklGnCTNXMp6nCRDI0mPk2yo9tK6KYZKshEn2dAS23GzjDVSDJUkym97LFB2H9IMEigmeiieSKxpspc02UeGx0es+Ik8fhK8fhJ9AVL8QZL95tIbLCJ/MEhFfh8dmZb08ilm4swri+SRJFJkwUyqSYkyR7JNFtGjDAAAACBTSM7BYU/VVYroycSZdYtq0ZQkmbXd0DHOhFpUi6bch6npLhNyssY1c/YWs9cdPcrSy/Z3rEcyxz8rUorqJdn8sh9fvgByZM7um0xg6XpqUkszUpNWVmLLKtMNtpNc9rojAaYZqfdxxmnoHPaxVqxE8kxPS6ilJtwcZYk4usHpFSWJdZJIN5eOm8z1y5I3Y7/329+xgQaPN1K385xES6cJEqmCTLogky5IpAsisSARi+aNRIlIlIkkiQRJJkGUSJBlEiSZREkmSZZJlM2lJMskywrJikKyIpPs8ZCiyKQoHvJ4FFIUmfzBIAWLi6iopISKi4upuDhIfq+SmCUTiTIAAACAQwGSc1AwmJlUQ6WoHk2ZWTOux+3JAuztho7RD3xMTIuZCTM9mpKI0zj3yzQbwyeZs1lat4ASSNlu8KYkjpVTjw3IAXt8MyuhhvHNoCUxMxlMpBtMRiLppBtMRiJBZLC5bd/Sto3E/Q1mYjbPx2T2wmIyy4nJXmfr2ERsczv5OIg4sZ16nMFcL+GkO3t6pSWznL27zOMaSIA5jzvIeXTjAEmspvnDkEgGyayRbOgksWYnxGTWUpbWevp+H2uJBJdmJ7usfeIBEmxyMyXDsiWIIkkeH0leH8leL8keH0leL8len3nz+UjxONYdS8Ve+snjM4/x+Pzk8XpJUhSz15skYGwyAAAAAGgUJOegQTE9RgsrF5Ju6KSzTpqhkc66ve1cd+7TWEsek7Z9oOOsGTdbkizI5Jf95JN99ZJkDZUFlEC9hJtf8ZNP8qUk3gJygHyyj0RBbNH6Qar0ZJKVMLKTSY4EkmFQg8kk532cSSc7IZO4vM7qVaQa5mV3VqLGeRmfvZ22z7y/c3/yeCOR3LF6Z1pjubOjjs5tZyfO/R2TPEfynMyU6J1lJro03bCfO2eiDRqJmWTWyMda4pJILZEU00hhjXykk0fQyMM6eQWdFNbIQ+Y+JZFkk9m8nFIyEgkzQyPRcRMMjQTdXC80kiyTpHhIUhSSFQ9JikySrDi2zXW7TJbrlSWPd5Sllx/gOI/PbybRkDQDAAAAgAKA5Bw0SDM0emz9Yy0WXyDBnPVS9tqD/lu9xHyyz962yyRf6jFS/WO8kne/CbeAHCBFUlqsvociZqaYZiaf4pp5i2nJ9biu29up5c7jdXOpJy+1sy7R06zeTUayN5K1bfU+cm6by2SvJd1xLrunlGGkJNqg+UiiQJIgkCgSyaJIopAoS9xEwbwJAqUuyZyMURAEEgWzbUjZTjku9X6iIBAJRGLaOWVRIEkUSZEEkiVzjCyZDFLIIIXMhJdCZsJLMlRH8kslUTf3m8mvOAm6RoKuEmkqkW7eWDO3DTVOrMbJSNx0NUZ6PE56vOV+iJA9XjNR5fEkElgekj0ekhUPyZ7EtpU483jNMlkh2eOxk13W/VKSYFZiLT05pnhS1iVZRkIMAAAAACANknPQII/ooct7Xk6SKJEsyCSJEkmCRLIokySY6+n7nEtZkBs8xr5/2rY17pk1Y6cs4guchROX4cW01GRXTNNJ1dhOdjkHPbcTYLpBqpYcLD2WfpwjWeYcdD0liaY3nFiL64V5qVq+CAKRJCSTR2ZiKXVbEs1kk7VPTiSZJFEwB0eXRJITCSCPJJAsmrMSKon9smQurSSRIiX2JQZVNwdXN4/zpB8vmsckH7C1EOzH7yi2309C/bs4yhq+r+SoV3r9nck1WXQ8R4JzH2X1fmZm0lWV1HiMtFiM1FiMtHhyaa/HouYx8bh5nPP4tPuYy3jillw39P33MNMTt6YgKQopHi/JXi8pXq+ZEPN6k2Vp+1KW1vFWcs2RbLPOaybZPEiMAQAAAAAUMCTnoEGKpNCvB/y6pR9GXqRcnsiOSxadlyHqqfu0tP3OSx0163x6/XGzrJuVSIs5EmkxNbked+5TnUk3PaU8rpvrfAh08vIkZurzyGLKujetzLntlSV7lj9FTvZokkXBTGo5ts2EV+q2eVzqtpRelnae9CRaSm8uMZmQyzSJYei6nQDSVZV0XSND08nQNTJ0nXRNs9cNTSNdj5Nh6A0co5MR18jQNDIMI3GsnnZfnaKJbTYMYsMgI7FMruv7KU9f15PrnCx3HmsRzC5rZtLOXhdIEAWiRI82q4zshFzqfYTELf08RER6PJ5MrCUSZy3x4rcSWs7El+JMhDn3pR3nLFd8vpQkm+LzpSXWPCRirEgAAAAAgMMeknPQIFU36ONv9joGN3fM9pc2MLpzlkDVcWmheSmhkTaAev2B0XUjdYwvw9j/WGDp5cll/SScVe42HlkkrzMRlkhueSSzV5Y3kejyWD2xrDLJcaxs9uRybifLk9tK4hivnEykedJiexKxRbHleuSYEwIYZOhGMomVSFwZVmJLNcu0eJzUWNRcOnpbpfaqiiWOS/bQSm7HU3ttJbYNvan6VgERkSjJdlLLSnjJHk+9Hmayx0qk+dJ6m3lS77O/RJviIUHE+JAAAAAAANB8kJyDBkVVnSYs+bilH0aTEwSye1E5e1WlXLonpV/CJ5IkkrkUkj2uzKV5f68joeVVkr3FvLKU3KdIZu8xJbXck3Y/KynmlQ+eBGPDIF3XiXXd7LmVSFKl3tLLY8mkltWTK64ne24ljtMNg8KGTiFdt8vt5JfVA8ta13UyDGdyLNlDy76fkZZAM/SU5Bo74phljvvoul1Pq6yQyIqHRFkiUZJJlCQSZZkkybFtrcsSSY5jRCltW5Ts80iOY6xtQZJIFEUSRNFeCqLkWBf3s37wY0RRssuIiIg5OXmENUuEY53t/ebMqcRsTiphz7JqHUfmMYZzv3kuuV6CLXkZpyihhxkAAAAAALgTknPQIEUS6fg2xfalhLIkJtcTA6lblw8qKYOrJ8fCkqXkcYrkvDRRtC81tMbTShnTK3GZYeplh8mxq6xyMW1Mq4bKneOGOS9nlMXMLl20kl6GppKmqualhYmboamJddVRppmDvzv3qSrpEc1cJi5xtM+lqlSnaVSrqcljE+fRtOQx6XGsJJyVrDokrn9tZsmEmEiiJCcTP4rHHrPLecmi3cvK40vbPsCx1nkSY3xhXC8AAAAAAABoLCTnoEE+RaI3b/ifFn0Mhq6TppqDteuqSlpipkNNVUlT46THE0s1TnFVTRxn7k85To2TFldJV+P2WGCpSTUtJRmWTIAlywqtZ1YmBEG0E1PJXltWL66Gyp37zXWrJ5W9Lkl2zyrzHKnHNHgfUUy5v9V7K1km2+cSRbNXWLJ3mONxiWKyV5kkkSClxk0eJ+HyRAAAAAAAACh4SM5Bg3RNpW/++2nKAPSGY4B73Sq3BrDXzZ5gumNw+/0NZG/YyTHHQPiJRFoysRZPGYi+0AiiSJKskKTIJMmKedmiLJMkJZaKQqKskKzIJMqKWWYtleS2KMskK9b9lfrHJPbJzhiKeZx9eaNsJrokWU48LsflkEhQAQAAAAAAABQ0JOegQVo8Tv+67+6Wfhg283JEhSTFmhHRQ7KikJQYwN2aXdHcr5hlnsQyUSZZN2eizJn0kuVEQi29LDVxZiW9AAAAAAAAAAByheRcmoULF9L8+fNp586d1KdPH/rzn/9Mp5xySks/rGYnyQq1O67HAQejT9mWJbOHmPNySOcg+Ac5j51UcyTYJE8yqYZkGAAAAAAAAAC4kcCMEeQtzz33HF1++eW0aNEiOvXUU+lPf/oTPf/887Rp0yZq3br1Ae9bU1NDpaWlVF1dTSUlJc30iAEAAAAAAAAAoBA1NleEwagc7r//frryyitp0qRJ1LNnT1q0aBEFAgF69NFHW/qhAQAAAAAAAACACyE5lxCPx+mzzz6j4cOH22WiKNLw4cPpww8/rHd8LBajmpqalBsAAAAAAAAAAEAmkJxL2LNnD+m6Tm3atEkpb9OmDe3cubPe8b///e+ptLTUvh177LHN9VABAAAAAAAAAMAlkJzL0qxZs6i6utq+ff/99y39kAAAAAAAAAAA4BCD2VoTjjjiCJIkiXbt2pVSvmvXLjrqqKPqHe/1esnr9TbXwwMAAAAAAAAAABdCz7kEj8dD/fr1o3feeccuMwyD3nnnHRo0aFALPjIAAAAAAAAAAHAr9JxzmDlzJk2cOJH69+9Pp5xyCv3pT3+icDhMkyZNaumHBgAAAAAAAAAALoTknMP48ePpxx9/pNtvv5127txJJ510Er3xxhv1JokAAAAAAAAAAADIB4GZuaUfhBvU1NRQaWkpVVdXU0lJSUs/HAAAAAAAAAAAaEGNzRVhzDkAAAAAAAAAAIAWguQcAAAAAAAAAABAC0FyDgAAAAAAAAAAoIUgOQcAAAAAAAAAANBCkJwDAAAAAAAAAABoIUjOAQAAAAAAAAAAtBAk5wAAAAAAAAAAAFoIknMAAAAAAAAAAAAtBMk5AAAAAAAAAACAFoLkHAAAAAAAAAAAQAtBcg4AAAAAAAAAAKCFIDkHAAAAAAAAAADQQpCcAwAAAAAAAAAAaCFIzgEAAAAAAAAAALQQJOcAAAAAAAAAAABaCJJzAAAAAAAAAAAALURu6QfgFsxMREQ1NTUt/EgAAAAAAAAAAKClWTkiK2e0P0jO5UltbS0RER177LEt/EgAAAAAAAAAAKBQ1NbWUmlp6X73C3yw9B00imEYtH37diouLiZBEFr64eRFTU0NHXvssfT9999TSUkJ4hRIDMQp3BiIU9hx3FQXt8VxU10Qp3BjIE7hxkCcwo2BOIUdx011cVscN9XFjXGaEzNTbW0ttWvXjkRx/yPLoedcnoiiSMccc0xLP4wmUVJS0ixvDDfFcVNd3BbHTXVBnMKNgTiFGwNxCjuOm+ritjhuqovb4ripLohTuDEQp3BjIE7hO1CPOQsmhAAAAAAAAAAAAGghSM4BAAAAAAAAAAC0ECTnYL+8Xi/NmTOHvF4v4hRQDMQp3BiIU9hx3FQXt8VxU10Qp3BjIE7hxkCcwo2BOIUdx011cVscN9XFjXEKESaEAAAAAAAAAAAAaCHoOQcAAAAAAAAAANBCkJwDAAAAAAAAAABoIUjOAQAAAAAAAAAAtBAk5wAAAAAAAAAAAFoIknMAkJPmmFPGMIwmjwEA2UM7AJCZ5pqPrbneN81Rn+aIEYvFmjyGW2GOwcw113Om63qzxGlqzdWeRaPRZo3nlvYTcofkHOTMTW92t31YbkqhUIiIiARBaLIYe/fuJSIiUWzapuq7776jtWvXEpE7/jZOzfWaRjuQOTe81tAOHBqa6jWdfl43tQNNxfqS3NTP1Z49e4jIfN805RfzzZs3U1VVVZO2AUREW7Zsoeeff56qq6ubLMamTZtoxIgR9PXXXzdZDCKicDhM8XicqqqqiOjQTwCkv76asj5uaWPi8TgRJZPBTVWvnTt3EhGRJElN2g589dVXVFlZ2WTnJzLbmgcffJB+/PHHJo3z+eefU/fu3WnNmjVN+rmjpqaGqqqqaOfOnSQIQpO9bzRNI6Lka6wp4uCzQP4gOQcZ2717N61bt44++eQTImq6L2XWG9tqVJrCvn376Ntvv6UvvviCiKjJGsedO3fSBx98QP/617+IyPyw3BRxvvjiC5o/fz6Fw+G8n9upsrKSLrvsMtq8eXOTxVi/fj2NGDGCFi9e3GQxiIg2bNhAHTt2pGuuuYaImi4BsHXrVnr00UfpzjvvpM2bNzfZP67du3fT+vXraeXKlcTMTfb+bI52oDnaACK0A9lCO5A5N7UDmzZtojlz5tAVV1xBixcvpi+++KJJ3ju7du2iL7/8Mq/nbMiWLVto0aJFNHPmTFq+fLmd3MqnL7/8km666SYaM2YMzZs3j7Zs2ZL3GFaczp0701VXXUVETffFfM2aNdStWzd68cUX835up7Vr19Ipp5xCq1evtr+Y5/t1VllZSQMHDqT333+/SZP0n3/+OY0bN46GDh1Ko0aNoo8++qhJ2hvn+/PBBx+kdevWkSAIeW9zNm7cSNdffz1dcMEFNHv2bPrss8/yXp8ffviBPvvsMyJq2h+Cvv76a7r77rtp4sSJtHjxYtq6dWuTxPniiy/o6quvplGjRtHVV19N69evb5J6bd68mdq1a0fnnHMOETVtO3D88cfThx9+mPdzW9auXUunnnoqffvtt3bb3BTvz8rKSjr99NPpu+++o+XLlzdZnA0bNtDPf/5zGjZsGPXu3ZveeuutJmkHNm7cSNOmTaOLLrqIbrjhBvrwww/zHsdtnwVaHANkoLKykrt168adOnXiNm3a8Mknn8zvvfceh8PhvMZZv349n3POOVxVVcXMzKqq5vX8zMzr1q3j0047jbt168Zdu3blSy+9NO8xmJnXrl3LJ5xwAvfq1YvLysp4yJAheY9hGAaHQiHu1KkTC4LAs2bN4lgslvc4zOZrQJZlvummmxp8HPmwYcMGLisr45kzZ/I333yTl3M2ZPXq1RwMBvm0007jHj168PLly5k5f/WwrF27lo8++mj+n//5H27Tpg0fffTR/MMPP+Q1BjPzmjVr+Pjjj+c+ffpwhw4duGfPnvzqq69ydXV1XuM0RzvQHG0AM9qBbKEdyJyb2oENGzZwaWkpjxkzhgcPHsynnnoqH3PMMfz2228zc/6eu88//5zbt2/P48aN4/Xr1+flnA1Zu3Ytt2vXjs8++2zu1q0bH3/88XzPPfewrut5q8vatWu5VatWPHHiRL7gggt44MCB/Lvf/Y4Nw8j7a+3FF1/k1q1b88CBA/mqq66yy3Vdz1uMyspKDgaD/Jvf/CZv52zId999x+3bt+cbb7wxpdxq2/JRp8rKSvb7/Txv3jweN24c9+vXL+dzNmTDhg1cXl7OM2bM4Pnz5/NFF13EI0eO5EgkktfXwLp167i8vJwnT57Mv/jFL/iss87i8vJyfuONN/IWg5l548aNXFJSwhMnTuQxY8bwiBEj2Ov18hNPPJG3GF988QW3adOGBwwYwO+9917ezptu3bp1fOSRR/K4ceN40KBBPGDAAL7mmms4FArlNc7atWu5vLycr776ap46dSqPGjWKJ02axPF4PO/twAcffMDHHnssd+vWjUeNGmWX57sdCAQCTdoObN++nbt06cIzZ85MKa+rq8trnMrKSvb5fHznnXfyjBkzuEuXLvZnz3z+bTZu3MitWrXiX//61/z000/zVVddxd26dbP/R+cr1vr167m8vJyvueYanjp1Ko8fP55lWeZHHnkkb69rt30WKARIzkGj7dixgzt37syzZ8/mNWvW8KeffsrDhw/ntm3b8uLFi7mmpiYvcb755hv7y2W/fv3sL+eapuXl/MzJhvHmm2/m5cuX8+LFi7lXr178f//3f3mLwWw2Jq1ateLZs2fzxo0b+b333uM2bdrw+++/n9c4lqlTp/KVV17JgUCAr7/++nrJklwbyXXr1nEgEODbbrvNLqupqeHdu3fndF6neDzOl156KV999dXMbD7mVatW8QsvvMC7d+/mSCSSlzjWB4o5c+ZwOBzmjh078vTp0/NybqcffviBu3btynfddZf99+jSpQs/9dRTeY3z7bffcvv27Xnu3Ln81Vdf8bZt23jEiBHcunVrXrBgAe/ZsycvcZqjHWiONoAZ7UC20A5kzk3tgKZpPGHChJRE9urVq3nKlCksSRK/8sorzJz7F8Bt27bx4MGDuU+fPnzKKafwlClTeN26dTmdsyFbt27lbt268ezZszkejzMz8y233MJdu3bN2+ts8+bN3KFDB7711lvtsilTpvC0adOYOf8/Prz22mt83HHH8R/+8Afu1auX/T5iZq6trc35/Bs3bmRZlvnOO+9kZvNv/c477/DDDz/MK1euzGvS+dlnn+WhQ4facW699Va++OKLefTo0fzOO+/kfP7Vq1ezx+PhW265hZmZ//3vf3OHDh342WefzfncTpFIhC+88EKeOnWqXbZkyRK+9NJLOR6P848//piXOKFQiEeNGpXyw8lnn33G5eXl7PV6+e9//zsz5ydB87//+798wQUX2Nu7du3i2267jSVJ4r/85S/MnNv/mx07dvDQoUN5yJAhfPbZZ/PIkSN5xYoVOT/udN999x337NnTfg0wMy9cuJA7d+7M27Zty1ucb775hrt06ZLSDsydO5cnT57MzGwnTPLxtzEMgz/88EPu0aMHP/3003zcccfxOeecY+/PR72sdsB63gzD4BdeeIHvvvtufuaZZ3jTpk05x2BmfuONN3jw4MHMbD43119/PZ977rk8YMAAfuKJJ/LSTq9evZplWeZZs2YxM/OWLVv42GOP5XvvvTfnczupqsqXX345X3755XbZ8uXLefTo0bx3717+/vvv8xInGo3ymDFj+Prrr7fLtm/fzt27d2ePx8P33XcfM+f2/nTbZ4FCgeQcNNqqVau4a9eu/MUXX6SUT5o0idu3b89PP/10zl/6wuEwT5s2jceMGcPPPfccDxw4kHv37p3XL+fV1dX8i1/8gq+99lq7zGrELrvsspzPb/npp5944MCBKb/2qqrKZ555Jj/33HP82GOP8Y4dO/ISy2r4JkyYwPfffz+//fbbrCiKHXvx4sU5N/i7du3i0tJS/tnPfmaXXXPNNTxo0CDu3r07n3vuufaX81xeB5FIhAcMGMAvvPACMzMPGzaMe/fuzUVFRdy+fXv+3e9+x7t27cqpLl9++SULgpDyAWnRokV8xBFH8Mcff5zTudO9+eabfPLJJ6d8WTnvvPN43rx5fN111/Frr72Wc32YmV944QUeOnQo19bW2u+Tf/7zn+zz+fj444/nxYsXM3PuiZmmbgeaow1gRjuQLbQD2XFTOxCPx/mMM85I+SLLzLx7926eOnUq+3w+/vDDD7OvRMI777zDo0aN4srKSl66dCmffPLJef9QrmkaP/DAAzxu3DjesWOH/Zzt3LmT27dvz2vXrs1LjEWLFvHkyZN579699nN/3XXX8ZlnnslnnHEGT5gwgVeuXJlzLMv333/Pl1xyCe/Zs4fvv/9+7t27N8+cOZMnTZrEixYtspOQ2dB1ne+44w4WBIE///xzZmY+88wzuU+fPlxaWspdunThYcOG8Zo1a/JSl/nz5/MvfvELZmYeNGiQ3dNozJgxLAgCL1myhJmze03/9NNP3L9//5TX8o8//sh9+/bN6/8BZvN/Tu/evfnBBx+0y2bPns3t27fnPn36cMeOHfmxxx5j5tzen3v27OGePXvyP/7xj5RzjRkzhocOHcoej4c/+uij7CviMHr0aJ4yZUq98rvvvpsFQeBXX3015TFk6tNPP+Vhw4bxypUr+fXXX2+SBJ1hGPz444/zBRdcwFu3brX/j0ajUe7cubPdkzofnnvuOb788stT2vqZM2dy7969+ZRTTuHTTjvN7t2Yjx5H4XCYx4wZw9u2beMXX3yRu3btyhdeeCFPmjTJ/kEqF4sWLWJBEPiVV15hXdf5jDPO4AEDBnD79u25V69e3KVLF/7ggw9yrsdTTz3F//M//8PMzKeffjqfddZZPHv2bL7uuutYEASeM2cOM2f/nNXU1PC5556b0g7U1NTweeedx2effXbOj98pEonw6aefznPnzrXL5syZw+Xl5XziiSdyaWkpz507l6PRaE5xamtruXfv3rxo0SJmTv4ANGXKFD7nnHPsv1su3PRZoJAgOQeN9u9//5uPOOII3rx5MzNzSqN+ySWXcNu2bfPypezhhx/mp59+mpmZ33///bx/Od+1axdPmjTJjmH9I37kkUf4jDPOYMMwUj645lKXBQsWpHyIuOuuu9jj8fCAAQO4W7du3KZNG/sDeS5xrDo8/fTTdiP5yiuvsMfjsS/R+fbbb7M+v2Xs2LF88skn8+LFi/nUU0/l4cOH8/33388LFy7kXr16cY8ePexf/rKtTyQS4REjRvCyZcv41ltv5VGjRvGGDRs4HA7zrFmz+MQTT+RHH300pd6Z+uijj+xfdS1r1qzhnj178oIFC5g5f0mgxx9/nIuLi+0veQsWLGBFUXjChAk8ZMgQ7tq1K9977705x7vnnnu4Xbt2KWVvvfUWT548mc8//3w+6qij8tKN/d13323yduCvf/1rk7YBzM3bDtx3333N0g5Y923qduCiiy5q8nYgGo26qh144oknmqUduPfee5ulHbj22mt50KBBvHfv3pTy7777jseMGcPnnHNOzpfRRiKRlC92jz76qP2h3Jk0y/VL7NKlS/mBBx5IKdu1axeXlZXxu+++m9O5LZs3b065FOeOO+5gn8/Hd999N99+++08fvx47ty5c94u3w6Hw9y7d29evXo1h8Nh/utf/8qtWrViQRDs5y6X19rOnTv5qquuYq/XyyeeeCKPHj2aKysrOR6P87Jly3jkyJF80UUX5aWX3lNPPcVt2rThxYsX8znnnMM//fSTve93v/sdy7Kc02VOn3zyib1uPSfLli1jn8/H//nPf7J/4GkMw+BLLrmEe/Xqxf/4xz/4pptu4kAgwEuXLuVXX32V7777bhZFMefE0+7du3nQoEE8b948u0fRN998w+3ateMXXniBzzrrLL700ktZ07Sc3ztz587lY4891u6FZZ0vHo/zNddcwz169Mj5x6fKykp7/dVXX7UTdP/v//0/u9z6H5Dt/4JXX33VTmIwm/Wora3lo48+mp9//vksH3l9VVVVKT9s3nvvvezz+fhPf/oTL1q0iKdOncoejycvPwowm/9H+/btaydh/v3vf3NZWVlKO5Brr925c+eyJEncpUsXHjNmDG/atIk1TeNPPvmEL7roIu7fv3/OPzy9/vrr7PP5+PHHH+fRo0ennO+JJ55gQRByvhLB2cvPeh29//77LAiCnejOl2nTpnFxcTEvXLiQr732Wvb7/fzMM8/w6tWr+amnnmJBEHjZsmU5xYjH43zeeefxlClT7P/FW7du5SOOOILfeustvuKKK3jIkCE5J2jd9FmgUCA5B41mGAb36NEjpQu7M7Pfo0ePlO6zucZiNj8orVixot6X87q6Ov7mm2+y+kccjUb5s88+qxfr4Ycf5oEDB6aU5dOrr77KHTp04Jdeesn+cDl06NCUHii5eumll7hv37728/Kzn/2MJUniiy++OG91+uUvf8mSJPEvfvGLlMvYtm3bxh06dKg3Lkw2Ro8ezSeffDJPmjSJn3zyyZR9kyZN4r59++Z0fufrxvm8TJs2LW9fXp369evHFRUVPGrUKPZ4PPzWW2/Z+2644Qbu1KlTvX9smdq4cSN36NCBb7jhBt61axd/+umnHAwG7a7rnTt35ocffjinGMzmc9ezZ88maQca+rLYFG2Adf9Vq1bZ203RDjT0obep2gHnY22qdsCZrGzKdsB6jE3dDjj/Pk3VDjjP279//yZrB6w4n3/+ebO0A8899xyfdNJJfN9999W7lH3p0qXcrl07/u6773KOk/56behX8zvuuCNvvbSseJFIhLt3757Sg/Kll17KqU7WuaPRKJ9zzjkpvRbee+89bt26dcprIlvxeJxVVeWRI0faY3SNHz+eS0pKuFu3bvaltLmyekf079/f7kFn+eMf/8hHHXVUXi5v3bp1K5933nncr1+/lMtbmc0kardu3fi5557LKUb662zLli3cr18//u1vf5sSL1fvvPMOjxs3ji+44ALu2rVrynsxFovxCSecYPcCysWMGTO4d+/e/Mtf/pLvvfdeLioqsnuJz58/n0844YSsk7PO5+Ljjz/mIUOG8HXXXWcnTKz9b7/9Nrdr145Xr16dU4x0r732Gp911lk8atQoO5E5ffr0rHoDNvQcOF8L/fr145deesnefvzxx7O6VLOhOLFYjK+88sqU97yVRM12zL6GPttOnDiRX3zxRWY2f0CtqKjg9u3bp3yGy1R6febNm8e9evWq97d+/vnnuVWrVlklG5110XWdL774Yu7UqZP945+mafYxffv25fvvvz/zijDvtxexYRhcU1PD559/Pl922WVcV1eXUzvgvO/mzZv52muv5QkTJvDJJ5/M8+fPTzl2yJAhfM011+Qc509/+hMPHDiQTz/9dJ41axYHg0H7vM888wx37NiR9+3bl1Ucy3PPPcd9+/Z13WeBloTZWmG/fvzxR/rss89o7dq1VFtbS4Ig0L333kuVlZU0ffp0IiLyer32dOB9+vTJaop7Z5xQKERE5mxMuq6TJEl02mmn0T333EOBQIDOOOMM2r17N9188810+eWXUzQabXSMVatW2dNin3zyyURkzsDjnCHJmsVIEAS64YYbaPTo0VnXJX2mxK5du9Jrr71G559/PpWXlxMR0amnnprR+RuKU1dXR0TmzJZdunShNm3akCiKNGXKFPryyy9p/vz59PLLL9OVV15p/62yiVNTU0NERE899RTNnj2bLrnkEjryyCPtY9u0aUMdO3ak2trarGNY9/3jH/9I0WiUli5dSnv37rXrR0Q0atQo8nq99vTzmcSxXgPO141zRqGrr76aioqK6LHHHkuJmW19rOds1apV9Le//Y0mTJhAgwcPpsGDB1MkEiEiohEjRpDX6814Zk1nnEgkQl26dKEbb7yRli1bRr1796Zhw4bRlVdeSTNnziRd18nr9drPZSbq6urIMAz7ORNFke69917673//m7d2wIqhqmpKuaZpeWsDnHEikQj5/X7q16+fHSef7YAVp6FZZvPZDjj/NtbjZ2bq1KlTXtsBK45zlrennnqKbrnllry1Aw3V5Y9//CPV1dXltR1wvgZkWU7Zl892wIrjfHyffvopPfHEE3ltB9LjdOzYkW666Sb6xz/+kbd2YOvWrfTII4/QkiVL6M033yQionHjxtFpp51GDz/8MD355JMp5xwwYAAFAoGMXwMNxbFeC9Zrb+LEiTRt2jRavXo1PfDAAzR+/Hi644476v0tGxvnjTfeaPAYURRJFEU7/uzZs+nqq69u9GvhQHXxer308ssv07nnnmu/5ioqKqhNmzZUUVHR6Hqkx3nrrbeIiEhRFJJlmfr27Utff/01XX755bRixQp6+eWXafr06bRs2TK68cYbs45j1efII4+kO+64gx544AHq0qULESX/Tl27dqXy8nLyeDw5x+nQoQMNGzaMvv32W6qsrKQtW7bYsw0WFRVRWVkZeb3erGJYz5mz/SQy30dnnXUW/eUvf6Hdu3dnNbthQ6+zM888k5577jlavHgxybJMRx99tB1X0zQqKSmhtm3bZh3n9ddfJyKz7Rw/fjzt27ePXn/9dfrtb39LDz74IBERlZaWkt/vz7hd27dvHxGZ7w3r73zKKafQeeedRx988AEtWLCAtm3bZj9X3bt3p2AwmFGb5oyRPtOj9XjPPvtsmj59OomiSHfffTddeOGF9H//938ZvdasOJIk1fs/7fwsIIqiHffWW2+l6667LqNZVZ1xnP8/mZk8Hg8tWrSIRowYYddVEARq27YtHXvssY2O4YzjfN6sx3nCCSdQZWUlTZgwgd5991167bXX6KGHHqIVK1bQ+PHjs4qTXp9bb72VnnjiCerevTsRJf+XtmvXjo488kgKBAI51UUURRo9ejSVlZXRli1baPPmzSRJkn1MUVGR/Xkq0ziKojQ4q6ggCFRcXEzDhw+nZcuW2a/tfLxvOnfuTA8++CA98sgjJMsyHXXUUURktp+appHX66VOnTplHcd6TU+fPp2mTp1KnTt3pi+//JJ+97vf0UMPPURE5v+hkpKSjGJs376dXnnlFVq2bBmtWrWKiMzPAgMHDqRHHnkkb58FnHGcszQzs/23ysdngYLVAglBOASsXbuWe/Towb169WJBEOyBv6uqqnjBggV83HHH8ZVXXplyn4svvpivvPLKjGY3ayiO877WumEYvGLFCh4yZAjLsszBYLDRYwI1FKOhXz+eeeYZPuWUU5iZedasWRwIBDK6Vn5/cQ70XEycOJGvv/76vD1nqqry8OHD+bjjjuM2bdrYPQT//ve/c5s2bXjnzp051cc582P6eAiqqvL5559v/wLUmPrs7zmLxWL8j3/8gzt16sQnnXQSr1+/3o49bdo0HjVqVEYDwDb2NaCqKo8aNYqHDx/e6HMfLI7zOXviiSe4d+/eKfeZMWMGn3baaRl1+06PY42ZFYlEeNu2bbx8+fKUX5Framp4+PDh/MwzzzBz43uErVu3jocPH85Dhw7l4447jv/yl7/wDz/8wJqm8X333cddu3bNuR1Ij/HQQw/xli1b7P3WL7S5tAGNiWM91lzbgYPFaUg27cCB4miaxmeeeWZe2oGG4nz55Zf2/vTZ0rJpBw5UlxdeeIE7duyYl3agsa+BXNuBht43X331lb1/6dKleWkH0uMsXLjQ7r2yfft2fvPNN3NuB6wZRgcOHMhdunThoqIivuKKK+xfyKdMmcInnngiz5gxg7/++mv+8ccf+eabb+bjjjsuo8knGorzq1/9irdv324f4+ytsWTJElYUhUtLSzPqmdOYOMzmZ50jjzySV65cyXfddRf7fD7+9NNPm6QuzOYEFAMGDMhoUoD9xbF6q911110sCAJ36tTJbgOqqqr4L3/5iz0sQbZxJk+efMB2ZPr06TxixIiMep82FGfSpEl2b+kFCxbwUUcdxb179+aPPvqI161bx7fffjt37Nix0T0zMvnbfP/993zSSSfx3LlzM+4xs7/nzBnnwgsv5JkzZ/KOHTs4Eonw7bffzu3bt8/o0uaG4kycODGlN0x6b5bJkyfzmDFjMprJ+/PPP+dOnTrZPQmZU3sc3X777Xzqqafyeeedx5WVlfzVV1/xLbfcwh06dGj0Za0NxUh/3p1t1ssvv8zl5eVcVlaWculrPuIwm5+nOnfuzC+++CL/4Q9/YJ/Pl9LbPt/1YTbHIOzTp09GlwIfLM7ixYtZEATu1q2b3Q5Eo1F+9dVXU/4vZRPnYL0vb7zxRh48eLD9Hs4mhrOH+9/+9jc+/vjjuaSkhP/5z3/y22+/zbfddhsfc8wxGb1vMvnbGIbBgwcP5ssuuyzjsTob85xNmTKFzz33XN6yZQvv2bOH58yZw0cffXTOf5v093f6Y7/mmmt45MiRjZ7xdu3atdy5c2c+5ZRT+IgjjuD+/fvbnyWYma+44gru1atXXj4LpMdJv7Tc+bfK9rNAIUNyDur5+uuvuU2bNvyb3/yGt27dygsXLmRBEOyxivbs2cMPPfQQt23blvv27ctTp07lSy+9lAOBQEbjfjQURxTFegOWWw1ZJBLhc889lysqKhodp7ExmM3EybBhw/j2229nj8eTculrPuMwm/9sbrvtNm7dunW9gfVziRMKhXjChAncv3//eo8/k7FfMq2Ppml82223cbt27Rr9oX9/rzPrQ3ZdXR2/8cYb3LVrVz722GN5+PDhPHr0aC4rK8uo23Jj62J9APjvf//Loiim/NPJV5zvv/+eKyoq+Oyzz+YHH3yQr776aq6oqMi5Ps7nLV0kEuFZs2Zxu3bteOvWrY2O8+WXX/KRRx7JM2bM4Oeff57nzp3LgiDwhRdeyGvWrOF4PM4PPfQQt2vXLut2YH8xxowZkzK+hPWPOJs2IJM4zLm1A5nEYc6+HThQHGvclQkTJvCAAQNyagcaE8cpm3ZgfzFGjx5tfxF64403uFu3bjm1A43921j/b7JtBw4UxxpX8Pvvv+dWrVrl1A4c6Hlr6LWWTTtQW1vLgwYNsi9T37FjB7/++utcUVHBw4YNsxOBd9xxB59++un27MpHHXUU//e//210XQ4U56yzzuKvv/7aPlbXddY0jadNm8bl5eUZtQOZxKmtreW+ffvy0KFDM/pSnkkMZnN23V//+tdcXl6e0d//QHFGjhzJ27dvZ1VVeerUqfaYataXzUwSTQeKM2rUqHrv82+//ZZvuukmrqioyOhStgPFGT58uJ3UevLJJ/mss85iQRD4hBNO4K5duzb6tZbp30bXdR45ciQPHTo0o0RWY+PMmzePBwwYwK1bt+YzzzyT27Vrl7f3zYgRI+rVp7KykqdPn86lpaUZDaT+3Xff8UknncTdunXjE088ke+44w57n/N5eeyxx/jss89mQRD4xBNP5A4dOjS6PgeK0VDSRNd1njFjBhcXF+etLulxdF3n0047jU844QQOBAKNTs5nGoeZ+YsvvuAbbriBy8vLM0o0HiiOMwn0m9/8JqPEYrZxLBs3buQZM2Zk1K419nX23nvv8cSJE7moqIh79uzJvXv3zuh9k+nfhpn5yiuv5FNPPTWjHxsaG+fJJ5/kM844gz0eDw8cOJDbt2+ft/o0NHTHypUr+dprr+WSkpJG/22+/vprPuaYY/jmm2/mffv28apVq3jixIk8efLklI4auX4WOFCc9DEyDcPI+rNAoUNyDuq57bbb+Oc//3lK2dlnn83vv/8+v//++/avpd988w1PnDiRL7roIr788ssznjVlf3FWrlzJH3zwQUqPhng8zn/4wx/Y4/FklBnPJIY161BpaWnG/8QyifPuu+/yL3/5S27btm1GjdbB4rz//vtcVVXFtbW1OQ/6nkl93nnnHR47diy3bt06o/oc7HVm/fofi8V47ty5PH36dL7lllt448aNTVYXwzD4+++/53HjxmU8MHdj4yxfvpz79u3Lffv25Z///Od5f984H/cnn3zCl156acb/IJnNng8XX3xxStkVV1zBPp+PR48ebY8xtHnzZr7iiiuyagf2F8Pv9/PYsWNT3oeapmXVBmQa5+GHH866Hcgkzn/+85+s24EDxRk9ejR//fXXvHv37oySsZnGGTt2bEri79///ndW7cDBXmfWh8doNMp33nln1u1AJn8bZs66HWhsnLfeeov79euXdTtwsDjOL5KrVq3Kqh2IRCJ88skn87PPPptSvmnTJj7iiCNS2qFdu3bx66+/zu+//37GMwIfLM4FF1yQ8gXwk08+YUEQMvqynGmcvXv3cocOHbiioiKjL8uZxPjoo4/4f//3f7lPnz4ZxWhMnPT/EdnKpD4ffPABT548mbt3755xG32wOOedd55dZhgGf/bZZ/zVV19lNNB8JnWxvtR+9913GY8xdrA4559/vl326quv8j333MOLFi3KuK05WJwLL7zQTgLs27eP//a3v3Hfvn0z+tsYhsH33HMPn3POOfzWW2/xnDlzuHv37vtNnDCb49Bt2LCh0b2/GhMjPQG0du1aPvroozP6H51pHFVVefDgwRknzjONs379ervnbL7jZNKzPF/1Wbt2Ld9www3cq1evRrdr2bzOvvrqK965c2fKBDH5rouluro6o97GjYnj7Mm2bt06XrJkCb/wwgsZfX/LtD66rvNLL73EgwYNavTfJhaL8cyZM3ncuHEpf4MlS5Zwq1at6vWK27NnT1afBTKNw5z9Z4FCh+Qc1DN9+nQ+++yz7YGprUsjBgwYwG3atKk3SxJzdrN+HSjOUUcdxaNGjUqJ89hjj9UbdDgfMazZuD7++GMeNGhQVlMzZxLno48+4lmzZmX85fJgcdq0acMjRozIecaiTOuzcuVKnjFjBm/YsCGvdRk5ciS/8847zVKX9NdzY7t5Z1of54ycNTU1eY+zv/dNJt3jLWPHjrUHkLYui5k3bx6PHDmSjzvuOJ49e3a9+2TaDhwoxvHHH29frmv9WpZNG5BJHObc2oHGxolEIjm1Awf728yaNYuZc5/QIpP6ZNsOZPK3aY66OH/Rzub9ebA4zvdNLu1Aps9bNu1AKBTio48+usEvFGvWrOFgMMhz587N+LFnE+euu+5KuU9jL5PKJc7vf//7jN+fmcZYuXJlvUtq8xXnzjvvzPi82cRx1ufdd9/NahKI5nitZVqXbNvPxsTJx6QPmdanrq4uq/fNjh07eOnSpcxsJuGtBIDz75Hp5X7ZxEjv1ZTNDJCZxnn00Uez+vyUaZz169dnNaNpY+LkY8bxTOuzevXqjGfpbUyM/U3i1JR1yXY22+Z43zQ2Tvp7J/1S9wOJRCJ8//338yOPPMLMyefdmoTO+jvnOmlOY+Oky6ZNK3RIzkE9Dz30EAeDQR47dixfeumlrCgKL1u2jEOhEH/44Yd8+umn8y233JIyPlI2jWRj4+TyBbOxMZjNxirbN3kmcXRdz7qxzyROLjKJo2laVv9gMvn7W41+U77OmHP753KwOKeddpr9vslFJu/PXNxwww3ctm1buxv/jh07uLy8nJcvX84PPfQQ+/3+er+KZfr3OViMQCCQcS+cXOOEQqGs24HGxHFefpxtO1BIz5tVH8MwsmoHsqlLNu1AoTxnfr8/LzOXNVd97rvvPj7mmGP45Zdftsusv/O8efP41FNP5Z9++inn9qaxcaz3TLafCxoTxzn7cFPFyGRsuVzi/PTTTzkn6ZvjOWtsnFzrU0jP2Z49e3L6bJNJnFzr47R9+/YGEwD//Oc/85IIOlgMq375qNP+4rzwwgs5n7uQ4vzzn//M24zDB4qTz/q0dF2aK86LL76Yt/dNU8Vx9uq13nc7duzgrl27pnyeyfQqkHzEyWfbViiQnIMG/fnPf+Y//OEPPHbs2HrTOV9xxRV8+umn56XROlic0047Lec4jYmR7ZfkTOPkowFujuessXFyrU8h1QVxUn377bc8ePBg9nq9fNZZZ3EgELAnf9izZw8fffTROffSbI4YiFPYcdxUl0M9zvbt2/njjz/mN954w27bt2zZwhdddBGffvrp/Oabb6Ycv2jRIu7RoweHw+HDNo6b6uK2OG6qS0vHYeaUH+S3bdtmJwDmzJnDM2bMYEEQeNu2bQUTA3EKO46b6uK2OFaM119/PeW7hDPeF198wa1atbKTZr/97W+5vLw8ox8DmivOocYF881CLjZt2kRLly6lH374gfr06UNDhw6l/v3703XXXUdERDNmzCC/309E5tTfzqm5DcNo9PTy2cY58cQTGx0nlxiZyCUOZzAFd3M8Z81Vn0OhLoiTjDNy5Ejq3bs3vfnmm7Rw4UIyDIMmTJhAl156KRERfffddxQIBKi0tLRR52+uGIhT2HHcVBe3xVm7di2df/755PV6adeuXXTUUUfR3LlzacyYMXTzzTfTHXfcQbfddhvt3buXLr74YlJVlb755htq3bo16bp+WMZxU13cFsdNdWnJOG3btqXbb7+dRo0aRRUVFWQYBhERtWvXjq6++mpiZrrzzjuprKyMPv30U2rXrl1BxECcwo7jprq4Lc7BYljfNQRBIFEUqaioiObNm0cLFiyg9957j1q1apWXuuQrziGp+fKAUGg2bNjAZWVlfNFFF/E111zDxx57LJ988sm8cOFC+5g777yTg8Egr1ixgj/44AOeM2cOV1RUZDSuUHPEcVNd3BbHTXU5XOKcdNJJvGjRIvuY9F54N998M5900kmNvjSrOWIgTmHHcVNd3BZn9+7d3L17d549ezZv3ryZt23bxuPHj+fjjjuO77jjDo5Go1xZWcnXXHMNy7LMffr04YEDB3J5eXlGg8u7KY6b6uK2OG6qSyHE6dGjB8+ZM8e+dNnZW+Wyyy7jkpKSRn/maI4YiFPYcdxUF7fFaWwMZnN8u759+/L48ePZ4/FkNDlLc8U5VCE5d5iqra3lUaNG8c0332yX/fDDD9yqVStu06aNPYisrus8fvx4FkWRjzvuOD7ppJMymlWsOeK4qS5ui+OmuhzOcSwrVqzg66+/nouLixv9ob85YiBOYcdxU13cGGfDhg3csWPHeh96f/Ob3/AJJ5zACxYsYMMw7HEt77rrLl60aFHGA6W7KY6b6uK2OG6qS6HE6dWrF997770pl8guXryYy8rKMhpnqjliIE5hx3FTXdwWJ5MYn3/+OQuCwH6/P+PZuZsrzqEKybnDVDgc5gEDBvDTTz9tbzMzX3TRRTxs2DAeNGgQv/baa/bxK1as4HXr1mU8m1BzxHFTXdwWx011ORzjDB48OCXO+++/z1OnTuX169cXVAzEKew4bqqLG+NUVlbyMcccwytWrGDm1Flqp02bxh06dOA1a9ZkdE63x3FTXdwWx011KaQ4nTp1Somzc+fOlAHcCyUG4hR2HDfVxW1xMomxY8cOvvbaazOe0bw54xyqkJw7DBmGwbt27eJ27drx/Pnz7fLvv/+ee/bsyY8//jj37t2bp0yZUvBx3FQXt8VxU10O5zi/+tWvUu4XiUQKKgbiFHYcN9XFjXEsAwYM4J/97Gf2djQatdf79+/PF198cVbndXMcN9XFbXHcVJdCjJPLZGDNEQNxCjuOm+ritjiZtDXZft5ozjiHIiTnDiPpb9YHH3yQBUHgyZMn82233cZFRUX2bG/PP/88d+zYMWWq90KK46a6uC2Om+qCOMk4mcxo3BwxEKew47ipLm6LEwqFuKamhqurq+2y//73v9y6dWu+5JJL7DLrnDNnzuTzzjsvo3q4LY6b6uK2OG6qi9viuKkuiIPXgNviuKkuboLk3GFi06ZNvGDBAt6+fbtdpus6L126lAcMGMBnnXUW33PPPfa+P//5z9y3b9+Mpylujjhuqovb4ripLoiD1wDi4DXgtjgbNmzgkSNHct++fbldu3b85JNPMrP5y/QzzzzDRxxxBI8dO5bj8bid+J8wYQJffPHFrKpqo2O5KY6b6uK2OG6qi9viuKkuiIPXgNviuKkuboPk3GHgq6++4oqKChYEgWfNmlVvBrdIJJLSnZSZ+brrruOxY8dyJBJp9BujOeK4qS5ui+OmuiBOdnHcVBfEyS6Om+ritjgbNmzgVq1a8Q033MBPPfUUz5w5kxVFsQeMDofD/K9//YuPOeYY7t69O19wwQU8btw4DgaDvG7dukbVw21x3FQXt8VxU13cFsdNdUEcvAbcFsdNdXEjJOdcLhQK8eTJk/mKK67ghQsXsiAI/Otf/zrlg7/zQ/3GjRt5xowZXFxczGvXri2oOG6qi9viuKkuiIPXAOLgNeC2OD/99BOPHDmSp02bllI+dOhQvv7661PKampq+Oabb+Zf/epXfN111/GGDRsaXRc3xXFTXdwWx011cVscN9UFcfAacFscN9XFrWQCVxNFkfr160etWrWi8ePH0xFHHEEXX3wxERHdfPPNdMQRR5AgCEREVFtbS8uXL6fVq1fTihUrqFevXgUVx011cVscN9UFcfAaQBy8BtwWR1VV2rdvH40dO5aIiAzDIFEUqVOnTrR3714iImLzB1sqLi6me+65J+W4xnJTHDfVxW1x3FQXt8VxU10QB68Bt8VxU11cq2lyflBIQqFQyvazzz7LgiDwTTfdxHv27GFmcxDqXbt2saqqvHfv3oKN46a6uC2Om+qCOHgNIA5eA26L8+WXX9rr8XicmZlvu+02vuyyy1KOcw7anM14L26K46a6uC2Om+ritjhuqgviZBfHTXVxWxw31cWN0HPuMBAMBomISNd1EkWRxo8fT8xMv/zlL0kQBJoxYwYtWLCAtmzZQk8//TSVl5cXbBw31cVtcdxUF8TBawBx8BpwW5xu3boRkfnLtKIoRGT+cr179277mN///vfk9Xpp2rRpJMuy3WPvcI3jprq4LY6b6uK2OG6qC+LgNeC2OG6qiys1VdYPCpNhGPZsKM8++ywrisLHH388y7JsD9B4qMRxU13cFsdNdUGcwo2BOIUdx011cVsc69fpW2+9lc8++2xmZv7tb3/LgiBwZWVlXmK4LY6b6uK2OG6qi9viuKkuiFO4MRCncGM0Zxw3QHLuMGQYhv0mOfPMM7mioiKjwasLKY6b6uK2OG6qC+IUbgzEKew4bqqLm+JYyb85c+bwVVddxfPnz2ev18ufffZZ3mK4LY6b6uK2OG6qi9viuKkuiFO4MRCncGM0Zxw3QHLuMKVpGt9www0sCAKvWbPmkI7jprq4LY6b6oI4hRsDcQo7jpvq4rY48+bNY0EQuLS0lD/99NMmieG2OG6qi9viuKkubovjprogTuHGQJzCjdGccQ5lSM4dpjRN48WLF/Pq1asP+Thuqovb4ripLohTuDEQp7DjuKkubovz6aefsiAIvGHDhiaL4bY4bqqL2+K4qS5ui+OmuiBO4cZAnMKN0ZxxDmUCM3NLj3sHLYOZm2XgxeaI46a6uC2Om+qCOIUbA3EKO46b6uK2OOFw2J6QAnEKJwbiFG4MxCncGIhT2HHcVBe3xXFTXQ5lSM4BAAAAAAAAAAC0ELGlHwAAAAAAAAAAAMDhCsk5AAAAAAAAAACAFoLkHAAAAAAAAAAAQAtBcg4AAAAAAAAAAKCFIDkHAAAAAAAAAADQQpCcAwAAAAAAAAAAaCFIzgEAAABAzpiZhg8fTt26daO1a9fS8OHDacuWLS39sAAAAAAKHpJzAAAAANAoH374IUmSROeee269fVu3biVJkujBBx+kyy67jMrKyqhTp04t8CgBAAAADi0CM3NLPwgAAAAAKHy/+tWvqKioiJYsWUKbNm2idu3atfRDAgAAADjkoeccAAAAABxUKBSi5557jqZOnUrnnnsuLV261N73n//8hwRBoHfeeYf69+9PgUCABg8eTJs2bUo5x0MPPURdunQhj8dDxx9/PP3tb39r5loAAAAAFB4k5wAAAADgoP7+979T9+7d6fjjj6cJEybQo48+SukXYNx6661033330apVq0iWZZo8ebK978UXX6Tp06fTjTfeSOvXr6err76aJk2aRO+++25zVwUAAACgoOCyVgAAAAA4qCFDhtC4ceNo+vTppGkatW3blp5//nkaOnQo/ec//6Gf/exn9Pbbb9OwYcOIiOi1116jc889lyKRCPl8PhoyZAidcMIJ9Ne//tU+57hx4ygcDtOrr77aUtUCAAAAaHHoOQcAAAAAB7Rp0yb65JNP6JJLLiEiIlmWafz48bRkyZKU43r37m2vt23bloiIdu/eTUREGzdupCFDhqQcP2TIENq4cWNTPnQAAACAgie39AMAAAAAgMK2ZMkS0jQtZQIIZiav10sPPvigXaYoir0uCAIRERmG0XwPFAAAAOAQhJ5zAAAAALBfmqbRE088Qffddx9VVlbatzVr1lC7du3omWeeadR5evToQStXrkwpW7lyJfXs2bMpHjYAAADAIQM95wAAAABgv1555RWqqqqiKVOmUGlpacq+MWPG0JIlS2j+/PkHPc+vf/1rGjduHPXt25eGDx9OL7/8Mi1btozefvvtpnroAAAAAIcE9JwDAAAAgP1asmQJDR8+vF5ijshMzq1atYrWrl170PNccMEF9MADD9CCBQvohBNOoIcffpgee+wxGjp0aBM8agAAAIBDB2ZrBQAAAAAAAAAAaCHoOQcAAAAAAAAAANBCkJwDAAAAAAAAAABoIUjOAQAAAAAAAAAAtBAk5wAAAAAAAAAAAFoIknMAAAAAAAAAAAAtBMk5AAAAAAAAAACAFoLkHAAAAAAAAAAAQAtBcg4AAAAAAAAAAKCFIDkHAAAAAAAAAADQQpCcAwAAAAAAAAAAaCFIzgEAAAAAAAAAALQQJOcAAAAAAAAAAABayP8Hd5w4cS7A/AIAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Normalizar los datos\n", + "scaler = MinMaxScaler()\n", + "scaled_data = scaler.fit_transform(grouped_data)\n", + "\n", + "# Reformatear los datos para la CNN\n", + "# Suponiendo que cada columna (región) es un 'canal' y cada fila es un punto de tiempo\n", + "X = scaled_data.reshape(scaled_data.shape[0], 1, scaled_data.shape[1])\n", + "\n", + "# Dividir en entrenamiento y prueba (usando los últimos datos para prueba)\n", + "train_size = int(X.shape[0] * 0.8)\n", + "X_train, X_test = X[:train_size, :, :], X[train_size:, :, :]\n", + "\n", + "# Generar Y (etiquetas) para los conjuntos de entrenamiento y prueba\n", + "Y_train, Y_test = X_train[:, :, :], X_test[:, :, :]" + ], + "metadata": { + "id": "9MZcbtw9t95l" + }, + "execution_count": 72, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Asegúrate de que la forma de X_train sea correcta\n", + "# X_train debería tener una forma (num_samples, num_steps, num_features)\n", + "print(\"Forma de X_train:\", X_train.shape)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jR-a5gHyQPMt", + "outputId": "31859535-1b5d-4611-db37-f28748651116" + }, + "execution_count": 73, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Forma de X_train: (33, 1, 7)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Diseño de la CNN con ajustes\n", + "model = Sequential()\n", + "# Añadir regularización a la capa convolucional\n", + "model.add(Conv1D(filters=64, kernel_size=1, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2]), kernel_regularizer=l1_l2(l1=0.01, l2=0.01)))\n", + "model.add(MaxPooling1D(pool_size=1))\n", + "model.add(Flatten())\n", + "# Añadir Dropout para reducir el sobreajuste\n", + "model.add(Dropout(0.5))\n", + "# Capa densa con regularización\n", + "model.add(Dense(50, activation='relu', kernel_regularizer=l1_l2(l1=0.01, l2=0.01)))\n", + "model.add(Dense(X_train.shape[2]))\n", + "\n", + "# Compilar el modelo con un optimizador y tasa de aprendizaje ajustados\n", + "model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mse'])\n", + "\n", + "# Resumen del modelo para verificar la arquitectura\n", + "model.summary()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1eAT7FatQ3_W", + "outputId": "20dc7624-94bd-4c5b-c338-046d04e0a700" + }, + "execution_count": 74, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Model: \"sequential_11\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " conv1d_9 (Conv1D) (None, 1, 64) 512 \n", + " \n", + " max_pooling1d_5 (MaxPoolin (None, 1, 64) 0 \n", + " g1D) \n", + " \n", + " flatten_4 (Flatten) (None, 64) 0 \n", + " \n", + " dropout (Dropout) (None, 64) 0 \n", + " \n", + " dense_8 (Dense) (None, 50) 3250 \n", + " \n", + " dense_9 (Dense) (None, 7) 357 \n", + " \n", + "=================================================================\n", + "Total params: 4119 (16.09 KB)\n", + "Trainable params: 4119 (16.09 KB)\n", + "Non-trainable params: 0 (0.00 Byte)\n", + "_________________________________________________________________\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "early_stopping = EarlyStopping(monitor='val_loss', patience=100, mode='min')\n", + "history = model.fit(X_train, Y_train, epochs=500, validation_data=(X_test, Y_test), callbacks=[early_stopping], verbose=10)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xros5lXUS3eR", + "outputId": "f7266d02-d7c3-4d67-b14c-18e8d97e329e" + }, + "execution_count": 112, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/500\n", + "Epoch 2/500\n", + "Epoch 3/500\n", + "Epoch 4/500\n", + "Epoch 5/500\n", + "Epoch 6/500\n", + "Epoch 7/500\n", + "Epoch 8/500\n", + "Epoch 9/500\n", + "Epoch 10/500\n", + "Epoch 11/500\n", + "Epoch 12/500\n", + "Epoch 13/500\n", + "Epoch 14/500\n", + "Epoch 15/500\n", + "Epoch 16/500\n", + "Epoch 17/500\n", + "Epoch 18/500\n", + "Epoch 19/500\n", + "Epoch 20/500\n", + "Epoch 21/500\n", + "Epoch 22/500\n", + "Epoch 23/500\n", + "Epoch 24/500\n", + "Epoch 25/500\n", + "Epoch 26/500\n", + "Epoch 27/500\n", + "Epoch 28/500\n", + "Epoch 29/500\n", + "Epoch 30/500\n", + "Epoch 31/500\n", + "Epoch 32/500\n", + "Epoch 33/500\n", + "Epoch 34/500\n", + "Epoch 35/500\n", + "Epoch 36/500\n", + "Epoch 37/500\n", + "Epoch 38/500\n", + "Epoch 39/500\n", + "Epoch 40/500\n", + "Epoch 41/500\n", + "Epoch 42/500\n", + "Epoch 43/500\n", + "Epoch 44/500\n", + "Epoch 45/500\n", + "Epoch 46/500\n", + "Epoch 47/500\n", + "Epoch 48/500\n", + "Epoch 49/500\n", + "Epoch 50/500\n", + "Epoch 51/500\n", + "Epoch 52/500\n", + "Epoch 53/500\n", + "Epoch 54/500\n", + "Epoch 55/500\n", + "Epoch 56/500\n", + "Epoch 57/500\n", + "Epoch 58/500\n", + "Epoch 59/500\n", + "Epoch 60/500\n", + "Epoch 61/500\n", + "Epoch 62/500\n", + "Epoch 63/500\n", + "Epoch 64/500\n", + "Epoch 65/500\n", + "Epoch 66/500\n", + "Epoch 67/500\n", + "Epoch 68/500\n", + "Epoch 69/500\n", + "Epoch 70/500\n", + "Epoch 71/500\n", + "Epoch 72/500\n", + "Epoch 73/500\n", + "Epoch 74/500\n", + "Epoch 75/500\n", + "Epoch 76/500\n", + "Epoch 77/500\n", + "Epoch 78/500\n", + "Epoch 79/500\n", + "Epoch 80/500\n", + "Epoch 81/500\n", + "Epoch 82/500\n", + "Epoch 83/500\n", + "Epoch 84/500\n", + "Epoch 85/500\n", + "Epoch 86/500\n", + "Epoch 87/500\n", + "Epoch 88/500\n", + "Epoch 89/500\n", + "Epoch 90/500\n", + "Epoch 91/500\n", + "Epoch 92/500\n", + "Epoch 93/500\n", + "Epoch 94/500\n", + "Epoch 95/500\n", + "Epoch 96/500\n", + "Epoch 97/500\n", + "Epoch 98/500\n", + "Epoch 99/500\n", + "Epoch 100/500\n", + "Epoch 101/500\n", + "Epoch 102/500\n", + "Epoch 103/500\n", + "Epoch 104/500\n", + "Epoch 105/500\n", + "Epoch 106/500\n", + "Epoch 107/500\n", + "Epoch 108/500\n", + "Epoch 109/500\n", + "Epoch 110/500\n", + "Epoch 111/500\n", + "Epoch 112/500\n", + "Epoch 113/500\n", + "Epoch 114/500\n", + "Epoch 115/500\n", + "Epoch 116/500\n", + "Epoch 117/500\n", + "Epoch 118/500\n", + "Epoch 119/500\n", + "Epoch 120/500\n", + "Epoch 121/500\n", + "Epoch 122/500\n", + "Epoch 123/500\n", + "Epoch 124/500\n", + "Epoch 125/500\n", + "Epoch 126/500\n", + "Epoch 127/500\n", + "Epoch 128/500\n", + "Epoch 129/500\n", + "Epoch 130/500\n", + "Epoch 131/500\n", + "Epoch 132/500\n", + "Epoch 133/500\n", + "Epoch 134/500\n", + "Epoch 135/500\n", + "Epoch 136/500\n", + "Epoch 137/500\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Visualizar el entrenamiento\n", + "plt.plot(history.history['loss'], label='train')\n", + "plt.title('Model Loss per Epoch')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Epoch')\n", + "plt.legend()\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "uQuljCCiQnBd", + "outputId": "94ae1e51-e134-413c-cbee-900f9e339eff" + }, + "execution_count": 113, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHHCAYAAACWQK1nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACKGklEQVR4nO3dd3iT5foH8O+bpE2692S0jELZmwoi4BEBQVkORBREjxwFFxz5qUdxHsVxVFRQDnpEPYoDEI4ioGUqguxN2aOF7pY23SN5fn8k79uGDjoym+/nunJpkzfJk5c2uXM/93M/khBCgIiIiIiaReXoARARERG1BAyqiIiIiKyAQRURERGRFTCoIiIiIrICBlVEREREVsCgioiIiMgKGFQRERERWQGDKiIiIiIrYFBFREREZAUMqojIqiRJwksvvdTo+124cAGSJOHzzz+3+pjIOb300kuQJAnZ2dmOHgqRVTCoImqBPv/8c0iSBEmSsH379hq3CyHQpk0bSJKEW2+91QEjbLqtW7dCkiSsXLnS0UNxenLQUtclPT3d0UMkalE0jh4AEdmOTqfD8uXLMWTIEIvrt23bhkuXLkGr1TpoZGRPH3/8MXx9fWtcHxgYaP/BELVgDKqIWrAxY8ZgxYoV+OCDD6DRVP25L1++HP369eO0SwtQXFwMb2/veo+54447EBoaaqcREbkvTv8RtWBTpkxBTk4OEhMTlevKy8uxcuVK3HPPPbXep6ioCH//+9/Rpk0baLVadO7cGf/6178ghLA4rqysDHPmzEFYWBj8/Pwwbtw4XLp0qdbHvHz5Mh544AFERERAq9WiW7du+Oyzz6z3Qmtx7tw53HnnnQgODoa3tzeuu+46/PzzzzWO+/DDD9GtWzd4e3sjKCgI/fv3x/Lly5XbCwoK8OSTTyI2NhZarRbh4eG4+eabsX///nqfX556O3HiBO666y74+/sjJCQETzzxBEpLS2sc/9VXX6Ffv37w8vJCcHAw7r77bqSkpFgcM3z4cHTv3h379u3D0KFD4e3tjX/84x9NPENV5CnV7777Dv/4xz8QGRkJHx8fjBs3rsYYAGDFihXKWENDQ3Hvvffi8uXLNY6TX3tYWBi8vLzQuXNnPPfcczWOy8vLw/3334/AwEAEBARgxowZKC4ubvbrIrI3ZqqIWrDY2FgMGjQI33zzDW655RYAwPr165Gfn4+7774bH3zwgcXxQgiMGzcOW7ZswYMPPojevXvjl19+wbx583D58mW89957yrF//etf8dVXX+Gee+7B4MGDsXnzZowdO7bGGDIyMnDddddBkiQ8+uijCAsLw/r16/Hggw9Cr9fjySeftPrrzsjIwODBg1FcXIzHH38cISEh+OKLLzBu3DisXLkSEydOBAB88sknePzxx3HHHXcowc7hw4exa9cuJeh8+OGHsXLlSjz66KPo2rUrcnJysH37diQlJaFv377XHMtdd92F2NhYLFiwAH/++Sc++OADXLlyBV9++aVyzGuvvYb58+fjrrvuwl//+ldkZWXhww8/xNChQ3HgwAGLabqcnBzccsstuPvuu3HvvfciIiLimmPIzc2tcZ1Go6kx/ffaa69BkiQ8/fTTyMzMxMKFCzFixAgcPHgQXl5eAEz1ejNmzMCAAQOwYMECZGRk4P3338cff/xhMdbDhw/jhhtugIeHB2bOnInY2FicPXsWP/30E1577bUa56hdu3ZYsGAB9u/fj08//RTh4eF48803r/naiJyKIKIWZ9myZQKA2LNnj1i0aJHw8/MTxcXFQggh7rzzTnHjjTcKIYSIiYkRY8eOVe63Zs0aAUD885//tHi8O+64Q0iSJM6cOSOEEOLgwYMCgJg1a5bFcffcc48AIF588UXlugcffFBERUWJ7Oxsi2PvvvtuERAQoIzr/PnzAoBYtmxZva9ty5YtAoBYsWJFncc8+eSTAoD4/ffflesKCgpEu3btRGxsrDAYDEIIIcaPHy+6detW7/MFBASI2bNn13tMbV588UUBQIwbN87i+lmzZgkA4tChQ0IIIS5cuCDUarV47bXXLI47cuSI0Gg0FtcPGzZMABBLlixp1Bhqu3Tu3Fk5Tj6nrVq1Enq9Xrn++++/FwDE+++/L4QQory8XISHh4vu3buLkpIS5bi1a9cKAOKFF15Qrhs6dKjw8/MTFy9etBiT0WisMb4HHnjA4piJEyeKkJCQBr1GImfC6T+iFu6uu+5CSUkJ1q5di4KCAqxdu7bOqb9169ZBrVbj8ccft7j+73//O4QQWL9+vXIcgBrHXZ11EkJg1apVuO222yCEQHZ2tnIZNWoU8vPzrzmN1hTr1q3DwIEDLQr0fX19MXPmTFy4cAHHjx8HYCrUvnTpEvbs2VPnYwUGBmLXrl1ITU1t0lhmz55t8fNjjz2mjBEAfvjhBxiNRtx1110W5ycyMhJxcXHYsmWLxf21Wi1mzJjRqDGsWrUKiYmJFpdly5bVOG7atGnw8/NTfr7jjjsQFRWljHXv3r3IzMzErFmzoNPplOPGjh2L+Ph4ZXo1KysLv/32Gx544AG0bdvW4jkkSarxvA8//LDFzzfccANycnKg1+sb9TqJHI3Tf0QtXFhYGEaMGIHly5ejuLgYBoMBd9xxR63HXrx4EdHR0RYfrADQpUsX5Xb5vyqVCh06dLA4rnPnzhY/Z2VlIS8vD0uXLsXSpUtrfc7MzMwmva76XLx4EQkJCTWur/46unfvjqeffhobN27EwIED0bFjR4wcORL33HMPrr/+euU+b731FqZPn442bdqgX79+GDNmDKZNm4b27ds3aCxxcXEWP3fo0AEqlQoXLlwAAJw+fRpCiBrHyTw8PCx+btWqFTw9PRv03LKhQ4c2qFD96jFIkoSOHTsqY5X//a/+dwaA+Ph4pX3HuXPnAADdu3dv0PiuDryCgoIAAFeuXIG/v3+DHoPIGTCoInID99xzDx566CGkp6fjlltusdtSeqPRCAC49957MX369FqP6dmzp13GUpsuXbrg5MmTWLt2LTZs2IBVq1bho48+wgsvvICXX34ZgCnTd8MNN2D16tX49ddf8fbbb+PNN9/EDz/8oNSpNcbVmRqj0QhJkrB+/Xqo1eoax1/dCkGubWpJanvdAGosjiBydgyqiNzAxIkT8be//Q1//vknvvvuuzqPi4mJwcaNG1FQUGCRrTpx4oRyu/xfo9GIs2fPWmQtTp48afF48spAg8GAESNGWPMl1SsmJqbGWICarwMAfHx8MHnyZEyePBnl5eWYNGkSXnvtNTz77LPKFFdUVBRmzZqFWbNmITMzE3379sVrr73WoKDq9OnTaNeunfLzmTNnYDQaERsbC8CUuRJCoF27dujUqVNzXnaznT592uJnIQTOnDmjBL7yeTt58iT+8pe/WBx78uRJ5XY5i3f06FFbD5nIqbCmisgN+Pr64uOPP8ZLL72E2267rc7jxowZA4PBgEWLFllc/95770GSJCWIkP979erBhQsXWvysVqtx++23Y9WqVbV+wGZlZTXl5VzTmDFjsHv3buzcuVO5rqioCEuXLkVsbCy6du0KwLSSrjpPT0907doVQghUVFTAYDAgPz/f4pjw8HBER0ejrKysQWNZvHixxc8ffvghgKpzOGnSJKjVarz88ss1MjNCiBpjtKUvv/wSBQUFys8rV65EWlqaMtb+/fsjPDwcS5YssXj969evR1JSkrL6MywsDEOHDsVnn32G5ORki+dg9olaMmaqiNxEXdNv1d1222248cYb8dxzz+HChQvo1asXfv31V/zvf//Dk08+qdRQ9e7dG1OmTMFHH32E/Px8DB48GJs2bcKZM2dqPOYbb7yBLVu2ICEhAQ899BC6du2K3Nxc7N+/Hxs3bqx1uX9DrFq1Ssk8Xf06n3nmGaWNxOOPP47g4GB88cUXOH/+PFatWgWVyvR9cuTIkYiMjMT111+PiIgIJCUlYdGiRRg7diz8/PyQl5eH1q1b44477kCvXr3g6+uLjRs3Ys+ePXjnnXcaNM7z589j3LhxGD16NHbu3Km0oejVqxcAU6bqn//8J5599llcuHABEyZMgJ+fH86fP4/Vq1dj5syZeOqpp5p0jmQrV66staP6zTffbNGSITg4GEOGDMGMGTOQkZGBhQsXomPHjnjooYcAmOq73nzzTcyYMQPDhg3DlClTlJYKsbGxmDNnjvJYH3zwAYYMGYK+ffti5syZaNeuHS5cuICff/4ZBw8ebNbrIXJaDlp1SEQ2VL2lQn2ubqkghKn1wJw5c0R0dLTw8PAQcXFx4u2337ZYCi+EECUlJeLxxx8XISEhwsfHR9x2220iJSWlRksFIYTIyMgQs2fPFm3atBEeHh4iMjJS3HTTTWLp0qXKMY1tqVDXRW6jcPbsWXHHHXeIwMBAodPpxMCBA8XatWstHuvf//63GDp0qAgJCRFarVZ06NBBzJs3T+Tn5wshhCgrKxPz5s0TvXr1En5+fsLHx0f06tVLfPTRR/WOUYiqdgHHjx8Xd9xxh/Dz8xNBQUHi0UcftWhHIFu1apUYMmSI8PHxET4+PiI+Pl7Mnj1bnDx5Ujlm2LBh12wBUdsY6rps2bLF4px+88034tlnnxXh4eHCy8tLjB07tkZLBCGE+O6770SfPn2EVqsVwcHBYurUqeLSpUs1jjt69KiYOHGi8m/QuXNnMX/+/Brjy8rKsrif/Pt7/vz5Br9WImcgCcFcLBGRtb300kt4+eWXkZWV5fRbxGzduhU33ngjVqxYUefKUCK6NtZUEREREVkBgyoiIiIiK2BQRURERGQFrKkiIiIisgJmqoiIiIisgEEVERERkRWw+acNGY1GpKamws/Pr9ad2YmIiMj5CCFQUFCA6OhopVlwQzCosqHU1FS0adPG0cMgIiKiJkhJSUHr1q0bfDyDKhuSN6RNSUmBv7+/g0dDREREDaHX69GmTRuLjeUbgkGVDclTfv7+/gyqiIiIXExjS3dYqE5ERERkBQyqiIiIiKyAQRURERGRFbCmioiIyAUZDAZUVFQ4ehguycPDA2q12uqPy6CKiIjIhQghkJ6ejry8PEcPxaUFBgYiMjLSqn0kGVQRERG5EDmgCg8Ph7e3N5tLN5IQAsXFxcjMzAQAREVFWe2xGVQRERG5CIPBoARUISEhjh6Oy/Ly8gIAZGZmIjw83GpTgSxUJyIichFyDZW3t7eDR+L65HNozbo0BlVEREQuhlN+zWeLc8igioiIiMgKGFQRERGRS4mNjcXChQsdPYwaWKhORERENjd8+HD07t3bKsHQnj174OPj0/xBWRmDKiJymEqDESpJgkrF+hAidyeEgMFggEZz7dAkLCzMDiNqPE7/EZFDCCFw7392YdAbm1BUVuno4RCRDd1///3Ytm0b3n//fUiSBEmS8Pnnn0OSJKxfvx79+vWDVqvF9u3bcfbsWYwfPx4RERHw9fXFgAEDsHHjRovHu3r6T5IkfPrpp5g4cSK8vb0RFxeHH3/80c6vkkEVETnIn+dy8ee5XGToy3Aqo8DRwyFyWUIIFJdX2v0ihGjwGN9//30MGjQIDz30ENLS0pCWloY2bdoAAJ555hm88cYbSEpKQs+ePVFYWIgxY8Zg06ZNOHDgAEaPHo3bbrsNycnJ9T7Hyy+/jLvuuguHDx/GmDFjMHXqVOTm5jbr3DYWp/+IyCGW7656g8zQlzlwJESuraTCgK4v/GL35z3+yih4ezYsjAgICICnpye8vb0RGRkJADhx4gQA4JVXXsHNN9+sHBscHIxevXopP7/66qtYvXo1fvzxRzz66KN1Psf999+PKVOmAABef/11fPDBB9i9ezdGjx7d6NfWVMxUEZHdZReWYcPRNOXnrIJSB46GiBypf//+Fj8XFhbiqaeeQpcuXRAYGAhfX18kJSVdM1PVs2dP5f99fHzg7++vbEVjL8xUEZHdrdx3CRWGqqkDZqqIms7LQ43jr4xyyPNaw9Wr+J566ikkJibiX//6Fzp27AgvLy/ccccdKC8vr/dxPDw8LH6WJAlGo9EqY2woBlVEZFdGo8DyXaZvnO1CfXA+uwiZzFQRNZkkSQ2ehnMkT09PGAyGax73xx9/4P7778fEiRMBmDJXFy5csPHorIPTf0RkU/uTr+CuJTvx3z8vwmAU+ONsNpJzi+Gn1WD6oBgAzFQRuYPY2Fjs2rULFy5cQHZ2dp1ZpLi4OPzwww84ePAgDh06hHvuucfuGaemYlBFRDa15sBl7L6Qi/lrjmLsB7/jvcRTAIBJfVshJtSU9s8sYFBF1NI99dRTUKvV6Nq1K8LCwuqskXr33XcRFBSEwYMH47bbbsOoUaPQt29fO4+2aZw/X0hELi2/pGoH+BPpVa0T7kmIgcFoqqvK1HP6j6il69SpE3bu3Glx3f3331/juNjYWGzevNniutmzZ1v8fPV0YG3tHfLy8po0zuZgpoqIbKqg1NTY89lb4nHfdTFQScCILuHoHOmHcH8tACCnqBwVBtdI7xMR1YWZKiKyKb05U9U22Bt/G9YBT98SD0+16ftcsLcnNCoJlUaBrIIyRAd6OXKoRETNwkwVEdmUnKny9zItd/bVauCpMb31qFQSwvxM2SrWVRGRq2NQRUQ2pS81Zar8dLUnxsP9dQCADNZVEZGLY1BFRDalZKp0HrXeHs5MFVGjNWbfPaqdLc4hgyoishmDUaCwzBRU1ZWpijAXq3MFING1yV3Di4uLHTwS1yefw6s7sTcHC9WJyGYKzVkqAPCrI1MV4Wea/stkA1Cia1Kr1QgMDFT2tPP29oYkSQ4elWsRQqC4uBiZmZkIDAyEWm2d7XYABlVEZENyPZXOQ6UUp19NbquQwa1qiBokMjISAOy+WXBLExgYqJxLa2FQRUQ2IwdVddVTAVWF6sxUETWMJEmIiopCeHg4Kioqrn0HqsHDw8OqGSoZgyoishl9Sf31VED1QnVmqogaQ61W2yQwoKZjoToR2UyBnKnyqjtTFWHOVLGrOhG5OocHVYsXL0ZsbCx0Oh0SEhKwe/fueo9fsWIF4uPjodPp0KNHD6xbt67GMUlJSRg3bhwCAgLg4+ODAQMGWGzcOHz4cEiSZHF5+OGHLR4jOTkZY8eOhbe3N8LDwzFv3jxUVlZe/VREVA99qZypqjuokruqCwFkF3IKkIhcl0ODqu+++w5z587Fiy++iP3796NXr14YNWpUncV3O3bswJQpU/Dggw/iwIEDmDBhAiZMmICjR48qx5w9exZDhgxBfHw8tm7disOHD2P+/PnQ6XQWj/XQQw8hLS1Nubz11lvKbQaDAWPHjkV5eTl27NiBL774Ap9//jleeOEF25wIohZKyVTVM/1n0VWddVVE5MIk4cAOYgkJCRgwYAAWLVoEADAajWjTpg0ee+wxPPPMMzWOnzx5MoqKirB27Vrluuuuuw69e/fGkiVLAAB33303PDw88N///rfO5x0+fDh69+6NhQsX1nr7+vXrceuttyI1NRUREREAgCVLluDpp59GVlYWPD09G/T69Ho9AgICkJ+fD39//wbdh6gleX/jaby38RSmDGyLBZN61Hnc+EXbcehSPpbe1w8ju1l3NQ4RUWM19fPbYZmq8vJy7Nu3DyNGjKgajEqFESNGYOfOnbXeZ+fOnRbHA8CoUaOU441GI37++Wd06tQJo0aNQnh4OBISErBmzZoaj/X1118jNDQU3bt3x7PPPmvRSG3nzp3o0aOHElDJz6PX63Hs2LHmvGwit9KQTBVQbQUgu6oTkQtzWFCVnZ0Ng8FgEbgAQEREBNLT02u9T3p6er3HZ2ZmorCwEG+88QZGjx6NX3/9FRMnTsSkSZOwbds25T733HMPvvrqK2zZsgXPPvss/vvf/+Lee++95vPIt9WlrKwMer3e4kLkzvQNKFQHqq0AZFd1InJhLaqlgtFoWjk0fvx4zJkzBwDQu3dv7NixA0uWLMGwYcMAADNnzlTu06NHD0RFReGmm27C2bNn0aFDhyY//4IFC/Dyyy834xUQtSwFpdduqQBUrQBkpoqIXJnDMlWhoaFQq9XIyMiwuD4jI6PODqeRkZH1Hh8aGgqNRoOuXbtaHNOlSxeL1X9XS0hIAACcOXOm3ueRb6vLs88+i/z8fOWSkpJS57FE7uBamynL5P3/MpipIiIX5rCgytPTE/369cOmTZuU64xGIzZt2oRBgwbVep9BgwZZHA8AiYmJyvGenp4YMGAATp48aXHMqVOnEBMTU+dYDh48CACIiopSnufIkSMWqxATExPh7+9fI2CrTqvVwt/f3+JC5M7k6b9rZarC/ZipIiLX59Dpv7lz52L69Ono378/Bg4ciIULF6KoqAgzZswAAEybNg2tWrXCggULAABPPPEEhg0bhnfeeQdjx47Ft99+i71792Lp0qXKY86bNw+TJ0/G0KFDceONN2LDhg346aefsHXrVgCmlgvLly/HmDFjEBISgsOHD2POnDkYOnQoevbsCQAYOXIkunbtivvuuw9vvfUW0tPT8fzzz2P27NnQarX2PUlELkzJVF2rpkrJVDGoIiLX5dCgavLkycjKysILL7yA9PR09O7dGxs2bFCKwpOTk6FSVSXTBg8ejOXLl+P555/HP/7xD8TFxWHNmjXo3r27cszEiROxZMkSLFiwAI8//jg6d+6MVatWYciQIQBM2ayNGzcqAVybNm1w++234/nnn1ceQ61WY+3atXjkkUcwaNAg+Pj4YPr06XjllVfsdGaIWgZ9SeMyVTlFZag0GKFRO7wvMRFRozm0T1VLxz5V5M6EEOj8/AaUG4zY8cxfEB3oVeexRqNA3PPrYTAK/PnsTYgM0NV5LBGRrblcnyoiatnKKo0oN+/ld61MlUolIcyXGysTkWtjUEVENiEXqaskwMfz2pUGEayrIiIXx6CKiGxCX2IqUvfVaqBSSdc8PkxZAchMFRG5JgZVRGQTBQ3spi5rHWSquTqfVWSzMRER2RKDKiKyCb3STb1hQVW3aFMx6JHL+TYbExGRLTGoIiKbaOhmyrIerQMAAMdS9TAauSiZiFwPgyoisgm5pqqhmaqOYb7QalQoLKvExdxiWw6NiMgmGFQRkU1U1VQ1LFOlUavQJYpTgETkuhhUEZFN6JXpv4ZlqgCgRyvTFOBRBlVE5IIYVBGRTSj7/jWwpgqoCqqOXGJQRUSuh0EVEdlE1b5/Dc9UdWtlmv47mpoP7qBFRK6GQRUR2YSSqWpgTRUAdIrwg6dGhYLSSiSzWJ2IXAyDKiKyCbmmqjGZKg+1Cl0i/QCwWJ2IXA+DKiKyiaqaqoYHVQDQXa6rYlBFRC6GQRUR2URVTVXDp/+AqqCKKwCJyNUwqCIim6iqqWpcpqqqrYKexepE5FIYVBGR1RmMAgVlckf1xmWqOkX4wVOtQn5JBS5dKbHF8IiIbIJBFRFZXaE5oAIaH1R5alTozGJ1InJBDKqIyOrkeiqtRgWtRt3o+3dvxe1qiMj1MKgiIquT66ka006hOharE5ErYlBFRFanb+RmylfrGOYLAGwASkQuhUEVEVldczNV0YFeAIC0/FKuACQil8GgioisrkDOVDWySF0W7q8FAJRXGpFbVG61cRER2RKDKiKyOrlQvbHd1GVajRqhvqbAKi2/1GrjIiKyJQZVRGR1TdlM+WrRgToADKqIyHUwqCIiq2vKZspXi/SXgyo2ACUi18Cgioisrmoz5eZkqkzF6ql5zFQRkWtgUEVEVmeNTFVUgClTlc5MFRG5CAZVRGR11qipijQHVamsqSIiF8GgioisTl7956dteqaqqlcVM1VE5BoYVBGR1VVlqppfqJ6RXwajkQ1Aicj5MagiIqurqqlq3vSfJAHlBiNy2ACUiFwAgyoisiohBPQlpkxVQDMyVR5qFcKUBqCcAiQi58egioisqqzSiHKDEUDzpv+AqhWAbABKRK6AQRURWVW+uUhdJQE+nupmPVZUgLlYPY+ZKiJyfgyqiMiqlH3/vDwgSVKzHitK3qpGz0wVETk/BlVEZFVykXpz6qlkyvQfu6oTkQtgUEVEViUXqfs3o5u6TJn+Y6E6EbkABlVEZFVypqo53dRl0YEsVCci18GgioisSi5Ut0amKtKcqcrQl7IBKBE5PQZVRGRVeisGVRF+WqgkoMIgkF1Y1uzHIyKyJQZVRGRVevMWNQHezQ+qNGoVwv04BUhEroFBFRFZVVWmqvk1VYBpuxqAxepE5PwYVBGRVVUVqjc/UwVUFaunsq0CETk5BlVEZFXWbKkAVLVVSGcDUCJycgyqiMiqlNV/VmipAFQ1AE3lVjVE5OQYVBGRVSnTf1bOVLFQnYicHYMqIrIquVDdGtvUAFX7/6UzqCIiJ8egioisRgihtFSwVqG6PP2Xri+FgQ1AiciJMagiIqspLjcogY+1pv/C/XRQqyQYjGwASkTOjUEVEVmNXKTuoZag87DO24taJSHExxMAkFXAoIqInBeDKiKymupF6pIkWe1xw/y0ABhUEZFzY1BFRFYj96iyVpG6jEEVEbkCBlVEZDXyyj8/awdVvuagijVVROTEGFQRkdVUTf9Zp/GnLJSZKiJyAQyqiMhqqrqpM1NFRO6HQRURWY219/2TsaaKiFwBgyoishp5+s9WherZDKqIyIkxqCIiq9FbeTNlGTNVROQKGFQRkdVYezNlmRxUFZRVoqTcYNXHJiKyFgZVRGQ1tipU99NqoNWY3q64VQ0ROSsGVURkNVWF6tad/pMkSclWZXIKkIicFIMqIrIaZfrPypkqgHVVROT8HB5ULV68GLGxsdDpdEhISMDu3bvrPX7FihWIj4+HTqdDjx49sG7duhrHJCUlYdy4cQgICICPjw8GDBiA5OTkGscJIXDLLbdAkiSsWbPG4jZJkmpcvv3222a9VqKWTi5Ut/bqP4C9qojI+Tk0qPruu+8wd+5cvPjii9i/fz969eqFUaNGITMzs9bjd+zYgSlTpuDBBx/EgQMHMGHCBEyYMAFHjx5Vjjl79iyGDBmC+Ph4bN26FYcPH8b8+fOh0+lqPN7ChQvr3fR12bJlSEtLUy4TJkxo9msmaqmMRoGCMtv0qQKYqSIi52fdwodGevfdd/HQQw9hxowZAIAlS5bg559/xmeffYZnnnmmxvHvv/8+Ro8ejXnz5gEAXn31VSQmJmLRokVYsmQJAOC5557DmDFj8NZbbyn369ChQ43HOnjwIN555x3s3bsXUVFRtY4vMDAQkZGRzX6dRO6gsLwSQpj+38/KNVUAgyoicn4Oy1SVl5dj3759GDFiRNVgVCqMGDECO3furPU+O3futDgeAEaNGqUcbzQa8fPPP6NTp04YNWoUwsPDkZCQUGNqr7i4GPfccw8WL15cb9A0e/ZshIaGYuDAgfjss88g5E+MOpSVlUGv11tciNxFfrFp6k+rUUHnobb64zOoIiJn57CgKjs7GwaDARERERbXR0REID09vdb7pKen13t8ZmYmCgsL8cYbb2D06NH49ddfMXHiREyaNAnbtm1T7jNnzhwMHjwY48ePr3N8r7zyCr7//nskJibi9ttvx6xZs/Dhhx/W+5oWLFiAgIAA5dKmTZt6jydqSWxZpA6wpoqInJ9Dp/+szWg0AgDGjx+POXPmAAB69+6NHTt2YMmSJRg2bBh+/PFHbN68GQcOHKj3sebPn6/8f58+fVBUVIS3334bjz/+eJ33efbZZzF37lzlZ71ez8CK3IbcTsEWReoAt6ohIufnsExVaGgo1Go1MjIyLK7PyMioc0ouMjKy3uNDQ0Oh0WjQtWtXi2O6dOmirP7bvHkzzp49i8DAQGg0Gmg0prjy9ttvx/Dhw+scb0JCAi5duoSysrrf0LVaLfz9/S0uRO6iqpu6bb6rVZ/+u9ZUPBGRIzgsqPL09ES/fv2wadMm5Tqj0YhNmzZh0KBBtd5n0KBBFscDQGJionK8p6cnBgwYgJMnT1occ+rUKcTExAAAnnnmGRw+fBgHDx5ULgDw3nvvYdmyZXWO9+DBgwgKCoJWq230ayVyB3obdVOXhZqn/8oNRiUrRkTkTBw6/Td37lxMnz4d/fv3x8CBA7Fw4UIUFRUpqwGnTZuGVq1aYcGCBQCAJ554AsOGDcM777yDsWPH4ttvv8XevXuxdOlS5THnzZuHyZMnY+jQobjxxhuxYcMG/PTTT9i6dSsAU7artkxY27Zt0a5dOwDATz/9hIyMDFx33XXQ6XRITEzE66+/jqeeesrGZ4TIdSlb1NignQIA6DzU8NNpUFBaiazCMgR42+Z5iIiayqFB1eTJk5GVlYUXXngB6enp6N27NzZs2KAUoycnJ0OlqkqmDR48GMuXL8fzzz+Pf/zjH4iLi8OaNWvQvXt35ZiJEydiyZIlWLBgAR5//HF07twZq1atwpAhQxo8Lg8PDyxevBhz5syBEAIdO3ZU2j8QUe30peYeVV62e1sJ89OagqqCMnQM97XZ8xARNYUkWJxgM3q9HgEBAcjPz2d9FbV4L/14DJ/vuIBZwzvg/0bH2+Q5Jv97J3adz8UHU/pgXK9omzwHEVFTP78dvk0NEbUMcqG6rVb/AexVRUTOjUEVEVmFXDxuq0J1gEEVETk3BlVEZBV6GxeqAwyqiMi5MagiIquo6qhuw0J1dlUnIifGoIqIrIKZKiJydwyqiMgq5JYKLFQnInfFoIqImq3SYERhmf0K1XOLymAwshsMETkXBlVE1GwFpVXbxvjZaO8/AAjx0UIlAUYB5BQxW0VEzoVBFRE1m1yk7u2phofadm8rapWEYB9OARKRc2JQRUTNZut9/6pjXRUROSsGVUTUbFeKTUFVkI+nzZ9LDqoyGVQRkZNhUEVEzXalqBwAEOxjh0yVLzNVROScGFQRUbPlmoOqIG/bZ6oiA0xBVXp+qc2fi4ioMRhUEVGzXSmWM1V2CKr8dQCAdD2DKiJyLgyqiKjZ7JmpijAHVRkMqojIyTCoIqJmkzNVQd62r6mKDDBnqjj9R0ROhkEVETXblSL7rf6Tp/+yC8tQaTDa/PmIiBqKQRURNZs9a6pCfLVQqyQYBZBVyBWAROQ8GFQRUbPZs6ZKrZIQ7scVgETkfBhUEVGzCCHsmqkCWKxORM6JQRURNUthWSUqDAKAfTJVQLW2CsxUEZETYVBFRM0iF6l7eajh5am2y3MqKwD1rKkiIufBoIqImiXXzlN/AKf/iMg5MagiomaR9/0LtEOPKhm3qiEiZ8SgioiaJbeImSoiIoBBFRE1U1U3dfsFVdX3/xNC2O15iYjqw6CKiJrF3u0UgKpC9eJyAwrKKu32vERE9WFQRUTNkitvUWPHTJW3pwZ+Og0AIIN1VUTkJBhUEVGzXFFqquxXqA5YTgESETkDBlVE1CxySwV7bKZcndKripkqInISDKqIqFmUTJUdp/8ArgAkIufDoIqImkUuVA+0c1DF6T8icjYMqoioyYxGgSvFpkJ1e67+A4AIZfqPW9UQkXNgUEVETVZQWgmD0dQnyp4d1YGqTBWn/4jIWTCoIqImk4vUfTzV0HnYZzNlGaf/iMjZMKgioiaTt6ix98o/AIgw7/+XXViGSoPR7s9PRHQ1BlVE1GR5DuimLgv10UKjkiAEkFXIuioicjwGVUTUZEqmys4r/wBApZIQ7mfKVrFXFRE5AwZVRNRkjtj3rzp5BSCL1YnIGTCoIqImk/f9s/fKP5lSrM5MFRE5AQZVRNRkjuqmLotQVgCypoqIHI9BFRE1maP2/ZNFcvqPiJwIgyoiajIlU+WgoCrKHFRdzitxyPMTEVXHoIqImkzJVDlo+q91kDcAICW32CHPT0RUHYMqImoyR2eqYkJMQVW6vhSlFQaHjIGISMagioiaxGAUyCsxrf4L8nHM6r8QH0/4eKohBHDpCrNVRORYDKqIqEn0JRUQpr2UHTb9J0kS2ob4AAAu5jCoIiLHYlBFRE0i11P5aTXwUDvurSQm2DQFyKCKiByNQRURNckVB26mXF1MqCmoSmaxOhE5GIMqImqSXGcJqoLl6b8ih46DiIhBFRE1ibLvn4O2qJHJKwAvMlNFRA7GoIqImkTe98/Rmaq25pqqS7klMBiFQ8dCRO6tSUFVSkoKLl26pPy8e/duPPnkk1i6dKnVBkZEzi2vxJSpCvRybFAVHegFD7WEcoMRafnsrE5EjtOkoOqee+7Bli1bAADp6em4+eabsXv3bjz33HN45ZVXrDpAInJOBaWVAAA/ncah41CrJKWzejJXABKRAzUpqDp69CgGDhwIAPj+++/RvXt37NixA19//TU+//xza46PiJyUswRVQNUUIOuqiMiRmhRUVVRUQKvVAgA2btyIcePGAQDi4+ORlpZmvdERkdMqKDXVVPnrHFuoDlQrVmemiogcqElBVbdu3bBkyRL8/vvvSExMxOjRowEAqampCAkJseoAicg5OWOmKjmXbRWIyHGaFFS9+eab+Pe//43hw4djypQp6NWrFwDgxx9/VKYFiahlkzNVfk6RqeJWNUTkeE36ijl8+HBkZ2dDr9cjKChIuX7mzJnw9va22uCIyHk5U6ZKnv5LzimGEAKSJDl4RETkjpqUqSopKUFZWZkSUF28eBELFy7EyZMnER4ebtUBEpFzcqagSp7+KyirxJXiCgePhojcVZOCqvHjx+PLL78EAOTl5SEhIQHvvPMOJkyYgI8//tiqAyQi52MwChSWyUGV46f/dB5qRPibFs9wuxoicpQmBVX79+/HDTfcAABYuXIlIiIicPHiRXz55Zf44IMPrDpAIneSqS/Ff7afR0m5wdFDqZccUAHOkakCqvYA5MbKROQoTQqqiouL4efnBwD49ddfMWnSJKhUKlx33XW4ePFiox5r8eLFiI2NhU6nQ0JCAnbv3l3v8StWrEB8fDx0Oh169OiBdevW1TgmKSkJ48aNQ0BAAHx8fDBgwAAkJyfXOE4IgVtuuQWSJGHNmjUWtyUnJ2Ps2LHw9vZGeHg45s2bh8rKyhqPQWRN7286jVfXHse7iScdPZR6yUXqnmoVdB5qB4/GpC3bKhCRgzUpqOrYsSPWrFmDlJQU/PLLLxg5ciQAIDMzE/7+/g1+nO+++w5z587Fiy++iP3796NXr14YNWoUMjMzaz1+x44dmDJlCh588EEcOHAAEyZMwIQJE3D06FHlmLNnz2LIkCGIj4/H1q1bcfjwYcyfPx86na7G4y1cuLDWglaDwYCxY8eivLwcO3bswBdffIHPP/8cL7zwQoNfG1FTnM4oBAD8sP8yKgxGB4+mbs5UTyWLCWZQRUQOJppgxYoVwsPDQ6hUKjFixAjl+tdff12MHj26wY8zcOBAMXv2bOVng8EgoqOjxYIFC2o9/q677hJjx461uC4hIUH87W9/U36ePHmyuPfee6/53AcOHBCtWrUSaWlpAoBYvXq1ctu6deuESqUS6enpynUff/yx8Pf3F2VlZQ19eSI/P18AEPn5+Q2+D7m3hNc2ipin14qYp9eKDUfTHD2cOu06lyNinl4rhr212dFDUaw5cEnEPL1W3PHxH44eChG5uKZ+fjcpU3XHHXcgOTkZe/fuxS+//KJcf9NNN+G9995r0GOUl5dj3759GDFihHKdSqXCiBEjsHPnzlrvs3PnTovjAWDUqFHK8UajET///DM6deqEUaNGITw8HAkJCTWm9oqLi3HPPfdg8eLFiIyMrPV5evTogYiICIvn0ev1OHbsWINeH1FjlVYYkK4vVX5esTfFgaOpnzP1qJKxVxUROVqTgioAiIyMRJ8+fZCamopLly4BAAYOHIj4+PgG3T87OxsGg8EicAGAiIgIpKen13qf9PT0eo/PzMxEYWEh3njjDYwePRq//vorJk6ciEmTJmHbtm3KfebMmYPBgwdj/PjxjXoe+ba6lJWVQa/XW1yIGurSlRIAgEZlmpLecjILmdWCLGfizNN/mQVlTl/oT0QtU5OCKqPRiFdeeQUBAQGIiYlBTEwMAgMD8eqrr8JodFwdiPzc48ePx5w5c9C7d28888wzuPXWW7FkyRIApq7vmzdvxsKFC63+/AsWLEBAQIByadOmjdWfg1quFPOqtbgIP/SLCYLBKPDDgcsOHlXtqjJVzhNUBXp7wNvTVDSfll/i4NEQkTtqUlD13HPPYdGiRXjjjTdw4MABHDhwAK+//jo+/PBDzJ8/v0GPERoaCrVajYyMDIvrMzIyap2SA0zZsfqODw0NhUajQdeuXS2O6dKli7L6b/PmzTh79iwCAwOh0Wig0Zg+FG6//XYMHz683ueRb6vLs88+i/z8fOWSkuK80zfkfORWAG2DvXBnv9YAgO/3pkAI4chh1Upf6jw9qmSSJCEqwLQgJS3fOTN8RNSyNSmo+uKLL/Dpp5/ikUceQc+ePdGzZ0/MmjULn3zyCT7//PMGPYanpyf69euHTZs2KdcZjUZs2rQJgwYNqvU+gwYNsjgeABITE5XjPT09MWDAAJw8abkc/dSpU4iJiQEAPPPMMzh8+DAOHjyoXADgvffew7Jly5TnOXLkiMUqxMTERPj7+9cI2KrTarXw9/e3uBA1lFwL1DbYG2N7RsHLQ41zWUXYn3zFwSOryRmn/wAgOtALAJCax0wVEdlfk94Rc3Nza62dio+PR25uboMfZ+7cuZg+fTr69++PgQMHYuHChSgqKsKMGTMAANOmTUOrVq2wYMECAMATTzyBYcOG4Z133sHYsWPx7bffYu/evVi6dKnymPPmzcPkyZMxdOhQ3HjjjdiwYQN++uknbN26FYAp01Rbtqlt27Zo164dAGDkyJHo2rUr7rvvPrz11ltIT0/H888/j9mzZ0Or1Tb49RE1hpKpCvGBn84DY3pEYdX+S/jqz2T0iwl28OgsOWOhOgBmqojIoZqUqerVqxcWLVpU4/pFixahZ8+eDX6cyZMn41//+hdeeOEF9O7dGwcPHsSGDRuUovDk5GSkpaUpxw8ePBjLly/H0qVL0atXL6xcuRJr1qxB9+7dlWMmTpyIJUuW4K233kKPHj3w6aefYtWqVRgyZEiDx6VWq7F27Vqo1WoMGjQI9957L6ZNm4ZXXnmlwY9B1FgpuVWZKgC4J6EtAGD1gcv430Hnqq2SM1X+TpapigowZapYU0VEjiCJJhRsbNu2DWPHjkXbtm2VqbedO3ciJSUF69atU7awcXd6vR4BAQHIz8/nVCDVSwiBri/8gpIKA7Y8NRztQk3tAd7ccAIfbz0LnYcKq2ddjy5RzvF7NGPZbmw5mYU3b++ByQPaOno4im93J+OZH45gWKcwfPHAQEcPh4hcVFM/v5uUqRo2bBhOnTqFiRMnIi8vD3l5eZg0aRKOHTuG//73v015SCK3ll1YjpIKAyQJaGWuCwKAp0Z2xg1xoSitMOLhr/Yhv7jCgaOsUuCEheoAEGU+d+mc/iMiB2hy7j46OhqvvfaaxXWHDh3Cf/7zH4saJyK6NrmeKjrAC56aqu86apWED+7ug9sWbcfFnGLM+f4g/jO9f63bK9mT0xaqm2uqUjn9R0QO0OTmn0RkPcm5RQCANsFeNW4L8vHEknv7wVOjwuYTmdifnGfn0dXktIXq5kxVQWklCsu4AToR2ReDKiInkJxjyqzIRepX694qALf2iAIArD5wyW7jqouzZqp8tRplTGlsq0BEdsagisgJyNN/8v51tZnQpxUAYO3hNJRXOnLnAoHCcucMqgDTFCoApLKuiojsrFHviJMmTar39ry8vOaMhchtye0U2tSRqQKA6zuGItxPi8yCMmw9mYmR3eru7m9LheWVkNcM+zvZ9B8ARAXqcDKjgJkqIrK7RgVVAQEB17x92rRpzRoQkTtKvqpHVW3UKgnje0fjk9/PY/WByw4LquSpPw+1BK3G+ZLdUcxUEZGDNCqokrdxISLrKa0wIF1vCgDqC6oA0xTgJ7+fx6akTOSXVCDAy/6ZoupF6o5ehVgbeQVgOlcAEpGdOd/XTCI3c+mKKUvlq9UgyLv+IKlrlD86R/ih3GDEuiNp9R5rK85apC6L5FY1ROQgDKqIHCy5Wj3VtTI/kiQpBeurDzhm65qqTJVzBlXcVJmIHIVBFZGDJeeYV/5dY+pPNr53NCQJ2H0+VylwtyclU6V1viJ1wHJT5SbswkVE1GQMqogcLDnX3KMqpGFBVXSgFwbGBgMAtp7MtNm46qJ38uk/uVC9uNwAfQkbgBKR/TCoInKw5Aa0U7iavLHy5Tz71w05azd1mZenWqlN43Y1RGRPDKqIHOxijmmLmmut/KtOLsbO0DsiqHLuTBVQla1KY1BFRHbEoIrIgb7ceQGnMwshSUBcuG+D7xfpL7cNcFymyt+Jg6roQK4AJCL7Y1BF5CC/HkvHSz8eAwDMHdFJWbXWEHKmKt2hmSrnnP4DqmWqHDA9SkTui0EVkQMcSL6Cx789AKMApgxsg0f/0rFR96+eqbL3CjeXmP4zZ6pYU0VE9sSgisjO8ksq8Ncv9qK0wogbO4fh1fHdG92ZXM5UlVQYlNV49uLshepA1abKzFQRkT0xqCKys0MpecgpKkdUgA6L7ukLjbrxf4Y6DzUCzSvc7F1X5QqZqqqu6sxUEZH9MKgisrP8ElOmp22wN3y0TQ9MlClAO9dVuUJQpWSq2ACUiOyIQRXVad/FXNy1ZCc2JWU4eigtihxUNXcz5AhzUJVh90yV80//RQRoAQBllUbkFpU7eDRE5C6c96smOdTeC7mY/tluFJUbkFVYhhs7h0OlalzdD9XOWkFVlAM2DhZCoLDMlKly5pYKWo0aob5aZBeWIS2/FCG+WkcPiYjcADNVVEP1gAoAzmcX4bfTWQ4eVcuht3Kmyp7Tf0XlBhjNs2nOnKkC2KuKiOzPeb9qkl0IITBv5WEcvpSHyAAvRPhpse5IGorKDbi+YwjaBvvgm93J+HLnRQzvHO7o4bYIecXWzVSl27EYW57606gk6Dyc+ztZpL8Oh5Fv1/NDRO6NQZWbyyosw8p9lwAApzIKlesHdwjBp9MGIF1fim92J2PLyUxczClCTIiPo4baYsjTf/LqvaaKUBqAljV7TA1VvUi9sW0g7K1qKx/7nR8icm8MqtxcUZlpis/LQ42Xx3dDRn4pfLQaTBnYFl6earQL9cGwTmHYdioLX/15Ec+N7ergEbs+Oajyb2amSl79Z8/9/1yhSF0W4YDzQ0TujUGVmyuSi469NLirf5taj5k+OAbbTmXhuz0pmHtzZ3h5qu05xBbH2oXquUXlKK0wQOdh+38XvQu0U5CF+5mK0x2xlQ8RuSfnLoogm5ODKh/Puj8kh3UKR9tgb+hLK/G/g5ftNbQWy1pBVYCXB7Qa059wpp2muFyhR5VMnv6z17khImJQ5eaKzSv86mtCqVZJmDYoBgDw3z8v2mVcLZm1Vv9JkmT3jZVdcvqvgJkqIrIPBlVurqjclHnwvsaU3m29ogEAx9P0qDAYbT6ulqrSYESBOTvY3KAKqKqrstd2LK6UqYrwM52bvOIKlFYYHDwaInIHDKrcnDL9d43tUsJ8tdCoJAgBZBdyOqWpqm9+bJWgKsC+xdhypsrfBTJV/l4ape0DpwCJyB4YVLk5efXftYIqlUqqKvxlM8Umk+upfLWaJm2kfDVl+i+fNVVXkyTJIQ1Sich9Mahyc1WF6tdeORbBvj/NZq0idVnVpsqc/quNPAXItgpEZA8MqtxcUQMK1WX8gGo+a/WokilBlZ2yh65UqA5U/yLA31kisj0GVW6uuLzhmSp71++0RFWZKutkeqqm/+zzb+JKfaoAIMI8Zc3fWSKyBwZVbq7QPP3n3YBMVbi//AHF6b+myi8uB2DF6T+5F1NBGYzyTsc2VDX95yKZKn9OWROR/TCocnPFDSxUBzj9Zw3Kvn9enlZ5vDBfLVQSUGkUyC6yfeCQY175GeJjnfHbGqf/iMieGFS5uSJO/9mVMv3XzM2UZRq1CmF2WpVpMArkFJkybfJzOjtO/xGRPTGocnMN7VMFABH+3Eutuay9+g+wX7H6leJyGIwCkgQEu0qmqtr0nxC2nx4lIvfGoMrNKdvU1LP3n0z+gCoorVQK3KlxrL36D6geONg2qMoqME39BXt7wsMKPbbsQT43JRUGi8arRES24BrvjGQzVYXq157+89VqlO1sWPjbNLbIVEUFyFvV2Daokjvpu8rUHwB4earhb16pmMkMKxHZGIMqNydnqnwbMP0nSZIy1cQalabJK7Z+UBVhp02V5UyVKwVVAFcAEpH9MKhyc3JN1bU2VJZVtVVgUNUUemX1n/UzVal5tu2qLgdVob6uFVRF2inoJCJiUOXGKg1GlFUaATSspgqwX/1OS2WL6b+YEB8AwMWcYqs9Zm1cNVMVzlYgRGQnDKrcmLxFDdCw1X8Aqk3/cSqlsSoMRuWcWzOoah9qCqrS8kttuoAgS66pcrFMlbxqlTVVRGRrDKrcmPwB7KGW4Klp2K9CuD+nUppKnvoDrLv6L9DbU2lxcD67yGqPezVXzVRx+o+I7IVBlRtrTI8qmZyp4rf+xpOn/vy0GqhVklUfu505W8Wgqqaq6T9mV4nIthhUubGisob3qJKxAWjT5Vm5m3p1SlCVZcOgygVbKgBVv7OsqSIiW2NQ5cYau/IPYIfq5rBFkbrM1pmq8kqj0g7C1Wqq7L3pNBG5LwZVbkwumm7M9J/cUqH6hyw1jN6GQZVcrH7WRkFVjnmzZg+1ZJPx21KorxaSZLl3IRGRLTCocmNyobpPA7qpy7QaNYLM01cZBZxOaQybZqrC5Om/QptkEOV6qhAfLVRWrgezNQ+1SumtxSlA+zmXVYi/f38Iafm27Z9G5EwYVLkxeYuaxtRUAexQ3VT5NuimLosN8YEkAfrSSuTaIBvjqkXqMtZV2d/HW89i1f5LWPrbOUcPhchuGFS5seKyxk//AdWCKhvvNdfS2DJTpfNQIzrAC4Bt6qpcPqjiCkC7O5VZCAA4nqp38EiI7IdBlRsrbEKhOgDu/9dEtlz9BwDtzVOA52wZVLlYkbrMXvsjkokQAmcyCgAAx9P0XNRCboNBlRuTa6oasplydWyr0DS2zFQBtl0B6KrtFGRypor91ewjLb9UWQhTUFqJyzbel5LIWTCocmPym553I2uqwllT1ST2CqrOZRVa/bFdffovMsA07jROWdvF6UzL30FOAZK7YFDlxqo6qnP6zx5s2VIBANqH+QKwTaYq28UzVZHmerN0BlV2cdo89Sc7nsagitwDgyo3VtTcQnUGVY1i60yV3KvqQk4xDFZucunqmapoc01VKpf328UZc6ZKbr/CTBW5CwZVbkyuqWpsoXqEeSolu7AMlQaj1cfVUtk6qIoO9IKnWoXySiNSrVzDIgdVoS5aqB4VaMpUFZRWKgs0yHbk6b8xPaIAMFNF7oNBlRuTp/8aW6ge4qOFWiXBKIDsQnaobojySiOKzTVsgV6eNnkOtUpCTIg3AOtOARaVVSr1d66aqfLVauCnM/2ep7Fo2qaEEDhlnv4b1ysaAHDpSonypYKoJWNQ5caaWqiuVkkI92MzxcaQP1AkCcqHuy3YYgWgXE/l5aGGTyOzms4kyjwFyGJ128osKENBaSVUEtC7bSBambOEJ5itIjfAoMqNNbVQHYASVLGtQsPIQZWfVmPTbV7kYnVrrgCsXk8lSa61RU11UeZidW6bYlunM0y/e7EhPtBq1OgS5Q+AU4DkHhhUubGqoKrxmZMwc98fOYtB9cu3ceNPmVysbs0GoK5epC6LDjQXq+fxi4Atnc40Tf11DDcF+F2jzUEVi9XJDTg8qFq8eDFiY2Oh0+mQkJCA3bt313v8ihUrEB8fD51Ohx49emDdunU1jklKSsK4ceMQEBAAHx8fDBgwAMnJycrtf/vb39ChQwd4eXkhLCwM48ePx4kTJyweQ5KkGpdvv/3WOi/aCQghlBqfxu79B1R9wMofuFQ/W7dTkCkbK1szqCp07W7qMmaq7EMuUo+LMAdV5kxVUjqDKmr5HBpUfffdd5g7dy5efPFF7N+/H7169cKoUaOQmZlZ6/E7duzAlClT8OCDD+LAgQOYMGECJkyYgKNHjyrHnD17FkOGDEF8fDy2bt2Kw4cPY/78+dDpdMox/fr1w7Jly5CUlIRffvkFQgiMHDkSBoPB4vmWLVuGtLQ05TJhwgSbnAdHKKs0otK87L4p039yUJXJoKpBbL3yTybXVF3OK0FpheEaRzdMS8lUsabKPs6Yp/86RfgBALqZM1Wn0gtRwdXC1MI5NKh699138dBDD2HGjBno2rUrlixZAm9vb3z22We1Hv/+++9j9OjRmDdvHrp06YJXX30Vffv2xaJFi5RjnnvuOYwZMwZvvfUW+vTpgw4dOmDcuHEIDw9Xjpk5cyaGDh2K2NhY9O3bF//85z+RkpKCCxcuWDxfYGAgIiMjlUv1wMzVyVkqoPGF6kBVTRUzVQ2TV2xaJWmrlX+yEB9P+Ok0EAJIzi22ymO6euNPWVWmikGVrQghcOqq6b/WQV7w02pQbjDirA26/RM5E4cFVeXl5di3bx9GjBhRNRiVCiNGjMDOnTtrvc/OnTstjgeAUaNGKccbjUb8/PPP6NSpE0aNGoXw8HAkJCRgzZo1dY6jqKgIy5YtQ7t27dCmTRuL22bPno3Q0FAMHDgQn3322TU3BS0rK4Ner7e4OCu5nkrnoYK6CYXTnP5rnPwS0/n2t3GmSpKkqrqqLOtMAbaYTJW5piotr4Qb/NpITlE58oorIElAB/OiCUmSqorVWVdFLZzDgqrs7GwYDAZERERYXB8REYH09PRa75Oenl7v8ZmZmSgsLMQbb7yB0aNH49dff8XEiRMxadIkbNu2zeJ+H330EXx9feHr64v169cjMTERnp5VWYRXXnkF33//PRITE3H77bdj1qxZ+PDDD+t9TQsWLEBAQIByuTpIcyZFTdxMWcagqnGuyJkqGxeqA9VWAGZbJyvg6o0/ZdHmTFVRuQH6UjYAtZbi8kolSJVX/rUN9obOo6qsgMXq5C5s1zDHAYxG03z9+PHjMWfOHABA7969sWPHDixZsgTDhg1Tjp06dSpuvvlmpKWl4V//+hfuuusu/PHHH8oU3/z585Vj+/Tpg6KiIrz99tt4/PHH63z+Z599FnPnzlV+1uv1ThtYyVvUNGXqD7Cc/hNCuPRSe3uQpz1igr1t/lxKrypmqix4eaoR6O2BvOIKpOWX2Ly+zR1cyC7CxI/+QJC3JxZP7Ysz5qm/OPPUn6wr2yqQm3BYpio0NBRqtRoZGRkW12dkZCAyMrLW+0RGRtZ7fGhoKDQaDbp27WpxTJcuXSxW/wFAQEAA4uLiMHToUKxcuRInTpzA6tWr6xxvQkICLl26hLKyujMzWq0W/v7+Fhdn1Zx2CkBV1qLcYIS+hN/6r0Weiutw1YeNLVizAagQomr1n4sHVQDrqqztg02ncaW4AufMwdW3e1IAAB3D/SyO69E6AABwMCWPxerUojksqPL09ES/fv2wadMm5Tqj0YhNmzZh0KBBtd5n0KBBFscDQGJionK8p6cnBgwYgJMnT1occ+rUKcTExNQ5FiEEhBD1BkwHDx5EUFAQtFrX/2ABqvb9a2qHbJ2HGv7mzuBZhfyAqk9RWSUum7dG6RjmWkFVfkkFKgymqZ1QX9sW2duDsgKQvaqa7Xx2EdYcvAwA6NM2EKUVRhwzT+9dnanqHOGHIG8PFJcbcPhSnr2HSmQ3Dp3+mzt3LqZPn47+/ftj4MCBWLhwIYqKijBjxgwAwLRp09CqVSssWLAAAPDEE09g2LBheOeddzB27Fh8++232Lt3L5YuXao85rx58zB58mQMHToUN954IzZs2ICffvoJW7duBQCcO3cO3333HUaOHImwsDBcunQJb7zxBry8vDBmzBgAwE8//YSMjAxcd9110Ol0SExMxOuvv46nnnrKvifIhpTpvyZmqgBT5kJfWolMfVmNb6ZURc5Shfh4IsjH9oGJHFTlFJUjv7iiWQ1H5WAwyNsDWo3rblEjq2qrwF5VzfXh5tMwCuAv8eH4ZFp/vL/xFD7YfAZAVQ2VTKWSMKhDCNYdSceOMznoFxPsiCET2ZxDg6rJkycjKysLL7zwAtLT09G7d29s2LBBKUZPTk6GSlWVTBs8eDCWL1+O559/Hv/4xz8QFxeHNWvWoHv37soxEydOxJIlS7BgwQI8/vjj6Ny5M1atWoUhQ4YAAHQ6HX7//XcsXLgQV65cQUREBIYOHYodO3YobRc8PDywePFizJkzB0IIdOzYUWn/0FJUFao3/YMy3E+Hs1lFyvQQ1U6up+pghywVYJrSjfTXIV1fivM5RejtHdjkx5I3xo2LaBlBc7R5Hzp2VW+eC9lF+N/BVADAEzfFQa2SMHdkZwyJC8PlvGJltV91gzqEmoKqszl47KY4ew+ZyC4cXqj+6KOP4tFHH631Njm7VN2dd96JO++8s97HfOCBB/DAAw/Uelt0dHStXdirGz16NEaPHl3vMa6uuYXqAFcANtQZc4dpe9RTydqF+iBdX4pzWYXo3SawyY9zIt0UVHVuIUGVnKlK1zNT1Rwfbj4Dg1Hgxs5h6FXt92tgu2AAtWehBncIAQDsS76C0gqDxepAopbC4dvUkGMohepNrKkCGFQ1VFWmysduz2mt7WpOmYOqTpEtJagyF6ozU9VkF6rVUj0xolOD79c+1AcR/lqUVxqx/+IVWw2PyKEYVLkpefqvqav/gKq2Ctyqpn5ypqqjHTNV1tpY+ZS571B8iwmqzJsq57MBaFOt2JcCg1FgWKewRmVBJUnC4A6hAIAdZ3NsNDoix2JQ5aaKzdN/zQmqmKm6tkqDERdyzO0U7FRTBVinV5W+tEIpVO/UQhYiRJqDqtIKI/KKKxw8Gtd0+FI+AGBkt4hrHFnTIPMU4I6z2VYdE5GzYFDlpgqb2VIBYFDVEMm5xagwCOg8VGhlLpK2B7mr+vnsoiZnZE6bi9SjAnTNWkHoTHQeaoSYV2CmcgVgowkhlLYJ3aIDGn1/ua7q0KV8FJaxvx21PAyq3FSx+Q2tuS0VACCzgPUpdZGn/tqH+kLVhD0Wm6p1kBc0KgklFQZk6JsW9MpF6p1aSJG6TN4DMJ0NQBstXV+K3KJyqFVSk6aEWwd5o22wNwxGgT3nc20wQiLHYlDlporKzdN/zVj9F+5n+nC6UlyB8kp2Sa7NWfP0mz3rqQDAQ61CW/OWOOeymrYHoFyk3rmF1FPJ5GL1VAZVjXbssilL1THMt8mr9wZzCpBaMAZVbqpqm5qmT/8FenlAY86+5BRxCrA2jihSl7VrZrH6yYyW1U5BFq10Vef0X2NVTf01fQuuqroqFqtTy8Ogyk0Vlze/UF2lkpQ9AFlXVTt7N/6srjnb1QghcLKFZqoiuf9fkx1LNRWpX90xvTHkoOp4mh5XisqtMi4iZ8Ggyk0VKn2qmtf/NdzfXFfVxLqdlkwIgbOOzFQ1o1dVVmEZrhRXQCU5Zuy2FB3IrWqaqjlF6rJwPx3ah/lACGAf+1VRC8Ogyk0VW2H6DwDC5EwVt6qpIaugDAVllVBJQGyot92fv31o1QrAxpKzVLEhPi2u83UUM1VNkldcrrTYaE6mCgD6xwQBAPYyqKIWhkGVGzIaBYormr9NDcC2CvWR66naBns7ZDPi9uZMVXJucaMXEpxsoSv/gGqbKueVwmBkA9CGkrNUbYK9EODVvBYb/c0bKu+7yBWA1LIwqHJDJRUGyK2LfJtRUwVUdVVnUFXTGQfWUwGmfxtvTzUMRoGUK8WNuq+8kXJLq6cCTJsqe3uqUW4wKjVvdG1yPVX3Zkz9yfrFmjJVhy7lo6zS0OzHI3IWDKrckLxFjSQBOo/m/QqwV1XdHFlPBZi2BVFWADays3pLLVIHALVKUgKDI+bu4FRTXnE5isurGnRaY+WfrH2oD4J9PFFeacRRc5sGopaAQZUbKiqr6lElSc1rSMnpv7o5OlMFADEhplquS43IVBmNQtnzryUGVQDQvZU5qLrMoKo2OYVluOGtLbjtw+1K+xVrFKnLJElC37ambBWnAKklYVDlhqzRo0qmBFUsVLdgNAokpZmyPR0jHBdUNaUo+9KVEpRUGOCpUSEm2P4F9vbQszWDqvpsP5ONgtJKnM0qwhvrT6Ck3KA0kbVGpgoA+sfKQRWL1anlaF5BDbmkYit0U5fJXdUz9WUQQjQ789VSHEvVI7eoHD6eaqvUoDRVtHm/wcuNaHR5Ir2qa7ZG3TK/d8mZquOpelQajC32dTbVrmpbyPz3z4uICtTBKIBQXy3C/XVWeY5+MVVBFd87qKXgO4kbqspUNT+okpt/llUaUcANUhW/nc4CAAzuGApPjeP+zJrSPfy0uRaskwMzbLbWPtQHPp5qlFQYlK2EqMquc6Zu53HmesC3NpwEYL0sFQD0aBUAT7UK2YXluJjTuIUURM6KQZUbkgvVvT2bP/3n5amGnzk4Y11VlW2nTEHV0E5hDh2HnKlqzPRfsvkDLtZc5N4SqVQSurGuqlZZBWU4m1UESQKWzRiAVubfIcC6QZXOQ43urUyPx35V1FIwqHJDV4orADS/nYIszJ/F6tUVlFZgv/lDYlicY4OqKHP38Ax9KSoNDetVdTHXlLmRi9xbqp5yUHUpz7EDcTK7zVN/nSP80DrIG2/e3lO5TZ42tZb+sexXRS0Lgyo39Kc5td/NSm+Qclf1TAZVAEwbxVYaBdqF+qCtgwOTUB8tPNUqGAWQ0cB/n5Rc01Rh2+CWm6kCgB4sVq/VrvOm94fr2pv26BsSF4qnR8djaKcwDLNy5lWuq9p7gZkqahkYVLkZg1Fg++lsAMCwTqFWeUy2VbD0mzz1F2ed89scKpWESHNdVWoD6qrKKg1IzZeDqpadqVKK1dP0DcriZRaU4lBKno1H5XhypiqhXbBy3SPDO+DLBwZapQ6zOjmoOp1ZiLxi595cWQiB309n4V+/nGRfPqoTgyo3c/hSHvJLKuCv06BX60CrPCYbgFYRQjhNPZUsqhFB1aUrJRDCVG8X6utp66E5VLsQH/hqNSitMCo9xerz6NcHMOGjP7D3QsudqrpSVI4T5savA6sFVbYS6qtVGtTuT3bObFV5pRGr9l3CLe//jvv+sxuLtpzBkq3nHD0sclIMqtyM/IE/JC7UasvI5ULWS7kNX2HWUp3PLsKlKyXwUEvK9Imjyf8+qXnXDnqTc01F6m2DvVv8EneVSlIKrw9fo7N6aYUB+5OvQAhg5b5L9hieQ+w2B4wdw30RYp7WtzU5I/a/g6l2eb7GenrVYfx9xSEl2ASAc9nc3ohqx6DKzVRNTVkviyJvwyLvF+fO5PM7IDbY6lMlTSUXq6flXzvolVf+tfSpP5ncBPToNeqqzmQWotK8+fK6I2ktdr+6XedqTv3Z2r3XxQAAfjqUios5ztXeoqzSgJ8PpwEAnhwRh4+m9gVQ9eWD6GoMqtxIfnEFDpprQqw5NRUXYdrK5Hx2ESoauMKspXK2qT+gqq1CQ6b/5A+Llr7yTybXVV0rU3U8tWp/On1pJbadzLLpuBxFLlJPsGOWtXurAAzvHAajAP79m3NNqx1P1aPcYESQtweeuCkOPcy/L5dyS2A0B9lE1TGociPbz2TDKEwN/aKr9Z5prugAHXy1GlQaBS5kO9c3TXsqqzTgT/M3fWtmApsrOqDh038X3S5TFQgASLpGsfqxVFPQ5WmeMv/fIeecqmqO/JIKHE8zBY/X2TFTBQCzb+wIAFi59xIy9M5Tm3kgOQ8A0KdtECRJQlSADhqVhHKDERmsIaVaMKhyI7/ZKIsiSVK1KUD3rTXYe+EKSioMCPPTokuU82xE3KjpP3OPqrYhLbudgiwm2Bt+Wg3KKo0Y9vZWJLy+Ede9vgnrjqRZHCcHG/cNMk1VbTyegcIWtoPA3gu5EAJoF+pjta1oGmpAbDAGxgaj3GDEp787T7ZKzuz3aRMIANCoVWgVZPqSkswu8FQLBlVuQgihbJ1ii6kpeTuL05nuW1dVvV7NmYq85azkleIKlJTXXQskhKia/nOTTJVKJWFwR9NU1+W8EmToy5CuL8Vn288rx1TfHPuu/m3QPswHZZVG/HI03SFjthU5KzPAvNGxvT1yYwcAwNe7knGlyDnaKxxIMa1I7NO26pzIWVzWVVFtGFS5iTOZhUjLL4VWo7JJEWonc13VaTfOVFXVUzm+P1V1/joPpXt+aj3ZqqyCMpRWGKGSYNXpYWf33uTe+HbmdVj1yCB8+cBAAMCBlDzoS007DyTnFqOwrBKeGhU6hPlgfK9WAFreFKCcjbN21/SGGt4pDF2j/FFcbsAXOy84ZAzVZRWUISW3BJIE9GxTdU7amIOqFAZVVAsGVW5C/sBPaB8CnUfz9/y7WscI985UZehLcSK9AJIE3OBE9VSy6MBr96q6aP6QiA70cugm0Pbm7anBde1D0C8mGEM7haF9qA8MRoGdZ01F23KwER/pB41ahfG9owEAf5zJblENb5PMr7NrlPX292sMSZLwt2HtAaDG9KsjyFN/ceG+8Nd5KNczU0X1cZ93Tje3MSkDgO26fHdy8xWA8tRfz1YBCPZxvqaZUeZi9bR6itXlGhF3WflXlxvMfyO/m6fL5ZV/crARG+qDXm0CYTAK/NhCslVXisqVTbfjHRRUAUBCO9NU7NmsIpRWOLZtxQFzM9I+bSynQxlUUX0YVLmB1LwS7DJvPTG6e6RNniM6QAcfTzUqDMLpes3YgzO2UqhOns673IBMlbus/KuLnGn83bydk5yp6hpdFWzc2a81AODjrWeUaUJXJmepYkK8rbbRelNE+GsR4uMJg1HgZLpjs95VK/8CLa5nUEX1YVDlBn48lAohTNtOtA6yzQemJEnoaM5WudsKQINRYPsZ0wew0wZVAddeAZhsDoZb+kbK13JdhxBoVBIu5hTjYk6R0k6hW7WgSi5Yzy4sx6LNZxw1VKuRA8cukY7LUgGm9xE5eJXH5AgGo8ChS3kALIvUgaqaquzCchS1sBWg1HwMqtzAmgOXAQAT+7Sy6fN0klcAullQdeRyPvKKK+Cn1aC3eem1s4lqwFY17tb4sy6+Wg36mjf6XXMgFRn6MkgS0LlawOGpUWH+2K4AgGV/nMd5F+/PpgRVDpz6k8lBlRzMOsKpjAIUlxvgq9Uo7WJkAV4eCPQ21VilXGG2iiwxqHJB+cUVOJHesG9xx1P1OJFeAE+1CmN6RNl0XHHmYvVTblasLtdTXd8xFB5W2k/R2pRC9foyVZz+U8i1h/IqtFjz5svV3RgfjuGdw1BhEHjt5+P2HqJVyS0jqk9xOopcu1a9i72t7TiTjX6vJmLhxlMQQihTf73aBECtqtkeRZkCZK8quopzfgJQndLyS3D7kh2499NdDVrSu+agKUt1U5dwBHh5XOPo5pG3qznjZpkqZ6+nAqq6qqfllUKImttrFJZVIrvQ1BuorZtnqgBgiLmuKtfcL6muYOP5sV2hUUnYmJSpBNeuprzSiDPmL0LO0LS2W7SpfUFSWgEMdtgKRgiBN385iZyicizceBrPrzmKvRdNNahXF6nL2rCuiurAoMrF+Go10KgkZBeWY/qy3fU2yTMYBf5nDqom2HjqD6hqAHouu9BtVgDml1TfT9G5+lNVF2muqSqpMCCvuGZhtRygB3p7WCwfd1c9WgVYfAmpq81Ax3BfTBsUCwB459eT9hia1Z3JLESFQcBfp0ErJ+hP1i7UB14eapRUGOwyrbrnwhUcSsmDh1qCJJmaj/6w3/S+eXWRuqwte1VRHRhUuRg/nQc+nzEQ0QE6nMsqwkNf7q1z6fGf53KQoS9DgJcHhne2fRalVaBXtRWA7vFms+NMNgxGgQ5hPjZbBGANOg81Qn1NrR5qmwKU/73cpZP6tahVEoZ0rAqS65sW++sN7QAAR1P1Dm8D0BTV66mcYScAtUpCvDljZo9i9aXmTZzv6NcGH07pAw911Tmoq0aSKwCpLgyqXFBkgA6fPzAQfjoN9l68grnfH6x1x3T529atPaOg1Vi/4efVqu8BeDrDPeqqjlw2FdNe1z7EwSO5tuh6itXdbc+/hrihWk+3bvUUcEcF6OCv08BgFDiX5XoF60lOVKQukzODti5WP5tViI1JGZAkU3B8a89ofHb/APhpNRgQG4QQX22t92NQRXVhUOWiOkX4Yel9/eGpVmHdkfQa2zrkFZdjw1FTV2Jbr/qrLs7N2irkmOuQIu28AW1TRNXTVqGqSN3x0z/O4sb4cPhqNegc4VfvBsOSJKFzpHmbJhdcpKE0N3WCInWZXFdVvVi9vNLY4AU6DSVv3jyiSwQ6hJm+EN4QF4Zdz92Ebx66rs77KdN/V0pq/UJL7otBlQsb1CEEz9/aBQCwaPMZFFbrmfLx1rMoKjcgPtIP/WLst0FqJzfbrianyLRNSbCv83VRv5rcVb22BqBy7UqMm/eoqi7CX4df5wzFtzPr/nCVyV8mHN2wsrGEEEhKd+z2NLWRe4IdT9UrCyvmfn8Qoxf+rtSJNldWQRlWmbP5M4e2t7jN21MDTT0reaMCdFCrJJRXGpHZgrYqouZjUOXi7hnYFu1CfZBTVI7Ptp8HYMpEfL7jAgDg6dHxdq2TiAt3r42Vc8wLBUKccGuaq8lFyOevmqLK0Jfiz3Pm1U51FOa6q+hALwQ14N+2s5Khda2gKl1firziCmhUUo1+TI7UOdIPapWEnKJyZBaUYc+FXKw9bMq8/3vbuVpXsDbWf3deQHmlEb3bBKJ/I794atQq5e9JzvIevZyPtYdTUekmi3SodgyqXJxGrcLcmzsBMBVc5haV44NNp1FWacTA2GC7FKhXJ78xn88usstyaEeTl9wH+9Ree+FM5LqvzScyLaYAv9+TAoNRoH9MkJJxocbp5KLT3vL0WocwX5tstN5UOg81OoSZsqZHL+fj9XVJym3H0/TYe/FKsx7fYBT4dk8KAOChG9o36Ytn9bqqfRev4PaPd+DR5Qdw64fbsetcTrPGR66LQVULMLZHFLpF+6OwrBLP/nAY3++9BAB4+pbOdl/N0yrQC1qNCuUGIy65Qbfh3EI5qHL+TFWP1gEY2C4YlUahZDINRoFvdicDAKZe19aBo3Nt8rR3cm4xistdZ+uSqiJ15wum5enI9zedxoHkPHh7qjGiSwQAKL+/TbXzbA4yC8oQ6O2Bm7tGNOkx5H5uv53Kwl+/2IOySiMkCTiRXoDJS//EE98eQEm5660GpeZhUNUCqFQS5o3qDAD45VgGDEaBEV0i0C8m2CFjaRdq+obpiiuhGqOs0oACcx1bqAvUVAHA38y1I8v/TEZBaQW2ncpEan4pAr09cEt323bcb8lCfLXK74ArTX3Xtlm0s5CL1Q9fMq0AnDm0vZKV33A0vd59LK9Fboo8pkcUPDVN+xiUM1U/HkrFleIK9GwdgO1P/wVTE9pCkoD/HUzFsh3nmzxGck0MqlqIYZ3CMLCdKYiSJChBliPIq2jOZrnOh0tTXCkyNdFUqySXaZh5Y+dwdAjzQUFZJb7bk4Kv/zRlqe7o29qppn9cUScXrKs6lup87RRk1QO9MD8tHrqhPbpG+2Ngu2AYjEL53W2s0goDNhxNBwBM6N30ldHVt3NqG+yNz+4fgFaBXnhtYg/83Rz82XOrHXIODKpaCEmS8PzYLvDxVGPG4HbKEm9HaG+uhTjbwjNV8sq/IG9PqGrZH8wZqVQSHrrBlK1asu0ctpzMBABMSeDUX3O5WlCVX1KhNH3tbs4KOZPqqxHn3twJPua9F2cMjgUAfLM7uUHNVq8uat+UlInCskq0CvRqdIF6daZmqUCQtwe+eGAgQqv1tJJ/Fy7kOOd7YGmFAam1rAKm5mNQ1YL0bB2IY6+Mxgu3dXXoOOSg6lwLz1TJPapcYeVfdRP6tEKoryeyC8tgFMCg9iFKdpGaTv4gPeki03/HzI1rWwc1bIWjvQX5eGL2jR1w94A2uLNfa+X6m7tGIDpAh5yicmVFYF3WH0nDwNc34d1fTyrBlTz1d1uv6GZ9GWoX6oMfHhmMDU8OVUoeqt8GABeyi62yUtHaZn29Hze8taXWFiCr9l3CjrPZDhhVy8CgiqyuavrPOb+lWUvVyj/n+0Cqj85Djenm/eoA4B5mqayic2T9uwlkFpRi9MLfnGaPQHk3gB6tnC9LJZs3Kh5v3N7TomeURq3C1OtiAAA/7L9U5303JWXgsW8OIKugDB9sPoOlv51DXnE5tpqzsxP6RDd7fH3aBiGilsawbYK9IUmWG5U7i9MZBdh8IhMGo6gRPJ1ML8DfVxzCI1/td4vV27bAoIqsTv6Wll1YBn1pzc17Wwq5R5UrNP682r3XxSDMT4t2oT4Y1S3S0cNpETqae7Sl5Zciv6Tm7/2qfZdxIr0AK/fVHQjYkxxUdXfioKou8u/svotXUFZZcwpw++lsPPL1flQaBeLNpRAL1p/AnO8OosJgui4+0nZ1ZDoPdVVfODtsCt0Yy3dX1aJdnak6fCkPgGlq+Eyma2RcnQ2DKrI6P50Hwv1M9QUteQVgrrmmKtTFMlWAaWpl89+HYe1jQ5q8+oksBXh5KFsBnallR4F1R0xTVRn6UqdoECkXqTtzpqouHcJ8EOqrRVmlEYdSLPcH3HcxFw99uRfllUaM6haBtY8NUTqmbzmZBQAY34wC9YaqmgJs2nvgG+tP4Pk1R6w6fVhaYVD2hAWApKuCqqS0qp8PpjSvF5i74rsp2YQyBdiCv+24UuPP2vjpPJTiX7KOqu1qLH/vL+YUKZkhowAyHLy1ib60QsmguGJQJUkSEsyrna9utPnK2iSUVBgwrFMYPpjSBxq1Cs+Mjsekanugjuvd/Km/a4k1b05+vgnF6tmFZViy7Sy++jMZF3Jq9vurKygvqzQguZbjZeuOpCG/pAI+nqaVvqfSCyz2LpT7lgHAgeS8Ro+bGFSRjSjF6tktN6iSC9VdcfqPbKOzuQno1SsAfz5iWVCd5uCVV8cumz48WzVwGx5ndF17c1B1Ple5LjWvBIdS8iBJwL/u7AWtxhQ8qFQS3ryjJ/42rD1euLWrMjVnS7HNyFQdq9aK4fxV76FHL+ejx0u/Ytpnuy328Tx8KQ+jF/6OoW9vwYv/O4ryypqB1/Jdpqm/h4a2h1ajQkmFQdlmp/o+kABwMCWv0eO2t70XcrHKSabTZfyaSjbRXslUtdzpP1fa94/so662CuuuCqpS80vtNqbaHHWBIvVrSTBvu7T3Yi7KK43w1Kjw6zFT/6n+MUEI87PMIHuoVXj2li52G1+7UFMfq6bUVB1LrZrSPJdVhL/EV9227VQWSioM+O1UFka99xv+MaYL8ksq8M6vJ1Fpzjp9sfMijlzOx+KpfZWN1E9lFGDvxStQqyRMGdgWG5MycPSyHifSCxAb6qPsAylJgBCm4wvLKuHrhNns/OIKvLHhBL7ZnQydhwoD2wWjTbW+YY7ETBXZRAc3yFS56uo/sp3agqqLOUU4elkPtUrCDXGhAByfqVJW/rV23aAqLtwXwT6eKK0w4sjlPADABnNQ5QyLL9qFmr5YXsgpsphiawg5kwjUXEUtF5D7aTUoLKvEP1YfwZsbTqDSKDCmRyQ+mNIH/joN9ifn4dYPtmPhxlPYlJSBT38/BwC4KT4cEf46pVD/hDk7JTcqjQv3RatALxhFVeG6M/nxUCpuenersr3WhN6t4KdznsDPeUZCLYpcU3UhuxgGo4DaRZpjNkZOoakuhpkqksWZp/+yC8tx6UoxWgd5K1N/gzuEoHurAPx+OhtpTpKpcsWVfzK5rmr90XT8eS4X7UJ9sds8FegMQVXrIC+oVRJKK4zIKChVMkYNcdQiU2X5xVQO2N++sycuXSnB27+chFol4aXbuuHO/q0hSRJ6tw7E377ah6Q0PRZuPG1xf7mFirwqUl4BWLUPpD8qjQKX80pwMCUPgzuENvKV287vp7Pw+DcHAAAdw33x+sQeyk4izoJBFdlEdKAXPDUqlFeaNlaOCfG59p1cSIXBCH2pad+/EF/XLFQn6/P21KBbtD+Opepx15Kd+Pd9/fGzuUHl2B5RqDAXGF92YKaqoLQC58xTUt2dcM+/xqgKqnIQ5qeFUZg6sTvDVJCHWoU2QV64kFOM89lFDQ6q9KVVne4BKP9WgGkDdDlT1TnSH6O7R2FCn1ZQSZJFxrxtiDdWzxqMFXtTcCA5D0cu5+NsViG6RQdgaFyY+f5XB1Wm/3aJ8odGJeHnw2lOV6y+8XgGAGB0t0i8P6W3UjPnTBhUkU2oVRLah/rgRHoBzmUVtbig6op56k8lAYFerrHvH9nHB1P64KEv9uJcdhFuX7ID5ZVGqFUSRnaLxP6LpmXqzdkMuLnkIujoAJ3LfyGQ66r2XbwClWTKho/u7vgslSw21AcXcopxIbsYgzs07D7yNFywjydyi8qRVVCGgtIK+Ok8cPlKCcrM9WPy3oOhdfwb6jzUuG9QLO4bZPq5tMIAT7VK6SIvT/+dzylCSbnBIlMlrw48mJIHIQQkyTlmGvZcMP393NYr2ikDKoA1VWRDVXsAtry6KrlI3ZX2/SP76BDmizWPXo+b4sOVFViDO4Qg2McTUYGmPlZpeY6b/msJU3+yzhF+CPT2QHG5AdtOmXpQOcPUn0xuq9CYPQDloLdftWJ7ud+fPPXXIcy30SUVOg+1xXtVmJ8WIT6eEAI4dClPaf3QJcoP3VsFQKOSkFVQ5tCsanUFpRVK/Vf/2Kbv2WhrDKrIZtqHttztalikTvXx13ngk2n98cRNcQjx8cQDQ9oBAKLNU0A5ReUWmwFnF5bh+z0ptXYHt7aWsPJPplJJGBhbVVMTG+KNThHOs4+l3AC0MSsA5T0Zu0cH1Lj/afPUX1y4dV5jfJRpCvDHQ6kQAgj19US4nw46DzW6mDe0dpbWCgeS82AUQNtg71q3BnIWDKrIZjqEt9yNlbPNReoMqqguKpWEOTd3wr75N+PGzuEAgEBvD+g8TG+76dWK1d/59RT+b9VhvLne9vsCKtvTuPDKv+rkKUAAGNU90mmmqoCaQZXRKHDff3ah36uJeOnHYxatE2Rypqp7K/+qVdTm99DT5k791gqqOkeYAie57k8OpACgT9tAAMBBJ6mr2nvBtAihf4zzZqkABlVkQ+6QqQph409qBEmSEG1uPJlara7qQLKpVuSrXRctgq36FJVVIvF4hvK7eC1CCHy3J1kpfG4JmSqgqgko4FxTf0BVUJWcY1oF/fORNPx+Ohs5ReX4fMcFjP1gO8Yt2q50QS8pNyiBU7fogKr3UPO/mVykLnfuby45UyXvVdm1WlDVu00gAOBAHZmqUxkFypdLe5DrqfrHOtdqv6s5PKhavHgxYmNjodPpkJCQgN27d9d7/IoVKxAfHw+dTocePXpg3bp1NY5JSkrCuHHjEBAQAB8fHwwYMADJyVWbSP7tb39Dhw4d4OXlhbCwMIwfPx4nTpyweIzk5GSMHTsW3t7eCA8Px7x581BZWWmdF+0m5Jqq7MKyWjeYbagNR9Pr3XrBETj9R00lTwHKdVWlFQblw7K80oiPtp6p9/6peSVYsD4J1y3YhIe+3Isnvj1wzedMyy/B/cv24OlVRyCEafVUXQXOrqZLpD9Gdo3AyK4R6N060NHDsRAd6AVPtQrlBtMq6PcSTwEAJvVthbE9ouChlnD4Uj6e/99RAKaeUUbzNFyEv7ZqZ4osU6+r0xlyUGWl6b9Iy+DMMlNlyggdvZxfozv7qYwCjHn/dzz05V6rjONaKgxGHDDvRTjAieupAAcHVd999x3mzp2LF198Efv370evXr0watQoZGZm1nr8jh07MGXKFDz44IM4cOAAJkyYgAkTJuDo0aPKMWfPnsWQIUMQHx+PrVu34vDhw5g/fz50uqo52H79+mHZsmVISkrCL7/8AiEERo4cCYPBVM9gMBgwduxYlJeXY8eOHfjiiy/w+eef44UXXrDtCWlh/HQeiDTPfX/158UmPcYfZ7Lx8Ff78MR31/7gsKeqbuot44OJ7EfedDnVXAB8JrMQlUYBjbmI+NvdKXUWB3+2/TxueGsL/r3tHArMLT22n8lWHqs2f5zJxsj3fsO2U1nw1Kjw3JguWDy1rzVfkkOpVBKWTuuPpdP6O92iEbVKQptgUxD9buIpnMsuQpC3B14e1w2Lp/bFhieHwkMt4bdTWfj9dJYy9dc1OgCSJCk7U5zPLsSlKyUoMa/gi7FSy4i4cD9UP2XVg6rYEG8EenugrNJYY5pyw9F0VBoFDqbkoajM9smGY6l6lFYYEejtofRAdFYODareffddPPTQQ5gxYwa6du2KJUuWwNvbG5999lmtx7///vsYPXo05s2bhy5duuDVV19F3759sWjRIuWY5557DmPGjMFbb72FPn36oEOHDhg3bhzCw8OVY2bOnImhQ4ciNjYWffv2xT//+U+kpKTgwoULAIBff/0Vx48fx1dffYXevXvjlltuwauvvorFixejvLxhqXYymf2XjgCAt385iR8PpTb6/nvNKd9DKXkoKG16tsvacgs5/UdNE6VM/5kyVfIS+oT2wRjUPgTlBiMWb6mZrfrtVBZe/fk4DEaB69oH49Np/TEwNhhCAGsOXq71uX4/nYUHPt+DgtJK9GoTiHWP34CHhrZvkc14nZU8Bfi/g6b3v1nDO8JPZ2rD0iHMF/deFwMAeH3dCRy5JBepm4KbNkFe0JgbiP522rS6sX2YDzRq63x0e3mqlRWKnmqVkhkDTFPVgzuY6tU2JmVY3G/rSVPiQ4iqjuy2VL2eytkC56s5LKgqLy/Hvn37MGLEiKrBqFQYMWIEdu7cWet9du7caXE8AIwaNUo53mg04ueff0anTp0watQohIeHIyEhAWvWrKlzHEVFRVi2bBnatWuHNm3aKM/To0cPREREWDyPXq/HsWPH6nyssrIy6PV6i4u7u++6GDxoXvn01PeHsOtcDnIKy/DlzguY/tlufL2r/gyW3FnYKEy9aJwFp/+oqaLNmSq5V9Vxc3+grlH+mHNzJwDA93tSkJJbNeV96Uoxnvj2AIQA7h7QBt/OHIQRXSMwqW8rAMDq/ZchhOVWKL+dysJfv9iLskojRnQJx/d/uw4drVTgTA0nB1UAEOGvxX2DYixuf/wvcfDTaZCUpsfqA6bguFu0qd5No1ahbYgpK/WLeQsea/8byk1A4yJ84XFVsCbXqP1yrCqoulJUbrEi8Hiq7T/n9piDqn4xzl1PBTgwqMrOzobBYLAIXAAgIiIC6enptd4nPT293uMzMzNRWFiIN954A6NHj8avv/6KiRMnYtKkSdi2bZvF/T766CP4+vrC19cX69evR2JiIjw9Pet9Hvm2uixYsAABAQHKRQ7S3N1zY7pgdLdIlBuMuH/ZHgx8fRNe+N8xbDuVhQXrTihdpmsjLy8GqrJWziC7iKv/qGnkTJVcU3VcmfLxx8B2wbghLhSVRoGHv9qHNQcuQ19agdlf78eV4gr0aBWAl8Z1Ux7rlh5R8NSocDqzUJk6AoDtp7Px1y/lgCoCi6f2ddpmiS1dbLWg6tG/xEHnYfnvEOTjiVnDTRn9cvN7YfdWVdNwcrH6zrM5AKr2l7SWXuaCdLkwvbob48PhoZZwJrNQ6Tf42+ksVN/K8JiNgyohhPLe7+z1VIATFKpbk9Fo+oUcP3485syZg969e+OZZ57BrbfeiiVLllgcO3XqVBw4cADbtm1Dp06dcNddd6G0tHkN+Z599lnk5+crl5SUlGY9XkuhUklYeHdv9GkbiJIKAwxGgR6tAuCnM20IWtdWCDmFZcoUCQDsNn9bcQa5rKmiJpIzVan5JTAaRbVMlSk78X+j4qHzUOFYqh5PfncQ/V5NxKFL+Qjw8sBHU/tafCgHeHng5i6mL3xyliMltxizvt6H8kojbu4agY8YUDmUvMqybbA3Jvev/Yv2jOtjld8LP60GbYKqaqbktgqV5kjGWu0UZPcPjsU/J3TH30d2rnGbv84D15lbVvxqzlZtO2mahow1Z9Dk39+mMhoFdpzNxuvrkmqdjbiQU4yconJ4alQusQG4w4Kq0NBQqNVqZGRYztVmZGQgMrL2ZbGRkZH1Hh8aGgqNRoOuXbtaHNOlSxeL1X8AEBAQgLi4OAwdOhQrV67EiRMnsHr16nqfR76tLlqtFv7+/hYXMtF5qPHFAwPx1u09senvw/DTY0OU3j2/mTshX+2o+RuQr9a0m9LBlDy7NEcETCsWn/3hiFLjUF2lwYi8YlN9FzNV1FhypqqgtBJJ6XoUllXCU1NVz9KjdQC2PDUcc0Z0QqtAL1QYBCQJWHh371r3tJvYxzQF+L+DqSgpN2D28v3Ql1aiT9tALL6nLzw1Leq7s8vp2ToQ/31wIL7723V1/lvoPNR4+pZ4AKbauup1Q9XrnADrrfyr/tz3XhdT53tZ1RRgOoxGoXSuf2S4ad+dE+kF9c421EVfWoEPNp3GsH9twT2f7MLS387hmVWHaxwnT/31ah3gEl8OHPbX5unpiX79+mHTpk3KdUajEZs2bcKgQYNqvc+gQYMsjgeAxMRE5XhPT08MGDAAJ09aNtA7deoUYmIs57GrE0JACIGysjLleY4cOWKxCjExMRH+/v41AjZqOH+dB+4a0EZZvTG0k2ljT7kA82py5+fhncMQ6uuJ8kpjrUEOYFpJ9cS3B7D5REattzfWJ7+fwze7kzHj8z3IKrDsxXLFHFBJEhDkzX3/qHF8tRr460xfFDYlmd5jOkf4WdSzRAV44YkRcfjt/27E139NwPd/G6R8Cbna0E5hCPL2QHZhGaZ88icOX8pHoLcHFjGgcho3xIVdc0Pl8b1bYfWswXj7jl4W17evttrNQy3ZfR/VkV0jIEmmL7UbkzKQU1QOX60GE/q0gq9Wg/JKo7KNTmMsWJeEdxNPISW3BH5aDdQqCaczC2u0z9l93lyk7uT9qWQO/YubO3cuPvnkE3zxxRdISkrCI488gqKiIsyYMQMAMG3aNDz77LPK8U888QQ2bNiAd955BydOnMBLL72EvXv34tFHH1WOmTdvHr777jt88sknOHPmDBYtWoSffvoJs2bNAgCcO3cOCxYswL59+5CcnIwdO3bgzjvvhJeXF8aMGQMAGDlyJLp27Yr77rsPhw4dwi+//ILnn38es2fPhlbL6R5rGRoXCsDU4bm2BobyMt4erQLQ31yguKeWuqorReW47z+78L+DqViw7kSN25ti6wlToJddWIa/rzgEY7UiAnmsgV4eVluFQ+5FbgAqr6rqFl17VlutknB9x1AMqOcDxVOjwm29ogFUbSny3uTeaBVY/4c4OZ8+bYMQdFXGqH21mqx2oT41isltLdxfhz7meqtX1h4HAAzpGAqtRq00C62tM/y17DpnCpaeGtkJu58boXRKr/7FuMJgxCbz38j1HUKb/BrsyaGfCJMnT8a//vUvvPDCC+jduzcOHjyIDRs2KEXhycnJSEtLU44fPHgwli9fjqVLl6JXr15YuXIl1qxZg+7duyvHTJw4EUuWLMFbb72FHj164NNPP8WqVaswZMgQAIBOp8Pvv/+OMWPGoGPHjpg8eTL8/PywY8cOpe2CWq3G2rVroVarMWjQINx7772YNm0aXnnlFTuenZYv3F+H+Eg/CGFa+n21o5fl7RoCMKCdHFRZ1lUVlVVixud7lK7tpzMLa2SWGutyXglOZhRAJQFajQq/ncrCp9vPKbfnsEidmknuVXXYnHntWkdQ1VDyFCAAzL6xQ51ZLXI9wT6eSmYzLty6ReoNJU8BXrpiWrE6vLNplkH+vW3sCsC84nKls//UhBh4eapxUxfT7+ymE1UzRH+cycaV4gqE+npadM53ZhpHD+DRRx+1yDRVt3Xr1hrX3XnnnbjzzjvrfcwHHngADzzwQK23RUdH19qF/WoxMTENOo6aZ1inMJxIL8Bvp7IxvnfVB0N+cQWSzUvKu0X7w8/8prL3Qi6MRgGVSkJ5pRGPfL0fB1PyEOjtAR9PDS7nleDPcznKN/er5RWX48PNZzCuV7Sy6uVqcg+Wvm2DMLFvKzy3+ije2nASCe1C0KtNIIvUqdmirsoiVd8epCl6twnE/YNjUW4wYs6ITs16LHIuchPQgyl5Vq+naqiR3SKxYH3VLMBwc9AuB1WNXQEoZ1RjQ7yVzNxf4iPw+roT2HUuF0VllfDRavDTIVNSZUyPKJeZFXCNUVKLJddV/X46y6LPzrE00zf41kFeCPT2RNcof/h4qqEvrcSpzAIYjQJPrTiE305lwctDjc/uH4DR3U3fpnaYlx7X5rk1R/Gf7efx4Bd7kVPHvlVbzFN/N8aH456BbTGmRyQqjQKPfXMABaUVyClkjypqHnmllyy+mUGVJEl4aVw3vD6xh8t8+FDDjewWAa1GpQQz9tYu1AedzAFdfKQfIs2/v/KXgeNp+hp90uojB1XyVjiAaZVj22BvlBuM2H4mG6UVBvxq7s1V15dkZ8S/PnKo/rFB8PJQI7OgDCfSC5Trj8lTf9Wa4PU1z7nvOZ+LV9Yex4+HUqFRSfj43r7o2zZI6f6782x2rc+VeDxD2Y1dXt139RtBWaUBO8z3H9YpDJIkYcGknmgV6IXk3GI8t/qoskVNMLupUxNVL1qODfFWVrgS1WbW8I44+vKoWntJ2cukvq0BWAY4nSL84KGWkF9SUefWSrWR2+j0aRuoXCdJEv4SbwoaNydlYtupLBSUVSIqQId+bZ2/P5WMQRU5lFajVubKq7dWkDupV2+CJxerL9x4Gp/vuAAAeOeuXsq3t4HtgqFWSbiQU1zjD7ygtALz15j2iLyleyQ81BJ+PZ6BlfsuWRy35/wVFJcbEO6nVYqHA7w88MGUPlCrJPx4KBWrzPcJZaaKmii62vRfc+upyD3Yu0D9ajNvaI/Vswbj4WEdlOs8NSp0NNd5NbSuSgihZKquDhLloGrLyUxlW7Nbe0Y5/dY01TGoIoe7Ia5mawW5nUK3VlXN3ga0M31bkTNFL97W1aIOy0/nge7m43deNQX41oaTSNeXIibEG+9N7q1sB/LyT8cttgPZYq6nGt7ZlKWS9YsJwlzzfeSAjdN/1FTRgVXTf82tpyKyB5VKQp+2QTX2jZS/fDa0Cej57CLkl1RAq1EhPtLydz+hfTC8PU0zF+uPmGYVXGnqD2BQRU5Arqvac/4KzmQWoKisUlkZIk//AUCfNkFK351Hb+yIGde3q/FY8hTgjmpTgHsu5OK/f5r2GFwwqQd0Hmr8bWgH9I8JQmFZJR795gCumAM1OaiqbfXUI8M64PqOIcrPwb4sVKemiaxWU9Ut2vm7RBPVpaqtQs2gKj2/FOMWbcd7iaeU6+Spvx6tAmr0UdNq1LjB3GrHKExd6Hu0cq2/DwZV5HAdwnwQH+mHcoMRt364Ha+tS4IQps1Hw/yqAhcvTzU+uqcvXp/YA38fWfsKJzmo+vNsDoQQKCyrxFMrDgEwbUQ72NzrRK2S8N7k3vDTanAoJQ/jF/+BxOMZOJdVBI1KwvVxNXuiqFQS3rurN0LMGaqYWrpbEzWE3OPHx1Pt0DoZoubqVk9bhfc3ncbhS/n4cPNpXMwxfVGua+pPJk8BAsBtvaIsZgxcAYMqcjhJkvDFAwNxQ1woSiuMWL7LtKVQ91q+wY/oGoF7EtrW+YfWPyYYHmoJqfmluJhTjBf/dwwXc4rRKtALz47pYnFsm2BvrHhkENoEm4rQH/pyr+kxYoPgr6u9U3q4vw6rZ12PJff2rbMlA1FDrHh4ELb93401mj0SuZIu5qDqcl6JxYrqlNxirNhr2v/WKICPtpwFABxIMTVw7lNH8fmNncMhv73f2tO1pv4ABlXkJCL8dfhixkC8eFtXJSXclKDFy1Ot/LG+8OMxrNp/CSrzvmkBXjUDpfhIf/w4e4iS4QJwzWXLbUO8Mbp7VKPHRlSdj1aDUE4hk4vz13kgPtJUrP7ij8eUFdWLNp9BpVGgnbkj/Kr9l3AmsxBJaaZV3tVX/lUX7q/D23f0wqsTuqOLC9YbMqgip6FSSZhxfTv8/NgQzBvVGdMG1b1fY30GmXdVl1cTPvqXuHq3+Qjy8cSXDwzEw8M6oFebQEyq1p2aiIjq99rEHtCoJKw9nIblu5NxMacIK/ebVkn/685eGNwhBJVGgTnfHYTBKBDup1V2FajNHf1a477rmvb+72hsjkJOJy7CD3ERTd+OYXCHELy/6TQAoG/bQDz+l47XvI9GrcIz5l3iiYio4frFBOHp0fF4bV0SXv7pOPq2DYTBKDC8cxj6xQThsb/EYcfZHBwxr+ru0zbQ5WqlGoqZKmpxercNRFSADoHeHnj/7j7sME1EZGN/vaEdbooPR3mlEX+aN0t+0rxl0nXtg5UNk4G666laAn7aUIuj1aix4Ymh2Pz34WjDFXpERDYnSRL+dWcvZQumm+LDlRV+kiThsZvilGNb8opXTv9RixTgXfvqPSIiso0gH098NmMAlm2/gMdusiy7GBoXigm9o5GhL6uzSL0lkERjdkGkRtHr9QgICEB+fj78/V1vFQMREZE7aurnN6f/iIiIiKyAQRURERGRFTCoIiIiIrICBlVEREREVsCgioiIiMgKGFQRERERWQGDKiIiIiIrYFBFREREZAUMqoiIiIisgEEVERERkRUwqCIiIiKyAgZVRERERFbAoIqIiIjIChhUEREREVmBxtEDaMmEEAAAvV7v4JEQERFRQ8mf2/LneEMxqLKhgoICAECbNm0cPBIiIiJqrIKCAgQEBDT4eEk0NgyjBjMajUhNTYWfnx8kSbLa4+r1erRp0wYpKSnw9/e32uO6Gp6HKjwXJjwPJjwPVXguTHgeTBp6HoQQKCgoQHR0NFSqhldKMVNlQyqVCq1bt7bZ4/v7+7v1H4eM56EKz4UJz4MJz0MVngsTngeThpyHxmSoZCxUJyIiIrICBlVEREREVsCgygVptVq8+OKL0Gq1jh6KQ/E8VOG5MOF5MOF5qMJzYcLzYGLr88BCdSIiIiIrYKaKiIiIyAoYVBERERFZAYMqIiIiIitgUEVERERkBQyqXNDixYsRGxsLnU6HhIQE7N6929FDsqkFCxZgwIAB8PPzQ3h4OCZMmICTJ09aHFNaWorZs2cjJCQEvr6+uP3225GRkeGgEdvHG2+8AUmS8OSTTyrXuct5uHz5Mu69916EhITAy8sLPXr0wN69e5XbhRB44YUXEBUVBS8vL4wYMQKnT5924Ihtw2AwYP78+WjXrh28vLzQoUMHvPrqqxb7lbXEc/Hbb7/htttuQ3R0NCRJwpo1ayxub8hrzs3NxdSpU+Hv74/AwEA8+OCDKCwstOOraL76zkNFRQWefvpp9OjRAz4+PoiOjsa0adOQmppq8Rgt4TwA1/6dqO7hhx+GJElYuHChxfXWOBcMqlzMd999h7lz5+LFF1/E/v370atXL4waNQqZmZmOHprNbNu2DbNnz8aff/6JxMREVFRUYOTIkSgqKlKOmTNnDn766SesWLEC27ZtQ2pqKiZNmuTAUdvWnj178O9//xs9e/a0uN4dzsOVK1dw/fXXw8PDA+vXr8fx48fxzjvvICgoSDnmrbfewgcffIAlS5Zg165d8PHxwahRo1BaWurAkVvfm2++iY8//hiLFi1CUlIS3nzzTbz11lv48MMPlWNa4rkoKipCr169sHjx4lpvb8hrnjp1Ko4dO4bExESsXbsWv/32G2bOnGmvl2AV9Z2H4uJi7N+/H/Pnz8f+/fvxww8/4OTJkxg3bpzFcS3hPADX/p2QrV69Gn/++Seio6Nr3GaVcyHIpQwcOFDMnj1b+dlgMIjo6GixYMECB47KvjIzMwUAsW3bNiGEEHl5ecLDw0OsWLFCOSYpKUkAEDt37nTUMG2moKBAxMXFicTERDFs2DDxxBNPCCHc5zw8/fTTYsiQIXXebjQaRWRkpHj77beV6/Ly8oRWqxXffPONPYZoN2PHjhUPPPCAxXWTJk0SU6dOFUK4x7kAIFavXq383JDXfPz4cQFA7NmzRzlm/fr1QpIkcfnyZbuN3ZquPg+12b17twAgLl68KIRomedBiLrPxaVLl0SrVq3E0aNHRUxMjHjvvfeU26x1LpipciHl5eXYt28fRowYoVynUqkwYsQI7Ny504Ejs6/8/HwAQHBwMABg3759qKiosDgv8fHxaNu2bYs8L7Nnz8bYsWMtXi/gPufhxx9/RP/+/XHnnXciPDwcffr0wSeffKLcfv78eaSnp1uch4CAACQkJLSo8wAAgwcPxqZNm3Dq1CkAwKFDh7B9+3bccsstANzrXMga8pp37tyJwMBA9O/fXzlmxIgRUKlU2LVrl93HbC/5+fmQJAmBgYEA3Os8GI1G3HfffZg3bx66detW43ZrnQtuqOxCsrOzYTAYEBERYXF9REQETpw44aBR2ZfRaMSTTz6J66+/Ht27dwcApKenw9PTU3mjkEVERCA9Pd0Bo7Sdb7/9Fvv378eePXtq3OYu5+HcuXP4+OOPMXfuXPzjH//Anj178Pjjj8PT0xPTp09XXmttfyct6TwAwDPPPAO9Xo/4+Hio1WoYDAa89tprmDp1KgC41bmQNeQ1p6enIzw83OJ2jUaD4ODgFnteSktL8fTTT2PKlCnKRsLudB7efPNNaDQaPP7447Xebq1zwaCKXMrs2bNx9OhRbN++3dFDsbuUlBQ88cQTSExMhE6nc/RwHMZoNKJ///54/fXXAQB9+vTB0aNHsWTJEkyfPt3Bo7Ov77//Hl9//TWWL1+Obt264eDBg3jyyScRHR3tdueC6lZRUYG77roLQgh8/PHHjh6O3e3btw/vv/8+9u/fD0mSbPpcnP5zIaGhoVCr1TVWc2VkZCAyMtJBo7KfRx99FGvXrsWWLVvQunVr5frIyEiUl5cjLy/P4viWdl727duHzMxM9O3bFxqNBhqNBtu2bcMHH3wAjUaDiIgItzgPUVFR6Nq1q8V1Xbp0QXJyMgAor9Ud/k7mzZuHZ555BnfffTd69OiB++67D3PmzMGCBQsAuNe5kDXkNUdGRtZY3FNZWYnc3NwWd17kgOrixYtITExUslSA+5yH33//HZmZmWjbtq3y3nnx4kX8/e9/R2xsLADrnQsGVS7E09MT/fr1w6ZNm5TrjEYjNm3ahEGDBjlwZLYlhMCjjz6K1atXY/PmzWjXrp3F7f369YOHh4fFeTl58iSSk5Nb1Hm56aabcOTIERw8eFC59O/fH1OnTlX+3x3Ow/XXX1+jpcapU6cQExMDAGjXrh0iIyMtzoNer8euXbta1HkATCu8VCrLt3G1Wg2j0QjAvc6FrCGvedCgQcjLy8O+ffuUYzZv3gyj0YiEhAS7j9lW5IDq9OnT2LhxI0JCQixud5fzcN999+Hw4cMW753R0dGYN28efvnlFwBWPBdNr68nR/j222+FVqsVn3/+uTh+/LiYOXOmCAwMFOnp6Y4ems088sgjIiAgQGzdulWkpaUpl+LiYuWYhx9+WLRt21Zs3rxZ7N27VwwaNEgMGjTIgaO2j+qr/4Rwj/Owe/duodFoxGuvvSZOnz4tvv76a+Ht7S2++uor5Zg33nhDBAYGiv/973/i8OHDYvz48aJdu3aipKTEgSO3vunTp4tWrVqJtWvXivPnz4sffvhBhIaGiv/7v/9TjmmJ56KgoEAcOHBAHDhwQAAQ7777rjhw4ICyqq0hr3n06NGiT58+YteuXWL79u0iLi5OTJkyxVEvqUnqOw/l5eVi3LhxonXr1uLgwYMW751lZWXKY7SE8yDEtX8nrnb16j8hrHMuGFS5oA8//FC0bdtWeHp6ioEDB4o///zT0UOyKQC1XpYtW6YcU1JSImbNmiWCgoKEt7e3mDhxokhLS3PcoO3k6qDKXc7DTz/9JLp37y60Wq2Ij48XS5cutbjdaDSK+fPni4iICKHVasVNN90kTp486aDR2o5erxdPPPGEaNu2rdDpdKJ9+/biueees/jQbInnYsuWLbW+J0yfPl0I0bDXnJOTI6ZMmSJ8fX2Fv7+/mDFjhigoKHDAq2m6+s7D+fPn63zv3LJli/IYLeE8CHHt34mr1RZUWeNcSEJUa71LRERERE3CmioiIiIiK2BQRURERGQFDKqIiIiIrIBBFREREZEVMKgiIiIisgIGVURERERWwKCKiIiIyAoYVBER2ZEkSVizZo2jh0FENsCgiojcxv333w9JkmpcRo8e7eihEVELoHH0AIiI7Gn06NFYtmyZxXVardZBoyGiloSZKiJyK1qtFpGRkRaXoKAgAKapuY8//hi33HILvLy80L59e6xcudLi/keOHMFf/vIXeHl5ISQkBDNnzkRhYaHFMZ999hm6desGrVaLqKgoPProoxa3Z2dnY+LEifD29kZcXBx+/PFH275oIrILBlVERNXMnz8ft99+Ow4dOoSpU6fi7rvvRlJSEgCgqKgIo0aNQlBQEPbs2YMVK1Zg48aNFkHTxx9/jNmzZ2PmzJk4cuQIfvzxR3Ts2NHiOV5++WXcddddOHz4MMaMGYOpU6ciNzfXrq+TiGygSdtBExG5oOnTpwu1Wi18fHwsLq+99poQQggA4uGHH7a4T0JCgnjkkUeEEEIsXbpUBAUFicLCQuX2n3/+WahUKpGeni6EECI6Olo899xzdY4BgHj++eeVnwsLCwUAsX79equ9TiJyDNZUEZFbufHGG/Hxxx9bXBccHKz8/6BBgyxuGzRoEA4ePAgASEpKQq9eveDj46Pcfv3118NoNOLkyZOQJAmpqam46aab6h1Dz549lf/38fGBv78/MjMzm/qSiMhJMKgiIrfi4+NTYzrOWry8vBp0nIeHh8XPkiTBaDTaYkhEZEesqSIiqubPP/+s8XOXLl0AAF26dMGhQ4dQVFSk3P7HH39ApVKhc+fO8PPzQ2xsLDZt2mTXMRORc2CmiojcSllZGdLT0y2u02g0CA0NBQCsWLEC/fv3x5AhQ/D1119j9+7d+M9//gMAmDp1Kl588UVMnz4dL730ErKysvDYY4/hvvvuQ0REBADgpZdewsMPP4zw8HDccsstKCgowB9//IHHHnvMvi+UiOyOQRURuZUNGzYgKirK4rrOnTvjxIkTAEwr87799lvMmjULUVFR+Oabb9C1a1cAgLe3N3755Rc88cQTGDBgALy9vXH77bfj3XffVR5r+vTpKC0txXvvvYennnoKoaGhuOOOO+z3AonIYSQhhHD0IIiInIEkSVi9ejUmTJjg6KEQkQtiTRURERGRFTCoIiIiIrIC1lQREZmxGoKImoOZKiIiIiIrYFBFREREZAUMqoiIiIisgEEVERERkRUwqCIiIiKyAgZVRERERFbAoIqIiIjIChhUEREREVkBgyoiIiIiK/h/AB6sqG1eUzwAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "plt.plot(history.history['val_loss'], label='test')\n", + "plt.title('Model Loss per Epoch')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Epoch')\n", + "plt.legend()\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "O5NpleLGSF4Q", + "outputId": "fac8838f-7092-4ff7-b1e3-09c476f9727a" + }, + "execution_count": 114, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHHCAYAAAC88FzIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFT0lEQVR4nO3dd3hUZdoG8HtKZtI7qQQSaqgJEIgoAkoAlRUFUURWMLryuYCIcV1kWUBX2YBrYUUW1oIFG4uABZUWQUUDQUKoIbQU0gukJzPJzPn+mJwJQxIIYTJnyv27rrk0M2fOvOcAyZPnfd7nlQmCIICIiIjIQcmlHgARERGRlBgMERERkUNjMEREREQOjcEQEREROTQGQ0REROTQGAwRERGRQ2MwRERERA6NwRARERE5NAZDRERE5NAYDBGRkUwmw4svvnjD78vKyoJMJsOHH35o9jGRdXrxxRchk8lQWloq9VCIbhqDISIr8+GHH0Imk0Emk2H//v0tXhcEAWFhYZDJZPjDH/4gwQg7bt++fZDJZPjyyy+lHorVE4ONth6FhYVSD5HIbiilHgARtc7Z2RmfffYZRo0aZfL8Tz/9hNzcXKjVaolGRpa0bt06uLu7t3je29vb8oMhslMMhois1D333IPNmzfjrbfeglLZ/E/1s88+w7Bhwzg9YQdqa2vh6up6zWOmTZsGf39/C42IyDFxmozISs2YMQNlZWXYvXu38TmtVosvv/wSjzzySKvvqampwXPPPYewsDCo1Wr07dsXr732GgRBMDlOo9Hg2WefRZcuXeDh4YHJkycjNze31XPm5eXh8ccfR2BgINRqNQYMGIANGzaY70JbceHCBTz44IPw9fWFq6srbrnlFnz33XctjluzZg0GDBgAV1dX+Pj4ICYmBp999pnx9aqqKixcuBDh4eFQq9UICAjA+PHjkZqaes3PF6eoTp8+jYceegienp7w8/PDM888g/r6+hbHf/LJJxg2bBhcXFzg6+uLhx9+GBcvXjQ5ZuzYsRg4cCAOHz6M0aNHw9XVFX/72986eIeaiVOPmzZtwt/+9jcEBQXBzc0NkydPbjEGANi8ebNxrP7+/vjjH/+IvLy8FseJ196lSxe4uLigb9++WLJkSYvjysvL8dhjj8Hb2xteXl6Ij49HbW3tTV8XkSUxM0RkpcLDwzFy5Eh8/vnnuPvuuwEAP/zwAyoqKvDwww/jrbfeMjleEARMnjwZe/fuxRNPPIHo6Gjs3LkTzz//PPLy8vDmm28aj/3Tn/6ETz75BI888ghuvfVW/Pjjj5g0aVKLMRQVFeGWW26BTCbD/Pnz0aVLF/zwww944oknUFlZiYULF5r9uouKinDrrbeitrYWCxYsgJ+fHz766CNMnjwZX375JaZMmQIAePfdd7FgwQJMmzbNGKQcO3YMBw8eNAaLTz31FL788kvMnz8f/fv3R1lZGfbv34/09HQMHTr0umN56KGHEB4ejsTERBw4cABvvfUWLl++jI8//th4zIoVK7B06VI89NBD+NOf/oSSkhKsWbMGo0ePxpEjR0yms8rKynD33Xfj4Ycfxh//+EcEBgZedwyXLl1q8ZxSqWwxTbZixQrIZDIsWrQIxcXFWL16NeLi4pCWlgYXFxcAhnq0+Ph4DB8+HImJiSgqKsK///1v/PrrryZjPXbsGG6//XY4OTlhzpw5CA8Px/nz5/Htt99ixYoVLe5RREQEEhMTkZqaivfeew8BAQFYtWrVda+NyGoIRGRVPvjgAwGAcOjQIeHtt98WPDw8hNraWkEQBOHBBx8U7rjjDkEQBKF79+7CpEmTjO/76quvBADCK6+8YnK+adOmCTKZTDh37pwgCIKQlpYmABDmzp1rctwjjzwiABCWL19ufO6JJ54QgoODhdLSUpNjH374YcHLy8s4rszMTAGA8MEHH1zz2vbu3SsAEDZv3tzmMQsXLhQACL/88ovxuaqqKiEiIkIIDw8XdDqdIAiCcN999wkDBgy45ud5eXkJ8+bNu+YxrVm+fLkAQJg8ebLJ83PnzhUACEePHhUEQRCysrIEhUIhrFixwuS448ePC0ql0uT5MWPGCACE9evX39AYWnv07dvXeJx4T0NDQ4XKykrj8//73/8EAMK///1vQRAEQavVCgEBAcLAgQOFuro643Hbt28XAAjLli0zPjd69GjBw8NDyM7ONhmTXq9vMb7HH3/c5JgpU6YIfn5+7bpGImvBaTIiK/bQQw+hrq4O27dvR1VVFbZv397mFNn3338PhUKBBQsWmDz/3HPPQRAE/PDDD8bjALQ47uosjyAI2LJlC+69914IgoDS0lLjY+LEiaioqLjudFNHfP/99xgxYoRJ4bi7uzvmzJmDrKwsnDp1CoChgDg3NxeHDh1q81ze3t44ePAg8vPzOzSWefPmmXz99NNPG8cIAFu3boVer8dDDz1kcn+CgoLQu3dv7N271+T9arUa8fHxNzSGLVu2YPfu3SaPDz74oMVxs2bNgoeHh/HradOmITg42DjW33//HcXFxZg7dy6cnZ2Nx02aNAmRkZHGaciSkhL8/PPPePzxx9GtWzeTz5DJZC0+96mnnjL5+vbbb0dZWRkqKytv6DqJpMRpMiIr1qVLF8TFxeGzzz5DbW0tdDodpk2b1uqx2dnZCAkJMfmBCAD9+vUzvi7+Vy6Xo2fPnibH9e3b1+TrkpISlJeX45133sE777zT6mcWFxd36LquJTs7G7GxsS2ev/I6Bg4ciEWLFmHPnj0YMWIEevXqhQkTJuCRRx7BbbfdZnzPq6++itmzZyMsLAzDhg3DPffcg1mzZqFHjx7tGkvv3r1Nvu7ZsyfkcjmysrIAAGfPnoUgCC2OEzk5OZl8HRoaCpVK1a7PFo0ePbpdBdRXj0Emk6FXr17GsYp//lf/OQNAZGSksY3DhQsXAAADBw5s1/iuDph8fHwAAJcvX4anp2e7zkEkNQZDRFbukUcewZNPPonCwkLcfffdFltSrdfrAQB//OMfMXv27FaPGTx4sEXG0pp+/fohIyMD27dvx44dO7Blyxb85z//wbJly/DSSy8BMGTWbr/9dmzbtg27du3Cv/71L6xatQpbt2411mHdiKszI3q9HjKZDD/88AMUCkWL469eEi/W7tiT1q4bQIuifSJrxmCIyMpNmTIF//d//4cDBw5g06ZNbR7XvXt37NmzB1VVVSbZodOnTxtfF/+r1+tx/vx5kyxBRkaGyfnElWY6nQ5xcXHmvKRr6t69e4uxAC2vAwDc3Nwwffp0TJ8+HVqtFlOnTsWKFSuwePFi41RQcHAw5s6di7lz56K4uBhDhw7FihUr2hUMnT17FhEREcavz507B71ej/DwcACGTJEgCIiIiECfPn1u5rJv2tmzZ02+FgQB586dMwas4n3LyMjAnXfeaXJsRkaG8XUxa3bixInOHjKR1WDNEJGVc3d3x7p16/Diiy/i3nvvbfO4e+65BzqdDm+//bbJ82+++SZkMpnxh7/436tXo61evdrka4VCgQceeABbtmxp9QdjSUlJRy7nuu655x6kpKQgOTnZ+FxNTQ3eeecdhIeHo3///gAMK7OupFKp0L9/fwiCgIaGBuh0OlRUVJgcExAQgJCQEGg0mnaNZe3atSZfr1mzBkDzPZw6dSoUCgVeeumlFpkQQRBajLEzffzxx6iqqjJ+/eWXX6KgoMA41piYGAQEBGD9+vUm1//DDz8gPT3duJqwS5cuGD16NDZs2ICcnByTz2C2h+wVM0NENqCtaaor3XvvvbjjjjuwZMkSZGVlISoqCrt27cLXX3+NhQsXGmuEoqOjMWPGDPznP/9BRUUFbr31ViQlJeHcuXMtzrly5Urs3bsXsbGxePLJJ9G/f39cunQJqamp2LNnT6vLvttjy5YtxkzP1df5wgsvGNsJLFiwAL6+vvjoo4+QmZmJLVu2QC43/A43YcIEBAUF4bbbbkNgYCDS09Px9ttvY9KkSfDw8EB5eTm6du2KadOmISoqCu7u7tizZw8OHTqE119/vV3jzMzMxOTJk3HXXXchOTnZ2I4gKioKgCEz9Morr2Dx4sXIysrC/fffDw8PD2RmZmLbtm2YM2cO/vKXv3ToHom+/PLLVjtQjx8/3mRpvq+vL0aNGoX4+HgUFRVh9erV6NWrF5588kkAhvqlVatWIT4+HmPGjMGMGTOMS+vDw8Px7LPPGs/11ltvYdSoURg6dCjmzJmDiIgIZGVl4bvvvkNaWtpNXQ+RVZJoFRsRteHKpfXXcvXSekEwLEF/9tlnhZCQEMHJyUno3bu38K9//ctkSbQgCEJdXZ2wYMECwc/PT3BzcxPuvfde4eLFiy2W1guCIBQVFQnz5s0TwsLCBCcnJyEoKEgYN26c8M477xiPudGl9W09xOX058+fF6ZNmyZ4e3sLzs7OwogRI4Tt27ebnOu///2vMHr0aMHPz09Qq9VCz549heeff16oqKgQBEEQNBqN8PzzzwtRUVGCh4eH4ObmJkRFRQn/+c9/rjlGQWheNn7q1Clh2rRpgoeHh+Dj4yPMnz/fZFm6aMuWLcKoUaMENzc3wc3NTYiMjBTmzZsnZGRkGI8ZM2bMdVsBtDaGth579+41uaeff/65sHjxYiEgIEBwcXERJk2a1GJpvCAIwqZNm4QhQ4YIarVa8PX1FWbOnCnk5ua2OO7EiRPClClTjH8Gffv2FZYuXdpifCUlJSbvE//+ZmZmtvtaiaQmEwTmPYmIrvTiiy/ipZdeQklJidVvhbFv3z7ccccd2Lx5c5srDYno2lgzRERERA6NwRARERE5NAZDRERE5NBYM0REREQOjZkhIiIicmgMhoiIiMihseliK/R6PfLz8+Hh4dHqLs1ERERkfQRBQFVVFUJCQowNWtuDwVAr8vPzERYWJvUwiIiIqAMuXryIrl27tvt4BkOtEDe5vHjxIjw9PSUeDREREbVHZWUlwsLCTDarbg8GQ60Qp8Y8PT0ZDBEREdmYGy1xYQE1EREROTQGQ0REROTQGAwRERGRQ7OKYGjt2rUIDw+Hs7MzYmNjkZKS0uaxW7duRUxMDLy9veHm5obo6Ghs3LixzeOfeuopyGQyrF69uhNGTkREZB46nQ719fV8XOOh0+k65d5LXkC9adMmJCQkYP369YiNjcXq1asxceJEZGRkICAgoMXxvr6+WLJkCSIjI6FSqbB9+3bEx8cjICAAEydONDl227ZtOHDgAEJCQix1OURERDdEEAQUFhaivLxc6qHYBG9vbwQFBZm1D6Dke5PFxsZi+PDhePvttwEYGh6GhYXh6aefxgsvvNCucwwdOhSTJk3Cyy+/bHwuLy8PsbGx2LlzJyZNmoSFCxdi4cKF7TpfZWUlvLy8UFFRwdVkRETUqQoKClBeXo6AgAC4urqy2W8bBEFAbW0tiouL4e3tjeDg4BbHdPTnt6SZIa1Wi8OHD2Px4sXG5+RyOeLi4pCcnHzd9wuCgB9//BEZGRlYtWqV8Xm9Xo9HH30Uzz//PAYMGHDd82g0Gmg0GuPXlZWVN3glREREN06n0xkDIT8/P6mHY/VcXFwAAMXFxQgICIBCoTDLeSWtGSotLYVOp0NgYKDJ84GBgSgsLGzzfRUVFXB3d4dKpcKkSZOwZs0ajB8/3vj6qlWroFQqsWDBgnaNIzExEV5eXsYHu08TEZElNDQ0AABcXV0lHontEO+VeO/MQfKaoY7w8PBAWloaqqurkZSUhISEBPTo0QNjx47F4cOH8e9//xupqantTjUuXrwYCQkJxq/FDpZERESWwKmx9uuMeyVpMOTv7w+FQoGioiKT54uKihAUFNTm++RyOXr16gUAiI6ORnp6OhITEzF27Fj88ssvKC4uRrdu3YzH63Q6PPfcc1i9ejWysrJanE+tVkOtVpvnooiIiMimSDpNplKpMGzYMCQlJRmf0+v1SEpKwsiRI9t9Hr1eb6z5efTRR3Hs2DGkpaUZHyEhIXj++eexc+dOs18DERER2TbJp8kSEhIwe/ZsxMTEYMSIEVi9ejVqamoQHx8PAJg1axZCQ0ORmJgIwFDfExMTg549e0Kj0eD777/Hxo0bsW7dOgCAn59fiyI0JycnBAUFoW/fvpa9OCIiIjs1duxYREdHm62P32OPPYby8nJ89dVXZjnfjZA8GJo+fTpKSkqwbNkyFBYWIjo6Gjt27DAWVefk5EAub05g1dTUYO7cucjNzYWLiwsiIyPxySefYPr06VJdApHd0jbqIZMBTgqr6M9KRNQpJO8zZI3YZ4gI+D3rEv78aSpUCjk+iB+OPoEeUg+JyO7U19cjMzMTERERcHZ2lno47fbYY4/ho48+MnkuMzMT1dXVeP755/HLL7/Azc0NEyZMwJtvvgl/f38AwJdffomXXnoJ586dg6urK4YMGYKvv/4a//rXv/DSSy+ZnG/v3r0YO3Zsi8++1j2zyT5DRGSdtqbm4oUtx6HV6QEAD65PxgfxwzG0m4/EIyOyf4IgoK6hc7aduB4XJ0W7Vmv9+9//xpkzZzBw4ED84x//AGAoSRkxYgT+9Kc/4c0330RdXR0WLVqEhx56CD/++CMKCgowY8YMvPrqq5gyZQqqqqrwyy+/QBAE/OUvf0F6ejoqKyvxwQcfADDsOGEpDIaIyEgQBPxrZwb+s+88AGBC/0CUVmuQmlOOme8exPpHh2FMny4Sj5LIvtU16NB/mTQLfk79YyJcVdcPDby8vKBSqeDq6mpc/f3KK69gyJAh+Oc//2k8bsOGDQgLC8OZM2dQXV2NxsZGTJ06Fd27dwcADBo0yHisi4sLNBrNNVeTdxYWAhCR0Z70YmMgNO+Onlj/x2H45E+xGNOnC+oadPjTR4ew40TbDVGJyHEdPXoUe/fuhbu7u/ERGRkJADh//jyioqIwbtw4DBo0CA8++CDeffddXL58WeJRGzAzRERGh7IuAQAeiumK5ycavom5qpR4d1YMntt8FN8ezcf8z1KxduZQTBxg+d/eiByBi5MCp/4x8foHdtJnd1R1dTXuvfdek+2xRMHBwVAoFNi9ezd+++037Nq1C2vWrMGSJUtw8OBBRERE3MywbxqDISIySi8w7Ms35KraIJVSjtXToyGXAV+n5WPep6n4z8yhmMCAiMjsZDJZu6aqpKZSqaDTNdc2DR06FFu2bEF4eDiUytbHL5PJcNttt+G2227DsmXL0L17d2zbtg0JCQktzmdJnCYjIqPThVUAgMiglivHFHIZXn8wCpOjQtCoFzD301Tsyyi29BCJyEqEh4fj4MGDyMrKQmlpKebNm4dLly5hxowZOHToEM6fP4+dO3ciPj4eOp0OBw8exD//+U/8/vvvyMnJwdatW1FSUoJ+/foZz3fs2DFkZGSgtLTUrHuPXQ+DISICAJRWa1BSpYFMBvRtJRgCAKVCjjceag6IFm89jlpto4VHSkTW4C9/+QsUCgX69++PLl26QKvV4tdff4VOp8OECRMwaNAgLFy4EN7e3pDL5fD09MTPP/+Me+65B3369MHf//53vP7667j77rsBAE8++ST69u2LmJgYdOnSBb/++qvFrsX683BEZBGnCwxZoXA/t2um6JUKOV6dNhipOZeRe7kO63+6gITxfSw1TCKyEn369EFycnKL57du3drq8f369cOOHTvaPF+XLl2wa9cus43vRjAzREQAmuuF+gVfv7mis5MCf59kSG3/96fzyL1c26ljIyLqTAyGiAgAkF5oCIYig9rXtXXigCCM7OEHTaMeiT+c7syhERF1KgZDRAQASG+aJusX3L5gSCaTYdm9/SGXAd8dK8DBC2WdOTwiok7DYIiI0KDT41xx2yvJ2tIv2BOPxHYDAKz4Pr1TxkZE1NkYDBERzpdUo0EnwEOtRFcflxt677NxfSCXAcdyK1BYUd9JIySyb9wzvf06414xGCIi40qyyGCPdm3SeCU/dzUGhHgBAFKaOlgTUfs4OTkBAGpruQihvcR7Jd47c+DSeiIyriRrb/H01YaH++J4XgUOZV7C5KgQcw6NyK4pFAp4e3ujuNjQwNTV1fWGfyFxFIIgoLa2FsXFxfD29oZC0fGtQ67GYIiIkF54Y8XTVxsR4YMNv2YiJZOZIaIbJe7SLgZEdG3e3t5m39mewRARNWeG2tFjqDUx4b4AgIyiKpTXauHtqjLb2IjsnUwmQ3BwMAICAiy6BYUtcnJyMmtGSMRgiMjBmWzDEdixYMjfXY0eXdxwoaQGv2ddRlz/QDOPksj+KRSKTvlBT9fHAmoiBycWT3f3dYWbuuO/H8VGGLJDh1hETUQ2hsEQkYM7XShuw9GxeiHR8KapsoOsGyIiG8NgiMjBnbrJlWQiMRg6kVfBneyJyKYwGCJycGeLqgEAfYPcb+o8XX1cEOzljEa9gLSccjOMjIjIMhgMETkwvV7A+RJDMNQroGPF0yKZTGbMDrH5IhHZEgZDRA6soLIetVodlHIZuvu53vT5hjcVUbPfEBHZEgZDRA7sbJFhJVmEvxucFDf/7UBcUXYkpxwNOv1Nn4+IyBIYDBE5sHPF4hTZzdULiXp1cYe3qxPqGnQ4kVdhlnMSEXU2BkNEDkwMhnqbKRiSy2UY1s0HAJDKImoishEMhogcmBgM9TRTMAQAQ7uLwdBls52TiKgzMRgiclCCIOCsmafJAGBIN28AwJFsBkNEZBsYDBE5qNJqLSrqGiCTAT27mC8YiurqDbkMyK+oR2FFvdnOS0TUWRgMETkocYoszMcVzk7m2xzSTa1E36Zu1kc4VUZENoDBEJGDOldi3uLpKxmnyi6Wm/3cRETmxmCIyEGda+oxZM56IdFQcUUZ64aIyAZYRTC0du1ahIeHw9nZGbGxsUhJSWnz2K1btyImJgbe3t5wc3NDdHQ0Nm7caHLMiy++iMjISLi5ucHHxwdxcXE4ePBgZ18GkU0RM0PmXEkmGtqUGTqeVwFtI5svEpF1kzwY2rRpExISErB8+XKkpqYiKioKEydORHFxcavH+/r6YsmSJUhOTsaxY8cQHx+P+Ph47Ny503hMnz598Pbbb+P48ePYv38/wsPDMWHCBJSUlFjqsoisnrl7DF0pwt8N3q5O0DTqkV5QafbzExGZk0wQBEHKAcTGxmL48OF4++23AQB6vR5hYWF4+umn8cILL7TrHEOHDsWkSZPw8ssvt/p6ZWUlvLy8sGfPHowbN+665xOPr6iogKenZ/svhshGVNY3YPCLuwAAx16cAE9nJ7N/RvwHKdibUYLl9/ZH/G0RZj8/EdHVOvrzW9LMkFarxeHDhxEXF2d8Ti6XIy4uDsnJydd9vyAISEpKQkZGBkaPHt3mZ7zzzjvw8vJCVFRUq8doNBpUVlaaPIjsmZgVCvJ07pRACGiuGzrCTtREZOUkDYZKS0uh0+kQGBho8nxgYCAKCwvbfF9FRQXc3d2hUqkwadIkrFmzBuPHjzc5Zvv27XB3d4ezszPefPNN7N69G/7+/q2eLzExEV5eXsZHWFjYzV8ckRUz955krRnSjZ2oicg2SF4z1BEeHh5IS0vDoUOHsGLFCiQkJGDfvn0mx9xxxx1IS0vDb7/9hrvuugsPPfRQm3VIixcvRkVFhfFx8eJFC1wFkXQsEQxFhXlBJgNyL9ehuIrNF4nIekkaDPn7+0OhUKCoqMjk+aKiIgQFBbX5Prlcjl69eiE6OhrPPfccpk2bhsTERJNj3Nzc0KtXL9xyyy14//33oVQq8f7777d6PrVaDU9PT5MHkT2zRDDk4eyEPgEeADhVRkTWTdJgSKVSYdiwYUhKSjI+p9frkZSUhJEjR7b7PHq9HhqN5qaPIXIUZ4s7r8fQlYZ29wbAqTIism5KqQeQkJCA2bNnIyYmBiNGjMDq1atRU1OD+Ph4AMCsWbMQGhpqzPwkJiYiJiYGPXv2hEajwffff4+NGzdi3bp1AICamhqsWLECkydPRnBwMEpLS7F27Vrk5eXhwQcflOw6iaxFfYMOuZfrAHR+MBTV1Rufp1zEibyKTv0cIqKbIXkwNH36dJSUlGDZsmUoLCxEdHQ0duzYYSyqzsnJgVzenMCqqanB3LlzkZubCxcXF0RGRuKTTz7B9OnTAQAKhQKnT5/GRx99hNLSUvj5+WH48OH45ZdfMGDAAEmukcia5F6uhSAAHmol/NxUnfpZA0O9AAAn8yshCAJkMlmnfh4RUUdI3mfIGrHPENmzPaeK8KePf8eAEE98t+D2Tv0sTaMOA5fvRINOwP5Fd6Crj2unfh4ROTab7DNERJaXfakWANDdr/MDE7VSgT6BhiLqE3ns30VE1onBEJGDySmrAQB093OzyOcNDBGnylg3RETWicEQkYPJKmvKDPlaZspqYKghVc0iaiKyVgyGiBxMTtM0WTcLTJMBwICmIuoT+ZwmIyLrxGCIyIE06vTIvWwIhsItNE3WL8gTchlQUqVBcSU7UROR9WEwRORACirq0aAToFLKEeTpbJHPdFEpjP2MTrBuiIisEIMhIgeS3VQvFObjArnccj1/xCJqrigjImvEYIjIgWRfMqwks9QUmchYN8QiaiKyQgyGiByImBmyVPG0aGCIYUXZSRZRE5EVYjBE5ECyxR5DFlpWL+rfFAzlldfhUo3Wop9NRHQ9DIaIHIiYGerub9lpMg9nJ0Q0fSabLxKRtWEwROQgBEEw9hiydGYIAAaEiM0XOVVGRNaFwRCRgyip1qBWq4NcBkk2TB0grihjZoiIrAyDISIHkdM0RRbi7QKV0vL/9LktBxFZKwZDRA7CuCeZhVeSiQaHegMw1C2xiJqIrAmDISIHIe5W383XssXTIi9XJ2Mn6tTsy5KMgYioNQyGiBxE9iVxTzJpMkMAMLSbNwAgNYfBEBFZDwZDRA5C6mkyABjW3QcAcJiZISKyIgyGiByE1NNkADC0myEYOpZbgQadXrJxEBFdicEQkQOoqGvA5doGANJmhnp2cYensxJ1DTqcLqiSbBxERFdiMETkAMRl9f7uariplZKNQy6XYUhTdoh1Q0RkLRgMETkAsfN0N18XiUfSPFXGuiEishYMhogcQH55HQBpOk9fTSyiZmaIiKwFgyEiB5BfYQiGgr2dJR4JEBXmBZkMyL1ch+LKeqmHQ0TEYIjIEYiZoRAv6afJPJyd0DfQAwCzQ0RkHRgMETmAggpDBibEW/pgCACGst8QEVkRBkNEDkDMDAV7ST9NBgDDjCvKyqUdCBERGAwR2T1Now6l1YaNUUOtLDN0PLcCmkadxKMhIkfHYIjIzhU2TZE5O8nh7eok8WgMwv1c4eumglanx4m8SqmHQ0QOjsEQkZ3LE4unvV0gk8kkHo2BTCYzLrH/PeuSxKMhIkfHYIjIzhWUNxVPW8FKsiuNCPcFABzKYhE1EUmLwRCRnbO24mlRTHhTZij7EvR6QeLREJEjYzBEZOfyrWxZvWhgqBecneQor23A+ZJqqYdDRA7MKoKhtWvXIjw8HM7OzoiNjUVKSkqbx27duhUxMTHw9vaGm5sboqOjsXHjRuPrDQ0NWLRoEQYNGgQ3NzeEhIRg1qxZyM/Pt8SlEFkdY8NFK+g+fSUnhRxDwgzZIU6VEZGUJA+GNm3ahISEBCxfvhypqamIiorCxIkTUVxc3Orxvr6+WLJkCZKTk3Hs2DHEx8cjPj4eO3fuBADU1tYiNTUVS5cuRWpqKrZu3YqMjAxMnjzZkpdFZDUKKpoLqK3N8AixbohF1EQkHZkgCJJO1sfGxmL48OF4++23AQB6vR5hYWF4+umn8cILL7TrHEOHDsWkSZPw8ssvt/r6oUOHMGLECGRnZ6Nbt27XPV9lZSW8vLxQUVEBT0/P9l8MkRUatHwnqjSN2JMwBr0C3KUejolfzpbg0fdT0NXHBfsX3Sn1cIjIxnX057ekmSGtVovDhw8jLi7O+JxcLkdcXBySk5Ov+35BEJCUlISMjAyMHj26zeMqKiogk8ng7e3d6usajQaVlZUmDyJ7UFnfgCpNIwDrmyYDgCHdfCBv2rRVzGAREVmapMFQaWkpdDodAgMDTZ4PDAxEYWFhm++rqKiAu7s7VCoVJk2ahDVr1mD8+PGtHltfX49FixZhxowZbUaJiYmJ8PLyMj7CwsI6flFEVkRcVu/t6gRXlVLi0bTkrlZiQIgXANYNEZF0JK8Z6ggPDw+kpaXh0KFDWLFiBRISErBv374WxzU0NOChhx6CIAhYt25dm+dbvHgxKioqjI+LFy924uiJLKd5Wb311QuJjEvsWTdERBKR9FdFf39/KBQKFBUVmTxfVFSEoKCgNt8nl8vRq1cvAEB0dDTS09ORmJiIsWPHGo8RA6Hs7Gz8+OOP15w7VKvVUKvVN3cxRFYov2nqKdQKp8hEI8J98cGvWUjJZDBERNKQNDOkUqkwbNgwJCUlGZ/T6/VISkrCyJEj230evV4PjUZj/FoMhM6ePYs9e/bAz8/PrOMmshW2kRkyrCjLKKpCRV2DxKMhIkckeRFBQkICZs+ejZiYGIwYMQKrV69GTU0N4uPjAQCzZs1CaGgoEhMTARjqe2JiYtCzZ09oNBp8//332Lhxo3EarKGhAdOmTUNqaiq2b98OnU5nrD/y9fWFSqWS5kKJJGDcisMKl9WLunioEeHvhszSGqTmXMYdfQOkHhIRORjJg6Hp06ejpKQEy5YtQ2FhIaKjo7Fjxw5jUXVOTg7k8uYEVk1NDebOnYvc3Fy4uLggMjISn3zyCaZPnw4AyMvLwzfffAPAMIV2pb1795pMpRHZuzwrbbh4tZjuPsgsrcHhLAZDRGR5kvcZskbsM0T2YvSre5FzqRabnxqJ4U3TUdbo/f2ZeHn7KdwzKAj/mTlM6uEQkY2yyT5DRNR59HoBhU37klnbJq1Xi/B3BQBkltZKPBIickQMhojsVGmNBlqdHjIZEOhp3cFQdz83AEB2WQ2YrCYiS2MwRGSnxOLpQA9nOCms+596mI8r5DKgVqtDSZXm+m8gIjIj6/4OSUQdZlxWb+XF0wCgUsoR6mNY8ZZVxqkyIrIsBkNEdiq/wvqX1V8pvGmqLKu0RuKREJGjYTBEZKfEzFCIlRdPi4zBUBmDISKyLAZDRHaqeSWZbWSGuvsZVpRlc5qMiCyMwRCRnSqosI2Gi6IIf0NmKJPTZERkYQyGiOyUmBkKspnMEJfXE5E0GAwR2SGdXkBR0xL1ICvvMSQK83WBXAbUaHUoqebyeiKyHAZDRHaotFoDnV6AQi5DFw+11MNpF7VSYVz5xrohIrIkBkNEdqigaYoswEMNhVwm8Wjaj3VDRCQFBkNEdqiwqXg6yEaW1YuaV5QxGCIiy2EwRGSHCmxkg9arNTde5DQZEVkOgyEiO2RcSeZpGyvJRGy8SERSYDBEZIcKK200M+TfvCUHl9cTkaUwGCKyQwXGHkO2FQyF+bpA1rS8vrRaK/VwiMhBMBgiskOFNhoMqZUKhHiJy+s5VUZElsFgiMjOCIJwRc2QbQVDAJfXE5HlMRgisjOXarTQ6vQAgEAbDIa4YSsRWRqDISI7I9YL+buroVLa3j9xY2aI02REZCG2952SiK6p0EZ7DIm6+zWvKCMisgQGQ0R2pqDSNounRd18DdNkeeV1Eo+EiBwFgyEiOyNuxWGrmaFgb8O4y2sbUKttlHg0ROQIGAwR2ZnCCg0A280MeTo7wV2tBADkl9dLPBoicgQMhojsTGFl0yatNriSTBTSlB0qqOBUGRF1PgZDRHbGVrtPXym4qfFiPuuGiMgCGAwR2ZErGy6KAYUtEjNDnCYjIktgMERkRyrrG1Gr1QGw8WmypkCO02REZAkMhojsiJgV8nZ1gotKIfFoOi7YW5wmY2aIiDofgyEiOyJmUmw5KwQAIU31TvnMDBGRBTAYIrIjtt59WiRmhgrK6yEIgsSjISJ7x2CIyI40rySz3eJpoDmYq2vQoby2QeLREJG9kzwYWrt2LcLDw+Hs7IzY2FikpKS0eezWrVsRExMDb29vuLm5ITo6Ghs3bmxxzIQJE+Dn5weZTIa0tLROvgIi61EkbsVh49Nkzk4K+LmpAHCqjIg6n6TB0KZNm5CQkIDly5cjNTUVUVFRmDhxIoqLi1s93tfXF0uWLEFycjKOHTuG+Ph4xMfHY+fOncZjampqMGrUKKxatcpSl0FkNQrsZJoMaN6Wo4BF1ETUyZRSfvgbb7yBJ598EvHx8QCA9evX47vvvsOGDRvwwgsvtDh+7NixJl8/88wz+Oijj7B//35MnDgRAPDoo48CALKysjp17ETWqNAOGi6KQrxccCKvkpkhIup0kmWGtFotDh8+jLi4uObByOWIi4tDcnLydd8vCAKSkpKQkZGB0aNH39RYNBoNKisrTR5Etsi4mswegiEuryeySxmFVfjfoYsoq9ZIPRQjyYKh0tJS6HQ6BAYGmjwfGBiIwsLCNt9XUVEBd3d3qFQqTJo0CWvWrMH48eNvaiyJiYnw8vIyPsLCwm7qfERSqG/QobLesMt7oIftB0PiVB8bLxLZly8PX8RftxzDK9+lSz0UI8kLqG+Uh4cH0tLScOjQIaxYsQIJCQnYt2/fTZ1z8eLFqKioMD4uXrxonsESWVBp029ZKoUcni6SzoCbRXNmiMEQkb0QBAG7ThUBACb0D7zO0ZYj2XdMf39/KBQKFBUVmTxfVFSEoKCgNt8nl8vRq1cvAEB0dDTS09ORmJjYop7oRqjVaqjV6g6/n8galFQZgiF/dxVkMpnEo7l53J+MyP6cLa5GdlktVEo5RvfpIvVwjCTLDKlUKgwbNgxJSUnG5/R6PZKSkjBy5Mh2n0ev10OjsZ55RyKplFZrAQBdPOwjsBc3mi2qrIdOz8aLRPZg10lDGcyoXv5wU1tPBlvSkSQkJGD27NmIiYnBiBEjsHr1atTU1BhXl82aNQuhoaFITEwEYKjtiYmJQc+ePaHRaPD9999j48aNWLdunfGcly5dQk5ODvLz8wEAGRkZAICgoKBrZpyIbJ2YGbKXYCjAQw2FXIZGvYCSKo1dFIUTObrdVjhFBkgcDE2fPh0lJSVYtmwZCgsLER0djR07dhiLqnNyciCXNyevampqMHfuXOTm5sLFxQWRkZH45JNPMH36dOMx33zzjTGYAoCHH34YALB8+XK8+OKLlrkwIgk0T5PZRzCkVMgR6KFGfkU98ivqGAwR2biCijocza2ATAaM68dgyMT8+fMxf/78Vl+7ujD6lVdewSuvvHLN8z322GN47LHHzDQ6ItshFlDbS2YIMOxRll9Rb2i82E3q0RDRzdjTlBUa2s3H6r5P2dxqMiJqnb1NkwHNy+u5oozI9lnjKjIRgyEiOyFmhuxlmgwAQsXl9ew1RGTTKusbcOBCGQBgPIMhIuosJfY4TebF/cmI7MG+jBI06AT0CnBHjy7uUg+nBQZDRHbCOE1mR5mhYGaGiOyCuKTeGrNCAIMhIrtQo2lErVYHAPC3o8xQKPcnI7J5DTo9fsooAcBgiIg6kVgv5OKkgJtKIfFozEecJiut1kDTqJN4NETUEUdyylGlaYSvmwrRXb2lHk6rGAwR2QFjjyEP+9iKQ+TrpoJaafg2VVjB7BCRLdqXUQwAuL23P+Ry6/z+xGCIyA4YewzZUb0QAMhkMmOzxaJKbrtDZIv2NU2Rje1rPXuRXY3BEJEdsMceQ6JADzEYYmaIyNYUV9bjVEElZDJgdG8GQ0TUiUqaNmm1px5DogBPwzUxGCKyPT+dMWSFBoV6wc+Kvz8xGCKyA3adGfI0ZIaKqzhNRmRr9jUFQ2P7WG9WCGAwRGQX7DsYYmaIyBY16vTYf7YUADCmb4DEo7k2BkNEdsAet+IQiZkhBkNEtuVobjkq6hrg5eKE6DBvqYdzTQyGiOyAfWeGmqbJuJqMyKaIq8hu7+0PhZUuqRcxGCKycYIgNO9LxswQEVkJsXh6jJXXCwEMhohsXpWmEdpGPQD7zAwFNF1TjVaHak2jxKMhovYordbgWG4FAGCMFfcXEjEYIrJx4hSZh1oJZyf72YpD5KZWwkOtBMDsEJGtOHjhEgAgMsgDAU29wqwZgyEiG1dq3IrD/rJCIvYaIrIth7IMwdCICF+JR9I+DIaIbJw91wuJWERNZFtSMg3B0PBwBkNEZAH2vJJMxCJqIttRWd+A9MJKAMwMEZGFNPcYUkk8ks7TPE3GzBCRtTucfRmCAHTzdTX+ImPtGAwR2TiHyAyJm7VWMTNEZO0O2dgUGcBgiMjmlTZt0mrXwZCxZojBEJG1ay6e9pF4JO3HYIjIxomZIXvcikMUyGkyIptQ36DD0YuG/kJ2nxm6ePEicnNzjV+npKRg4cKFeOedd8w2MCJqH4eYJruigFoQBIlHQ0RtOZZbAa1OD393FSL83aQeTrt1KBh65JFHsHfvXgBAYWEhxo8fj5SUFCxZsgT/+Mc/zDpAImqbXi+grMb+M0NioKdp1KOyjl2oiayVOEU2PNwXMpl170d2pQ4FQydOnMCIESMAAP/73/8wcOBA/Pbbb/j000/x4YcfmnN8RHQNFXUNaNAZMiV+dryazNlJAW9XJwAsoiayZrbWX0jUoWCooaEBarXhN7U9e/Zg8uTJAIDIyEgUFBSYb3REdE1iw0VvVyeolfa3FceVjCvKWERNZJV0egGp2ZcB2E5/IVGHgqEBAwZg/fr1+OWXX7B7927cddddAID8/Hz4+fmZdYBE1LZSByieFrHXEJF1Sy+oRJWmEe5qJfoFe0o9nBvSoWBo1apV+O9//4uxY8dixowZiIqKAgB88803xukzIup8JQ7QcFHELtRE1k2sFxra3QcKue3UCwGAsiNvGjt2LEpLS1FZWQkfn+Y+AnPmzIGrq6vZBkdE1yb2GHKEzJC4vJ69hoisk7G/ULjt9BcSdSgzVFdXB41GYwyEsrOzsXr1amRkZCAgIMCsAySitjVvxeEIwZCYGeI0GZG1EQQBKZmGeiFbK54GOhgM3Xffffj4448BAOXl5YiNjcXrr7+O+++/H+vWrTPrAImobc01Q/Y/TRbALTmIrFZ2WS1KqzVQKeSICvOWejg3rEPBUGpqKm6//XYAwJdffonAwEBkZ2fj448/xltvvXXD51u7di3Cw8Ph7OyM2NhYpKSktHns1q1bERMTA29vb7i5uSE6OhobN240OUYQBCxbtgzBwcFwcXFBXFwczp49e8PjIrJ2ZTWOOE3GzBCRtUlpmiIb3NULzk62t7K1Q8FQbW0tPDw8AAC7du3C1KlTIZfLccsttyA7O/uGzrVp0yYkJCRg+fLlSE1NRVRUFCZOnIji4uJWj/f19cWSJUuQnJyMY8eOIT4+HvHx8di5c6fxmFdffRVvvfUW1q9fj4MHD8LNzQ0TJ05EfT1/oyT74ojTZMVV9dDr2YWayJoYN2e1sSX1og4FQ7169cJXX32FixcvYufOnZgwYQIAoLi4GJ6eN7ac7o033sCTTz6J+Ph49O/fH+vXr4erqys2bNjQ6vFjx47FlClT0K9fP/Ts2RPPPPMMBg8ejP379wMwZIVWr16Nv//977jvvvswePBgfPzxx8jPz8dXX33VkcslslrGaTI73opDJHahbtAJuFyrlXg0RHSl5uJpBwqGli1bhr/85S8IDw/HiBEjMHLkSACGLNGQIUPafR6tVovDhw8jLi6ueUByOeLi4pCcnHzd9wuCgKSkJGRkZGD06NEAgMzMTBQWFpqc08vLC7GxsW2eU6PRoLKy0uRBZO0EQbhiNZn91ww5KeTG62QRNZH1KK6qR1ZZLWQyw7J6W9ShpfXTpk3DqFGjUFBQYOwxBADjxo3DlClT2n2e0tJS6HQ6BAYGmjwfGBiI06dPt/m+iooKhIaGQqPRQKFQ4D//+Q/Gjx8PwLBXmniOq88pvna1xMREvPTSS+0eN5E1qNI0QqvTA3CMaTLAUERdWq1FUVU9+sO2mroR2atDTavIIoM84eXiJPFoOqZDwRAABAUFISgoyLh7fdeuXS3WcNHDwwNpaWmorq5GUlISEhIS0KNHD4wdO7ZD51u8eDESEhKMX1dWViIsLMxMoyXqHOIUmbtaaZMFix0R6KnGqQL2GiKyJrbcX0jUoWkyvV6Pf/zjH/Dy8kL37t3RvXt3eHt74+WXX4Zer2/3efz9/aFQKFBUVGTyfFFREYKCgtoetFyOXr16ITo6Gs899xymTZuGxMREADC+70bOqVar4enpafIgsnaONEUmEouoCys4TUZkLVJsvHga6GAwtGTJErz99ttYuXIljhw5giNHjuCf//wn1qxZg6VLl7b7PCqVCsOGDUNSUpLxOb1ej6SkJGMdUnvo9XpoNIZvjhEREQgKCjI5Z2VlJQ4ePHhD5ySydo60kkwU5NUUDFXWSTwSIgKAyvoGpBca6mxttXga6OA02UcffYT33nvPuFs9AAwePBihoaGYO3cuVqxY0e5zJSQkYPbs2YiJicGIESOwevVq1NTUID4+HgAwa9YshIaGGjM/iYmJiImJQc+ePaHRaPD9999j48aNxmaPMpkMCxcuxCuvvILevXsjIiICS5cuRUhICO6///6OXC6RVSprCob8HCgzFOLlAgDIL+c0GZE1OJx9GYIAdPdzRUBT5tYWdSgYunTpEiIjI1s8HxkZiUuXLt3QuaZPn46SkhIsW7YMhYWFiI6Oxo4dO4wF0Dk5OZDLmxNYNTU1mDt3LnJzc+Hi4oLIyEh88sknmD59uvGYv/71r6ipqcGcOXNQXl6OUaNGYceOHXB2tt0/KKKrlTjQvmQiMTNUUMHMEJE1MPYXsuGsEADIBEG44e5lsbGxiI2NbdFt+umnn0ZKSgoOHjxotgFKobKyEl5eXqioqGD9EFmtv207js8O5uCZcb3x7Pg+Ug/HIs4VVyHujZ/h4azE8RcnSj0cIoem1wv4w5r9OFVQiVcfGIyHhku/8KijP787lBl69dVXMWnSJOzZs8dYh5OcnIyLFy/i+++/78gpiegGOVLDRVFw0zRZVX0jqjWNcFd3eEEsEd2k//1+EacKKuGqUmBsZBeph3NTOlRAPWbMGJw5cwZTpkxBeXk5ysvLMXXqVJw8ebLFPmFE1DmMBdRujlMz5KZWwtPZEAAVlHOqjEgqpdUaJP5g6AeYML6PcSNlW9XhX6tCQkJaFEofPXoU77//Pt55552bHhgRXZtxk1YHygwBQIi3CyoLq5BfUY/egR5SD4fIIf3zu3RU1DWgf7AnHrs1XOrh3LQOZYaISHrGaTIHKqAGrlhezyJqIkn8dr4UW4/kQSYD/jl1EJQK2w8lbP8KiBxQnVaHGq0OgGM1XQSa64a4vJ6odbmXa/HUxsPYmJyFDqyRuiZtox5//+oEAOCPsd0RHeZt1vNLhdWHRDZIrBdSKeUOV0QcwuX1RG2qqm/A4x8ewpmiauw4WYjUnHIkTh1kti17PjuYjQslNfB3V+MvE/ua5ZzW4Ia+i06dOvWar5eXl9/MWIioncRgqIu7GjKZTOLRWFawtyEzVFDBzBDRlRp1ejz9+RGcKaqGt6sTquobse1IHs4VV+O/jw5DSNO/nY6q1jRizY/nAAAL43rb7KasrbmhYMjLy+u6r8+aNeumBkRE1+eI+5KJgpsyQ/lcTUZk4pXv0rEvowTOTnJ8/PgIVGsaMe/TVBzPq8CU//yKb+ePuqku0e/9cgFlNVpE+LthuhX0FDKnGwqGPvjgg84aBxHdAEfcl0wUbJwmq4cgCA6XGSNqzaZDOfjwtywAwJsPRWNwV28AwDfzR+GxD1JwvqQG8z5LxWdP3gKnDhQ8l1Zr8O7PFwAAz03o06FzWDP7uhoiByGuJHOkfclEYgF1rVaHyvpGiUdDJL3iynq8sj0dAPCXCX1w96Bg42thvq54b/ZweKiVOJR1GSubegPdqLd/PIcarQ6DQr1wz8Dg67/BxjAYIrJBjpwZclEp4ONqqFVgETUR8PJ36ajSNCIqzBtzx/Zq8XqEvxteeygKAPD+/kx8d6zghs5/8VItPj2YDQBYdFck5HL7y8Y61jIUIjtRWuN4m7ReKcjLBZdrG1BQXo/IIOvfP1AQBHxzNB+Hsy8jq6wW2WU18HBW4qP4EfBz0D9DMo9fzpbg26P5kMuAFfcPbDNQmTggCP83pgf++9MF/PXLowj3d8WAkGvXAYs+S8lBg07Abb38MKq3vzmHbzWYGSKyQY64L9mVQq6oG7J22kY9ntt8FM98kYaPk7Px85kSZJfV4kReJd7fnyn18MiG1TfosOzrkwCAWSPDMTD02sHN8xP6YmQPP9RodfjjewdxKr+yXZ+z62QhAGD68G43N2ArxmCIyAY1T5M5Xs0QAAR720avocr6BsR/mIKtqXlQyGWIvy0cqx4YhMV3RwIANiZno7K+QeJRki0SBAFrfjyLzNIaBHio8dyEPtd9j1Ihx39nDUNUmDcu1zZg5nsHkF5w7YDoXHE1zpfUwEkhw9i+tr0Z67VwmozIBjUvrXfMzJC1dqFu1OlxNLccuZfrkF9ej21HcnGmqBpuKgXenjkUd/QNAADo9QK+PJyLs8XV+ORAdqt1HkStEQQBezOKsXrPWRzLrQAALP1Df3g4t6/nj6ezEz5+fARmvX8QR3MrMPO9g/j8yVvQN6j1ff52nyoCAIzs6Q/Pdn6GLWIwRGRjtI16VNQZsgmOGwxZX2aoVtuIR949iLSL5SbPd/FQ44PHhptMYcjlMjw1piee23wUG/Zn4vHbIszWIZjsV0VtAx7/6BAOZ18GALg4KfDUmJ74w+AbW93l5eKEj5+IxaPvH8Sx3Aos3JSG7U+PgqKVeqNdpwxTZOP7B978BVgxTpMR2ZhLTcXTCrkM3nbUAfZGiJmhQiupGdLpBSz4/AjSLpbDTaVAbIQvpg4JxTPjeuOb+be1WssxOToEod4uKK3WYvPvFyUYNdmad3+5gMPZl+HipMD/jemB/YvuwDNxvTvUa8vLxQkfPDYcHs5KpBdUYtuRvBbHFFfW40hOOQBgfD8GQ0RkRcR6IT83lV0ucW2PkKaaofyKOrNvRNkRL28/hT3pxVAp5fj4iRHY9H8j8cb0aDw7vo8xcLuak0KOOaN7AAD++/MFNOr0lhwy2ZhabSM2HjAsb3/joSgsvrvfTa9E9HNXY/4dhina13ZmoK5p82fR7nTDFFlUmDeCvDreudoWMBgisjElYjDkoFNkAIzfmOsb9CivlbYAecP+TJPOv8O6+7b7vQ/FhMHPTYXcy3XYfoO9X8ix/O/QRVTUNSDczxUTBgSZ7byzbw1HqLcLCivr8f7+CyavifVCE+x8igxgMERkc8oceF8ykVqpMF5/voR1Q3nldVjxvaHz7+K7IzHpBms3XFQKzL41HACw6RCnyqh1jTo93mtqw/DE7T1are3pKGcnBf56l2H3+XX7zqOkqW1HVX0DfjtXBgCYOIDBEBFZmSt3rHdkYnZIyrqhXScLodMLGNbdxzjldaOmDg0FABzILLOqgnCyHjtOFiL3ch183VR4cFhXs5//3sEhGNzVCzVaHf627Th+PF2ELYdzodXp0cPfDT27uJv9M60NgyEiG+PoDRdFxuX1kgZDhmmEuwcGdXjD2K4+rhgR7gtBAL5Jyzfn8MgOCIKAd5o2SJ01snunrDqUy2X42z39ABimxh7/8He8+O0pAMD4AYEOsRkygyEiG1NcxcwQcEUX6nJpsimXa7RIyboEAJjQ/+ZqOO4bEgIA+IrBEF3lYOYlHMutgFopx6yR4Z32Obf08MN/Zg7FHwYHIzLIAyqlHC5OCkwbav5MlDVinyEiG1NYaciEBNr56o7rCfY2ZIak2pLjx9PF0OkFRAZ5oJuf602da9KgYLz4zUmkF1Qio7CqzQZ45Hi2HM4FAEwb1hW+bp1bJ3jPoGDc07TjvU4vQKcXoFI6Rs7EMa6SyI4UNQVDQZ4OHgw1BYP5EmWGxGZ05ljZ4+2qwtim7tRfpbXs90KO62TT/mGj+1h2KwyFXOYwgRDAYIjIpgiCYCwYDvR07GmyMF9DNiarrMbin12n1eGnMyUAzLfseMoQQyH110fyoNdL3zuJpNeg0+NccTUAoH+wp8SjsW8MhohsSGVdIzSNhuZ8gQ6eGeodYFjhUlSpQYWFew3tP1eK+gY9Qr1dMCDEPD+k7owMgIdaifyKehxqqkUix3a+pBpanR4eaiW6+rTevJPMg8EQkQ0R64W8XZ0cfi8rD2cnhDbVDZ0prrLoZ+86KU6RmW+ljbOTAncPMky5caqMABh3lI8M9nCIFV1SYjBEZEMKWS9kok+gITuUUWi5YKhRp8eedLEzr/k6AQPA/dGGqbLvjxeigdtzOLz0AsPf636cIut0DIaIbEiRsV6IwRAA9GladXWmyHLB0O/Zl3G5tgHerk4YHu5j1nPH9vCDv7sKFXUN+O18mVnPTbZHzAwxGOp8DIaIbIi4kszRi6dFfQMNwZAlM0PfHjX0AorrFwilwrzfQhVyGSY2rU774Tj3KnN0DIYsh8EQkQ3hNJmpPoHNmSFL7F5f36DDN03BkLiNhrmJfV52nuRUmSMrqdKgtFoLuaw56KfOw2CIyIYUseGiiV4B7pDJgMu1DShp2rOtM+0+VYSq+kaEervglgi/TvmM2Ahf+LqpcLm2AQcvcFWZoxKzQuH+bnBROfZiCUuQPBhau3YtwsPD4ezsjNjYWKSkpLR57Lvvvovbb78dPj4+8PHxQVxcXIvji4qK8NhjjyEkJASurq646667cPbs2c6+DCKLYGbIlLOTAuF+bgCAs0XVnf55XzZ1A35gaCjkZtw5/EpKhdy4S/h3nCpzWJwisyxJg6FNmzYhISEBy5cvR2pqKqKiojBx4kQUFxe3evy+ffswY8YM7N27F8nJyQgLC8OECROQl2dYhioIAu6//35cuHABX3/9NY4cOYLu3bsjLi4ONTWWb8xGZG6FFYbsBwuom1lqRVlhRT1+OWtotPhAJ+wcfiVxqmzXyUI0cqrMIYnBEJstWoakwdAbb7yBJ598EvHx8ejfvz/Wr18PV1dXbNiwodXjP/30U8ydOxfR0dGIjIzEe++9B71ej6SkJADA2bNnceDAAaxbtw7Dhw9H3759sW7dOtTV1eHzzz+35KURmV2DTo+yGgZDV+sbaJkVZduO5EEvACPCfdG9KRvVWW7p4QdvVyeU1WiRksmpMkfUvKye9UKWIFkwpNVqcfjwYcTFxTUPRi5HXFwckpOT23WO2tpaNDQ0wNfXFwCg0Rh+UDg7N/+gkMvlUKvV2L9/f5vn0Wg0qKysNHkQWZuSKg0EAXBSyODXyRs22hJxeX1GJwZDgiDgy8MXARg2zOxsTgo5Jjb1MPr+BKfKHI2mUYfzJYZpX06TWYZkwVBpaSl0Oh0CA0339QkMDERhYWG7zrFo0SKEhIQYA6rIyEh069YNixcvxuXLl6HVarFq1Srk5uaioKDtbyiJiYnw8vIyPsLCwjp+YUSdRKwXCvBw7rR6FVtkXFFWaJ4VZQ06PdIuluP9/Zl475cL+OVsCfZllOB8SQ1cnBS4Z3DwTX9Ge4ifs+NEEXTcq8yhnC2qRqNegJeLE+sDLUQp9QA6auXKlfjiiy+wb98+YybIyckJW7duxRNPPAFfX18oFArExcXh7rvvvuY3ycWLFyMhIcH4dWVlJQMisjpF3KC1VeF+bnBSyFCj1SGvvA5dfVw7dJ7Cinr8bdtx/HbesO9Ya+4eGAR3tWW+bd7a0w+ezkqUVmtwNLccQ7uZt8EjWa/m4mluw2EpkmWG/P39oVAoUFRUZPJ8UVERgoKu3eL+tddew8qVK7Fr1y4MHjzY5LVhw4YhLS0N5eXlKCgowI4dO1BWVoYePXq0eT61Wg1PT0+TB1mGXi/graSz+L+NvyP3cq3Uw7FqzQ0X+ZvilVRKOXr4G4qoO1o3pNMLWPDFEfx4uhj1DXp4uzphXGQA7h4YhAh/N8hkhoaIj47sbs6hX5OTQo7YHobl+4fsqG7om6P5WLXjNHsoXQO34bA8yTJDKpUKw4YNQ1JSEu6//34AMBZDz58/v833vfrqq1ixYgV27tyJmJiYNo/z8vICYCiq/v333/Hyyy+bdfx08+q0OizcdAQ7TxoC4sPZl/HurBgM4W/ArSqsZPF0W/oEeSCjqApniqpxZ2Tg9d9wlXd/uYCUzEtwVSnw6Z9iEdXV22QqslbbCE2DHj4WrtWKjfDF7lNFSMm8hP8b09Oin90Zth/Lx4LPjwAAQryc8ejIcGkHZKW4rN7yJF1NlpCQgHfffRcfffQR0tPT8ec//xk1NTWIj48HAMyaNQuLFy82Hr9q1SosXboUGzZsQHh4OAoLC1FYWIjq6ub+Ips3b8a+ffuMy+vHjx+P+++/HxMmTLD49VHbiivrMf2dZOw8WQSVQo4e/m4ordbi4XcOYPuxfKmHZ5XEzFAQGy620Ldpef2ZDiyvP5lfgdd3ZQAAlt/bH0O6+bSoyXJVKS0eCAFAbFNjx5SsSzZfN5SSeQkJm44av17z4znUN+gkHJF10usFnMyvAMBl9ZYkaTA0ffp0vPbaa1i2bBmio6ORlpaGHTt2GIuqc3JyTAqf161bB61Wi2nTpiE4ONj4eO2114zHFBQU4NFHH0VkZCQWLFiARx99lMvqrUxVfQMeWP8bjuVWwMfVCZ8+GYtvnx6FcZEB0DTqMf+zI/jzJ4fx67lS6G38B4A5FVaw4WJbegd2bEVZfYMOz25KQ4NOwIT+gXgoxrpqBfsFe8BdrURVfSNOF9ruKtdzxVV48uPfodXpMb5/IEK9XVBcpcEnB7KlHprVOVVQicr6RrirlYgM4rJ6S5G8gHr+/PltTovt27fP5OusrKzrnm/BggVYsGCBGUZGovJaLZ7dlIa6Bh2eGNUD4yIDbmo101dH8nDxUh1CvJzx2ZO3INzf0LPlnVkxWPFdOjb8mokfThTihxOFiPB3w+K7IzFhwLXryBwBa4baJvYaOltcDZ1egOI6fz/rG3T44UQBPvotG2eKquHvrkbi1EFWV6yqVMgxrLsPfjpTgpTMSxgQ4iX1kG5YrbYRj31wCBV1DRjSzRtrZgzB12l5WLTlONbtO48ZI7rBzUJF6bYg+XwZAGBEhK/ZNwKmtvFO0zUVV9Zj+n8PYG9GCQ5cuIQnP/4dE1f/jG1Hcju0jFkQBHx6MAcA8OToHsZACDAUqC67tz92LhyNR2/pDne1EpmlNXj68yPIL68z2zXZKu5Y37YwX1d4qJXQNurx4W9ZrR7ToNNj/9lS/P2r4xixYg+e3XQUaRfLoVLI8dqDg+Hnbp33dUSEoY+arTZf3JdRgtzLdQjydMZ7s2Lg7KTA1KFdEe7nirIabZt/Xo4q+YIhGLq1Z+fsfUetYzBEbbp4qRYP/jcZGUVVCPBQ44lREfBQK3G2uBrPbjqK15rqLG5Eak45ThdWwdlJjqlDWm9e1zfIAy/fPxAH/zYOw8N9oGnU4187b/yz7ElVfQNqtIb6CtYMtaSQy/DchD4AgMTv03E4+7LxtaLKejy/+ShiXtmDP75/EJ8cyEFl02arCeP74Ke/jsXYvgFSDf26Yq8IhszRR8nS9mUYtle6Z1CwMeB0UsixMM7w5/XOzxdQWd8g2fisSYNOj4NNwdAtPRgMWRKDIWpVSZUGD/03GdlltQjzdcGXT92KpX/oj18X34kFd/YCAKzdex6fNWV52uvTg4YagT8MDoGXq9M1j3VTK7H0D/0BGLZCOJZbfuMXYifErJCHsxKuKk4ptGb2reGYNDgYjXoB8z9LRVm1BrtPFeGu1T9j8+FcVNQ1wM9NhYeHh+Gjx0fg57/egQXjeiPYy0XqoV/ToK5eUCvlKKvR4nyJbe2xKAgCfjpj2M9tbN8uJq/dGxWC3gHuqKhrwDs/XZBieFbneF4FarQ6eLk4sXjawhgMUau+TstDQUU9wv1csfn/bkU3P0MjO09nJyRM6IsF43oDAJZ+fQJ7T7e+se7Vymu1+O6YoSD+kdhu7XrP4K7emDokFADwyvZ0m/zN2BzEDVpZPN02mUyGVQ8MRo8ubiioqMfkt3/Fkx//jsu1DRgQ4okv5tyClCVxWPnAYIzp0+W6dUXWQq1UYEg3bwC2N1V2urAKRZUaODvJjdN9IkM2ry8A4L39FzgVjuZ6oZE9/Nhl3sIYDFGrjuUalnZOG9a11WmZZ+N644GhXaHTC5j3WSpO5FVc95xbUvOgadSjX7AnhoR5t3ssf5nYF2qlHClZl4w9iRwNl9W3j7taiXUzh8HFSYG8ph+uc0b3wNa5t+KWHn42EwBdbYS4xD6zTOKR3Jh9GYas0MgefnB2UrR4feKAQIwI90V9gx6vOfhUOHBFMMR6IYtjMEStEqekBnf1bvV1mUyGxKmDMKqXP2q1Osz5+HeUVWvaPJ8gCPisaYrskdhuN7RqJ8TbBXNGGzqIJ/6QDm2j43WuvXJfMrq2vkEeWDtzCMb06YKNT4zA3+7pB7Wy5Q9iW3JLU1bloI3VDYn1Qm3VZMlkMvz9D/0AAFsdfCpc06jDoSxD5o/F05bHYIhaqKhtQFaZYWuMwV3bXsqrUsrxnz8ORQ9/N+RX1GPBF0fQ2EaL/V/PleF8SQ1cVQrcHx1yw2N6akxP+LurkV1Wix0n27eRrz1pzgxZ54ona3NnZCA+enwEbu/d5foH24Ah3XyglMtQUFGP3Mu2MZ1UVd9gLGS/ul7oSoO7emOKOBX+neNOhafllEPTqIe/uxq9AtylHo7DYTBELRzLKwcAdPdzhbfrtbvuejo7Yf2jw+CqUuDXc2V4bdeZFsfklNVi4aY0AMCUIaHwcL524XRr3NRKzGyqM/rUARu1seGiY3NRKYy/mBy0kbqhX8+VoVEvIMLfDd393K557PPiVHjmJew65ZhT4b9dMUVmbf2uHAGDIWrh6MVyAG1PkV2tT6AHXp1m2DB3/U/n8XVanvG3u7JqDWZtOIjSag36BXvihbsjOzyuh0eEQSGX4WDmJZzt4IactooNF2lYd8OefcdtZCrppzOGKbIxfa6fnQvxdsGfbo8AALyx64xDZofEeiFOkUmDwRC1cLSpeDrqGlNkV/vD4BD8aZThm9kzX6Th7n//gvf3Z+LxDw8hq6wWod4u+Ch+eIeyQqJgLxeMizTUHnx6g0v6bV0hC6gdnrhpZ3oH9l+zNEEQjMXTY64xRXalOaN7Qq2UI6OoCifzbXfrkY6o0+pw5KJhSnEk+wtJgsEQtXC94um2vHB3JB6J7QaVUo7ThVV4efspHG3af+zjJ0YgwAxZjT/e0h0AsOVwLmq1ja0eo2nUoaLWfpq41WobUdS0Y303X1eJR0NSiQwyBEOnCyqtPnNytrgaBRX1UCvl7f7h7uXihLj+hn0pt6bmdebwrM6mQzlo0AkI9XZBdz/+G5cCgyEyUVRZj6JKDeQyYGDojTX9Uirk+OeUQUj52zj8474BGBTqhS4earz/2HD07GKegsBRvfzR3c8VVZpGfJPWcnf7X86W4NbEHzH6X3uRVWpbDeraklVqKGb3cXW6bg0X2a+eAW5QyGWorG80Zgqtldh77JY2ltS3ZUq0oZD6m6P5bS7GsDf55XXGDvtPjenBeiGJMBgiE2K9UO8Ajw53OvZ2VWHWyHB8+/QoHFoSh6HdfMw2PrlchkdGNBVSXzFVptMLeGNXBmZtSEFZjRYVdQ34+1cnrP436PbIbArqIvyvXYRK9k2tVKBnF8PfgdMF1j1VtrupCPrOyBvb5mRM3y7wdVOhtFqD/edKO2NoneLbo/lY8PkR/O/3iyiv1bb7fYIgYNnXJ1Cj1WFYdx/MjO3eiaOka2EwRCbEZotRYda7O/aDMWFQKeU4nleBpzYexp8/OYx71+zHWz+egyAA90eHQK2UY/+5Umw7Yvvp9gsl1QCAHmbKrpHtEqfK0gutt6ampEqDwzmG+pfxTdNe7eWkkOPewcEAYDP/dqvqG7B463F8czQff/3yGGJe2YNZG1Jwrrj6uu/94UQh9qQXw0lh6NvGrtPSYTBEJo52sF7IknzdVPhD0zfMHScL8cOJQpwqqISbSoF/PxyN1Q8PMW4X8sp36bhU0/7f1KwRM0Mkigz2AGDdmaGk9CIIgqFHWYj3je/7NmWoYQPnnScLUa1pvS7Qmnx5OBfVmkYEeTqjX7AnGvUCfj5Tgjkbf0dd0+bKramobcDyb04CAP48pif6BHpYasjUCu74SEaCIDRnhqw4GAKApZP6Y1CoF/QCoFLIoFLKMap3F4Q2ffOdM7oHvknLR0ZRFf75fTpeezBK4hF33IWmYKgHgyGH108sorbizJDYJ2jCDWaFRFFdvdDD3w0XSmuw40Qhpg3ras7hmZVeL+Cj37IAAPPu7IVHb+mO8yXVeOTdA7hQUoNVO07jxckDWryvvkGHp784gpIqDXp0ccPcO3pZeOR0NWaGyCi7rBYVdQ1QKeToG2Tdv6X4uKkQf1sEnhgVgUdHhmP68G7GQAgwpNv/OXUQZDLDb25im3tbIwiCcZosoguDIUcnZobOl9RA09h21kEq1ZpG7D9rqPWZMCCoQ+eQyWS4v6kj9VdWPlW270wxsspq4eGsxANDDWPu2cUdr04z/PL14W9Z+PWq2idNow5//uQwfj5TAhcnBV5/MOqGisypczAYIiNxiqxfiCdUStv/qzGsuw+mDjH8Vrn9aMuVZ7bgcm0DKusNUwXh1+niS/YvyNMZXi5O0OmFdtWkWNpPGSXQ6vSI8HdD75vYUkLcnuPX86XGhqPW6INfswAADw8PM1lwMqZPF/zxFsNCj79sPoqKOkOrD22jHvM+TcXejBI4O8mx4bHhGGLGBSbUcbb/E4/M5lgHmi1au7h+htUsBy7YZmYos9TwAy/U24W/PRJkMhkig6y3bmjXKcO+gRP6B97UEvEwX1cM6eYNQWhemWZtzhVX4ZezpZDLgFkjw1u8/rd7+qG7nysKKuox7vV9GJmYhGGv7Mae9GKolXK8P3s4d6e3IgyGyEisQxgYYj/B0Iim3b4ziqpsspD6QgmLp8mUMRiysrohbaMePzb1F5owoGP1QlcSV6LtSbfOYOjDplqhuH6BCGulGaqrSok3HoqGUi5DabUWBRX1qKpvhKtKgXdnxeC2Xv4WHjFdCwuoySiz6QdvDzuqTfFzV6NPoDvOFFUjJbMMdw0MlnpIN4QryehqkcFiEbV1ZYYOZpahqr4R/u5qRIfd/NTP+H6BeHVHBn47V4ZqTSPc1dbz46qosh5bDhvqmR67LbzN44Z198GehDEoqdbAWamA2kmOYC/nm9qWiDoHM0MEwLC6Ib9pZ3R7+8F7S9N2ALY4VcZgiK4mZobSrWyabNdJQwZnfP8AKMzQL6dXgDvC/Vyh1enx85mSmz6fuQiCgOe/PIa6Bh2iwryvu91IuL8bhof7YlBXL/QJ9GAgZKUYDBEAw0oyAPBwVsLXzb62fIiNEIOhMolHcuOMwZAdZevo5vQJ9IBMBpRWa1BarZF6OEZ7MwxTZDfaaLEtMpnMeC5rqhv65EA2fj5TArVSjtcfHMztM+wEgyECYJqBsLd/3LE9DHVDpwurcNmG6ob0esH458IeQyRyUyvRvalGJcNKpspyL9ci93IdFHIZRkSYryh4fH/D8vwfTxdbxV5l50uqseL7dADA4rsj0SvAuluQUPsxGCIAQFaZ4YeuPS7f9ndXo1fTMt8UG+o3VFBZD02jHk4KmUkPJSLjthwF1lFEfbBpCnpQqJdZa3uGdvOGj6sTKuoacCjrstnO2xG12kYkbEpDfYMet/f2b3UFGdkuBkMEoLl4OtxOMxC3NGWHbGmqTPwz6ebrCqWC/1SpmXFbDivJDIn/rsQsrLkoFXLcGSndVFl5rRafHMjGYx+kIPofu3E0twJeLk7417Qo7iNmZ/gdlgAAmWX2PR0j1g0dtKEiarHHUIQ/N2glU1aXGco0/Lu65TrFxB1hrBtKL4QgCGY/f2u0jXq898sFjH51L/7+1QnsyyiBtlGPMF8XrJkxBEFezhYZB1mO9axVJEllldp3Zkj8jTW9sBIVtQ3wcrX+FR3GPclYPE1XGRBiCIbOFFVB26iXtGN8fnkdci7VQi4DYrqbv5vy7b39oVLKcfFSHc4UVXf6VkE/nSnB8q9PIKtpUUmfQHfcFx2K8f0D0TvA3e5qKsmAmSFCjaYRxVWGVSkRdlgzBAABHs7o0cUNgmA7dUNcVk9t6erjAk9nJRp0As4USTtVdjDTMEU2KNSrU5aNu6mVGNXUoHB3U4frzpJTVosnPjyErLJa+LursXLqIPzwzGjMu6NX0yo+BkL2isGQBdVoGvHP79OR0/Qbh7UQf+j6uDrZRMako5r7DdlG3RBXklFbZDIZBjR1ij+VL+1UmTj1HNsJU2QiSy2x/zg5C416AcPDfbDv+bF4eEQ3s/RMIuvHYMiClmw7jnd+voClX5+w2Nx3e4gryew9AxHbtDXH79nSrkppD22jHhcvGYJm9hii1ohTZSfzKyQdh7F4OsK8xdNXGte0x+DR3IpO27i1RtOITb9fBADMHdvLqjpeU+djMGRBC8b1hkohx09nSvDd8QKph2Nk7/VCooGhht+kMworodNbTzDampxLNdALgLtaiS7uaqmHQ1ZI/Pt8QsLMUFFlPbLKmuqFwjsvGArwcEZ0mDeAzturbEtqLqrqG9HD3w1j+nTplM8g68VgyIJ6dHHH3Dt6AgBe+vYUKusbJB6RQWZpUwbCTuuFROF+bnB2kqO+QY/spmyYtTpTZFhJ1rOL/TXBJPMQM0PpBdIF92JWqH+IJ7xcOneKvTOnyvR6AR/+mgUAmH1rOJfNOyDJg6G1a9ciPDwczs7OiI2NRUpKSpvHvvvuu7j99tvh4+MDHx8fxMXFtTi+uroa8+fPR9euXeHi4oL+/ftj/fr1nX0Z7fbnsT3Rw98NJVUavLYzQ+rhALii4aKdZ4YUchn6BlpXf5a2nG5aMt2vaVNOoqv16OIOZyc5arU6Y32ZpYn7/d1ixq7TbZnQFAyJG7ea009nS3ChtAYeaiUeGNbVrOcm2yBpMLRp0yYkJCRg+fLlSE1NRVRUFCZOnIji4uJWj9+3bx9mzJiBvXv3Ijk5GWFhYZgwYQLy8vKMxyQkJGDHjh345JNPkJ6ejoULF2L+/Pn45ptvLHVZ16RWKvDKlIEAgI0HspF2sVzaAcGxVi1ZW3+WtqQ3BWuRnbyMmGyXQi4zBstS1Q2JK8k6s3ha1CvAHd07aePWD5qyQg/GhLFWyEFJGgy98cYbePLJJxEfH2/M4Li6umLDhg2tHv/pp59i7ty5iI6ORmRkJN577z3o9XokJSUZj/ntt98we/ZsjB07FuHh4ZgzZw6ioqKumXGytFt7+mPqkFAIgqGoWi9h/UpFXQMuNe3XZe+ZIaC5c6+17fh9tdOFhmAtkpkhuoaBTSvKTkpQN1RcWY8LJTWQyYARnVgvJJLJZBjfz5Ad2mPGqbJzxdX4+UwJZDLgsVvDzXZesi2SBUNarRaHDx9GXFxc82DkcsTFxSE5Obld56itrUVDQwN8fZv/Id5666345ptvkJeXB0EQsHfvXpw5cwYTJkxo8zwajQaVlZUmj862ZFI/eDgrcTK/El+l5V3/DZ1ELJ7u4qF2iN+IxN+kxWDDGlXVN+DipToAzAzRtUm5okzsOt0vyNNiLTnEuqEfM8y3ceuW1FwAwJ19A9DNz9Us5yTbI1kwVFpaCp1Oh8DAQJPnAwMDUVjYvsZaixYtQkhIiElAtWbNGvTv3x9du3aFSqXCXXfdhbVr12L06NFtnicxMRFeXl7GR1hYWMcu6gb4uasxd2wvAMDru86gvkHX6Z/ZGuOyejsvnhb1a5omy71cZzUF7FcTm+gFeznD21Ul8WjImokryk7mV1q8XUfzFFnnZ4VEw7r7wMfVCeW15tm4VRAEfHs0HwAwdShrhRyZ5AXUHbVy5Up88cUX2LZtG5ydm/eJWbNmDQ4cOIBvvvkGhw8fxuuvv4558+Zhz549bZ5r8eLFqKioMD4uXrxoiUtA/G3hCPZyRl55HT5OzrLIZ17tQonj1AsBgJerE0Ka9hXKsNIianEKj1khup7ege5QymUor21AXnmdRT/bWDxtgXohkVIhxx2Rhp5D5lhVlnaxHLmX6+CqUuDOpvOSY5IsGPL394dCoUBRkelf6KKiIgQFBV3zva+99hpWrlyJXbt2YfDgwcbn6+rq8Le//Q1vvPEG7r33XgwePBjz58/H9OnT8dprr7V5PrVaDU9PT5OHJTg7KfDs+D4AgLd/PIfyWq1FPvdKjrKS7EpiHc5pKy2iZr0QtZdaqUCfphWSlqwbKq3W4Fyxof2DJeqFrjRxgOHnw+bDF1FcdXMNGL89auj3Nr5/IFxUipseG9kuyYIhlUqFYcOGmRQ/i8XQI0eObPN9r776Kl5++WXs2LEDMTExJq81NDSgoaEBcrnpZSkUCuj15plfNrcHhnZF30APVNY34j/7zlv887OMK8kcZ65czLicstIi6tPMDNENMNYN5VmubkjcgiMyyAM+bpadyo3rF4hBoV6oqm/EP7491eHz6PQCth8zTJHdOzjEXMMjGyXpNFlCQgLeffddfPTRR0hPT8ef//xn1NTUID4+HgAwa9YsLF682Hj8qlWrsHTpUmzYsAHh4eEoLCxEYWEhqqsNv6F4enpizJgxeP7557Fv3z5kZmbiww8/xMcff4wpU6ZIco3Xo5DL8MLdkQCAD3/LQmFF57Sab40gCMZl9Y6UGbLmImpBEIw9kNhjiNqjuYjacn+fxXohS06RiRRyGRKnDoJcBmw/VoC9Ga23YrmeQ1mXUFylgaezErf38TfzKMnWSBoMidNXy5YtQ3R0NNLS0rBjxw5jUXVOTg4KCpq3rVi3bh20Wi2mTZuG4OBg4+PKKbAvvvgCw4cPx8yZM9G/f3+sXLkSK1aswFNPPWXx62uvsX27YFh3H2gb9fjagivLLtc2oLLe0Lws3EEKqAGgX9Py+ozCKknbGrQm93IdqjWNUCnkDlPHRTfnyiJqSzFuztqJ+5Fdy8BQLzx+WwQA4O/bTqBWe+NNGMXC6bsGBkGt5BSZo5N8LfX8+fMxf/78Vl/bt2+fyddZWVnXPV9QUBA++OADM4zMcmQyGaYODcXh7Mv49lg+/m9MT4t8bmapIaMW4uUMZyfH+WYQ7ucGldLQuTfnUq1VZcXEZpC9AtzhpLDZ9Q1kQf2CPSGTAYWV9ci9XIuuPp075X2pRouMphWPIyQKhgDg2fF98MOJQuSV1+HN3WewZFL/dr+3QafHDycMq5bvjeIUGdnwajJ7c/fAYCjkMpzIq7RYa31xTzJrCgYsQamQX7Eth3VNlYlTZGJzSKLrcVMrjdthfJ6S0+mfl9I0RdYn0B1+Em4i7KZW4h/3DQAAvPtLJv5v4+/t3nPwt/NluFSjhZ+bCiMlmOoj68NgyEr4uqlwWy/DvPX2pvRtZ3OU3epbY61F1GJwJvZDImqP2bd2BwB8nnKx03uWSbGkvi3j+gXi6Tt7QSGXYefJIox/42ckfp9+3Xuw+XdD+5R7BgVDyQwsgcGQVbl3cDAA4NtjlgmGMh2s4eKV+lnp8nrjSjJmhugGxPULRIiXMy7VaLH9WMH133ATxJ3qYy2wOWt7PDehL3545nbc3tsfWp0e//35Al769mSbx6dkXsL2YwWQyYCHYjq/wS7ZBgZDVmTCgCCoFHKcKaq2SEPATAdruHglMdiwpt3r67Q6Y4AaycwQ3QClQo6ZtxiyQx/9ltVp3ajLa62jXuhqfQI98PHjI/D2I0MgkxkyZN8fbxkUNuj0+PtXxwEADw/vhkFdvSw9VLJSDIasiJeLE8b07QKgeaVDZxEEwSEbLorEaaicS7VWsy3HmaIqCALg765CFw/pajHINs0Y0Q0qpRzH8ypw5GJ5p3zGgQuXIAiGAn9r+zsqk8nwh8EheKppAcoLW4616Mr9/v5MnCmqhq+bCovu6ivFMMlKMRiyMuLKhm+P5XfqXkMlVRrUanWQy4Buvo7TcFHk46ZC96ZNGQ9n3/weR+Zg7DzNrBB1gK+bCpObvn989FtWp3zGZ00F2rf3tt6+PAnj+yAqzBuV9Y149os06JraZ+SV1+Hfe84CABbfHcl9/8gEgyErE9cvAC5OCmSX1eJ4J3aUFVeshfq4QKV0zL8G4jYCKU27b0tNnLLry87T1EGP3RoOAPj+eAGKK83bwPVYbjl+PlMChVyG+FsjzHpuc3JSyLHm4SFwVyuRknUJcW/8hAfW/YaZ7x5AXYMOI8J9MW0YN2UlU475U9CKuaqUGNfPsGHgjqY+GJ3BuFu9v3unfYa1E2serCUYEvd66h3guH8mdHMGhnphaDdvNOgEPLnxMC7VmG+/w7V7zwEAJkeFoJufdWeTu/m5YsWUgVDIZcgsrcHh7MvIKquFUi7Dy/cPhEwmk3qIZGUkb7pILcVG+GL7sYJOLaK+IO5JZuXf1DqTuBrmWG456rQ6yTdqPN8UDPViMEQ34R/3DcQf3z+IoxfL8eD63/DxE7EI9Xa5qXOeKarCzpOGTbXnjrVMU9ibdV90KIZ280F2WS2qNY2o1jSid4A7M6/UKmaGrFDPph+G50qqO+0zHLnHkCjM1wVBns5o0Ak4clHauqEaTSPym/alYzBEN2NgqBe+fGokgr2ccb6kBtPW/WbMOnbUf5qyQncNCELvQNsJJsJ8XTGqtz/uGhiEacO6IirMW+ohkZViMGSFxB+GFy/VdloDtSwH7T59JZlMhtgehqkyca8lqZxvCnz93VUs7KSb1ivAA1v+fCt6dnFDQUU9nt2U1uEFGdllNfimaXXr/Dt7mXOYRFaDwZAV6uKuhqezEnqhubbHnPT65mX1PRw4GAKsp25I/M29Zxdmhcg8Qrxd8PmcW6BuWm7f0b/j6386D71g2FBa3BSWyN4wGLJCMpmsearsJtPbrSmorIemUQ+lXHbTtQS2Ttx1OzXnMrSNesnGcZb1QtQJAjycMXWoYeXU+/szb/j9WaU12Px7LgDgaWaFyI4xGLJSvbp0XjAk1gt183V1+H15enZxh6+bCppGPY7nlUs2Dq4ko87yxKhwAMDu9KJ2b2QqenPPGTTqBdzRtwuGdbeejtNE5ubYPwmtWK9OzAxlsnjaSCaTGfsNHZRwqqx5JZntFKeSbegV4IExfbpAEIAPfs1q9/vSCyqNtULPTWC3ZrJvDIaslBgMnS8xf82QmBlyxD3JWiN13ZC2UY/sS4aCdk6TUWd4YpShSeLm3y+2e/uZ13ZmQBCAPwwOZq0Q2T0GQ1ZKLKS9UFJtbCdvLo68J1lrxGDo96zLaNRZvm4oq6wGOr0Ad7USgZ7Wtd8T2Yfbe/ujT6A7arQ6bEq5eN3jD2dfQtLpYijkMiSM72OBERJJi00XrVSYrytUSjk0jXrkXa4za8fX5oaLDIYAoF+wJzyclaiqb0R6QZXFd7I2riQLcGdnXOoUMpkMj98WgRe2HsfafedQUFGP0X380S/YE6cKKpGWU46T+ZVo1OuhlMtxpmln+geHdUUPrnAkB8BgyEop5DL08HfD6cIqnCupMlsw1KjT4+IlsceQ43afvpJCLkNMdx/szSjBoaxLkgVDvfhDhzrR/UNC8e4vF3C+pAYbfs3Ehl+vvbpMrZRjwbjeFhodkbQYDFmxngHuhmCouBp3Rgaa5Zz55fVo0AlQKeUI8XLsZfVXigrzxt6MEpzoxM1x23KOy+rJApydFPh6/ij8lFGCn8+U4OezJSioqEeEvxuGhHljcFcvuKmVaNQLaNTpMbirN0IcvPUGOQ4GQ1ZMrBs6X2y+IupMsV7IzxVyOadkRFFdvQEAR3PLLf7ZDIbIUtzVSkwaHIxJg4MhCAI0jXo4O0m7Jx+RNWABtRXr1Ql7lIk/eHs48G71rRFXy1worUFVO1fbmINeL+BCKYMhsjyZTMZAiKgJgyErdmXjxY7uK3Q1ZiFa18VDjRAvZwgCcDK/0mKfm1deh/oGPVQKOcJ8OCVBRCQFBkNWrEcXN8hkQEVdA0qrtWY553kGQ20a3DRVdjzXcnVDYnAa4e/m8N3AiYikwu++VszZSYEwH8OKr/NmmioTp9wYDLUkriI7ZsEi6rPFhiXMvQL550FEJBUGQ1auZxdDLyBzbMtxqUaLSzWGDFOPLuwxdLXBYjBkwSJqLqsnIpIegyErZ849ysRzdPVxgauKCwmvNqipiDq7rBYVtZYpomYNFxGR9BgMWbnmPcpuPhgyTsnwB2+rvF1V6N7U3PK4BabK9HoBGYWGP5M+gdyglYhIKgyGrFxnZIY4JdM2MTt0LK+80z8rs6wGNVodnJ3kxulQIiKyPAZDVk5svFhQUY9qTeNNnYtTMtdnrBu62PmZIbHbdb9gT64kIyKSEL8DWzlvVxX83VUADDvY3wwuq78+4/J6C0yTicGQmI0iIiJpMBiyAT273PxUWY2mEfkV9QAYDF3LgBBPyGSGZoil1ZpO/awTeYbmjgNDGAwREUmJwZANMEfdkFiA7e+ugreryizjskcezk7o4W+o3+nM7JAgCDiRbzj/QGaGiIgkZRXB0Nq1axEeHg5nZ2fExsYiJSWlzWPfffdd3H777fDx8YGPjw/i4uJaHC+TyVp9/Otf/+rsS+kUxg1bb2KajPVC7WeJTtQ5l2pRVd8IlVKO3my4SEQkKcmDoU2bNiEhIQHLly9HamoqoqKiMHHiRBQXF7d6/L59+zBjxgzs3bsXycnJCAsLw4QJE5CXl2c8pqCgwOSxYcMGyGQyPPDAA5a6LLMyR2aIwVD7NTdf7LxgSMw69QvygBOLp4mIJCX5d+E33ngDTz75JOLj49G/f3+sX78erq6u2LBhQ6vHf/rpp5g7dy6io6MRGRmJ9957D3q9HklJScZjgoKCTB5ff/017rjjDvTo0cNSl2VWYgCTXVaLBp2+Q+c4y2X17dY/2BMAkF7QeRu2ivVCAzhFRkQkOUmDIa1Wi8OHDyMuLs74nFwuR1xcHJKTk9t1jtraWjQ0NMDX17fV14uKivDdd9/hiSeeaPMcGo0GlZWVJg9rEuzlDFeVAo16AdllNR06R/NKMjb3u57IpmAor7wOFXWd04maK8mIiKyHpMFQaWkpdDodAgMDTZ4PDAxEYWFhu86xaNEihISEmARUV/roo4/g4eGBqVOntnmOxMREeHl5GR9hYWHtvwgLkMlkN7WiTNuoR/alWgCcJmsPLxcnhHq7AABOd0J2yKR4mivJiIgkJ/k02c1YuXIlvvjiC2zbtg3Ozs6tHrNhwwbMnDmzzdcBYPHixaioqDA+Ll682FlD7rDmbTluPDOUVVYDnV6Au1qJQE+1uYdml/oFGzJonTFVlnu5DuW1DXBSyNAniMEpEZHUJN2t09/fHwqFAkVFRSbPFxUVISgo6Jrvfe2117By5Urs2bMHgwcPbvWYX375BRkZGdi0adM1z6VWq6FWW3eQcDNF1OJ7ega4QyaTmXVc9qpfsCf2pBfjdNPeYeZ0sikr1CfQA2qlwuznJyKiGyNpZkilUmHYsGEmxc9iMfTIkSPbfN+rr76Kl19+GTt27EBMTEybx73//vsYNmwYoqKizDpuKdzMNBn3JLtx/TqxiPo464WIiKyKpJkhAEhISMDs2bMRExODESNGYPXq1aipqUF8fDwAYNasWQgNDUViYiIAYNWqVVi2bBk+++wzhIeHG2uL3N3d4e7e/MO+srISmzdvxuuvv275i+oEV+5er9cLkMvbn+ERi3X7sJ9Nu4nBUEZRFXR6AYobuN/Xw5VkRETWRfJgaPr06SgpKcGyZctQWFiI6Oho7Nixw1hUnZOTA7m8OYG1bt06aLVaTJs2zeQ8y5cvx4svvmj8+osvvoAgCJgxY4ZFrqOzdfdzhVIuQ61Wh8LKeoQ0FfheT6NOj+TzZQCAW3r4deYQ7Uo3X1e4OClQ16BDZmmN2QrPBUHgSjIiIisjeTAEAPPnz8f8+fNbfW3fvn0mX2dlZbXrnHPmzMGcOXNucmTWw0khR3c/V5wvqcG54up2B0NHc8tRpWmEt6sTt324AQq5DH2DPJB2sRynCyvNFgwVVNSjrEYLhVyGyCC2OSAisgY2vZrM0XSkiPqnM6UAgNt6+Zt1qscRdEbdUNrFcgBA30APODuxeJqIyBowGLIhxmDoBvYo++VsCQBgTO8unTIme9a8vN58K8pSsy8DAIZ29zbbOYmI6OYwGLIhxg1b25kZqqhtwNGmTMTtffw7a1h2qzMyQ0ea/jyGdvMx2zmJiOjmMBiyIVeuKGuPX8+XQi8AvQPcEezVvhojata3qaanoKIe5bXamz6ftlFvXFY/hMEQEZHVYDBkQ8TMUGm1tl0/nH8+Y5giu51TZB3i6eyErj6GINIcU2Un8yugbdTD102FcD/Xmz4fERGZB4MhG+KmViLM1/DD+UhO+TWPFQQBv5w1FE9ziqzjzDlVJv6ZDQnzZidwIiIrwmDIxoztEwAA2HWq6JrHXSitQV55HVQKOW6JYH+hjhKDodOFNx8MpeYYiqeHdPO+6XMREZH5MBiyMeP7G5pR7j5VBL1eaPM4cYpseIQPXFRcwt1R/YLMt6JMzAyxeJqIyLowGLIxt/Twg4daidJqjXFlUmvEKbLRrBe6KVduy6Ft1Hf4PEWV9cgrr4NcBgwO8zbT6IiIyBwYDNkYlVKOsZGGqbLdbUyVnS2qwn6xXojB0E3p5usKf3c1tI16pGRe6vB5jjRNkfUJ9IC72ioavxMRURMGQzZoQtNU2a5ThS1e0+kF/HXLMWh1etwZGWBsHEgdI5fLcGekIaBMOn3tOq1rSRWnyLpzioyIyNowGLJBY/t2gZNChgtN+5Rd6cPfsnAkpxweaiVWTBnIVUtmMK6fIfhMSi+GILRdp3UtYmaI9UJERNaHwZAN8nB2wsiehuXyV06V5ZTV4rWdGQCAxff0Y6NFMxnVyx8qhRw5l2rb3fDyStpGPY7lGpotDuVKMiIiq8NgyEZdPVVWo2nEoi3HUNegw8gefpgxIkzK4dkVN7USt/Q0tCdISi++4fenF1RC06iHt6sTIvzdzD08IiK6SQyGbJS4xP5ITjmWbDuOW/6ZhOQLZXB2kmPlA4M4PWZm45qK1pNO33gwdLhpc1Y2WyQisk4MhmxUoKczopqWaH96MAdVmkZE+Lth7SND0d2P2Qdzu7MpGDqcffmG9ynbm2EIoG7pweaXRETWiMGQDXtiVARcnBQYFxmAjx8fgaSEMcZiXzKvMF9X9Al0h04v4KemhpbtUVXfgAMXygAAcf35Z0NEZI3Y8MSGTY4KweSoEKmH4TDG9QvEmaJqJKUX477o0Ha955ezpWjQCejh72bcaJeIiKwLM0NE7STWDe3LKEajrn3dqPc0rfZjVoiIyHoxGCJqpyHdfODt6oTK+kb8dr7susc36vTGeiExkCIiIuvDYIionRRyGe4dbJiW/Of36dfNDqXmlONybQO8XZ0wjJ2niYisFoMhohvw7Pg+8HJxwunCKmw8kH3NY5PSDVNkd/QNgFLBf2pERNaK36GJboCvmwp/vasvAOCNXWdQXFXf5rG7m4KhOK7wIyKyagyGiG7Qw8O7YXBXL1RpGrHy+9OtHnOhpBoXSmrgpJBhdB9/C4+QiIhuBIMhohukkMvw8n0DIZMBW4/k4ddzpS2OEbftuKWHHzycnSw9RCIiugEMhog6ICrMGzNGdAMAxH9wCB/9lmXc0f6H4wVY/9N5AJwiIyKyBWy6SNRBf7unH4or67EnvRjLvzmJ/edKIZcBO08aaoV6B7jj/nY2ZyQiIunIBPHXWTKqrKyEl5cXKioq4OnpKfVwyIoJgoAPf8tC4venoW1aaq+Uy/DnsT0x745ecHZSSDxCIiLH0dGf38wMEd0EmUyG+NsiMDzcF4u2HIObWol/3DcAkUEMoomIbAWDISIzGBjqhe8W3C71MIiIqANYQE1EREQOjcEQEREROTQGQ0REROTQJA+G1q5di/DwcDg7OyM2NhYpKSltHvvuu+/i9ttvh4+PD3x8fBAXF9fq8enp6Zg8eTK8vLzg5uaG4cOHIycnpzMvg4iIiGyUpMHQpk2bkJCQgOXLlyM1NRVRUVGYOHEiiouLWz1+3759mDFjBvbu3Yvk5GSEhYVhwoQJyMvLMx5z/vx5jBo1CpGRkdi3bx+OHTuGpUuXwtnZ2VKXRURERDZE0j5DsbGxGD58ON5++20AgF6vR1hYGJ5++mm88MIL132/TqeDj48P3n77bcyaNQsA8PDDD8PJyQkbN27s8LjYZ4iIiMj2dPTnt2SZIa1Wi8OHDyMuLq55MHI54uLikJyc3K5z1NbWoqGhAb6+vgAMwdR3332HPn36YOLEiQgICEBsbCy++uqra55Ho9GgsrLS5EFERESOQbJgqLS0FDqdDoGBpns3BQYGorCwsF3nWLRoEUJCQowBVXFxMaqrq7Fy5Urcdddd2LVrF6ZMmYKpU6fip59+avM8iYmJ8PLyMj7CwsI6fmFERERkU2y26eLKlSvxxRdfYN++fcZ6IL3esB3Cfffdh2effRYAEB0djd9++w3r16/HmDFjWj3X4sWLkZCQYPy6srKSAREREZGDkCwY8vf3h0KhQFFRkcnzRUVFCAoKuuZ7X3vtNaxcuRJ79uzB4MGDTc6pVCrRv39/k+P79euH/fv3t3k+tVoNtVrdgasgIiIiWyfZNJlKpcKwYcOQlJRkfE6v1yMpKQkjR45s832vvvoqXn75ZezYsQMxMTEtzjl8+HBkZGSYPH/mzBl0797dvBdAREREdkHSabKEhATMnj0bMTExGDFiBFavXo2amhrEx8cDAGbNmoXQ0FAkJiYCAFatWoVly5bhs88+Q3h4uLG2yN3dHe7u7gCA559/HtOnT8fo0aNxxx13YMeOHfj222+xb98+Sa6RiIiIrJukwdD06dNRUlKCZcuWobCwENHR0dixY4exqDonJwdyeXPyat26ddBqtZg2bZrJeZYvX44XX3wRADBlyhSsX78eiYmJWLBgAfr27YstW7Zg1KhRFrsuIiIish2S9hmyVuwzREREZHs6+vPbZleTdSYxPmS/ISIiItsh/ty+0TwPg6FWVFVVAQCX1xMREdmgqqoqeHl5tft4TpO1Qq/XIz8/Hx4eHpDJZGY9t9jD6OLFiw49Bcf7YMD70Iz3woD3wYD3wYD3oVl77oUgCKiqqkJISIhJzfH1MDPUCrlcjq5du3bqZ3h6ejr8X2yA90HE+9CM98KA98GA98GA96HZ9e7FjWSERJLuWk9EREQkNQZDRERE5NAYDFmYWq3G8uXLHX77D94HA96HZrwXBrwPBrwPBrwPzTrzXrCAmoiIiBwaM0NERETk0BgMERERkUNjMEREREQOjcEQEREROTQGQxa0du1ahIeHw9nZGbGxsUhJSZF6SJ0qMTERw4cPh4eHBwICAnD//fcjIyPD5Jj6+nrMmzcPfn5+cHd3xwMPPICioiKJRmwZK1euhEwmw8KFC43POdJ9yMvLwx//+Ef4+fnBxcUFgwYNwu+//258XRAELFu2DMHBwXBxcUFcXBzOnj0r4YjNT6fTYenSpYiIiICLiwt69uyJl19+2WQ/JXu8Dz///DPuvfdehISEQCaT4auvvjJ5vT3XfOnSJcycOROenp7w9vbGE088gerqagtehXlc6140NDRg0aJFGDRoENzc3BASEoJZs2YhPz/f5Bz2cC+u93fiSk899RRkMhlWr15t8rw57gODIQvZtGkTEhISsHz5cqSmpiIqKgoTJ05EcXGx1EPrND/99BPmzZuHAwcOYPfu3WhoaMCECRNQU1NjPObZZ5/Ft99+i82bN+Onn35Cfn4+pk6dKuGoO9ehQ4fw3//+F4MHDzZ53lHuw+XLl3HbbbfByckJP/zwA06dOoXXX38dPj4+xmNeffVVvPXWW1i/fj0OHjwINzc3TJw4EfX19RKO3LxWrVqFdevW4e2330Z6ejpWrVqFV199FWvWrDEeY4/3oaamBlFRUVi7dm2rr7fnmmfOnImTJ09i9+7d2L59O37++WfMmTPHUpdgNte6F7W1tUhNTcXSpUuRmpqKrVu3IiMjA5MnTzY5zh7uxfX+Toi2bduGAwcOICQkpMVrZrkPAlnEiBEjhHnz5hm/1ul0QkhIiJCYmCjhqCyruLhYACD89NNPgiAIQnl5ueDk5CRs3rzZeEx6eroAQEhOTpZqmJ2mqqpK6N27t7B7925hzJgxwjPPPCMIgmPdh0WLFgmjRo1q83W9Xi8EBQUJ//rXv4zPlZeXC2q1Wvj8888tMUSLmDRpkvD444+bPDd16lRh5syZgiA4xn0AIGzbts34dXuu+dSpUwIA4dChQ8ZjfvjhB0Emkwl5eXkWG7u5XX0vWpOSkiIAELKzswVBsM970dZ9yM3NFUJDQ4UTJ04I3bt3F958803ja+a6D8wMWYBWq8Xhw4cRFxdnfE4ulyMuLg7JyckSjsyyKioqAAC+vr4AgMOHD6OhocHkvkRGRqJbt252eV/mzZuHSZMmmVwv4Fj34ZtvvkFMTAwefPBBBAQEYMiQIXj33XeNr2dmZqKwsNDkXnh5eSE2Ntau7sWtt96KpKQknDlzBgBw9OhR7N+/H3fffTcAx7kPV2rPNScnJ8Pb2xsxMTHGY+Li4iCXy3Hw4EGLj9mSKioqIJPJ4O3tDcBx7oVer8ejjz6K559/HgMGDGjxurnuAzdqtYDS0lLodDoEBgaaPB8YGIjTp09LNCrL0uv1WLhwIW677TYMHDgQAFBYWAiVSmX8xy0KDAxEYWGhBKPsPF988QVSU1Nx6NChFq850n24cOEC1q1bh4SEBPztb3/DoUOHsGDBAqhUKsyePdt4va39W7Gne/HCCy+gsrISkZGRUCgU0Ol0WLFiBWbOnAkADnMfrtSeay4sLERAQIDJ60qlEr6+vnZ7XwBDTeGiRYswY8YM4waljnIvVq1aBaVSiQULFrT6urnuA4Mhsoh58+bhxIkT2L9/v9RDsbiLFy/imWeewe7du+Hs7Cz1cCSl1+sRExODf/7znwCAIUOG4MSJE1i/fj1mz54t8egs53//+x8+/fRTfPbZZxgwYADS0tKwcOFChISEONR9oOtraGjAQw89BEEQsG7dOqmHY1GHDx/Gv//9b6SmpkImk3XqZ3GazAL8/f2hUCharA4qKipCUFCQRKOynPnz52P79u3Yu3cvunbtanw+KCgIWq0W5eXlJsfb2305fPgwiouLMXToUCiVSiiVSvz000946623oFQqERgY6BD3AQCCg4PRv39/k+f69euHnJwcADBer73/W3n++efxwgsv4OGHH8agQYPw6KOP4tlnn0ViYiIAx7kPV2rPNQcFBbVYdNLY2IhLly7Z5X0RA6Hs7Gzs3r3bmBUCHONe/PLLLyguLka3bt2M3zuzs7Px3HPPITw8HID57gODIQtQqVQYNmwYkpKSjM/p9XokJSVh5MiREo6scwmCgPnz52Pbtm348ccfERERYfL6sGHD4OTkZHJfMjIykJOTY1f3Zdy4cTh+/DjS0tKMj5iYGMycOdP4/45wHwDgtttua9Fe4cyZM+jevTsAICIiAkFBQSb3orKyEgcPHrSre1FbWwu53PTbr0KhgF6vB+A49+FK7bnmkSNHory8HIcPHzYe8+OPP0Kv1yM2NtbiY+5MYiB09uxZ7NmzB35+fiavO8K9ePTRR3Hs2DGT750hISF4/vnnsXPnTgBmvA8dr/umG/HFF18IarVa+PDDD4VTp04Jc+bMEby9vYXCwkKph9Zp/vznPwteXl7Cvn37hIKCAuOjtrbWeMxTTz0ldOvWTfjxxx+F33//XRg5cqQwcuRICUdtGVeuJhMEx7kPKSkpglKpFFasWCGcPXtW+PTTTwVXV1fhk08+MR6zcuVKwdvbW/j666+FY8eOCffdd58QEREh1NXVSThy85o9e7YQGhoqbN++XcjMzBS2bt0q+Pv7C3/961+Nx9jjfaiqqhKOHDkiHDlyRAAgvPHGG8KRI0eMK6Tac8133XWXMGTIEOHgwYPC/v37hd69ewszZsyQ6pI67Fr3QqvVCpMnTxa6du0qpKWlmXz/1Gg0xnPYw7243t+Jq129mkwQzHMfGAxZ0Jo1a4Ru3boJKpVKGDFihHDgwAGph9SpALT6+OCDD4zH1NXVCXPnzhV8fHwEV1dXYcqUKUJBQYF0g7aQq4MhR7oP3377rTBw4EBBrVYLkZGRwjvvvGPyul6vF5YuXSoEBgYKarVaGDdunJCRkSHRaDtHZWWl8MwzzwjdunUTnJ2dhR49eghLliwx+UFnj/dh7969rX5PmD17tiAI7bvmsrIyYcaMGYK7u7vg6ekpxMfHC1VVVRJczc251r3IzMxs8/vn3r17jeewh3txvb8TV2stGDLHfZAJwhUtT4mIiIgcDGuGiIiIyKExGCIiIiKHxmCIiIiIHBqDISIiInJoDIaIiIjIoTEYIiIiIofGYIiIiIgcGoMhIqJ2kMlk+Oqrr6QeBhF1AgZDRGT1HnvsMchkshaPu+66S+qhEZEdUEo9ACKi9rjrrrvwwQcfmDynVqslGg0R2RNmhojIJqjVagQFBZk8fHx8ABimsNatW4e7774bLi4u6NGjB7788kuT9x8/fhx33nknXFxc4Ofnhzlz5qC6utrkmA0bNmDAgAFQq9UIDg7G/PnzTV4vLS3FlClT4Orqit69e+Obb77p3IsmIotgMEREdmHp0qV44IEHcPToUcycORMPP/ww0tPTAQA1NTWYOHEifHx8cOjQIWzevBl79uwxCXbWrVuHefPmYc6cOTh+/Di++eYb9OrVy+QzXnrpJTz00EM4duwY7rnnHsycOROXLl2y6HUSUSfo0DazREQWNHv2bEGhUAhubm4mjxUrVgiCIAgAhKeeesrkPbGxscKf//xnQRAE4Z133hF8fHyE6upq4+vfffedIJfLhcLCQkEQBCEkJERYsmRJm2MAIPz97383fl1dXS0AEH744QezXScRSYM1Q0RkE+644w6sW7fO5DlfX1/j/48cOdLktZEjRyItLQ0AkJ6ejqioKLi5uRlfv+2226DX65GRkQGZTIb8/HyMGzfummMYPHiw8f/d3Nzg6emJ4uLijl4SEVkJBkNEZBPc3NxaTFuZi4uLS7uOc3JyMvlaJpNBr9d3xpCIyIJYM0REduHAgQMtvu7Xrx8AoF+/fjh69ChqamqMr//666+Qy+Xo27cvPDw8EB4ejqSkJIuOmYisAzNDRGQTNBoNCgsLTZ5TKpXw9/cHAGzevBkxMTEYNWoUPv30U6SkpOD9998HAMycORPLly/H7Nmz8eKLL6KkpARPP/00Hn30UQQGBgIAXnzxRTz11FMICAjA3XffjaqqKvz66694+umnLXuhRGRxDIaIyCbs2LEDwcHBJs/17dsXp0+fBmBY6fXFF19g7ty5CA4Oxueff47+/fsDAFxdXbFz504888wzGD58OFxdXfHAAw/gjTfeMJ5r9uzZqK+vx5tvvom//OUv8Pf3x7Rp0yx3gUQkGZkgCILUgyAiuhkymQzbtm3D/fffL/VQiMgGsWaIiIiIHBqDISIiInJorBkiIpvH2X4iuhnMDBEREZFDYzBEREREDo3BEBERETk0BkNERETk0BgMERERkUNjMEREREQOjcEQEREROTQGQ0REROTQGAwRERGRQ/t/+x8Ys5tutfIAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(electricity_data[\"Region\"])" + ], + "metadata": { + "id": "kT7euZcTW482", + "outputId": "90bf7751-d116-4865-9dd5-148b8871f5b6", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 116, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0 Africa\n", + "1 Africa\n", + "2 Africa\n", + "3 Africa\n", + "4 Africa\n", + " ... \n", + "1605 Central & South America\n", + "1606 Central & South America\n", + "1607 Central & South America\n", + "1608 Central & South America\n", + "1609 Central & South America\n", + "Name: Region, Length: 1610, dtype: object\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Entrada del usuario o definición de la región y el año\n", + "region_seleccionada = 'Africa' # Reemplaza con la entrada del usuario o una variable\n", + "anio_seleccionado = 2020 # Reemplaza con la entrada del usuario o una variable\n", + "\n", + "datos_para_prediccion = electricity_data.loc[region_seleccionada, anio_seleccionado]\n", + "\n", + "datos_para_prediccion_escalados = scaler.transform([datos_para_prediccion])\n", + "datos_para_prediccion_reshaped = datos_para_prediccion_escalados.reshape(1, 1, -1)\n", + "\n", + "# Realizar la predicción\n", + "prediccion = model.predict(datos_para_prediccion_reshaped)\n", + "\n", + "# Mostrar la predicción\n", + "print(f\"Predicción del consumo de electricidad para {region_seleccionada} en el año {anio_seleccionado}: {prediccion}\")\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 570 + }, + "id": "EOl4zF1VTp-c", + "outputId": "7284c06d-770b-439c-bc62-cbea103533d7" + }, + "execution_count": 118, + "outputs": [ + { + "output_type": "error", + "ename": "KeyError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3801\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3802\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 2020", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0manio_seleccionado\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m2020\u001b[0m \u001b[0;31m# Reemplaza con la entrada del usuario o una variable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mdatos_para_prediccion\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0melectricity_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mregion_seleccionada\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0manio_seleccionado\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mdatos_para_prediccion_escalados\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mscaler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdatos_para_prediccion\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexing.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1064\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_if_callable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1065\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_is_scalar_access\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1066\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtakeable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_takeable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1067\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_tuple\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1068\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_get_value\u001b[0;34m(self, index, col, takeable)\u001b[0m\n\u001b[1;32m 3915\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mseries\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_values\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3916\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3917\u001b[0;31m \u001b[0mseries\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3918\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3919\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 4280\u001b[0m \u001b[0;31m# pending resolution of GH#33047\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4281\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4282\u001b[0;31m \u001b[0mloc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4283\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ixs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mloc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4284\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3802\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3803\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3804\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3805\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3806\u001b[0m \u001b[0;31m# If we have a listlike key, _check_indexing_error will raise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 2020" + ] + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "uKxrVjY4U9qL" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file From 11a440bb56847576a5bf8e625fcb67e2d6a40347 Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Thu, 16 Nov 2023 15:36:05 -0300 Subject: [PATCH 15/16] Creado mediante Colaboratory --- proyectoIAPrediccion1CNNPrediccion0.2.ipynb | 360 ++++---------------- 1 file changed, 66 insertions(+), 294 deletions(-) diff --git a/proyectoIAPrediccion1CNNPrediccion0.2.ipynb b/proyectoIAPrediccion1CNNPrediccion0.2.ipynb index e441650..70376d2 100644 --- a/proyectoIAPrediccion1CNNPrediccion0.2.ipynb +++ b/proyectoIAPrediccion1CNNPrediccion0.2.ipynb @@ -42,19 +42,43 @@ "metadata": { "id": "H7kZjC_GUZZd" }, - "execution_count": 67, + "execution_count": 2, "outputs": [] }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 3, "metadata": { - "id": "9_FId2wvQAgd" + "id": "9_FId2wvQAgd", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 442 + }, + "outputId": "d5726d71-fd4c-43d0-90f8-d5a704c92b11" }, - "outputs": [], + "outputs": [ + { + "output_type": "error", + "ename": "FileNotFoundError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Cargar el archivo de estadísticas de electricidad\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mfile_path\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'Global_Electricity_Statistics.csv'\u001b[0m \u001b[0;31m# Asegúrate de cambiar esto a tu ruta de archivo\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0melectricity_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 209\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 210\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnew_arg_name\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_arg_value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 211\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 212\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 213\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mcast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mF\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 329\u001b[0m \u001b[0mstacklevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfind_stack_level\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 330\u001b[0m )\n\u001b[0;32m--> 331\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 332\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 333\u001b[0m \u001b[0;31m# error: \"Callable[[VarArg(Any), KwArg(Any)], Any]\" has no\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py\u001b[0m in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, error_bad_lines, warn_bad_lines, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options)\u001b[0m\n\u001b[1;32m 948\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkwds_defaults\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 949\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 950\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 951\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 952\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 603\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 604\u001b[0m \u001b[0;31m# Create the parser.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 605\u001b[0;31m \u001b[0mparser\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 606\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 607\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mchunksize\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0miterator\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 1440\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1441\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhandles\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mIOHandles\u001b[0m \u001b[0;34m|\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1442\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1443\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1444\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py\u001b[0m in \u001b[0;36m_make_engine\u001b[0;34m(self, f, engine)\u001b[0m\n\u001b[1;32m 1733\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m\"b\"\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1734\u001b[0m \u001b[0mmode\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;34m\"b\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1735\u001b[0;31m self.handles = get_handle(\n\u001b[0m\u001b[1;32m 1736\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1737\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/io/common.py\u001b[0m in \u001b[0;36mget_handle\u001b[0;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[1;32m 854\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mioargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mencoding\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;34m\"b\"\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mioargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 855\u001b[0m \u001b[0;31m# Encoding\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 856\u001b[0;31m handle = open(\n\u001b[0m\u001b[1;32m 857\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 858\u001b[0m \u001b[0mioargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'Global_Electricity_Statistics.csv'" + ] + } + ], "source": [ "# Cargar el archivo de estadísticas de electricidad\n", - "file_path = 'Global_Electricity_Statistics.csv' # Asegúrate de cambiar esto a tu ruta de archivo\n", + "file_path = 'global_electricity_statistics_by_region.csv' # Asegúrate de cambiar esto a tu ruta de archivo\n", "electricity_data = pd.read_csv(file_path)\n" ] }, @@ -68,7 +92,7 @@ "metadata": { "id": "dM7ktPDSOl8N" }, - "execution_count": 69, + "execution_count": null, "outputs": [] }, { @@ -93,7 +117,7 @@ "metadata": { "id": "374vEgbTOw3P" }, - "execution_count": 70, + "execution_count": null, "outputs": [] }, { @@ -119,26 +143,10 @@ "plt.show()" ], "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 477 - }, - "id": "lWY6qwmkQ2PL", - "outputId": "aafed511-b3a6-4311-fab7-a210179f7c92" + "id": "lWY6qwmkQ2PL" }, - "execution_count": 71, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOcAAALTCAYAAABdWWYwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdvH8e+mh1QCgYBA6L33IlUgVOmC1CBNijwICKJ0UBGliqBgIIgiilSp0pXepPeYEB/pLSG0tHn/2Cf7siRAAoEN8Ptc117unDlz5p7J7EbunGIyDMNAREREREREREREnjs7WwcgIiIiIiIiIiLyqlJyTkRERERERERExEaUnBMREREREREREbERJedERERERERERERsRMk5ERERERERERERG1FyTkRERERERERExEaUnBMREREREREREbERJedERERERERERERsRMk5EREREXmlbdy4kbFjx3Lr1i1bhyIiIiKvICXnREREXkEjR47EZDLZ5Nwmk4mRI0fa5NwPExgYSM6cOVN8XM6cOQkMDHxsveDgYEwmE2FhYSk+x8PUqFGDGjVqpFp7L6vHPeshISE0a9aMTJky4ebm9hwje7QnfSZfdcn9TCYlNb+bnsVnXkREXl5KzomISJoVEhJCjx49yJ07Ny4uLnh6elKlShWmTJnCnTt3bB2e3CfhH6IPe+3cufO5xHH79m1GjhzJ5s2bn8v55PHCwsKsngU7Ozt8fHyoX78+O3bssGls9+7do1WrVvTp04fu3bvbNJZnLTAwEHd3d1uH8UKrUaPGI7/nEl5p7Y8PIiKS9jnYOgAREZGkrFy5klatWuHs7EzHjh0pWrQo0dHRbN26lQ8++ICjR48yc+ZMW4cpDxg9ejS5cuVKVJ43b97ncv7bt28zatQogBT1Kps1axbx8fEpPt/Jkyexs9PfOpPj7bffpkGDBsTFxXHq1CmmT59OzZo12bNnD8WKFXtm5x06dCgffvhhkvsOHz5M586dee+9957Z+eXl8fHHH9O1a1fL9p49e5g6dSofffQRhQoVspQXL16cIkWK0KZNG5ydnW0RqoiIvGCUnBMRkTQnNDSUNm3a4O/vz8aNG8mSJYtlX+/evTlz5gwrV660YYTyMPXr16ds2bK2DiPZbt26hZubG46Ojk90vP7hbZZwHx+ldOnStG/f3rJdtWpV6tevz4wZM5g+ffozi83BwQEHh6T/l7ds2bIv1POaliXnGXjR1alTx2rbxcWFqVOnUqdOnST/GGBvb/+cIhMRkRed/tQrIiJpzvjx44mKiiIoKMgqMZcgb968/Oc//7Fsx8bGMmbMGPLkyYOzszM5c+bko48+4t69e1bH5cyZk0aNGrF161bKly+Pi4sLuXPn5vvvv7eqFxMTw6hRo8iXLx8uLi5kyJCB119/nXXr1lnqPGy+rwfniUoY0vfll1/y9ddfkzt3btKlS0fdunX5559/MAyDMWPGkC1bNlxdXWnSpAnXrl1L1O706dMpUqQIzs7OZM2ald69e3Pjxo1k3c+tW7dSrlw5XFxcyJMnD99+++1D6/7www+UKVMGV1dXfHx8aNOmDf/880+yzvM0/v33X9555x0yZ86Ms7MzRYoUYfbs2Ynq3b17l5EjR5I/f35cXFzIkiULzZs3JyQkhLCwMHx9fQEYNWpUoiFmCcP6QkJCaNCgAR4eHrRr186y78H5veLj45kyZQrFihXDxcUFX19f6tWrx969ey11kprf6ujRo9SqVQtXV1eyZcvG2LFjk+yVt2zZMho2bEjWrFlxdnYmT548jBkzhri4uER1Z86cSZ48eXB1daV8+fL8+eefyb63JpOJPn368OOPP1KgQAFcXFwoU6YMf/zxR6K6f/31F/Xr18fT0xN3d3feeOONREOSE4Ywb9myhV69epEpUyayZcuW7HgSVK1aFTAPX7/fjRs36NevH9mzZ8fZ2Zm8efPy+eefJ7qHV69epUOHDnh6euLt7U2nTp04ePAgJpOJ4OBgS72k5pxL7e+Mh/nyyy+pXLkyGTJkwNXVlTJlyvDrr78m9xYlcuvWLQYMGGC5NwUKFODLL7/EMIwnbvN+Z8+epVevXhQoUABXV1cyZMhAq1atEs2b9rhnIOG77v7nNanvzEuXLtGlSxcyZ86Mi4sLJUqUYO7cucmK1TAMxo4dS7Zs2UiXLh01a9bk6NGjSdZN7jOVmh4259zq1aupWrUqbm5ueHh40LBhw0RxJ3xXhYeH06hRI9zd3Xnttdf4+uuvAXOPz1q1auHm5oa/vz/z589P8tx//PEHPXr0IEOGDHh6etKxY0euX7+eKNan+f0iIiKpQz3nREQkzfntt9/InTs3lStXTlb9rl27MnfuXFq2bMmAAQPYtWsXn332GcePH2fJkiVWdc+cOUPLli3p0qULnTp1Yvbs2QQGBlKmTBmKFCkCmP8x/9lnn9G1a1fKly9PZGQke/fuZf/+/Yl6TiTXjz/+SHR0NO+99x7Xrl1j/PjxvPXWW9SqVYvNmzczePBgzpw5w1dffcXAgQOtElMjR45k1KhR1K5dm549e3Ly5ElmzJjBnj172LZt2yN7fR0+fJi6devi6+vLyJEjiY2NZcSIEWTOnDlR3U8++YRhw4bx1ltv0bVrVy5fvsxXX31FtWrV+Ouvv/D29n7sdUZERHDlyhWrMpPJRIYMGR56zMWLF6lYsaIlieTr68vq1avp0qULkZGR9OvXD4C4uDgaNWrEhg0baNOmDf/5z3+4efMm69at48iRI9SuXZsZM2bQs2dPmjVrRvPmzQHzELMEsbGxBAQE8Prrr/Pll1+SLl26h8bVpUsXgoODqV+/Pl27diU2NpY///yTnTt3PrS31YULF6hZsyaxsbF8+OGHuLm5MXPmTFxdXRPVDQ4Oxt3dnf79++Pu7s7GjRsZPnw4kZGRfPHFF5Z6QUFB9OjRg8qVK9OvXz/+/vtv3nzzTXx8fMiePftD47/fli1b+Pnnn+nbty/Ozs5Mnz6devXqsXv3booWLQqYk4pVq1bF09OTQYMG4ejoyLfffkuNGjXYsmULFSpUsGqzV69e+Pr6Mnz48Cda5TQhaZE+fXpL2e3bt6levTr//vsvPXr0IEeOHGzfvp0hQ4Zw/vx5Jk+eDJgTp40bN2b37t307NmTggULsmzZMjp16pSsc6f2d8bDTJkyhTfffJN27doRHR3NggULaNWqFStWrKBhw4bJv1mYk1FvvvkmmzZtokuXLpQsWZK1a9fywQcf8O+//zJp0qQUtZeUPXv2sH37dtq0aUO2bNkICwtjxowZ1KhRg2PHjiX6vCT1DMyYMYM+ffpQtWpV3n//fcLCwmjatCnp06e3SuDduXOHGjVqcObMGfr06UOuXLlYuHAhgYGB3Lhxw+oPMEkZPnw4Y8eOpUGDBjRo0ID9+/dTt25doqOjreol95l6HubNm0enTp0ICAjg888/5/bt28yYMYPXX3+dv/76y+oPBHFxcdSvX59q1aoxfvx4fvzxR/r06YObmxsff/wx7dq1o3nz5nzzzTd07NiRSpUqJZpSoE+fPnh7ezNy5EjL742zZ8+yefNmS8L6aX6/iIhIKjJERETSkIiICAMwmjRpkqz6Bw4cMACja9euVuUDBw40AGPjxo2WMn9/fwMw/vjjD0vZpUuXDGdnZ2PAgAGWshIlShgNGzZ85HmrV69uVK9ePVF5p06dDH9/f8t2aGioARi+vr7GjRs3LOVDhgwxAKNEiRJGTEyMpfztt982nJycjLt371ric3JyMurWrWvExcVZ6k2bNs0AjNmzZz8yzqZNmxouLi7G2bNnLWXHjh0z7O3tjfv/NyAsLMywt7c3PvnkE6vjDx8+bDg4OCQqf9CcOXMMIMmXs7OzVV3AGDFihGW7S5cuRpYsWYwrV65Y1WvTpo3h5eVl3L592zAMw5g9e7YBGBMnTkx0/vj4eMMwDOPy5cuJ2k/QqVMnAzA+/PDDJPfd/3PbuHGjARh9+/Z96LkMw/xMderUybLdr18/AzB27dplKbt06ZLh5eVlAEZoaKilPOG67tejRw8jXbp0lp9/dHS0kSlTJqNkyZLGvXv3LPVmzpxpAEk+gw9K+Dns3bvXUnb27FnDxcXFaNasmaWsadOmhpOTkxESEmIpO3funOHh4WFUq1bNUpbws3799deN2NjYx54/4TMwatQo4/Lly8aFCxeMP//80yhXrpwBGAsXLrTUHTNmjOHm5macOnXKqo0PP/zQsLe3N8LDww3DMIxFixYZgDF58mRLnbi4OKNWrVoGYMyZM8dSPmLECKtn/Vl8ZzzMgz/j6Ohoo2jRokatWrUee+yDz+TSpUsNwBg7dqxVvZYtWxomk8k4c+bMY9tzc3NLUbyGYRg7duwwAOP777+3lD3sGbh3756RIUMGo1y5clbfa8HBwYme18mTJxuA8cMPP1jKoqOjjUqVKhnu7u5GZGTkQ+NM+F5s2LCh1efxo48+MgCrz2RynynDSPzd9DgLFy40AGPTpk2J9iXco4TP/M2bNw1vb2+jW7duVvUuXLhgeHl5WZUnfFd9+umnlrLr168brq6uhslkMhYsWGApP3HiRKK4E85dpkwZIzo62lI+fvx4AzCWLVtmGMbT/34REZHUo2GtIiKSpkRGRgLg4eGRrPqrVq0CoH///lblAwYMAEg0N13hwoUtw+kAfH19KVCgAH///belzNvbm6NHj3L69OmUX8BDtGrVCi8vL8t2Qi+k9u3bW82HVaFCBaKjo/n3338BWL9+PdHR0fTr189q4YFu3brh6en5yLn34uLiWLt2LU2bNiVHjhyW8kKFChEQEGBVd/HixcTHx/PWW29x5coVy8vPz498+fKxadOmZF3n119/zbp166xeq1evfmh9wzBYtGgRjRs3xjAMq3MHBAQQERHB/v37AVi0aBEZM2ZMcvL+B4ctPkrPnj0fW2fRokWYTCZGjBiRonOtWrWKihUrUr58eUuZr6+vZfjs/e7vTXfz5k2uXLlC1apVuX37NidOnABg7969XLp0iXfffRcnJydL/cDAQKvn6XEqVapEmTJlLNs5cuSgSZMmrF27lri4OOLi4vj9999p2rQpuXPnttTLkiULbdu2ZevWrZbPZoJu3bqlaE6tESNG4Ovri5+fH1WrVuX48eNMmDCBli1bWuosXLiQqlWrkj59eqtnoXbt2sTFxVmG4q5ZswZHR0e6detmOdbOzo7evXs/No5n8Z3xMPf/jK9fv05ERARVq1a1PNMpsWrVKuzt7enbt2+iuA3DeOTnLLnujzcmJoarV6+SN29evL29k4z5wWdg7969XL16lW7dull9r7Vr186qh2TC9fj5+fH2229byhwdHenbty9RUVFs2bLloXEmfC++9957Vp/HhF6290vuM/WsrVu3jhs3bvD2229bxWFvb0+FChWS/I69f/EJb29vChQogJubG2+99ZalvECBAnh7eyf5PHbv3t2q51vPnj1xcHCwfAae5veLiIikLg1rFRGRNMXT0xMwJyuS4+zZs9jZ2SVaDdTPzw9vb2/Onj1rVX5/kipB+vTprebhGT16NE2aNCF//vwULVqUevXq0aFDB6vhkSn14HkTEisPDktMKE+IJyH+AgUKWNVzcnIid+7cia7vfpcvX+bOnTvky5cv0b4CBQpY/oEGcPr0aQzDSLIukOyhTeXLl0/RBPuXL1/mxo0bzJw586Gr7166dAkwz01WoECBh07unxwODg7Jmh8tJCSErFmz4uPjk6L2z549m2j4JyT++YF5GOnQoUPZuHFjosRXRESEpT0g0c/F0dHRKon2OEn9XPPnz8/t27e5fPkyYB7+l1SchQoVIj4+nn/++cdqGGdSq/I+Svfu3WnVqhV3795l48aNTJ06NdH8eqdPn+bQoUOWuQMflPAsnD17lixZsiQaZpmcVYGfxXfGw6xYsYKxY8dy4MABq/nsUpJMvj/urFmzJvrDRcIqoY/6LkiuO3fu8NlnnzFnzhz+/fdfq7nsEp7J+z34DCTE8OC9dXBwSDSn49mzZ8mXL1+i1Y6Tcz0P+1z4+vomSgIm95l61hL+2FOrVq0k9yf87kuQMM/l/by8vMiWLVui58fLyyvJ5/HB++Pu7k6WLFksQ8qf5veLiIikLiXnREQkTfH09CRr1qwcOXIkRccl9x+7D+vpc/8/QqtVq0ZISAjLli3j999/57vvvmPSpEl88803lp4MJpMpyUnYk5rM/1HnTU48z0N8fDwmk4nVq1cnGZO7u/szOy+YexA+bL6wp0mKPsjZ2TlRMsAWbty4QfXq1fH09GT06NHkyZMHFxcX9u/fz+DBg5/pRPWpJal59B4lX7581K5dG4BGjRphb2/Phx9+SM2aNS0J3fj4eOrUqcOgQYOSbCN//vxPF/R9UvM7Iyl//vknb775JtWqVWP69OlkyZIFR0dH5syZk2gC/7TivffeY86cOfTr149KlSrh5eWFyWSiTZs2ST6TKX0GbOF5PlOPiwPM8875+fkl2v/gHx3S+u8MERFJXUrOiYhImtOoUSNmzpzJjh07qFSp0iPr+vv7Ex8fz+nTpy09LsC8yMCNGzfw9/d/ohh8fHzo3LkznTt3JioqimrVqjFy5EhLci59+vRJDiNK7Z4GCfGfPHnSqqdUdHQ0oaGhlmRHUnx9fXF1dU1yeO7JkyettvPkyYNhGOTKleu5/WMVzDF6eHgQFxf3yGsBc4y7du0iJibmoT35nqRH0sPOtXbtWq5du5ai3nP+/v7Jut+bN2/m6tWrLF68mGrVqlnKQ0NDE7UH5l439/e4iYmJITQ0lBIlSiQrrqRiOnXqFOnSpbP0zkmXLl2iOAFOnDiBnZ1dshefSK6PP/6YWbNmMXToUNasWQOY73tUVNRjnwV/f382bdrE7du3rXrPnTlz5rHnfVbfGQ9atGgRLi4urF27FmdnZ0v5nDlznqg9f39/1q9fz82bN616zyUMgU6NuH/99Vc6derEhAkTLGV3795N9sqdCTGcOXOGmjVrWspjY2MJCwuzSrT7+/tz6NAh4uPjrRLmybme+z8X938vXr58OVEPsuQ+U89anjx5AMiUKdNzi+X06dNWP4eoqCjOnz9PgwYNgKf7/SIiIqnL9n86FhERecCgQYNwc3Oja9euXLx4MdH+kJAQpkyZAmD5R8aDK+5NnDgRIMUrIgJcvXrVatvd3Z28efNaDUvLkycPJ06csAwJBDh48CDbtm1L8fkepXbt2jg5OTF16lSrnhFBQUFEREQ88vrs7e0JCAhg6dKlhIeHW8qPHz/O2rVrreo2b94ce3t7Ro0alagHhmEYie5JarG3t6dFixYsWrQoyd6S99/fFi1acOXKFaZNm5aoXkLMCYma5CYTHqZFixYYhsGoUaMeeq6kNGjQgJ07d7J7925L2eXLl/nxxx+t6iX0frm/rejoaKZPn25Vr2zZsvj6+vLNN99YrUIZHBycomvcsWOH1Zxh//zzD8uWLaNu3brY29tjb29P3bp1WbZsmWXIG5gTVvPnz+f1119PNOzuaXl7e9OjRw/Wrl3LgQMHAHjrrbfYsWNHoucTzD/T2NhYAAICAoiJiWHWrFmW/fHx8Xz99dePPe+z+M5Iir29PSaTyao3bVhYGEuXLn2i9ho0aEBcXFyi53/SpEmYTCbq16//NOEC5pgffL6/+uqrh/YIflDZsmXJkCEDs2bNsvyswLxa9YNJswYNGnDhwgV+/vlnS1lsbCxfffUV7u7uVK9e/aHnqV27No6Ojnz11VdW8Sa18mpyn6lnLSAgAE9PTz799FNiYmIS7b//uy61zJw50+pcM2bMIDY21vKsPM3vFxERSV3qOSciImlOnjx5mD9/Pq1bt6ZQoUJ07NiRokWLEh0dzfbt21m4cCGBgYEAlChRgk6dOjFz5kzLUMHdu3czd+5cmjZtatVrILkKFy5MjRo1KFOmDD4+Puzdu5dff/2VPn36WOq88847TJw4kYCAALp06cKlS5f45ptvKFKkSKL5w56Gr68vQ4YMYdSoUdSrV48333yTkydPMn36dMqVK0f79u0fefyoUaNYs2YNVatWpVevXpZ//BYpUoRDhw5Z6uXJk4exY8cyZMgQwsLCaNq0KR4eHoSGhrJkyRK6d+/OwIEDHxvv6tWrLT1f7le5cuWHzpE2btw4Nm3aRIUKFejWrRuFCxfm2rVr7N+/n/Xr13Pt2jUAOnbsyPfff0///v3ZvXs3VatW5datW6xfv55evXrRpEkTXF1dKVy4MD///DP58+fHx8eHokWLUrRo0cfGfr+aNWvSoUMHpk6dyunTp6lXrx7x8fH8+eef1KxZ0+pZuN+gQYOYN28e9erV4z//+Q9ubm7MnDnT0kvo/vuRPn16OnXqRN++fTGZTMybNy9RYsTR0ZGxY8fSo0cPatWqRevWrQkNDWXOnDkpmnOuaNGiBAQE0LdvX5ydnS1JwPuTj2PHjmXdunW8/vrr9OrVCwcHB7799lvu3bvH+PHjU3L7ku0///kPkydPZty4cSxYsIAPPviA5cuX06hRIwIDAylTpgy3bt3i8OHD/Prrr4SFhZExY0aaNm1K+fLlGTBgAGfOnKFgwYIsX77c8qw8qgfls/jOSErDhg2ZOHEi9erVo23btly6dImvv/6avHnzWj0LydW4cWNq1qzJxx9/TFhYGCVKlOD3339n2bJl9OvXz9Iz61FiYmIYO3ZsonIfHx969epFo0aNmDdvHl5eXhQuXJgdO3awfv16MmTIkKwYnZycGDlyJO+99x61atXirbfeIiwsjODgYPLkyWP1c+nevTvffvstgYGB7Nu3j5w5c/Lrr7+ybds2Jk+e/MhFgXx9fRk4cCCfffYZjRo1okGDBvz111+sXr2ajBkzWtVN7jP1rHl6ejJjxgw6dOhA6dKladOmDb6+voSHh7Ny5UqqVKmS5B8enkZ0dDRvvPEGb731luX3xuuvv86bb74JPP3vFxERSUXPc2lYERGRlDh16pTRrVs3I2fOnIaTk5Ph4eFhVKlSxfjqq6+Mu3fvWurFxMQYo0aNMnLlymU4Ojoa2bNnN4YMGWJVxzAMw9/f32jYsGGi81SvXt2oXr26ZXvs2LFG+fLlDW9vb8PV1dUoWLCg8cknnxjR0dFWx/3www9G7ty5DScnJ6NkyZLG2rVrjU6dOhn+/v6WOqGhoQZgfPHFF1bHbtq0yQCMhQsXWpXPmTPHAIw9e/ZYlU+bNs0oWLCg4ejoaGTOnNno2bOncf369eTcRmPLli1GmTJlDCcnJyN37tzGN998Y4wYMcJI6n8DFi1aZLz++uuGm5ub4ebmZhQsWNDo3bu3cfLkyUeeIyHuh73mzJljqQsYI0aMsDr+4sWLRu/evY3s2bMbjo6Ohp+fn/HGG28YM2fOtKp3+/Zt4+OPP7b8rP38/IyWLVsaISEhljrbt2+3XO/95+rUqZPh5uaWZPwP/twMwzBiY2ONL774wihYsKDh5ORk+Pr6GvXr1zf27dtnqePv72906tTJ6rhDhw4Z1atXN1xcXIzXXnvNGDNmjBEUFGQARmhoqKXetm3bjIoVKxqurq5G1qxZjUGDBhlr1641AGPTpk1WbU6fPt3IlSuX4ezsbJQtW9b4448/Ej23DwMYvXv3Nn744QcjX758hrOzs1GqVKlE5zAMw9i/f78REBBguLu7G+nSpTNq1qxpbN++3arOw57Rh3nYZyBBYGCgYW9vb5w5c8YwDMO4efOmMWTIECNv3ryGk5OTkTFjRqNy5crGl19+afUZvHz5stG2bVvDw8PD8PLyMgIDA41t27YZgLFgwQJLvaSe9dT+zniYoKAgyz0vWLCgMWfOnId+9h6U1DN58+ZN4/333zeyZs1qODo6Gvny5TO++OILIz4+PlntPezzmSdPHsMwDOP69etG586djYwZMxru7u5GQECAceLEiUTP+eOegalTpxr+/v6Gs7OzUb58eWPbtm1GmTJljHr16lnVu3jxouV8Tk5ORrFixay+Kx4lLi7OGDVqlJElSxbD1dXVqFGjhnHkyJEkP5PJfaaS+m56lIULFyb5eTWM/79H93/mDcP83R8QEGB4eXkZLi4uRp48eYzAwEBj7969ljoP+66qXr26UaRIkUTlDz6nCefesmWL0b17dyN9+vSGu7u70a5dO+Pq1auJjn+a3y8iIpI6TIah2UNFREREXlYmk4nevXuneq+ctGjp0qU0a9aMrVu3UqVKFVuHI/8THx+Pr68vzZs3txqKLM9GcHAwnTt3Zs+ePSlaPVtERGxHc86JiIiIyAvnzp07VttxcXF89dVXeHp6Urp0aRtFJXfv3k00PPv777/n2rVr1KhRwzZBiYiIpHGac05EREREXjjvvfced+7coVKlSty7d4/Fixezfft2Pv30U1xdXW0d3itr586dvP/++7Rq1YoMGTKwf/9+goKCKFq0KK1atbJ1eCIiImmSknMiIiIi8sKpVasWEyZMYMWKFdy9e5e8efPy1VdfPXSxDnk+cubMSfbs2Zk6dSrXrl3Dx8eHjh07Mm7cOJycnGwdnoiISJqkOedERERERERERERsRHPOiYiIiIiIiIiI2IiScyIiIiIiIiIiIjai5JyIiIiIiIiIiIiNaEGIVBIfH8+5c+fw8PDAZDLZOhwREREREREREbEhwzC4efMmWbNmxc7u4f3jlJxLJefOnSN79uy2DkNERERERERERNKQf/75h2zZsj10v5JzqcTDwwMw33BPT08bRyMiIiIiIiIiIrYUGRlJ9uzZLTmjh1FyLpUkDGX19PRUck5ERERERERERAAeO/2ZFoQQERERERERERGxESXnREREREREREREbETJORERERERERERERvRnHPPkWEYxMbGEhcXZ+tQRF56jo6O2Nvb2zoMERERERERkUdScu45iY6O5vz589y+fdvWoYi8EkwmE9myZcPd3d3WoYiIiIiIiIg8lJJzz0F8fDyhoaHY29uTNWtWnJycHrtSh4g8OcMwuHz5Mv/973/Jly+fetCJiIiIiIhImqXk3HMQHR1NfHw82bNnJ126dLYOR+SV4OvrS1hYGDExMUrOiYiIiIiISJqlBSGeIzs73W6R50W9U0VERERERORFoGyRiIiIiIiIiIiIjSg5J0/FMAy6d++Oj48PJpOJAwcOPLSuyWRi6dKlzy02EREREREREZG0Tsk5SZYdO3Zgb29Pw4YNrcrXrFlDcHAwK1as4Pz58xQtWvShbZw/f5769es/61BFRERERERERF4YSs5JsgQFBfHee+/xxx9/cO7cOUt5SEgIWbJkoXLlyvj5+eHgkHiNkejoaAD8/PxwdnZ+bjGLiIiIiIiIiKR1Ss7JY0VFRfHzzz/Ts2dPGjZsSHBwMACBgYG89957hIeHYzKZyJkzJwA1atSgT58+9OvXj4wZMxIQEAAkHtb63//+l7fffhsfHx/c3NwoW7Ysu3btAsxJvyZNmpA5c2bc3d0pV64c69evf56XLSIiIiIiIiLyzCXu5iTPhWEY3ImJe+7ndXW0T/Eqlr/88gsFCxakQIECtG/fnn79+jFkyBCmTJlCnjx5mDlzJnv27MHe3t5yzNy5c+nZsyfbtm1Lss2oqCiqV6/Oa6+9xvLly/Hz82P//v3Ex8db9jdo0IBPPvkEZ2dnvv/+exo3bszJkyfJkSPHk98AEREREREREZE0RMk5G7kTE0fh4Wuf+3mPjQ4gnVPKfuxBQUG0b98egHr16hEREcGWLVuoUaMGHh4e2Nvb4+fnZ3VMvnz5GD9+/EPbnD9/PpcvX2bPnj34+PgAkDdvXsv+EiVKUKJECcv2mDFjWLJkCcuXL6dPnz4pil9EREREREREJK3SsFZ5pJMnT7J7927efvttABwcHGjdujVBQUGPPK5MmTKP3H/gwAFKlSplScw9KCoqioEDB1KoUCG8vb1xd3fn+PHjhIeHP9mFiIiIiIiIiIikQeo5ZyOujvYcGx1gk/OmRFBQELGxsWTNmtVSZhgGzs7OTJs27aHHubm5PToOV9dH7h84cCDr1q3jyy+/JG/evLi6utKyZUvL4hIiIiIiIiIiIi8DJedsxGQypXh46fMWGxvL999/z4QJE6hbt67VvqZNm/LTTz89cdvFixfnu+++49q1a0n2ntu2bRuBgYE0a9YMMPekCwsLe+LziYiIiIiIiIikRRrWKg+1YsUKrl+/TpcuXShatKjVq0WLFo8d2voob7/9Nn5+fjRt2pRt27bx999/s2jRInbs2AGY56xbvHgxBw4c4ODBg7Rt29ayWISIiIiIiIiIyMtCyTl5qKCgIGrXro2Xl1eifS1atGDv3r1ERkY+UdtOTk78/vvvZMqUiQYNGlCsWDHGjRtnWfF14sSJpE+fnsqVK9O4cWMCAgIoXbr0U12PiIiIiIiIiEhaYzIMw7B1EC+DyMhIvLy8iIiIwNPT02rf3bt3CQ0NJVeuXLi4uNgoQpFXiz53IiIiIiIiYkuPyhXdTz3nREREREREREREbETJORERERERERERERtRck5ERERERERERGxr+zS4ftbWUdiEknMiIiIiIiIiImI7x1fA7x/DN1Xh9jVbR/PcKTknIiIiIiIiIiK2EXUJfutrfl+mE6TzsW08NqDknIiIiIiIiIiIPH+GAcvfg9tXIXNRqDXU1hHZhJJzIiIiIiIiIiLy/O2fC6fWgL0TNJ8JDs62jsgmlJwTEREREREREZHn62oIrPnI/P6N4ZC5iG3jsSEl50RERERERERE5PmJi4Ul70LMLchZFSr2tnVENqXknDxTYWFhmEwmDhw4YOtQXhg1atSgX79+tg5DRERERERE5NnYNgn+uxucPaHpdLB7tdNTr/bVS7Lt2LEDe3t7GjZsmKLjsmfPzvnz5ylatOhTnT8+Pp7BgweTNWtWXF1dKV68OMuWLUv28StWrKB69ep4eHiQLl06ypUrR3Bw8FPF9KwsXryYMWPG2DoMERERERERkdR37i/YPM78vsEX4J3DtvGkAUrOSbIEBQXx3nvv8ccff3Du3LlkH2dvb4+fnx8ODg5Pdf4ffviBSZMmMXHiRI4fP87EiRNxc3NL1rFfffUVTZo0oUqVKuzatYtDhw7Rpk0b3n33XQYOHPhUcT0LPj4+eHh42DoMERERERERkdQVcwcWd4f4WCjcBIq3tnVEaYKSc/JYUVFR/Pzzz/Ts2ZOGDRsm6nF2/fp12rVrh6+vL66uruTLl485c+YAiYe1xsXF0aVLF3LlyoWrqysFChRgypQpj43Bzs4OX19f2rRpQ86cOalduza1a9d+7HH//PMPAwYMoF+/fnz66acULlyYvHnzMmDAAL744gsmTJjArl27LPWPHj1Ko0aN8PT0xMPDg6pVqxISEmLZ/91331GoUCFcXFwoWLAg06dPtzrf4MGDyZ8/P+nSpSN37twMGzaMmJgYy/6RI0dSsmRJ5s2bR86cOfHy8qJNmzbcvHnTUufBYa3z5s2jbNmyeHh44OfnR9u2bbl06dJjr11EREREREQkTVk/Eq6cAnc/aDQZTCZbR5QmKDlnK4YB0bee/8swUhzqL7/8QsGCBSlQoADt27dn9uzZGPe1M2zYMI4dO8bq1as5fvw4M2bMIGPGjEm2FR8fT7Zs2Vi4cCHHjh1j+PDhfPTRR/zyyy+PjOGNN94gIiKCYcOGpSj2X3/9lZiYmCR7yPXo0QN3d3d++uknAP7991+qVauGs7MzGzduZN++fbzzzjvExsYC8OOPPzJ8+HA++eQTjh8/zqeffsqwYcOYO3eupU0PDw+Cg4M5duwYU6ZMYdasWUyaNMnqvCEhISxdupQVK1awYsUKtmzZwrhx4x56DTExMYwZM4aDBw+ydOlSwsLCCAwMTNF9EBEREREREbGpkI2w6xvz+yZfQzof28aThjzdWEN5cjG34dOsz/+8H50Dp+QNB00QFBRE+/btAahXrx4RERFs2bKFGjVqABAeHk6pUqUoW7YsADlz5nxoW46OjowaNcqynStXLnbs2MEvv/zCW2+9leQxt2/fpk6dOrRt25Z169Zx584dvvjiC0z/y7B7enoye/ZsWrZsmejYU6dO4eXlRZYsWRLtc3JyInfu3Jw6dQqAr7/+Gi8vLxYsWICjoyMA+fPnt9QfMWIEEyZMoHnz5pbYjx07xrfffkunTp0AGDp0qKV+zpw5GThwIAsWLGDQoEGW8vj4eIKDgy1DVzt06MCGDRv45JNPkrz+d955x/I+d+7cTJ06lXLlyhEVFYW7u3uSx4iIiIiIiIikGbevwdJe5vflukK+x4+Ee5UoOSePdPLkSXbv3s2SJUsAcHBwoHXr1gQFBVmScz179qRFixbs37+funXr0rRpUypXrvzQNr/++mtmz55NeHg4d+7cITo6mpIlSz60fnBwMDdu3ODrr78mKiqKGjVq0LlzZ7777jv++9//EhUVRZUqVZ76Wg8cOEDVqlUtibn73bp1i5CQELp06UK3bt0s5bGxsXh5eVm2f/75Z6ZOnUpISAhRUVHExsbi6elp1VbOnDmt5pTLkiXLI4ep7tu3j5EjR3Lw4EGuX79OfHw8YE6KFi5c+ImvV0REREREROS5WDUQbp6HDHmhzmhbR5Pm2DQ5N2PGDGbMmEFYWBgARYoUYfjw4dSvXx+Au3fvMmDAABYsWMC9e/cICAhg+vTpZM6c2dJGeHg4PXv2ZNOmTbi7u9OpUyc+++wzqwUINm/eTP/+/Tl69CjZs2dn6NChiYYFfv3113zxxRdcuHCBEiVK8NVXX1G+fPlnd/GO6cy92J43x3Qpqh4UFERsbCxZs/5/Lz/DMHB2dmbatGl4eXlRv359zp49y6pVq1i3bh1vvPEGvXv35ssvv0zU3oIFCxg4cCATJkygUqVKeHh48MUXX1jN+/agQ4cOUaRIERwdHUmfPj3r1q2jatWqNGvWjHz58lGvXr0ke8aBuedbREQE586ds7oGgOjoaEJCQqhZsyYArq6uD40hKioKgFmzZlGhQgWrffb29oB5Rdt27doxatQoAgICLL3wJkyYYFX/weSfyWSyJNwedOvWLQICAggICODHH3/E19eX8PBwAgICiI6Ofmi8IiIiIiIiImnC4V/hyCIw2UOzmSkezfcqsOmcc9myZWPcuHHs27ePvXv3UqtWLZo0acLRo0cBeP/99/ntt99YuHAhW7Zs4dy5c5YhhWBeXKBhw4ZER0ezfft25s6dS3BwMMOHD7fUCQ0NpWHDhtSsWZMDBw7Qr18/unbtytq1ay11fv75Z/r378+IESPYv38/JUqUICAg4NlOum8ymR/I5/1KwWSLsbGxfP/990yYMIEDBw5YXgcPHiRr1qyWudoAfH196dSpEz/88AOTJ09m5syZSba5bds2KleuTK9evShVqhR58+a1WnAhKa+99hoHDhywLJqQKVMm1q9fz+HDh5k0aRJjx4596LEtWrTA0dExUYIM4JtvvuHWrVu8/fbbABQvXpw///zTagGHBJkzZyZr1qz8/fff5M2b1+qVK1cuALZv346/vz8ff/wxZcuWJV++fJw9e/aR1/Y4J06c4OrVq4wbN46qVatSsGBBLQYhIiIiIiIiL4aI/8LK/ub31QdBtjK2jSetMtKY9OnTG999951x48YNw9HR0Vi4cKFl3/Hjxw3A2LFjh2EYhrFq1SrDzs7OuHDhgqXOjBkzDE9PT+PevXuGYRjGoEGDjCJFilido3Xr1kZAQIBlu3z58kbv3r0t23FxcUbWrFmNzz77LNlxR0REGIARERGRaN+dO3eMY8eOGXfu3El2e2nBkiVLDCcnJ+PGjRuJ9g0aNMgoW7asYRiGMWzYMGPp0qXG6dOnjSNHjhiNGjUyypcvbxiGYYSGhhqA8ddffxmGYRhTpkwxPD09jTVr1hgnT540hg4danh6eholSpR4aBz//vuvkSFDBqNGjRrGtm3bjBMnThizZs0yMmTIYKRLl87o1avXI69j0qRJhp2dnfHRRx8Zx48fN86cOWNMmDDBcHZ2NgYMGGCpd+XKFSNDhgxG8+bNjT179hinTp0yvv/+e+PEiROGYRjGrFmzDFdXV2PKlCnGyZMnjUOHDhmzZ882JkyYYBiGYSxbtsxwcHAwfvrpJ+PMmTPGlClTDB8fH8PLy8tyjhEjRiS61kmTJhn+/v6W7erVqxv/+c9/DMMwjEuXLhlOTk7GBx98YISEhBjLli0z8ufPb3VPJWkv6udORERERETkpRAXZxjBjQ1jhKdhzKxpGLHRto7ouXtUruh+aWa11ri4OBYsWMCtW7eoVKkS+/btIyYmhtq1/3+SwIIFC5IjRw527NgBmIcRFitWzGqYa0BAAJGRkZbedzt27LBqI6FOQhvR0dHs27fPqo6dnR21a9e21HlVBQUFUbt2bas51RK0aNGCvXv3cujQIZycnBgyZAjFixenWrVq2Nvbs2DBgiTb7NGjB82bN6d169ZUqFCBq1ev0qtXr0fGkTVrVnbv3k3GjBlp3rw5pUqV4vvvv+f7779n5cqVzJw5k4kTJz70+H79+rFkyRL+/PNPypYtS9GiRZk/fz4zZsywGnqbIUMGNm7cSFRUFNWrV6dMmTLMmjXLMgy1a9eufPfdd8yZM4dixYpRvXp1goODLT3n3nzzTd5//3369OlDyZIl2b59e4pXl32Qr68vwcHBLFy4kMKFCzNu3LgkhwuLiIiIiIiIpCm7v4XQLeDgah7Oap94fncxMxmGYdgygMOHD1OpUiXu3r2Lu7s78+fPp0GDBsyfP5/OnTtz7949q/rly5enZs2afP7553Tv3p2zZ89aDVG9ffs2bm5urFq1ivr165M/f346d+7MkCFDLHVWrVpFw4YNuX37NtevX+e1115j+/btVKpUyVJn0KBBbNmy5aFzod27d88qtsjISLJnz05ERESiBQDu3r1LaGgouXLlwsXF5anul4gkjz53IiIiIiIiNnLpBHxbDeLuQcMJ5hVaX0GRkZF4eXklmSu6n817zhUoUIADBw6wa9cuevbsSadOnTh27Jitw3qszz77DC8vL8sre/bstg5JRERERERERMS2YqNhcTdzYi5vbSjbxdYRpXk2T845OTmRN29eypQpw2effUaJEiWYMmUKfn5+REdHc+PGDav6Fy9exM/PDwA/Pz8uXryYaH/CvkfV8fT0xNXVlYwZM2Jvb59knYQ2kjJkyBAiIiIsr3/++eeJrl9ERERERERE5KWxZRxcOASu6aHJ1ylamPJVZfPk3IPi4+O5d+8eZcqUwdHRkQ0bNlj2nTx5kvDwcMvw00qVKnH48GGr1SvXrVuHp6cnhQsXttS5v42EOgltODk5UaZMGas68fHxbNiwwWqY64OcnZ3x9PS0eomIiIiIiIiIvLLCd8LWSeb3jaeAx8M7Pcn/c7DlyYcMGUL9+vXJkSMHN2/eZP78+WzevJm1a9fi5eVFly5d6N+/Pz4+Pnh6evLee+9RqVIlKlasCEDdunUpXLgwHTp0YPz48Vy4cIGhQ4fSu3dvnJ2dAXj33XeZNm0agwYN4p133mHjxo388ssvrFy50hJH//796dSpE2XLlqV8+fJMnjyZW7du0blzZ5vcFxERERERERGRF8q9m7CkBxjxUOJtKNzE1hG9MGyanLt06RIdO3bk/PnzeHl5Ubx4cdauXUudOnUAmDRpEnZ2drRo0YJ79+4REBDA9OnTLcfb29uzYsUKevbsSaVKlXBzc6NTp06MHj3aUidXrlysXLmS999/nylTppAtWza+++47AgICLHVat27N5cuXGT58OBcuXKBkyZKsWbPGahVYERERERERERF5iLUfwfUw8MoO9T+3dTQvFJuv1vqyeNQKHFo1UuT50+dORERERETkOTmxCha8DZggcAXkfN3WEaUJL8xqrSIiIiIiIiIi8oKKugzL3zO/r9xHibknoOSciIiIiIiIiIiknGHAb33h9hXIVARqDbN1RC8kJedERERERERERCTl/poHJ1eBvRM0nwkOzraO6IWk5Jy8tHLmzMnkyZNtHcYzYTKZWLp0qa3DeGqBgYE0bdrU1mGIiIiIiIhISl37G1Z/aH5fayj4FbVtPC8wJefksS5cuMB7771H7ty5cXZ2Jnv27DRu3JgNGzak6nlq1KhBv379UrXNxzlz5gwBAQF4enri4+ND/fr1uXz58mOPi4uLY9y4cRQsWBBXV1d8fHyoUKEC3333XarGN3LkSEqWLJmqbf7000/Y29vTu3fvVG33SUyZMoXg4GBbhyEiIiIiIiIpER8HS96FmFvgXwUq9bF1RC80B1sHIGlbWFgYVapUwdvbmy+++IJixYoRExPD2rVr6d27NydOnHiu8RiGQVxcHA4OqfPodu/enYiICLZs2UK6dOnYsWMHyVnAeNSoUXz77bdMmzaNsmXLEhkZyd69e7l+/XqqxPUsBQUFMWjQIL799lsmTJhgk5VM4+LiMJlMeHl5Pfdzi4iIiIiIyFPaNhn+2QVOHtB0BtjZ2zqiF5p6zskj9erVC5PJxO7du2nRogX58+enSJEi9O/fn507d1rq3bhxg65du+Lr64unpye1atXi4MGDlv0JPcDmzZtHzpw58fLyok2bNty8eRMwD2/csmULU6ZMwWQyYTKZCAsLY/PmzZhMJlavXk2ZMmVwdnZm69athISE0KRJEzJnzoy7uzvlypVj/fr1Kb4+Ozs7AgICKFWqFAUKFCAwMJBMmTI99rjly5fTq1cvWrVqRa5cuShRogRdunRh4MCBljr37t2jb9++ZMqUCRcXF15//XX27Nlj2R8cHIy3t7dVu0uXLsVkMln2jxo1ioMHD1ruyf29zK5cuUKzZs1Ily4d+fLlY/ny5Y+NOzQ0lO3bt/Phhx+SP39+Fi9ebLU/IaYVK1ZQoEAB0qVLR8uWLbl9+zZz584lZ86cpE+fnr59+xIXF2d1rQMHDuS1117Dzc2NChUqsHnz5kTtLl++nMKFC+Ps7Ex4eHiiYa3x8fGMHz+evHnz4uzsTI4cOfjkk08s+wcPHkz+/PlJly4duXPnZtiwYcTExDz2ukVERERERCSVnD8Imz41v28wHtL72zael4CSczZiGAa3Y24/91dyeoUluHbtGmvWrKF37964ubkl2n9/YqlVq1ZcunSJ1atXs2/fPkqXLs0bb7zBtWvXLHVCQkJYunQpK1asYMWKFWzZsoVx48YB5uGNlSpVolu3bpw/f57z58+TPXt2y7Effvgh48aN4/jx4xQvXpyoqCgaNGjAhg0b+Ouvv6hXrx6NGzcmPDw8RT+HJk2aMH36dPbv35+i4/z8/Ni4ceMjh8AOGjSIRYsWMXfuXPbv30/evHkJCAiwuieP0rp1awYMGECRIkUs96R169aW/aNGjeKtt97i0KFDNGjQgHbt2j227Tlz5tCwYUO8vLxo3749QUFBiercvn2bqVOnsmDBAtasWcPmzZtp1qwZq1atYtWqVcybN49vv/2WX3/91XJMnz592LFjBwsWLODQoUO0atWKevXqcfr0aat2P//8c7777juOHj2aZBJ0yJAhjBs3jmHDhnHs2DHmz59P5syZLfs9PDwIDg7m2LFjTJkyhVmzZjFp0qRk3U8RERERERF5SjF3YHF3iI+FQo2hxNu2juiloGGtNnIn9g4V5ld47ufd1XYX6RzTJavumTNnMAyDggULPrLe1q1b2b17N5cuXcLZ2bwyy5dffsnSpUv59ddf6d69O2DuFRUcHIyHhwcAHTp0YMOGDXzyySd4eXnh5OREunTp8PPzS3SO0aNHU6dOHcu2j48PJUqUsGyPGTOGJUuWsHz5cvr0Sd5Y940bN/Lhhx8yatQoGjVqxM8//0zVqlUBWLRoEYGBgZaefQ+aOHEiLVu2xM/PjyJFilC5cmWaNGlC/fr1Abh16xYzZswgODjYUjZr1izWrVtHUFAQH3zwwWPjc3V1xd3dHQcHhyTvSWBgIG+/bf4i/PTTT5k6dSq7d++mXr16SbaXcP+/+uorANq0acOAAQMIDQ0lV65clnoxMTHMmDGDPHnyANCyZUvmzZvHxYsXcXd3p3DhwtSsWZNNmzbRunVrwsPDmTNnDuHh4WTNmhWAgQMHsmbNGubMmcOnn35qaXf69OlWP7f73bx5kylTpjBt2jQ6deoEQJ48eXj99dctdYYOHWp5nzNnTgYOHMiCBQsYNGjQY++niIiIiIiIPKUNo+HyCXDLBI2mwP9GfsnTUc85eajk9rI7ePAgUVFRZMiQAXd3d8srNDSUkJAQS72cOXNaEnMAWbJk4dKlS8k6R9myZa22o6KiGDhwIIUKFcLb2xt3d3eOHz+eop5zH374Ib1792bgwIEEBQXRuHFjfvvtNwAOHz5slRR6UOHChTly5Ag7d+7knXfe4dKlSzRu3JiuXbsC5l6CMTExVKlSxXKMo6Mj5cuX5/jx48mO8VGKFy9uee/m5oanp+cj7+e6deu4desWDRo0ACBjxozUqVOH2bNnW9VLly6dJTEHkDlzZnLmzIm7u7tVWcK5Dh8+TFxcHPnz57f6+W/ZssXq5+/k5GQV84OOHz/OvXv3eOONNx5a5+eff6ZKlSr4+fnh7u7O0KFDU9xbUkRERERERJ7A35th53Tz+yZfg1sGm4bzMlHPORtxdXBlV9tdNjlvcuXLlw+TyfTYRR+ioqLIkiWL1RxjCe4f+uro6Gi1z2QyER8fn6xYHhxWO3DgQNatW8eXX35J3rx5cXV1pWXLlkRHRyerPYBDhw7x/vvvA1C/fn2CgoJo1aoV06ZNIzg4mPHjxz/yeDs7O8qVK0e5cuXo168fP/zwAx06dODjjz9O1vnt7OwSJUBTMn9aSu9nUFAQ165dw9X1/5+B+Ph4Dh06xKhRo7Czs3tou486V1RUFPb29uzbtw97e+tJQO9P6Lm6ulrm00vK/XElZceOHbRr145Ro0YREBCAl5cXCxYsYMKECY88TkRERERERJ7SneuwtJf5fdl3IH9d28bzklFyzkZMJlOyh5faio+PDwEBAXz99df07ds3UYLsxo0beHt7U7p0aS5cuICDgwM5c+Z84vM5OTlZLTLwKNu2bSMwMJBmzZoB5gRRWFhYis732muv8ccff1iGhrZo0YKoqCg6d+5M8eLFadWqVYraK1y4MGAe0ponTx6cnJzYtm0b/v7myTFjYmLYs2cP/fr1A8DX15ebN29y69Yty709cOCAVZspuSePcvXqVZYtW8aCBQsoUqSIpTwuLo7XX3+d33///aHDYR+nVKlSxMXFcenSJcuw4CeRL18+XF1d2bBhg6UH4v22b9+Ov7+/VfLz7NmzT3w+ERERERERSaZVH0Dkv+CTG+qOtXU0Lx0l5+SRvv76a6pUqUL58uUZPXo0xYsXJzY2lnXr1jFjxgyOHz9O7dq1qVSpEk2bNmX8+PHkz5+fc+fOsXLlSpo1a5ZoSOrD5MyZk127dhEWFoa7uzs+Pj4PrZsvXz4WL15M48aNMZlMDBs2LNm98BIMGjSIXr164efnR+vWrYmIiGDHjh2kS5eOEydOsG3btocObW3ZsiVVqlShcuXK+Pn5ERoaypAhQ8ifPz8FCxbEwcGBnj178sEHH+Dj40OOHDkYP348t2/fpkuXLgBUqFCBdOnS8dFHH9G3b1927dpltRprwj0JDQ3lwIEDZMuWDQ8PD8u8fikxb948MmTIwFtvvZWo91qDBg0ICgp64uRc/vz5adeuHR07dmTChAmUKlWKy5cvs2HDBooXL07Dhg2T1Y6LiwuDBw9m0KBBODk5UaVKFS5fvszRo0fp0qUL+fLlIzw8nAULFlCuXDlWrlzJkiVLnihmERERERERSaYji+DwQjDZQ/NZ4JR4wUh5OppzTh4pd+7c7N+/n5o1azJgwACKFi1KnTp12LBhAzNmzADMvQBXrVpFtWrV6Ny5M/nz56dNmzacPXvWaqXNxxk4cCD29vYULlwYX1/fR84lNnHiRNKnT0/lypVp3LgxAQEBlC5dOkXX1qNHD37++Wd+++03ypQpw5tvvkl0dDQnTpygQ4cONG3a1Gq10fsFBATw22+/0bhxY/Lnz0+nTp0oWLAgv//+Ow4O5pz3uHHjaNGiBR06dKB06dKcOXOGtWvXkj59esDcM/GHH35g1apVFCtWjJ9++omRI0danadFixbUq1ePmjVr4uvry08//ZSia0wwe/ZsmjVrluSw0hYtWrB8+XKuXLnyRG2DeRXYjh07MmDAAAoUKEDTpk3Zs2cPOXLkSFE7w4YNY8CAAQwfPpxChQrRunVry9x2b775Ju+//z59+vShZMmSbN++nWHDhj1xzCIiIiIiIvIIUZdg5UBY3MO8XW0gZEte5xtJGZOR3Fn/5ZEiIyPx8vIiIiICT09Pq3137961rIjp4uJiowhFXi363ImIiIiIiDyBuxGw/SvYMR1ibpnLCjaCVsFg7/jIQ8Xao3JF99OwVhERERERERGRV13MXdjzHfw5Ae5cM5e9VgZqj4Rc1Wwa2stOyTkRERERERERkVdVXCwcWgCbPoPI/5rLMuaHN4abe8wlMT2SpC4l50REREREREREXjWGASdWwobRcOWkuczzNagxBEq8DfZKGT0vutMiIiIiIiIiIq+SsK2wfiT8d4952zU9VB0A5bqCo6tNQ3sVKTknIiIiIiIiIvIqOH/Q3FPuzHrztmM6qNgLqvQFFy/bxvYKU3JORERERERERORldjUENn0KR341b9s5QJlAqDYIPDLbNDRRck5ERERERERE5OV08yJs+Rz2z4X4WHNZ0ZZQ62PwyW3b2MRCyTkRERERERERkZfJ3QjYNhV2ToeY2+ayvHXMK7BmKW7b2CQRJedERERERERERF4GMXdg9yzYOhHuXDeXZSsHtUdCztdtGpo8nJJz8kKqUaMGJUuWZPLkybYORURERERERMS24mLh4HzYPA4i/zWXZSxg7ilXsCGYTLaNTx5JyTl5pMDAQObOnZuoPCAggDVr1tggIrPFixfj6Ohos/OLiIiIiIiI2JxhwPHfYOMYuHLKXOaZDWp+BCXagJ29beOTZFFyTh6rXr16zJkzx6rM2dn5idoyDIO4uDgcHJ7u0fPx8Xmq40VEREREREReaOG7YO0Q+HefedvVB6oNhLJdwNHFtrFJitjZOgBJ+5ydnfHz87N6pU+fnrCwMEwmEwcOHLDUvXHjBiaTic2bNwOwefNmTCYTq1evpkyZMjg7O7N161ZCQkJo0qQJmTNnxt3dnXLlyrF+/Xqr806fPp18+fLh4uJC5syZadmypWVfjRo16Nevn2V73rx5lC1bFg8PD/z8/Gjbti2XLl16lrdFRERERERE5PmLjYb1I2F2gDkx5+gG1QbBfw5Apd5KzL2A1HPORgzDwLhz57mf1+TqiskGY80//PBDvvzyS3Lnzk369On5559/aNCgAZ988gnOzs58//33NG7cmJMnT5IjRw727t1L3759mTdvHpUrV+batWv8+eefD20/JiaGMWPGUKBAAS5dukT//v0JDAxk1apVz/EqRURERERERJ6hS8dhcTe4cNi8XeJtqDMa3DPZNi55KkrO2Yhx5w4nS5d57uctsH8fpnTpUnTMihUrcHd3tyr76KOPaNu2bbLbGD16NHXq1LFs+/j4UKJECcv2mDFjWLJkCcuXL6dPnz6Eh4fj5uZGo0aN8PDwwN/fn1KlSj20/XfeecfyPnfu3EydOpVy5coRFRWVKHYRERERERGRF0p8POz6xtxjLu6eeQhr48lQuImtI5NUoOScPFbNmjWZMWOGVZmPjw+RkZHJbqNs2bJW21FRUYwcOZKVK1dy/vx5YmNjuXPnDuHh4QDUqVMHf39/cufOTb169ahXrx7NmjUj3UMSi/v27WPkyJEcPHiQ69evEx8fD0B4eDiFCxdOyeWKiIiIiIiIpB0R/4WlPSH0D/N23jrQZBp4+Nk2Lkk1Ss7ZiMnVlQL799nkvCnl5uZG3rx5E5VHRUUB5iG6CWJiYh7axv0GDhzIunXr+PLLL8mbNy+urq60bNmS6OhoADw8PNi/fz+bN2/m999/Z/jw4YwcOZI9e/bg7e1t1datW7cICAggICCAH3/8EV9fX8LDwwkICLC0JyIiIiIiIvLCObQQVg6AexHgmA7qjoWy74ANpquSZ0fJORsxmUwpHl6a1vj6+gJw/vx5y5DT+xeHeJRt27YRGBhIs2bNAHOiLywszKqOg4MDtWvXpnbt2owYMQJvb282btxI8+bNreqdOHGCq1evMm7cOLJnzw7A3r17n+LKRERERERERGzo9jVYNRCOLDJvv1YGms2EjIk7zsiLT8k5eax79+5x4cIFqzIHBwcyZsxIxYoVGTduHLly5eLSpUsMHTo0WW3my5ePxYsX07hxY0wmE8OGDbMMRQXzPHd///031apVI3369KxatYr4+HgKFCiQqK0cOXLg5OTEV199xbvvvsuRI0cYM2bM0120iIiIiIiIiC2EbIKlveDmOTDZQ/VBUHUg2CuF87Kys3UAkvatWbOGLFmyWL1ef/11AGbPnk1sbCxlypShX79+jB07NlltTpw4kfTp01O5cmUaN25MQEAApUuXtuz39vZm8eLF1KpVi0KFCvHNN9/w008/UaRIkURt+fr6EhwczMKFCylcuDDjxo3jyy+/TJ2LFxEREREREXkeYu7A6sEwr6k5MeeTB7qsgxofKjH3kjMZ908YJk8sMjISLy8vIiIi8PT0tNp39+5dQkNDyZUrFy4uLjaKUOTVos+diIiIiIi8MM4dgMXd4cpJ83a5rlBnNDi5PfIwSdselSu6n1KvIiIiIiIiIiK2EBcL2ybD5s8gPhbcM0OTryFfHVtHJs+RknMiIiIiIiIiIs/btb9hybvwzy7zdqE3odFkcMtg07Dk+VNyTkRERERERETkeTEM2P89rBkCMbfA2RMafAHFW4PJZOvoxAaUnBMREREREREReR6iLsNvfeHkKvO2fxVo9g1457BtXGJTSs6JiIiIiIiIiDxrJ1bB8vfg9hWwd4Jaw6BSb7Czt3VkYmNKzomIiIiIiIiIPCv3bsLaj8xDWQEyFYHmM8GvqG3jkjRDyTkRERERERERkWchfBcs6Q7XwwATVO4DNYeCo4utI5M0RMk5EREREREREZHUFBsNW8bB1klgxINXdmg6A3JVtXVkkgYpOSciIiIiIiIiklqu/Q0LA+H8QfN2ibeh/ufg4mXTsCTtUnJORERERERERCQ1XA2B4IZw8zy4podGk6FIU1tHJWmcna0DkLQtMDAQk8mU6FWvXj1bhyYiIiIiIiKSdtyfmPMtCD23KzEnyaKec/JY9erVY86cOVZlzs7OT9SWYRjExcXh4KBHT0RERERERF4SV87A3Eb/S8wVgk6/gbuvraOSF4R6zsljOTs74+fnZ/VKnz49YWFhmEwmDhw4YKl748YNTCYTmzdvBmDz5s2YTCZWr15NmTJlcHZ2ZuvWrdy7d4++ffuSKVMmXFxceP3119mzZ4+lnYTjVq5cSfHixXFxcaFixYocOXLEKratW7dStWpVXF1dyZ49O3379uXWrVvP47aIiIiIiIiImBNzCT3mMhVWYk5STMk5GzEMg5h7cc/9ZRiGTa73ww8/ZNy4cRw/fpzixYszaNAgFi1axNy5c9m/fz958+YlICCAa9euWR33wQcfMGHCBPbs2YOvry+NGzcmJiYGgJCQEOrVq0eLFi04dOgQP//8M1u3bqVPnz62uEQRERERERF51Vw5bU7MRV1QYk6emMYW2khsdDwz/7PluZ+3+5TqODrbp+iYFStW4O7ublX20Ucf0bZt22S3MXr0aOrUqQPArVu3mDFjBsHBwdSvXx+AWbNmsW7dOoKCgvjggw8sx40YMcJy3Ny5c8mWLRtLlizhrbfe4rPPPqNdu3b069cPgHz58jF16lSqV6/OjBkzcHFxSdF1ioiIiIiIiCTbldMQ3Mg6MeeW0dZRyQtIyTl5rJo1azJjxgyrMh8fHyIjI5PdRtmyZS3vQ0JCiImJoUqVKpYyR0dHypcvz/Hjx62Oq1SpktU5CxQoYKlz8OBBDh06xI8//mipYxgG8fHxhIaGUqhQoWTHJyIiIiIiIpJslh5zFyFTEei0XIk5eWJKztmIg5Md3adUt8l5U8rNzY28efMmKo+KigKwGiqbMOQ0qTZSW1RUFD169KBv376J9uXIkSPVzyciIiIiIiLC5VPmxR+UmJNUouScjZhMphQPL01rfH3N4+jPnz9PqVKlAKwWh3iYPHny4OTkxLZt2/D39wfMSb09e/ZYhqgm2LlzpyXRdv36dU6dOmXpEVe6dGmOHTuWZOJQREREREREJNXdn5jLXBQ6Lge3DLaOSl5wSs7JY927d48LFy5YlTk4OJAxY0YqVqzIuHHjyJUrF5cuXWLo0KGPbc/NzY2ePXvywQcf4OPjQ44cORg/fjy3b9+mS5cuVnVHjx5NhgwZyJw5Mx9//DEZM2akadOmAAwePJiKFSvSp08funbtipubG8eOHWPdunVMmzYt1a5fREREREREhMsnzXPM3boEmYtBx2VKzEmqUHJOHmvNmjVkyZLFqqxAgQKcOHGC2bNn06VLF8qUKUOBAgUYP348devWfWyb48aNIz4+ng4dOnDz5k3Kli3L2rVrSZ8+faJ6//nPfzh9+jQlS5bkt99+w8nJCYDixYuzZcsWPv74Y6pWrYphGOTJk4fWrVun3sWLiIiIiIiIXDoBcxsrMSfPhMm4f8IweWKRkZF4eXkRERGBp6en1b67d+8SGhpKrly5tIJoMm3evJmaNWty/fp1vL29bR2OvID0uRMRERERkVRx6YR5KOuty+bEXKflkM7H1lHJC+BRuaL7qeeciIiIiIiIiEhS7k/M+RUzzzGnxJykspQv3SkiIiIiIiIi8rK7dPy+xFxxJebkmVHPOUmTatSogUZci4iIiIiIiE1cOm5e/OH2lf8l5pYpMSfPjHrOiYiIiIiIiIgkuHjs/xNzWUooMSfPnJJzIiIiIiIiIiJgTszNbfz/ibkOS5WYk2dOw1pFRERERERERC4eM88xd/uqEnPyXKnnnIiIiIiIiIi82i4evS8xV1JDWeW5UnJORERERERERF5dF478byjrVchaCjouBdf0to5KXiEa1ioiIiIiIiIir6aExNyda+bEXIel4Opt66jkFaOec5KqatSoQb9+/R5ZJ2fOnEyePPmRdUwmE0uXLgUgLCwMk8nEgQMHUiVGERERERERES4cVmJO0gQl5+SRAgMDMZlMvPvuu4n29e7dG5PJRGBgoKVs8eLFjBkz5jlGmDybN2/GZDIl+bpw4UKqnCM5SUcRERERERFJAy4chrlv/i8xV1qJObEpJefksbJnz86CBQu4c+eOpezu3bvMnz+fHDlyWNX18fHBw8PjeYeYbCdPnuT8+fNWr0yZMtk6LBEREREREXle7u8x91oZ6LBEiTmxKSXn5LFKly5N9uzZWbx4saVs8eLF5MiRg1KlSlnVfXBY66VLl2jcuDGurq7kypWLH3/8MVH7p0+fplq1ari4uFC4cGHWrVv32JiOHDlC/fr1cXd3J3PmzHTo0IErV6489rhMmTLh5+dn9bKzM38M9uzZQ506dciYMSNeXl5Ur16d/fv3W441DIORI0eSI0cOnJ2dyZo1K3379rVc99mzZ3n//fctPfJEREREREQkjTl/6H+JuetKzEmaoeScjRiGQczdu8/9ZRjGE8X7zjvvMGfOHMv27Nmz6dy582OPCwwM5J9//mHTpk38+uuvTJ8+nUuXLln2x8fH07x5c5ycnNi1axfffPMNgwcPfmSbN27coFatWpQqVYq9e/eyZs0aLl68yFtvvfVE15bg5s2bdOrUia1bt7Jz507y5ctHgwYNuHnzJgCLFi1i0qRJfPvtt5w+fZqlS5dSrFgxwJyszJYtG6NHj7b0yBMREREREZE05MIR+P7N/yXmypoTcy5eto5KRKu12krsvXtM7dTyuZ+379xfcXRxSfFx7du3Z8iQIZw9exaAbdu2sWDBAjZv3vzQY06dOsXq1avZvXs35cqVAyAoKIhChQpZ6qxfv54TJ06wdu1asmbNCsCnn35K/fr1H9rutGnTKFWqFJ9++qmlbPbs2WTPnp1Tp06RP3/+hx6bLVs2q21/f3+OHj0KQK1ataz2zZw5E29vb7Zs2UKjRo0IDw/Hz8+P2rVr4+joSI4cOShfvjxgHs5rb2+Ph4cHfn5+Dz2/iIiIiIiI2MCV0zCv6X2JucVKzEmaoeScJIuvry8NGzYkODgYwzBo2LAhGTNmfOQxx48fx8HBgTJlyljKChYsiLe3t1Wd7NmzWxJzAJUqVXpkuwcPHmTTpk24u7sn2hcSEvLI5Nyff/5pNSeeo6Oj5f3FixcZOnQomzdv5tKlS8TFxXH79m3Cw8MBaNWqFZMnTyZ37tzUq1ePBg0a0LhxYxwc9DESERERERFJs66fhe+bwK3L4Fcc2i9SYk7SFGUVbMTB2Zm+c3+1yXmf1DvvvEOfPn0A+Prrr1MrpBSLioqicePGfP7554n2ZcmS5ZHH5sqVyyo5eL9OnTpx9epVpkyZgr+/P87OzlSqVIno6GjAvDDGyZMnWb9+PevWraNXr1588cUXbNmyxSrJJyIiIiIiImlE5HnzUNbIfyFjAc0xJ2mSknM2YjKZnmh4qS3Vq1eP6OhoTCYTAQEBj61fsGBBYmNj2bdvn2VY68mTJ7lx44alTqFChfjnn384f/68JbG2c+fOR7ZbunRpFi1aRM6cOVO119q2bduYPn06DRo0AOCff/5JtMiEq6srjRs3pnHjxvTu3ZuCBQty+PBhSpcujZOTE3FxcakWj4iIiIiIiDyFW1fMPeauh0H6nNBxGbg9egSYiC1oQQhJNnt7e44fP86xY8ewt7d/bP0CBQpQr149evTowa5du9i3bx9du3bF1dXVUqd27drkz5+fTp06cfDgQf78808+/vjjR7bbu3dvrl27xttvv82ePXsICQlh7dq1dO7c+bHJsUuXLnHhwgWrV0xMDAD58uVj3rx5HD9+nF27dtGuXTurWIODgwkKCuLIkSP8/fff/PDDD7i6uuLv7w9Azpw5+eOPP/j333+TtXKsiIiIiIiIPCN3bsC8ZnDlJHi+Bh2Xg+ejR1qJ2IqSc5Iinp6eeHp6Jrv+nDlzyJo1K9WrV6d58+Z0796dTJkyWfbb2dmxZMkS7ty5Q/ny5enatSuffPLJI9vMmjUr27ZtIy4ujrp161KsWDH69euHt7c3dnaPfqQLFChAlixZrF779u0DzItVXL9+ndKlS9OhQwf69u1rFau3tzezZs2iSpUqFC9enPXr1/Pbb7+RIUMGAEaPHk1YWBh58uTB19c32fdIREREREREUtG9KPixFVw4BG6+5h5z6f1tHZXIQ5kMwzBsHcTLIDIyEi8vLyIiIhIlr+7evUtoaCi5cuXC5QUbyiryotLnTkRERETkFRRzF+a3gtA/zIs+BK4Ev2K2jkpeUY/KFd1PPedERERERERE5MUXFwMLO5kTc07u0H6xEnPyQlByTkRERERERERebPFxsLg7nFoDDi7Q9mfIVtbWUYkki5JzIiIiIiIiIvLiio+H5X3h6GKwc4TWP0DO120dlUiy2TQ599lnn1GuXDk8PDzIlCkTTZs25eTJk1Z1atSogclksnq9++67VnXCw8Np2LAh6dKlI1OmTHzwwQfExsZa1dm8eTOlS5fG2dmZvHnzEhwcnCier7/+mpw5c+Li4kKFChXYvXt3ql+ziIiIiIiIiKQSw4A1H8KBH8BkBy2DIF8dW0clkiI2Tc5t2bKF3r17s3PnTtatW0dMTAx169bl1q1bVvW6devG+fPnLa/x48db9sXFxdGwYUOio6PZvn07c+fOJTg4mOHDh1vqhIaG0rBhQ2rWrMmBAwfo168fXbt2Ze3atZY6P//8M/3792fEiBHs37+fEiVKEBAQwKVLl579jRARERERERGRlNs4BnZ/a37fZDoUbmLbeESeQJparfXy5ctkypSJLVu2UK1aNcDcc65kyZJMnjw5yWNWr15No0aNOHfuHJkzZwbgm2++YfDgwVy+fBknJycGDx7MypUrOXLkiOW4Nm3acOPGDdasWQNAhQoVKFeuHNOmTQMgPj6e7Nmz89577/Hhhx8+Nnat1iqStuhzJyIiIiLykvtzAmwYbX7fcAKU62rbeEQe8EKu1hoREQGAj4+PVfmPP/5IxowZKVq0KEOGDOH27duWfTt27KBYsWKWxBxAQEAAkZGRHD161FKndu3aVm0GBASwY8cOAKKjo9m3b59VHTs7O2rXrm2p86B79+4RGRlp9RIRERERERGR52DXt/+fmKszWok5eaE52DqABPHx8fTr148qVapQtGhRS3nbtm3x9/cna9asHDp0iMGDB3Py5EkWL14MwIULF6wSc4Bl+8KFC4+sExkZyZ07d7h+/TpxcXFJ1jlx4kSS8X722WeMGjXq6S5aRERERERERFJm/zxYPcj8vvpgqPIf28Yj8pTSTHKud+/eHDlyhK1bt1qVd+/e3fK+WLFiZMmShTfeeIOQkBDy5MnzvMO0GDJkCP3797dsR0ZGkj17dpvFIyIiIiIiIvLSO7IYfutrfl+xN9QYYtt4RFJBmhjW2qdPH1asWMGmTZvIli3bI+tWqFABgDNnzgDg5+fHxYsXreokbPv5+T2yjqenJ66urmTMmBF7e/sk6yS08SBnZ2c8PT2tXpJ6AgMDadq0qa3DeGqbN2/GZDJx48YNW4ciIiIiIiLyYju5BhZ3AyMeSneCgE/AZLJ1VCJPzabJOcMw6NOnD0uWLGHjxo3kypXrscccOHAAgCxZsgBQqVIlDh8+bLWq6rp16/D09KRw4cKWOhs2bLBqZ926dVSqVAkAJycnypQpY1UnPj6eDRs2WOq8qgIDAzGZTIwbN86qfOnSpZhS4UswLCwMk8lk+bmmhjt37uDj40PGjBm5d+9eqrX7JCpXrsz58+fx8vKyaRwiIiIiIiIvtL83wy8dIT4WirWCRpOUmJOXhk2Tc7179+aHH35g/vz5eHh4cOHCBS5cuMCdO3cACAkJYcyYMezbt4+wsDCWL19Ox44dqVatGsWLFwegbt26FC5cmA4dOnDw4EHWrl3L0KFD6d27N87OzgC8++67/P333wwaNIgTJ04wffp0fvnlF95//31LLP3792fWrFnMnTuX48eP07NnT27dukXnzp2f/41JY1xcXPj888+5fv16qrYbHR2dqu0lWLRoEUWKFKFgwYIsXbr0mZwjOWJiYnBycsLPzy9VEpkiIiIiIiKvpPBd8FNbiLsHBRpC0xlgZ2/rqERSjU2TczNmzCAiIoIaNWqQJUsWy+vnn38GzD3a1q9fT926dSlYsCADBgygRYsW/Pbbb5Y27O3tWbFiBfb29lSqVIn27dvTsWNHRo8ebamTK1cuVq5cybp16yhRogQTJkzgu+++IyAgwFKndevWfPnllwwfPpySJUty4MAB1qxZk2iRiFdR7dq18fPz47PPPntkvYSkmLOzMzlz5mTChAlW+3PmzMmYMWPo2LEjnp6edO/e3dJbslSpUphMJmrUqGF1zJdffkmWLFnIkCEDvXv3JiYm5rHxBgUF0b59e9q3b09QUFCi/SaTiW+//ZZGjRqRLl06ChUqxI4dOzhz5gw1atTAzc2NypUrExISYnXcsmXLKF26NC4uLuTOnZtRo0YRGxtr1e6MGTN48803cXNz45NPPklyWOu2bduoUaMG6dKlI3369AQEBFgSn2vWrOH111/H29ubDBky0KhRo0RxiIiIiIiIvDLOHYAfW0HMLchdE1rNAXtHW0clkqpMhmEYtg7iZRAZGYmXlxcRERGJ5p+7e/cuoaGh5MqVCxcXF8A8pNeIiX/ucZoc7VLUiyswMJAbN27QqVMn2rZty+nTp8mWLRtLly6lWbNmJDw++/bto3z58owcOZLWrVuzfft2evXqxfTp0wkMDATMybnr168zfPhwy3xy165do3z58qxfv54iRYrg5OSEj48PgYGBLFmyhLZt2/Kf//yHM2fO0Lp1ayZPnky3bt0eGm9ISAhFihTh/PnzGIbBa6+9xokTJ/D39///e2Ay8dprrzFx4kRKlizJ4MGDOXDgALlz52bQoEHkyJGDd955B29vb1avXg3An3/+SaNGjZg6dSpVq1YlJCSE7t27ExgYyIgRIyztZsqUiXHjxlG9enUcHBz4+++/qVmzJtevX8fb25sDBw5QsWJF3nnnHXr06IGDgwObNm2iTZs2ZMyYkUWLFmEymShevDhRUVEMHz6csLAwDhw4gJ1dmpgi8oWR1OdOREREREReIJdOQHADuH0VclSC9ovAyc3WUYkk26NyRfdTci6VpDQ5Fx8dx7nh2597nFlHV8bOKfndfxOSc0uXLqVSpUoULlyYoKCgRMm5du3acfnyZX7//XfLsYMGDWLlypUcPXoUMCfnSpUqxZIlSyx1wsLCyJUrF3/99RclS5a0Ou/mzZsJCQnB3t4c71tvvYWdnR0LFix4aLwff/wxx44ds5yjadOmlCxZkpEjR1rqmEwmhg4dypgxYwDYuXMnlSpVIigoiHfeeQeABQsW0LlzZ8sQ69q1a/PGG28wZMj/rwT0ww8/MGjQIM6dO2dpt1+/fkyaNMlSZ/PmzVbJubZt2xIeHp5oVeKHuXLlCr6+vhw+fJiiRYsm6xgxU3JOREREROQFdu1vmF0foi5AlpLQaTm4aC5vebEkNzmnrjiSbJ9//rllTr4HHT9+nCpVqliVValShdOnTxMXF2cpK1u2bLLPV6RIEUtiDsyLgNy/8MeD4uLimDt3Lu3bt7eUtW/fnuDgYOLjrXspJsxZCFiGLhcrVsyq7O7du0RGRgJw8OBBRo8ejbu7u+XVrVs3zp8/z+3bt5N9fQcOHOCNN9546P7Tp0/z9ttvkzt3bjw9PcmZMycA4eHhj2xXRERERETkpRHxX5jbxJyYy1QYOixRYk5eag62DuBVZXK0I+voyjY575OqVq0aAQEBDBkyxDJUNaXc3JLfBdnR0XoeAZPJlCjJdr+1a9fy77//0rp1a6vyuLg4NmzYQJ06dZJsO2GYb1JlCeeLiopi1KhRNG/ePNF57++V9bjrc3V1feT+xo0b4+/vz6xZs8iaNSvx8fEULVr0mS2eISIiIiIikqZEXYLvm0BEOPjkhg5LIZ2PraMSeaaUnLMRk8mEKQXDS9OKcePGUbJkSQoUKGBVXqhQIbZt22ZVtm3bNvLnz2/V++1BTk5OAFa9655UUFAQbdq04eOPP7Yq/+STTwgKCrJKzqVU6dKlOXnyJHnz5n2qGIsXL86GDRsYNWpUon1Xr17l5MmTzJo1i6pVqwIke/iriIiIiIjIC+/2NZjXDK6eAc9s0HEZeGiRRnn5KTknKVKsWDHatWvH1KlTrcoHDBhAuXLlGDNmDK1bt2bHjh1MmzaN6dOnP7K9TJky4erqypo1a8iWLRsuLi54eaW8u/Lly5f57bffWL58eaK52Tp27EizZs24du0aPj5P9heX4cOH06hRI3LkyEHLli2xs7Pj4MGDHDlyhLFjxya7nSFDhlCsWDF69erFu+++i5OTE5s2baJVq1b4+PiQIUMGZs6cSZYsWQgPD+fDDz98onhFREREREReKPduwo8t4eIRcMtknmPOO4etoxJ5LjTnnKTY6NGjEw0vLV26NL/88gsLFiygaNGiDB8+nNGjRz92+KuDgwNTp07l22+/JWvWrDRp0uSJYvr+++9xc3NLcj63N954A1dXV3744YcnahsgICCAFStW8Pvvv1OuXDkqVqzIpEmTrFaBTY78+fPz+++/c/DgQcqXL0+lSpVYtmwZDg4OlsUu9u3bR9GiRXn//ff54osvnjhmERERERGRF8LdSJjfGv7dB67pzT3mMuSxdVQiz41Wa00lKV2tVUSeLX3uREREREReAFGX4IcWcOEQOHmYe8y9VtrWUYmkiuSu1qphrSIiIiIiIiLy/F0NgR+aw/UwSJcR2v2ixJy8kpScExEREREREZHn69wB8xxzty6Dtz90WKKhrPLKUnJORERERERERJ6fkE3wc3uIjgK/YtBukVZllVeaknMiIiIiIiIi8nwc/hWWvAvxMZCzKrSZDy4Pn4tL5FWg1VpFRERERERE5NnbMR0WdTEn5oo0g/aLlJgTQT3nnqv4+HhbhyDyytBC1CIiIiIiaYRhwPqRsG2yebt8d6j3Odipv5AIKDn3XDg5OWFnZ8e5c+fw9fXFyckJk8lk67BEXlqGYXD58mVMJhOOjo62DkdERERE5NUVFwPL+8LB+ebtWsOg6gDQv4lFLJScew7s7OzIlSsX58+f59y5c7YOR+SVYDKZyJYtG/b29rYORURERETk1RR9CxYGwunfwWQPjadA6Q62jkokzVFy7jlxcnIiR44cxMbGEhcXZ+twRF56jo6OSsyJiIiIiNjKrasw/y34dy84uEKrYChQz9ZRiaRJSs49RwlD7DTMTkRERERERF5aN8JhXnO4ehpcvKHdQshe3tZRiaRZSs6JiIiIiIiISOq4eBR+aAE3z4NnNuiwGHwL2DoqkTRNyTkREREREREReXph2+Cnt+FeBPgWgvaLwOs1W0clkuYpOSciIiIiIiIiT+fYcljUFeLuQY5K8PZP4Jre1lGJvBDsbB2AiIiIiIiIiLzA9gTBwk7mxFyBhtBhiRJzIimgnnMiIiIiIiIiknKGAZvHwZZx5u3SnaDhRLBXqkEkJfSJEREREREREZGUiY+Dlf1hX7B5u/pgqDEETCabhiXyIlJyTkRERERERESSL+aOeX65EysAEzT8Esp1tXVUIi8sJedEREREREREJHnu3DCvyBq+HeydoMV3ULiJraMSeaEpOSciIiIiIiIijxd5Dn5oAZeOgbOneUXWnK/bOiqRF56ScyIiIiIiIiLyaJdPwQ/NIeIfcPeD9ovAr6itoxJ5KSg5JyIiIiIiIiIP988emN8K7lyHDHmh/WJI72/rqEReGkrOiYiIiIiIiEhihgHHlsKSnhB7B14rA20XglsGW0cm8lJRck5ERERERERErJ3dDutHwT87zdt568Bbc8HJzbZxibyElJwTEREREREREbPzh2DDaDizzrzt4AIVe0HNj8De0baxibyklJwTERERERERedVdDYFNn8CRReZtOwco3RGqDQLPLLaNTeQlp+SciIiIiIiIyKsq8jxs+Rz+mgfxseayoi3NPeUy5LFtbCKvCCXnRERERERERF41t6/Btsmw61uIvWsuy1cXag2DLMVtGprIq0bJOREREREREZFXRfQt2DkDtk2FexHmsuwVofYI8K9s29hEXlFKzomIiIiIiIi87GKjYV8w/PEF3LpkLstcFN4Ybu4xZzLZNDyRV5mScyIiIiIiIiIvq/g4OLzQvNjDjXBzWfqcUHMoFG0BdnY2DU9ElJwTERERERERefkYBpxcBRvGwOXj5jL3zFB9EJTqCA5Oto1PRCyUnBMRERERERF5mYT+CRtGwX/3mLddvOD196F8D3BKZ9vYRCQRJedEREREREREXgbnDsCG0RCywbzt4AoVe0KVvuCa3qahicjDpTg5Fxoayp9//snZs2e5ffs2vr6+lCpVikqVKuHi4vIsYhQRERERERGRh7lyGjaOhWNLzdt2DlAmEKp9AB5+toxMRJIh2cm5H3/8kSlTprB3714yZ85M1qxZcXV15dq1a4SEhODi4kK7du0YPHgw/v7+zzJmEREREREREYn4F7aMg79+BCMOMEGxVlBzCPjktnV0IpJMyUrOlSpVCicnJwIDA1m0aBHZs2e32n/v3j127NjBggULKFu2LNOnT6dVq1bPJGARERERERGRV1psNGydCH9OhLh75rL89aDWMPAratvYRCTFTIZhGI+rtHbtWgICApLV4NWrVwkLC6NMmTJPHdyLJDIyEi8vLyIiIvD09LR1OCIiIiIiIvIyOn8IlvaCi4fN2zkqQ+0RkKOibeMSkUSSmytKVs+55CbmADJkyECGDBmSXV9EREREREREHiOht9wfX0B8LLj6QIMvoGgLMJlsHZ2IPAW7lB6wf/9+Dh8+bNletmwZTZs25aOPPiI6OjpVgxMRERERERF55V04DLNqwebPzIm5Qo2h9y4o1lKJOZGXQIqTcz169ODUqVMA/P3337Rp04Z06dKxcOFCBg0alOoBioiIiIiIiLyS4mJg8ziYWcM8jNXVB1oEwVvzwD2TraMTkVSS4uTcqVOnKFmyJAALFy6kWrVqzJ8/n+DgYBYtWpTa8YmIiIiIiIi8ei4chlk1/7+3XMFG6i0n8pJK1pxz9zMMg/j4eADWr19Po0aNAMiePTtXrlxJ3ehEREREREREXiVxMfDnBM0tJ/IKSXFyrmzZsowdO5batWuzZcsWZsyYAUBoaCiZM2dO9QBFREREREREXgkXDsPSnub/grm3XKNJGsIq8pJLcXJu8uTJtGvXjqVLl/Lxxx+TN29eAH799VcqV66c6gGKiIiIiIiIvNTiYuDPifDH+P/1lksPDb5UbzmRV4TJMAwjNRq6e/cu9vb2ODo6pkZzL5zIyEi8vLyIiIjA09PT1uGIiIiIiIjIi0C95UReWsnNFaW45xzAjRs3+PXXXwkJCeGDDz7Ax8eHY8eOkTlzZl577bUnDlpERERERETklaDeciLyPylOzh06dIg33ngDb29vwsLC6NatGz4+PixevJjw8HC+//77ZxGniIiIiIiIyMvhwpH/9ZY7ZN5WbzmRV5pdSg/o378/nTt35vTp07i4uFjKGzRowB9//JGqwYmIiIiIiIi8NOJiYMt4mFnDnJhzTQ8tgqD1D0rMibzCUtxzbs+ePXz77beJyl977TUuXLiQKkGJiIiIiIiIvFSS6i3XcCJ4ZLZtXCJicylOzjk7OxMZGZmo/NSpU/j6+qZKUCIiIiIiIiIvhbgY2DrJ3GMuPkZzy4lIIike1vrmm28yevRoYmJiADCZTISHhzN48GBatGiR6gGKiIiIiIiIvJAuHIHv3oBNn5gTcwUbQa9dUKylEnMiYpHi5NyECROIiooiU6ZM3Llzh+rVq5M3b148PDz45JNPnkWMIiIiIiIiIi+O++eWO3/Q3Fuu+XfmueU0jFVEHpDiYa1eXl6sW7eOrVu3cujQIaKioihdujS1a9d+FvGJiIiIiIiIvDiuhsCvnc1JOYACDc0rsSopJyIPYTIMw7B1EC+DyMhIvLy8iIiIwNPT09bhiIiIiIiIyPP2z274qQ3cvmruLVf/Cw1hFXmFJTdXlKyec1OnTk32ifv27ZvsuiIiIiIiIiIvhWPLYXE3iL0LWUrC2wvAM4utoxKRF0Cyes7lypXLavvy5cvcvn0bb29vAG7cuEG6dOnIlCkTf//99zMJNK1TzzkREREREZFX1M4ZsGYIYED+etAiCJzdbR2ViNhYcnNFyVoQIjQ01PL65JNPKFmyJMePH+fatWtcu3aN48ePU7p0acaMGZNqFyAiIiIiIiKSpsXHmZNyaz4EDCjbBVr/qMSciKRIiuecy5MnD7/++iulSpWyKt+3bx8tW7YkNDQ0VQN8UajnnIiIiIiIyCsk5o55GOvx38zbtUdBlf9ofjkRsUjVOefud/78eWJjYxOVx8XFcfHixZQ2JyIiIiIiIvJiuXXFvPDDf/eAvRM0+waKtrB1VCLygkrWsNb7vfHGG/To0YP9+/dbyvbt20fPnj2pXbt2qgYnIiIiIiIikqZcDYHvapsTcy7e0HGZEnMi8lRSnJybPXs2fn5+lC1bFmdnZ5ydnSlfvjyZM2fmu+++exYxioiIiIiIiNhe+C5zYu56KHjngC7rwL+yraMSkRdcioe1+vr6smrVKk6dOsWJEycAKFiwIPnz50/14ERERERERETShGPLYFE3iLsHWUtB21/APZOtoxKRl0CKk3MJ8ufPr4SciIiIiIiIvNwMA3ZOh7UfAwbkrw8tg8DJzdaRichL4omSc//9739Zvnw54eHhREdHW+2bOHFiqgQmIiIiIiIiYlPxcbD2I9j1jXm7XFeoPx7s7G0bl4i8VFKcnNuwYQNvvvkmuXPn5sSJExQtWpSwsDAMw6B06dLPIkYRERERERGR5yv6NizuBidWmLfrjIHK74HJZNu4ROSlk+IFIYYMGcLAgQM5fPgwLi4uLFq0iH/++Yfq1avTqlWrZxGjiIiIiIiIyPMTdRnmNjYn5uydoeUcqNJXiTkReSZSnJw7fvw4HTt2BMDBwYE7d+7g7u7O6NGj+fzzz1M9QBEREREREZHn5soZCKoN/+4F1/TQcRkUbW7rqETkJZbi5Jybm5tlnrksWbIQEhJi2XflypXUi0xERERERETkeQrfaU7MXQ8Db3/osg78K9k6KhF5yaV4zrmKFSuydetWChUqRIMGDRgwYACHDx9m8eLFVKxY8VnEKCIiIiIiIvJsHV0Ci3tA3D3IWhra/gzumWwdlYi8AlKcnJs4cSJRUVEAjBo1iqioKH7++Wfy5cunlVpFRERERETkxWIYsGMa/D7UvF2gAbT4DpzcbBuXiLwyTIZhGLYO4mUQGRmJl5cXEREReHp62jocEREREREReZz4OFjzIeyead4u3x3qjQM7e9vGJSIvheTmilLcc05ERERERETkhRd9GxZ1hZMrzdt1P4FKvbUiq4g8d8lKzqVPnx5TMr+grl279lQBiYiIiIiIiDxTUZfhp9bw7z6wd4bmM6FIU1tHJSKvqGSt1jp58mQmTZrEpEmTGDrUPA4/ICCAkSNHMnLkSAICAgAYNmxYik7+2WefUa5cOTw8PMiUKRNNmzbl5MmTVnXu3r1L7969yZAhA+7u7rRo0YKLFy9a1QkPD6dhw4akS5eOTJky8cEHHxAbG2tVZ/PmzZQuXRpnZ2fy5s1LcHBwoni+/vprcubMiYuLCxUqVGD37t0puh4RERERERFJ466chu/eMCfmXH2g03Il5kTEplI851yLFi2oWbMmffr0sSqfNm0a69evZ+nSpcluq169erRp04Zy5coRGxvLRx99xJEjRzh27BhububJN3v27MnKlSsJDg7Gy8uLPn36YGdnx7Zt2wCIi4ujZMmS+Pn58cUXX3D+/Hk6duxIt27d+PTTTwEIDQ2laNGivPvuu3Tt2pUNGzbQr18/Vq5caUks/vzzz3Ts2JFvvvmGChUqMHnyZBYuXMjJkyfJlOnxK/RozjkREREREZE07uwOWPA23LkO6XNCu0WQMa+toxKRl1Ryc0UpTs65u7tz4MAB8ua1/gI7c+YMJUuWtKzk+iQuX75MpkyZ2LJlC9WqVSMiIgJfX1/mz59Py5YtAThx4gSFChVix44dVKxYkdWrV9OoUSPOnTtH5syZAfjmm28YPHgwly9fxsnJicGDB7Ny5UqOHDliOVebNm24ceMGa9asAaBChQqUK1eOadOmARAfH0/27Nl57733+PDDDx8bu5JzIiIiIiIiaVRcLGyfApvHQVw0vFYW3l4A7r62jkxEXmLJzRUla1jr/TJkyMCyZcsSlS9btowMGTKktDkrERERAPj4+ACwb98+YmJiqF27tqVOwYIFyZEjBzt27ABgx44dFCtWzJKYA/OQ28jISI4ePWqpc38bCXUS2oiOjmbfvn1Wdezs7Khdu7alzoPu3btHZGSk1UtERERERETSmIvHIKg2bBhtTswVehM6/abEnIikGSlerXXUqFF07dqVzZs3U6FCBQB27drFmjVrmDVr1hMHEh8fT79+/ahSpQpFixYF4MKFCzg5OeHt7W1VN3PmzFy4cMFS5/7EXML+hH2PqhMZGcmdO3e4fv06cXFxSdY5ceJEkvF+9tlnjBo16skuVkRERERERJ6tuFjYNhm2fG5Oyrl4Qb3PoUQbrcgqImlKipNzgYGBFCpUiKlTp7J48WIAChUqxNatWy3JuifRu3dvjhw5wtatW5+4jedpyJAh9O/f37IdGRlJ9uzZbRiRiIiIiIiIAObeckt7wvkD5u389aDRZPDMYsuoRESSlOLkHJjnZ/vxxx9TLYg+ffqwYsUK/vjjD7Jly2Yp9/PzIzo6mhs3blj1nrt48SJ+fn6WOg+uqpqwmuv9dR5c4fXixYt4enri6uqKvb099vb2SdZJaONBzs7OODs7P9kFi4iIiIiISOqLizH3ltv8OcTHmHvL1R8PxVurt5yIpFnJmnPu/vnUHpxn7WnmXTMMgz59+rBkyRI2btxIrly5rPaXKVMGR0dHNmzYYCk7efIk4eHhVKpUCYBKlSpx+PBhLl26ZKmzbt06PD09KVy4sKXO/W0k1Elow8nJiTJlyljViY+PZ8OGDZY6IiIiIiIikoZdPArfvQEbx5oTc/nrQa9dGsYqImlesnrOpU+fnvPnz5MpUya8vb0xJfHFZhgGJpOJuLi4ZJ+8d+/ezJ8/n2XLluHh4WGZI87LywtXV1e8vLzo0qUL/fv3x8fHB09PT9577z0qVapExYoVAahbty6FCxemQ4cOjB8/ngsXLjB06FB69+5t6dn27rvvMm3aNAYNGsQ777zDxo0b+eWXX1i5cqUllv79+9OpUyfKli1L+fLlmTx5Mrdu3aJz587Jvh4RERERERF5zuJiYOtk89xy8THg4v2/3nJvKSknIi+EZCXnNm7caFlBddOmTal28hkzZgBQo0YNq/I5c+YQGBgIwKRJk7Czs6NFixbcu3ePgIAApk+fbqlrb2/PihUr6NmzJ5UqVcLNzY1OnToxevRoS51cuXKxcuVK3n//faZMmUK2bNn47rvvCAgIsNRp3bo1ly9fZvjw4Vy4cIGSJUuyZs2aRItEiIiIiIiISBpx4Qgs6wXnD5q389eHxpPBI+npiURE0iKTYRiGrYN4GURGRuLl5UVERASenp62DkdEREREROTlFRcDWyfBlvH/31uuwRdQrJV6y4lImpHcXNETLQhx48YNdu/ezaVLl4iPj7fa17FjxydpUkREREREROTxLhwxr8R64ZB5u0ADaDRJveVE5IWV4uTcb7/9Rrt27YiKisLT09Nq/jmTyaTknIiIiIiIiKS+uBj4cyL88YV6y4nISyXFybkBAwbwzjvv8Omnn5IuXbpnEZOIiIiIiIjI/7tw+H+95Q6btws0/F9vOc0RLiIvvhQn5/7991/69u2rxJyIiIiIiIg8W5becuMhPhZc00P9L6BYS/WWE5GXRoqTcwEBAezdu5fcuXM/i3hEREREREREEveWK9gIGk5UbzkReemkODnXsGFDPvjgA44dO0axYsVwdHS02v/mm2+mWnAiIiIiIiLyiomNhq0Jc8v9r7dcgy+haAv1lhORl5LJMAwjJQfY2dk9vDGTibi4uKcO6kWU3OVxRURERERE5CHOH4KlveDifb3lGk0C90y2jUtE5AkkN1eU4p5z8fHxTxWYiIiIiIiIiJXYaPhzAvz55f96y/mYV2JVbzkReQWkODknIiIiIiIikmruXIcfWsC/+8zb6i0nIq+YZCfn+vfvn2S5l5cX+fPnp3nz5jg7O6daYCIiIiIiIvKSuxsB85rDuf3g4g0NJ6i3nIi8cpKdnPvrr7+SLL9x4wZnzpxh2LBhbNy4kRw5cqRacCIiIiIiIvKSuhtp7jF3br95GGvgSshc2NZRiYg8dyleECIpkZGRtGvXDg8PD+bPn58acb1wtCCEiIiIiIhIMt2LMifm/tlp7jHX6TfIUtzWUYmIpKrk5ooevvRqCnh6ejJs2DC2bduWGs2JiIiIiIjIyyr6FsxvbU7MOXtBx6VKzInIKy1VknMAGTNm5Nq1a6nVnIiIiIiIiLxsYu7AT23g7FZw9oQOSyBrKVtHJSJiU6mWnNu5cyd58uRJreZERERERETkZRJzFxa0hdA/wMkd2i+CbGVsHZWIiM0le0GIQ4cOJVkeERHBvn37+PTTTxkxYkSqBSYiIiIiIiIvidh78EsHCNkIjumg3ULIXt7WUYmIpAnJTs6VLFkSk8lEUutHZMyYkf79+9OrV69UDU5ERERERERecLHRsDAQTv8ODq7Q9hfwr2zrqERE0oxkJ+dCQ0OTLPf09CR9+vSpFpCIiIiIiIi8JOJiYNE7cHIVOLjA2z9Brqq2jkpEJE1JdnLO39//WcYhIiIiIiIiL5O4WFjcDY7/BvZO0OZHyFPT1lGJiKQ5yVoQYufOnclu8Pbt2xw9evSJAxIREREREZEXXHwcLH0Xji4BO0do/QPkrW3rqERE0qRkJec6dOhAQEAACxcu5NatW0nWOXbsGB999BF58uRh3759qRqkiIiIiIiIvCDi42FZHzi8EOwc4K25kD/A1lGJiKRZyRrWeuzYMWbMmMHQoUNp27Yt+fPnJ2vWrLi4uHD9+nVOnDhBVFQUzZo14/fff6dYsWLPOm4RERERERFJa+Lj4be+cHA+mOyh5Wwo2NDWUYmIpGkmI6nlVx9h7969bN26lbNnz3Lnzh0yZsxIqVKlqFmzJj4+Ps8qzjQvMjISLy8vIiIi8PT0tHU4IiIiIiIiz5dhwMr+sHc2mOygxXdQtIWtoxIRsZnk5oqSvSBEgrJly1K2bNmnCk5EREREREReIoYBqweZE3OYoOk3SsyJiCRTsuacExEREREREUmSYcDaj2H3TMAETb6GEq1tHZWIyAtDyTkRERERERF5MoYB60fAzq/N242nQKl2to1JROQFo+SciIiIiIiIpJxhwMaxsG2KebvhBCjTybYxiYi8gJScExERERERkZTb8jn8+aX5ff3xUK6rbeMREXlBKTkn/8fefcdZUtX5/39V1c33dp7p6cmZnCVjQlhAdBVBVzChrOvKiondNSeWVdTdxbAGvj9dw6oY0BVdURBB1sBIGkmSJsfu6Z7ON99bVb8/qm7qMNM90923e/r9fFiPqjpVt/rcZpA77/s554iIiIiIiEzO7/4d7rvJO77ok3DW39e3PyIic9iEVmv94he/OOEHvutd7zrkzoiIiIiIiMgs98cvwL03escXfgLOva6u3RERmesM13Xdg920evXqmvOenh7S6TTNzc0ADAwMEIvFaG9vZ+vWrdPS0dluaGiIpqYmBgcHaWxsrHd3REREREREpt6GL8NdH/KOz/8IvOif69sfEZFZbKJZ0YSGtW7btq28ffKTn+SUU07h6aefpq+vj76+Pp5++mlOO+00brzxxil7AyIiIiIiIjKLPPD/VYK5F71fwZyIyBSZUOVctbVr1/LjH/+YU089tab9kUce4dWvfjXbtm2b0g7OFaqcExERERGRI9bD34BfvNc7fv71cMHHwDDq2ycRkVluSivnqnV2dlIsFke127bNvn37Jvs4ERERERERmc02/nclmDv3nQrmRESm2KTDuQsuuIC///u/Z+PGjeW2Rx55hGuvvZYLL7xwSjsnIiIiIiIidfTYD+Hn/qJ/Z10Lf3WjgjkRkSk26XDuG9/4Bh0dHZx++umEw2HC4TBnnnkmixYt4utf//p09FFERERERERm2tb/g5/9A+DCGX8Hl9ykYE5EZBoEJvuChQsX8stf/pLnnnuOZ555BoBjjjmGo446aso7JyIiIiIiInXQ8yz86I3gFOGEK+Cln1UwJyIyTSYdzpUcddRRCuRERERERESONMke+N5rIDsIy8+CV34FzEkPuhIRkQk6pHBu9+7d/PznP2fnzp3k8/maazfffPOUdExERERERERmWCEDP3gdDOyAllVw5a0QjNS7VyIiR7RJh3P33HMPr3jFK1izZg3PPPMMJ5xwAtu3b8d1XU477bTp6KOIiIiIiIhMN8eB26+F3Q9CpBle/2OIL6h3r0REjniTrk3+4Ac/yD/90z/xxBNPEIlE+MlPfsKuXbt40YtexGte85rp6KOIiIiIiIhMt9/+K/zlp2AG4bXfhQXr690jEZF5YdLh3NNPP82b3vQmAAKBAJlMhkQiwb/8y7/wmc98Zso7KCIiIiIiItNs43fg9//hHb/ii7D6BfXtj4jIPDLpcC4ej5fnmVu8eDFbtmwpX9u/f//U9UxERERERESm39b74Bfv8Y5f+D445XX17I2IyLwz6Tnnzj77bP7whz9w7LHHcumll/KP//iPPPHEE/zP//wPZ5999nT0UURERERERKZDz7PwwzeBU4QTXg3nf6jePRIRmXcmHc7dfPPNJJNJAG644QaSySQ//OEPWb9+vVZqFRERERERmSuS3fC9V0NuEJafDa/8MhhGvXslIjLvGK7ruvXuxJFgaGiIpqYmBgcHaWxsrHd3RERERERExlfIwLdeDnsehpbV8NZ7IN5W716JiBxRJpoVTXrOOREREREREZnDHAd++nYvmIs0w+tvUzAnIlJHExrW2tLSgjHB8ua+vr7D6pCIiIiIiIhMo3v/BZ66HcwgXPk9WLC+3j0SEZnXJhTOff7zny8f9/b28q//+q9cfPHFnHPOOQBs2LCBu+66i49+9KPT0kkRERERERGZAhv/G/7wOe/4Ff8Jq55f3/6IiMjk55y74oorOP/887nuuutq2r/0pS/xm9/8httvv30q+zdnaM45ERERERGZ1bb81lsAwinCi96vlVlFRKbZtM05d9ddd3HJJZeMar/kkkv4zW9+M9nHiYiIiIiIyHTrfgZ+dLUXzJ34GnjxB+vdIxER8U06nGtra+NnP/vZqPaf/exntLVpElEREREREZFZJdkNt74GcoOw4hx4xZdggnOKi4jI9JvQnHPVbrjhBt761rdy3333cdZZZwHwwAMPcOedd/K1r31tyjsoIiIiIiIih6iQge9fBQM7oWU1vPZ7EIzUu1ciIlJl0uHcm9/8Zo499li++MUv8j//8z8AHHvssfzhD38oh3UiIiIiIiJSZ44DP/172PMwRJrh9T+GuEY7iYjMNpNeEELGpgUhRERERERkVrn74/DHz4MZhDf9DFadV+8eiYjMKxPNiiZUOTc0NFR+yNDQ0AHvVTAlIiIiIiJSZ498ywvmAF75ZQVzIiKz2ITCuZaWFjo7O2lvb6e5uRljjMlDXdfFMAxs257yToqIiIiIiMgEbbkXfnG9d/yiD8DJr61vf0RE5IAmFM7de++9tLa2AvDb3/52WjskIiIiIiIih6j7afjR1eDacOLfwIs/UO8eiYjIQWjOuSmiOedERERERKSukt3wtQtgcCesOMebZy4QrnevRETmrYlmReZkH/zNb36T2267bVT7bbfdxre//e3JPk5EREREREQOVz4N37/SC+Za18KVtyqYExGZIyYdzt10000sWLBgVHt7ezuf+tSnpqRTIiIiIiIiMkGOAz/9e9jzCERb4PW3Qay13r0SEZEJmnQ4t3PnTlavXj2qfeXKlezcuXNKOiUiIiIiIiITdM8n4OmfgxXyKuba1ta7RyIiMgmTDufa29t5/PHHR7U/9thjtLW1TUmnREREREREZAIe/ib88Qve8Su+BCvPrW9/RERk0iYdzl111VW8613v4re//S22bWPbNvfeey/vfve7ufLKK6ejjyIiIiIiIjLS5nvgjn/0jl/8QTj5tfXtj4iIHJLAZF9w4403sn37di644AICAe/ljuPwpje9SXPOiYiIiIiIzIQt98JtbwbXhpNeCy96f717JCIih8hwXdc9lBc+99xzPPbYY0SjUU488URWrlw51X2bUya6PK6IiIiIiMgh2/MI/OYG2PZ/3vnK8+CNP9XKrCIis9BEs6JJV86VHHXUURx11FGH+nIRERERERGZqO5n4N4b4ZlfeOdmEE6/Bl7yYQVzIiJz3ITCueuvv54bb7yReDzO9ddff8B7b7755inpmIiIiIiIyLw3sBPu+zQ89n1wHcCAk6+CF38AWub36CURkSPFhMK5P//5zxQKBQA2btyIYRhj3jdeu4iIiIiIiExCsgd+/+/w8DfAznttx7wcXvIRaD+2vn0TEZEpdchzzkktzTknIiIiIiKHLTsI9/8nbPgKFFJe2+oXwgUfh2Wn17dvIiIyKdMy51yhUCAajfLoo49ywgknHHYnRUREREREBChk4MH/D/7wOcj0e21LTvVCubXn17dvIiIyrSYVzgWDQVasWIFt29PVHxERERERkfnDLsCfvwv/91kY3uu1LTjaG7567F+Dpg4SETniTXq11g9/+MN86EMf4jvf+Q6tra3T0ScREREREZEjm+PAX/4HfvtJ6NvqtTUt9xZ6OOlKsCb9VzUREZmjJv3/+F/60pfYvHkzS5YsYeXKlcTj8ZrrGzdunLLOiYiIiIiIHFFcFzbdDff+C3Q94bXFFsAL/wlOvwYC4fr2T0REZtykw7lXvvKVWpVVRERERERksnZsgHtugJ0bvPNwI5z7Tjj7Wgg31LdvIiJSN1qtdYpotVYRERERERlT1xNwz42w6S7vPBCBM/8Onn89xDRVkIjIkWqiWZE52QevWbOG3t7eUe0DAwOsWbNmso8TERERERE5MvVugR//LdzyfC+YMyw47Wp450a46F8VzImICHAIw1q3b98+5mqtuVyO3bt3T0mnRERERERE5qyhTvi/z8CfvwNO0Ws7/nI4/8OwYF19+yYiIrPOhMO5n//85+Xju+66i6ampvK5bdvcc889rF69emp7JyIiIiIiMhcUMrDp1/DEbfDcXWDnvfZ1F8IFH4PFJ9e3fyIiMmtNOJy77LLLADAMg6uvvrrmWjAYZNWqVfzHf/zHlHZORERERERk1rKLsP138MSP4en/hdxQ5drys+CCj8Oq8+rXPxERmRMmPOec4zg4jsOKFSvo7u4unzuOQy6X49lnn+XlL3/5pH747373O/76r/+aJUuWYBgGt99+e831N7/5zRiGUbNdcsklNff09fXx+te/nsbGRpqbm/nbv/1bkslkzT2PP/44L3jBC4hEIixfvpzPfvazo/py2223ccwxxxCJRDjxxBP55S9/Oan3IiIiIiIi84Drwq6H4Jfvg5uPhe+8Ch79nhfMNS6D894Nb/8DXHOXgjkREZmQSc85t23btin74alUipNPPplrrrmGyy+/fMx7LrnkEr75zW+Wz8PhcM3117/+9XR2dnL33XdTKBR4y1vewtve9jZuvfVWwFsZ46KLLuLCCy/klltu4YknnuCaa66hubmZt73tbQDcf//9XHXVVdx00028/OUv59Zbb+Wyyy5j48aNnHDCCVP2fkVEREREZI7qfsYbsvrkj6F/e6U92grHvwpOfI1XLWdOes09ERGZ5wzXdd3JvOBd73oX69at413veldN+5e+9CU2b97M5z//+UPriGHw05/+tDx8FrzKuYGBgVEVdSVPP/00xx13HA899BCnn346AHfeeSeXXnopu3fvZsmSJXz1q1/lwx/+MF1dXYRCIQA+8IEPcPvtt/PMM88A8NrXvpZUKsUvfvGL8rPPPvtsTjnlFG655ZYJ9X+iy+OKiIiIiMgcMbALnvyJN2x13xOV9mAcjnmZF8itPR+sYP36KCIis9ZEs6JJf63zk5/8hPPOG12efe655/LjH/94so87qPvuu4/29naOPvporr32Wnp7e8vXNmzYQHNzczmYA7jwwgsxTZMHHnigfM8LX/jCcjAHcPHFF/Pss8/S399fvufCCy+s+bkXX3wxGzZsmPL3IyIiIiIis1iqFx76L/jGS+HzJ8BvPu4Fc2YAjnopXPFf8M+b4IqvwVEXKZgTEZHDNulhrb29vTUrtZY0Njayf//+KelUySWXXMLll1/O6tWr2bJlCx/60Id46UtfyoYNG7Asi66uLtrb22teEwgEaG1tpaurC4Curq5Rq8guWrSofK2lpYWurq5yW/U9pWeMJZfLkcvlyudDQ0Pj3isiIiIiIrNYLgnP/sobtrrlHnCK/gUDVp4HJ74ajnslxFrr2k0RETkyTTqcW7duHXfeeSfXXXddTfuvfvUr1qxZM2UdA7jyyivLxyeeeCInnXQSa9eu5b777uOCCy6Y0p81WTfddBM33HBDXfsgIiIiIiKHqJiHLfd6gdyzv4RCunKt4yRvyOoJl0PTsvr1UURE5oVJh3PXX3891113HT09PbzkJS8B4J577uE//uM/Dnm+uYlas2YNCxYsYPPmzVxwwQV0dHTQ3d1dc0+xWKSvr4+Ojg4AOjo62LdvX809pfOD3VO6PpYPfvCDXH/99eXzoaEhli9ffuhvTkREREREppfjwM4NXiD31O2Q6a9ca1kNJ/0NnPBqWHhU3booIiLzz6TDuWuuuYZcLscnP/lJbrzxRgBWrVrFV7/6Vd70pjdNeQer7d69m97eXhYvXgzAOeecw8DAAI888gjPe97zALj33ntxHIezzjqrfM+HP/xhCoUCwaA3H8Tdd9/N0UcfTUtLS/mee+65h/e85z3ln3X33XdzzjnnjNuXcDg8auVYERERERGZpfZvgh+8HvY/W2lLLIITrvCGrS45DQyjfv0TEZF5a9KrtVbr6ekhGo2SSCQO6fXJZJLNmzcDcOqpp3LzzTdz/vnn09raSmtrKzfccANXXHEFHR0dbNmyhfe9730MDw/zxBNPlIOxl770pezbt49bbrmFQqHAW97yFk4//XRuvfVWAAYHBzn66KO56KKLeP/738+TTz7JNddcw+c+9zne9ra3AXD//ffzohe9iE9/+tO87GUv4wc/+AGf+tSn2LhxIyeccMKE3otWaxURERERmaW2/Q5++AbIDkK4EY57hTdsddULwLTq3TsRETlCTTQrOqRwrlgsct9997FlyxZe97rX0dDQwN69e2lsbJxUUHffffdx/vnnj2q/+uqr+epXv8pll13Gn//8ZwYGBliyZAkXXXQRN954Y83iDX19fVx33XX87//+L6ZpcsUVV/DFL36xph+PP/4473jHO3jooYdYsGAB73znO3n/+99f8zNvu+02PvKRj7B9+3bWr1/PZz/7WS699NIJvxeFcyIiIiIis9DG/4ZfvNdb5GHZmXDlrZBYWO9eiYjIPDBt4dyOHTu45JJL2LlzJ7lcjueee441a9bw7ne/m1wuxy233HLYnZ+LFM6JiIiIiMwijgO/+Tjc/0Xv/IRXwyu/DMFIffslIiLzxkSzInOyD373u9/N6aefTn9/P9FotNz+qle9invuuefQeisiIiIiIjJV8in40RsrwdyLPwhXfF3BnIiIzEqTXhDi97//Pffffz+hUKimfdWqVezZs2fKOiYiIiIiIjJpQ3vh+1dC52NgheGyr3gLPoiIiMxSkw7nHMfBtu1R7bt376ahoWFKOiUiIiIiIjJpex/1grnhTogt8OaXW3FWvXslIiJyQJMe1nrRRRfx+c9/vnxuGAbJZJKPf/zjk1pAQUREREREZMo8cwd886VeMLfwGPi7exTMiYjInDDpBSF2797NxRdfjOu6bNq0idNPP51NmzaxYMECfve739He3j5dfZ3VtCCEiIiIiEgduC7c/59w98cAF9a+BF7zLYg01btnIiIyz03baq0AxWKRH/zgBzz++OMkk0lOO+00Xv/619csEDHfKJwTEREREZlhdgHuuB42/rd3fvrfwks/C9akZ+8RERGZchPNig7pv1qBQIA3vOENh9w5ERERERGRw5Lphx9dDdv+DwwTLv4UnPV2MIx690xERGRSJhTO/fznP5/wA1/xilcccmdEREREREQOqm8rfO9voHcThBLw6m/AURfXu1ciIiKHZELh3GWXXTahhxmGMeZKriIiIiIiIlNix/3wg9dDpg8al8HrfggdJ9S7VyIiIodsQuGc4zjT3Q8REREREZEDe/T78PN3glOAJafBVd+Hho5690pEROSwaKZUERERERGZ3RwHfvtJ+P2/e+fHvRIuuwVCsfr2S0REZAqYE73x0ksvZXBwsHz+6U9/moGBgfJ5b28vxx133JR2TkRERERE5rlCBn78lkow9/zr4dXfUjAnIiJHjAmHc3fddRe5XK58/qlPfYq+vr7yebFY5Nlnn53a3omIiIiIyPw1vA++9TJ46nYwg/DKr8CFHwdzwn+NERERmfUmPKzVdd0DnouIiIiIiEyZrifh+1fC4C6ItsBrvwurnl/vXomIiEw5zTknIiIiIiKzy3O/9oay5pPQtg5e9yNoW1vvXomIiEyLCYdzhmFgGMaoNhERERERkSnhuvDA/4O7PgiuA6teAH/z3xBrrXfPREREps2khrW++c1vJhwOA5DNZnn7299OPB4HqJmPTkREREREZFLsItz5fnjo6975qW+El90MgVB9+yUiIjLNJhzOXX311TXnb3jDG0bd86Y3venweyQiIiIiIvNLdhBuewtsuQcw4K9ugHPfBRqpIyIi88CEw7lvfvOb09kPERERERGZj3qehR++AfY/B4EoXPE1OPav690rERGRGaMFIUREREREpD7+cjv87B3ewg8Ni+Gq78OSU+vdKxERkRmlcE5ERERERGaWXYTffBw2fMk7X/l8eM03IdFe336JiIjUgcI5ERERERGZOclub365HX/wzs99J1zwCbD0VxMREZmf9F9AERERERGZGTsfgNuuhuFOCCXglV+G4y+rd69ERETqSuGciIiIiIhML9eFB78Gd30QnCIsOBpe+11YeFS9eyYiIlJ35qG86Dvf+Q7nnXceS5YsYceOHQB8/vOf52c/+9mUdk5EREREROa4fAr+523wq3/2grnjXwV/d6+COREREd+kw7mvfvWrXH/99Vx66aUMDAxg2zYAzc3NfP7zn5/q/omIiIiIyFzVuwW+fiE88SMwLLj4U/Dqb0I4Ue+eiYiIzBqTDuf+8z//k6997Wt8+MMfxrKscvvpp5/OE088MaWdExERERGROeqZO+D/ezF0PwXxdrj6f+Gcd4Bh1LtnIiIis8qk55zbtm0bp5566qj2cDhMKpWakk6JiIiIiMgc5djw20/C7//DO19+NrzmW9C4uK7dEhERma0mXTm3evVqHn300VHtd955J8cee+xU9ElEREREROaiVC989/JKMHfWtfDmXyiYExEROYBJV85df/31vOMd7yCbzeK6Lg8++CDf//73uemmm/j6178+HX0UEREREZHZbvcj8KM3wdBuCMbgFf8JJ7663r0SERGZ9SYdzr31rW8lGo3ykY98hHQ6zete9zqWLFnCF77wBa688srp6KOIiIiIiMxWrguPfAt+9T6w89C6Fl77XVh0XL17JiIiMicYruu6h/ridDpNMpmkvb19Kvs0Jw0NDdHU1MTg4CCNjY317o6IiIiIyPQrZOCOf4JHv+udH/NyuOwrEGmqb79ERERmgYlmRZOunKsWi8WIxWKH8wgREREREZmL+rfDD98IXY+DYcIFH4Pz3qPVWEVERCZpQuHcqaeeijHB/8hu3LjxsDokIiIiIiKz3Ka74SdvhewAxBbAq78Ba15U716JiIjMSRMK5y677LLycTab5Stf+QrHHXcc55xzDgB/+tOf+Mtf/sI//MM/TEsnRURERERkFnAc+L/PeBsuLD0d/ubb0LSs3j0TERGZsyYUzn384x8vH7/1rW/lXe96FzfeeOOoe3bt2jW1vRMRERERkdkh3Qf/8zbYfLd3fsZb4eJPQSBc336JiIjMcZNeEKKpqYmHH36Y9evX17Rv2rSJ008/ncHBwSnt4FyhBSFERERE5IjV+Rj88A0wsBMCEXj55+GUq+rdKxERkVltolmROdkHR6NR/vjHP45q/+Mf/0gkEpns40REREREZDb783fhvy7ygrmWVfC3dyuYExERmUKTXq31Pe95D9deey0bN27kzDPPBOCBBx7gG9/4Bh/96EenvIMiIiIiIlIHAzvh1x+Fp273ztdfDJf/P4i21LVbIiIiR5pJh3Mf+MAHWLNmDV/4whf47ne/C8Cxxx7LN7/5Tf7mb/5myjsoIiIiIiIzKJ+CP3we7v8iFLNgmPDiD8IL/gnMSQ+8ERERkYOY9JxzMjbNOSciIiIic5rjwBO3wW8+AcN7vbZVL4BLboKOE+vaNRERkbloolnRpCvnRERERETkCLP7Ebjz/bD7Ie+8eSVc9K9w7F+DYdS3byIiIkc4hXMiIiIiIvPV0F74zQ3w+A+882AcXviPcPY7IKjF3kRERGaCwjkRERERkfmmkIENX4Lf3wyFtNd28uvggo9B4+L69k1ERGSeUTgnIiIiIjJfuC489TNvFdbBnV7bsjPhpZ+Gpc+rb99ERETmqcMK50prSRiah0JEREREZHbrfBzu/ADs+KN33rgULrwBTny15pUTERGpo0NaC/2///u/OfHEE4lGo0SjUU466SS+853vTHXfRERERETkcCV74Ofvgv/3Qi+YC0TgRR+A6x6Ck16jYE5ERKTOJl05d/PNN/PRj36U6667jvPOOw+AP/zhD7z97W9n//79vPe9753yToqIiIiIyCQV8/DALfC7f4PckNd2whVetVzz8vr2TURERMoMtzQ2dYJWr17NDTfcwJve9Kaa9m9/+9t84hOfYNu2bVPawbliaGiIpqYmBgcHaWxsrHd3RERERGS+cl147k6460PQt9VrW3wKXPJpWHlOXbsmIiIyn0w0K5p05VxnZyfnnnvuqPZzzz2Xzs7OyT5ORERERESmSvfTcOcHYetvvfN4O1z4cW8lVvOQZrQREZFD4OSKGEELw9TUAXJwkw7n1q1bx49+9CM+9KEP1bT/8Ic/ZP369VPWMRERERERmaB0H9x3Ezz0X+DaYIXg7H+AF/wjRDSqQ0RkuhUHsuS2DJLbOkhu2yB2XxYMMONBrEQQMxHCTASx4t6x1xbEKrUnghhBq95vY8a5ros9mKewZ5j8niRG0KTx/BX17taMm3Q4d8MNN/Da176W3/3ud+U55/74xz9yzz338KMf/WjKOygiIiIiIuOwi/DwN+C3n4TsgNd2zMvhohuhdU1duyYiciQrDuTIbR3wwritfhg3kgtOsoCTLADpgz7TCFmYDeMHeGY8iNUQwowHMaOBOVeVVw7idntBXH5PksKeJE6qUL7Hag4rnJuIK664ggceeIDPfe5z3H777QAce+yxPPjgg5x66qlT3T8RERERERnL5nu8eeV6nvHO24+HS26CNS+qb79ERI5ABw3jTAgtbSC8ponwmiZCyxtwiy52Mo+TKmAnCzjJPE6ycmz7wZ2dzIPt4uZt7F4bu3eMoG8k0/DDuiCB1ghWa5RAa6S8Wc1hjED9pjPwgrgchd3JcYO4MhOC7XGCSxOEliVwXRdjnq0kPukFIWRsWhBCRERERGZEug9+9X54wh+1Em2Fl3wYTnszWJP+7l1ERMZQHMx5QdyWAW+Y6sjAbGQYt6oRM3xo/x/sui5uzh4/wEt5AV6p3c0UD/5QA6ymsB/cRQi0lYK7KFZrBDMWmLIAbOwgbhgnNUY/TQgu8oO4pQlvvzh+xA7pnbYFIUq6u7vp7u7GcZya9pNOOulQHykiIiIiIgfy7J3wv++C5D4wTDjz7+HF74doS717JiIyp00kjAv6YVzkMMO4kQzDwIgEMCMBWBA96P1u0SlX49mDOYr9Wey+LEV/s/uyuAUHeyCHPZCDrYOjf2bYqgR31RV3rRECLZFxq+5c18UeyFHYM5EgziC4KFYO4kLLGgh2xDGCWqBopEn/SXrkkUe4+uqrefrppxlZdGcYBrZtT1nnREREREQEyAx4q7A+dqt33rYeXnULLDu9rt0SkSOH67jguuB4AQyOt7mlfdHFLTrljaLjtRUcXNsp7yk4tff61xjx+spzKu2YBmbIwghb3vxrYQsjZGKErTHardHt/r2GdfDwxy6FcVsHyW0doHiAMC68ponwykYvPJsFjICJ1RTGagrD0sSo667r4iQLlbCuN1MT3NlDedycTaEzRaEzNcYPAKsxXBPcuUWH/O5hCnuTBw/iliUILVUQNxmT/pN1zTXXcNRRR/Ff//VfLFq0aN6NAxYRERERmVGbfgM/fycM7wUMOPc6OP/DEDx4dYWIzB1uwcHJFnFyNm62iJMt4mZtnKztH5eu2ZX7cnY5PMMP11wHf19qHxm24Ydwrt+Od+1IEvBDvlKAVwrzQhZGwKCwJzk6jDMguGx2hnGTZRgGVkMIqyFEeOXooZRuwaHYXwnrKsGdF+K5eQd7MIc9mCO/bXTVnYK4qTfpP2lbt27lJz/5CevWrZuO/oiIiIiICEB2CH79Ydj439556xq47Kuw4uz69ktExuQWbOyUN8G/ky7iZKoCtlyxEqpl7XLQVgngimDP4oDM8Kq1jKAJlrc3AgaGNaLNMvxrlY2A4R2XX1fVVrMZuI6Lm3Nw8zZO3g8f87YXRPrnTt6pHJfa/XvKv8Oii1MsQvoAc7MZEFyaILymmfDauR3GTZYRNAm2xwi2x0Zdc10XJ1WoBHe9XnBnmEZlnjgFcVNu0n/yLrjgAh577DGFcyIiIiIi02XLb71qucFd3vlZ18IFH4PQ6L9Iicwlru3g5p0xgxdcKsMUq4cyhiywjBkftVUdtpVDt1TtcfW5m5+aKZ6MsIUZsTDCAW8f8fZmJIARsTDD/j4S8CrBLANMA8MATAMMA8M0wMRv965jGhgmYJSOvXtqrpeeUfM65syIObc4MthzRgV4bt4hsDBKeNX8CeMmwzAMrEQIKxGCFVrscqZM+k/i17/+da6++mqefPJJTjjhBILBYM31V7ziFVPWORERERGReSWXhLs/Bg//l3fevBIu+wqsen59+zVHObkiha40hc4khb0pCl0pnGzRCyUs098bI/amF2CUrpuGF37U3GeO8TqjEpJYpjfka0nCuzaHuba3CmN15VI5/MjbuLkRQVvNsTPqNRQPsTrMNGrnFAtZo84rwxjNEecWRtAsD2108/a4YZvtB26HHLZZBmY8iBUPjg7V/PNxQ7dS2DbH/8zUU6kKz4wFD36zyCwy6XBuw4YN/PGPf+RXv/rVqGtaEEJERERE5BBt+z387B0wsMM7P+OtcOENEB492bfUKq8e6E9uXuhMku9MjV5tcYaZsQDhdc2E1zUTWddCoDVS1/5MhOu4FPalvRUrtwyQ2zqIm5uGv+OZYIQCmH6QZoQt7+fnvcqmUcMUHRc3W8Se6X+kVWGbmQiOcRyqHCeCXhA4R6rMRGYL23bo25uie/sQhmFw3POX1LtLM27S4dw73/lO3vCGN/DRj36URYsWTUefRERERETmj3wKfnMDPPj/vPOm5fDKL8GaF9e1W7OVW3AodFeq4fJ+IOdmx55bymwMEVocJ7g4QXBxHDMR9IIe263aOyPOR+xtp7Jipe2C7Y4496/77W7eJr87iZMuknl8P5nH9wMQaIsQXt9CZF0z4bXNmNH6D6lzXZdib7YSxm0ZxEkVam8KGOWqrsrKmGbNKpmjqtiq26tW3DSC3vlEh6nWDIMdqypv5DxkpaGLBWfcKj8zaGL6AZsVD1Ydh8rHCttEpofjuPR3pejZMUz39iG6dw6zf1cSu+gA0LQwqnBuInp7e3nve9+rYE5ERERE5HDt2AA/+wfo2+qdP+/N8Fc3QkTz/ADYw/lR1XDFnrS3uuRIpuFNcL447m1LvEDOitdneJtrO+R3DZPdNEBu8wD5XUPexOq9naT+1AkGhJY1EF7fTGRdM6EVjd5E+TOgOJgjt7kSxtmDuZrrRtAktLqJyNomwmub6zo817BMjKg5K4JMEZkc13EZ7MnQvWOI7h3DdO8YomdXkuIY1bjhWICFKxpoX9WI67jzbnj3pP8f7vLLL+e3v/0ta9eunY7+iIiIiIgc+QoZuPdfYcOXARcalsAr/xPWXVjvnk0713HB9avOHPy9i5P0grh8VRjnDBfGfIYZCxDsiBNckqiEce2xGQu3JsKwTMKrmgivaoK/WomTLZLbOkh2Uz+5zQMUezLkdw2T3zXM8L27MEIm4dVN5cq6wKLYlFVs2alCTWVccX+m9gbLILSigchabwhuaFnDrPpdikyGYzsU8w6FvE0hZ1PM2xRyjr+3KRZsXAeMqoUuDMNbDMMwDG9lWgNvYQ3/X0HDNDAY+3r52L+v/Dxz5N7ANMc6r7TVnJsGZmlxjznAdV2Ge7N07ximZ+cQ+7YP07NzmHxmdFVzIGzRvqKBhSsbWLSykYUrG2haGJ3XVaqTDueOOuooPvjBD/KHP/yBE088cdSCEO9617umrHMiIiIiIkecXQ/B7ddC7ybv/JQ3wMWfhGhzXbtV4toOhe4Mhb1JCnuSFHszlSGeTu1+ZMBG9XXXxbW9a7hV1yezHoABgbZoJYBb7AVyVmNozv0lzowEiB7XRvS4NgCKAzlym/vLlXVOqkD22X6yz/YzCJgNIW/463pvvjqrMTThn+Vki+S2D5Wr4wqdqdobDAguTXhh3NpmQqsaMUPWFL5bkQNzXZdi3iGfLVLI2uSzRfLZ6jCteu8FbcWc7e/9oK3qeuneQt7GOdRFR2axUmBXCuvK56aBFTAJRQOEYwHCsSCRuLcf+zxAJB4kFAtgWYcXwKcGcjUVcd07hskmR3+hYgVNFixL0L6ykfZVDbSvaKS5I4Y5R0LHmWK4rjupP7mrV68e/2GGwdatWw+7U3PR0NAQTU1NDA4O0tioYQgiIiIiMkIhC/fdBPd/EVwHEh3wii/CURfXrUtO3qbQlfKDuBT5vUkK+1KHvqLmYTBCplcNt7iqIq4jPi9CI9dxKXSlyG0eILt5gPy2QdxC7djdwKKYH9a1EF7d5M3bVnp9wSa3Y7hcHZffPTxq6G9gUawcxoXXNGmYqEya67heIFYdpo3YV8I2vy1nk88UKVTv/WuTSyIOgQHBkEUgbBEMmQRCFsGwRSBkYhiG9/NdF9f1wkLvPVYf+3v/unf/wa7X3uc6rvedhP+lxVjn0/57GEcwbBH2g7uIH+SFq4K8SCxAOF4J+bLJQk0Ylx7Mj3qmaRq0LUvQvrKBdr8irnVJ/LCDwLlsolnRpMM5GZvCOREREREZ156NXrVczzPe+UmvhZd+BqItM9YFJ10gv9cP4vYmye9NUuzJjFnJZoQtgksShJbECS6KY4RMML3xW4Zp+JP547X5VRzVe/yqjtFt/t4ArKrnmXNn6NZMcAsOuR1D5cq6wt5k7T8nfxhqaGkDhb1JcjuHRgWqVlvED+OaCK9pxmqYeOWdzF+u4zLUm6V3T5K+vUl696bo3ZMi2Z+lkLMnV/k6EQaEwhbBSIBQpBSeVe9NL2Arh2xeWyBUuW/UecgL4KygOScqbN2qgND1q5Fdx8VxXL+t6ryqrXRuFx1y6SK5dJFsqkAuXSif51IFsumi15by9vns1Ky+bBjQuiTOwpWNtPtzxbUtjRMIHvlfqEzGRLMifV0iIiIiIjJdinn43Wfh9zeDa0N8Ibz883Dsy6ftR7quizOU96rg9vrVcHuS2AO5Me83E0FCSxNetdqSOKElCayWiMKyOjKCJpF13kIRTZdUzRm3eYDspn7s/hz5bUPktw2VX2M2hiqVcWubCLRE6vgOZLZzXZfMcMEP4VL07vGCuL7O1JiT9VczDAhFAwTDVmUfsQhFAgQjlaAtVArcIpV7a+4Le9tcCNCmk1Ge286AGci1HNshn7H9IM8L7LLl8K507gV7pfNcukggZJUr4tpXNrBgeQPBsIK4qTLpcO6aa6454PVvfOMbh9wZEREREZEjRudjcPs/wL4nvfMTroCX/hvE26bsR7iOS7EvW1UNl6KwJ4mTGnshBas14lXDLUn4lXGJSc1lJvVhxYPETlpI7KSFABR7M15FXWeSYEec8LpmAgvm92Tq1Qp5m2yyQDZZIJPM+/tCua1YdGoqkEZWI+G6OE5VJdOI+5wRr6ncV6lmwoVIIkisMVTZmsL+3juPN4VnJNzIZ4u1AdzeJL17UmPODwZgBgxaOuK0LY3TtiRB65I4TQujhGNBghGLwBypSJOxmZZJJGESSdRnJWsZ26TDuf7+/przQqHAk08+ycDAAC95yUumrGMiIiIiInOSXYDf/wf87t/AKUKsDV52Mxx/2WE91snZFPb5K5l2lVY0TeGOVeViQmBhjNCS2oo4zTN2ZAi0RUm0RevdjRlRLNhkk0WyqXxNwFY59ttTVeHbiPn66mW4L3vQe4JhqyawKwd4jZUAL9YUIpoIYh5k3i676DCwL10J4fz9cO84/TCgaUGUtqVeAFfaN7dHD/qzRGRqTfq/zj/96U9HtTmOw7XXXsvatWunpFMiIiIiInOO48Czv4T7Pg37nvDajv1reNnnILFwwo9xHRe7L0uhK0W+FMR1pbDH+wt2wCS4OF6uiAstSRDsiGFo3h+ZAtlUgb69SWzbxbWr5r2qmvNq1N4e3eYdV82dZbs4rrcvtdVWvHn7wkGGWI7HtAwiiSDRRJBIIkgkHioflxYEMAxvbkTDNDD9uRDLK2GWrhn+NbNybvj3mmbtM6pfB5BNFkgP5UkP5v19jvRQnpR/XMw7FHI2gz0ZBnsyB35DBkQTQWKNYeLlIC+EFbQY6ErRuzfFQFfaq/wbQ6wpRNuSOK1LE7QtSdC2NE7L4jjBebDgishcMGULQjz77LO8+MUvprOzcyoeN+doQQgRERGRecouwpM/gT/cXFnwIdoCl/67N5T1AMO/nHSBQle6HMAVOlMU9qVw82NX/pgNofIqpsEOrzIusDCGYWmImUydof0Ztj22n22P97B302B5Vcp6McyqoC3uh22JIFH/2AvdQjVh3FyYyyyfLVaCu6E8KT+8qwR6OdKDeTLD+Qmv6BmKWLT64Vtp37YkoSGMInUy4wtCbNmyhWKxOFWPExERERGZ3QpZePR78McvwMAOry3cCGe8Fc55B8QXlG91bZdib4ZCZ5JCZ7ocxNmDYy/SQMAkuCjmhXBVYZyV0PxwM81xXIp5G7vgUPD3xbxDMW97+8KIfd7BLto0tcdYsr6ZeFO43m/hoFzXZf/uJNse7WHrY/vp3Z2sud7QFiEYtjAtrzKsZm9Sriyr2dfcM+Ka/5rScwzLaw8ErdpqN/84FA3M+qDtUHgLJgRoXhQ74H2O45JNFirhXVVwV8jZNC+KlYelJlrCR+TvSuRIN+lw7vrrr685d12Xzs5O7rjjDq6++uop65iIiIiIyKyUG4aHvwEbvgzJfV5bbAHu2f+Ae9JbcIhR7MxQ6NxTqYjbl4Li2KUvVnO4EsD5+0BbVNVwh6mQt8mMqEJKDeXJZ4oUC164ZucdCnkHu2DX7vM2RT+Mc8b55zZRTe1RlqxvZun6Zhavb6ZxlswV59gOezcPsu3RHrY9tr9mfjTDgMXrmll98gJWn7yQpoWzo8/zlWka5TnoROTINOlhreeff37NuWmaLFy4kJe85CVcc801BALzc5JZDWsVERERmZvcooOTs3GzRX9v4+SKuDm79jyZwtn9FG7PThw7iOPGcM1GnOACXCc87lDUEiNk1lbCLY4TXBTXIg2TYBcdMsOVYYA183kN+dVE/nEhe2hzlR2IFTAJhEwCQZNAyPKOQ1bl3N8blsH+XcPs352EEX/bSrSGWbK+mSXrmll6VAtN7TO3ymo+W2TX031se3Q/25/YTy5dGfkUCJosP66V1ScvZNVJbURVpSkictgmmhVN2Zxz853COREREZHZx3Vdivsz5LcPkds+RLEvi5urDeHGq2g7ZKaB1RImNCKIs1oiGKaq4Uayiw7ZVIHMcMGvdPMq3ErBWzmMG8yTTRUm9WwraJYnz482eCthhqOB0aHamCFb1bWg1zbZf365dIHOLYPs3TTA3k0DdO8YHjV/W7QxxJJ1zV513VHNtC6OT+mfk/RQnu2P72fbYz3serofu1gJkSPxIKtOXsDqkxaw/LhWLQ4gIjLFpi2cy2QyuK5LLOaNi9+xYwc//elPOe6447jooosOr9dzmMI5ERERkfpzbYfC3hS57YPktg+R3z6EM8FAxwiZGOEAZsTCCFuYZh4juQ1z6DkMN4lJGqOxCXP98zFXnYoRCXr3RQKYYQsjYmGGAxAw5uWcT67rUsjaZFMFb0sWRhwXa8/965NdjdM0DaKNldUqYw1Vx43h8vC/WGOIYGR2LQqQzxbZt22oHNbt2zZUE5YBhGMBFleFdQuWJTAtc1I/Z2Bfmq2P9bD9sf10bh2sqd5rXBBh9SkLWXPyAjrWNE362SIiMnHTFs5ddNFFXH755bz97W9nYGCAo48+mlAoxP79+7n55pu59tprD7vzc5HCOREREZGZ5+SK5HcO+0HcIPmdw7iFEcNLAwah5Q2EVzUR7Ih74duIQM3whyIC0PUk/OFz8Jf/Add/1srz4AXXw9oLDrj66pHEdVxSgzmGe7NkqoK2XFXYlknmy6FbLlXAsQ+tCtEwIJIIVgVr4UoAVw7evC0SCx4xFYjFgk339mH2bupn76YBOrcOURwRVgbDFovXNrHkKG8obPvKRqxgbaDmOi7dO4bZ+lgP2x7tob8rXXN94YoG1pzizR/XuiQ+qwJLEZEj2bSt1rpx40Y+97nPAfDjH/+Yjo4O/vznP/OTn/yEj33sY/M2nBMRERGR6WcP58ltHywPUy3sHT2nlxkLEFrZSHhVI6FVTYSWJjACE6gO2vUg/P4/4Lk7K23rL4LnXw8rz5naNzJLOLbDcF+Wwe4Mgz2129D+DPbIoHMCrKBJJB70tkT1PlDbVnVPOBo4YgK3yQgELW/+ufXNANi2w/6dSfZs6qdz0wB7Nw+SzxTZ+VQfO5/qA7zfb8fqRhav94bA7nlugG2P9ZAezJefa5oGS45qZs0pC1l10gIaWiP1eHsiIjJBkw7n0uk0DQ0NAPz617/m8ssvxzRNzj77bHbs2DHlHRQRERGRmeM6LoXOFLltg+S2DVLoTGGGLMxEECsRxEyEvON40G8Lla8Zwamdr6pmvrhtg+R2DGH3ZkfdZ7WECa9qIrTKC+QCC2MTD3pcF7b+Fn5/M2z/vd9owPGXeaHc4pOm7P3USzFvM7Q/y2BPelQAN9ybHTUHWjXDNGhoDRNJhPwgLVAO1aKJIOGRYVsiqHnLDoNlmSxa3cii1Y1w0Uocx6Vvb5I9zw34Yd0AmeECe54bYM9zAzWvDYYtVhzfxppTFrDyhDbCsWB93oSIiEzapMO5devWcfvtt/OqV72Ku+66i/e+970AdHd3aziniIiIyBzj2g75PUny2wbJbRsit30Qd8QqlxOdEcwYEeJZiSBmOcQb0TbG0MSa+eK2DZHfMYiTKo74IRDsiPtBnBfIBZrCk3/jjgPP3uFVyu39s9dmBuHkK+G898CCdZN/Zh3lM8Wq0M0P4bq96rdkf+6Ar7WCJo0LojQtjNLUHqVpgb9fGCXRGsHSnGR1Y5oGC5Y1sGBZAye/ZDmu6zKwL83eTV4419+Von1VI2tOXsiyo1tGDXcVEZG5YdLh3Mc+9jFe97rX8d73vpcLLriAc87xSvx//etfc+qpp07qWb/73e/4t3/7Nx555BE6Ozv56U9/ymWXXVa+7rouH//4x/na177GwMAA5513Hl/96ldZv359+Z6+vj7e+c538r//+7+YpskVV1zBF77wBRKJRPmexx9/nHe84x089NBDLFy4kHe+8528733vq+nLbbfdxkc/+lG2b9/O+vXr+cxnPsOll1462V+PiIiIyKzmFhzyu4a9SrTtg+R3DOHma4cuGmHLGxK6uonQ8gawXexkHidZwE4VcJIFnGQeO+kd28k82C5u3sbus7H7Rle3jWLghXTxIFZDCNd2Kew+8Hxx4VWNhFY2YkYm/RG2wi7AEz/25pTb/6z/M6LwvDfDuddB07JDf/Y0KuRshvuyJPuyDPdlGe719qXhp5nhAy96EYpYNLXHvBDOD95KW7wpPC+HlM5FhmHQ0hGnpSPO8S9YWu/uiIjIFJn0J5tXv/rVPP/5z6ezs5OTTz653H7BBRfwqle9alLPSqVSnHzyyVxzzTVcfvnlo65/9rOf5Ytf/CLf/va3Wb16NR/96Ee5+OKLeeqpp4hEvHkTXv/619PZ2cndd99NoVDgLW95C29729u49dZbAW/yvYsuuogLL7yQW265hSeeeIJrrrmG5uZm3va2twFw//33c9VVV3HTTTfx8pe/nFtvvZXLLruMjRs3csIJJ0z2VyQiIiIyazh5m/yOofIw1fyuYSjWDmM0YwFCq5oIr24ivKaJ4OL4pMIa13Vxc7Yf1tWGeOVQL1nASXnHTroILn7IV6C4rzJ5/SHPF3cw2UF49Puw4cswuNNrCzfBmX8HZ18L8QWH/zMOkeu6ZJOFmtDNC+Jy5bbsBFacjTYE/cAtRmNV+NbUHiUSD2oRABERkVlq0qu1ThfDMGoq51zXZcmSJfzjP/4j//RP/wTA4OAgixYt4lvf+hZXXnklTz/9NMcddxwPPfQQp59+OgB33nknl156Kbt372bJkiV89atf5cMf/jBdXV2EQiEAPvCBD3D77bfzzDPPAPDa176WVCrFL37xi3J/zj77bE455RRuueWWCfVfq7WKiIjIbOBki+T8Odry2wbJ707CiDnFzIagF8T5W6B9EnO0TQHXdnBSRS+480M813YJLU9Mbr64idj7Z3jov+DJn0DBDwHjC+Hsf4Az/hYiTVP3s8Zh2w6p/lxV6FYdwuVI9mUpTmDhhVDEoqEtQqI1QoO/lYejLowSih5GRaGIiIhMuWlbrTWVSvHpT3+ae+65h+7ubhyn9oPE1q1bJ9/bMWzbto2uri4uvPDCcltTUxNnnXUWGzZs4Morr2TDhg00NzeXgzmACy+8ENM0eeCBB3jVq17Fhg0beOELX1gO5gAuvvhiPvOZz9Df309LSwsbNmzg+uuvr/n5F198Mbfffvu4/cvlcuRylfk7hoaGpuBdi4iIiEyOnSr488VVFnAYuXqp1RwuB3GhNU0E2iJ1raIyLBOrMYTVGDr4zYcin/bCuIe/AXs3VtoXHusFcqe+AYLRKftxjuOS7M8y1JPxFl7Y7y20MNybJdmfJTWQYyJfh8eaQuXQraE1MiKIC2uCfxERkSPUpMO5t771rfzf//0fb3zjG1m8ePG0fbDr6uoCYNGiRTXtixYtKl/r6uqivb295nogEKC1tbXmntWrV496RulaS0sLXV1dB/w5Y7npppu44YYbDuGdiYiIiEye67rYg3mK3WkKPWmK+9LkdgzVDAktCSyIegsm+MNUAy2ROvS4Dnqe9QK5R78PuUGvzQrBca+E06+BFefAIX52zWeLDO3PMrQ/U57nbagnUw7iHPvA6ZsZMGho8QK3htba0K2hLUKiOaLJ/EVEROapSYdzv/rVr7jjjjs477zzpqM/c8YHP/jBmmq7oaEhli9fXsceiYiIyJHALToUezMUutMUuzMUe9IUerz9yIUbSgKLYlXDVBuxGg9h9dK5qpiHZ/4XHv4mbP99pb15pRfInfqGCc0n57ou6aF8OXirDeCyZIbyB3y9aRk0LojSuMAbatrYFq0K4sLEGkJadEFERETGNOlwrqWlhdbW1unoS42Ojg4A9u3bx+LFi8vt+/bt45RTTinf093dXfO6YrFIX19f+fUdHR3s27ev5p7S+cHuKV0fSzgcJhyeRx98RUREZEo56YIXunVXwrdid5piX3bUsNQy0yCwIEJgYYzgwhihZQlCqxqxEtM0PHQ2698Bj3wL/vwdSPV4bYYJR73UC+XWvgTM2kq0Qt4mWbXC6VCPNwS1FMIdbN63cDxA04IojQuj5bneSvt4cxhT4ZuIiIgcgkmHczfeeCMf+9jH+Pa3v00sFpuOPgGwevVqOjo6uOeee8ph3NDQEA888ADXXnstAOeccw4DAwM88sgjPO95zwPg3nvvxXEczjrrrPI9H/7whykUCgSD3jwdd999N0cffTQtLS3le+655x7e8573lH/+3XffzTnnnDNt709ERESOfK7jYg/magK4QneaYk8GJzn+6ptG2CLQHiO4MOrvYwTaowRaIxjWPB766Niw6W5v6OqmX+O6Ljk3TiZyMpm1ryG95ELSxQYyT+dJP/gcmaE8meE86aE86eECxZx9wMcbBiRaIzWhW2Uf0ZxvIiIiMi0mvVrrqaeeypYtW3Bdl1WrVpUDr5KNGzeO88rRkskkmzdvLj/35ptv5vzzz6e1tZUVK1bwmc98hk9/+tN8+9vfZvXq1Xz0ox/l8ccf56mnniIS8eZOeelLX8q+ffu45ZZbKBQKvOUtb+H000/n1ltvBbwVXo8++mguuugi3v/+9/Pkk09yzTXX8LnPfY63ve1tANx///286EUv4tOf/jQve9nL+MEPfsCnPvUpNm7cyAknnDCh96LVWkVEROYv13Ep9mYo7ktT2OcHcN1pivszuAeoxrKaQl4VXHuMwMJo+dhsCNZ1wYZ6chyXbLJQCdWG8mT295LZ8hjp3dtJZ4NknCYyTjNptxnHndx3zcGwRePCaLkCrmlBpFwJ19AWwZrP4aeIiIhMqWlbrfWyyy47nH7VePjhhzn//PPL56U53K6++mq+9a1v8b73vY9UKsXb3vY2BgYGeP7zn8+dd95ZDuYAvve973HddddxwQUXYJomV1xxBV/84hfL15uamvj1r3/NO97xDp73vOexYMECPvaxj5WDOYBzzz2XW2+9lY985CN86EMfYv369dx+++0TDuZERERkfnAdF3sgR6Er5QVwXSkvjOtJQ3Gc7zstg0BbtFwFV66IWxjFDE/6o9ic5bouuXSR1ECO5ECOVH+OZH/WO/a39FCebLIwzsqmHf42WihiEW0MEWsMEWsIEW0Ilc+jDUGvzT8Phq15G3yKiIjI7DTpyjkZmyrnREREjhyu62IP5b1KuFIAty9FsXv8RRmMoOkFb4v8AK5UDTcPhqK6jksmWfCCt/4syf5cOXRL9ufK7cVxfndjPJGIlSJm9BE1B4iZA0Qbo8RWH0t07cnEWuJEGyrhWyBoTev7ExERETkU01Y5V/LII4/w9NNPA3D88cdz6qmnHuqjREREROrCdV2cZKESvpWGpe5L4WbHmZ/MMrw54BZ5QVxwUZzgohhWa+SIXI3TsR3SQ3kvcCsFbQM5Un7VW6nNsSf2fW8kHiTeEibREibR7O3jzWHihZ3EdvyM6LafEHV6MA0HQgk46W+8BR46TpzmdyoiIiJSH5MO57q7u7nyyiu57777aG5uBmBgYIDzzz+fH/zgByxcuHCq+ygiIiJyWNyig50sYPdnKezzK+G60hS7Uzip4tgvMiGwIFoO3wJ+EBdoi2JYR14IV5IeytO1ZZC9mwfo3DzA/l1JHGcCwZsBscaQH7hFvACu2QveEn4YF28KEwhVVbn1PAd/+SH8+afQ80ylfdHxcMY1cNJrIdww9W9SREREZBaZdDj3zne+k+HhYf7yl79w7LHHAvDUU09x9dVX8653vYvvf//7U95JERERkZFc28FJFbCHC9jJPM5wHjtZGLHPYw8XcDPjBHAABgRaIwT8EC64KEawI05gQRQjcIQPR3VdBnsydG4eoHPzIJ1bBhnYlx51n2ka5ZAt3hwuB2+Jlki5LdYUmthiCvs3w19+6m3df6m0W2E4/jI4/W9h+Zne0qkiIiIi88Ck55xramriN7/5DWeccUZN+4MPPshFF13EwMDAVPZvztCccyIiIofPdVw/cMvjJEv7fCWAq2obt+JtPKaB1RTyqt8WeXPCBTvi3sIMofkxZ5ljO+zfnfSCuM0D7N0ySGYoP+q+1iVxlqxrZvG6JjrWNNFwuEN2+7ZWArmuJyrtZgDWvgSOvxyOfilEmw/9Z4iIiIjMMtM255zjOASDwVHtwWAQx5noJL8iIiIyX7lFh2Jvxp/bLU2xO01xf8YL3VIFmMzXhiaY8RBWIojZ4O2thhBmIoTVUNtmRAPzbpXOQs5m37ZB9vphXNe2IYq52rn0zIDBolWNLF5bCeMi8dGf9Satf0clkOt8tNJuWLDmxXDC5XD0pRBrPfyfJSIiIjKHTTqce8lLXsK73/1uvv/977NkyRIA9uzZw3vf+14uuOCCKe+giIiIzE1u0aG4P0Oh2w/h9qUodKcp7s/CgeYwM8CMB7ESIcyGkfvqAC6IGQsekYswHKr0UJ7OLQPlyrieXUncEb/rcCxAx9omFq9tYvG6ZtpXNkzdaqcDu+Cp271Abs8jlXbDhNUvhONfBcf8NcTbpubniYiIiBwBJh3OfelLX+IVr3gFq1atYvny5QDs2rWLE044ge9+97tT3kERERGZ3cohXGnF01IY15uBcYrqjbDlLbLQ7s3xFlgYw2oMeaFbLHhEL7gwVSY6X1yiNczitc0sWeeFca2L41MbaA7ugad+5gVyux+stBsmrDzPC+SOfQUktGiYiIiIyFgmHc4tX76cjRs38pvf/IZnnvFW1Tr22GO58MILp7xzIiIiMntUQriUXwmX9irhJhzCVVY9tRpD826I6UQVcjaZ4TzpoXzVvuAdD5faCqQHc+TSI+bdM6BtSbw8RHXxumYaWiNT38nhrkogt3NDbQdWnlsJ5BoWTf3PFhERETnCTHpBCBmbFoQQEZEjhVtwKOzPlIehlueFO1AIF7G8BRYWxSvVcArhAG+Ri2yq4AdrBTJDfshWCt/84K0UxBXzE5/Dd9rmixtLstsP5G6HHX+kZnLA5Wd7gdxxr4TGxdPz80VERETmmClfEOLee+/luuuu409/+tOoBw4ODnLuuedyyy238IIXvODQey0iIiIzxi04FHrS5WGoNSHcOF/dGRGrUgHnh3DB9hjmPAzh8tki6cE86aEcqYE8qcEc6UF/71e7pYfzZIfzTPar0EDQJNoYItoQItYQrDoOEW0MevuGEE3t0ambL24s6b7KHHLb/wBuVXC47Aw/kLsMmpZOXx9EREREjnATDuc+//nP83d/93djJn1NTU38/d//PTfffLPCORERkVnGLdgUujOVEK7bW5yh2Jc9QAgX8IK36hBuUQyz4cgO4VzXJZ+1SQ/mSA3mSQ34gduQvx/wgrfUYI5C1j74A6uE44FyqBYrhW2NQaI1bd55MGzV7/fs2LDlt/Dod+GZO8DOV64tOc0L5I6/DJpX1Kd/IiIiIkeYCYdzjz32GJ/5zGfGvX7RRRfx7//+71PSKREREZk8J29T7MnULMpQ6E5jHyiEi44RwrXHMRuCR0wI5zouhbxNIWd7w0sH85XwraraLeW3T2ZYaSBsEW8KEW8KE6veN4Yq1W6NISKJIJZlTuO7nAL7N8Gj34PHfgDDnZX29uPhpNd4FXKtq+vWPREREZEj1YTDuX379hEMjj+HSSAQoKenZ0o6JSIiIuNzssXy6qg1IVz/+CGcGQvUDEMN+ENTzcTsCuFc18UuOhRyNoWsF6gVcjb5bLGmrXxe02ZTyI24L2dTzE2uwg0gFLGIN3tBW6wxTLw5TLwpVA7gSiFcKDLptbVml+wQ/OV/4M/fq11pNdoCJ74GTnk9LD4ZZtGfEREREZEjzYQ/US5dupQnn3ySdevWjXn98ccfZ/FiTQAsIiIyFdyCQ7Ev41XC7c9QrNqcZGHc15mxAIFF/sqo7d6iDMH22RXCZZMF+jqT9O1N0deZpq8zyWBPxgvUsjaOMz1rVRkGhKIBL3RrHKParSlMvDlErClMMDSN87jVm+PA9t/Bo7fCUz+HYsZrN0xYd6EXyB39UgiE69tPERERkXliwuHcpZdeykc/+lEuueQSIpFIzbVMJsPHP/5xXv7yl095B0VERI5UruNi92e9KrgRAZw9kBu3Cg7AbAgSWBAbNSTVSoRm7g0cRDZV8AM4f/OPM0P5g78Yb1GEYMQiGLYIhgOESsflfYBg2Kq0+/cFIxah8n2B8msCQXPWBJR10b/dC+Qe/T4M7qy0LzjKC+ROvhIaOurWPREREZH5ynDdia0ftm/fPk477TQsy+K6667j6KOPBuCZZ57hy1/+MrZts3HjRhYtWjStHZ6tJro8roiIzC+u6+IMFyjuT1Pcn60K4dIUe7Ngj/+fYSNsEVgYJbAgSnCBty9t5iwaTplNFejrTNFfFcD17U2RPkAI19AaoXVJnJbFcVoXx2npiBGOBcrhWjBsYZrzOEibKvkUPPUzb9jqjj9U2sNNcMLlcOobYOnzNGxVREREZBpMNCua8Cf7RYsWcf/993PttdfywQ9+kFKmZxgGF198MV/+8pfnbTAnIiLiui52b5b83qQ3F1wphOvJ4OYPMOdZwCDQNiKA8wM5Mz57hqIC5NIFbxjq3mRNJVx6cPwQLtEaptUP4FqXxGldnKBlcWzuz9U2m7ku7NzgBXJP3Q75pH/BgDUv9qrkjn05BKN17KSIiIiIlEzqk/HKlSv55S9/SX9/P5s3b8Z1XdavX09LS8t09U9ERGaIbTvYeYdiwaGYtynmHeyiQyQRJN4cVhVTFddxKfZmKOxJemHcbm/vZscJ4QywWiKVAM4P3wJtUazmMMYs+t3aBYeh3gyDPRmG9mcZ7EmXK+JSBwrhWrwQrmVJVRDXEScUVQg3YwZ3w2Pf94au9m2ttLesrgxbbV5ev/6JiIiIyJgO6RNzS0sLZ5xxxlT3RUREDsIuOqQGc6T6c+TSRQp5G7tQG6gVCzbFQiloK7V518e7t5h3cA8wCb9pGTS0RmhcGKWxLULjgqi/eceR+Pirec91ruN6c8LtSZL3t8LeJO5YK4AGDIIdcW9bGKtUwbVGMALmzHd+DK7rkk0VGOrJMrg/7e8zDPVkGNqfIXmQue7izWG/Ai5e2S9WCFc3hQw8cwf8+buw9T7K//CCcTj+VXDq62HFORq2KiIiIjKL6ZO0iMgsUSzYpAbyJPuzJPtzpAZyJPtzJPuz5eP0cP6AwclUCQRNrJCJFTDJDhdwbJfBHq+aaizhWICGtghNC6I0LIjStKAS4DW0RrCCsyOYOhjXcSn2pL0ArhzEpcYelhowCS2OE1yaILQ0QXBpguCiGIZV//dq2w7Jvmy5+m2oJ+MFcH4Ilx+vws8XCFs0lcLXhVFaO0pzw8UIx47cIHZOcF3o3wa7HvLmkPvLzyA3WLm+8vleIHfsKyCcqF8/RURERGTCFM6JiMyAQt4m5QdtST9oS/Xn/GMvfMsMFyb0LDNgkGgOE4kHCYQsAiGTQNDCCprlY29vEgj57f5x+bofvgXL1yuvsUasaOk4LqmBnFdZ1Vsa6phhuDfD4P4smaE8uXSRXDrJ/l3J0R02INEcrqm0q668izWG6jKvmmuPFcQlcQvO6LcQNAmWg7gGL4hrj9YtiLOLDvlMkWR/zg/gMjXVb8N9uQNWQoJXAde4wAtUGxd6/zya/H20YXbNdTev5dOwdyPsehB2P+RtqZ7ae5pWwClXwclXQevq+vRTRERERA6ZwjkRkcNUyNsk+7LlKrekH7p5YZzXlksXJ/SsQNAk3hIm0RIm0RzxjpvDJFoj3r4lTCQxs8GJaXpDWhtaIyxl9ByjhZzNUG+G4f3ZSnXW/qy3781SzNn+7yHH3k2jnx8ImiRaIwTDFlbAxAoaWAELK2BgBb3qvcpm+PfUtpkBP1gstZkGJi6m42+2t5Ep4nSnsbtSFPeloThGEBcyCS6uVMOFliUILIhhWIf/O3ddl0LOppC1yWWK5Etb1iafKVbasqVr3n2FbNW1jI09Rr9HsoKmF7j51W/V4VtjW4RAyDrs9yNTzHVhYIdXFbf7QS+Q2/ckOCP+/8MMwuKTYfmZcNTFsOqFYNa/YlNEREREDo3CORGRAygWKsFSqj/LcFXgluybZPAWtmhoCRP3Q7ZES4RE+dw7DscCc65iKRi2aFuSoG3J6CF0ruuSGS74QV2GoZ6sX33nHSf7sxQLDgP70gAEDAj6+4Bh+HsIGhCgcl66HjTA9a85BpgGYHgribuA7W/jKbouA7bLoO0y6MIwBpm8i7l1CHP7MKZlYlpG1TbOuVl7zXXcqrDNroRtWfugFW2TEW0M1YZvfhVc04KoV5E4ixaakDEUMrD30UoQt+tBSHWPvq9hMSw7wwvjlp3pBXPByIx3V0RERESmh8I5EZm3bNupqW5L9ue8Criqud4mOtQ0GLFItES88K0qeEs0V85DEWvOBW+Hw7UdnFSBQLJAc9GhIWCyuCGAY0SwIxZOSxh7OEpxOI+bLo5ZxXa4bMB2oYhLwYW84zJYrARyyan/kRNimAahqEUoEiAUDRCOevtQxPL2pbaq89K9oahFOBogGAloBd25xHW91VR3PeANTd31IHQ9Ac6I/48xA9BxkhfElcK4pmVa0EFERETkCKZwTkSOWI7jepPid2cY6E4z2J1huD9bDuDSQxNbXKE07DLRUlvxVt63RgjPg5UqXcfFyRRxUgWcZB47WcBJFcr7kW1uZmIVhaNYBmbEwggHMMMWRtiq7COBqnP/esQa3VY6H2OFVNd1cRwXx/Y213axbad87tQcl+4d77pT8yzHf5ZpGlWBmlUVtnkBWyBkzqugdl4qZKHzsUpV3O6HYLhz9H2JRbVVcUtOgWB0xrsrIiIiIvVz5P9tUkSOaKVhkwPdaQb2pRnsTjOwrxLGHWxurtLiComWCInWcLn6rXzeHCEcn3tDTSeiNmwrYKf8kM3fyufJAnYqj5MqwGQrzUww40GseAgzEcRMBLHiQcxEyN9X2oxIYNxAbSoZhoFlGViack2mSmYA9v3F356Arie9ueLsfO19hgUdJ1aCuOVnQPNKVcWJiIiIzHMK50RkTshni14F3L50OYjzjjPkD1ChZVoGTQujNC+K0bQwSkNbpKby7UhaldItOjjpqkq2kSHbiGMnXZxQ5eBIRjSAlQj6oVspYAtV2vxzMx7EjAY075kcORwH+rd5w1H3PemFcV1PwuDOse+PLYDlZ3kh3LIzYcmpEIrNbJ9FREREZNZTOCcis4ZddBja7wdwfvVbKYxLD+bHf6EBDa0RmhfFaG6P0bwoSlO7d9zQFjni5uUq9KRJP9JNYV+qJnRzswda+mB8RjTghWzxqsCttCUqAZyVCGLGgtNe2SYyK+SG/fCtKojb9xQUUmPf37QcFh0Pi06AjhO8RRtaVqsqTkREREQOSuGciEwLu+h4q1Wm/S1TIJcuVtr8fT5dIJsuMtiTYXh/BvcAlVzRhmBVAOftmxZFaVoYJRA8sscougWb9BP7ST3URX7b0Pg3Gt4wUjNWVcU2RuhWbo8FMCyFbTKPOQ4M7PACuNJw1H1PQv/2se8PRKD9WC+EKwVxi46HaMuMdltEREREjhwK50RkXPlskcxwvhym5UuhWsoL28rn/rWsH7blMkWK+UNbBjMYtvzgLUpTTRAXJRwLTvE7nP3ye5OkHuoi/efuSmWcAZGjW4kc04JVGj5a2jSMVGR8haxfCVc1L9y+pyA/PPb9DUv88M0P4DpOhNa1YOnjk4iIiIhMHX26FBEKOZv+rhR9e1P07vX2fZ1Jkn25w352KGIRigUIx4KEowHCsYC/D3rtflvjgghN7TFijaEjZg64Q+Vki6Qf7SH1UBeFPclyu9USJn56B7HTFxFoCtexhyJzyOBueO4u2HQ3bPs/KKRH32OFYOExXvhWroY7AWKtM99fEREREZl3FM6JzCPFvE1/V5q+zlIAl6Jvb5Kh3uy4CwMEwtaIUC3gh2pB77h0rSp0K7WHooEjbr636eK6LvkdQ6Qe2kfm8R7cgl95aBlEj28jfkYH4bXNqooTORjHht0P+YHcr73quGrxhdBxkh/Anejt29aBNf8qc0VERERkdlA4J3IEsgsOA91pvxIuWQ7ihnrGn9Mt2hCkdXHc25bEaV2SoHVJnEhcf2GdTnYyT3pjN6mHuij2ZMrtgfYo8TMWEzt1IVYiVMceiswB6T7YfA9sugs2/wYy/ZVrhgnLzoD1F8FRF3sVcfO8OldEREREZheFcyJzmG07DO7LlCvgShVxA90ZXGfsFC4cD/gBXKISxC2OE2tUADRTXMclt3mA1ENdZJ7qBdv7Z2UETaInLSR+ZgehFQ3zfnivyLhc11s9ddNd8NyvYfeD4FbNcxlpgnUXwlGXwNoLIN5Wv76KiIiIiByEwjmROcB1XdJDefbvTtK7O+nt9yQZ2JfGsccO4UIRq1z9VqmGi2tOtzoqDuRIP9xF6uF92AOV+fyCyxLEz+ggdvJCzIj+b1lkTPkUbPtdZf64od2119uPq1THLTtTizaIiIiIyJyhT64is4xtOwx0pdm/a5j9VUFcZrgw5v3BsEXL4jhtS+I1QVy8OawQbhZwbYfs032kHuoi+1x/eW4/IxIgdupC4md0EFqSqG8nRWar/u1eZdymu2Db78GuWqQmEIXVL4SjLoL1F0Pz8rp1U0RERETkcCicE6mjbLLA/t3DlYq4Pd7QVKc4uhrOMKB5UYy2ZQkWLEvQttSrimtojSiEm4UKPWlSD+8j/cg+nGQlWA2vaSJ+RgfRE9owglYdeygyC9kF2PmnynDV/c/WXm9aUQnjVr8AgtH69FNEREREZAopnBOZAY7jMtidrgnhencnSfbnxrw/FLH8EK7BC+KWeUFcMKQwZ7Zy0gXynSkKe5Nknuojv22wfM1MBIk/bxGxMzoILlCYIFLmutDzLOz4ozdkdctvIVf5dwfDghVnV4arLjxGizmIiIiIyBFH4ZzIFMtni+V54Upb394kxbwz5v2NCyIsWNZQrohbsCxBQ5uq4WYr13WxB3IU9ibJ701R8AO56jnkADAgcnQr8TMWETmmFcMy69NhkdnELkDn47DzftixAXZugExf7T2xNlj3V16F3NqXQLSlPn0VEREREZkhCudEDkGxYDPYk2GwO8NAd5rB7gyD3WkGujOkRoY0vkDQpHVpJYArDU0NRfWv4Wzl2g6F7gyFvUlv60yR35vCzRbHvN9qjRBaHCe4vIHYqe0EmsIz3GORWSafhj0P+0Hc/bDrISikau8JRGHZ6bDyPG+F1aWngakqYRERERGZP5QKiIzDLjoM7c8wUBW8efu0Nxx17EVSAUi0hL1KuKWJckVcU3sM01Q13GzlZIsUulIU9iS94amdKQpdKRhrNVzLINgeI7gkQXBJnNBib6+VVmXey/TDzgf8yrj7Ye+j4IxYzCbSBCvO8baV58HikyEQqkt3RURERERmA/1NUuY123YY3p+trX7r8fbDvVncAwRwoYhFU3uM5vZo7X5RjEg8OHNvQibFdV2c4bw3JLVcDZfE7s2Oeb8RtrwAbkmCoB/CBdtjGAENUxVhaK8Xwu3c4FXHdT/FqG8uGhbDynP9MO5cWHgsmPr3R0RERESkROGczHmO42IXHZyig130ju2Cg207OKXzokMhZ4+qhBvuzeI64ydwwbBFU3uU5vZYZb/QC+GiDUHNCzfLuY5LsTdDYa8XwHnDU1M4qcKY91tNIa8abrEfxi1JYLWE9c9ZBLzFG3q3VM0Xdz/0bx99X9u6ShC34hxoWaVFHEREREREDkDhnEw5x3Ep5mwKOZt8tkjBPy5k7fJxTXvOpljwAjXHrg3YRp7b/rnjB2520T1guDYRgZBJ08JK5Vt1GBdrDCmYmSNc26GwL03Br4jL+0Gcm7dH32xAoD3mzQ/nD00NLk5gqeJRpFbvFtj8G2811R0bINVde90wYdEJtZVxifb69FVEREREZI5SOCdjKhZstj/eSyFXJF8VqnkBW7EmbMvnbApVYdt4q5LOFDNgYAXMqs0/D5o0tEZqq+DaY8SbFcDNNU7e9uaH25uksMevihtvfriA6VfCeUFcaEmCYEcMI6gJ50VGKea9irjnfg3P3Ql9W2qvWyFY+rzKfHHLz/DmkBMRERERkUOmcE7GZBcc7vrak4f1DMM0CEUsguGqLWIRDAeqjr0tEDRHBWrmQc6r7y8FcqZlKGg7wjiZYmVI6p4k+b0pij3pMRfkMCJWeThqcEmc0NIEgQUxDEt/JkTGNbwPNv0aNt0FW+6D/HDlmhnwquFWv8jbLzkNgpG6dVVERERE5EikcE7GFAxbLFnfXBOghcKBmvPS8XjtVsBUUCaTYg/nye+pCuI6U9h9Yy/UYCaChJZWBXFLElitEf2ZEzkYx4HOP3vVcZvugr1/rr0eXwjrL4ajLoI150OksT79FBERERGZJxTOyZhMy+RV/3havbshc4jrulB0cHI2bs7GyTu4ef/Yb3PzNo7fVm7P2ziZIoV9KZzhcRZqaAlXKuKWekNTrcbQDL9DkTksOwRbfwvP3QWb7h49d9ySUyuB3OJTtZqqiIiIiMgMUjgnIjXcgkOxP0uxN0OxL4uTLlaCNX/vhW9VIVvea+dwpxs0ILAwWjU0NUFoSRwzpoUaRCZt/2Zv3rhNd3mLOThV4XcoAWvPh6MugXV/BQ2L6tdPEREREZm3nHyewu495HfuoLBzJ0YwSMtVV9W7WzNO4ZzIPOO6Lk66iN1XCeCKvVmKfRnsviz2UH7M+dwmwwiZGCELM2xhhCyM8Ihjf199HFgQJbg4jhnSQg0ih6SY81ZVLQ1X7dtae71tXaU6bsW5EFD1qYiIiIhMPyeTIb9zF4VdO8nv2El+504/jNtFobPTm3bFF1q5UuGciBwZXMfFHshR7PPCN7s364dw3rmbtQ/4eiNsEWiNEGiLYCZCNSHaWMGaETIxwwGMsIkRtDBMzfsmMiOGu7zFHJ67C7beB/lk5ZoZhFXn+YHcxdC2tm7dFBEREZEjm51Mkt/hVb/ld+7ywjc/iCt2dx/wtWYsRnDFCkIrVhBau2aGejy7KJwTmaOcvD1G9VvWa+vPgn3g8jezMeQHcNFyEGf552YsoIUVZim3UMBJpXDSadxi0Z8bzMAw8I4NAwwTDDBK5/78YbXnhheils4NA4OqZ5hzY0EXt1jEHh7GGRrCHhrGGR7CHvI2Z3gYe3AIe3gIZ2gYe2gIt1gguHQpoeUrCK1YTnDZckIrlmM1NdX7rUxcqhee/DE89gPYu7H2WmIRrL/IC+PWvBjCDXXpooiIiIgcHtdxcAsF3Hze2493XCxiBAIYlgVWACNg+cfW6LbSfaZV2zaBz/2u62IPDPjhW6kCzqt+y+/cid3Xd8DXm42NhFauJLRiBcEVywmtWElopRfIWW1tc+LvHtNJ4ZzIHOAWbPJ7U+R3DpPfNUR+1zB2f+7AL7IML3RrrYRu5RCuJaLhozPAdV3cTAYnnS4Hagfcp8Zrrxy7hbEXzZg2hoERDGJEIpjhMEY4jBEJY4YjGOEwZiSMUToOhzEiEYxwyLse8dtGHHuvCfuv915rBIM4qVRNqOYFbV6o5gwNYQ8PYw8NekHb8DDO4CBOOj0lb9NsaiK03AvqgstXEFq+zNuvWE5g0SIv2Kwnu+BVyD16q1clV54/zoClp1WGq3acrMUcRERERA7AW8iuWAm5DrTlC7iFfNXxeNvIe/IjnuG3jXzGAYI37AOPdppSplkJ6kyzHOJVB3qlz+QHYrW1edVvK1YQXLnC+0K8FMA1N8/Me5mjFM6JzDKu41LszfhBnLcVOlPgjK6EM6KBcuAWaI1WVb9FsBrDGl56GFzXxU2nsZNJPxhKlsMiJzlcqdIqtQ8nywGSk0yWAzXcw5zAbxxGKIQRCHjTA7quN0+D63ofNqrOD/vnu673QSGfP+z1PqaTGYthNjZiNTZiNjZgNTRiNTZgNjZhNTR4bY1NYBoUdu/x5rvYuYv87l3YPftxBgfJDg6SffLJUc82QiGCy5YRWr6cYDnAW+596Fi2DDMcnr431vm4F8g9cRuk91faF58Mp7wejn8VJNqn7+eLiIjItKj+zOY6jvfZzXFwHRcc2zt2XbBt73rpXtsB16kc43pfpI6xYVl1q0ZyHQc3l8PJZnFzOdxsFqe0z2Rxc1mcbM7fZ3GzOZxc1vvcWSz64VmxXBnmFguVtuKI9lLbgdqrrjHTX3ZPlUDA+2cbCtX+s7YsXMeGoo1r27h20Tt2HO93ZnvtFIvj/92g9OewUDjo9OOBjg7vc/HKFV712wovgAsuX4GViE/5254vFM6J1JmdKngh3M4hP4xL4maLo+4zE0FCyxsq29KEVjE9CNd1cZJJ7N5ein192H19EwvXhr3KrKn8tsqMxTDj8dH7+HjtY7RV7Y3gxP/Zu9VhneN4/8GtPnfxPuSVz/3/JJc+JObzOLl85cNT+TiHm8+VP1BVHzs5/77SB7FcrupDmH+9fJzDLRQw43GshgY/YGv0QrWmxqqgzQ/fGrygrdyWSEzq9zGSk06T37W7Etjt2umV5+/eRWHPXtx8nvzWreS3bh39YsMgsGgRoWXL/HkyvOAuvG4d4fXrD63iLtnthXGP3gr7qsLCeDuc9Ddwyutg0fGH/H5FRETmssoXqCmcVNL7UjSZ9L5QTfojDlIj2kr3+CMS3GKhsgBa6XPPOHu3dOME76+8jspnKT9kKx+XwrjpVhoBUQrrgoERAV5o3GBvVNAH5c9vTjbjfY6rDtyq95mMV/k1h9S83+rwKxSEMX8nE/zd1TzrIMch/7mhMe4JBqdkJIfrOF7ga9u4RRvsYm2IV2qzHX9faTNjMYLLl2NGIlPwG5eRDNedprKOeWZoaIimpiYGBwdpbGysd3dklnKLDvm9yXJFXH7XMHZvdvSNAZPQ0kRNGGe1hGfkmy/XcbAHB7H7B7AH+gE/WIrFMKNRLxiKRus2zM/N5yn293uBW28fxd792L19FPt6R+z7sHt7D/+DgWV5IVFDg1+B1YjVkMBsqNo3NmAmGsp7syGBFY9jxGLevo6/Lzk8brFIoaurMrFtObjbTWHnTpxUatzXmk1NxJ73PGJnnkHsjDOIHHOMNzRgLMUcPHcnPPp9b/iq6wfDVgiOvtSrklv7ErD0nZqIiMwdrm37lVIZnGzWmzM3m8VJZ7yAJ5PByWRxMn57Ko2TGitUqzpPpaZtZMKsZZqVKjjT9D5XljbD8Kqd/G1WCgS8qUxK06RU7yNhjEi0MlWKPzrECAQwggEvGAsEMALBSlv5eqjcZgRK7aUwK1B+Trk9FKx6dlXwOME510QOxUSzIoVzU0ThnIzkui52b7YcwuV2DVPYmxxzoYbAwmhNEBdcHMewpibMcXI5r2Ksv59iXz92fz92f58XcJXO+/ooDvjnAwMT+ibP8IO6kcGdGY9VXYvXtJeCvZrXxWIY4XClwm1k0La/txy0Ffv6DjrPwVjMWAyrrQ2rtcWruBorVGsYEbr5lVtGNKr/WMuYXNfF7u/3grtd3kS4hZ27yO/aRfaZZ3BHzIdnNjR4Yd0ZZxA70w/ruh/3ArknfwyZ/srNS0+HU66C4y+HWOsMvzMRkbnNdZxKIJQpBUCZSiDkz+XkFm1wvL1rF8tt1cfjXveHj9Vcrx5SZjtYjY0E2hcSWNju7yubGY3W+9c0LrdY9D439vZS7O3F7u3FHhiohGiZUthWHa5V/Z6zWdx0ujyccdpYFmbC+0LUTCS8LR7HTMSxEgnMuN9WOi+1xeO1Ffelz3mlXfl8nD1VnwsP+hrT+0xvmiOODX9Sfn8BLsvyrptGTQg32WGpk59L7QBzp43YcF1/ruAIZjRSNY9wKWCLjArgytcC+nJR5i+FczNM4dz85mSL/mqpGYr70uVAzkmPMTw1FqgEcSsaCS2b3PBUJ5+n2NVFcf9+L1SrDtlGhG7F/v5RAcFEmQ0N3qSdpuF9y5nOTOscapNiWQRaW7Ha2kbv29qw2loJlNpaW2f1B2A5MrmFAtmnniL90EOkHnyQzCMbR1XZmUGILsgSa88TX5gjsnIhxqmvhZNfBwuPqlPPRURmjus43lQSQ0PeQkDJZKWCKu0Ha9lM+djJZrzPI9XH5RCuEhq52TFGJcwyZkNDJaxrb68J7ipBXvuUzd/kpNPel53791Ps66t8jtzfi93XS3F/b/nLUXtgYFo+7xnRKGYkghmNesf+uRGLYka8cyMWxUo0jBGqxf2wrdJmRCL6AlVEZj2FczNM4dyRzZu7rECxN+OHcFmKvRlsP5BzUqNDOAAsg9ASf3jqCn94auv4HyTcYpFiTw+Fzi6KXZ0UOrsodNUe2/v3j/naAwoECLS0YLW0YLW2YrU0E2hp9c9bvGut/nlLC4HmZoxQaMzfg+sPSXAyGW/oQdpb+KC8Kmk67bWXz1NVK5amK68t3eu/1mxo8MK0BQv8oK2VQGslaLNa/cCtrQ2zsVHDRGVOcTNJsnd9g/TdPyH99E7SPSGcQu2fYSMaJXbaaX5l3ZlETzh+zH8PRURmE7dYLK+gXQrZ7KHB8srb3irbpfahyqrb/urc0/2l31iBkBEK+SsQWhhWoGY1Qiyzqs2/HrDAKq1gWN3mHZdfU91mGtgDgxR7eipbdzfFnp5JhYdGLEZg4QKCI6vv/EDPam72Vjbv3V873Ydf8Vb0Rx5M+staw/A+E7a1eaMPWpoxo/5IiWjE/71GMWPR2uNIxL9vxO88HNZnNxGZlxTOzTCFcxPnui5u3sZJFXFSBZx0AUwDMxLACFuYEQsjHMAImTP6bZhru9iDuaoAztuXAjg3f+ChnmY86K2a2hYltCxBaEWjNzw14H0Q8Ya59vohWyfFMYK3Ynf3hBYhMMJhAu3tXrDWXAnWAq0tWC3Vx941M5GY1d8suq47q/snckhcF3Y/5C3s8OT/QG6wcmnpWeRaLyDV10T60SdJP/wwzuBgzcuNSIToqacQO+MM4meeSeSkkzAV1omIzy0WvSqxQgG3UIRiwZ+4u7SaYcEfhjn2OXax6lrRH5Y5znk+jz087AVr5ZBtCGdw0KuqP0xGNOov+JPwgp1SNZV/PCoAGisMivlVWNXHkcisC4RKi1VVh3XF7tEBXrGn54Dzmh4KIxwuh23lkQatbQQWtGGN3Dc3jz9PqoiITJjCuRk2n8M5t+Bgpwte0OaHbU6qiF0+LuCki+XrdroAxQn8sTPwwrpwACNi1YR3Zrg2yPP21qiAz4xYGCHLm78BcAu2X/WWramCs3szFPtz4BygXwZYTeFyAGe1Rgi0RbBaI5hhGzczjD0w4H1D2dVVW/3W2Umxq2tik7QGAgTb2wksXkywo4Pg4g4CHYsJLu4guHgxgcWLvQ9MCrNEZh/Xhb6t8JefwmPfh97NlWtNy+HkK+Hkq6Btbe3LHIfcc8+RfvAh0g89RPrhh7H7+2vuMcJhoiefTOzMM4mdcQbRU07GDIdn4l2JyGEohWg1FePVVeQHqjavfl3Gf63fPttWQjTjcW+F7cYmf9XthvKx1eSvwt3YhNXUWFmV299UJTw2J5Wqrbzr6aFQFd4Ve3qwBwa9ue2qRx8saKsafbCAQFsrVtsCb15gfX4UEZlRCudm2JEWzrlFh/zOIexUsRKw+SGbnaoN4g5WUTaugIkVD2LGAriOi5uzcbI2bq5YWap8ihghCyNojD/8tNwnA6sxiBU3MMJFDDOL6wzj5vpxUvtxBvuxBwaxBwYq2+AgFA/y3HJHDAILFtQGb4sXE/TDt0DHYgIL2vRNpchc4TjQ8zTsuL+yJbsq14MxOO6VXiC36gXe5M4T4DoOuc2bvaDuoYdJP/ggdl9fzT1GMEhg8eIx5uyJjK4qKR9HK0OS/LZypUnUn8hZqwuL4BYKOKkUdjKFk/JWh6ysGpmqWTWyZmXJqvvKQdxMhGiW5a0+aFlVKxuWzv1VCv17DnZeXgnRqqyWaASD3oJJ5WCtCauxwTtuavIWUNKE7yIiIqMonJthR1o4Z6cKdN74p4m/wDQw4wHMWNAL3PzQzduPaEt4bWZo7ADKdV3cgoObtXFyxRF7GzdbxMnVHo+6J1fEydpjroyKUQQjA8Uh3Gwf9vA+7P492D3bsXv3cqjJoBGJ+HO2NXthW0cHgcUdNcFbsH2hvh0WmcvsInQ9VhvGZQdq7zGDsOJsL5A77hUQbjjsH+u6LvmtW72w7sEHST30EHbPIcw/OUFGOFyZKygS8VdcjldWWS6tvhyLYcXjGDUrMMf96/HyfaVVmVWxIYfDdV0oFHDyBdx8Djefx815eyeXr2lz8nncXN47z+dq27KZUWGaXQ7gvPNpWWHSskavcB6LecF6LD5q5XNvcvzS/bX/7pXuM2IxL0BToC4iIjIrTTQr0ldcMiYzGiCwMOqFaH6oVgnYgl4QF6+EbkZ4cst8H4hhGBghC0IWFhMPstx8ntz27eQ3bya3eTO57k3kNm+j0NkDZhgjEMLJ9EPhIHOjGIY3zKK5efTWMkabv5mRyGG+cxGZdQpZ2POIH8T9EXY9CIURcwAFY7D8TFh5Hqw8F5Y+D4JTu0KwYRiE164lvHYtLVdeieu6FHbupNjbW16Z0En7qxdmMjiZbM1KhuXVDrNZ/3pphUN/dUO/vcTN5bBzORgYmLo3UR1MjNzifpAXT2A2JLAaGmqP/ZX5rEQCs6FBQd80cl3XC7KGh/0AywutSvOajTWPmVusmpvMtr17qucuK/rzm1Wd19zjv8YtFHDzhXLg5uZyOIWqkC2Xm/EVw41wuLxqpBmPY8WrVo6sXkkyFh9xX7wcaJcCNiMU0p9bERERGZMq56bIkVY5N5u5xSL5nTvJPbfJC+E2bya3eRP57TvGHV5qNjYSXru2vKrVuFtLszf3iYaVisxPuWHY9UClKm7PI2CPGJIWaYIV53pB3MrzYPFJYAXr098p5DqOF4Zks958WNksTiaLm0nXzJVVXnU5laptH6dt0isETkQw6IUfDQ1egBf3QjsvLGmoHDc0YCZGHMdjGMHg6O0I+P99t1j0qsBKoVp1wJZMYg+Xjocrx8PD3jDN4eHykE0mMj/qbBAMYoZCXlgbCmGEQ955qHQexggFMcPhqrYQZjhSDnzNhB+klc7jXvBm+SGbEZz7/26LiIhI/ahyTg6L67oM/Oi2yrfCNR9cvQ+y0z0807VtCrt2VQK4TZvJbdpEftu2cRdWMONxwuvWET5qPeF16witW0d43XoC7Qv1bbWIjJbqhZ0bvCBu5/3Q+Ri4I+bRTCyqBHErz4WFx0547ri5xDBNbxhrNAotLVP2XNdxvKq9dMoL/cYK8lLp2nm7hoexk8NVx5WACX9oY2nezyljmqMDu4A315YRCnrzeI3aQmMHfcEgGIZXYeY6YDu4ju0tOuTYuM5Yba53v+OAU3XtQG22jZPJlH9X1dWPh80wvP/2N/iBZig09rxkgdL8ZtaI87HnLqu5Jxjw50qrnBuhcCVkK4VuoTBmOFQVuPnHR+C/hyIiIjI/KZyTMbmZDF0f//gB7zFCoZrQrjyEIzHGkI94JeArfRtdvi8apdDVRW7TJi+A2+xVxOW3bB13zhcjGvVCuNK2fh3h9esJdHQohBOR8Q3trZ0vrufp0fc0r6wEcSvPhdY1XtAih8QwTayEV4l0uLygL12p+BpOepP1lwK84eSIUG+M43Ta+4JnZKW1Xzk4LXONzTAjEqkMA074w4MTCb+KMIHVkDjgsGFvmGZM4ZeIiIjIDFE4J2NybZvEBRdUViIrTZZc9c28m89j5/PY/f3T1g8jHCa0do0fwK0v74NLlugvDSJyYLkkdD7qDU3d8wjs2QiDu0bft/CYSmXcinOgaemMd1Umxgv6vBCJjo7DelZpcQF30lux6jg/9j3+6pyGaYJpgWlglPaWBaaFYRojrpkYlgmGCZY5qs2wTK9i0zTLzzUsr9qxOlSbicp2EREREZlaCudkTFZDA8u//KUxr7nFYqVyIZWqWvGsKshLJr1hSqV5bkasgjZyXhsjGCS0Zk2lCq4Uwi1bdkTMAyQi08wuQPfTfgj3sBfE9TwzeoiqYULHSZXKuBXnQLytPn2WujIMA/zhkSIiIiIi9aRwTibNCAS81UynYOELJ5/HSaWwGhowAvrjKCIT4LrQv71SDbfnEW+uuOIY8201LoOlp3krqC59Hiw5BcINM91jERERERGRcSkNkboyQ96kzyIi40r1wt6NVcNTH4F07+j7wk2w9FRYerofxp0GDYc39FFERERERGS6KZwTEZHZo5CBzsf9oal+ENe/ffR9Vgg6TqxUxC19HrSuPSJXURURERERkSObwjkREakP14W+rbDrAdj1oBfE7fsLuPboe9vW1wZxHSdAIDzzfRYREREREZliCudERGRmFDKw98+VMG7XA2MPT423w7LT/bniToclp0K0eca7KyIiIiIiMhMUzomIyPQY2lsbxHU+Bk6x9h4r7IVvy8+AZWd4VXGNS8Ew6tNnERERERGRGaZwTkREDp9dhH1PVIK4XQ/C4K7R9yUWwfKzKtvikzQ8VURERERE5jWFcyIiMnnpPtj9UO18cYV07T2GCYtOqArjzoTmFaqKExERERERqaJwTkREDsxxoHeTH8T5Ydz+50bfF27yhqcuP9sL4paeBuGGme+viIiIiIjIHKJwTkREahWy3sINOzfAzj/B7gch0z/6vrZ1lYq45WfBgqPBNGe+vyIiIiIiInOYwjkRkfku0+9Vw5XCuD2PgJ2vvScQ8RZrKAVxy86EeFt9+isiIiIiInIEmdUlDp/4xCcwDKNmO+aYY8rXs9ks73jHO2hrayORSHDFFVewb9++mmfs3LmTl73sZcRiMdrb2/nnf/5nisXa1QLvu+8+TjvtNMLhMOvWreNb3/rWTLw9EZH6GNgFj98Gv7gevnIufGY13Po38IfPeQGdnYf4Qjj2FXDxp+Dv7oUP7IK3/BIu/AQc/VIFcyIiIiIiIlNk1lfOHX/88fzmN78pnwcClS6/973v5Y477uC2226jqamJ6667jssvv5w//vGPANi2zcte9jI6Ojq4//776ezs5E1vehPBYJBPfepTAGzbto2XvexlvP3tb+d73/se99xzD29961tZvHgxF1988cy+WRGRqeY40PN0pSpuxwYY2j36vrZ1sOJsWHGOt7Wu0cINIiIiIiIiM8BwXdetdyfG84lPfILbb7+dRx99dNS1wcFBFi5cyK233sqrX/1qAJ555hmOPfZYNmzYwNlnn82vfvUrXv7yl7N3714WLVoEwC233ML73/9+enp6CIVCvP/97+eOO+7gySefLD/7yiuvZGBggDvvvHPCfR0aGqKpqYnBwUEaGxsP742LiByqYg72bKyEcbv+BNnB2nsMCxaf7AdxZ3tbor0+/RURERERETlCTTQrmvWVc5s2bWLJkiVEIhHOOeccbrrpJlasWMEjjzxCoVDgwgsvLN97zDHHsGLFinI4t2HDBk488cRyMAdw8cUXc+211/KXv/yFU089lQ0bNtQ8o3TPe97zngP2K5fLkcvlyudDQ0NT84ZFRCZj1HxxG8HO1d4TjHurqJbCuKWnQzhRn/6KiIiIiIhIjVkdzp111ll861vf4uijj6azs5MbbriBF7zgBTz55JN0dXURCoVobm6uec2iRYvo6uoCoKurqyaYK10vXTvQPUNDQ2QyGaLR6Jh9u+mmm7jhhhum4m2KiEyM60LvFm/11N0Pwc4HoPspYEQBdHxhZXjqirOh40SwgnXpsoiIiIiIiBzYrA7nXvrSl5aPTzrpJM466yxWrlzJj370o3FDs5nywQ9+kOuvv758PjQ0xPLly+vYIxE54mQHYffD/vYQ7HnYq5QbqXUtrDxH88WJiIiIiIjMQbM6nBupubmZo446is2bN/NXf/VX5PN5BgYGaqrn9u3bR0dHBwAdHR08+OCDNc8oreZafc/IFV737dtHY2PjAQPAcDhMOByeirclIgKODT3PeCHc7oe8QK7nWUZVxQUisPgUWHY6LD/TC+M0X5yIiIiIiMicNafCuWQyyZYtW3jjG9/I8573PILBIPfccw9XXHEFAM8++yw7d+7knHPOAeCcc87hk5/8JN3d3bS3e395vfvuu2lsbOS4444r3/PLX/6y5ufcfffd5WeIiEyLVG9VEPeQN1dcfnj0fS2rYNmZsOwML5BbdAIEQjPeXREREREREZkeszqc+6d/+if++q//mpUrV7J3714+/vGPY1kWV111FU1NTfzt3/4t119/Pa2trTQ2NvLOd76Tc845h7PPPhuAiy66iOOOO443vvGNfPazn6Wrq4uPfOQjvOMd7yhXvb397W/nS1/6Eu973/u45ppruPfee/nRj37EHXfcUc+3LiJHErsA+/5SG8b1bR19XzAOS0/zKuKWneEt3JBYOPP9FRERERERkRkzq8O53bt3c9VVV9Hb28vChQt5/vOfz5/+9CcWLvT+svq5z30O0zS54ooryOVyXHzxxXzlK18pv96yLH7xi19w7bXXcs455xCPx7n66qv5l3/5l/I9q1ev5o477uC9730vX/jCF1i2bBlf//rXufjii2f8/YrIEWK4y1tBtTQ8de+foZgZfd+Co/yquNO9MK79WDCtme+viIiIiIiI1I3huq578NvkYIaGhmhqamJwcJDGxsZ6d0dEZopjQ/fTsOtP3uqpO/8EgztH3xdp8oem+sNTlz4Poi0z318RERERERGZERPNimZ15ZyIyKyTT8GeR7wgbtefYNdDkBusvccwof34SkXcsjOgbR2YZn36LCIiIiIiIrOWwjkRkQMZ3ldVFbcBuh4Hp1h7TyjhBXErzoHlZ3nH4Yb69FdERERERETmFIVzIiIljgP7n/NCuF3+ENX+baPva1gCK86ubO3Hg6X/OxUREREREZHJ098mRWT+KmRh70YvhNv5Jy+Qyw6MuMmARcd7FXErzoEVZ0HTcjCMevRYREREREREjjAK50Rk/kjt9yviNnjDVPf+GZxC7T2BqD9E9WxYfjYsP8NbzEFERERERERkGiicE5Ejk+NAzzNeGLfrQW/ft2X0fYlFflWcP0S14ySwgjPfXxEREREREZmXFM6JyJEhNwy7H64EcbsfHr2KKsDCYypVcSvOgpbVGqIqIiIiIiIidaNwTkTmHteF/u2VIG7Xg9D9F3Cd2vuCMVj6PK8yrrSKaqy1Ll0WERERERERGYvCORGZ/QpZ6HzMD+L8MC7VPfq+phWw/Ew/jDsTFp2gVVRFRERERERkVtPfWkVk9hneVxvEdT4Kdr72HjMIS07xK+LO8MK4xiX16K2IiIiIiIjIIVM4JyL1lUtC72bY/VBlmOrAjtH3xRb4c8X5lXGLT4FgZMa7KyIiIiIiIjKVFM6JyPTLJaF/G/Rugb6t3qqpvVu942TXGC8wYNHxtUNUtXCDiIiIiIiIHIEUzonI1KgJ4PwQ7oABXJVoa2WI6vIzvUUcIk0z0m0RERERERGRelI4JyITl0v6lW9bDy2Aa10DbWu9fetaaFvjHUdbZqb/IiIiIiIiIrOMwjkRqWUXoG8b7H/O2w46BLWKAjgRERERERGRSVE4JzJfpfu8hRhKIdz+Td6+fzs4xfFfpwBOREREREREZMoonBM5kjk2DOysBG/VIVx6//ivC8ZhwXpva1unAE5ERERERERkmiicEzkS5Ib9KrgRIVzvFrBz47+ucakfwh0Fbesrx41LtDKqiIiIiIiIyAxQOCcyVzgODO32Q7fqIG4TDO8d/3VW2Kt+KwVvC46CBeu8tnDDzPVfREREREREREZROCcy2+SGawO43k2wf7N3XsyM/7r4Qj94qw7h1kPTcjCtmeu/iIiIiIiIiEyYwjmRenBsGNzlV7+VAjg/kBvuHP91ZhBaV/tDUNfBgqMrlXCaC05ERERERERkzlE4JzKdsoNe1dv+52oDuIPNBRdfWBXAVc0H17wSLP1rKyIiIiIiInKk0N/yRQ5XPgX926Fvq7f1bqkMSU11j/86K+StgjoygGtbB9Hmmeq9iIiIiIiIiNSRwjmRicgMQP82P4Db5m9+GJfsOvBrEx2V0K28Muo6aF6hueBERERERERE5jmFcyIArgvp3krgVh2+9W2FTN+BXx9phtY1/ra6tgou0jgjb0FERERERERktnJdl2Qhyb7UPrrT3exL76Mr3eUdp/axL72PhbGF3HLhLfXu6oxTOCfzh+N4VW5jBnDbID984NfH22sDuNK+ZTXEWmfmPYiIiIiIiIjMMo7r0JftqwnaSgHcvvS+clummDngcwZyAzPT4VlG4ZzMfcUcJLv9bZ+/jXNczB74WY3L/OBtdVUQtwZaVkG4YUbejoiIiIiIiMxfruvi4lb2uHj/c3Fcp3wNvLaDPeugP+9gz8AllU+NCtpK4VtpX3SKE3p/jaFGFsUX0R5rpyPWwaKYd7wovoiOWMeEnnGkUTgns5PjeENJS6Ha8AFCt+zAxJ9rWN5cbzXVb/7WvBKCkWl7SyIiIiIiIlJ/BadArpgja2fJFrPk7KrjYo6MnSFXzJGzc2SKGe96MUvWztYeV9078nrOztWEa47rAGMEb1X3lI7nKgODtmgbi2KLagK30nkpkIsGovXu6qyjcE6mn+NAbtBbVCE76IVpmYHafaqnKnjzq+Bce+I/wwxCYhEk2sfZ+8dNy8AKTse7FBERERERmZdc16XgFMYMuEpt1fua9qprBaeA4zrYro3t2N7eP3Zch6Jb9K5XX6u+7hTHva/6uj2Zv2sKAAEzUAncxgnfFsQWEDT19+1DoXBOJsYujg7WxgrZxgrgskNwqOl/rK0qXBsjbCvtoy1gGIf9NkVERERERI50tmOTKqZI5pMM54dJFpLecWGYVD7FcGGYZD5JsuBdTxfTlQqzqjCturKsVBk210QDUcJWmLAVLh9HAhEiVoRwIEzEihAJRGray+el40CYqBWtuT9khTAxMQwDA2P03j8Gr+LMNMya85H3jTrHv7fqeCTjAH9HHvc147RbpoVpmBP+vcrkKJyTsaX74NuvqIRsB1ssYSICUYg2eyubRpoqx9FmiC8YHbrFF6rKTUREREREZj3HdRjODzOQG6A/289QfgjbsccMXExMMGrPxwppSiGJaZhjhzuGgeM6pAqpcsA2nPdCtVShErCVg7aq43QxPW2/C9MwywFVdZA1MviqaQ944VjIDGGZFpZhVfaGFwoFzIC3N7z9ePeNajMrryk9o9SPkBk6YIAlU69YKJAe6CfZ30eqv4/kgL/3z6ONTVx63T/Wu5szTuGcjC0YhX1PjG4PJbxgrRSqjbsf455AeGb6LiIiIiIicohc1yVdTNOf7S+HbTX7XD8D2dr9YG5wTg6VDJkhEqEEDaEGEsGEt4W8fUOooXwcC8aIBqIHDdsiVoSAGVDgdYhc16WQy5IdHiYzPEQmOUy2vB8mkxzy95X2Yj5POBojkmggkkgQiScI+/tIosE7rzqOJLzzQHBqC2EqoVsvqX5/P9BPsq+P1EAlfMsMDx3wOQ0LFk5pv+YKhXMytmAU3vATv8qtuRK4qZJNRERERETmiFJF21B+iKHcEIP5wUqwVhW4jQzbCk7hkH5ePBinOdxMU7gJy7DKE/yXFwOomvR/1AIBYy0SMN6iAf65gUE8FKch2FAbqgUTNe3l6/49pftCVmjKftdSy3FssskkmeHRgdqBAje7OLEVT6ul+vsm/ZpAOFwJ7KpCu5pQL5Eg6u9dx6lUu/X31QZw/X1kDxK6VTOtAPGWFhItrSRa2vzjNuLNLTS0KZwTqbXuwnr3QERERERE5jnXdcna2XK4Vr0fyg8xmBscdz+cHz7k1S/DVpiWSAst4Raaw800R5q945H7cDMtEW+vsGvucV0Xu1Agn81QyGYpZDMUcrma8/yB2nPZyrl/nM9mKOZyh9wn9u2VlQAAXvZJREFUKxAg0tBINNFApKGBaKLR3zeU26ONjUQSjQRCIXKpFNnUMNlkklwqSTY5TDaVJJtKkU0O17Tl0mlwXYq5HMlcjmTv/in7XVqBAPGWVuItrSSa/X35vIV4qxfARRsaVV05gsI5ERERERERmRGZYobB3GC5Ym0wN+hVrvnH1RVu1fu8kz+snxsNRGkMNdIYbvSCtnBtwFYO4aqCt2ggOkXvWqab67rk0qlKJVoyWa5OywwPk00O+Xtvy2cyNWGb60zfYhbhWHxUsDZu4Nbgtf3/7d15mBTV1T/wU1uvs6MgqOwooIAIKIu+EtlcolFA0IgiEBdeFRCNETSCSkwUNPGNRIygaFxjxBh30ZgfiiuGYRNREVxYRYaZ6Z5eajm/P6qrurpngOllZpri+3mefqrqVnWdvj3dd7pP37pX8fqaLHllGDrF6uooFgqZCTwraRcOmc+btbSSeoltQRSSybYyR9LNsfQVFSPpliUk5wAAAAAAACAj6RMgpCfZ9rce03PoTSRIVOottZNsJZ4Se7uhZamn1D4OPdoOHWo8RtFEIi09sdbgpaCJWz4SbLLHS4rPRx6fjxSfnxSvlxSf397eX7ni85HH6yfFl1ruCxaRKEl5eFbyRxQlMxFYVNzSDwUckJwDAAAAAAA4zEW0CFVFq2hvdK99c25bSTZrWROvscdMy5QsynbvtVJvqb1e4i2hUk9paoLNsR6QA+iVU8A0VaV4pI7idXUUi9SRGolQLFJnlkXqKFZXR/FIhOLROorXRcwya39dHcWjEYqGQqTFs0/gKl4f+YqLyVeU3iOtODFhgnnzBgJpyTYfKT4viWJhJdLg8IHkHAAAAAAAgMvE9BhVRavop+hPdpKtoW0r+RbRIlnFCcgBezy29GSbc93aLveVI8lWwNRYlOqqq6muZl/K0rwUNJFcsxNtZkItnljPZiKD/RElyU6kmYm1EvIVFZmXfSbK/Iky+1LRomKSPeghCYcmJOcAAAAAAACagW7opBoqaYZWb5leZt0a2mct43qc9sX2pfR22xvZS1WxKgqr4YwfnyIqVOGrsG/lvnJ72VDCrdRbistFC5yh6xSpraG6mmqqq95HdTXVFEks6+otq0mNZpekdVJ8fvL6/aT4A+T1+8njD5DHHyBvIJBYd5T5/eSxyn1+M9lWVEwePxK4cHhBcg4AAAAAAA57BhsU1aJUp9VRnVpHES1ir6cv0/dF1Ei9fXE9Xi+hlu2sodmSBblekq2h5Jt1CypBJEQOAYauU3hfFYX2/kShfXspUm0m2MINJN8ioVoizux1JykKBUrKKFBaSoGSUgqUliUuBQ2aSbSAn7z+BhJtgQApPh8uDQXIApJzAAAAAABwSFN11ZzlM15DtfHa5DKWWlYTr6GwGk4m1bRIynpzEwWRFFEhWZRJFmV7PX25v32KqNizjFb4K6jCW0EV/gp7u1jBzImHEmvG0XDVXqrd+5OZfLNuVdZyL9Xt20ecyXh/gkD+4hI70Za+9JeWOpJxZeTx+/G6AWhmSM4BAAAAAECLYmaKaBGqiddQdaw6NcHmTLrFUsus8nwm1gQSKKAEKCAHKKAEyC/7KSAHyK+Yy/Ry57HOfYqokCIppAjmUhZlkgU5ZV1CD6PDhq5pFN63Ny3htjcl+Va79yfSYo2bDEGUJAqWVVBReQUFylITbv60BJy/pAS92QAKHJJzAAAAAACQNwYbVBOroX2xfSm36lg1VUWrkuuxKnvmz32xfaQZuQ8mX6wUU4m3hIo9xVTiSS7tdW8JBZUgBeVgMtmWSKr5ZT8FlAD5JB96DUGjaKpKkdpqitSYY7pFaqopUltDkZpqqqupTknA1dVUN/ryUm8wSEXlraiowrwVJ5bB8uR6oKSUBFFs4hoCQHNBcg4AAAAAAOphZorpMQqpIdoX3VcvmbYvuq/BRFt1rDrrsdVkUbaTaSWeEir2FlOJUpKScHMm2pxlRUoReqJB1piZ4pGInWCzkm11dsKthiK1zu1qikcy67EpSjIVVVQkE2/lFXYCzr6VV5Di9TVRLQGgUCE5BwAAAADgIrqhU51WR2E1TKF4iEJqyFxXQ1Sn1lFITZTFwyn70o8Jx8Okcfa92YJK0J7Vs8xbRmW+5Ayf5d7y5HpiJtASTwn5ZYx1BfmjayrVVVdTeF+VfavbV2Un2OzeboltXcv89S6Ioj2em9+6FZdQoKSEispbUTCRgCuuaEX+4hL0dgOABiE5BwAAAABQYDRDo+pYdUpPtfT16lg11aq1dpLNSqrVaXV5fSwCCVTiLaFybzmVekvrJdysZJu1r9xXTqWeUlIkJa+PA4CIiA2DIqHalGRbSvKtuorC+8yZS6O1NRmfX/Z6zURbsTlWW6C4JC3plrruDWKGWwDIHZJzAAAAAABNxJro4EBJtvQx2aykW65kUaYipYiCSjC59KRuN2ZfQAmQKKC3DzQdXVPNS0pra81kW3VVvd5u4ep99pKNxs9UKkoSBcrKKVhaTsGyMgqUlidmJU1PuJWQv7gEl5QCtABmpphmUDimkWYwtSk5/N6HSM4BAAAAAByAZmgUVsNUE6+hUDxEtfHalNlEQ2qo3va+2D6qjpqJt7gRzzp2safY7qXm7LVmrRd7iu0EWpFSZCbWPGZSzSN58vgsACQxM+mqSvFohOJ1deYyUkfxSGLZYHlD+8yybC4n9ZeUUrCsnAKlZRQsKzdvifWAtV1WTr5gES4lhWan6gbFNIM03SDNYNJ0Js0wEsu09QaPcZY5j0ksHesGE3kkgTyySB5JJI8skZLY9spiojxZZpUrkui4T2JbEkkUD94T1DCY6lSdwjEtcdMpHDfXQzGN6uJ6SnkoplFdTKNQTKe6tOOspW6YY5V2a11Ey2ee0dR/ooKD5BwAAAAAuJLBBsX0GEW1KEW1KEX0CNWpdXYSrTZeS6F4KLmt1trJN2eiLayGc34ssiinXg66n2SbdZmoNQabLOLjOjQ961LR0N6fKLyvikJVP1F4714K7auicNVPVFdTk0iyJRNthp777LrpPH5/IuGWTK6ZybZEAi5R7i8pJUnGewMah5kpqhoUSiSEwjGNIqpOMdWgmKZTNG0Z0wyKquYyphoU1fSUZcy5dBxr30cz7ETToUiRBPJIIimOxJ1HFskwmMKJpFtdXG+y+HojZzV2G7RoAAAAAIch3dCpNl5r9vCKV9tjmNXEa+z16ng1heIhEgSBFFEhWZRJEZUG163thpYH2qdICsmCTIIgUEyLUVSPUkSLmAk1PZFU0yINljV4TGLb2pdPftlPxUqx2VvNU0TFnmJ7tlCrB5tVVuoppVJfMvkWkAMYlwqanT0+W9VeClXtNZNuVVUUqtpLYef6vqqsk22K10cev588/oC59PnJEwiYywbLHOX2fnMpSphtF5Jimk7hmE6hqEa1MdVcj6lUG9Xs9VBifyixvzamUShqHavZt5ZOlkmiQLJ1k0RSJCFRJpIsmeWKJJplkmgfa5UpknmsJAmkiAJJonkOWRJIIIFU3aC4ZlAssbS245pBcT1t6VhXdYNUPfW5UXUmVdeJGpGAEwWioEemoFemoFcylx7HulemoMdZnti3n/sEPDJJjei550ZIzgEAAAAcwlRdpep4NdXEalKSbFZyrTrWwL54NdXGcx/T7FDiET3kk30UUAJmAk1xJNUSibb0JJu1bR2jiJjgAAqDFo9TJFRDkZoac1w2O/m2l8KJW2jfXgpXZZZ085eUUlF5hTnDaOIWLKugQFkZef3BREItmVRTfD4SRSTU3EDTDYqoZu8xswdYct3qUWYmbQzSDINUjUlNXIJpJXhU3byMM64nL7mMJ8pU+7jEfQwmVTPPZR2vJh5DKJF8i+uNH1uwMQQ7kWQmgbyJyzu9ipRYl8inmEuvIpIvsfTKIvkaOsYqTzvGWlqXikqC0KhLRVuKkfg7xXWD1LQkXsyR6BMEgYJeiYrspJtMPkXED095guQcAAAAQJ5ohmb32IrrcXsZ02P20lqPao59RnJfTIulHO+8X8r99SiF4rnPzFmkFFGpt5RKPCVU6i01b55Se71IKSKDDNIMjVRdJY3TlobWYJlq7H+ZXqYZGjEx+SQf+eTETfKRX/bX27bLEsc2tO0s88t+8kpekpBAgALEhkHRujBFQ7UUra2lSKjGXNbWUjRUQ5HaWoqEailaW5NYmsdosVhGcfwlpVRUVk7BilZ2wq2ovIKCFRVUVGYm44JlZSTJSEAXEsNgimo61cV1isR1iqjOdc1ejzqSatG0pJp5KaaeknhzJtysMq2AL8MMJHpeFSeSQkVemYp8iWXaurW/2Oc4NnFMQJEKOknWUkRRIJ8okU/B/8mWhOQcAAAAHDYMNlIugXTenOV1Wl2Dx+3vvtZNNdQWqZdAgnkppSOxVuItSUmyOccxs7aLPcXoDQaQJ2o8RtHaWoqGUpNr5naNvUwm2WopFgoRc3a9gwRBJF9xsZl0s3u7taJgeXmi15u5HiwrR9Itj5jNwfhjds8ic/yxuG7Y45BZPY7q4ubg99FEUq0ukUiz1iOqRhF7XU9ZN++X355jjWX1/vIrZi8xnyLZvcAUSUgszUsvFVkkxb5UM7lfToxbZl226UmUpR5j3ldx7PN7pJREW9AjkSxhQg9wPyTnAAAA4JBgsEF1ah2F1JA9a6Y1S6ZzxkxrkH/n4P7Weq69zDLhk3zkkTzklbz20lpvaJ/zGOexzqVPTr1fsVJs925DzzCA/DB0naLhUP0kW20NRcMhM9Fm9WgL1drJNi2eWW82J8XrI19xMfmLShLLYvIVl5DfuV5UnHKM1x/ALKRkJsuciTArwVXn6F1m9TAzl5o9aH9MSw7qn0yw6amJN8flfVbirSU6mfkUkQIemfyKRH6PRAGPZCfQnEk06zJLf2LdJyfLfYp5CadPNs/hS1y66XPc3yvjMkWAloDkHAAAADSLmB6zk2f2LJlqTTKB5kiyWTNoWutWco0pf9+InJdJWpdBOretsoAcOPBxip/8Uuq2R/Tgyw1AC2Jm0tQ4xcJh81YXolg4bCfdoqFQ8hLSxGWjVlksnP3svIIokr+4hHzBIju55isqNsuKihPJttQEnK+omGTl0OnZZvUc0w22xw/TDCbNcKwnxhjTjeS4ZFq9ZfJYazumpSXS6iXXkttWoi2i6i2SLLMokmCPP+axxjCTzZ5mzkRaynoiyWauSynrgQb2+XE5JoDrITkHAAAAB8XMFFbDKb3WauO1dgLNmVxL78Vm3eJGPC+PRRZlKvGUUJFSZA7k75g90zlbprVuz6qpFFNQCdoJNlFAjxOAQqapKsXCIYqGQ4kEW5hi4RDF6sIUdW4nkm7mdrJc17KbfdTiDQTJV1xMvmBxvSRbMtGWTLD5i4vJ4z+0ZuVlZqqOqLS7Nka7aqK0uyZGu2rN5e7aKO1KLKvCKqm6QXoioVaoPLJIAY9EAcWR6EokxMwEmZzocSbWT6gpEnkkMTG4v+RItFnHSMkJBBITBXgkEUkzAMgLJOcAAAAOAwYb9RJmziSbtW3vV+sn24wsx0VyEkiol1CzEmf2dtq6fUwi4eaVvIfUl1+Aw52uacnx1qxLQhPrzls0VOtIroVJU3NP6AuCSN5g0LwFguQLBskbLLJ7r/mKGrps1CwXpUP3UvHGJt121cQoruVnXDNFEszxxUSBZMkcg8xaV0SRJHF/ZeZYY5IokNdKrllJNUeSLdmzLDXR5uxhhrHJAOBQheQcAABAAdMNnaJ6YhIC1ZyowJp8IKyGG0ymOZNsVvItpObnklCr15qVULMSZ1ZPNiupZh1jlZV4SqjIU0RBJYgeawCHMGeibX9JtvR9sbrsLxMlQSBvIEDeQBF5g0HyBYvIGwgm1oN2uVlWRL7EPm+wiHzBICk+f4sl85nZ7mmmG0w6M+mJyzcN69JQPVFuGIlLPB37HDfNYDLscxmkG0SaYY6F9mMolnPSrSygUOtiL7Up8dGRiWWbYi+1LvFRmxIvlQc85JGTg/srokiSJJgTAkgiiQLhRxMAgBwgOQcAAJAjZraTZWE1TGEtTBH14LOBHmjWT+vYmJ79AOMN8Um+lJ5oxZ5iKlFKUradtyKliEq8JXbyDb3WANxBjcfMnmqhUGIcNuvy0cSYbM6yUCj3RJsg2L3U/MUl5C8pcYzDZm77iort5JsvaCbdPD5/g5Me6AYnZ7SMGxRRdaqNa7Rb1Ska0SlSrVFd/CeKqtbMl+YyGtcpnhjjzJk40wwjNZGWsi+RPNMb2ue4n55aXghXfx4s6da62Cz3KYduL0EAADdAcg4AAA5LzExxI06heMhOqoXU5PpBy+JmEs5a5uOSzwMRSKg3EYFzfLWGbg0l3TySp0kfJwA0D2YmXdPsMdmioZBjvTa5bSXawuHEZaPmMbqqZh+8gUSbnWRLJNyUYDGJ/iCRL0i6J0C67KeozimD+O9JDPIfietUF9MpUpvYVqspou5NrOsNLuN607a5TU0WBZIcNzllXSRRJJITl31KgmBf/ikKqccqkkitijxIugEAHOKQnAMAgGZjsEExPUZRLWr2DNPNHmIxPUaqrpJqmDfN0Ox1VU/drrePNfu+BzzO0ChmxFKSahrnNlh4OoEEKlKKyK/4683wub/ZQJ0zfFr3sWcRVRz3lXzosQZwCGBm0lWV1HiMtFiM1FiMtLh5s9bNZdzcnzhOi8fS7hNPuY8Wj6fdP0Zs5JagEkSRZH+QZH+QJH+QRK+fBG+AyBsg9vhJ9/hIl/2kyT6Kyn6KiT6qE30UFjwUUY1kj7S4TpGQTnV7kwk03agioqr8PKkHqoNA9syWPiU5I2aDy8S6VxZJEkWSRCIpMUaaM0EmS0LD5Y4x0hosd95fcOxL2RYwgQAAANSD5BwAwGGGme2Elr1MJLIaWkb1qJ1Ms8Y+sxJq1qWX6cc4l879+b5EM18CcoCKlCIKKOYy6AlSUA5SkafI3JcYKy2oBFOOS7lPYhZQJNAADi3MTFosRvFoxLxFIqRGIhSPmevxSITUaJTi0TrHulXuuE/iGDUaJUPXm+/xk0CG4iVN9pMmeyku+SgmeSkm+igieKhO8FIdKRQicz0mmreo5CVVUMzslkUnorrErR7jQDv3S5GERPJMthNozgH8zXXZsX6QBFsDiTa0uwAAcKhDcg4AIE+Y2eydpcfsHltxPZ7Se6uh8vR1KzFml+sqxY14vXOoukoqq6Tp2gF7jTWUcCsEHtFDPtln3iQfeSQPyaJMiqjYN3tbUkgWZFKktPK0Y/a7zzqHKNdLqgWUACYoADiEpCTTImbCLB5NJMcidXayzC5PLFPWnYm1aJSIm2hwMFEilhViSSEWFdJFmTRRJk1QSBUkipNEMZYpShJFWSSVrP0yqYK5tLad6/Y+Qaa46ElNsDWSRxapWBbJp0jkU0Tyygde+hWZ/B7RnEVTSc6aaSXe/B7Rnj3T70iyKZg9EwAA4KCQnAMA19INneJGnOK6eYvpMbO3lx6lmBaze3dZPcDs/Y5eX84y57793aepxx1rKlbiy0pmOZdeyWtejin5U5JpKcvE5ZrO7ZR9aff1Sl6SRIyDA+BmbBiJSzGjKZdjqrFoyuWc1n41Fk0mzRxJtIZ6qHETtLVMRIbkIU3ykCZ6SBUVigsKxQSZYqRQVFBIFRSKi4q9TxWtMo9jPVnOWSb+gx6JAl6Zgh6Jgl6Zgh6ZAl6Jgh6Zgl4zGWYt05NrPlkir2Im3bxyw0uPJOLSSgAAgAKC5BwANBtmprAaptp4LdXEa6gmXkO18VoKqSGKalEziWbE7fHHrISaaqgU02N2ks2ZcLOOj+txUnWVYkbyOJ2b77KihjgTXh7RY/fscq47e3ylHCN56u1PL5dF2extZsXZT4ItPdnW0D5cEgRweGPDoHg0QrFwODljZzhEsXCYYnXhgyTVYhSPJtbt8dOiZOQy4UBjHjMRxYVEUiyRLDMTYx47cRYXPaTa6wqpgictueaxE2qaIDe6B5ooUCIpJpFPFsmrSCm90KxLNwMeR4LNa/YqMxNsqck2Z/LNr0hInAEAABxmkJwDgEZjZorqUaqJmUm1WrWWauO1VB2rNretm1prH2Ml4KxjW6pnmSiI9mWUVk8wr+Q1e3HJXruXl1fy1tvfmPtYZdb9FVFBzzAAaDbMTJoap2goROGaWqqpqaXamhoK19RSOBSiSKiWouEwxcJhiteFSI3UkR4Jkx6LEMcixPEICU11aSeRfRmmmnJpplJvPT2plkykeeol2NKTaR5ZtC+z9CcSZ9all2WKszzRi0xJ9jRz9iqz9te/tDO5rkgCftQAAACAvEFyDuAQ5RzU37q00l43Yg2WWz3OnL3QDlYejoftxFpNvCYv45UpokIlnhIq9hRTiaeEijxF9qWOimT2DvNKXvKIHvJIiZtj3TrOK3qT+xPH2OdIrFv7ZBHNHQA0HV1TKWaPcxalWDRG0VicYvF4YqlSPLFU43GKx1VSVY3UeJxUVSXNvmmkaxrpmkq6ppGha2QklqxrxJpObGjEuk6kayRqMZK1KCl6jKQcegtbaSZNkBITBnjsiQOSvc9SE2nOMdFUQbHXSfaQqHhIUDwkyl4SPQp5ZMm8SQJ5ZJEUSSSPLJJHEkmRRSpObNuTBSQSa9bsmwGPRL60iQCcS58ikYTeZgAAAHCIwrdVgCZk9TSLaBHzpprLOq0uWea41anJ8gaPUZPlMT3WYr3QJEGiYk+xnVxLX3eWWdvOMq/kRY8DAJcyDCbVMEjTmTQ9ua7qBmkGk6YbpOpMmpFYJspVPXlcPHGMqhvmtpa2rRukamnbOpOqObeT94lryW1D10nQ4yTpKklGnCTNXMp6nCRDI0mPk2yo9tK6KYZKshEn2dAS23GzjDVSDJUkym97LFB2H9IMEigmeiieSKxpspc02UeGx0es+Ik8fhK8fhJ9AVL8QZL95tIbLCJ/MEhFfh8dmZb08ilm4swri+SRJFJkwUyqSYkyR7JNFtGjDAAAACBTSM7BYU/VVYroycSZdYtq0ZQkmbXd0DHOhFpUi6bch6npLhNyssY1c/YWs9cdPcrSy/Z3rEcyxz8rUorqJdn8sh9fvgByZM7um0xg6XpqUkszUpNWVmLLKtMNtpNc9rojAaYZqfdxxmnoHPaxVqxE8kxPS6ilJtwcZYk4usHpFSWJdZJIN5eOm8z1y5I3Y7/329+xgQaPN1K385xES6cJEqmCTLogky5IpAsisSARi+aNRIlIlIkkiQRJJkGUSJBlEiSZREkmSZZJlM2lJMskywrJikKyIpPs8ZCiyKQoHvJ4FFIUmfzBIAWLi6iopISKi4upuDhIfq+SmCUTiTIAAACAQwGSc1AwmJlUQ6WoHk2ZWTOux+3JAuztho7RD3xMTIuZCTM9mpKI0zj3yzQbwyeZs1lat4ASSNlu8KYkjpVTjw3IAXt8MyuhhvHNoCUxMxlMpBtMRiLppBtMRiJBZLC5bd/Sto3E/Q1mYjbPx2T2wmIyy4nJXmfr2ERsczv5OIg4sZ16nMFcL+GkO3t6pSWznL27zOMaSIA5jzvIeXTjAEmspvnDkEgGyayRbOgksWYnxGTWUpbWevp+H2uJBJdmJ7usfeIBEmxyMyXDsiWIIkkeH0leH8leL8keH0leL8len3nz+UjxONYdS8Ve+snjM4/x+Pzk8XpJUhSz15skYGwyAAAAAGgUJOegQTE9RgsrF5Ju6KSzTpqhkc66ve1cd+7TWEsek7Z9oOOsGTdbkizI5Jf95JN99ZJkDZUFlEC9hJtf8ZNP8qUk3gJygHyyj0RBbNH6Qar0ZJKVMLKTSY4EkmFQg8kk532cSSc7IZO4vM7qVaQa5mV3VqLGeRmfvZ22z7y/c3/yeCOR3LF6Z1pjubOjjs5tZyfO/R2TPEfynMyU6J1lJro03bCfO2eiDRqJmWTWyMda4pJILZEU00hhjXykk0fQyMM6eQWdFNbIQ+Y+JZFkk9m8nFIyEgkzQyPRcRMMjQTdXC80kiyTpHhIUhSSFQ9JikySrDi2zXW7TJbrlSWPd5Sllx/gOI/PbybRkDQDAAAAgAKA5Bw0SDM0emz9Yy0WXyDBnPVS9tqD/lu9xHyyz962yyRf6jFS/WO8kne/CbeAHCBFUlqsvociZqaYZiaf4pp5i2nJ9biu29up5c7jdXOpJy+1sy7R06zeTUayN5K1bfU+cm6by2SvJd1xLrunlGGkJNqg+UiiQJIgkCgSyaJIopAoS9xEwbwJAqUuyZyMURAEEgWzbUjZTjku9X6iIBAJRGLaOWVRIEkUSZEEkiVzjCyZDFLIIIXMhJdCZsJLMlRH8kslUTf3m8mvOAm6RoKuEmkqkW7eWDO3DTVOrMbJSNx0NUZ6PE56vOV+iJA9XjNR5fEkElgekj0ekhUPyZ7EtpU483jNMlkh2eOxk13W/VKSYFZiLT05pnhS1iVZRkIMAAAAACANknPQII/ooct7Xk6SKJEsyCSJEkmCRLIokySY6+n7nEtZkBs8xr5/2rY17pk1Y6cs4guchROX4cW01GRXTNNJ1dhOdjkHPbcTYLpBqpYcLD2WfpwjWeYcdD0liaY3nFiL64V5qVq+CAKRJCSTR2ZiKXVbEs1kk7VPTiSZJFEwB0eXRJITCSCPJJAsmrMSKon9smQurSSRIiX2JQZVNwdXN4/zpB8vmsckH7C1EOzH7yi2309C/bs4yhq+r+SoV3r9nck1WXQ8R4JzH2X1fmZm0lWV1HiMtFiM1FiMtHhyaa/HouYx8bh5nPP4tPuYy3jillw39P33MNMTt6YgKQopHi/JXi8pXq+ZEPN6k2Vp+1KW1vFWcs2RbLPOaybZPEiMAQAAAAAUMCTnoEGKpNCvB/y6pR9GXqRcnsiOSxadlyHqqfu0tP3OSx0163x6/XGzrJuVSIs5EmkxNbked+5TnUk3PaU8rpvrfAh08vIkZurzyGLKujetzLntlSV7lj9FTvZokkXBTGo5ts2EV+q2eVzqtpRelnae9CRaSm8uMZmQyzSJYei6nQDSVZV0XSND08nQNTJ0nXRNs9cNTSNdj5Nh6A0co5MR18jQNDIMI3GsnnZfnaKJbTYMYsMgI7FMruv7KU9f15PrnCx3HmsRzC5rZtLOXhdIEAWiRI82q4zshFzqfYTELf08RER6PJ5MrCUSZy3x4rcSWs7El+JMhDn3pR3nLFd8vpQkm+LzpSXWPCRirEgAAAAAgMMeknPQIFU36ONv9joGN3fM9pc2MLpzlkDVcWmheSmhkTaAev2B0XUjdYwvw9j/WGDp5cll/SScVe42HlkkrzMRlkhueSSzV5Y3kejyWD2xrDLJcaxs9uRybifLk9tK4hivnEykedJiexKxRbHleuSYEwIYZOhGMomVSFwZVmJLNcu0eJzUWNRcOnpbpfaqiiWOS/bQSm7HU3ttJbYNvan6VgERkSjJdlLLSnjJHk+9Hmayx0qk+dJ6m3lS77O/RJviIUHE+JAAAAAAANB8kJyDBkVVnSYs+bilH0aTEwSye1E5e1WlXLonpV/CJ5IkkrkUkj2uzKV5f68joeVVkr3FvLKU3KdIZu8xJbXck3Y/KynmlQ+eBGPDIF3XiXXd7LmVSFKl3tLLY8mkltWTK64ne24ljtMNg8KGTiFdt8vt5JfVA8ta13UyDGdyLNlDy76fkZZAM/SU5Bo74phljvvoul1Pq6yQyIqHRFkiUZJJlCQSZZkkybFtrcsSSY5jRCltW5Ts80iOY6xtQZJIFEUSRNFeCqLkWBf3s37wY0RRssuIiIg5OXmENUuEY53t/ebMqcRsTiphz7JqHUfmMYZzv3kuuV6CLXkZpyihhxkAAAAAALgTknPQIEUS6fg2xfalhLIkJtcTA6lblw8qKYOrJ8fCkqXkcYrkvDRRtC81tMbTShnTK3GZYeplh8mxq6xyMW1Mq4bKneOGOS9nlMXMLl20kl6GppKmqualhYmboamJddVRppmDvzv3qSrpEc1cJi5xtM+lqlSnaVSrqcljE+fRtOQx6XGsJJyVrDokrn9tZsmEmEiiJCcTP4rHHrPLecmi3cvK40vbPsCx1nkSY3xhXC8AAAAAAABoLCTnoEE+RaI3b/ifFn0Mhq6TppqDteuqSlpipkNNVUlT46THE0s1TnFVTRxn7k85To2TFldJV+P2WGCpSTUtJRmWTIAlywqtZ1YmBEG0E1PJXltWL66Gyp37zXWrJ5W9Lkl2zyrzHKnHNHgfUUy5v9V7K1km2+cSRbNXWLJ3mONxiWKyV5kkkSClxk0eJ+HyRAAAAAAAACh4SM5Bg3RNpW/++2nKAPSGY4B73Sq3BrDXzZ5gumNw+/0NZG/YyTHHQPiJRFoysRZPGYi+0AiiSJKskKTIJMmKedmiLJMkJZaKQqKskKzIJMqKWWYtleS2KMskK9b9lfrHJPbJzhiKeZx9eaNsJrokWU48LsflkEhQAQAAAAAAABQ0JOegQVo8Tv+67+6Wfhg283JEhSTFmhHRQ7KikJQYwN2aXdHcr5hlnsQyUSZZN2eizJn0kuVEQi29LDVxZiW9AAAAAAAAAAByheRcmoULF9L8+fNp586d1KdPH/rzn/9Mp5xySks/rGYnyQq1O67HAQejT9mWJbOHmPNySOcg+Ac5j51UcyTYJE8yqYZkGAAAAAAAAAC4kcCMEeQtzz33HF1++eW0aNEiOvXUU+lPf/oTPf/887Rp0yZq3br1Ae9bU1NDpaWlVF1dTSUlJc30iAEAAAAAAAAAoBA1NleEwagc7r//frryyitp0qRJ1LNnT1q0aBEFAgF69NFHW/qhAQAAAAAAAACACyE5lxCPx+mzzz6j4cOH22WiKNLw4cPpww8/rHd8LBajmpqalBsAAAAAAAAAAEAmkJxL2LNnD+m6Tm3atEkpb9OmDe3cubPe8b///e+ptLTUvh177LHN9VABAAAAAAAAAMAlkJzL0qxZs6i6utq+ff/99y39kAAAAAAAAAAA4BCD2VoTjjjiCJIkiXbt2pVSvmvXLjrqqKPqHe/1esnr9TbXwwMAAAAAAAAAABdCz7kEj8dD/fr1o3feeccuMwyD3nnnHRo0aFALPjIAAAAAAAAAAHAr9JxzmDlzJk2cOJH69+9Pp5xyCv3pT3+icDhMkyZNaumHBgAAAAAAAAAALoTknMP48ePpxx9/pNtvv5127txJJ510Er3xxhv1JokAAAAAAAAAAADIB4GZuaUfhBvU1NRQaWkpVVdXU0lJSUs/HAAAAAAAAAAAaEGNzRVhzDkAAAAAAAAAAIAWguQcAAAAAAAAAABAC0FyDgAAAAAAAAAAoIUgOQcAAAAAAAAAANBCkJwDAAAAAAAAAABoIUjOAQAAAAAAAAAAtBAk5wAAAAAAAAAAAFoIknMAAAAAAAAAAAAtBMk5AAAAAAAAAACAFoLkHAAAAAAAAAAAQAtBcg4AAAAAAAAAAKCFIDkHAAAAAAAAAADQQpCcAwAAAAAAAAAAaCFIzgEAAAAAAAAAALQQJOcAAAAAAAAAAABaCJJzAAAAAAAAAAAALURu6QfgFsxMREQ1NTUt/EgAAAAAAAAAAKClWTkiK2e0P0jO5UltbS0RER177LEt/EgAAAAAAAAAAKBQ1NbWUmlp6X73C3yw9B00imEYtH37diouLiZBEFr64eRFTU0NHXvssfT9999TSUkJ4hRIDMQp3BiIU9hx3FQXt8VxU10Qp3BjIE7hxkCcwo2BOIUdx011cVscN9XFjXGaEzNTbW0ttWvXjkRx/yPLoedcnoiiSMccc0xLP4wmUVJS0ixvDDfFcVNd3BbHTXVBnMKNgTiFGwNxCjuOm+ritjhuqovb4ripLohTuDEQp3BjIE7hO1CPOQsmhAAAAAAAAAAAAGghSM4BAAAAAAAAAAC0ECTnYL+8Xi/NmTOHvF4v4hRQDMQp3BiIU9hx3FQXt8VxU10Qp3BjIE7hxkCcwo2BOIUdx011cVscN9XFjXEKESaEAAAAAAAAAAAAaCHoOQcAAAAAAAAAANBCkJwDAAAAAAAAAABoIUjOAQAAAAAAAAAAtBAk5wAAAAAAAAAAAFoIknMAkJPmmFPGMIwmjwEA2UM7AJCZ5pqPrbneN81Rn+aIEYvFmjyGW2GOwcw113Om63qzxGlqzdWeRaPRZo3nlvYTcofkHOTMTW92t31YbkqhUIiIiARBaLIYe/fuJSIiUWzapuq7776jtWvXEpE7/jZOzfWaRjuQOTe81tAOHBqa6jWdfl43tQNNxfqS3NTP1Z49e4jIfN805RfzzZs3U1VVVZO2AUREW7Zsoeeff56qq6ubLMamTZtoxIgR9PXXXzdZDCKicDhM8XicqqqqiOjQTwCkv76asj5uaWPi8TgRJZPBTVWvnTt3EhGRJElN2g589dVXVFlZ2WTnJzLbmgcffJB+/PHHJo3z+eefU/fu3WnNmjVN+rmjpqaGqqqqaOfOnSQIQpO9bzRNI6Lka6wp4uCzQP4gOQcZ2717N61bt44++eQTImq6L2XWG9tqVJrCvn376Ntvv6UvvviCiKjJGsedO3fSBx98QP/617+IyPyw3BRxvvjiC5o/fz6Fw+G8n9upsrKSLrvsMtq8eXOTxVi/fj2NGDGCFi9e3GQxiIg2bNhAHTt2pGuuuYaImi4BsHXrVnr00UfpzjvvpM2bNzfZP67du3fT+vXraeXKlcTMTfb+bI52oDnaACK0A9lCO5A5N7UDmzZtojlz5tAVV1xBixcvpi+++KJJ3ju7du2iL7/8Mq/nbMiWLVto0aJFNHPmTFq+fLmd3MqnL7/8km666SYaM2YMzZs3j7Zs2ZL3GFaczp0701VXXUVETffFfM2aNdStWzd68cUX835up7Vr19Ipp5xCq1evtr+Y5/t1VllZSQMHDqT333+/SZP0n3/+OY0bN46GDh1Ko0aNoo8++qhJ2hvn+/PBBx+kdevWkSAIeW9zNm7cSNdffz1dcMEFNHv2bPrss8/yXp8ffviBPvvsMyJq2h+Cvv76a7r77rtp4sSJtHjxYtq6dWuTxPniiy/o6quvplGjRtHVV19N69evb5J6bd68mdq1a0fnnHMOETVtO3D88cfThx9+mPdzW9auXUunnnoqffvtt3bb3BTvz8rKSjr99NPpu+++o+XLlzdZnA0bNtDPf/5zGjZsGPXu3ZveeuutJmkHNm7cSNOmTaOLLrqIbrjhBvrwww/zHsdtnwVaHANkoLKykrt168adOnXiNm3a8Mknn8zvvfceh8PhvMZZv349n3POOVxVVcXMzKqq5vX8zMzr1q3j0047jbt168Zdu3blSy+9NO8xmJnXrl3LJ5xwAvfq1YvLysp4yJAheY9hGAaHQiHu1KkTC4LAs2bN4lgslvc4zOZrQJZlvummmxp8HPmwYcMGLisr45kzZ/I333yTl3M2ZPXq1RwMBvm0007jHj168PLly5k5f/WwrF27lo8++mj+n//5H27Tpg0fffTR/MMPP+Q1BjPzmjVr+Pjjj+c+ffpwhw4duGfPnvzqq69ydXV1XuM0RzvQHG0AM9qBbKEdyJyb2oENGzZwaWkpjxkzhgcPHsynnnoqH3PMMfz2228zc/6eu88//5zbt2/P48aN4/Xr1+flnA1Zu3Ytt2vXjs8++2zu1q0bH3/88XzPPfewrut5q8vatWu5VatWPHHiRL7gggt44MCB/Lvf/Y4Nw8j7a+3FF1/k1q1b88CBA/mqq66yy3Vdz1uMyspKDgaD/Jvf/CZv52zId999x+3bt+cbb7wxpdxq2/JRp8rKSvb7/Txv3jweN24c9+vXL+dzNmTDhg1cXl7OM2bM4Pnz5/NFF13EI0eO5EgkktfXwLp167i8vJwnT57Mv/jFL/iss87i8vJyfuONN/IWg5l548aNXFJSwhMnTuQxY8bwiBEj2Ov18hNPPJG3GF988QW3adOGBwwYwO+9917ezptu3bp1fOSRR/K4ceN40KBBPGDAAL7mmms4FArlNc7atWu5vLycr776ap46dSqPGjWKJ02axPF4PO/twAcffMDHHnssd+vWjUeNGmWX57sdCAQCTdoObN++nbt06cIzZ85MKa+rq8trnMrKSvb5fHznnXfyjBkzuEuXLvZnz3z+bTZu3MitWrXiX//61/z000/zVVddxd26dbP/R+cr1vr167m8vJyvueYanjp1Ko8fP55lWeZHHnkkb69rt30WKARIzkGj7dixgzt37syzZ8/mNWvW8KeffsrDhw/ntm3b8uLFi7mmpiYvcb755hv7y2W/fv3sL+eapuXl/MzJhvHmm2/m5cuX8+LFi7lXr178f//3f3mLwWw2Jq1ateLZs2fzxo0b+b333uM2bdrw+++/n9c4lqlTp/KVV17JgUCAr7/++nrJklwbyXXr1nEgEODbbrvNLqupqeHdu3fndF6neDzOl156KV999dXMbD7mVatW8QsvvMC7d+/mSCSSlzjWB4o5c+ZwOBzmjh078vTp0/NybqcffviBu3btynfddZf99+jSpQs/9dRTeY3z7bffcvv27Xnu3Ln81Vdf8bZt23jEiBHcunVrXrBgAe/ZsycvcZqjHWiONoAZ7UC20A5kzk3tgKZpPGHChJRE9urVq3nKlCksSRK/8sorzJz7F8Bt27bx4MGDuU+fPnzKKafwlClTeN26dTmdsyFbt27lbt268ezZszkejzMz8y233MJdu3bN2+ts8+bN3KFDB7711lvtsilTpvC0adOYOf8/Prz22mt83HHH8R/+8Afu1auX/T5iZq6trc35/Bs3bmRZlvnOO+9kZvNv/c477/DDDz/MK1euzGvS+dlnn+WhQ4facW699Va++OKLefTo0fzOO+/kfP7Vq1ezx+PhW265hZmZ//3vf3OHDh342WefzfncTpFIhC+88EKeOnWqXbZkyRK+9NJLOR6P848//piXOKFQiEeNGpXyw8lnn33G5eXl7PV6+e9//zsz5ydB87//+798wQUX2Nu7du3i2267jSVJ4r/85S/MnNv/mx07dvDQoUN5yJAhfPbZZ/PIkSN5xYoVOT/udN999x337NnTfg0wMy9cuJA7d+7M27Zty1ucb775hrt06ZLSDsydO5cnT57MzGwnTPLxtzEMgz/88EPu0aMHP/3003zcccfxOeecY+/PR72sdsB63gzD4BdeeIHvvvtufuaZZ3jTpk05x2BmfuONN3jw4MHMbD43119/PZ977rk8YMAAfuKJJ/LSTq9evZplWeZZs2YxM/OWLVv42GOP5XvvvTfnczupqsqXX345X3755XbZ8uXLefTo0bx3717+/vvv8xInGo3ymDFj+Prrr7fLtm/fzt27d2ePx8P33XcfM+f2/nTbZ4FCgeQcNNqqVau4a9eu/MUXX6SUT5o0idu3b89PP/10zl/6wuEwT5s2jceMGcPPPfccDxw4kHv37p3XL+fV1dX8i1/8gq+99lq7zGrELrvsspzPb/npp5944MCBKb/2qqrKZ555Jj/33HP82GOP8Y4dO/ISy2r4JkyYwPfffz+//fbbrCiKHXvx4sU5N/i7du3i0tJS/tnPfmaXXXPNNTxo0CDu3r07n3vuufaX81xeB5FIhAcMGMAvvPACMzMPGzaMe/fuzUVFRdy+fXv+3e9+x7t27cqpLl9++SULgpDyAWnRokV8xBFH8Mcff5zTudO9+eabfPLJJ6d8WTnvvPN43rx5fN111/Frr72Wc32YmV944QUeOnQo19bW2u+Tf/7zn+zz+fj444/nxYsXM3PuiZmmbgeaow1gRjuQLbQD2XFTOxCPx/mMM85I+SLLzLx7926eOnUq+3w+/vDDD7OvRMI777zDo0aN4srKSl66dCmffPLJef9QrmkaP/DAAzxu3DjesWOH/Zzt3LmT27dvz2vXrs1LjEWLFvHkyZN579699nN/3XXX8ZlnnslnnHEGT5gwgVeuXJlzLMv333/Pl1xyCe/Zs4fvv/9+7t27N8+cOZMnTZrEixYtspOQ2dB1ne+44w4WBIE///xzZmY+88wzuU+fPlxaWspdunThYcOG8Zo1a/JSl/nz5/MvfvELZmYeNGiQ3dNozJgxLAgCL1myhJmze03/9NNP3L9//5TX8o8//sh9+/bN6/8BZvN/Tu/evfnBBx+0y2bPns3t27fnPn36cMeOHfmxxx5j5tzen3v27OGePXvyP/7xj5RzjRkzhocOHcoej4c/+uij7CviMHr0aJ4yZUq98rvvvpsFQeBXX3015TFk6tNPP+Vhw4bxypUr+fXXX2+SBJ1hGPz444/zBRdcwFu3brX/j0ajUe7cubPdkzofnnvuOb788stT2vqZM2dy7969+ZRTTuHTTjvN7t2Yjx5H4XCYx4wZw9u2beMXX3yRu3btyhdeeCFPmjTJ/kEqF4sWLWJBEPiVV15hXdf5jDPO4AEDBnD79u25V69e3KVLF/7ggw9yrsdTTz3F//M//8PMzKeffjqfddZZPHv2bL7uuutYEASeM2cOM2f/nNXU1PC5556b0g7U1NTweeedx2effXbOj98pEonw6aefznPnzrXL5syZw+Xl5XziiSdyaWkpz507l6PRaE5xamtruXfv3rxo0SJmTv4ANGXKFD7nnHPsv1su3PRZoJAgOQeN9u9//5uPOOII3rx5MzNzSqN+ySWXcNu2bfPypezhhx/mp59+mpmZ33///bx/Od+1axdPmjTJjmH9I37kkUf4jDPOYMMwUj645lKXBQsWpHyIuOuuu9jj8fCAAQO4W7du3KZNG/sDeS5xrDo8/fTTdiP5yiuvsMfjsS/R+fbbb7M+v2Xs2LF88skn8+LFi/nUU0/l4cOH8/33388LFy7kXr16cY8ePexf/rKtTyQS4REjRvCyZcv41ltv5VGjRvGGDRs4HA7zrFmz+MQTT+RHH300pd6Z+uijj+xfdS1r1qzhnj178oIFC5g5f0mgxx9/nIuLi+0veQsWLGBFUXjChAk8ZMgQ7tq1K9977705x7vnnnu4Xbt2KWVvvfUWT548mc8//3w+6qij8tKN/d13323yduCvf/1rk7YBzM3bDtx3333N0g5Y923qduCiiy5q8nYgGo26qh144oknmqUduPfee5ulHbj22mt50KBBvHfv3pTy7777jseMGcPnnHNOzpfRRiKRlC92jz76qP2h3Jk0y/VL7NKlS/mBBx5IKdu1axeXlZXxu+++m9O5LZs3b065FOeOO+5gn8/Hd999N99+++08fvx47ty5c94u3w6Hw9y7d29evXo1h8Nh/utf/8qtWrViQRDs5y6X19rOnTv5qquuYq/XyyeeeCKPHj2aKysrOR6P87Jly3jkyJF80UUX5aWX3lNPPcVt2rThxYsX8znnnMM//fSTve93v/sdy7Kc02VOn3zyib1uPSfLli1jn8/H//nPf7J/4GkMw+BLLrmEe/Xqxf/4xz/4pptu4kAgwEuXLuVXX32V7777bhZFMefE0+7du3nQoEE8b948u0fRN998w+3ateMXXniBzzrrLL700ktZ07Sc3ztz587lY4891u6FZZ0vHo/zNddcwz169Mj5x6fKykp7/dVXX7UTdP/v//0/u9z6H5Dt/4JXX33VTmIwm/Wora3lo48+mp9//vksH3l9VVVVKT9s3nvvvezz+fhPf/oTL1q0iKdOncoejycvPwowm/9H+/btaydh/v3vf3NZWVlKO5Brr925c+eyJEncpUsXHjNmDG/atIk1TeNPPvmEL7roIu7fv3/OPzy9/vrr7PP5+PHHH+fRo0ennO+JJ55gQRByvhLB2cvPeh29//77LAiCnejOl2nTpnFxcTEvXLiQr732Wvb7/fzMM8/w6tWr+amnnmJBEHjZsmU5xYjH43zeeefxlClT7P/FW7du5SOOOILfeustvuKKK3jIkCE5J2jd9FmgUCA5B41mGAb36NEjpQu7M7Pfo0ePlO6zucZiNj8orVixot6X87q6Ov7mm2+y+kccjUb5s88+qxfr4Ycf5oEDB6aU5dOrr77KHTp04Jdeesn+cDl06NCUHii5eumll7hv37728/Kzn/2MJUniiy++OG91+uUvf8mSJPEvfvGLlMvYtm3bxh06dKg3Lkw2Ro8ezSeffDJPmjSJn3zyyZR9kyZN4r59++Z0fufrxvm8TJs2LW9fXp369evHFRUVPGrUKPZ4PPzWW2/Z+2644Qbu1KlTvX9smdq4cSN36NCBb7jhBt61axd/+umnHAwG7a7rnTt35ocffjinGMzmc9ezZ88maQca+rLYFG2Adf9Vq1bZ203RDjT0obep2gHnY22qdsCZrGzKdsB6jE3dDjj/Pk3VDjjP279//yZrB6w4n3/+ebO0A8899xyfdNJJfN9999W7lH3p0qXcrl07/u6773KOk/56behX8zvuuCNvvbSseJFIhLt3757Sg/Kll17KqU7WuaPRKJ9zzjkpvRbee+89bt26dcprIlvxeJxVVeWRI0faY3SNHz+eS0pKuFu3bvaltLmyekf079/f7kFn+eMf/8hHHXVUXi5v3bp1K5933nncr1+/lMtbmc0kardu3fi5557LKUb662zLli3cr18//u1vf5sSL1fvvPMOjxs3ji+44ALu2rVrynsxFovxCSecYPcCysWMGTO4d+/e/Mtf/pLvvfdeLioqsnuJz58/n0844YSsk7PO5+Ljjz/mIUOG8HXXXWcnTKz9b7/9Nrdr145Xr16dU4x0r732Gp911lk8atQoO5E5ffr0rHoDNvQcOF8L/fr145deesnefvzxx7O6VLOhOLFYjK+88sqU97yVRM12zL6GPttOnDiRX3zxRWY2f0CtqKjg9u3bp3yGy1R6febNm8e9evWq97d+/vnnuVWrVlklG5110XWdL774Yu7UqZP945+mafYxffv25fvvvz/zijDvtxexYRhcU1PD559/Pl922WVcV1eXUzvgvO/mzZv52muv5QkTJvDJJ5/M8+fPTzl2yJAhfM011+Qc509/+hMPHDiQTz/9dJ41axYHg0H7vM888wx37NiR9+3bl1Ucy3PPPcd9+/Z13WeBloTZWmG/fvzxR/rss89o7dq1VFtbS4Ig0L333kuVlZU0ffp0IiLyer32dOB9+vTJaop7Z5xQKERE5mxMuq6TJEl02mmn0T333EOBQIDOOOMM2r17N9188810+eWXUzQabXSMVatW2dNin3zyyURkzsDjnCHJmsVIEAS64YYbaPTo0VnXJX2mxK5du9Jrr71G559/PpWXlxMR0amnnprR+RuKU1dXR0TmzJZdunShNm3akCiKNGXKFPryyy9p/vz59PLLL9OVV15p/62yiVNTU0NERE899RTNnj2bLrnkEjryyCPtY9u0aUMdO3ak2trarGNY9/3jH/9I0WiUli5dSnv37rXrR0Q0atQo8nq99vTzmcSxXgPO141zRqGrr76aioqK6LHHHkuJmW19rOds1apV9Le//Y0mTJhAgwcPpsGDB1MkEiEiohEjRpDX6814Zk1nnEgkQl26dKEbb7yRli1bRr1796Zhw4bRlVdeSTNnziRd18nr9drPZSbq6urIMAz7ORNFke69917673//m7d2wIqhqmpKuaZpeWsDnHEikQj5/X7q16+fHSef7YAVp6FZZvPZDjj/NtbjZ2bq1KlTXtsBK45zlrennnqKbrnllry1Aw3V5Y9//CPV1dXltR1wvgZkWU7Zl892wIrjfHyffvopPfHEE3ltB9LjdOzYkW666Sb6xz/+kbd2YOvWrfTII4/QkiVL6M033yQionHjxtFpp51GDz/8MD355JMp5xwwYAAFAoGMXwMNxbFeC9Zrb+LEiTRt2jRavXo1PfDAAzR+/Hi644476v0tGxvnjTfeaPAYURRJFEU7/uzZs+nqq69u9GvhQHXxer308ssv07nnnmu/5ioqKqhNmzZUUVHR6Hqkx3nrrbeIiEhRFJJlmfr27Utff/01XX755bRixQp6+eWXafr06bRs2TK68cYbs45j1efII4+kO+64gx544AHq0qULESX/Tl27dqXy8nLyeDw5x+nQoQMNGzaMvv32W6qsrKQtW7bYsw0WFRVRWVkZeb3erGJYz5mz/SQy30dnnXUW/eUvf6Hdu3dnNbthQ6+zM888k5577jlavHgxybJMRx99tB1X0zQqKSmhtm3bZh3n9ddfJyKz7Rw/fjzt27ePXn/9dfrtb39LDz74IBERlZaWkt/vz7hd27dvHxGZ7w3r73zKKafQeeedRx988AEtWLCAtm3bZj9X3bt3p2AwmFGb5oyRPtOj9XjPPvtsmj59OomiSHfffTddeOGF9H//938ZvdasOJIk1fs/7fwsIIqiHffWW2+l6667LqNZVZ1xnP8/mZk8Hg8tWrSIRowYYddVEARq27YtHXvssY2O4YzjfN6sx3nCCSdQZWUlTZgwgd5991167bXX6KGHHqIVK1bQ+PHjs4qTXp9bb72VnnjiCerevTsRJf+XtmvXjo488kgKBAI51UUURRo9ejSVlZXRli1baPPmzSRJkn1MUVGR/Xkq0ziKojQ4q6ggCFRcXEzDhw+nZcuW2a/tfLxvOnfuTA8++CA98sgjJMsyHXXUUURktp+appHX66VOnTplHcd6TU+fPp2mTp1KnTt3pi+//JJ+97vf0UMPPURE5v+hkpKSjGJs376dXnnlFVq2bBmtWrWKiMzPAgMHDqRHHnkkb58FnHGcszQzs/23ysdngYLVAglBOASsXbuWe/Towb169WJBEOyBv6uqqnjBggV83HHH8ZVXXplyn4svvpivvPLKjGY3ayiO877WumEYvGLFCh4yZAjLsszBYLDRYwI1FKOhXz+eeeYZPuWUU5iZedasWRwIBDK6Vn5/cQ70XEycOJGvv/76vD1nqqry8OHD+bjjjuM2bdrYPQT//ve/c5s2bXjnzp051cc582P6eAiqqvL5559v/wLUmPrs7zmLxWL8j3/8gzt16sQnnXQSr1+/3o49bdo0HjVqVEYDwDb2NaCqKo8aNYqHDx/e6HMfLI7zOXviiSe4d+/eKfeZMWMGn3baaRl1+06PY42ZFYlEeNu2bbx8+fKUX5Framp4+PDh/MwzzzBz43uErVu3jocPH85Dhw7l4447jv/yl7/wDz/8wJqm8X333cddu3bNuR1Ij/HQQw/xli1b7P3WL7S5tAGNiWM91lzbgYPFaUg27cCB4miaxmeeeWZe2oGG4nz55Zf2/vTZ0rJpBw5UlxdeeIE7duyYl3agsa+BXNuBht43X331lb1/6dKleWkH0uMsXLjQ7r2yfft2fvPNN3NuB6wZRgcOHMhdunThoqIivuKKK+xfyKdMmcInnngiz5gxg7/++mv+8ccf+eabb+bjjjsuo8knGorzq1/9irdv324f4+ytsWTJElYUhUtLSzPqmdOYOMzmZ50jjzySV65cyXfddRf7fD7+9NNPm6QuzOYEFAMGDMhoUoD9xbF6q911110sCAJ36tTJbgOqqqr4L3/5iz0sQbZxJk+efMB2ZPr06TxixIiMep82FGfSpEl2b+kFCxbwUUcdxb179+aPPvqI161bx7fffjt37Nix0T0zMvnbfP/993zSSSfx3LlzM+4xs7/nzBnnwgsv5JkzZ/KOHTs4Eonw7bffzu3bt8/o0uaG4kycODGlN0x6b5bJkyfzmDFjMprJ+/PPP+dOnTrZPQmZU3sc3X777Xzqqafyeeedx5WVlfzVV1/xLbfcwh06dGj0Za0NxUh/3p1t1ssvv8zl5eVcVlaWculrPuIwm5+nOnfuzC+++CL/4Q9/YJ/Pl9LbPt/1YTbHIOzTp09GlwIfLM7ixYtZEATu1q2b3Q5Eo1F+9dVXU/4vZRPnYL0vb7zxRh48eLD9Hs4mhrOH+9/+9jc+/vjjuaSkhP/5z3/y22+/zbfddhsfc8wxGb1vMvnbGIbBgwcP5ssuuyzjsTob85xNmTKFzz33XN6yZQvv2bOH58yZw0cffXTOf5v093f6Y7/mmmt45MiRjZ7xdu3atdy5c2c+5ZRT+IgjjuD+/fvbnyWYma+44gru1atXXj4LpMdJv7Tc+bfK9rNAIUNyDur5+uuvuU2bNvyb3/yGt27dygsXLmRBEOyxivbs2cMPPfQQt23blvv27ctTp07lSy+9lAOBQEbjfjQURxTFegOWWw1ZJBLhc889lysqKhodp7ExmM3EybBhw/j2229nj8eTculrPuMwm/9sbrvtNm7dunW9gfVziRMKhXjChAncv3//eo8/k7FfMq2Ppml82223cbt27Rr9oX9/rzPrQ3ZdXR2/8cYb3LVrVz722GN5+PDhPHr0aC4rK8uo23Jj62J9APjvf//Loiim/NPJV5zvv/+eKyoq+Oyzz+YHH3yQr776aq6oqMi5Ps7nLV0kEuFZs2Zxu3bteOvWrY2O8+WXX/KRRx7JM2bM4Oeff57nzp3LgiDwhRdeyGvWrOF4PM4PPfQQt2vXLut2YH8xxowZkzK+hPWPOJs2IJM4zLm1A5nEYc6+HThQHGvclQkTJvCAAQNyagcaE8cpm3ZgfzFGjx5tfxF64403uFu3bjm1A43921j/b7JtBw4UxxpX8Pvvv+dWrVrl1A4c6Hlr6LWWTTtQW1vLgwYNsi9T37FjB7/++utcUVHBw4YNsxOBd9xxB59++un27MpHHXUU//e//210XQ4U56yzzuKvv/7aPlbXddY0jadNm8bl5eUZtQOZxKmtreW+ffvy0KFDM/pSnkkMZnN23V//+tdcXl6e0d//QHFGjhzJ27dvZ1VVeerUqfaYataXzUwSTQeKM2rUqHrv82+//ZZvuukmrqioyOhStgPFGT58uJ3UevLJJ/mss85iQRD4hBNO4K5duzb6tZbp30bXdR45ciQPHTo0o0RWY+PMmzePBwwYwK1bt+YzzzyT27Vrl7f3zYgRI+rVp7KykqdPn86lpaUZDaT+3Xff8UknncTdunXjE088ke+44w57n/N5eeyxx/jss89mQRD4xBNP5A4dOjS6PgeK0VDSRNd1njFjBhcXF+etLulxdF3n0047jU844QQOBAKNTs5nGoeZ+YsvvuAbbriBy8vLM0o0HiiOMwn0m9/8JqPEYrZxLBs3buQZM2Zk1K419nX23nvv8cSJE7moqIh79uzJvXv3zuh9k+nfhpn5yiuv5FNPPTWjHxsaG+fJJ5/kM844gz0eDw8cOJDbt2+ft/o0NHTHypUr+dprr+WSkpJG/22+/vprPuaYY/jmm2/mffv28apVq3jixIk8efLklI4auX4WOFCc9DEyDcPI+rNAoUNyDuq57bbb+Oc//3lK2dlnn83vv/8+v//++/avpd988w1PnDiRL7roIr788ssznjVlf3FWrlzJH3zwQUqPhng8zn/4wx/Y4/FklBnPJIY161BpaWnG/8QyifPuu+/yL3/5S27btm1GjdbB4rz//vtcVVXFtbW1OQ/6nkl93nnnHR47diy3bt06o/oc7HVm/fofi8V47ty5PH36dL7lllt448aNTVYXwzD4+++/53HjxmU8MHdj4yxfvpz79u3Lffv25Z///Od5f984H/cnn3zCl156acb/IJnNng8XX3xxStkVV1zBPp+PR48ebY8xtHnzZr7iiiuyagf2F8Pv9/PYsWNT3oeapmXVBmQa5+GHH866Hcgkzn/+85+s24EDxRk9ejR//fXXvHv37oySsZnGGTt2bEri79///ndW7cDBXmfWh8doNMp33nln1u1AJn8bZs66HWhsnLfeeov79euXdTtwsDjOL5KrVq3Kqh2IRCJ88skn87PPPptSvmnTJj7iiCNS2qFdu3bx66+/zu+//37GMwIfLM4FF1yQ8gXwk08+YUEQMvqynGmcvXv3cocOHbiioiKjL8uZxPjoo4/4f//3f7lPnz4ZxWhMnPT/EdnKpD4ffPABT548mbt3755xG32wOOedd55dZhgGf/bZZ/zVV19lNNB8JnWxvtR+9913GY8xdrA4559/vl326quv8j333MOLFi3KuK05WJwLL7zQTgLs27eP//a3v3Hfvn0z+tsYhsH33HMPn3POOfzWW2/xnDlzuHv37vtNnDCb49Bt2LCh0b2/GhMjPQG0du1aPvroozP6H51pHFVVefDgwRknzjONs379ervnbL7jZNKzPF/1Wbt2Ld9www3cq1evRrdr2bzOvvrqK965c2fKBDH5rouluro6o97GjYnj7Mm2bt06XrJkCb/wwgsZfX/LtD66rvNLL73EgwYNavTfJhaL8cyZM3ncuHEpf4MlS5Zwq1at6vWK27NnT1afBTKNw5z9Z4FCh+Qc1DN9+nQ+++yz7YGprUsjBgwYwG3atKk3SxJzdrN+HSjOUUcdxaNGjUqJ89hjj9UbdDgfMazZuD7++GMeNGhQVlMzZxLno48+4lmzZmX85fJgcdq0acMjRozIecaiTOuzcuVKnjFjBm/YsCGvdRk5ciS/8847zVKX9NdzY7t5Z1of54ycNTU1eY+zv/dNJt3jLWPHjrUHkLYui5k3bx6PHDmSjzvuOJ49e3a9+2TaDhwoxvHHH29frmv9WpZNG5BJHObc2oHGxolEIjm1Awf728yaNYuZc5/QIpP6ZNsOZPK3aY66OH/Rzub9ebA4zvdNLu1Aps9bNu1AKBTio48+usEvFGvWrOFgMMhz587N+LFnE+euu+5KuU9jL5PKJc7vf//7jN+fmcZYuXJlvUtq8xXnzjvvzPi82cRx1ufdd9/NahKI5nitZVqXbNvPxsTJx6QPmdanrq4uq/fNjh07eOnSpcxsJuGtBIDz75Hp5X7ZxEjv1ZTNDJCZxnn00Uez+vyUaZz169dnNaNpY+LkY8bxTOuzevXqjGfpbUyM/U3i1JR1yXY22+Z43zQ2Tvp7J/1S9wOJRCJ8//338yOPPMLMyefdmoTO+jvnOmlOY+Oky6ZNK3RIzkE9Dz30EAeDQR47dixfeumlrCgKL1u2jEOhEH/44Yd8+umn8y233JIyPlI2jWRj4+TyBbOxMZjNxirbN3kmcXRdz7qxzyROLjKJo2laVv9gMvn7W41+U77OmHP753KwOKeddpr9vslFJu/PXNxwww3ctm1buxv/jh07uLy8nJcvX84PPfQQ+/3+er+KZfr3OViMQCCQcS+cXOOEQqGs24HGxHFefpxtO1BIz5tVH8MwsmoHsqlLNu1AoTxnfr8/LzOXNVd97rvvPj7mmGP45Zdftsusv/O8efP41FNP5Z9++inn9qaxcaz3TLafCxoTxzn7cFPFyGRsuVzi/PTTTzkn6ZvjOWtsnFzrU0jP2Z49e3L6bJNJnFzr47R9+/YGEwD//Oc/85IIOlgMq375qNP+4rzwwgs5n7uQ4vzzn//M24zDB4qTz/q0dF2aK86LL76Yt/dNU8Vx9uq13nc7duzgrl27pnyeyfQqkHzEyWfbViiQnIMG/fnPf+Y//OEPPHbs2HrTOV9xxRV8+umn56XROlic0047Lec4jYmR7ZfkTOPkowFujuessXFyrU8h1QVxUn377bc8ePBg9nq9fNZZZ3EgELAnf9izZw8fffTROffSbI4YiFPYcdxUl0M9zvbt2/njjz/mN954w27bt2zZwhdddBGffvrp/Oabb6Ycv2jRIu7RoweHw+HDNo6b6uK2OG6qS0vHYeaUH+S3bdtmJwDmzJnDM2bMYEEQeNu2bQUTA3EKO46b6uK2OFaM119/PeW7hDPeF198wa1atbKTZr/97W+5vLw8ox8DmivOocYF881CLjZt2kRLly6lH374gfr06UNDhw6l/v3703XXXUdERDNmzCC/309E5tTfzqm5DcNo9PTy2cY58cQTGx0nlxiZyCUOZzAFd3M8Z81Vn0OhLoiTjDNy5Ejq3bs3vfnmm7Rw4UIyDIMmTJhAl156KRERfffddxQIBKi0tLRR52+uGIhT2HHcVBe3xVm7di2df/755PV6adeuXXTUUUfR3LlzacyYMXTzzTfTHXfcQbfddhvt3buXLr74YlJVlb755htq3bo16bp+WMZxU13cFsdNdWnJOG3btqXbb7+dRo0aRRUVFWQYBhERtWvXjq6++mpiZrrzzjuprKyMPv30U2rXrl1BxECcwo7jprq4Lc7BYljfNQRBIFEUqaioiObNm0cLFiyg9957j1q1apWXuuQrziGp+fKAUGg2bNjAZWVlfNFFF/E111zDxx57LJ988sm8cOFC+5g777yTg8Egr1ixgj/44AOeM2cOV1RUZDSuUHPEcVNd3BbHTXU5XOKcdNJJvGjRIvuY9F54N998M5900kmNvjSrOWIgTmHHcVNd3BZn9+7d3L17d549ezZv3ryZt23bxuPHj+fjjjuO77jjDo5Go1xZWcnXXHMNy7LMffr04YEDB3J5eXlGg8u7KY6b6uK2OG6qSyHE6dGjB8+ZM8e+dNnZW+Wyyy7jkpKSRn/maI4YiFPYcdxUF7fFaWwMZnN8u759+/L48ePZ4/FkNDlLc8U5VCE5d5iqra3lUaNG8c0332yX/fDDD9yqVStu06aNPYisrus8fvx4FkWRjzvuOD7ppJMymlWsOeK4qS5ui+OmuhzOcSwrVqzg66+/nouLixv9ob85YiBOYcdxU13cGGfDhg3csWPHeh96f/Ob3/AJJ5zACxYsYMMw7HEt77rrLl60aFHGA6W7KY6b6uK2OG6qS6HE6dWrF997770pl8guXryYy8rKMhpnqjliIE5hx3FTXdwWJ5MYn3/+OQuCwH6/P+PZuZsrzqEKybnDVDgc5gEDBvDTTz9tbzMzX3TRRTxs2DAeNGgQv/baa/bxK1as4HXr1mU8m1BzxHFTXdwWx011ORzjDB48OCXO+++/z1OnTuX169cXVAzEKew4bqqLG+NUVlbyMcccwytWrGDm1Flqp02bxh06dOA1a9ZkdE63x3FTXdwWx011KaQ4nTp1Somzc+fOlAHcCyUG4hR2HDfVxW1xMomxY8cOvvbaazOe0bw54xyqkJw7DBmGwbt27eJ27drx/Pnz7fLvv/+ee/bsyY8//jj37t2bp0yZUvBx3FQXt8VxU10O5zi/+tWvUu4XiUQKKgbiFHYcN9XFjXEsAwYM4J/97Gf2djQatdf79+/PF198cVbndXMcN9XFbXHcVJdCjJPLZGDNEQNxCjuOm+ritjiZtDXZft5ozjiHIiTnDiPpb9YHH3yQBUHgyZMn82233cZFRUX2bG/PP/88d+zYMWWq90KK46a6uC2Om+qCOMk4mcxo3BwxEKew47ipLm6LEwqFuKamhqurq+2y//73v9y6dWu+5JJL7DLrnDNnzuTzzjsvo3q4LY6b6uK2OG6qi9viuKkuiIPXgNviuKkuboLk3GFi06ZNvGDBAt6+fbtdpus6L126lAcMGMBnnXUW33PPPfa+P//5z9y3b9+Mpylujjhuqovb4ripLoiD1wDi4DXgtjgbNmzgkSNHct++fbldu3b85JNPMrP5y/QzzzzDRxxxBI8dO5bj8bid+J8wYQJffPHFrKpqo2O5KY6b6uK2OG6qi9viuKkuiIPXgNviuKkuboPk3GHgq6++4oqKChYEgWfNmlVvBrdIJJLSnZSZ+brrruOxY8dyJBJp9BujOeK4qS5ui+OmuiBOdnHcVBfEyS6Om+ritjgbNmzgVq1a8Q033MBPPfUUz5w5kxVFsQeMDofD/K9//YuPOeYY7t69O19wwQU8btw4DgaDvG7dukbVw21x3FQXt8VxU13cFsdNdUEcvAbcFsdNdXEjJOdcLhQK8eTJk/mKK67ghQsXsiAI/Otf/zrlg7/zQ/3GjRt5xowZXFxczGvXri2oOG6qi9viuKkuiIPXAOLgNeC2OD/99BOPHDmSp02bllI+dOhQvv7661PKampq+Oabb+Zf/epXfN111/GGDRsaXRc3xXFTXdwWx011cVscN9UFcfAacFscN9XFrWQCVxNFkfr160etWrWi8ePH0xFHHEEXX3wxERHdfPPNdMQRR5AgCEREVFtbS8uXL6fVq1fTihUrqFevXgUVx011cVscN9UFcfAaQBy8BtwWR1VV2rdvH40dO5aIiAzDIFEUqVOnTrR3714iImLzB1sqLi6me+65J+W4xnJTHDfVxW1x3FQXt8VxU10QB68Bt8VxU11cq2lyflBIQqFQyvazzz7LgiDwTTfdxHv27GFmcxDqXbt2saqqvHfv3oKN46a6uC2Om+qCOHgNIA5eA26L8+WXX9rr8XicmZlvu+02vuyyy1KOcw7anM14L26K46a6uC2Om+ritjhuqgviZBfHTXVxWxw31cWN0HPuMBAMBomISNd1EkWRxo8fT8xMv/zlL0kQBJoxYwYtWLCAtmzZQk8//TSVl5cXbBw31cVtcdxUF8TBawBx8BpwW5xu3boRkfnLtKIoRGT+cr179277mN///vfk9Xpp2rRpJMuy3WPvcI3jprq4LY6b6uK2OG6qC+LgNeC2OG6qiys1VdYPCpNhGPZsKM8++ywrisLHH388y7JsD9B4qMRxU13cFsdNdUGcwo2BOIUdx011cVsc69fpW2+9lc8++2xmZv7tb3/LgiBwZWVlXmK4LY6b6uK2OG6qi9viuKkuiFO4MRCncGM0Zxw3QHLuMGQYhv0mOfPMM7mioiKjwasLKY6b6uK2OG6qC+IUbgzEKew4bqqLm+JYyb85c+bwVVddxfPnz2ev18ufffZZ3mK4LY6b6uK2OG6qi9viuKkuiFO4MRCncGM0Zxw3QHLuMKVpGt9www0sCAKvWbPmkI7jprq4LY6b6oI4hRsDcQo7jpvq4rY48+bNY0EQuLS0lD/99NMmieG2OG6qi9viuKkubovjprogTuHGQJzCjdGccQ5lSM4dpjRN48WLF/Pq1asP+Thuqovb4ripLohTuDEQp7DjuKkubovz6aefsiAIvGHDhiaL4bY4bqqL2+K4qS5ui+OmuiBO4cZAnMKN0ZxxDmUCM3NLj3sHLYOZm2XgxeaI46a6uC2Om+qCOIUbA3EKO46b6uK2OOFw2J6QAnEKJwbiFG4MxCncGIhT2HHcVBe3xXFTXQ5lSM4BAAAAAAAAAAC0ELGlHwAAAAAAAAAAAMDhCsk5AAAAAAAAAACAFoLkHAAAAAAAAAAAQAtBcg4AAAAAAAAAAKCFIDkHAAAAAAAAAADQQpCcAwAAAAAAAAAAaCFIzgEAAABAzpiZhg8fTt26daO1a9fS8OHDacuWLS39sAAAAAAKHpJzAAAAANAoH374IUmSROeee269fVu3biVJkujBBx+kyy67jMrKyqhTp04t8CgBAAAADi0CM3NLPwgAAAAAKHy/+tWvqKioiJYsWUKbNm2idu3atfRDAgAAADjkoeccAAAAABxUKBSi5557jqZOnUrnnnsuLV261N73n//8hwRBoHfeeYf69+9PgUCABg8eTJs2bUo5x0MPPURdunQhj8dDxx9/PP3tb39r5loAAAAAFB4k5wAAAADgoP7+979T9+7d6fjjj6cJEybQo48+SukXYNx6661033330apVq0iWZZo8ebK978UXX6Tp06fTjTfeSOvXr6err76aJk2aRO+++25zVwUAAACgoOCyVgAAAAA4qCFDhtC4ceNo+vTppGkatW3blp5//nkaOnQo/ec//6Gf/exn9Pbbb9OwYcOIiOi1116jc889lyKRCPl8PhoyZAidcMIJ9Ne//tU+57hx4ygcDtOrr77aUtUCAAAAaHHoOQcAAAAAB7Rp0yb65JNP6JJLLiEiIlmWafz48bRkyZKU43r37m2vt23bloiIdu/eTUREGzdupCFDhqQcP2TIENq4cWNTPnQAAACAgie39AMAAAAAgMK2ZMkS0jQtZQIIZiav10sPPvigXaYoir0uCAIRERmG0XwPFAAAAOAQhJ5zAAAAALBfmqbRE088Qffddx9VVlbatzVr1lC7du3omWeeadR5evToQStXrkwpW7lyJfXs2bMpHjYAAADAIQM95wAAAABgv1555RWqqqqiKVOmUGlpacq+MWPG0JIlS2j+/PkHPc+vf/1rGjduHPXt25eGDx9OL7/8Mi1btozefvvtpnroAAAAAIcE9JwDAAAAgP1asmQJDR8+vF5ijshMzq1atYrWrl170PNccMEF9MADD9CCBQvohBNOoIcffpgee+wxGjp0aBM8agAAAIBDB2ZrBQAAAAAAAAAAaCHoOQcAAAAAAAAAANBCkJwDAAAAAAAAAABoIUjOAQAAAAAAAAAAtBAk5wAAAAAAAAAAAFoIknMAAAAAAAAAAAAtBMk5AAAAAAAAAACAFoLkHAAAAAAAAAAAQAtBcg4AAAAAAAAAAKCFIDkHAAAAAAAAAADQQpCcAwAAAAAAAAAAaCFIzgEAAAAAAAAAALQQJOcAAAAAAAAAAABayP8Hd5w4cS7A/AIAAAAASUVORK5CYII=\n" - }, - "metadata": {} - } - ] + "execution_count": null, + "outputs": [] }, { "cell_type": "code", @@ -161,7 +169,7 @@ "metadata": { "id": "9MZcbtw9t95l" }, - "execution_count": 72, + "execution_count": null, "outputs": [] }, { @@ -172,22 +180,10 @@ "print(\"Forma de X_train:\", X_train.shape)\n" ], "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "jR-a5gHyQPMt", - "outputId": "31859535-1b5d-4611-db37-f28748651116" + "id": "jR-a5gHyQPMt" }, - "execution_count": 73, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Forma de X_train: (33, 1, 7)\n" - ] - } - ] + "execution_count": null, + "outputs": [] }, { "cell_type": "code", @@ -211,43 +207,10 @@ "model.summary()" ], "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "1eAT7FatQ3_W", - "outputId": "20dc7624-94bd-4c5b-c338-046d04e0a700" + "id": "1eAT7FatQ3_W" }, - "execution_count": 74, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Model: \"sequential_11\"\n", - "_________________________________________________________________\n", - " Layer (type) Output Shape Param # \n", - "=================================================================\n", - " conv1d_9 (Conv1D) (None, 1, 64) 512 \n", - " \n", - " max_pooling1d_5 (MaxPoolin (None, 1, 64) 0 \n", - " g1D) \n", - " \n", - " flatten_4 (Flatten) (None, 64) 0 \n", - " \n", - " dropout (Dropout) (None, 64) 0 \n", - " \n", - " dense_8 (Dense) (None, 50) 3250 \n", - " \n", - " dense_9 (Dense) (None, 7) 357 \n", - " \n", - "=================================================================\n", - "Total params: 4119 (16.09 KB)\n", - "Trainable params: 4119 (16.09 KB)\n", - "Non-trainable params: 0 (0.00 Byte)\n", - "_________________________________________________________________\n" - ] - } - ] + "execution_count": null, + "outputs": [] }, { "cell_type": "code", @@ -256,158 +219,10 @@ "history = model.fit(X_train, Y_train, epochs=500, validation_data=(X_test, Y_test), callbacks=[early_stopping], verbose=10)" ], "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "xros5lXUS3eR", - "outputId": "f7266d02-d7c3-4d67-b14c-18e8d97e329e" + "id": "xros5lXUS3eR" }, - "execution_count": 112, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Epoch 1/500\n", - "Epoch 2/500\n", - "Epoch 3/500\n", - "Epoch 4/500\n", - "Epoch 5/500\n", - "Epoch 6/500\n", - "Epoch 7/500\n", - "Epoch 8/500\n", - "Epoch 9/500\n", - "Epoch 10/500\n", - "Epoch 11/500\n", - "Epoch 12/500\n", - "Epoch 13/500\n", - "Epoch 14/500\n", - "Epoch 15/500\n", - "Epoch 16/500\n", - "Epoch 17/500\n", - "Epoch 18/500\n", - "Epoch 19/500\n", - "Epoch 20/500\n", - "Epoch 21/500\n", - "Epoch 22/500\n", - "Epoch 23/500\n", - "Epoch 24/500\n", - "Epoch 25/500\n", - "Epoch 26/500\n", - "Epoch 27/500\n", - "Epoch 28/500\n", - "Epoch 29/500\n", - "Epoch 30/500\n", - "Epoch 31/500\n", - "Epoch 32/500\n", - "Epoch 33/500\n", - "Epoch 34/500\n", - "Epoch 35/500\n", - "Epoch 36/500\n", - "Epoch 37/500\n", - "Epoch 38/500\n", - "Epoch 39/500\n", - "Epoch 40/500\n", - "Epoch 41/500\n", - "Epoch 42/500\n", - "Epoch 43/500\n", - "Epoch 44/500\n", - "Epoch 45/500\n", - "Epoch 46/500\n", - "Epoch 47/500\n", - "Epoch 48/500\n", - "Epoch 49/500\n", - "Epoch 50/500\n", - "Epoch 51/500\n", - "Epoch 52/500\n", - "Epoch 53/500\n", - "Epoch 54/500\n", - "Epoch 55/500\n", - "Epoch 56/500\n", - "Epoch 57/500\n", - "Epoch 58/500\n", - "Epoch 59/500\n", - "Epoch 60/500\n", - "Epoch 61/500\n", - "Epoch 62/500\n", - "Epoch 63/500\n", - "Epoch 64/500\n", - "Epoch 65/500\n", - "Epoch 66/500\n", - "Epoch 67/500\n", - "Epoch 68/500\n", - "Epoch 69/500\n", - "Epoch 70/500\n", - "Epoch 71/500\n", - "Epoch 72/500\n", - "Epoch 73/500\n", - "Epoch 74/500\n", - "Epoch 75/500\n", - "Epoch 76/500\n", - "Epoch 77/500\n", - "Epoch 78/500\n", - "Epoch 79/500\n", - "Epoch 80/500\n", - "Epoch 81/500\n", - "Epoch 82/500\n", - "Epoch 83/500\n", - "Epoch 84/500\n", - "Epoch 85/500\n", - "Epoch 86/500\n", - "Epoch 87/500\n", - "Epoch 88/500\n", - "Epoch 89/500\n", - "Epoch 90/500\n", - "Epoch 91/500\n", - "Epoch 92/500\n", - "Epoch 93/500\n", - "Epoch 94/500\n", - "Epoch 95/500\n", - "Epoch 96/500\n", - "Epoch 97/500\n", - "Epoch 98/500\n", - "Epoch 99/500\n", - "Epoch 100/500\n", - "Epoch 101/500\n", - "Epoch 102/500\n", - "Epoch 103/500\n", - "Epoch 104/500\n", - "Epoch 105/500\n", - "Epoch 106/500\n", - "Epoch 107/500\n", - "Epoch 108/500\n", - "Epoch 109/500\n", - "Epoch 110/500\n", - "Epoch 111/500\n", - "Epoch 112/500\n", - "Epoch 113/500\n", - "Epoch 114/500\n", - "Epoch 115/500\n", - "Epoch 116/500\n", - "Epoch 117/500\n", - "Epoch 118/500\n", - "Epoch 119/500\n", - "Epoch 120/500\n", - "Epoch 121/500\n", - "Epoch 122/500\n", - "Epoch 123/500\n", - "Epoch 124/500\n", - "Epoch 125/500\n", - "Epoch 126/500\n", - "Epoch 127/500\n", - "Epoch 128/500\n", - "Epoch 129/500\n", - "Epoch 130/500\n", - "Epoch 131/500\n", - "Epoch 132/500\n", - "Epoch 133/500\n", - "Epoch 134/500\n", - "Epoch 135/500\n", - "Epoch 136/500\n", - "Epoch 137/500\n" - ] - } - ] + "execution_count": null, + "outputs": [] }, { "cell_type": "code", @@ -421,26 +236,10 @@ "plt.show()" ], "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 472 - }, - "id": "uQuljCCiQnBd", - "outputId": "94ae1e51-e134-413c-cbee-900f9e339eff" + "id": "uQuljCCiQnBd" }, - "execution_count": 113, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHHCAYAAACWQK1nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACKGklEQVR4nO3dd3iT5foH8O+bpE2692S0jELZmwoi4BEBQVkORBREjxwFFxz5qUdxHsVxVFRQDnpEPYoDEI4ioGUqguxN2aOF7pY23SN5fn8k79uGDjoym+/nunJpkzfJk5c2uXM/93M/khBCgIiIiIiaReXoARARERG1BAyqiIiIiKyAQRURERGRFTCoIiIiIrICBlVEREREVsCgioiIiMgKGFQRERERWQGDKiIiIiIrYFBFREREZAUMqojIqiRJwksvvdTo+124cAGSJOHzzz+3+pjIOb300kuQJAnZ2dmOHgqRVTCoImqBPv/8c0iSBEmSsH379hq3CyHQpk0bSJKEW2+91QEjbLqtW7dCkiSsXLnS0UNxenLQUtclPT3d0UMkalE0jh4AEdmOTqfD8uXLMWTIEIvrt23bhkuXLkGr1TpoZGRPH3/8MXx9fWtcHxgYaP/BELVgDKqIWrAxY8ZgxYoV+OCDD6DRVP25L1++HP369eO0SwtQXFwMb2/veo+54447EBoaaqcREbkvTv8RtWBTpkxBTk4OEhMTlevKy8uxcuVK3HPPPbXep6ioCH//+9/Rpk0baLVadO7cGf/6178ghLA4rqysDHPmzEFYWBj8/Pwwbtw4XLp0qdbHvHz5Mh544AFERERAq9WiW7du+Oyzz6z3Qmtx7tw53HnnnQgODoa3tzeuu+46/PzzzzWO+/DDD9GtWzd4e3sjKCgI/fv3x/Lly5XbCwoK8OSTTyI2NhZarRbh4eG4+eabsX///nqfX556O3HiBO666y74+/sjJCQETzzxBEpLS2sc/9VXX6Ffv37w8vJCcHAw7r77bqSkpFgcM3z4cHTv3h379u3D0KFD4e3tjX/84x9NPENV5CnV7777Dv/4xz8QGRkJHx8fjBs3rsYYAGDFihXKWENDQ3Hvvffi8uXLNY6TX3tYWBi8vLzQuXNnPPfcczWOy8vLw/3334/AwEAEBARgxowZKC4ubvbrIrI3ZqqIWrDY2FgMGjQI33zzDW655RYAwPr165Gfn4+7774bH3zwgcXxQgiMGzcOW7ZswYMPPojevXvjl19+wbx583D58mW89957yrF//etf8dVXX+Gee+7B4MGDsXnzZowdO7bGGDIyMnDddddBkiQ8+uijCAsLw/r16/Hggw9Cr9fjySeftPrrzsjIwODBg1FcXIzHH38cISEh+OKLLzBu3DisXLkSEydOBAB88sknePzxx3HHHXcowc7hw4exa9cuJeh8+OGHsXLlSjz66KPo2rUrcnJysH37diQlJaFv377XHMtdd92F2NhYLFiwAH/++Sc++OADXLlyBV9++aVyzGuvvYb58+fjrrvuwl//+ldkZWXhww8/xNChQ3HgwAGLabqcnBzccsstuPvuu3HvvfciIiLimmPIzc2tcZ1Go6kx/ffaa69BkiQ8/fTTyMzMxMKFCzFixAgcPHgQXl5eAEz1ejNmzMCAAQOwYMECZGRk4P3338cff/xhMdbDhw/jhhtugIeHB2bOnInY2FicPXsWP/30E1577bUa56hdu3ZYsGAB9u/fj08//RTh4eF48803r/naiJyKIKIWZ9myZQKA2LNnj1i0aJHw8/MTxcXFQggh7rzzTnHjjTcKIYSIiYkRY8eOVe63Zs0aAUD885//tHi8O+64Q0iSJM6cOSOEEOLgwYMCgJg1a5bFcffcc48AIF588UXlugcffFBERUWJ7Oxsi2PvvvtuERAQoIzr/PnzAoBYtmxZva9ty5YtAoBYsWJFncc8+eSTAoD4/ffflesKCgpEu3btRGxsrDAYDEIIIcaPHy+6detW7/MFBASI2bNn13tMbV588UUBQIwbN87i+lmzZgkA4tChQ0IIIS5cuCDUarV47bXXLI47cuSI0Gg0FtcPGzZMABBLlixp1Bhqu3Tu3Fk5Tj6nrVq1Enq9Xrn++++/FwDE+++/L4QQory8XISHh4vu3buLkpIS5bi1a9cKAOKFF15Qrhs6dKjw8/MTFy9etBiT0WisMb4HHnjA4piJEyeKkJCQBr1GImfC6T+iFu6uu+5CSUkJ1q5di4KCAqxdu7bOqb9169ZBrVbj8ccft7j+73//O4QQWL9+vXIcgBrHXZ11EkJg1apVuO222yCEQHZ2tnIZNWoU8vPzrzmN1hTr1q3DwIEDLQr0fX19MXPmTFy4cAHHjx8HYCrUvnTpEvbs2VPnYwUGBmLXrl1ITU1t0lhmz55t8fNjjz2mjBEAfvjhBxiNRtx1110W5ycyMhJxcXHYsmWLxf21Wi1mzJjRqDGsWrUKiYmJFpdly5bVOG7atGnw8/NTfr7jjjsQFRWljHXv3r3IzMzErFmzoNPplOPGjh2L+Ph4ZXo1KysLv/32Gx544AG0bdvW4jkkSarxvA8//LDFzzfccANycnKg1+sb9TqJHI3Tf0QtXFhYGEaMGIHly5ejuLgYBoMBd9xxR63HXrx4EdHR0RYfrADQpUsX5Xb5vyqVCh06dLA4rnPnzhY/Z2VlIS8vD0uXLsXSpUtrfc7MzMwmva76XLx4EQkJCTWur/46unfvjqeffhobN27EwIED0bFjR4wcORL33HMPrr/+euU+b731FqZPn442bdqgX79+GDNmDKZNm4b27ds3aCxxcXEWP3fo0AEqlQoXLlwAAJw+fRpCiBrHyTw8PCx+btWqFTw9PRv03LKhQ4c2qFD96jFIkoSOHTsqY5X//a/+dwaA+Ph4pX3HuXPnAADdu3dv0PiuDryCgoIAAFeuXIG/v3+DHoPIGTCoInID99xzDx566CGkp6fjlltusdtSeqPRCAC49957MX369FqP6dmzp13GUpsuXbrg5MmTWLt2LTZs2IBVq1bho48+wgsvvICXX34ZgCnTd8MNN2D16tX49ddf8fbbb+PNN9/EDz/8oNSpNcbVmRqj0QhJkrB+/Xqo1eoax1/dCkGubWpJanvdAGosjiBydgyqiNzAxIkT8be//Q1//vknvvvuuzqPi4mJwcaNG1FQUGCRrTpx4oRyu/xfo9GIs2fPWmQtTp48afF48spAg8GAESNGWPMl1SsmJqbGWICarwMAfHx8MHnyZEyePBnl5eWYNGkSXnvtNTz77LPKFFdUVBRmzZqFWbNmITMzE3379sVrr73WoKDq9OnTaNeunfLzmTNnYDQaERsbC8CUuRJCoF27dujUqVNzXnaznT592uJnIQTOnDmjBL7yeTt58iT+8pe/WBx78uRJ5XY5i3f06FFbD5nIqbCmisgN+Pr64uOPP8ZLL72E2267rc7jxowZA4PBgEWLFllc/95770GSJCWIkP979erBhQsXWvysVqtx++23Y9WqVbV+wGZlZTXl5VzTmDFjsHv3buzcuVO5rqioCEuXLkVsbCy6du0KwLSSrjpPT0907doVQghUVFTAYDAgPz/f4pjw8HBER0ejrKysQWNZvHixxc8ffvghgKpzOGnSJKjVarz88ss1MjNCiBpjtKUvv/wSBQUFys8rV65EWlqaMtb+/fsjPDwcS5YssXj969evR1JSkrL6MywsDEOHDsVnn32G5ORki+dg9olaMmaqiNxEXdNv1d1222248cYb8dxzz+HChQvo1asXfv31V/zvf//Dk08+qdRQ9e7dG1OmTMFHH32E/Px8DB48GJs2bcKZM2dqPOYbb7yBLVu2ICEhAQ899BC6du2K3Nxc7N+/Hxs3bqx1uX9DrFq1Ssk8Xf06n3nmGaWNxOOPP47g4GB88cUXOH/+PFatWgWVyvR9cuTIkYiMjMT111+PiIgIJCUlYdGiRRg7diz8/PyQl5eH1q1b44477kCvXr3g6+uLjRs3Ys+ePXjnnXcaNM7z589j3LhxGD16NHbu3Km0oejVqxcAU6bqn//8J5599llcuHABEyZMgJ+fH86fP4/Vq1dj5syZeOqpp5p0jmQrV66staP6zTffbNGSITg4GEOGDMGMGTOQkZGBhQsXomPHjnjooYcAmOq73nzzTcyYMQPDhg3DlClTlJYKsbGxmDNnjvJYH3zwAYYMGYK+ffti5syZaNeuHS5cuICff/4ZBw8ebNbrIXJaDlp1SEQ2VL2lQn2ubqkghKn1wJw5c0R0dLTw8PAQcXFx4u2337ZYCi+EECUlJeLxxx8XISEhwsfHR9x2220iJSWlRksFIYTIyMgQs2fPFm3atBEeHh4iMjJS3HTTTWLp0qXKMY1tqVDXRW6jcPbsWXHHHXeIwMBAodPpxMCBA8XatWstHuvf//63GDp0qAgJCRFarVZ06NBBzJs3T+Tn5wshhCgrKxPz5s0TvXr1En5+fsLHx0f06tVLfPTRR/WOUYiqdgHHjx8Xd9xxh/Dz8xNBQUHi0UcftWhHIFu1apUYMmSI8PHxET4+PiI+Pl7Mnj1bnDx5Ujlm2LBh12wBUdsY6rps2bLF4px+88034tlnnxXh4eHCy8tLjB07tkZLBCGE+O6770SfPn2EVqsVwcHBYurUqeLSpUs1jjt69KiYOHGi8m/QuXNnMX/+/Brjy8rKsrif/Pt7/vz5Br9WImcgCcFcLBGRtb300kt4+eWXkZWV5fRbxGzduhU33ngjVqxYUefKUCK6NtZUEREREVkBgyoiIiIiK2BQRURERGQFrKkiIiIisgJmqoiIiIisgEEVERERkRWw+acNGY1GpKamws/Pr9ad2YmIiMj5CCFQUFCA6OhopVlwQzCosqHU1FS0adPG0cMgIiKiJkhJSUHr1q0bfDyDKhuSN6RNSUmBv7+/g0dDREREDaHX69GmTRuLjeUbgkGVDclTfv7+/gyqiIiIXExjS3dYqE5ERERkBQyqiIiIiKyAQRURERGRFbCmioiIyAUZDAZUVFQ4ehguycPDA2q12uqPy6CKiIjIhQghkJ6ejry8PEcPxaUFBgYiMjLSqn0kGVQRERG5EDmgCg8Ph7e3N5tLN5IQAsXFxcjMzAQAREVFWe2xGVQRERG5CIPBoARUISEhjh6Oy/Ly8gIAZGZmIjw83GpTgSxUJyIichFyDZW3t7eDR+L65HNozbo0BlVEREQuhlN+zWeLc8igioiIiMgKGFQRERGRS4mNjcXChQsdPYwaWKhORERENjd8+HD07t3bKsHQnj174OPj0/xBWRmDKiJymEqDESpJgkrF+hAidyeEgMFggEZz7dAkLCzMDiNqPE7/EZFDCCFw7392YdAbm1BUVuno4RCRDd1///3Ytm0b3n//fUiSBEmS8Pnnn0OSJKxfvx79+vWDVqvF9u3bcfbsWYwfPx4RERHw9fXFgAEDsHHjRovHu3r6T5IkfPrpp5g4cSK8vb0RFxeHH3/80c6vkkEVETnIn+dy8ee5XGToy3Aqo8DRwyFyWUIIFJdX2v0ihGjwGN9//30MGjQIDz30ENLS0pCWloY2bdoAAJ555hm88cYbSEpKQs+ePVFYWIgxY8Zg06ZNOHDgAEaPHo3bbrsNycnJ9T7Hyy+/jLvuuguHDx/GmDFjMHXqVOTm5jbr3DYWp/+IyCGW7656g8zQlzlwJESuraTCgK4v/GL35z3+yih4ezYsjAgICICnpye8vb0RGRkJADhx4gQA4JVXXsHNN9+sHBscHIxevXopP7/66qtYvXo1fvzxRzz66KN1Psf999+PKVOmAABef/11fPDBB9i9ezdGjx7d6NfWVMxUEZHdZReWYcPRNOXnrIJSB46GiBypf//+Fj8XFhbiqaeeQpcuXRAYGAhfX18kJSVdM1PVs2dP5f99fHzg7++vbEVjL8xUEZHdrdx3CRWGqqkDZqqIms7LQ43jr4xyyPNaw9Wr+J566ikkJibiX//6Fzp27AgvLy/ccccdKC8vr/dxPDw8LH6WJAlGo9EqY2woBlVEZFdGo8DyXaZvnO1CfXA+uwiZzFQRNZkkSQ2ehnMkT09PGAyGax73xx9/4P7778fEiRMBmDJXFy5csPHorIPTf0RkU/uTr+CuJTvx3z8vwmAU+ONsNpJzi+Gn1WD6oBgAzFQRuYPY2Fjs2rULFy5cQHZ2dp1ZpLi4OPzwww84ePAgDh06hHvuucfuGaemYlBFRDa15sBl7L6Qi/lrjmLsB7/jvcRTAIBJfVshJtSU9s8sYFBF1NI99dRTUKvV6Nq1K8LCwuqskXr33XcRFBSEwYMH47bbbsOoUaPQt29fO4+2aZw/X0hELi2/pGoH+BPpVa0T7kmIgcFoqqvK1HP6j6il69SpE3bu3Glx3f3331/juNjYWGzevNniutmzZ1v8fPV0YG3tHfLy8po0zuZgpoqIbKqg1NTY89lb4nHfdTFQScCILuHoHOmHcH8tACCnqBwVBtdI7xMR1YWZKiKyKb05U9U22Bt/G9YBT98SD0+16ftcsLcnNCoJlUaBrIIyRAd6OXKoRETNwkwVEdmUnKny9zItd/bVauCpMb31qFQSwvxM2SrWVRGRq2NQRUQ2pS81Zar8dLUnxsP9dQCADNZVEZGLY1BFRDalZKp0HrXeHs5MFVGjNWbfPaqdLc4hgyoishmDUaCwzBRU1ZWpijAXq3MFING1yV3Di4uLHTwS1yefw6s7sTcHC9WJyGYKzVkqAPCrI1MV4Wea/stkA1Cia1Kr1QgMDFT2tPP29oYkSQ4elWsRQqC4uBiZmZkIDAyEWm2d7XYABlVEZENyPZXOQ6UUp19NbquQwa1qiBokMjISAOy+WXBLExgYqJxLa2FQRUQ2IwdVddVTAVWF6sxUETWMJEmIiopCeHg4Kioqrn0HqsHDw8OqGSoZgyoishl9Sf31VED1QnVmqogaQ61W2yQwoKZjoToR2UyBnKnyqjtTFWHOVLGrOhG5OocHVYsXL0ZsbCx0Oh0SEhKwe/fueo9fsWIF4uPjodPp0KNHD6xbt67GMUlJSRg3bhwCAgLg4+ODAQMGWGzcOHz4cEiSZHF5+OGHLR4jOTkZY8eOhbe3N8LDwzFv3jxUVlZe/VREVA99qZypqjuokruqCwFkF3IKkIhcl0ODqu+++w5z587Fiy++iP3796NXr14YNWpUncV3O3bswJQpU/Dggw/iwIEDmDBhAiZMmICjR48qx5w9exZDhgxBfHw8tm7disOHD2P+/PnQ6XQWj/XQQw8hLS1Nubz11lvKbQaDAWPHjkV5eTl27NiBL774Ap9//jleeOEF25wIohZKyVTVM/1n0VWddVVE5MIk4cAOYgkJCRgwYAAWLVoEADAajWjTpg0ee+wxPPPMMzWOnzx5MoqKirB27Vrluuuuuw69e/fGkiVLAAB33303PDw88N///rfO5x0+fDh69+6NhQsX1nr7+vXrceuttyI1NRUREREAgCVLluDpp59GVlYWPD09G/T69Ho9AgICkJ+fD39//wbdh6gleX/jaby38RSmDGyLBZN61Hnc+EXbcehSPpbe1w8ju1l3NQ4RUWM19fPbYZmq8vJy7Nu3DyNGjKgajEqFESNGYOfOnbXeZ+fOnRbHA8CoUaOU441GI37++Wd06tQJo0aNQnh4OBISErBmzZoaj/X1118jNDQU3bt3x7PPPmvRSG3nzp3o0aOHElDJz6PX63Hs2LHmvGwit9KQTBVQbQUgu6oTkQtzWFCVnZ0Ng8FgEbgAQEREBNLT02u9T3p6er3HZ2ZmorCwEG+88QZGjx6NX3/9FRMnTsSkSZOwbds25T733HMPvvrqK2zZsgXPPvss/vvf/+Lee++95vPIt9WlrKwMer3e4kLkzvQNKFQHqq0AZFd1InJhLaqlgtFoWjk0fvx4zJkzBwDQu3dv7NixA0uWLMGwYcMAADNnzlTu06NHD0RFReGmm27C2bNn0aFDhyY//4IFC/Dyyy834xUQtSwFpdduqQBUrQBkpoqIXJnDMlWhoaFQq9XIyMiwuD4jI6PODqeRkZH1Hh8aGgqNRoOuXbtaHNOlSxeL1X9XS0hIAACcOXOm3ueRb6vLs88+i/z8fOWSkpJS57FE7uBamynL5P3/MpipIiIX5rCgytPTE/369cOmTZuU64xGIzZt2oRBgwbVep9BgwZZHA8AiYmJyvGenp4YMGAATp48aXHMqVOnEBMTU+dYDh48CACIiopSnufIkSMWqxATExPh7+9fI2CrTqvVwt/f3+JC5M7k6b9rZarC/ZipIiLX59Dpv7lz52L69Ono378/Bg4ciIULF6KoqAgzZswAAEybNg2tWrXCggULAABPPPEEhg0bhnfeeQdjx47Ft99+i71792Lp0qXKY86bNw+TJ0/G0KFDceONN2LDhg346aefsHXrVgCmlgvLly/HmDFjEBISgsOHD2POnDkYOnQoevbsCQAYOXIkunbtivvuuw9vvfUW0tPT8fzzz2P27NnQarX2PUlELkzJVF2rpkrJVDGoIiLX5dCgavLkycjKysILL7yA9PR09O7dGxs2bFCKwpOTk6FSVSXTBg8ejOXLl+P555/HP/7xD8TFxWHNmjXo3r27cszEiROxZMkSLFiwAI8//jg6d+6MVatWYciQIQBM2ayNGzcqAVybNm1w++234/nnn1ceQ61WY+3atXjkkUcwaNAg+Pj4YPr06XjllVfsdGaIWgZ9SeMyVTlFZag0GKFRO7wvMRFRozm0T1VLxz5V5M6EEOj8/AaUG4zY8cxfEB3oVeexRqNA3PPrYTAK/PnsTYgM0NV5LBGRrblcnyoiatnKKo0oN+/ld61MlUolIcyXGysTkWtjUEVENiEXqaskwMfz2pUGEayrIiIXx6CKiGxCX2IqUvfVaqBSSdc8PkxZAchMFRG5JgZVRGQTBQ3spi5rHWSquTqfVWSzMRER2RKDKiKyCb3STb1hQVW3aFMx6JHL+TYbExGRLTGoIiKbaOhmyrIerQMAAMdS9TAauSiZiFwPgyoisgm5pqqhmaqOYb7QalQoLKvExdxiWw6NiMgmGFQRkU1U1VQ1LFOlUavQJYpTgETkuhhUEZFN6JXpv4ZlqgCgRyvTFOBRBlVE5IIYVBGRTSj7/jWwpgqoCqqOXGJQRUSuh0EVEdlE1b5/Dc9UdWtlmv47mpoP7qBFRK6GQRUR2YSSqWpgTRUAdIrwg6dGhYLSSiSzWJ2IXAyDKiKyCbmmqjGZKg+1Cl0i/QCwWJ2IXA+DKiKyiaqaqoYHVQDQXa6rYlBFRC6GQRUR2URVTVXDp/+AqqCKKwCJyNUwqCIim6iqqWpcpqqqrYKexepE5FIYVBGR1RmMAgVlckf1xmWqOkX4wVOtQn5JBS5dKbHF8IiIbIJBFRFZXaE5oAIaH1R5alTozGJ1InJBDKqIyOrkeiqtRgWtRt3o+3dvxe1qiMj1MKgiIquT66ka006hOharE5ErYlBFRFanb+RmylfrGOYLAGwASkQuhUEVEVldczNV0YFeAIC0/FKuACQil8GgioisrkDOVDWySF0W7q8FAJRXGpFbVG61cRER2RKDKiKyOrlQvbHd1GVajRqhvqbAKi2/1GrjIiKyJQZVRGR1TdlM+WrRgToADKqIyHUwqCIiq2vKZspXi/SXgyo2ACUi18Cgioisrmoz5eZkqkzF6ql5zFQRkWtgUEVEVmeNTFVUgClTlc5MFRG5CAZVRGR11qipijQHVamsqSIiF8GgioisTl7956dteqaqqlcVM1VE5BoYVBGR1VVlqppfqJ6RXwajkQ1Aicj5MagiIqurqqlq3vSfJAHlBiNy2ACUiFwAgyoisiohBPQlpkxVQDMyVR5qFcKUBqCcAiQi58egioisqqzSiHKDEUDzpv+AqhWAbABKRK6AQRURWVW+uUhdJQE+nupmPVZUgLlYPY+ZKiJyfgyqiMiqlH3/vDwgSVKzHitK3qpGz0wVETk/BlVEZFVykXpz6qlkyvQfu6oTkQtgUEVEViUXqfs3o5u6TJn+Y6E6EbkABlVEZFVypqo53dRl0YEsVCci18GgioisSi5Ut0amKtKcqcrQl7IBKBE5PQZVRGRVeisGVRF+WqgkoMIgkF1Y1uzHIyKyJQZVRGRVevMWNQHezQ+qNGoVwv04BUhEroFBFRFZVVWmqvk1VYBpuxqAxepE5PwYVBGRVVUVqjc/UwVUFaunsq0CETk5BlVEZFXWbKkAVLVVSGcDUCJycgyqiMiqlNV/VmipAFQ1AE3lVjVE5OQYVBGRVSnTf1bOVLFQnYicHYMqIrIquVDdGtvUAFX7/6UzqCIiJ8egioisRgihtFSwVqG6PP2Xri+FgQ1AiciJMagiIqspLjcogY+1pv/C/XRQqyQYjGwASkTOjUEVEVmNXKTuoZag87DO24taJSHExxMAkFXAoIqInBeDKiKymupF6pIkWe1xw/y0ABhUEZFzY1BFRFYj96iyVpG6jEEVEbkCBlVEZDXyyj8/awdVvuagijVVROTEGFQRkdVUTf9Zp/GnLJSZKiJyAQyqiMhqqrqpM1NFRO6HQRURWY219/2TsaaKiFwBgyoishp5+s9WherZDKqIyIkxqCIiq9FbeTNlGTNVROQKGFQRkdVYezNlmRxUFZRVoqTcYNXHJiKyFgZVRGQ1tipU99NqoNWY3q64VQ0ROSsGVURkNVWF6tad/pMkSclWZXIKkIicFIMqIrIaZfrPypkqgHVVROT8HB5ULV68GLGxsdDpdEhISMDu3bvrPX7FihWIj4+HTqdDjx49sG7duhrHJCUlYdy4cQgICICPjw8GDBiA5OTkGscJIXDLLbdAkiSsWbPG4jZJkmpcvv3222a9VqKWTi5Ut/bqP4C9qojI+Tk0qPruu+8wd+5cvPjii9i/fz969eqFUaNGITMzs9bjd+zYgSlTpuDBBx/EgQMHMGHCBEyYMAFHjx5Vjjl79iyGDBmC+Ph4bN26FYcPH8b8+fOh0+lqPN7ChQvr3fR12bJlSEtLUy4TJkxo9msmaqmMRoGCMtv0qQKYqSIi52fdwodGevfdd/HQQw9hxowZAIAlS5bg559/xmeffYZnnnmmxvHvv/8+Ro8ejXnz5gEAXn31VSQmJmLRokVYsmQJAOC5557DmDFj8NZbbyn369ChQ43HOnjwIN555x3s3bsXUVFRtY4vMDAQkZGRzX6dRO6gsLwSQpj+38/KNVUAgyoicn4Oy1SVl5dj3759GDFiRNVgVCqMGDECO3furPU+O3futDgeAEaNGqUcbzQa8fPPP6NTp04YNWoUwsPDkZCQUGNqr7i4GPfccw8WL15cb9A0e/ZshIaGYuDAgfjss88g5E+MOpSVlUGv11tciNxFfrFp6k+rUUHnobb64zOoIiJn57CgKjs7GwaDARERERbXR0REID09vdb7pKen13t8ZmYmCgsL8cYbb2D06NH49ddfMXHiREyaNAnbtm1T7jNnzhwMHjwY48ePr3N8r7zyCr7//nskJibi9ttvx6xZs/Dhhx/W+5oWLFiAgIAA5dKmTZt6jydqSWxZpA6wpoqInJ9Dp/+szWg0AgDGjx+POXPmAAB69+6NHTt2YMmSJRg2bBh+/PFHbN68GQcOHKj3sebPn6/8f58+fVBUVIS3334bjz/+eJ33efbZZzF37lzlZ71ez8CK3IbcTsEWReoAt6ohIufnsExVaGgo1Go1MjIyLK7PyMioc0ouMjKy3uNDQ0Oh0WjQtWtXi2O6dOmirP7bvHkzzp49i8DAQGg0Gmg0prjy9ttvx/Dhw+scb0JCAi5duoSysrrf0LVaLfz9/S0uRO6iqpu6bb6rVZ/+u9ZUPBGRIzgsqPL09ES/fv2wadMm5Tqj0YhNmzZh0KBBtd5n0KBBFscDQGJionK8p6cnBgwYgJMnT1occ+rUKcTExAAAnnnmGRw+fBgHDx5ULgDw3nvvYdmyZXWO9+DBgwgKCoJWq230ayVyB3obdVOXhZqn/8oNRiUrRkTkTBw6/Td37lxMnz4d/fv3x8CBA7Fw4UIUFRUpqwGnTZuGVq1aYcGCBQCAJ554AsOGDcM777yDsWPH4ttvv8XevXuxdOlS5THnzZuHyZMnY+jQobjxxhuxYcMG/PTTT9i6dSsAU7artkxY27Zt0a5dOwDATz/9hIyMDFx33XXQ6XRITEzE66+/jqeeesrGZ4TIdSlb1NignQIA6DzU8NNpUFBaiazCMgR42+Z5iIiayqFB1eTJk5GVlYUXXngB6enp6N27NzZs2KAUoycnJ0OlqkqmDR48GMuXL8fzzz+Pf/zjH4iLi8OaNWvQvXt35ZiJEydiyZIlWLBgAR5//HF07twZq1atwpAhQxo8Lg8PDyxevBhz5syBEAIdO3ZU2j8QUe30peYeVV62e1sJ89OagqqCMnQM97XZ8xARNYUkWJxgM3q9HgEBAcjPz2d9FbV4L/14DJ/vuIBZwzvg/0bH2+Q5Jv97J3adz8UHU/pgXK9omzwHEVFTP78dvk0NEbUMcqG6rVb/AexVRUTOjUEVEVmFXDxuq0J1gEEVETk3BlVEZBV6GxeqAwyqiMi5MagiIquo6qhuw0J1dlUnIifGoIqIrIKZKiJydwyqiMgq5JYKLFQnInfFoIqImq3SYERhmf0K1XOLymAwshsMETkXBlVE1GwFpVXbxvjZaO8/AAjx0UIlAUYB5BQxW0VEzoVBFRE1m1yk7u2phofadm8rapWEYB9OARKRc2JQRUTNZut9/6pjXRUROSsGVUTUbFeKTUFVkI+nzZ9LDqoyGVQRkZNhUEVEzXalqBwAEOxjh0yVLzNVROScGFQRUbPlmoOqIG/bZ6oiA0xBVXp+qc2fi4ioMRhUEVGzXSmWM1V2CKr8dQCAdD2DKiJyLgyqiKjZ7JmpijAHVRkMqojIyTCoIqJmkzNVQd62r6mKDDBnqjj9R0ROhkEVETXblSL7rf6Tp/+yC8tQaTDa/PmIiBqKQRURNZs9a6pCfLVQqyQYBZBVyBWAROQ8GFQRUbPZs6ZKrZIQ7scVgETkfBhUEVGzCCHsmqkCWKxORM6JQRURNUthWSUqDAKAfTJVQLW2CsxUEZETYVBFRM0iF6l7eajh5am2y3MqKwD1rKkiIufBoIqImiXXzlN/AKf/iMg5MagiomaR9/0LtEOPKhm3qiEiZ8SgioiaJbeImSoiIoBBFRE1U1U3dfsFVdX3/xNC2O15iYjqw6CKiJrF3u0UgKpC9eJyAwrKKu32vERE9WFQRUTNkitvUWPHTJW3pwZ+Og0AIIN1VUTkJBhUEVGzXFFqquxXqA5YTgESETkDBlVE1CxySwV7bKZcndKripkqInISDKqIqFmUTJUdp/8ArgAkIufDoIqImkUuVA+0c1DF6T8icjYMqoioyYxGgSvFpkJ1e67+A4AIZfqPW9UQkXNgUEVETVZQWgmD0dQnyp4d1YGqTBWn/4jIWTCoIqImk4vUfTzV0HnYZzNlGaf/iMjZMKgioiaTt6ix98o/AIgw7/+XXViGSoPR7s9PRHQ1BlVE1GR5DuimLgv10UKjkiAEkFXIuioicjwGVUTUZEqmys4r/wBApZIQ7mfKVrFXFRE5AwZVRNRkjtj3rzp5BSCL1YnIGTCoIqImk/f9s/fKP5lSrM5MFRE5AQZVRNRkjuqmLotQVgCypoqIHI9BFRE1maP2/ZNFcvqPiJwIgyoiajIlU+WgoCrKHFRdzitxyPMTEVXHoIqImkzJVDlo+q91kDcAICW32CHPT0RUHYMqImoyR2eqYkJMQVW6vhSlFQaHjIGISMagioiaxGAUyCsxrf4L8nHM6r8QH0/4eKohBHDpCrNVRORYDKqIqEn0JRUQpr2UHTb9J0kS2ob4AAAu5jCoIiLHYlBFRE0i11P5aTXwUDvurSQm2DQFyKCKiByNQRURNckVB26mXF1MqCmoSmaxOhE5GIMqImqSXGcJqoLl6b8ih46DiIhBFRE1ibLvn4O2qJHJKwAvMlNFRA7GoIqImkTe98/Rmaq25pqqS7klMBiFQ8dCRO6tSUFVSkoKLl26pPy8e/duPPnkk1i6dKnVBkZEzi2vxJSpCvRybFAVHegFD7WEcoMRafnsrE5EjtOkoOqee+7Bli1bAADp6em4+eabsXv3bjz33HN45ZVXrDpAInJOBaWVAAA/ncah41CrJKWzejJXABKRAzUpqDp69CgGDhwIAPj+++/RvXt37NixA19//TU+//xza46PiJyUswRVQNUUIOuqiMiRmhRUVVRUQKvVAgA2btyIcePGAQDi4+ORlpZmvdERkdMqKDXVVPnrHFuoDlQrVmemiogcqElBVbdu3bBkyRL8/vvvSExMxOjRowEAqampCAkJseoAicg5OWOmKjmXbRWIyHGaFFS9+eab+Pe//43hw4djypQp6NWrFwDgxx9/VKYFiahlkzNVfk6RqeJWNUTkeE36ijl8+HBkZ2dDr9cjKChIuX7mzJnw9va22uCIyHk5U6ZKnv5LzimGEAKSJDl4RETkjpqUqSopKUFZWZkSUF28eBELFy7EyZMnER4ebtUBEpFzcqagSp7+KyirxJXiCgePhojcVZOCqvHjx+PLL78EAOTl5SEhIQHvvPMOJkyYgI8//tiqAyQi52MwChSWyUGV46f/dB5qRPibFs9wuxoicpQmBVX79+/HDTfcAABYuXIlIiIicPHiRXz55Zf44IMPrDpAIneSqS/Ff7afR0m5wdFDqZccUAHOkakCqvYA5MbKROQoTQqqiouL4efnBwD49ddfMWnSJKhUKlx33XW4ePFiox5r8eLFiI2NhU6nQ0JCAnbv3l3v8StWrEB8fDx0Oh169OiBdevW1TgmKSkJ48aNQ0BAAHx8fDBgwAAkJyfXOE4IgVtuuQWSJGHNmjUWtyUnJ2Ps2LHw9vZGeHg45s2bh8rKyhqPQWRN7286jVfXHse7iScdPZR6yUXqnmoVdB5qB4/GpC3bKhCRgzUpqOrYsSPWrFmDlJQU/PLLLxg5ciQAIDMzE/7+/g1+nO+++w5z587Fiy++iP3796NXr14YNWoUMjMzaz1+x44dmDJlCh588EEcOHAAEyZMwIQJE3D06FHlmLNnz2LIkCGIj4/H1q1bcfjwYcyfPx86na7G4y1cuLDWglaDwYCxY8eivLwcO3bswBdffIHPP/8cL7zwQoNfG1FTnM4oBAD8sP8yKgxGB4+mbs5UTyWLCWZQRUQOJppgxYoVwsPDQ6hUKjFixAjl+tdff12MHj26wY8zcOBAMXv2bOVng8EgoqOjxYIFC2o9/q677hJjx461uC4hIUH87W9/U36ePHmyuPfee6/53AcOHBCtWrUSaWlpAoBYvXq1ctu6deuESqUS6enpynUff/yx8Pf3F2VlZQ19eSI/P18AEPn5+Q2+D7m3hNc2ipin14qYp9eKDUfTHD2cOu06lyNinl4rhr212dFDUaw5cEnEPL1W3PHxH44eChG5uKZ+fjcpU3XHHXcgOTkZe/fuxS+//KJcf9NNN+G9995r0GOUl5dj3759GDFihHKdSqXCiBEjsHPnzlrvs3PnTovjAWDUqFHK8UajET///DM6deqEUaNGITw8HAkJCTWm9oqLi3HPPfdg8eLFiIyMrPV5evTogYiICIvn0ev1OHbsWINeH1FjlVYYkK4vVX5esTfFgaOpnzP1qJKxVxUROVqTgioAiIyMRJ8+fZCamopLly4BAAYOHIj4+PgG3T87OxsGg8EicAGAiIgIpKen13qf9PT0eo/PzMxEYWEh3njjDYwePRq//vorJk6ciEmTJmHbtm3KfebMmYPBgwdj/PjxjXoe+ba6lJWVQa/XW1yIGurSlRIAgEZlmpLecjILmdWCLGfizNN/mQVlTl/oT0QtU5OCKqPRiFdeeQUBAQGIiYlBTEwMAgMD8eqrr8JodFwdiPzc48ePx5w5c9C7d28888wzuPXWW7FkyRIApq7vmzdvxsKFC63+/AsWLEBAQIByadOmjdWfg1quFPOqtbgIP/SLCYLBKPDDgcsOHlXtqjJVzhNUBXp7wNvTVDSfll/i4NEQkTtqUlD13HPPYdGiRXjjjTdw4MABHDhwAK+//jo+/PBDzJ8/v0GPERoaCrVajYyMDIvrMzIyap2SA0zZsfqODw0NhUajQdeuXS2O6dKli7L6b/PmzTh79iwCAwOh0Wig0Zg+FG6//XYMHz683ueRb6vLs88+i/z8fOWSkuK80zfkfORWAG2DvXBnv9YAgO/3pkAI4chh1Upf6jw9qmSSJCEqwLQgJS3fOTN8RNSyNSmo+uKLL/Dpp5/ikUceQc+ePdGzZ0/MmjULn3zyCT7//PMGPYanpyf69euHTZs2KdcZjUZs2rQJgwYNqvU+gwYNsjgeABITE5XjPT09MWDAAJw8abkc/dSpU4iJiQEAPPPMMzh8+DAOHjyoXADgvffew7Jly5TnOXLkiMUqxMTERPj7+9cI2KrTarXw9/e3uBA1lFwL1DbYG2N7RsHLQ41zWUXYn3zFwSOryRmn/wAgOtALAJCax0wVEdlfk94Rc3Nza62dio+PR25uboMfZ+7cuZg+fTr69++PgQMHYuHChSgqKsKMGTMAANOmTUOrVq2wYMECAMATTzyBYcOG4Z133sHYsWPx7bffYu/evVi6dKnymPPmzcPkyZMxdOhQ3HjjjdiwYQN++uknbN26FYAp01Rbtqlt27Zo164dAGDkyJHo2rUr7rvvPrz11ltIT0/H888/j9mzZ0Or1Tb49RE1hpKpCvGBn84DY3pEYdX+S/jqz2T0iwl28OgsOWOhOgBmqojIoZqUqerVqxcWLVpU4/pFixahZ8+eDX6cyZMn41//+hdeeOEF9O7dGwcPHsSGDRuUovDk5GSkpaUpxw8ePBjLly/H0qVL0atXL6xcuRJr1qxB9+7dlWMmTpyIJUuW4K233kKPHj3w6aefYtWqVRgyZEiDx6VWq7F27Vqo1WoMGjQI9957L6ZNm4ZXXnmlwY9B1FgpuVWZKgC4J6EtAGD1gcv430Hnqq2SM1X+TpapigowZapYU0VEjiCJJhRsbNu2DWPHjkXbtm2VqbedO3ciJSUF69atU7awcXd6vR4BAQHIz8/nVCDVSwiBri/8gpIKA7Y8NRztQk3tAd7ccAIfbz0LnYcKq2ddjy5RzvF7NGPZbmw5mYU3b++ByQPaOno4im93J+OZH45gWKcwfPHAQEcPh4hcVFM/v5uUqRo2bBhOnTqFiRMnIi8vD3l5eZg0aRKOHTuG//73v015SCK3ll1YjpIKAyQJaGWuCwKAp0Z2xg1xoSitMOLhr/Yhv7jCgaOsUuCEheoAEGU+d+mc/iMiB2hy7j46OhqvvfaaxXWHDh3Cf/7zH4saJyK6NrmeKjrAC56aqu86apWED+7ug9sWbcfFnGLM+f4g/jO9f63bK9mT0xaqm2uqUjn9R0QO0OTmn0RkPcm5RQCANsFeNW4L8vHEknv7wVOjwuYTmdifnGfn0dXktIXq5kxVQWklCsu4AToR2ReDKiInkJxjyqzIRepX694qALf2iAIArD5wyW7jqouzZqp8tRplTGlsq0BEdsagisgJyNN/8v51tZnQpxUAYO3hNJRXOnLnAoHCcucMqgDTFCoApLKuiojsrFHviJMmTar39ry8vOaMhchtye0U2tSRqQKA6zuGItxPi8yCMmw9mYmR3eru7m9LheWVkNcM+zvZ9B8ARAXqcDKjgJkqIrK7RgVVAQEB17x92rRpzRoQkTtKvqpHVW3UKgnje0fjk9/PY/WByw4LquSpPw+1BK3G+ZLdUcxUEZGDNCqokrdxISLrKa0wIF1vCgDqC6oA0xTgJ7+fx6akTOSXVCDAy/6ZoupF6o5ehVgbeQVgOlcAEpGdOd/XTCI3c+mKKUvlq9UgyLv+IKlrlD86R/ih3GDEuiNp9R5rK85apC6L5FY1ROQgDKqIHCy5Wj3VtTI/kiQpBeurDzhm65qqTJVzBlXcVJmIHIVBFZGDJeeYV/5dY+pPNr53NCQJ2H0+VylwtyclU6V1viJ1wHJT5SbswkVE1GQMqogcLDnX3KMqpGFBVXSgFwbGBgMAtp7MtNm46qJ38uk/uVC9uNwAfQkbgBKR/TCoInKw5Aa0U7iavLHy5Tz71w05azd1mZenWqlN43Y1RGRPDKqIHOxijmmLmmut/KtOLsbO0DsiqHLuTBVQla1KY1BFRHbEoIrIgb7ceQGnMwshSUBcuG+D7xfpL7cNcFymyt+Jg6roQK4AJCL7Y1BF5CC/HkvHSz8eAwDMHdFJWbXWEHKmKt2hmSrnnP4DqmWqHDA9SkTui0EVkQMcSL6Cx789AKMApgxsg0f/0rFR96+eqbL3CjeXmP4zZ6pYU0VE9sSgisjO8ksq8Ncv9qK0wogbO4fh1fHdG92ZXM5UlVQYlNV49uLshepA1abKzFQRkT0xqCKys0MpecgpKkdUgA6L7ukLjbrxf4Y6DzUCzSvc7F1X5QqZqqqu6sxUEZH9MKgisrP8ElOmp22wN3y0TQ9MlClAO9dVuUJQpWSq2ACUiOyIQRXVad/FXNy1ZCc2JWU4eigtihxUNXcz5AhzUJVh90yV80//RQRoAQBllUbkFpU7eDRE5C6c96smOdTeC7mY/tluFJUbkFVYhhs7h0OlalzdD9XOWkFVlAM2DhZCoLDMlKly5pYKWo0aob5aZBeWIS2/FCG+WkcPiYjcADNVVEP1gAoAzmcX4bfTWQ4eVcuht3Kmyp7Tf0XlBhjNs2nOnKkC2KuKiOzPeb9qkl0IITBv5WEcvpSHyAAvRPhpse5IGorKDbi+YwjaBvvgm93J+HLnRQzvHO7o4bYIecXWzVSl27EYW57606gk6Dyc+ztZpL8Oh5Fv1/NDRO6NQZWbyyosw8p9lwAApzIKlesHdwjBp9MGIF1fim92J2PLyUxczClCTIiPo4baYsjTf/LqvaaKUBqAljV7TA1VvUi9sW0g7K1qKx/7nR8icm8MqtxcUZlpis/LQ42Xx3dDRn4pfLQaTBnYFl6earQL9cGwTmHYdioLX/15Ec+N7ergEbs+Oajyb2amSl79Z8/9/1yhSF0W4YDzQ0TujUGVmyuSi469NLirf5taj5k+OAbbTmXhuz0pmHtzZ3h5qu05xBbH2oXquUXlKK0wQOdh+38XvQu0U5CF+5mK0x2xlQ8RuSfnLoogm5ODKh/Puj8kh3UKR9tgb+hLK/G/g5ftNbQWy1pBVYCXB7Qa059wpp2muFyhR5VMnv6z17khImJQ5eaKzSv86mtCqVZJmDYoBgDw3z8v2mVcLZm1Vv9JkmT3jZVdcvqvgJkqIrIPBlVurqjclHnwvsaU3m29ogEAx9P0qDAYbT6ulqrSYESBOTvY3KAKqKqrstd2LK6UqYrwM52bvOIKlFYYHDwaInIHDKrcnDL9d43tUsJ8tdCoJAgBZBdyOqWpqm9+bJWgKsC+xdhypsrfBTJV/l4ape0DpwCJyB4YVLk5efXftYIqlUqqKvxlM8Umk+upfLWaJm2kfDVl+i+fNVVXkyTJIQ1Sich9Mahyc1WF6tdeORbBvj/NZq0idVnVpsqc/quNPAXItgpEZA8MqtxcUQMK1WX8gGo+a/WokilBlZ2yh65UqA5U/yLA31kisj0GVW6uuLzhmSp71++0RFWZKutkeqqm/+zzb+JKfaoAIMI8Zc3fWSKyBwZVbq7QPP3n3YBMVbi//AHF6b+myi8uB2DF6T+5F1NBGYzyTsc2VDX95yKZKn9OWROR/TCocnPFDSxUBzj9Zw3Kvn9enlZ5vDBfLVQSUGkUyC6yfeCQY175GeJjnfHbGqf/iMieGFS5uSJO/9mVMv3XzM2UZRq1CmF2WpVpMArkFJkybfJzOjtO/xGRPTGocnMN7VMFABH+3Eutuay9+g+wX7H6leJyGIwCkgQEu0qmqtr0nxC2nx4lIvfGoMrNKdvU1LP3n0z+gCoorVQK3KlxrL36D6geONg2qMoqME39BXt7wsMKPbbsQT43JRUGi8arRES24BrvjGQzVYXq157+89VqlO1sWPjbNLbIVEUFyFvV2Daokjvpu8rUHwB4earhb16pmMkMKxHZGIMqNydnqnwbMP0nSZIy1cQalabJK7Z+UBVhp02V5UyVKwVVAFcAEpH9MKhyc3JN1bU2VJZVtVVgUNUUemX1n/UzVal5tu2qLgdVob6uFVRF2inoJCJiUOXGKg1GlFUaATSspgqwX/1OS2WL6b+YEB8AwMWcYqs9Zm1cNVMVzlYgRGQnDKrcmLxFDdCw1X8Aqk3/cSqlsSoMRuWcWzOoah9qCqrS8kttuoAgS66pcrFMlbxqlTVVRGRrDKrcmPwB7KGW4Klp2K9CuD+nUppKnvoDrLv6L9DbU2lxcD67yGqPezVXzVRx+o+I7IVBlRtrTI8qmZyp4rf+xpOn/vy0GqhVklUfu505W8Wgqqaq6T9mV4nIthhUubGisob3qJKxAWjT5Vm5m3p1SlCVZcOgygVbKgBVv7OsqSIiW2NQ5cYau/IPYIfq5rBFkbrM1pmq8kqj0g7C1Wqq7L3pNBG5LwZVbkwumm7M9J/cUqH6hyw1jN6GQZVcrH7WRkFVjnmzZg+1ZJPx21KorxaSZLl3IRGRLTCocmNyobpPA7qpy7QaNYLM01cZBZxOaQybZqrC5Om/QptkEOV6qhAfLVRWrgezNQ+1SumtxSlA+zmXVYi/f38Iafm27Z9G5EwYVLkxeYuaxtRUAexQ3VT5NuimLosN8YEkAfrSSuTaIBvjqkXqMtZV2d/HW89i1f5LWPrbOUcPhchuGFS5seKyxk//AdWCKhvvNdfS2DJTpfNQIzrAC4Bt6qpcPqjiCkC7O5VZCAA4nqp38EiI7IdBlRsrbEKhOgDu/9dEtlz9BwDtzVOA52wZVLlYkbrMXvsjkokQAmcyCgAAx9P0XNRCboNBlRuTa6oasplydWyr0DS2zFQBtl0B6KrtFGRypor91ewjLb9UWQhTUFqJyzbel5LIWTCocmPym553I2uqwllT1ST2CqrOZRVa/bFdffovMsA07jROWdvF6UzL30FOAZK7YFDlxqo6qnP6zx5s2VIBANqH+QKwTaYq28UzVZHmerN0BlV2cdo89Sc7nsagitwDgyo3VtTcQnUGVY1i60yV3KvqQk4xDFZucunqmapoc01VKpf328UZc6ZKbr/CTBW5CwZVbkyuqWpsoXqEeSolu7AMlQaj1cfVUtk6qIoO9IKnWoXySiNSrVzDIgdVoS5aqB4VaMpUFZRWKgs0yHbk6b8xPaIAMFNF7oNBlRuTp/8aW6ge4qOFWiXBKIDsQnaobojySiOKzTVsgV6eNnkOtUpCTIg3AOtOARaVVSr1d66aqfLVauCnM/2ep7Fo2qaEEDhlnv4b1ysaAHDpSonypYKoJWNQ5caaWqiuVkkI92MzxcaQP1AkCcqHuy3YYgWgXE/l5aGGTyOzms4kyjwFyGJ128osKENBaSVUEtC7bSBambOEJ5itIjfAoMqNNbVQHYASVLGtQsPIQZWfVmPTbV7kYnVrrgCsXk8lSa61RU11UeZidW6bYlunM0y/e7EhPtBq1OgS5Q+AU4DkHhhUubGqoKrxmZMwc98fOYtB9cu3ceNPmVysbs0GoK5epC6LDjQXq+fxi4Atnc40Tf11DDcF+F2jzUEVi9XJDTg8qFq8eDFiY2Oh0+mQkJCA3bt313v8ihUrEB8fD51Ohx49emDdunU1jklKSsK4ceMQEBAAHx8fDBgwAMnJycrtf/vb39ChQwd4eXkhLCwM48ePx4kTJyweQ5KkGpdvv/3WOi/aCQghlBqfxu79B1R9wMofuFQ/W7dTkCkbK1szqCp07W7qMmaq7EMuUo+LMAdV5kxVUjqDKmr5HBpUfffdd5g7dy5efPFF7N+/H7169cKoUaOQmZlZ6/E7duzAlClT8OCDD+LAgQOYMGECJkyYgKNHjyrHnD17FkOGDEF8fDy2bt2Kw4cPY/78+dDpdMox/fr1w7Jly5CUlIRffvkFQgiMHDkSBoPB4vmWLVuGtLQ05TJhwgSbnAdHKKs0otK87L4p039yUJXJoKpBbL3yTybXVF3OK0FpheEaRzdMS8lUsabKPs6Yp/86RfgBALqZM1Wn0gtRwdXC1MI5NKh699138dBDD2HGjBno2rUrlixZAm9vb3z22We1Hv/+++9j9OjRmDdvHrp06YJXX30Vffv2xaJFi5RjnnvuOYwZMwZvvfUW+vTpgw4dOmDcuHEIDw9Xjpk5cyaGDh2K2NhY9O3bF//85z+RkpKCCxcuWDxfYGAgIiMjlUv1wMzVyVkqoPGF6kBVTRUzVQ2TV2xaJWmrlX+yEB9P+Ok0EAJIzi22ymO6euNPWVWmikGVrQghcOqq6b/WQV7w02pQbjDirA26/RM5E4cFVeXl5di3bx9GjBhRNRiVCiNGjMDOnTtrvc/OnTstjgeAUaNGKccbjUb8/PPP6NSpE0aNGoXw8HAkJCRgzZo1dY6jqKgIy5YtQ7t27dCmTRuL22bPno3Q0FAMHDgQn3322TU3BS0rK4Ner7e4OCu5nkrnoYK6CYXTnP5rnPwS0/n2t3GmSpKkqrqqLOtMAbaYTJW5piotr4Qb/NpITlE58oorIElAB/OiCUmSqorVWVdFLZzDgqrs7GwYDAZERERYXB8REYH09PRa75Oenl7v8ZmZmSgsLMQbb7yB0aNH49dff8XEiRMxadIkbNu2zeJ+H330EXx9feHr64v169cjMTERnp5VWYRXXnkF33//PRITE3H77bdj1qxZ+PDDD+t9TQsWLEBAQIByuTpIcyZFTdxMWcagqnGuyJkqGxeqA9VWAGZbJyvg6o0/ZdHmTFVRuQH6UjYAtZbi8kolSJVX/rUN9obOo6qsgMXq5C5s1zDHAYxG03z9+PHjMWfOHABA7969sWPHDixZsgTDhg1Tjp06dSpuvvlmpKWl4V//+hfuuusu/PHHH8oU3/z585Vj+/Tpg6KiIrz99tt4/PHH63z+Z599FnPnzlV+1uv1ThtYyVvUNGXqD7Cc/hNCuPRSe3uQpz1igr1t/lxKrypmqix4eaoR6O2BvOIKpOWX2Ly+zR1cyC7CxI/+QJC3JxZP7Ysz5qm/OPPUn6wr2yqQm3BYpio0NBRqtRoZGRkW12dkZCAyMrLW+0RGRtZ7fGhoKDQaDbp27WpxTJcuXSxW/wFAQEAA4uLiMHToUKxcuRInTpzA6tWr6xxvQkICLl26hLKyujMzWq0W/v7+Fhdn1Zx2CkBV1qLcYIS+hN/6r0Weiutw1YeNLVizAagQomr1n4sHVQDrqqztg02ncaW4AufMwdW3e1IAAB3D/SyO69E6AABwMCWPxerUojksqPL09ES/fv2wadMm5Tqj0YhNmzZh0KBBtd5n0KBBFscDQGJionK8p6cnBgwYgJMnT1occ+rUKcTExNQ5FiEEhBD1BkwHDx5EUFAQtFrX/2ABqvb9a2qHbJ2HGv7mzuBZhfyAqk9RWSUum7dG6RjmWkFVfkkFKgymqZ1QX9sW2duDsgKQvaqa7Xx2EdYcvAwA6NM2EKUVRhwzT+9dnanqHOGHIG8PFJcbcPhSnr2HSmQ3Dp3+mzt3LqZPn47+/ftj4MCBWLhwIYqKijBjxgwAwLRp09CqVSssWLAAAPDEE09g2LBheOeddzB27Fh8++232Lt3L5YuXao85rx58zB58mQMHToUN954IzZs2ICffvoJW7duBQCcO3cO3333HUaOHImwsDBcunQJb7zxBry8vDBmzBgAwE8//YSMjAxcd9110Ol0SExMxOuvv46nnnrKvifIhpTpvyZmqgBT5kJfWolMfVmNb6ZURc5Shfh4IsjH9oGJHFTlFJUjv7iiWQ1H5WAwyNsDWo3rblEjq2qrwF5VzfXh5tMwCuAv8eH4ZFp/vL/xFD7YfAZAVQ2VTKWSMKhDCNYdSceOMznoFxPsiCET2ZxDg6rJkycjKysLL7zwAtLT09G7d29s2LBBKUZPTk6GSlWVTBs8eDCWL1+O559/Hv/4xz8QFxeHNWvWoHv37soxEydOxJIlS7BgwQI8/vjj6Ny5M1atWoUhQ4YAAHQ6HX7//XcsXLgQV65cQUREBIYOHYodO3YobRc8PDywePFizJkzB0IIdOzYUWn/0FJUFao3/YMy3E+Hs1lFyvQQ1U6up+pghywVYJrSjfTXIV1fivM5RejtHdjkx5I3xo2LaBlBc7R5Hzp2VW+eC9lF+N/BVADAEzfFQa2SMHdkZwyJC8PlvGJltV91gzqEmoKqszl47KY4ew+ZyC4cXqj+6KOP4tFHH631Njm7VN2dd96JO++8s97HfOCBB/DAAw/Uelt0dHStXdirGz16NEaPHl3vMa6uuYXqAFcANtQZc4dpe9RTydqF+iBdX4pzWYXo3SawyY9zIt0UVHVuIUGVnKlK1zNT1Rwfbj4Dg1Hgxs5h6FXt92tgu2AAtWehBncIAQDsS76C0gqDxepAopbC4dvUkGMohepNrKkCGFQ1VFWmysduz2mt7WpOmYOqTpEtJagyF6ozU9VkF6rVUj0xolOD79c+1AcR/lqUVxqx/+IVWw2PyKEYVLkpefqvqav/gKq2Ctyqpn5ypqqjHTNV1tpY+ZS571B8iwmqzJsq57MBaFOt2JcCg1FgWKewRmVBJUnC4A6hAIAdZ3NsNDoix2JQ5aaKzdN/zQmqmKm6tkqDERdyzO0U7FRTBVinV5W+tEIpVO/UQhYiRJqDqtIKI/KKKxw8Gtd0+FI+AGBkt4hrHFnTIPMU4I6z2VYdE5GzYFDlpgqb2VIBYFDVEMm5xagwCOg8VGhlLpK2B7mr+vnsoiZnZE6bi9SjAnTNWkHoTHQeaoSYV2CmcgVgowkhlLYJ3aIDGn1/ua7q0KV8FJaxvx21PAyq3FSx+Q2tuS0VACCzgPUpdZGn/tqH+kLVhD0Wm6p1kBc0KgklFQZk6JsW9MpF6p1aSJG6TN4DMJ0NQBstXV+K3KJyqFVSk6aEWwd5o22wNwxGgT3nc20wQiLHYlDlporKzdN/zVj9F+5n+nC6UlyB8kp2Sa7NWfP0mz3rqQDAQ61CW/OWOOeymrYHoFyk3rmF1FPJ5GL1VAZVjXbssilL1THMt8mr9wZzCpBaMAZVbqpqm5qmT/8FenlAY86+5BRxCrA2jihSl7VrZrH6yYyW1U5BFq10Vef0X2NVTf01fQuuqroqFqtTy8Ogyk0Vlze/UF2lkpQ9AFlXVTt7N/6srjnb1QghcLKFZqoiuf9fkx1LNRWpX90xvTHkoOp4mh5XisqtMi4iZ8Ggyk0VKn2qmtf/NdzfXFfVxLqdlkwIgbOOzFQ1o1dVVmEZrhRXQCU5Zuy2FB3IrWqaqjlF6rJwPx3ah/lACGAf+1VRC8Ogyk0VW2H6DwDC5EwVt6qpIaugDAVllVBJQGyot92fv31o1QrAxpKzVLEhPi2u83UUM1VNkldcrrTYaE6mCgD6xwQBAPYyqKIWhkGVGzIaBYormr9NDcC2CvWR66naBns7ZDPi9uZMVXJucaMXEpxsoSv/gGqbKueVwmBkA9CGkrNUbYK9EODVvBYb/c0bKu+7yBWA1LIwqHJDJRUGyK2LfJtRUwVUdVVnUFXTGQfWUwGmfxtvTzUMRoGUK8WNuq+8kXJLq6cCTJsqe3uqUW4wKjVvdG1yPVX3Zkz9yfrFmjJVhy7lo6zS0OzHI3IWDKrckLxFjSQBOo/m/QqwV1XdHFlPBZi2BVFWADays3pLLVIHALVKUgKDI+bu4FRTXnE5isurGnRaY+WfrH2oD4J9PFFeacRRc5sGopaAQZUbKiqr6lElSc1rSMnpv7o5OlMFADEhplquS43IVBmNQtnzryUGVQDQvZU5qLrMoKo2OYVluOGtLbjtw+1K+xVrFKnLJElC37ambBWnAKklYVDlhqzRo0qmBFUsVLdgNAokpZmyPR0jHBdUNaUo+9KVEpRUGOCpUSEm2P4F9vbQszWDqvpsP5ONgtJKnM0qwhvrT6Ck3KA0kbVGpgoA+sfKQRWL1anlaF5BDbmkYit0U5fJXdUz9WUQQjQ789VSHEvVI7eoHD6eaqvUoDRVtHm/wcuNaHR5Ir2qa7ZG3TK/d8mZquOpelQajC32dTbVrmpbyPz3z4uICtTBKIBQXy3C/XVWeY5+MVVBFd87qKXgO4kbqspUNT+okpt/llUaUcANUhW/nc4CAAzuGApPjeP+zJrSPfy0uRaskwMzbLbWPtQHPp5qlFQYlK2EqMquc6Zu53HmesC3NpwEYL0sFQD0aBUAT7UK2YXluJjTuIUURM6KQZUbkgvVvT2bP/3n5amGnzk4Y11VlW2nTEHV0E5hDh2HnKlqzPRfsvkDLtZc5N4SqVQSurGuqlZZBWU4m1UESQKWzRiAVubfIcC6QZXOQ43urUyPx35V1FIwqHJDV4orADS/nYIszJ/F6tUVlFZgv/lDYlicY4OqKHP38Ax9KSoNDetVdTHXlLmRi9xbqp5yUHUpz7EDcTK7zVN/nSP80DrIG2/e3lO5TZ42tZb+sexXRS0Lgyo39Kc5td/NSm+Qclf1TAZVAEwbxVYaBdqF+qCtgwOTUB8tPNUqGAWQ0cB/n5Rc01Rh2+CWm6kCgB4sVq/VrvOm94fr2pv26BsSF4qnR8djaKcwDLNy5lWuq9p7gZkqahkYVLkZg1Fg++lsAMCwTqFWeUy2VbD0mzz1F2ed89scKpWESHNdVWoD6qrKKg1IzZeDqpadqVKK1dP0DcriZRaU4lBKno1H5XhypiqhXbBy3SPDO+DLBwZapQ6zOjmoOp1ZiLxi595cWQiB309n4V+/nGRfPqoTgyo3c/hSHvJLKuCv06BX60CrPCYbgFYRQjhNPZUsqhFB1aUrJRDCVG8X6utp66E5VLsQH/hqNSitMCo9xerz6NcHMOGjP7D3QsudqrpSVI4T5savA6sFVbYS6qtVGtTuT3bObFV5pRGr9l3CLe//jvv+sxuLtpzBkq3nHD0sclIMqtyM/IE/JC7UasvI5ULWS7kNX2HWUp3PLsKlKyXwUEvK9Imjyf8+qXnXDnqTc01F6m2DvVv8EneVSlIKrw9fo7N6aYUB+5OvQAhg5b5L9hieQ+w2B4wdw30RYp7WtzU5I/a/g6l2eb7GenrVYfx9xSEl2ASAc9nc3ohqx6DKzVRNTVkviyJvwyLvF+fO5PM7IDbY6lMlTSUXq6flXzvolVf+tfSpP5ncBPToNeqqzmQWotK8+fK6I2ktdr+6XedqTv3Z2r3XxQAAfjqUios5ztXeoqzSgJ8PpwEAnhwRh4+m9gVQ9eWD6GoMqtxIfnEFDpprQqw5NRUXYdrK5Hx2ESoauMKspXK2qT+gqq1CQ6b/5A+Llr7yTybXVV0rU3U8tWp/On1pJbadzLLpuBxFLlJPsGOWtXurAAzvHAajAP79m3NNqx1P1aPcYESQtweeuCkOPcy/L5dyS2A0B9lE1TGociPbz2TDKEwN/aKr9Z5prugAHXy1GlQaBS5kO9c3TXsqqzTgT/M3fWtmApsrOqDh038X3S5TFQgASLpGsfqxVFPQ5WmeMv/fIeecqmqO/JIKHE8zBY/X2TFTBQCzb+wIAFi59xIy9M5Tm3kgOQ8A0KdtECRJQlSADhqVhHKDERmsIaVaMKhyI7/ZKIsiSVK1KUD3rTXYe+EKSioMCPPTokuU82xE3KjpP3OPqrYhLbudgiwm2Bt+Wg3KKo0Y9vZWJLy+Ede9vgnrjqRZHCcHG/cNMk1VbTyegcIWtoPA3gu5EAJoF+pjta1oGmpAbDAGxgaj3GDEp787T7ZKzuz3aRMIANCoVWgVZPqSkswu8FQLBlVuQgihbJ1ii6kpeTuL05nuW1dVvV7NmYq85azkleIKlJTXXQskhKia/nOTTJVKJWFwR9NU1+W8EmToy5CuL8Vn288rx1TfHPuu/m3QPswHZZVG/HI03SFjthU5KzPAvNGxvT1yYwcAwNe7knGlyDnaKxxIMa1I7NO26pzIWVzWVVFtGFS5iTOZhUjLL4VWo7JJEWonc13VaTfOVFXVUzm+P1V1/joPpXt+aj3ZqqyCMpRWGKGSYNXpYWf33uTe+HbmdVj1yCB8+cBAAMCBlDzoS007DyTnFqOwrBKeGhU6hPlgfK9WAFreFKCcjbN21/SGGt4pDF2j/FFcbsAXOy84ZAzVZRWUISW3BJIE9GxTdU7amIOqFAZVVAsGVW5C/sBPaB8CnUfz9/y7WscI985UZehLcSK9AJIE3OBE9VSy6MBr96q6aP6QiA70cugm0Pbm7anBde1D0C8mGEM7haF9qA8MRoGdZ01F23KwER/pB41ahfG9owEAf5zJblENb5PMr7NrlPX292sMSZLwt2HtAaDG9KsjyFN/ceG+8Nd5KNczU0X1cZ93Tje3MSkDgO26fHdy8xWA8tRfz1YBCPZxvqaZUeZi9bR6itXlGhF3WflXlxvMfyO/m6fL5ZV/crARG+qDXm0CYTAK/NhCslVXisqVTbfjHRRUAUBCO9NU7NmsIpRWOLZtxQFzM9I+bSynQxlUUX0YVLmB1LwS7DJvPTG6e6RNniM6QAcfTzUqDMLpes3YgzO2UqhOns673IBMlbus/KuLnGn83bydk5yp6hpdFWzc2a81AODjrWeUaUJXJmepYkK8rbbRelNE+GsR4uMJg1HgZLpjs95VK/8CLa5nUEX1YVDlBn48lAohTNtOtA6yzQemJEnoaM5WudsKQINRYPsZ0wew0wZVAddeAZhsDoZb+kbK13JdhxBoVBIu5hTjYk6R0k6hW7WgSi5Yzy4sx6LNZxw1VKuRA8cukY7LUgGm9xE5eJXH5AgGo8ChS3kALIvUgaqaquzCchS1sBWg1HwMqtzAmgOXAQAT+7Sy6fN0klcAullQdeRyPvKKK+Cn1aC3eem1s4lqwFY17tb4sy6+Wg36mjf6XXMgFRn6MkgS0LlawOGpUWH+2K4AgGV/nMd5F+/PpgRVDpz6k8lBlRzMOsKpjAIUlxvgq9Uo7WJkAV4eCPQ21VilXGG2iiwxqHJB+cUVOJHesG9xx1P1OJFeAE+1CmN6RNl0XHHmYvVTblasLtdTXd8xFB5W2k/R2pRC9foyVZz+U8i1h/IqtFjz5svV3RgfjuGdw1BhEHjt5+P2HqJVyS0jqk9xOopcu1a9i72t7TiTjX6vJmLhxlMQQihTf73aBECtqtkeRZkCZK8quopzfgJQndLyS3D7kh2499NdDVrSu+agKUt1U5dwBHh5XOPo5pG3qznjZpkqZ6+nAqq6qqfllUKImttrFJZVIrvQ1BuorZtnqgBgiLmuKtfcL6muYOP5sV2hUUnYmJSpBNeuprzSiDPmL0LO0LS2W7SpfUFSWgEMdtgKRgiBN385iZyicizceBrPrzmKvRdNNahXF6nL2rCuiurAoMrF+Go10KgkZBeWY/qy3fU2yTMYBf5nDqom2HjqD6hqAHouu9BtVgDml1TfT9G5+lNVF2muqSqpMCCvuGZhtRygB3p7WCwfd1c9WgVYfAmpq81Ax3BfTBsUCwB459eT9hia1Z3JLESFQcBfp0ErJ+hP1i7UB14eapRUGOwyrbrnwhUcSsmDh1qCJJmaj/6w3/S+eXWRuqwte1VRHRhUuRg/nQc+nzEQ0QE6nMsqwkNf7q1z6fGf53KQoS9DgJcHhne2fRalVaBXtRWA7vFms+NMNgxGgQ5hPjZbBGANOg81Qn1NrR5qmwKU/73cpZP6tahVEoZ0rAqS65sW++sN7QAAR1P1Dm8D0BTV66mcYScAtUpCvDljZo9i9aXmTZzv6NcGH07pAw911Tmoq0aSKwCpLgyqXFBkgA6fPzAQfjoN9l68grnfH6x1x3T529atPaOg1Vi/4efVqu8BeDrDPeqqjlw2FdNe1z7EwSO5tuh6itXdbc+/hrihWk+3bvUUcEcF6OCv08BgFDiX5XoF60lOVKQukzODti5WP5tViI1JGZAkU3B8a89ofHb/APhpNRgQG4QQX22t92NQRXVhUOWiOkX4Yel9/eGpVmHdkfQa2zrkFZdjw1FTV2Jbr/qrLs7N2irkmOuQIu28AW1TRNXTVqGqSN3x0z/O4sb4cPhqNegc4VfvBsOSJKFzpHmbJhdcpKE0N3WCInWZXFdVvVi9vNLY4AU6DSVv3jyiSwQ6hJm+EN4QF4Zdz92Ebx66rs77KdN/V0pq/UJL7otBlQsb1CEEz9/aBQCwaPMZFFbrmfLx1rMoKjcgPtIP/WLst0FqJzfbrianyLRNSbCv83VRv5rcVb22BqBy7UqMm/eoqi7CX4df5wzFtzPr/nCVyV8mHN2wsrGEEEhKd+z2NLWRe4IdT9UrCyvmfn8Qoxf+rtSJNldWQRlWmbP5M4e2t7jN21MDTT0reaMCdFCrJJRXGpHZgrYqouZjUOXi7hnYFu1CfZBTVI7Ptp8HYMpEfL7jAgDg6dHxdq2TiAt3r42Vc8wLBUKccGuaq8lFyOevmqLK0Jfiz3Pm1U51FOa6q+hALwQ14N+2s5Khda2gKl1firziCmhUUo1+TI7UOdIPapWEnKJyZBaUYc+FXKw9bMq8/3vbuVpXsDbWf3deQHmlEb3bBKJ/I794atQq5e9JzvIevZyPtYdTUekmi3SodgyqXJxGrcLcmzsBMBVc5haV44NNp1FWacTA2GC7FKhXJ78xn88usstyaEeTl9wH+9Ree+FM5LqvzScyLaYAv9+TAoNRoH9MkJJxocbp5KLT3vL0WocwX5tstN5UOg81OoSZsqZHL+fj9XVJym3H0/TYe/FKsx7fYBT4dk8KAOChG9o36Ytn9bqqfRev4PaPd+DR5Qdw64fbsetcTrPGR66LQVULMLZHFLpF+6OwrBLP/nAY3++9BAB4+pbOdl/N0yrQC1qNCuUGIy65Qbfh3EI5qHL+TFWP1gEY2C4YlUahZDINRoFvdicDAKZe19aBo3Nt8rR3cm4xistdZ+uSqiJ15wum5enI9zedxoHkPHh7qjGiSwQAKL+/TbXzbA4yC8oQ6O2Bm7tGNOkx5H5uv53Kwl+/2IOySiMkCTiRXoDJS//EE98eQEm5660GpeZhUNUCqFQS5o3qDAD45VgGDEaBEV0i0C8m2CFjaRdq+obpiiuhGqOs0oACcx1bqAvUVAHA38y1I8v/TEZBaQW2ncpEan4pAr09cEt323bcb8lCfLXK74ArTX3Xtlm0s5CL1Q9fMq0AnDm0vZKV33A0vd59LK9Fboo8pkcUPDVN+xiUM1U/HkrFleIK9GwdgO1P/wVTE9pCkoD/HUzFsh3nmzxGck0MqlqIYZ3CMLCdKYiSJChBliPIq2jOZrnOh0tTXCkyNdFUqySXaZh5Y+dwdAjzQUFZJb7bk4Kv/zRlqe7o29qppn9cUScXrKs6lup87RRk1QO9MD8tHrqhPbpG+2Ngu2AYjEL53W2s0goDNhxNBwBM6N30ldHVt3NqG+yNz+4fgFaBXnhtYg/83Rz82XOrHXIODKpaCEmS8PzYLvDxVGPG4HbKEm9HaG+uhTjbwjNV8sq/IG9PqGrZH8wZqVQSHrrBlK1asu0ctpzMBABMSeDUX3O5WlCVX1KhNH3tbs4KOZPqqxHn3twJPua9F2cMjgUAfLM7uUHNVq8uat+UlInCskq0CvRqdIF6daZmqUCQtwe+eGAgQqv1tJJ/Fy7kOOd7YGmFAam1rAKm5mNQ1YL0bB2IY6+Mxgu3dXXoOOSg6lwLz1TJPapcYeVfdRP6tEKoryeyC8tgFMCg9iFKdpGaTv4gPeki03/HzI1rWwc1bIWjvQX5eGL2jR1w94A2uLNfa+X6m7tGIDpAh5yicmVFYF3WH0nDwNc34d1fTyrBlTz1d1uv6GZ9GWoX6oMfHhmMDU8OVUoeqt8GABeyi62yUtHaZn29Hze8taXWFiCr9l3CjrPZDhhVy8CgiqyuavrPOb+lWUvVyj/n+0Cqj85Djenm/eoA4B5mqayic2T9uwlkFpRi9MLfnGaPQHk3gB6tnC9LJZs3Kh5v3N7TomeURq3C1OtiAAA/7L9U5303JWXgsW8OIKugDB9sPoOlv51DXnE5tpqzsxP6RDd7fH3aBiGilsawbYK9IUmWG5U7i9MZBdh8IhMGo6gRPJ1ML8DfVxzCI1/td4vV27bAoIqsTv6Wll1YBn1pzc17Wwq5R5UrNP682r3XxSDMT4t2oT4Y1S3S0cNpETqae7Sl5Zciv6Tm7/2qfZdxIr0AK/fVHQjYkxxUdXfioKou8u/svotXUFZZcwpw++lsPPL1flQaBeLNpRAL1p/AnO8OosJgui4+0nZ1ZDoPdVVfODtsCt0Yy3dX1aJdnak6fCkPgGlq+Eyma2RcnQ2DKrI6P50Hwv1M9QUteQVgrrmmKtTFMlWAaWpl89+HYe1jQ5q8+oksBXh5KFsBnallR4F1R0xTVRn6UqdoECkXqTtzpqouHcJ8EOqrRVmlEYdSLPcH3HcxFw99uRfllUaM6haBtY8NUTqmbzmZBQAY34wC9YaqmgJs2nvgG+tP4Pk1R6w6fVhaYVD2hAWApKuCqqS0qp8PpjSvF5i74rsp2YQyBdiCv+24UuPP2vjpPJTiX7KOqu1qLH/vL+YUKZkhowAyHLy1ib60QsmguGJQJUkSEsyrna9utPnK2iSUVBgwrFMYPpjSBxq1Cs+Mjsekanugjuvd/Km/a4k1b05+vgnF6tmFZViy7Sy++jMZF3Jq9vurKygvqzQguZbjZeuOpCG/pAI+nqaVvqfSCyz2LpT7lgHAgeS8Ro+bGFSRjSjF6tktN6iSC9VdcfqPbKOzuQno1SsAfz5iWVCd5uCVV8cumz48WzVwGx5ndF17c1B1Ple5LjWvBIdS8iBJwL/u7AWtxhQ8qFQS3ryjJ/42rD1euLWrMjVnS7HNyFQdq9aK4fxV76FHL+ejx0u/Ytpnuy328Tx8KQ+jF/6OoW9vwYv/O4ryypqB1/Jdpqm/h4a2h1ajQkmFQdlmp/o+kABwMCWv0eO2t70XcrHKSabTZfyaSjbRXslUtdzpP1fa94/so662CuuuCqpS80vtNqbaHHWBIvVrSTBvu7T3Yi7KK43w1Kjw6zFT/6n+MUEI87PMIHuoVXj2li52G1+7UFMfq6bUVB1LrZrSPJdVhL/EV9227VQWSioM+O1UFka99xv+MaYL8ksq8M6vJ1Fpzjp9sfMijlzOx+KpfZWN1E9lFGDvxStQqyRMGdgWG5MycPSyHifSCxAb6qPsAylJgBCm4wvLKuHrhNns/OIKvLHhBL7ZnQydhwoD2wWjTbW+YY7ETBXZRAc3yFS56uo/sp3agqqLOUU4elkPtUrCDXGhAByfqVJW/rV23aAqLtwXwT6eKK0w4sjlPADABnNQ5QyLL9qFmr5YXsgpsphiawg5kwjUXEUtF5D7aTUoLKvEP1YfwZsbTqDSKDCmRyQ+mNIH/joN9ifn4dYPtmPhxlPYlJSBT38/BwC4KT4cEf46pVD/hDk7JTcqjQv3RatALxhFVeG6M/nxUCpuenersr3WhN6t4KdznsDPeUZCLYpcU3UhuxgGo4DaRZpjNkZOoakuhpkqksWZp/+yC8tx6UoxWgd5K1N/gzuEoHurAPx+OhtpTpKpcsWVfzK5rmr90XT8eS4X7UJ9sds8FegMQVXrIC+oVRJKK4zIKChVMkYNcdQiU2X5xVQO2N++sycuXSnB27+chFol4aXbuuHO/q0hSRJ6tw7E377ah6Q0PRZuPG1xf7mFirwqUl4BWLUPpD8qjQKX80pwMCUPgzuENvKV287vp7Pw+DcHAAAdw33x+sQeyk4izoJBFdlEdKAXPDUqlFeaNlaOCfG59p1cSIXBCH2pad+/EF/XLFQn6/P21KBbtD+Opepx15Kd+Pd9/fGzuUHl2B5RqDAXGF92YKaqoLQC58xTUt2dcM+/xqgKqnIQ5qeFUZg6sTvDVJCHWoU2QV64kFOM89lFDQ6q9KVVne4BKP9WgGkDdDlT1TnSH6O7R2FCn1ZQSZJFxrxtiDdWzxqMFXtTcCA5D0cu5+NsViG6RQdgaFyY+f5XB1Wm/3aJ8odGJeHnw2lOV6y+8XgGAGB0t0i8P6W3UjPnTBhUkU2oVRLah/rgRHoBzmUVtbig6op56k8lAYFerrHvH9nHB1P64KEv9uJcdhFuX7ID5ZVGqFUSRnaLxP6LpmXqzdkMuLnkIujoAJ3LfyGQ66r2XbwClWTKho/u7vgslSw21AcXcopxIbsYgzs07D7yNFywjydyi8qRVVCGgtIK+Ok8cPlKCcrM9WPy3oOhdfwb6jzUuG9QLO4bZPq5tMIAT7VK6SIvT/+dzylCSbnBIlMlrw48mJIHIQQkyTlmGvZcMP393NYr2ikDKoA1VWRDVXsAtry6KrlI3ZX2/SP76BDmizWPXo+b4sOVFViDO4Qg2McTUYGmPlZpeY6b/msJU3+yzhF+CPT2QHG5AdtOmXpQOcPUn0xuq9CYPQDloLdftWJ7ud+fPPXXIcy30SUVOg+1xXtVmJ8WIT6eEAI4dClPaf3QJcoP3VsFQKOSkFVQ5tCsanUFpRVK/Vf/2Kbv2WhrDKrIZtqHttztalikTvXx13ngk2n98cRNcQjx8cQDQ9oBAKLNU0A5ReUWmwFnF5bh+z0ptXYHt7aWsPJPplJJGBhbVVMTG+KNThHOs4+l3AC0MSsA5T0Zu0cH1Lj/afPUX1y4dV5jfJRpCvDHQ6kQAgj19US4nw46DzW6mDe0dpbWCgeS82AUQNtg71q3BnIWDKrIZjqEt9yNlbPNReoMqqguKpWEOTd3wr75N+PGzuEAgEBvD+g8TG+76dWK1d/59RT+b9VhvLne9vsCKtvTuPDKv+rkKUAAGNU90mmmqoCaQZXRKHDff3ah36uJeOnHYxatE2Rypqp7K/+qVdTm99DT5k791gqqOkeYAie57k8OpACgT9tAAMBBJ6mr2nvBtAihf4zzZqkABlVkQ+6QqQph409qBEmSEG1uPJlara7qQLKpVuSrXRctgq36FJVVIvF4hvK7eC1CCHy3J1kpfG4JmSqgqgko4FxTf0BVUJWcY1oF/fORNPx+Ohs5ReX4fMcFjP1gO8Yt2q50QS8pNyiBU7fogKr3UPO/mVykLnfuby45UyXvVdm1WlDVu00gAOBAHZmqUxkFypdLe5DrqfrHOtdqv6s5PKhavHgxYmNjodPpkJCQgN27d9d7/IoVKxAfHw+dTocePXpg3bp1NY5JSkrCuHHjEBAQAB8fHwwYMADJyVWbSP7tb39Dhw4d4OXlhbCwMIwfPx4nTpyweIzk5GSMHTsW3t7eCA8Px7x581BZWWmdF+0m5Jqq7MKyWjeYbagNR9Pr3XrBETj9R00lTwHKdVWlFQblw7K80oiPtp6p9/6peSVYsD4J1y3YhIe+3Isnvj1wzedMyy/B/cv24OlVRyCEafVUXQXOrqZLpD9Gdo3AyK4R6N060NHDsRAd6AVPtQrlBtMq6PcSTwEAJvVthbE9ouChlnD4Uj6e/99RAKaeUUbzNFyEv7ZqZ4osU6+r0xlyUGWl6b9Iy+DMMlNlyggdvZxfozv7qYwCjHn/dzz05V6rjONaKgxGHDDvRTjAieupAAcHVd999x3mzp2LF198Efv370evXr0watQoZGZm1nr8jh07MGXKFDz44IM4cOAAJkyYgAkTJuDo0aPKMWfPnsWQIUMQHx+PrVu34vDhw5g/fz50uqo52H79+mHZsmVISkrCL7/8AiEERo4cCYPBVM9gMBgwduxYlJeXY8eOHfjiiy/w+eef44UXXrDtCWlh/HQeiDTPfX/158UmPcYfZ7Lx8Ff78MR31/7gsKeqbuot44OJ7EfedDnVXAB8JrMQlUYBjbmI+NvdKXUWB3+2/TxueGsL/r3tHArMLT22n8lWHqs2f5zJxsj3fsO2U1nw1Kjw3JguWDy1rzVfkkOpVBKWTuuPpdP6O92iEbVKQptgUxD9buIpnMsuQpC3B14e1w2Lp/bFhieHwkMt4bdTWfj9dJYy9dc1OgCSJCk7U5zPLsSlKyUoMa/gi7FSy4i4cD9UP2XVg6rYEG8EenugrNJYY5pyw9F0VBoFDqbkoajM9smGY6l6lFYYEejtofRAdFYODareffddPPTQQ5gxYwa6du2KJUuWwNvbG5999lmtx7///vsYPXo05s2bhy5duuDVV19F3759sWjRIuWY5557DmPGjMFbb72FPn36oEOHDhg3bhzCw8OVY2bOnImhQ4ciNjYWffv2xT//+U+kpKTgwoULAIBff/0Vx48fx1dffYXevXvjlltuwauvvorFixejvLxhqXYymf2XjgCAt385iR8PpTb6/nvNKd9DKXkoKG16tsvacgs5/UdNE6VM/5kyVfIS+oT2wRjUPgTlBiMWb6mZrfrtVBZe/fk4DEaB69oH49Np/TEwNhhCAGsOXq71uX4/nYUHPt+DgtJK9GoTiHWP34CHhrZvkc14nZU8Bfi/g6b3v1nDO8JPZ2rD0iHMF/deFwMAeH3dCRy5JBepm4KbNkFe0JgbiP522rS6sX2YDzRq63x0e3mqlRWKnmqVkhkDTFPVgzuY6tU2JmVY3G/rSVPiQ4iqjuy2VL2eytkC56s5LKgqLy/Hvn37MGLEiKrBqFQYMWIEdu7cWet9du7caXE8AIwaNUo53mg04ueff0anTp0watQohIeHIyEhAWvWrKlzHEVFRVi2bBnatWuHNm3aKM/To0cPREREWDyPXq/HsWPH6nyssrIy6PV6i4u7u++6GDxoXvn01PeHsOtcDnIKy/DlzguY/tlufL2r/gyW3FnYKEy9aJwFp/+oqaLNmSq5V9Vxc3+grlH+mHNzJwDA93tSkJJbNeV96Uoxnvj2AIQA7h7QBt/OHIQRXSMwqW8rAMDq/ZchhOVWKL+dysJfv9iLskojRnQJx/d/uw4drVTgTA0nB1UAEOGvxX2DYixuf/wvcfDTaZCUpsfqA6bguFu0qd5No1ahbYgpK/WLeQsea/8byk1A4yJ84XFVsCbXqP1yrCqoulJUbrEi8Hiq7T/n9piDqn4xzl1PBTgwqMrOzobBYLAIXAAgIiIC6enptd4nPT293uMzMzNRWFiIN954A6NHj8avv/6KiRMnYtKkSdi2bZvF/T766CP4+vrC19cX69evR2JiIjw9Pet9Hvm2uixYsAABAQHKRQ7S3N1zY7pgdLdIlBuMuH/ZHgx8fRNe+N8xbDuVhQXrTihdpmsjLy8GqrJWziC7iKv/qGnkTJVcU3VcmfLxx8B2wbghLhSVRoGHv9qHNQcuQ19agdlf78eV4gr0aBWAl8Z1Ux7rlh5R8NSocDqzUJk6AoDtp7Px1y/lgCoCi6f2ddpmiS1dbLWg6tG/xEHnYfnvEOTjiVnDTRn9cvN7YfdWVdNwcrH6zrM5AKr2l7SWXuaCdLkwvbob48PhoZZwJrNQ6Tf42+ksVN/K8JiNgyohhPLe7+z1VIATFKpbk9Fo+oUcP3485syZg969e+OZZ57BrbfeiiVLllgcO3XqVBw4cADbtm1Dp06dcNddd6G0tHkN+Z599lnk5+crl5SUlGY9XkuhUklYeHdv9GkbiJIKAwxGgR6tAuCnM20IWtdWCDmFZcoUCQDsNn9bcQa5rKmiJpIzVan5JTAaRbVMlSk78X+j4qHzUOFYqh5PfncQ/V5NxKFL+Qjw8sBHU/tafCgHeHng5i6mL3xyliMltxizvt6H8kojbu4agY8YUDmUvMqybbA3Jvev/Yv2jOtjld8LP60GbYKqaqbktgqV5kjGWu0UZPcPjsU/J3TH30d2rnGbv84D15lbVvxqzlZtO2mahow1Z9Dk39+mMhoFdpzNxuvrkmqdjbiQU4yconJ4alQusQG4w4Kq0NBQqNVqZGRYztVmZGQgMrL2ZbGRkZH1Hh8aGgqNRoOuXbtaHNOlSxeL1X8AEBAQgLi4OAwdOhQrV67EiRMnsHr16nqfR76tLlqtFv7+/hYXMtF5qPHFAwPx1u09senvw/DTY0OU3j2/mTshX+2o+RuQr9a0m9LBlDy7NEcETCsWn/3hiFLjUF2lwYi8YlN9FzNV1FhypqqgtBJJ6XoUllXCU1NVz9KjdQC2PDUcc0Z0QqtAL1QYBCQJWHh371r3tJvYxzQF+L+DqSgpN2D28v3Ql1aiT9tALL6nLzw1Leq7s8vp2ToQ/31wIL7723V1/lvoPNR4+pZ4AKbauup1Q9XrnADrrfyr/tz3XhdT53tZ1RRgOoxGoXSuf2S4ad+dE+kF9c421EVfWoEPNp3GsH9twT2f7MLS387hmVWHaxwnT/31ah3gEl8OHPbX5unpiX79+mHTpk3KdUajEZs2bcKgQYNqvc+gQYMsjgeAxMRE5XhPT08MGDAAJ09aNtA7deoUYmIs57GrE0JACIGysjLleY4cOWKxCjExMRH+/v41AjZqOH+dB+4a0EZZvTG0k2ljT7kA82py5+fhncMQ6uuJ8kpjrUEOYFpJ9cS3B7D5REattzfWJ7+fwze7kzHj8z3IKrDsxXLFHFBJEhDkzX3/qHF8tRr460xfFDYlmd5jOkf4WdSzRAV44YkRcfjt/27E139NwPd/G6R8Cbna0E5hCPL2QHZhGaZ88icOX8pHoLcHFjGgcho3xIVdc0Pl8b1bYfWswXj7jl4W17evttrNQy3ZfR/VkV0jIEmmL7UbkzKQU1QOX60GE/q0gq9Wg/JKo7KNTmMsWJeEdxNPISW3BH5aDdQqCaczC2u0z9l93lyk7uT9qWQO/YubO3cuPvnkE3zxxRdISkrCI488gqKiIsyYMQMAMG3aNDz77LPK8U888QQ2bNiAd955BydOnMBLL72EvXv34tFHH1WOmTdvHr777jt88sknOHPmDBYtWoSffvoJs2bNAgCcO3cOCxYswL59+5CcnIwdO3bgzjvvhJeXF8aMGQMAGDlyJLp27Yr77rsPhw4dwi+//ILnn38es2fPhlbL6R5rGRoXCsDU4bm2BobyMt4erQLQ31yguKeWuqorReW47z+78L+DqViw7kSN25ti6wlToJddWIa/rzgEY7UiAnmsgV4eVluFQ+5FbgAqr6rqFl17VlutknB9x1AMqOcDxVOjwm29ogFUbSny3uTeaBVY/4c4OZ8+bYMQdFXGqH21mqx2oT41isltLdxfhz7meqtX1h4HAAzpGAqtRq00C62tM/y17DpnCpaeGtkJu58boXRKr/7FuMJgxCbz38j1HUKb/BrsyaGfCJMnT8a//vUvvPDCC+jduzcOHjyIDRs2KEXhycnJSEtLU44fPHgwli9fjqVLl6JXr15YuXIl1qxZg+7duyvHTJw4EUuWLMFbb72FHj164NNPP8WqVaswZMgQAIBOp8Pvv/+OMWPGoGPHjpg8eTL8/PywY8cOpe2CWq3G2rVroVarMWjQINx7772YNm0aXnnlFTuenZYv3F+H+Eg/CGFa+n21o5fl7RoCMKCdHFRZ1lUVlVVixud7lK7tpzMLa2SWGutyXglOZhRAJQFajQq/ncrCp9vPKbfnsEidmknuVXXYnHntWkdQ1VDyFCAAzL6xQ51ZLXI9wT6eSmYzLty6ReoNJU8BXrpiWrE6vLNplkH+vW3sCsC84nKls//UhBh4eapxUxfT7+ymE1UzRH+cycaV4gqE+npadM53ZhpHD+DRRx+1yDRVt3Xr1hrX3XnnnbjzzjvrfcwHHngADzzwQK23RUdH19qF/WoxMTENOo6aZ1inMJxIL8Bvp7IxvnfVB0N+cQWSzUvKu0X7w8/8prL3Qi6MRgGVSkJ5pRGPfL0fB1PyEOjtAR9PDS7nleDPcznKN/er5RWX48PNZzCuV7Sy6uVqcg+Wvm2DMLFvKzy3+ije2nASCe1C0KtNIIvUqdmirsoiVd8epCl6twnE/YNjUW4wYs6ITs16LHIuchPQgyl5Vq+naqiR3SKxYH3VLMBwc9AuB1WNXQEoZ1RjQ7yVzNxf4iPw+roT2HUuF0VllfDRavDTIVNSZUyPKJeZFXCNUVKLJddV/X46y6LPzrE00zf41kFeCPT2RNcof/h4qqEvrcSpzAIYjQJPrTiE305lwctDjc/uH4DR3U3fpnaYlx7X5rk1R/Gf7efx4Bd7kVPHvlVbzFN/N8aH456BbTGmRyQqjQKPfXMABaUVyClkjypqHnmllyy+mUGVJEl4aVw3vD6xh8t8+FDDjewWAa1GpQQz9tYu1AedzAFdfKQfIs2/v/KXgeNp+hp90uojB1XyVjiAaZVj22BvlBuM2H4mG6UVBvxq7s1V15dkZ8S/PnKo/rFB8PJQI7OgDCfSC5Trj8lTf9Wa4PU1z7nvOZ+LV9Yex4+HUqFRSfj43r7o2zZI6f6782x2rc+VeDxD2Y1dXt139RtBWaUBO8z3H9YpDJIkYcGknmgV6IXk3GI8t/qoskVNMLupUxNVL1qODfFWVrgS1WbW8I44+vKoWntJ2cukvq0BWAY4nSL84KGWkF9SUefWSrWR2+j0aRuoXCdJEv4SbwoaNydlYtupLBSUVSIqQId+bZ2/P5WMQRU5lFajVubKq7dWkDupV2+CJxerL9x4Gp/vuAAAeOeuXsq3t4HtgqFWSbiQU1zjD7ygtALz15j2iLyleyQ81BJ+PZ6BlfsuWRy35/wVFJcbEO6nVYqHA7w88MGUPlCrJPx4KBWrzPcJZaaKmii62vRfc+upyD3Yu0D9ajNvaI/Vswbj4WEdlOs8NSp0NNd5NbSuSgihZKquDhLloGrLyUxlW7Nbe0Y5/dY01TGoIoe7Ia5mawW5nUK3VlXN3ga0M31bkTNFL97W1aIOy0/nge7m43deNQX41oaTSNeXIibEG+9N7q1sB/LyT8cttgPZYq6nGt7ZlKWS9YsJwlzzfeSAjdN/1FTRgVXTf82tpyKyB5VKQp+2QTX2jZS/fDa0Cej57CLkl1RAq1EhPtLydz+hfTC8PU0zF+uPmGYVXGnqD2BQRU5Arqvac/4KzmQWoKisUlkZIk//AUCfNkFK351Hb+yIGde3q/FY8hTgjmpTgHsu5OK/f5r2GFwwqQd0Hmr8bWgH9I8JQmFZJR795gCumAM1OaiqbfXUI8M64PqOIcrPwb4sVKemiaxWU9Ut2vm7RBPVpaqtQs2gKj2/FOMWbcd7iaeU6+Spvx6tAmr0UdNq1LjB3GrHKExd6Hu0cq2/DwZV5HAdwnwQH+mHcoMRt364Ha+tS4IQps1Hw/yqAhcvTzU+uqcvXp/YA38fWfsKJzmo+vNsDoQQKCyrxFMrDgEwbUQ72NzrRK2S8N7k3vDTanAoJQ/jF/+BxOMZOJdVBI1KwvVxNXuiqFQS3rurN0LMGaqYWrpbEzWE3OPHx1Pt0DoZoubqVk9bhfc3ncbhS/n4cPNpXMwxfVGua+pPJk8BAsBtvaIsZgxcAYMqcjhJkvDFAwNxQ1woSiuMWL7LtKVQ91q+wY/oGoF7EtrW+YfWPyYYHmoJqfmluJhTjBf/dwwXc4rRKtALz47pYnFsm2BvrHhkENoEm4rQH/pyr+kxYoPgr6u9U3q4vw6rZ12PJff2rbMlA1FDrHh4ELb93401mj0SuZIu5qDqcl6JxYrqlNxirNhr2v/WKICPtpwFABxIMTVw7lNH8fmNncMhv73f2tO1pv4ABlXkJCL8dfhixkC8eFtXJSXclKDFy1Ot/LG+8OMxrNp/CSrzvmkBXjUDpfhIf/w4e4iS4QJwzWXLbUO8Mbp7VKPHRlSdj1aDUE4hk4vz13kgPtJUrP7ij8eUFdWLNp9BpVGgnbkj/Kr9l3AmsxBJaaZV3tVX/lUX7q/D23f0wqsTuqOLC9YbMqgip6FSSZhxfTv8/NgQzBvVGdMG1b1fY30GmXdVl1cTPvqXuHq3+Qjy8cSXDwzEw8M6oFebQEyq1p2aiIjq99rEHtCoJKw9nIblu5NxMacIK/ebVkn/685eGNwhBJVGgTnfHYTBKBDup1V2FajNHf1a477rmvb+72hsjkJOJy7CD3ERTd+OYXCHELy/6TQAoG/bQDz+l47XvI9GrcIz5l3iiYio4frFBOHp0fF4bV0SXv7pOPq2DYTBKDC8cxj6xQThsb/EYcfZHBwxr+ru0zbQ5WqlGoqZKmpxercNRFSADoHeHnj/7j7sME1EZGN/vaEdbooPR3mlEX+aN0t+0rxl0nXtg5UNk4G666laAn7aUIuj1aix4Ymh2Pz34WjDFXpERDYnSRL+dWcvZQumm+LDlRV+kiThsZvilGNb8opXTv9RixTgXfvqPSIiso0gH098NmMAlm2/gMdusiy7GBoXigm9o5GhL6uzSL0lkERjdkGkRtHr9QgICEB+fj78/V1vFQMREZE7aurnN6f/iIiIiKyAQRURERGRFTCoIiIiIrICBlVEREREVsCgioiIiMgKGFQRERERWQGDKiIiIiIrYFBFREREZAUMqoiIiIisgEEVERERkRUwqCIiIiKyAgZVRERERFbAoIqIiIjIChhUEREREVmBxtEDaMmEEAAAvV7v4JEQERFRQ8mf2/LneEMxqLKhgoICAECbNm0cPBIiIiJqrIKCAgQEBDT4eEk0NgyjBjMajUhNTYWfnx8kSbLa4+r1erRp0wYpKSnw9/e32uO6Gp6HKjwXJjwPJjwPVXguTHgeTBp6HoQQKCgoQHR0NFSqhldKMVNlQyqVCq1bt7bZ4/v7+7v1H4eM56EKz4UJz4MJz0MVngsTngeThpyHxmSoZCxUJyIiIrICBlVEREREVsCgygVptVq8+OKL0Gq1jh6KQ/E8VOG5MOF5MOF5qMJzYcLzYGLr88BCdSIiIiIrYKaKiIiIyAoYVBERERFZAYMqIiIiIitgUEVERERkBQyqXNDixYsRGxsLnU6HhIQE7N6929FDsqkFCxZgwIAB8PPzQ3h4OCZMmICTJ09aHFNaWorZs2cjJCQEvr6+uP3225GRkeGgEdvHG2+8AUmS8OSTTyrXuct5uHz5Mu69916EhITAy8sLPXr0wN69e5XbhRB44YUXEBUVBS8vL4wYMQKnT5924Ihtw2AwYP78+WjXrh28vLzQoUMHvPrqqxb7lbXEc/Hbb7/htttuQ3R0NCRJwpo1ayxub8hrzs3NxdSpU+Hv74/AwEA8+OCDKCwstOOraL76zkNFRQWefvpp9OjRAz4+PoiOjsa0adOQmppq8Rgt4TwA1/6dqO7hhx+GJElYuHChxfXWOBcMqlzMd999h7lz5+LFF1/E/v370atXL4waNQqZmZmOHprNbNu2DbNnz8aff/6JxMREVFRUYOTIkSgqKlKOmTNnDn766SesWLEC27ZtQ2pqKiZNmuTAUdvWnj178O9//xs9e/a0uN4dzsOVK1dw/fXXw8PDA+vXr8fx48fxzjvvICgoSDnmrbfewgcffIAlS5Zg165d8PHxwahRo1BaWurAkVvfm2++iY8//hiLFi1CUlIS3nzzTbz11lv48MMPlWNa4rkoKipCr169sHjx4lpvb8hrnjp1Ko4dO4bExESsXbsWv/32G2bOnGmvl2AV9Z2H4uJi7N+/H/Pnz8f+/fvxww8/4OTJkxg3bpzFcS3hPADX/p2QrV69Gn/++Seio6Nr3GaVcyHIpQwcOFDMnj1b+dlgMIjo6GixYMECB47KvjIzMwUAsW3bNiGEEHl5ecLDw0OsWLFCOSYpKUkAEDt37nTUMG2moKBAxMXFicTERDFs2DDxxBNPCCHc5zw8/fTTYsiQIXXebjQaRWRkpHj77beV6/Ly8oRWqxXffPONPYZoN2PHjhUPPPCAxXWTJk0SU6dOFUK4x7kAIFavXq383JDXfPz4cQFA7NmzRzlm/fr1QpIkcfnyZbuN3ZquPg+12b17twAgLl68KIRomedBiLrPxaVLl0SrVq3E0aNHRUxMjHjvvfeU26x1LpipciHl5eXYt28fRowYoVynUqkwYsQI7Ny504Ejs6/8/HwAQHBwMABg3759qKiosDgv8fHxaNu2bYs8L7Nnz8bYsWMtXi/gPufhxx9/RP/+/XHnnXciPDwcffr0wSeffKLcfv78eaSnp1uch4CAACQkJLSo8wAAgwcPxqZNm3Dq1CkAwKFDh7B9+3bccsstANzrXMga8pp37tyJwMBA9O/fXzlmxIgRUKlU2LVrl93HbC/5+fmQJAmBgYEA3Os8GI1G3HfffZg3bx66detW43ZrnQtuqOxCsrOzYTAYEBERYXF9REQETpw44aBR2ZfRaMSTTz6J66+/Ht27dwcApKenw9PTU3mjkEVERCA9Pd0Bo7Sdb7/9Fvv378eePXtq3OYu5+HcuXP4+OOPMXfuXPzjH//Anj178Pjjj8PT0xPTp09XXmttfyct6TwAwDPPPAO9Xo/4+Hio1WoYDAa89tprmDp1KgC41bmQNeQ1p6enIzw83OJ2jUaD4ODgFnteSktL8fTTT2PKlCnKRsLudB7efPNNaDQaPP7447Xebq1zwaCKXMrs2bNx9OhRbN++3dFDsbuUlBQ88cQTSExMhE6nc/RwHMZoNKJ///54/fXXAQB9+vTB0aNHsWTJEkyfPt3Bo7Ov77//Hl9//TWWL1+Obt264eDBg3jyyScRHR3tdueC6lZRUYG77roLQgh8/PHHjh6O3e3btw/vv/8+9u/fD0mSbPpcnP5zIaGhoVCr1TVWc2VkZCAyMtJBo7KfRx99FGvXrsWWLVvQunVr5frIyEiUl5cjLy/P4viWdl727duHzMxM9O3bFxqNBhqNBtu2bcMHH3wAjUaDiIgItzgPUVFR6Nq1q8V1Xbp0QXJyMgAor9Ud/k7mzZuHZ555BnfffTd69OiB++67D3PmzMGCBQsAuNe5kDXkNUdGRtZY3FNZWYnc3NwWd17kgOrixYtITExUslSA+5yH33//HZmZmWjbtq3y3nnx4kX8/e9/R2xsLADrnQsGVS7E09MT/fr1w6ZNm5TrjEYjNm3ahEGDBjlwZLYlhMCjjz6K1atXY/PmzWjXrp3F7f369YOHh4fFeTl58iSSk5Nb1Hm56aabcOTIERw8eFC59O/fH1OnTlX+3x3Ow/XXX1+jpcapU6cQExMDAGjXrh0iIyMtzoNer8euXbta1HkATCu8VCrLt3G1Wg2j0QjAvc6FrCGvedCgQcjLy8O+ffuUYzZv3gyj0YiEhAS7j9lW5IDq9OnT2LhxI0JCQixud5fzcN999+Hw4cMW753R0dGYN28efvnlFwBWPBdNr68nR/j222+FVqsVn3/+uTh+/LiYOXOmCAwMFOnp6Y4ems088sgjIiAgQGzdulWkpaUpl+LiYuWYhx9+WLRt21Zs3rxZ7N27VwwaNEgMGjTIgaO2j+qr/4Rwj/Owe/duodFoxGuvvSZOnz4tvv76a+Ht7S2++uor5Zg33nhDBAYGiv/973/i8OHDYvz48aJdu3aipKTEgSO3vunTp4tWrVqJtWvXivPnz4sffvhBhIaGiv/7v/9TjmmJ56KgoEAcOHBAHDhwQAAQ7777rjhw4ICyqq0hr3n06NGiT58+YteuXWL79u0iLi5OTJkyxVEvqUnqOw/l5eVi3LhxonXr1uLgwYMW751lZWXKY7SE8yDEtX8nrnb16j8hrHMuGFS5oA8//FC0bdtWeHp6ioEDB4o///zT0UOyKQC1XpYtW6YcU1JSImbNmiWCgoKEt7e3mDhxokhLS3PcoO3k6qDKXc7DTz/9JLp37y60Wq2Ij48XS5cutbjdaDSK+fPni4iICKHVasVNN90kTp486aDR2o5erxdPPPGEaNu2rdDpdKJ9+/biueees/jQbInnYsuWLbW+J0yfPl0I0bDXnJOTI6ZMmSJ8fX2Fv7+/mDFjhigoKHDAq2m6+s7D+fPn63zv3LJli/IYLeE8CHHt34mr1RZUWeNcSEJUa71LRERERE3CmioiIiIiK2BQRURERGQFDKqIiIiIrIBBFREREZEVMKgiIiIisgIGVURERERWwKCKiIiIyAoYVBER2ZEkSVizZo2jh0FENsCgiojcxv333w9JkmpcRo8e7eihEVELoHH0AIiI7Gn06NFYtmyZxXVardZBoyGiloSZKiJyK1qtFpGRkRaXoKAgAKapuY8//hi33HILvLy80L59e6xcudLi/keOHMFf/vIXeHl5ISQkBDNnzkRhYaHFMZ999hm6desGrVaLqKgoPProoxa3Z2dnY+LEifD29kZcXBx+/PFH275oIrILBlVERNXMnz8ft99+Ow4dOoSpU6fi7rvvRlJSEgCgqKgIo0aNQlBQEPbs2YMVK1Zg48aNFkHTxx9/jNmzZ2PmzJk4cuQIfvzxR3Ts2NHiOV5++WXcddddOHz4MMaMGYOpU6ciNzfXrq+TiGygSdtBExG5oOnTpwu1Wi18fHwsLq+99poQQggA4uGHH7a4T0JCgnjkkUeEEEIsXbpUBAUFicLCQuX2n3/+WahUKpGeni6EECI6Olo899xzdY4BgHj++eeVnwsLCwUAsX79equ9TiJyDNZUEZFbufHGG/Hxxx9bXBccHKz8/6BBgyxuGzRoEA4ePAgASEpKQq9eveDj46Pcfv3118NoNOLkyZOQJAmpqam46aab6h1Dz549lf/38fGBv78/MjMzm/qSiMhJMKgiIrfi4+NTYzrOWry8vBp0nIeHh8XPkiTBaDTaYkhEZEesqSIiqubPP/+s8XOXLl0AAF26dMGhQ4dQVFSk3P7HH39ApVKhc+fO8PPzQ2xsLDZt2mTXMRORc2CmiojcSllZGdLT0y2u02g0CA0NBQCsWLEC/fv3x5AhQ/D1119j9+7d+M9//gMAmDp1Kl588UVMnz4dL730ErKysvDYY4/hvvvuQ0REBADgpZdewsMPP4zw8HDccsstKCgowB9//IHHHnvMvi+UiOyOQRURuZUNGzYgKirK4rrOnTvjxIkTAEwr87799lvMmjULUVFR+Oabb9C1a1cAgLe3N3755Rc88cQTGDBgALy9vXH77bfj3XffVR5r+vTpKC0txXvvvYennnoKoaGhuOOOO+z3AonIYSQhhHD0IIiInIEkSVi9ejUmTJjg6KEQkQtiTRURERGRFTCoIiIiIrIC1lQREZmxGoKImoOZKiIiIiIrYFBFREREZAUMqoiIiIisgEEVERERkRUwqCIiIiKyAgZVRERERFbAoIqIiIjIChhUEREREVkBgyoiIiIiK/h/AB6sqG1eUzwAAAAASUVORK5CYII=\n" - }, - "metadata": {} - } - ] + "execution_count": null, + "outputs": [] }, { "cell_type": "code", @@ -453,26 +252,10 @@ "plt.show()" ], "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 472 - }, - "id": "O5NpleLGSF4Q", - "outputId": "fac8838f-7092-4ff7-b1e3-09c476f9727a" + "id": "O5NpleLGSF4Q" }, - "execution_count": 114, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHHCAYAAAC88FzIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFT0lEQVR4nO3dd3hUZdoG8HtKZtI7qQQSaqgJEIgoAkoAlRUFUURWMLryuYCIcV1kWUBX2YBrYUUW1oIFG4uABZUWQUUDQUKoIbQU0gukJzPJzPn+mJwJQxIIYTJnyv27rrk0M2fOvOcAyZPnfd7nlQmCIICIiIjIQcmlHgARERGRlBgMERERkUNjMEREREQOjcEQEREROTQGQ0REROTQGAwRERGRQ2MwRERERA6NwRARERE5NAZDRERE5NAYDBGRkUwmw4svvnjD78vKyoJMJsOHH35o9jGRdXrxxRchk8lQWloq9VCIbhqDISIr8+GHH0Imk0Emk2H//v0tXhcEAWFhYZDJZPjDH/4gwQg7bt++fZDJZPjyyy+lHorVE4ONth6FhYVSD5HIbiilHgARtc7Z2RmfffYZRo0aZfL8Tz/9hNzcXKjVaolGRpa0bt06uLu7t3je29vb8oMhslMMhois1D333IPNmzfjrbfeglLZ/E/1s88+w7Bhwzg9YQdqa2vh6up6zWOmTZsGf39/C42IyDFxmozISs2YMQNlZWXYvXu38TmtVosvv/wSjzzySKvvqampwXPPPYewsDCo1Wr07dsXr732GgRBMDlOo9Hg2WefRZcuXeDh4YHJkycjNze31XPm5eXh8ccfR2BgINRqNQYMGIANGzaY70JbceHCBTz44IPw9fWFq6srbrnlFnz33XctjluzZg0GDBgAV1dX+Pj4ICYmBp999pnx9aqqKixcuBDh4eFQq9UICAjA+PHjkZqaes3PF6eoTp8+jYceegienp7w8/PDM888g/r6+hbHf/LJJxg2bBhcXFzg6+uLhx9+GBcvXjQ5ZuzYsRg4cCAOHz6M0aNHw9XVFX/72986eIeaiVOPmzZtwt/+9jcEBQXBzc0NkydPbjEGANi8ebNxrP7+/vjjH/+IvLy8FseJ196lSxe4uLigb9++WLJkSYvjysvL8dhjj8Hb2xteXl6Ij49HbW3tTV8XkSUxM0RkpcLDwzFy5Eh8/vnnuPvuuwEAP/zwAyoqKvDwww/jrbfeMjleEARMnjwZe/fuxRNPPIHo6Gjs3LkTzz//PPLy8vDmm28aj/3Tn/6ETz75BI888ghuvfVW/Pjjj5g0aVKLMRQVFeGWW26BTCbD/Pnz0aVLF/zwww944oknUFlZiYULF5r9uouKinDrrbeitrYWCxYsgJ+fHz766CNMnjwZX375JaZMmQIAePfdd7FgwQJMmzbNGKQcO3YMBw8eNAaLTz31FL788kvMnz8f/fv3R1lZGfbv34/09HQMHTr0umN56KGHEB4ejsTERBw4cABvvfUWLl++jI8//th4zIoVK7B06VI89NBD+NOf/oSSkhKsWbMGo0ePxpEjR0yms8rKynD33Xfj4Ycfxh//+EcEBgZedwyXLl1q8ZxSqWwxTbZixQrIZDIsWrQIxcXFWL16NeLi4pCWlgYXFxcAhnq0+Ph4DB8+HImJiSgqKsK///1v/PrrryZjPXbsGG6//XY4OTlhzpw5CA8Px/nz5/Htt99ixYoVLe5RREQEEhMTkZqaivfeew8BAQFYtWrVda+NyGoIRGRVPvjgAwGAcOjQIeHtt98WPDw8hNraWkEQBOHBBx8U7rjjDkEQBKF79+7CpEmTjO/76quvBADCK6+8YnK+adOmCTKZTDh37pwgCIKQlpYmABDmzp1rctwjjzwiABCWL19ufO6JJ54QgoODhdLSUpNjH374YcHLy8s4rszMTAGA8MEHH1zz2vbu3SsAEDZv3tzmMQsXLhQACL/88ovxuaqqKiEiIkIIDw8XdDqdIAiCcN999wkDBgy45ud5eXkJ8+bNu+YxrVm+fLkAQJg8ebLJ83PnzhUACEePHhUEQRCysrIEhUIhrFixwuS448ePC0ql0uT5MWPGCACE9evX39AYWnv07dvXeJx4T0NDQ4XKykrj8//73/8EAMK///1vQRAEQavVCgEBAcLAgQOFuro643Hbt28XAAjLli0zPjd69GjBw8NDyM7ONhmTXq9vMb7HH3/c5JgpU6YIfn5+7bpGImvBaTIiK/bQQw+hrq4O27dvR1VVFbZv397mFNn3338PhUKBBQsWmDz/3HPPQRAE/PDDD8bjALQ47uosjyAI2LJlC+69914IgoDS0lLjY+LEiaioqLjudFNHfP/99xgxYoRJ4bi7uzvmzJmDrKwsnDp1CoChgDg3NxeHDh1q81ze3t44ePAg8vPzOzSWefPmmXz99NNPG8cIAFu3boVer8dDDz1kcn+CgoLQu3dv7N271+T9arUa8fHxNzSGLVu2YPfu3SaPDz74oMVxs2bNgoeHh/HradOmITg42DjW33//HcXFxZg7dy6cnZ2Nx02aNAmRkZHGaciSkhL8/PPPePzxx9GtWzeTz5DJZC0+96mnnjL5+vbbb0dZWRkqKytv6DqJpMRpMiIr1qVLF8TFxeGzzz5DbW0tdDodpk2b1uqx2dnZCAkJMfmBCAD9+vUzvi7+Vy6Xo2fPnibH9e3b1+TrkpISlJeX45133sE777zT6mcWFxd36LquJTs7G7GxsS2ev/I6Bg4ciEWLFmHPnj0YMWIEevXqhQkTJuCRRx7BbbfdZnzPq6++itmzZyMsLAzDhg3DPffcg1mzZqFHjx7tGkvv3r1Nvu7ZsyfkcjmysrIAAGfPnoUgCC2OEzk5OZl8HRoaCpVK1a7PFo0ePbpdBdRXj0Emk6FXr17GsYp//lf/OQNAZGSksY3DhQsXAAADBw5s1/iuDph8fHwAAJcvX4anp2e7zkEkNQZDRFbukUcewZNPPonCwkLcfffdFltSrdfrAQB//OMfMXv27FaPGTx4sEXG0pp+/fohIyMD27dvx44dO7Blyxb85z//wbJly/DSSy8BMGTWbr/9dmzbtg27du3Cv/71L6xatQpbt2411mHdiKszI3q9HjKZDD/88AMUCkWL469eEi/W7tiT1q4bQIuifSJrxmCIyMpNmTIF//d//4cDBw5g06ZNbR7XvXt37NmzB1VVVSbZodOnTxtfF/+r1+tx/vx5kyxBRkaGyfnElWY6nQ5xcXHmvKRr6t69e4uxAC2vAwDc3Nwwffp0TJ8+HVqtFlOnTsWKFSuwePFi41RQcHAw5s6di7lz56K4uBhDhw7FihUr2hUMnT17FhEREcavz507B71ej/DwcACGTJEgCIiIiECfPn1u5rJv2tmzZ02+FgQB586dMwas4n3LyMjAnXfeaXJsRkaG8XUxa3bixInOHjKR1WDNEJGVc3d3x7p16/Diiy/i3nvvbfO4e+65BzqdDm+//bbJ82+++SZkMpnxh7/436tXo61evdrka4VCgQceeABbtmxp9QdjSUlJRy7nuu655x6kpKQgOTnZ+FxNTQ3eeecdhIeHo3///gAMK7OupFKp0L9/fwiCgIaGBuh0OlRUVJgcExAQgJCQEGg0mnaNZe3atSZfr1mzBkDzPZw6dSoUCgVeeumlFpkQQRBajLEzffzxx6iqqjJ+/eWXX6KgoMA41piYGAQEBGD9+vUm1//DDz8gPT3duJqwS5cuGD16NDZs2ICcnByTz2C2h+wVM0NENqCtaaor3XvvvbjjjjuwZMkSZGVlISoqCrt27cLXX3+NhQsXGmuEoqOjMWPGDPznP/9BRUUFbr31ViQlJeHcuXMtzrly5Urs3bsXsbGxePLJJ9G/f39cunQJqamp2LNnT6vLvttjy5YtxkzP1df5wgsvGNsJLFiwAL6+vvjoo4+QmZmJLVu2QC43/A43YcIEBAUF4bbbbkNgYCDS09Px9ttvY9KkSfDw8EB5eTm6du2KadOmISoqCu7u7tizZw8OHTqE119/vV3jzMzMxOTJk3HXXXchOTnZ2I4gKioKgCEz9Morr2Dx4sXIysrC/fffDw8PD2RmZmLbtm2YM2cO/vKXv3ToHom+/PLLVjtQjx8/3mRpvq+vL0aNGoX4+HgUFRVh9erV6NWrF5588kkAhvqlVatWIT4+HmPGjMGMGTOMS+vDw8Px7LPPGs/11ltvYdSoURg6dCjmzJmDiIgIZGVl4bvvvkNaWtpNXQ+RVZJoFRsRteHKpfXXcvXSekEwLEF/9tlnhZCQEMHJyUno3bu38K9//ctkSbQgCEJdXZ2wYMECwc/PT3BzcxPuvfde4eLFiy2W1guCIBQVFQnz5s0TwsLCBCcnJyEoKEgYN26c8M477xiPudGl9W09xOX058+fF6ZNmyZ4e3sLzs7OwogRI4Tt27ebnOu///2vMHr0aMHPz09Qq9VCz549heeff16oqKgQBEEQNBqN8PzzzwtRUVGCh4eH4ObmJkRFRQn/+c9/rjlGQWheNn7q1Clh2rRpgoeHh+Dj4yPMnz/fZFm6aMuWLcKoUaMENzc3wc3NTYiMjBTmzZsnZGRkGI8ZM2bMdVsBtDaGth579+41uaeff/65sHjxYiEgIEBwcXERJk2a1GJpvCAIwqZNm4QhQ4YIarVa8PX1FWbOnCnk5ua2OO7EiRPClClTjH8Gffv2FZYuXdpifCUlJSbvE//+ZmZmtvtaiaQmEwTmPYmIrvTiiy/ipZdeQklJidVvhbFv3z7ccccd2Lx5c5srDYno2lgzRERERA6NwRARERE5NAZDRERE5NBYM0REREQOjZkhIiIicmgMhoiIiMihseliK/R6PfLz8+Hh4dHqLs1ERERkfQRBQFVVFUJCQowNWtuDwVAr8vPzERYWJvUwiIiIqAMuXryIrl27tvt4BkOtEDe5vHjxIjw9PSUeDREREbVHZWUlwsLCTDarbg8GQ60Qp8Y8PT0ZDBEREdmYGy1xYQE1EREROTQGQ0REROTQGAwRERGRQ7OKYGjt2rUIDw+Hs7MzYmNjkZKS0uaxW7duRUxMDLy9veHm5obo6Ghs3LixzeOfeuopyGQyrF69uhNGTkREZB46nQ719fV8XOOh0+k65d5LXkC9adMmJCQkYP369YiNjcXq1asxceJEZGRkICAgoMXxvr6+WLJkCSIjI6FSqbB9+3bEx8cjICAAEydONDl227ZtOHDgAEJCQix1OURERDdEEAQUFhaivLxc6qHYBG9vbwQFBZm1D6Dke5PFxsZi+PDhePvttwEYGh6GhYXh6aefxgsvvNCucwwdOhSTJk3Cyy+/bHwuLy8PsbGx2LlzJyZNmoSFCxdi4cKF7TpfZWUlvLy8UFFRwdVkRETUqQoKClBeXo6AgAC4urqy2W8bBEFAbW0tiouL4e3tjeDg4BbHdPTnt6SZIa1Wi8OHD2Px4sXG5+RyOeLi4pCcnHzd9wuCgB9//BEZGRlYtWqV8Xm9Xo9HH30Uzz//PAYMGHDd82g0Gmg0GuPXlZWVN3glREREN06n0xkDIT8/P6mHY/VcXFwAAMXFxQgICIBCoTDLeSWtGSotLYVOp0NgYKDJ84GBgSgsLGzzfRUVFXB3d4dKpcKkSZOwZs0ajB8/3vj6qlWroFQqsWDBgnaNIzExEV5eXsYHu08TEZElNDQ0AABcXV0lHontEO+VeO/MQfKaoY7w8PBAWloaqqurkZSUhISEBPTo0QNjx47F4cOH8e9//xupqantTjUuXrwYCQkJxq/FDpZERESWwKmx9uuMeyVpMOTv7w+FQoGioiKT54uKihAUFNTm++RyOXr16gUAiI6ORnp6OhITEzF27Fj88ssvKC4uRrdu3YzH63Q6PPfcc1i9ejWysrJanE+tVkOtVpvnooiIiMimSDpNplKpMGzYMCQlJRmf0+v1SEpKwsiRI9t9Hr1eb6z5efTRR3Hs2DGkpaUZHyEhIXj++eexc+dOs18DERER2TbJp8kSEhIwe/ZsxMTEYMSIEVi9ejVqamoQHx8PAJg1axZCQ0ORmJgIwFDfExMTg549e0Kj0eD777/Hxo0bsW7dOgCAn59fiyI0JycnBAUFoW/fvpa9OCIiIjs1duxYREdHm62P32OPPYby8nJ89dVXZjnfjZA8GJo+fTpKSkqwbNkyFBYWIjo6Gjt27DAWVefk5EAub05g1dTUYO7cucjNzYWLiwsiIyPxySefYPr06VJdApHd0jbqIZMBTgqr6M9KRNQpJO8zZI3YZ4gI+D3rEv78aSpUCjk+iB+OPoEeUg+JyO7U19cjMzMTERERcHZ2lno47fbYY4/ho48+MnkuMzMT1dXVeP755/HLL7/Azc0NEyZMwJtvvgl/f38AwJdffomXXnoJ586dg6urK4YMGYKvv/4a//rXv/DSSy+ZnG/v3r0YO3Zsi8++1j2zyT5DRGSdtqbm4oUtx6HV6QEAD65PxgfxwzG0m4/EIyOyf4IgoK6hc7aduB4XJ0W7Vmv9+9//xpkzZzBw4ED84x//AGAoSRkxYgT+9Kc/4c0330RdXR0WLVqEhx56CD/++CMKCgowY8YMvPrqq5gyZQqqqqrwyy+/QBAE/OUvf0F6ejoqKyvxwQcfADDsOGEpDIaIyEgQBPxrZwb+s+88AGBC/0CUVmuQmlOOme8exPpHh2FMny4Sj5LIvtU16NB/mTQLfk79YyJcVdcPDby8vKBSqeDq6mpc/f3KK69gyJAh+Oc//2k8bsOGDQgLC8OZM2dQXV2NxsZGTJ06Fd27dwcADBo0yHisi4sLNBrNNVeTdxYWAhCR0Z70YmMgNO+Onlj/x2H45E+xGNOnC+oadPjTR4ew40TbDVGJyHEdPXoUe/fuhbu7u/ERGRkJADh//jyioqIwbtw4DBo0CA8++CDeffddXL58WeJRGzAzRERGh7IuAQAeiumK5ycavom5qpR4d1YMntt8FN8ezcf8z1KxduZQTBxg+d/eiByBi5MCp/4x8foHdtJnd1R1dTXuvfdek+2xRMHBwVAoFNi9ezd+++037Nq1C2vWrMGSJUtw8OBBRERE3MywbxqDISIySi8w7Ms35KraIJVSjtXToyGXAV+n5WPep6n4z8yhmMCAiMjsZDJZu6aqpKZSqaDTNdc2DR06FFu2bEF4eDiUytbHL5PJcNttt+G2227DsmXL0L17d2zbtg0JCQktzmdJnCYjIqPThVUAgMiglivHFHIZXn8wCpOjQtCoFzD301Tsyyi29BCJyEqEh4fj4MGDyMrKQmlpKebNm4dLly5hxowZOHToEM6fP4+dO3ciPj4eOp0OBw8exD//+U/8/vvvyMnJwdatW1FSUoJ+/foZz3fs2DFkZGSgtLTUrHuPXQ+DISICAJRWa1BSpYFMBvRtJRgCAKVCjjceag6IFm89jlpto4VHSkTW4C9/+QsUCgX69++PLl26QKvV4tdff4VOp8OECRMwaNAgLFy4EN7e3pDL5fD09MTPP/+Me+65B3369MHf//53vP7667j77rsBAE8++ST69u2LmJgYdOnSBb/++qvFrsX683BEZBGnCwxZoXA/t2um6JUKOV6dNhipOZeRe7kO63+6gITxfSw1TCKyEn369EFycnKL57du3drq8f369cOOHTvaPF+XLl2wa9cus43vRjAzREQAmuuF+gVfv7mis5MCf59kSG3/96fzyL1c26ljIyLqTAyGiAgAkF5oCIYig9rXtXXigCCM7OEHTaMeiT+c7syhERF1KgZDRAQASG+aJusX3L5gSCaTYdm9/SGXAd8dK8DBC2WdOTwiok7DYIiI0KDT41xx2yvJ2tIv2BOPxHYDAKz4Pr1TxkZE1NkYDBERzpdUo0EnwEOtRFcflxt677NxfSCXAcdyK1BYUd9JIySyb9wzvf06414xGCIi40qyyGCPdm3SeCU/dzUGhHgBAFKaOlgTUfs4OTkBAGpruQihvcR7Jd47c+DSeiIyriRrb/H01YaH++J4XgUOZV7C5KgQcw6NyK4pFAp4e3ujuNjQwNTV1fWGfyFxFIIgoLa2FsXFxfD29oZC0fGtQ67GYIiIkF54Y8XTVxsR4YMNv2YiJZOZIaIbJe7SLgZEdG3e3t5m39mewRARNWeG2tFjqDUx4b4AgIyiKpTXauHtqjLb2IjsnUwmQ3BwMAICAiy6BYUtcnJyMmtGSMRgiMjBmWzDEdixYMjfXY0eXdxwoaQGv2ddRlz/QDOPksj+KRSKTvlBT9fHAmoiBycWT3f3dYWbuuO/H8VGGLJDh1hETUQ2hsEQkYM7XShuw9GxeiHR8KapsoOsGyIiG8NgiMjBnbrJlWQiMRg6kVfBneyJyKYwGCJycGeLqgEAfYPcb+o8XX1cEOzljEa9gLSccjOMjIjIMhgMETkwvV7A+RJDMNQroGPF0yKZTGbMDrH5IhHZEgZDRA6soLIetVodlHIZuvu53vT5hjcVUbPfEBHZEgZDRA7sbJFhJVmEvxucFDf/7UBcUXYkpxwNOv1Nn4+IyBIYDBE5sHPF4hTZzdULiXp1cYe3qxPqGnQ4kVdhlnMSEXU2BkNEDkwMhnqbKRiSy2UY1s0HAJDKImoishEMhogcmBgM9TRTMAQAQ7uLwdBls52TiKgzMRgiclCCIOCsmafJAGBIN28AwJFsBkNEZBsYDBE5qNJqLSrqGiCTAT27mC8YiurqDbkMyK+oR2FFvdnOS0TUWRgMETkocYoszMcVzk7m2xzSTa1E36Zu1kc4VUZENoDBEJGDOldi3uLpKxmnyi6Wm/3cRETmxmCIyEGda+oxZM56IdFQcUUZ64aIyAZYRTC0du1ahIeHw9nZGbGxsUhJSWnz2K1btyImJgbe3t5wc3NDdHQ0Nm7caHLMiy++iMjISLi5ucHHxwdxcXE4ePBgZ18GkU0RM0PmXEkmGtqUGTqeVwFtI5svEpF1kzwY2rRpExISErB8+XKkpqYiKioKEydORHFxcavH+/r6YsmSJUhOTsaxY8cQHx+P+Ph47Ny503hMnz598Pbbb+P48ePYv38/wsPDMWHCBJSUlFjqsoisnrl7DF0pwt8N3q5O0DTqkV5QafbzExGZk0wQBEHKAcTGxmL48OF4++23AQB6vR5hYWF4+umn8cILL7TrHEOHDsWkSZPw8ssvt/p6ZWUlvLy8sGfPHowbN+665xOPr6iogKenZ/svhshGVNY3YPCLuwAAx16cAE9nJ7N/RvwHKdibUYLl9/ZH/G0RZj8/EdHVOvrzW9LMkFarxeHDhxEXF2d8Ti6XIy4uDsnJydd9vyAISEpKQkZGBkaPHt3mZ7zzzjvw8vJCVFRUq8doNBpUVlaaPIjsmZgVCvJ07pRACGiuGzrCTtREZOUkDYZKS0uh0+kQGBho8nxgYCAKCwvbfF9FRQXc3d2hUqkwadIkrFmzBuPHjzc5Zvv27XB3d4ezszPefPNN7N69G/7+/q2eLzExEV5eXsZHWFjYzV8ckRUz955krRnSjZ2oicg2SF4z1BEeHh5IS0vDoUOHsGLFCiQkJGDfvn0mx9xxxx1IS0vDb7/9hrvuugsPPfRQm3VIixcvRkVFhfFx8eJFC1wFkXQsEQxFhXlBJgNyL9ehuIrNF4nIekkaDPn7+0OhUKCoqMjk+aKiIgQFBbX5Prlcjl69eiE6OhrPPfccpk2bhsTERJNj3Nzc0KtXL9xyyy14//33oVQq8f7777d6PrVaDU9PT5MHkT2zRDDk4eyEPgEeADhVRkTWTdJgSKVSYdiwYUhKSjI+p9frkZSUhJEjR7b7PHq9HhqN5qaPIXIUZ4s7r8fQlYZ29wbAqTIism5KqQeQkJCA2bNnIyYmBiNGjMDq1atRU1OD+Ph4AMCsWbMQGhpqzPwkJiYiJiYGPXv2hEajwffff4+NGzdi3bp1AICamhqsWLECkydPRnBwMEpLS7F27Vrk5eXhwQcflOw6iaxFfYMOuZfrAHR+MBTV1Rufp1zEibyKTv0cIqKbIXkwNH36dJSUlGDZsmUoLCxEdHQ0duzYYSyqzsnJgVzenMCqqanB3LlzkZubCxcXF0RGRuKTTz7B9OnTAQAKhQKnT5/GRx99hNLSUvj5+WH48OH45ZdfMGDAAEmukcia5F6uhSAAHmol/NxUnfpZA0O9AAAn8yshCAJkMlmnfh4RUUdI3mfIGrHPENmzPaeK8KePf8eAEE98t+D2Tv0sTaMOA5fvRINOwP5Fd6Crj2unfh4ROTab7DNERJaXfakWANDdr/MDE7VSgT6BhiLqE3ns30VE1onBEJGDySmrAQB093OzyOcNDBGnylg3RETWicEQkYPJKmvKDPlaZspqYKghVc0iaiKyVgyGiBxMTtM0WTcLTJMBwICmIuoT+ZwmIyLrxGCIyIE06vTIvWwIhsItNE3WL8gTchlQUqVBcSU7UROR9WEwRORACirq0aAToFLKEeTpbJHPdFEpjP2MTrBuiIisEIMhIgeS3VQvFObjArnccj1/xCJqrigjImvEYIjIgWRfMqwks9QUmchYN8QiaiKyQgyGiByImBmyVPG0aGCIYUXZSRZRE5EVYjBE5ECyxR5DFlpWL+rfFAzlldfhUo3Wop9NRHQ9DIaIHIiYGerub9lpMg9nJ0Q0fSabLxKRtWEwROQgBEEw9hiydGYIAAaEiM0XOVVGRNaFwRCRgyip1qBWq4NcBkk2TB0grihjZoiIrAyDISIHkdM0RRbi7QKV0vL/9LktBxFZKwZDRA7CuCeZhVeSiQaHegMw1C2xiJqIrAmDISIHIe5W383XssXTIi9XJ2Mn6tTsy5KMgYioNQyGiBxE9iVxTzJpMkMAMLSbNwAgNYfBEBFZDwZDRA5C6mkyABjW3QcAcJiZISKyIgyGiByE1NNkADC0myEYOpZbgQadXrJxEBFdicEQkQOoqGvA5doGANJmhnp2cYensxJ1DTqcLqiSbBxERFdiMETkAMRl9f7uariplZKNQy6XYUhTdoh1Q0RkLRgMETkAsfN0N18XiUfSPFXGuiEishYMhogcQH55HQBpOk9fTSyiZmaIiKwFgyEiB5BfYQiGgr2dJR4JEBXmBZkMyL1ch+LKeqmHQ0TEYIjIEYiZoRAv6afJPJyd0DfQAwCzQ0RkHRgMETmAggpDBibEW/pgCACGst8QEVkRBkNEDkDMDAV7ST9NBgDDjCvKyqUdCBERGAwR2T1Now6l1YaNUUOtLDN0PLcCmkadxKMhIkfHYIjIzhU2TZE5O8nh7eok8WgMwv1c4eumglanx4m8SqmHQ0QOjsEQkZ3LE4unvV0gk8kkHo2BTCYzLrH/PeuSxKMhIkfHYIjIzhWUNxVPW8FKsiuNCPcFABzKYhE1EUmLwRCRnbO24mlRTHhTZij7EvR6QeLREJEjYzBEZOfyrWxZvWhgqBecneQor23A+ZJqqYdDRA7MKoKhtWvXIjw8HM7OzoiNjUVKSkqbx27duhUxMTHw9vaGm5sboqOjsXHjRuPrDQ0NWLRoEQYNGgQ3NzeEhIRg1qxZyM/Pt8SlEFkdY8NFK+g+fSUnhRxDwgzZIU6VEZGUJA+GNm3ahISEBCxfvhypqamIiorCxIkTUVxc3Orxvr6+WLJkCZKTk3Hs2DHEx8cjPj4eO3fuBADU1tYiNTUVS5cuRWpqKrZu3YqMjAxMnjzZkpdFZDUKKpoLqK3N8AixbohF1EQkHZkgCJJO1sfGxmL48OF4++23AQB6vR5hYWF4+umn8cILL7TrHEOHDsWkSZPw8ssvt/r6oUOHMGLECGRnZ6Nbt27XPV9lZSW8vLxQUVEBT0/P9l8MkRUatHwnqjSN2JMwBr0C3KUejolfzpbg0fdT0NXHBfsX3Sn1cIjIxnX057ekmSGtVovDhw8jLi7O+JxcLkdcXBySk5Ov+35BEJCUlISMjAyMHj26zeMqKiogk8ng7e3d6usajQaVlZUmDyJ7UFnfgCpNIwDrmyYDgCHdfCBv2rRVzGAREVmapMFQaWkpdDodAgMDTZ4PDAxEYWFhm++rqKiAu7s7VCoVJk2ahDVr1mD8+PGtHltfX49FixZhxowZbUaJiYmJ8PLyMj7CwsI6flFEVkRcVu/t6gRXlVLi0bTkrlZiQIgXANYNEZF0JK8Z6ggPDw+kpaXh0KFDWLFiBRISErBv374WxzU0NOChhx6CIAhYt25dm+dbvHgxKioqjI+LFy924uiJLKd5Wb311QuJjEvsWTdERBKR9FdFf39/KBQKFBUVmTxfVFSEoKCgNt8nl8vRq1cvAEB0dDTS09ORmJiIsWPHGo8RA6Hs7Gz8+OOP15w7VKvVUKvVN3cxRFYov2nqKdQKp8hEI8J98cGvWUjJZDBERNKQNDOkUqkwbNgwJCUlGZ/T6/VISkrCyJEj230evV4PjUZj/FoMhM6ePYs9e/bAz8/PrOMmshW2kRkyrCjLKKpCRV2DxKMhIkckeRFBQkICZs+ejZiYGIwYMQKrV69GTU0N4uPjAQCzZs1CaGgoEhMTARjqe2JiYtCzZ09oNBp8//332Lhxo3EarKGhAdOmTUNqaiq2b98OnU5nrD/y9fWFSqWS5kKJJGDcisMKl9WLunioEeHvhszSGqTmXMYdfQOkHhIRORjJg6Hp06ejpKQEy5YtQ2FhIaKjo7Fjxw5jUXVOTg7k8uYEVk1NDebOnYvc3Fy4uLggMjISn3zyCaZPnw4AyMvLwzfffAPAMIV2pb1795pMpRHZuzwrbbh4tZjuPsgsrcHhLAZDRGR5kvcZskbsM0T2YvSre5FzqRabnxqJ4U3TUdbo/f2ZeHn7KdwzKAj/mTlM6uEQkY2yyT5DRNR59HoBhU37klnbJq1Xi/B3BQBkltZKPBIickQMhojsVGmNBlqdHjIZEOhp3cFQdz83AEB2WQ2YrCYiS2MwRGSnxOLpQA9nOCms+596mI8r5DKgVqtDSZXm+m8gIjIj6/4OSUQdZlxWb+XF0wCgUsoR6mNY8ZZVxqkyIrIsBkNEdiq/wvqX1V8pvGmqLKu0RuKREJGjYTBEZKfEzFCIlRdPi4zBUBmDISKyLAZDRHaqeSWZbWSGuvsZVpRlc5qMiCyMwRCRnSqosI2Gi6IIf0NmKJPTZERkYQyGiOyUmBkKspnMEJfXE5E0GAwR2SGdXkBR0xL1ICvvMSQK83WBXAbUaHUoqebyeiKyHAZDRHaotFoDnV6AQi5DFw+11MNpF7VSYVz5xrohIrIkBkNEdqigaYoswEMNhVwm8Wjaj3VDRCQFBkNEdqiwqXg6yEaW1YuaV5QxGCIiy2EwRGSHCmxkg9arNTde5DQZEVkOgyEiO2RcSeZpGyvJRGy8SERSYDBEZIcKK200M+TfvCUHl9cTkaUwGCKyQwXGHkO2FQyF+bpA1rS8vrRaK/VwiMhBMBgiskOFNhoMqZUKhHiJy+s5VUZElsFgiMjOCIJwRc2QbQVDAJfXE5HlMRgisjOXarTQ6vQAgEAbDIa4YSsRWRqDISI7I9YL+buroVLa3j9xY2aI02REZCG2952SiK6p0EZ7DIm6+zWvKCMisgQGQ0R2pqDSNounRd18DdNkeeV1Eo+EiBwFgyEiOyNuxWGrmaFgb8O4y2sbUKttlHg0ROQIGAwR2ZnCCg0A280MeTo7wV2tBADkl9dLPBoicgQMhojsTGFl0yatNriSTBTSlB0qqOBUGRF1PgZDRHbGVrtPXym4qfFiPuuGiMgCGAwR2ZErGy6KAYUtEjNDnCYjIktgMERkRyrrG1Gr1QGw8WmypkCO02REZAkMhojsiJgV8nZ1gotKIfFoOi7YW5wmY2aIiDofgyEiOyJmUmw5KwQAIU31TvnMDBGRBTAYIrIjtt59WiRmhgrK6yEIgsSjISJ7x2CIyI40rySz3eJpoDmYq2vQoby2QeLREJG9kzwYWrt2LcLDw+Hs7IzY2FikpKS0eezWrVsRExMDb29vuLm5ITo6Ghs3bmxxzIQJE+Dn5weZTIa0tLROvgIi61EkbsVh49Nkzk4K+LmpAHCqjIg6n6TB0KZNm5CQkIDly5cjNTUVUVFRmDhxIoqLi1s93tfXF0uWLEFycjKOHTuG+Ph4xMfHY+fOncZjampqMGrUKKxatcpSl0FkNQrsZJoMaN6Wo4BF1ETUyZRSfvgbb7yBJ598EvHx8QCA9evX47vvvsOGDRvwwgsvtDh+7NixJl8/88wz+Oijj7B//35MnDgRAPDoo48CALKysjp17ETWqNAOGi6KQrxccCKvkpkhIup0kmWGtFotDh8+jLi4uObByOWIi4tDcnLydd8vCAKSkpKQkZGB0aNH39RYNBoNKisrTR5Etsi4mswegiEuryeySxmFVfjfoYsoq9ZIPRQjyYKh0tJS6HQ6BAYGmjwfGBiIwsLCNt9XUVEBd3d3qFQqTJo0CWvWrMH48eNvaiyJiYnw8vIyPsLCwm7qfERSqG/QobLesMt7oIftB0PiVB8bLxLZly8PX8RftxzDK9+lSz0UI8kLqG+Uh4cH0tLScOjQIaxYsQIJCQnYt2/fTZ1z8eLFqKioMD4uXrxonsESWVBp029ZKoUcni6SzoCbRXNmiMEQkb0QBAG7ThUBACb0D7zO0ZYj2XdMf39/KBQKFBUVmTxfVFSEoKCgNt8nl8vRq1cvAEB0dDTS09ORmJjYop7oRqjVaqjV6g6/n8galFQZgiF/dxVkMpnEo7l53J+MyP6cLa5GdlktVEo5RvfpIvVwjCTLDKlUKgwbNgxJSUnG5/R6PZKSkjBy5Mh2n0ev10OjsZ55RyKplFZrAQBdPOwjsBc3mi2qrIdOz8aLRPZg10lDGcyoXv5wU1tPBlvSkSQkJGD27NmIiYnBiBEjsHr1atTU1BhXl82aNQuhoaFITEwEYKjtiYmJQc+ePaHRaPD9999j48aNWLdunfGcly5dQk5ODvLz8wEAGRkZAICgoKBrZpyIbJ2YGbKXYCjAQw2FXIZGvYCSKo1dFIUTObrdVjhFBkgcDE2fPh0lJSVYtmwZCgsLER0djR07dhiLqnNyciCXNyevampqMHfuXOTm5sLFxQWRkZH45JNPMH36dOMx33zzjTGYAoCHH34YALB8+XK8+OKLlrkwIgk0T5PZRzCkVMgR6KFGfkU98ivqGAwR2biCijocza2ATAaM68dgyMT8+fMxf/78Vl+7ujD6lVdewSuvvHLN8z322GN47LHHzDQ6ItshFlDbS2YIMOxRll9Rb2i82E3q0RDRzdjTlBUa2s3H6r5P2dxqMiJqnb1NkwHNy+u5oozI9lnjKjIRgyEiOyFmhuxlmgwAQsXl9ew1RGTTKusbcOBCGQBgPIMhIuosJfY4TebF/cmI7MG+jBI06AT0CnBHjy7uUg+nBQZDRHbCOE1mR5mhYGaGiOyCuKTeGrNCAIMhIrtQo2lErVYHAPC3o8xQKPcnI7J5DTo9fsooAcBgiIg6kVgv5OKkgJtKIfFozEecJiut1kDTqJN4NETUEUdyylGlaYSvmwrRXb2lHk6rGAwR2QFjjyEP+9iKQ+TrpoJaafg2VVjB7BCRLdqXUQwAuL23P+Ry6/z+xGCIyA4YewzZUb0QAMhkMmOzxaJKbrtDZIv2NU2Rje1rPXuRXY3BEJEdsMceQ6JADzEYYmaIyNYUV9bjVEElZDJgdG8GQ0TUiUqaNmm1px5DogBPwzUxGCKyPT+dMWSFBoV6wc+Kvz8xGCKyA3adGfI0ZIaKqzhNRmRr9jUFQ2P7WG9WCGAwRGQX7DsYYmaIyBY16vTYf7YUADCmb4DEo7k2BkNEdsAet+IQiZkhBkNEtuVobjkq6hrg5eKE6DBvqYdzTQyGiOyAfWeGmqbJuJqMyKaIq8hu7+0PhZUuqRcxGCKycYIgNO9LxswQEVkJsXh6jJXXCwEMhohsXpWmEdpGPQD7zAwFNF1TjVaHak2jxKMhovYordbgWG4FAGCMFfcXEjEYIrJx4hSZh1oJZyf72YpD5KZWwkOtBMDsEJGtOHjhEgAgMsgDAU29wqwZgyEiG1dq3IrD/rJCIvYaIrIth7IMwdCICF+JR9I+DIaIbJw91wuJWERNZFtSMg3B0PBwBkNEZAH2vJJMxCJqIttRWd+A9MJKAMwMEZGFNPcYUkk8ks7TPE3GzBCRtTucfRmCAHTzdTX+ImPtGAwR2TiHyAyJm7VWMTNEZO0O2dgUGcBgiMjmlTZt0mrXwZCxZojBEJG1ay6e9pF4JO3HYIjIxomZIXvcikMUyGkyIptQ36DD0YuG/kJ2nxm6ePEicnNzjV+npKRg4cKFeOedd8w2MCJqH4eYJruigFoQBIlHQ0RtOZZbAa1OD393FSL83aQeTrt1KBh65JFHsHfvXgBAYWEhxo8fj5SUFCxZsgT/+Mc/zDpAImqbXi+grMb+M0NioKdp1KOyjl2oiayVOEU2PNwXMpl170d2pQ4FQydOnMCIESMAAP/73/8wcOBA/Pbbb/j000/x4YcfmnN8RHQNFXUNaNAZMiV+dryazNlJAW9XJwAsoiayZrbWX0jUoWCooaEBarXhN7U9e/Zg8uTJAIDIyEgUFBSYb3REdE1iw0VvVyeolfa3FceVjCvKWERNZJV0egGp2ZcB2E5/IVGHgqEBAwZg/fr1+OWXX7B7927cddddAID8/Hz4+fmZdYBE1LZSByieFrHXEJF1Sy+oRJWmEe5qJfoFe0o9nBvSoWBo1apV+O9//4uxY8dixowZiIqKAgB88803xukzIup8JQ7QcFHELtRE1k2sFxra3QcKue3UCwGAsiNvGjt2LEpLS1FZWQkfn+Y+AnPmzIGrq6vZBkdE1yb2GHKEzJC4vJ69hoisk7G/ULjt9BcSdSgzVFdXB41GYwyEsrOzsXr1amRkZCAgIMCsAySitjVvxeEIwZCYGeI0GZG1EQQBKZmGeiFbK54GOhgM3Xffffj4448BAOXl5YiNjcXrr7+O+++/H+vWrTPrAImobc01Q/Y/TRbALTmIrFZ2WS1KqzVQKeSICvOWejg3rEPBUGpqKm6//XYAwJdffonAwEBkZ2fj448/xltvvXXD51u7di3Cw8Ph7OyM2NhYpKSktHns1q1bERMTA29vb7i5uSE6OhobN240OUYQBCxbtgzBwcFwcXFBXFwczp49e8PjIrJ2ZTWOOE3GzBCRtUlpmiIb3NULzk62t7K1Q8FQbW0tPDw8AAC7du3C1KlTIZfLccsttyA7O/uGzrVp0yYkJCRg+fLlSE1NRVRUFCZOnIji4uJWj/f19cWSJUuQnJyMY8eOIT4+HvHx8di5c6fxmFdffRVvvfUW1q9fj4MHD8LNzQ0TJ05EfT1/oyT74ojTZMVV9dDr2YWayJoYN2e1sSX1og4FQ7169cJXX32FixcvYufOnZgwYQIAoLi4GJ6eN7ac7o033sCTTz6J+Ph49O/fH+vXr4erqys2bNjQ6vFjx47FlClT0K9fP/Ts2RPPPPMMBg8ejP379wMwZIVWr16Nv//977jvvvswePBgfPzxx8jPz8dXX33VkcslslrGaTI73opDJHahbtAJuFyrlXg0RHSl5uJpBwqGli1bhr/85S8IDw/HiBEjMHLkSACGLNGQIUPafR6tVovDhw8jLi6ueUByOeLi4pCcnHzd9wuCgKSkJGRkZGD06NEAgMzMTBQWFpqc08vLC7GxsW2eU6PRoLKy0uRBZO0EQbhiNZn91ww5KeTG62QRNZH1KK6qR1ZZLWQyw7J6W9ShpfXTpk3DqFGjUFBQYOwxBADjxo3DlClT2n2e0tJS6HQ6BAYGmjwfGBiI06dPt/m+iooKhIaGQqPRQKFQ4D//+Q/Gjx8PwLBXmniOq88pvna1xMREvPTSS+0eN5E1qNI0QqvTA3CMaTLAUERdWq1FUVU9+sO2mroR2atDTavIIoM84eXiJPFoOqZDwRAABAUFISgoyLh7fdeuXS3WcNHDwwNpaWmorq5GUlISEhIS0KNHD4wdO7ZD51u8eDESEhKMX1dWViIsLMxMoyXqHOIUmbtaaZMFix0R6KnGqQL2GiKyJrbcX0jUoWkyvV6Pf/zjH/Dy8kL37t3RvXt3eHt74+WXX4Zer2/3efz9/aFQKFBUVGTyfFFREYKCgtoetFyOXr16ITo6Gs899xymTZuGxMREADC+70bOqVar4enpafIgsnaONEUmEouoCys4TUZkLVJsvHga6GAwtGTJErz99ttYuXIljhw5giNHjuCf//wn1qxZg6VLl7b7PCqVCsOGDUNSUpLxOb1ej6SkJGMdUnvo9XpoNIZvjhEREQgKCjI5Z2VlJQ4ePHhD5ySydo60kkwU5NUUDFXWSTwSIgKAyvoGpBca6mxttXga6OA02UcffYT33nvPuFs9AAwePBihoaGYO3cuVqxY0e5zJSQkYPbs2YiJicGIESOwevVq1NTUID4+HgAwa9YshIaGGjM/iYmJiImJQc+ePaHRaPD9999j48aNxmaPMpkMCxcuxCuvvILevXsjIiICS5cuRUhICO6///6OXC6RVSprCob8HCgzFOLlAgDIL+c0GZE1OJx9GYIAdPdzRUBT5tYWdSgYunTpEiIjI1s8HxkZiUuXLt3QuaZPn46SkhIsW7YMhYWFiI6Oxo4dO4wF0Dk5OZDLmxNYNTU1mDt3LnJzc+Hi4oLIyEh88sknmD59uvGYv/71r6ipqcGcOXNQXl6OUaNGYceOHXB2tt0/KKKrlTjQvmQiMTNUUMHMEJE1MPYXsuGsEADIBEG44e5lsbGxiI2NbdFt+umnn0ZKSgoOHjxotgFKobKyEl5eXqioqGD9EFmtv207js8O5uCZcb3x7Pg+Ug/HIs4VVyHujZ/h4azE8RcnSj0cIoem1wv4w5r9OFVQiVcfGIyHhku/8KijP787lBl69dVXMWnSJOzZs8dYh5OcnIyLFy/i+++/78gpiegGOVLDRVFw0zRZVX0jqjWNcFd3eEEsEd2k//1+EacKKuGqUmBsZBeph3NTOlRAPWbMGJw5cwZTpkxBeXk5ysvLMXXqVJw8ebLFPmFE1DmMBdRujlMz5KZWwtPZEAAVlHOqjEgqpdUaJP5g6AeYML6PcSNlW9XhX6tCQkJaFEofPXoU77//Pt55552bHhgRXZtxk1YHygwBQIi3CyoLq5BfUY/egR5SD4fIIf3zu3RU1DWgf7AnHrs1XOrh3LQOZYaISHrGaTIHKqAGrlhezyJqIkn8dr4UW4/kQSYD/jl1EJQK2w8lbP8KiBxQnVaHGq0OgGM1XQSa64a4vJ6odbmXa/HUxsPYmJyFDqyRuiZtox5//+oEAOCPsd0RHeZt1vNLhdWHRDZIrBdSKeUOV0QcwuX1RG2qqm/A4x8ewpmiauw4WYjUnHIkTh1kti17PjuYjQslNfB3V+MvE/ua5ZzW4Ia+i06dOvWar5eXl9/MWIioncRgqIu7GjKZTOLRWFawtyEzVFDBzBDRlRp1ejz9+RGcKaqGt6sTquobse1IHs4VV+O/jw5DSNO/nY6q1jRizY/nAAAL43rb7KasrbmhYMjLy+u6r8+aNeumBkRE1+eI+5KJgpsyQ/lcTUZk4pXv0rEvowTOTnJ8/PgIVGsaMe/TVBzPq8CU//yKb+ePuqku0e/9cgFlNVpE+LthuhX0FDKnGwqGPvjgg84aBxHdAEfcl0wUbJwmq4cgCA6XGSNqzaZDOfjwtywAwJsPRWNwV28AwDfzR+GxD1JwvqQG8z5LxWdP3gKnDhQ8l1Zr8O7PFwAAz03o06FzWDP7uhoiByGuJHOkfclEYgF1rVaHyvpGiUdDJL3iynq8sj0dAPCXCX1w96Bg42thvq54b/ZweKiVOJR1GSubegPdqLd/PIcarQ6DQr1wz8Dg67/BxjAYIrJBjpwZclEp4ONqqFVgETUR8PJ36ajSNCIqzBtzx/Zq8XqEvxteeygKAPD+/kx8d6zghs5/8VItPj2YDQBYdFck5HL7y8Y61jIUIjtRWuN4m7ReKcjLBZdrG1BQXo/IIOvfP1AQBHxzNB+Hsy8jq6wW2WU18HBW4qP4EfBz0D9DMo9fzpbg26P5kMuAFfcPbDNQmTggCP83pgf++9MF/PXLowj3d8WAkGvXAYs+S8lBg07Abb38MKq3vzmHbzWYGSKyQY64L9mVQq6oG7J22kY9ntt8FM98kYaPk7Px85kSZJfV4kReJd7fnyn18MiG1TfosOzrkwCAWSPDMTD02sHN8xP6YmQPP9RodfjjewdxKr+yXZ+z62QhAGD68G43N2ArxmCIyAY1T5M5Xs0QAAR720avocr6BsR/mIKtqXlQyGWIvy0cqx4YhMV3RwIANiZno7K+QeJRki0SBAFrfjyLzNIaBHio8dyEPtd9j1Ihx39nDUNUmDcu1zZg5nsHkF5w7YDoXHE1zpfUwEkhw9i+tr0Z67VwmozIBjUvrXfMzJC1dqFu1OlxNLccuZfrkF9ej21HcnGmqBpuKgXenjkUd/QNAADo9QK+PJyLs8XV+ORAdqt1HkStEQQBezOKsXrPWRzLrQAALP1Df3g4t6/nj6ezEz5+fARmvX8QR3MrMPO9g/j8yVvQN6j1ff52nyoCAIzs6Q/Pdn6GLWIwRGRjtI16VNQZsgmOGwxZX2aoVtuIR949iLSL5SbPd/FQ44PHhptMYcjlMjw1piee23wUG/Zn4vHbIszWIZjsV0VtAx7/6BAOZ18GALg4KfDUmJ74w+AbW93l5eKEj5+IxaPvH8Sx3Aos3JSG7U+PgqKVeqNdpwxTZOP7B978BVgxTpMR2ZhLTcXTCrkM3nbUAfZGiJmhQiupGdLpBSz4/AjSLpbDTaVAbIQvpg4JxTPjeuOb+be1WssxOToEod4uKK3WYvPvFyUYNdmad3+5gMPZl+HipMD/jemB/YvuwDNxvTvUa8vLxQkfPDYcHs5KpBdUYtuRvBbHFFfW40hOOQBgfD8GQ0RkRcR6IT83lV0ucW2PkKaaofyKOrNvRNkRL28/hT3pxVAp5fj4iRHY9H8j8cb0aDw7vo8xcLuak0KOOaN7AAD++/MFNOr0lhwy2ZhabSM2HjAsb3/joSgsvrvfTa9E9HNXY/4dhina13ZmoK5p82fR7nTDFFlUmDeCvDreudoWMBgisjElYjDkoFNkAIzfmOsb9CivlbYAecP+TJPOv8O6+7b7vQ/FhMHPTYXcy3XYfoO9X8ix/O/QRVTUNSDczxUTBgSZ7byzbw1HqLcLCivr8f7+CyavifVCE+x8igxgMERkc8oceF8ykVqpMF5/voR1Q3nldVjxvaHz7+K7IzHpBms3XFQKzL41HACw6RCnyqh1jTo93mtqw/DE7T1are3pKGcnBf56l2H3+XX7zqOkqW1HVX0DfjtXBgCYOIDBEBFZmSt3rHdkYnZIyrqhXScLodMLGNbdxzjldaOmDg0FABzILLOqgnCyHjtOFiL3ch183VR4cFhXs5//3sEhGNzVCzVaHf627Th+PF2ELYdzodXp0cPfDT27uJv9M60NgyEiG+PoDRdFxuX1kgZDhmmEuwcGdXjD2K4+rhgR7gtBAL5Jyzfn8MgOCIKAd5o2SJ01snunrDqUy2X42z39ABimxh7/8He8+O0pAMD4AYEOsRkygyEiG1NcxcwQcEUX6nJpsimXa7RIyboEAJjQ/+ZqOO4bEgIA+IrBEF3lYOYlHMutgFopx6yR4Z32Obf08MN/Zg7FHwYHIzLIAyqlHC5OCkwbav5MlDVinyEiG1NYaciEBNr56o7rCfY2ZIak2pLjx9PF0OkFRAZ5oJuf602da9KgYLz4zUmkF1Qio7CqzQZ45Hi2HM4FAEwb1hW+bp1bJ3jPoGDc07TjvU4vQKcXoFI6Rs7EMa6SyI4UNQVDQZ4OHgw1BYP5EmWGxGZ05ljZ4+2qwtim7tRfpbXs90KO62TT/mGj+1h2KwyFXOYwgRDAYIjIpgiCYCwYDvR07GmyMF9DNiarrMbin12n1eGnMyUAzLfseMoQQyH110fyoNdL3zuJpNeg0+NccTUAoH+wp8SjsW8MhohsSGVdIzSNhuZ8gQ6eGeodYFjhUlSpQYWFew3tP1eK+gY9Qr1dMCDEPD+k7owMgIdaifyKehxqqkUix3a+pBpanR4eaiW6+rTevJPMg8EQkQ0R64W8XZ0cfi8rD2cnhDbVDZ0prrLoZ+86KU6RmW+ljbOTAncPMky5caqMABh3lI8M9nCIFV1SYjBEZEMKWS9kok+gITuUUWi5YKhRp8eedLEzr/k6AQPA/dGGqbLvjxeigdtzOLz0AsPf636cIut0DIaIbEiRsV6IwRAA9GladXWmyHLB0O/Zl3G5tgHerk4YHu5j1nPH9vCDv7sKFXUN+O18mVnPTbZHzAwxGOp8DIaIbIi4kszRi6dFfQMNwZAlM0PfHjX0AorrFwilwrzfQhVyGSY2rU774Tj3KnN0DIYsh8EQkQ3hNJmpPoHNmSFL7F5f36DDN03BkLiNhrmJfV52nuRUmSMrqdKgtFoLuaw56KfOw2CIyIYUseGiiV4B7pDJgMu1DShp2rOtM+0+VYSq+kaEervglgi/TvmM2Ahf+LqpcLm2AQcvcFWZoxKzQuH+bnBROfZiCUuQPBhau3YtwsPD4ezsjNjYWKSkpLR57Lvvvovbb78dPj4+8PHxQVxcXIvji4qK8NhjjyEkJASurq646667cPbs2c6+DCKLYGbIlLOTAuF+bgCAs0XVnf55XzZ1A35gaCjkZtw5/EpKhdy4S/h3nCpzWJwisyxJg6FNmzYhISEBy5cvR2pqKqKiojBx4kQUFxe3evy+ffswY8YM7N27F8nJyQgLC8OECROQl2dYhioIAu6//35cuHABX3/9NY4cOYLu3bsjLi4ONTWWb8xGZG6FFYbsBwuom1lqRVlhRT1+OWtotPhAJ+wcfiVxqmzXyUI0cqrMIYnBEJstWoakwdAbb7yBJ598EvHx8ejfvz/Wr18PV1dXbNiwodXjP/30U8ydOxfR0dGIjIzEe++9B71ej6SkJADA2bNnceDAAaxbtw7Dhw9H3759sW7dOtTV1eHzzz+35KURmV2DTo+yGgZDV+sbaJkVZduO5EEvACPCfdG9KRvVWW7p4QdvVyeU1WiRksmpMkfUvKye9UKWIFkwpNVqcfjwYcTFxTUPRi5HXFwckpOT23WO2tpaNDQ0wNfXFwCg0Rh+UDg7N/+gkMvlUKvV2L9/f5vn0Wg0qKysNHkQWZuSKg0EAXBSyODXyRs22hJxeX1GJwZDgiDgy8MXARg2zOxsTgo5Jjb1MPr+BKfKHI2mUYfzJYZpX06TWYZkwVBpaSl0Oh0CA0339QkMDERhYWG7zrFo0SKEhIQYA6rIyEh069YNixcvxuXLl6HVarFq1Srk5uaioKDtbyiJiYnw8vIyPsLCwjp+YUSdRKwXCvBw7rR6FVtkXFFWaJ4VZQ06PdIuluP9/Zl475cL+OVsCfZllOB8SQ1cnBS4Z3DwTX9Ge4ifs+NEEXTcq8yhnC2qRqNegJeLE+sDLUQp9QA6auXKlfjiiy+wb98+YybIyckJW7duxRNPPAFfX18oFArExcXh7rvvvuY3ycWLFyMhIcH4dWVlJQMisjpF3KC1VeF+bnBSyFCj1SGvvA5dfVw7dJ7Cinr8bdtx/HbesO9Ya+4eGAR3tWW+bd7a0w+ezkqUVmtwNLccQ7uZt8EjWa/m4mluw2EpkmWG/P39oVAoUFRUZPJ8UVERgoKu3eL+tddew8qVK7Fr1y4MHjzY5LVhw4YhLS0N5eXlKCgowI4dO1BWVoYePXq0eT61Wg1PT0+TB1mGXi/graSz+L+NvyP3cq3Uw7FqzQ0X+ZvilVRKOXr4G4qoO1o3pNMLWPDFEfx4uhj1DXp4uzphXGQA7h4YhAh/N8hkhoaIj47sbs6hX5OTQo7YHobl+4fsqG7om6P5WLXjNHsoXQO34bA8yTJDKpUKw4YNQ1JSEu6//34AMBZDz58/v833vfrqq1ixYgV27tyJmJiYNo/z8vICYCiq/v333/Hyyy+bdfx08+q0OizcdAQ7TxoC4sPZl/HurBgM4W/ArSqsZPF0W/oEeSCjqApniqpxZ2Tg9d9wlXd/uYCUzEtwVSnw6Z9iEdXV22QqslbbCE2DHj4WrtWKjfDF7lNFSMm8hP8b09Oin90Zth/Lx4LPjwAAQryc8ejIcGkHZKW4rN7yJF1NlpCQgHfffRcfffQR0tPT8ec//xk1NTWIj48HAMyaNQuLFy82Hr9q1SosXboUGzZsQHh4OAoLC1FYWIjq6ub+Ips3b8a+ffuMy+vHjx+P+++/HxMmTLD49VHbiivrMf2dZOw8WQSVQo4e/m4ordbi4XcOYPuxfKmHZ5XEzFAQGy620Ldpef2ZDiyvP5lfgdd3ZQAAlt/bH0O6+bSoyXJVKS0eCAFAbFNjx5SsSzZfN5SSeQkJm44av17z4znUN+gkHJF10usFnMyvAMBl9ZYkaTA0ffp0vPbaa1i2bBmio6ORlpaGHTt2GIuqc3JyTAqf161bB61Wi2nTpiE4ONj4eO2114zHFBQU4NFHH0VkZCQWLFiARx99lMvqrUxVfQMeWP8bjuVWwMfVCZ8+GYtvnx6FcZEB0DTqMf+zI/jzJ4fx67lS6G38B4A5FVaw4WJbegd2bEVZfYMOz25KQ4NOwIT+gXgoxrpqBfsFe8BdrURVfSNOF9ruKtdzxVV48uPfodXpMb5/IEK9XVBcpcEnB7KlHprVOVVQicr6RrirlYgM4rJ6S5G8gHr+/PltTovt27fP5OusrKzrnm/BggVYsGCBGUZGovJaLZ7dlIa6Bh2eGNUD4yIDbmo101dH8nDxUh1CvJzx2ZO3INzf0LPlnVkxWPFdOjb8mokfThTihxOFiPB3w+K7IzFhwLXryBwBa4baJvYaOltcDZ1egOI6fz/rG3T44UQBPvotG2eKquHvrkbi1EFWV6yqVMgxrLsPfjpTgpTMSxgQ4iX1kG5YrbYRj31wCBV1DRjSzRtrZgzB12l5WLTlONbtO48ZI7rBzUJF6bYg+XwZAGBEhK/ZNwKmtvFO0zUVV9Zj+n8PYG9GCQ5cuIQnP/4dE1f/jG1Hcju0jFkQBHx6MAcA8OToHsZACDAUqC67tz92LhyNR2/pDne1EpmlNXj68yPIL68z2zXZKu5Y37YwX1d4qJXQNurx4W9ZrR7ToNNj/9lS/P2r4xixYg+e3XQUaRfLoVLI8dqDg+Hnbp33dUSEoY+arTZf3JdRgtzLdQjydMZ7s2Lg7KTA1KFdEe7nirIabZt/Xo4q+YIhGLq1Z+fsfUetYzBEbbp4qRYP/jcZGUVVCPBQ44lREfBQK3G2uBrPbjqK15rqLG5Eak45ThdWwdlJjqlDWm9e1zfIAy/fPxAH/zYOw8N9oGnU4187b/yz7ElVfQNqtIb6CtYMtaSQy/DchD4AgMTv03E4+7LxtaLKejy/+ShiXtmDP75/EJ8cyEFl02arCeP74Ke/jsXYvgFSDf26Yq8IhszRR8nS9mUYtle6Z1CwMeB0UsixMM7w5/XOzxdQWd8g2fisSYNOj4NNwdAtPRgMWRKDIWpVSZUGD/03GdlltQjzdcGXT92KpX/oj18X34kFd/YCAKzdex6fNWV52uvTg4YagT8MDoGXq9M1j3VTK7H0D/0BGLZCOJZbfuMXYifErJCHsxKuKk4ptGb2reGYNDgYjXoB8z9LRVm1BrtPFeGu1T9j8+FcVNQ1wM9NhYeHh+Gjx0fg57/egQXjeiPYy0XqoV/ToK5eUCvlKKvR4nyJbe2xKAgCfjpj2M9tbN8uJq/dGxWC3gHuqKhrwDs/XZBieFbneF4FarQ6eLk4sXjawhgMUau+TstDQUU9wv1csfn/bkU3P0MjO09nJyRM6IsF43oDAJZ+fQJ7T7e+se7Vymu1+O6YoSD+kdhu7XrP4K7emDokFADwyvZ0m/zN2BzEDVpZPN02mUyGVQ8MRo8ubiioqMfkt3/Fkx//jsu1DRgQ4okv5tyClCVxWPnAYIzp0+W6dUXWQq1UYEg3bwC2N1V2urAKRZUaODvJjdN9IkM2ry8A4L39FzgVjuZ6oZE9/Nhl3sIYDFGrjuUalnZOG9a11WmZZ+N644GhXaHTC5j3WSpO5FVc95xbUvOgadSjX7AnhoR5t3ssf5nYF2qlHClZl4w9iRwNl9W3j7taiXUzh8HFSYG8ph+uc0b3wNa5t+KWHn42EwBdbYS4xD6zTOKR3Jh9GYas0MgefnB2UrR4feKAQIwI90V9gx6vOfhUOHBFMMR6IYtjMEStEqekBnf1bvV1mUyGxKmDMKqXP2q1Osz5+HeUVWvaPJ8gCPisaYrskdhuN7RqJ8TbBXNGGzqIJ/6QDm2j43WuvXJfMrq2vkEeWDtzCMb06YKNT4zA3+7pB7Wy5Q9iW3JLU1bloI3VDYn1Qm3VZMlkMvz9D/0AAFsdfCpc06jDoSxD5o/F05bHYIhaqKhtQFaZYWuMwV3bXsqrUsrxnz8ORQ9/N+RX1GPBF0fQ2EaL/V/PleF8SQ1cVQrcHx1yw2N6akxP+LurkV1Wix0n27eRrz1pzgxZ54ona3NnZCA+enwEbu/d5foH24Ah3XyglMtQUFGP3Mu2MZ1UVd9gLGS/ul7oSoO7emOKOBX+neNOhafllEPTqIe/uxq9AtylHo7DYTBELRzLKwcAdPdzhbfrtbvuejo7Yf2jw+CqUuDXc2V4bdeZFsfklNVi4aY0AMCUIaHwcL524XRr3NRKzGyqM/rUARu1seGiY3NRKYy/mBy0kbqhX8+VoVEvIMLfDd393K557PPiVHjmJew65ZhT4b9dMUVmbf2uHAGDIWrh6MVyAG1PkV2tT6AHXp1m2DB3/U/n8XVanvG3u7JqDWZtOIjSag36BXvihbsjOzyuh0eEQSGX4WDmJZzt4IactooNF2lYd8OefcdtZCrppzOGKbIxfa6fnQvxdsGfbo8AALyx64xDZofEeiFOkUmDwRC1cLSpeDrqGlNkV/vD4BD8aZThm9kzX6Th7n//gvf3Z+LxDw8hq6wWod4u+Ch+eIeyQqJgLxeMizTUHnx6g0v6bV0hC6gdnrhpZ3oH9l+zNEEQjMXTY64xRXalOaN7Qq2UI6OoCifzbXfrkY6o0+pw5KJhSnEk+wtJgsEQtXC94um2vHB3JB6J7QaVUo7ThVV4efspHG3af+zjJ0YgwAxZjT/e0h0AsOVwLmq1ja0eo2nUoaLWfpq41WobUdS0Y303X1eJR0NSiQwyBEOnCyqtPnNytrgaBRX1UCvl7f7h7uXihLj+hn0pt6bmdebwrM6mQzlo0AkI9XZBdz/+G5cCgyEyUVRZj6JKDeQyYGDojTX9Uirk+OeUQUj52zj8474BGBTqhS4earz/2HD07GKegsBRvfzR3c8VVZpGfJPWcnf7X86W4NbEHzH6X3uRVWpbDeraklVqKGb3cXW6bg0X2a+eAW5QyGWorG80Zgqtldh77JY2ltS3ZUq0oZD6m6P5bS7GsDf55XXGDvtPjenBeiGJMBgiE2K9UO8Ajw53OvZ2VWHWyHB8+/QoHFoSh6HdfMw2PrlchkdGNBVSXzFVptMLeGNXBmZtSEFZjRYVdQ34+1cnrP436PbIbArqIvyvXYRK9k2tVKBnF8PfgdMF1j1VtrupCPrOyBvb5mRM3y7wdVOhtFqD/edKO2NoneLbo/lY8PkR/O/3iyiv1bb7fYIgYNnXJ1Cj1WFYdx/MjO3eiaOka2EwRCbEZotRYda7O/aDMWFQKeU4nleBpzYexp8/OYx71+zHWz+egyAA90eHQK2UY/+5Umw7Yvvp9gsl1QCAHmbKrpHtEqfK0gutt6ampEqDwzmG+pfxTdNe7eWkkOPewcEAYDP/dqvqG7B463F8czQff/3yGGJe2YNZG1Jwrrj6uu/94UQh9qQXw0lh6NvGrtPSYTBEJo52sF7IknzdVPhD0zfMHScL8cOJQpwqqISbSoF/PxyN1Q8PMW4X8sp36bhU0/7f1KwRM0Mkigz2AGDdmaGk9CIIgqFHWYj3je/7NmWoYQPnnScLUa1pvS7Qmnx5OBfVmkYEeTqjX7AnGvUCfj5Tgjkbf0dd0+bKramobcDyb04CAP48pif6BHpYasjUCu74SEaCIDRnhqw4GAKApZP6Y1CoF/QCoFLIoFLKMap3F4Q2ffOdM7oHvknLR0ZRFf75fTpeezBK4hF33IWmYKgHgyGH108sorbizJDYJ2jCDWaFRFFdvdDD3w0XSmuw40Qhpg3ras7hmZVeL+Cj37IAAPPu7IVHb+mO8yXVeOTdA7hQUoNVO07jxckDWryvvkGHp784gpIqDXp0ccPcO3pZeOR0NWaGyCi7rBYVdQ1QKeToG2Tdv6X4uKkQf1sEnhgVgUdHhmP68G7GQAgwpNv/OXUQZDLDb25im3tbIwiCcZosoguDIUcnZobOl9RA09h21kEq1ZpG7D9rqPWZMCCoQ+eQyWS4v6kj9VdWPlW270wxsspq4eGsxANDDWPu2cUdr04z/PL14W9Z+PWq2idNow5//uQwfj5TAhcnBV5/MOqGisypczAYIiNxiqxfiCdUStv/qzGsuw+mDjH8Vrn9aMuVZ7bgcm0DKusNUwXh1+niS/YvyNMZXi5O0OmFdtWkWNpPGSXQ6vSI8HdD75vYUkLcnuPX86XGhqPW6INfswAADw8PM1lwMqZPF/zxFsNCj79sPoqKOkOrD22jHvM+TcXejBI4O8mx4bHhGGLGBSbUcbb/E4/M5lgHmi1au7h+htUsBy7YZmYos9TwAy/U24W/PRJkMhkig6y3bmjXKcO+gRP6B97UEvEwX1cM6eYNQWhemWZtzhVX4ZezpZDLgFkjw1u8/rd7+qG7nysKKuox7vV9GJmYhGGv7Mae9GKolXK8P3s4d6e3IgyGyEisQxgYYj/B0Iim3b4ziqpsspD6QgmLp8mUMRiysrohbaMePzb1F5owoGP1QlcSV6LtSbfOYOjDplqhuH6BCGulGaqrSok3HoqGUi5DabUWBRX1qKpvhKtKgXdnxeC2Xv4WHjFdCwuoySiz6QdvDzuqTfFzV6NPoDvOFFUjJbMMdw0MlnpIN4QryehqkcFiEbV1ZYYOZpahqr4R/u5qRIfd/NTP+H6BeHVHBn47V4ZqTSPc1dbz46qosh5bDhvqmR67LbzN44Z198GehDEoqdbAWamA2kmOYC/nm9qWiDoHM0MEwLC6Ib9pZ3R7+8F7S9N2ALY4VcZgiK4mZobSrWyabNdJQwZnfP8AKMzQL6dXgDvC/Vyh1enx85mSmz6fuQiCgOe/PIa6Bh2iwryvu91IuL8bhof7YlBXL/QJ9GAgZKUYDBEAw0oyAPBwVsLXzb62fIiNEIOhMolHcuOMwZAdZevo5vQJ9IBMBpRWa1BarZF6OEZ7MwxTZDfaaLEtMpnMeC5rqhv65EA2fj5TArVSjtcfHMztM+wEgyECYJqBsLd/3LE9DHVDpwurcNmG6ob0esH458IeQyRyUyvRvalGJcNKpspyL9ci93IdFHIZRkSYryh4fH/D8vwfTxdbxV5l50uqseL7dADA4rsj0SvAuluQUPsxGCIAQFaZ4YeuPS7f9ndXo1fTMt8UG+o3VFBZD02jHk4KmUkPJSLjthwF1lFEfbBpCnpQqJdZa3uGdvOGj6sTKuoacCjrstnO2xG12kYkbEpDfYMet/f2b3UFGdkuBkMEoLl4OtxOMxC3NGWHbGmqTPwz6ebrCqWC/1SpmXFbDivJDIn/rsQsrLkoFXLcGSndVFl5rRafHMjGYx+kIPofu3E0twJeLk7417Qo7iNmZ/gdlgAAmWX2PR0j1g0dtKEiarHHUIQ/N2glU1aXGco0/Lu65TrFxB1hrBtKL4QgCGY/f2u0jXq898sFjH51L/7+1QnsyyiBtlGPMF8XrJkxBEFezhYZB1mO9axVJEllldp3Zkj8jTW9sBIVtQ3wcrX+FR3GPclYPE1XGRBiCIbOFFVB26iXtGN8fnkdci7VQi4DYrqbv5vy7b39oVLKcfFSHc4UVXf6VkE/nSnB8q9PIKtpUUmfQHfcFx2K8f0D0TvA3e5qKsmAmSFCjaYRxVWGVSkRdlgzBAABHs7o0cUNgmA7dUNcVk9t6erjAk9nJRp0As4USTtVdjDTMEU2KNSrU5aNu6mVGNXUoHB3U4frzpJTVosnPjyErLJa+LursXLqIPzwzGjMu6NX0yo+BkL2isGQBdVoGvHP79OR0/Qbh7UQf+j6uDrZRMako5r7DdlG3RBXklFbZDIZBjR1ij+VL+1UmTj1HNsJU2QiSy2x/zg5C416AcPDfbDv+bF4eEQ3s/RMIuvHYMiClmw7jnd+voClX5+w2Nx3e4gryew9AxHbtDXH79nSrkppD22jHhcvGYJm9hii1ohTZSfzKyQdh7F4OsK8xdNXGte0x+DR3IpO27i1RtOITb9fBADMHdvLqjpeU+djMGRBC8b1hkohx09nSvDd8QKph2Nk7/VCooGhht+kMworodNbTzDampxLNdALgLtaiS7uaqmHQ1ZI/Pt8QsLMUFFlPbLKmuqFwjsvGArwcEZ0mDeAzturbEtqLqrqG9HD3w1j+nTplM8g68VgyIJ6dHHH3Dt6AgBe+vYUKusbJB6RQWZpUwbCTuuFROF+bnB2kqO+QY/spmyYtTpTZFhJ1rOL/TXBJPMQM0PpBdIF92JWqH+IJ7xcOneKvTOnyvR6AR/+mgUAmH1rOJfNOyDJg6G1a9ciPDwczs7OiI2NRUpKSpvHvvvuu7j99tvh4+MDHx8fxMXFtTi+uroa8+fPR9euXeHi4oL+/ftj/fr1nX0Z7fbnsT3Rw98NJVUavLYzQ+rhALii4aKdZ4YUchn6BlpXf5a2nG5aMt2vaVNOoqv16OIOZyc5arU6Y32ZpYn7/d1ixq7TbZnQFAyJG7ea009nS3ChtAYeaiUeGNbVrOcm2yBpMLRp0yYkJCRg+fLlSE1NRVRUFCZOnIji4uJWj9+3bx9mzJiBvXv3Ijk5GWFhYZgwYQLy8vKMxyQkJGDHjh345JNPkJ6ejoULF2L+/Pn45ptvLHVZ16RWKvDKlIEAgI0HspF2sVzaAcGxVi1ZW3+WtqQ3BWuRnbyMmGyXQi4zBstS1Q2JK8k6s3ha1CvAHd07aePWD5qyQg/GhLFWyEFJGgy98cYbePLJJxEfH2/M4Li6umLDhg2tHv/pp59i7ty5iI6ORmRkJN577z3o9XokJSUZj/ntt98we/ZsjB07FuHh4ZgzZw6ioqKumXGytFt7+mPqkFAIgqGoWi9h/UpFXQMuNe3XZe+ZIaC5c6+17fh9tdOFhmAtkpkhuoaBTSvKTkpQN1RcWY8LJTWQyYARnVgvJJLJZBjfz5Ad2mPGqbJzxdX4+UwJZDLgsVvDzXZesi2SBUNarRaHDx9GXFxc82DkcsTFxSE5Obld56itrUVDQwN8fZv/Id5666345ptvkJeXB0EQsHfvXpw5cwYTJkxo8zwajQaVlZUmj862ZFI/eDgrcTK/El+l5V3/DZ1ELJ7u4qF2iN+IxN+kxWDDGlXVN+DipToAzAzRtUm5okzsOt0vyNNiLTnEuqEfM8y3ceuW1FwAwJ19A9DNz9Us5yTbI1kwVFpaCp1Oh8DAQJPnAwMDUVjYvsZaixYtQkhIiElAtWbNGvTv3x9du3aFSqXCXXfdhbVr12L06NFtnicxMRFeXl7GR1hYWMcu6gb4uasxd2wvAMDru86gvkHX6Z/ZGuOyejsvnhb1a5omy71cZzUF7FcTm+gFeznD21Ul8WjImokryk7mV1q8XUfzFFnnZ4VEw7r7wMfVCeW15tm4VRAEfHs0HwAwdShrhRyZ5AXUHbVy5Up88cUX2LZtG5ydm/eJWbNmDQ4cOIBvvvkGhw8fxuuvv4558+Zhz549bZ5r8eLFqKioMD4uXrxoiUtA/G3hCPZyRl55HT5OzrLIZ17tQonj1AsBgJerE0Ka9hXKsNIianEKj1khup7ege5QymUor21AXnmdRT/bWDxtgXohkVIhxx2Rhp5D5lhVlnaxHLmX6+CqUuDOpvOSY5IsGPL394dCoUBRkelf6KKiIgQFBV3zva+99hpWrlyJXbt2YfDgwcbn6+rq8Le//Q1vvPEG7r33XgwePBjz58/H9OnT8dprr7V5PrVaDU9PT5OHJTg7KfDs+D4AgLd/PIfyWq1FPvdKjrKS7EpiHc5pKy2iZr0QtZdaqUCfphWSlqwbKq3W4Fyxof2DJeqFrjRxgOHnw+bDF1FcdXMNGL89auj3Nr5/IFxUipseG9kuyYIhlUqFYcOGmRQ/i8XQI0eObPN9r776Kl5++WXs2LEDMTExJq81NDSgoaEBcrnpZSkUCuj15plfNrcHhnZF30APVNY34j/7zlv887OMK8kcZ65czLicstIi6tPMDNENMNYN5VmubkjcgiMyyAM+bpadyo3rF4hBoV6oqm/EP7491eHz6PQCth8zTJHdOzjEXMMjGyXpNFlCQgLeffddfPTRR0hPT8ef//xn1NTUID4+HgAwa9YsLF682Hj8qlWrsHTpUmzYsAHh4eEoLCxEYWEhqqsNv6F4enpizJgxeP7557Fv3z5kZmbiww8/xMcff4wpU6ZIco3Xo5DL8MLdkQCAD3/LQmFF57Sab40gCMZl9Y6UGbLmImpBEIw9kNhjiNqjuYjacn+fxXohS06RiRRyGRKnDoJcBmw/VoC9Ga23YrmeQ1mXUFylgaezErf38TfzKMnWSBoMidNXy5YtQ3R0NNLS0rBjxw5jUXVOTg4KCpq3rVi3bh20Wi2mTZuG4OBg4+PKKbAvvvgCw4cPx8yZM9G/f3+sXLkSK1aswFNPPWXx62uvsX27YFh3H2gb9fjagivLLtc2oLLe0Lws3EEKqAGgX9Py+ozCKknbGrQm93IdqjWNUCnkDlPHRTfnyiJqSzFuztqJ+5Fdy8BQLzx+WwQA4O/bTqBWe+NNGMXC6bsGBkGt5BSZo5N8LfX8+fMxf/78Vl/bt2+fyddZWVnXPV9QUBA++OADM4zMcmQyGaYODcXh7Mv49lg+/m9MT4t8bmapIaMW4uUMZyfH+WYQ7ucGldLQuTfnUq1VZcXEZpC9AtzhpLDZ9Q1kQf2CPSGTAYWV9ci9XIuuPp075X2pRouMphWPIyQKhgDg2fF98MOJQuSV1+HN3WewZFL/dr+3QafHDycMq5bvjeIUGdnwajJ7c/fAYCjkMpzIq7RYa31xTzJrCgYsQamQX7Eth3VNlYlTZGJzSKLrcVMrjdthfJ6S0+mfl9I0RdYn0B1+Em4i7KZW4h/3DQAAvPtLJv5v4+/t3nPwt/NluFSjhZ+bCiMlmOoj68NgyEr4uqlwWy/DvPX2pvRtZ3OU3epbY61F1GJwJvZDImqP2bd2BwB8nnKx03uWSbGkvi3j+gXi6Tt7QSGXYefJIox/42ckfp9+3Xuw+XdD+5R7BgVDyQwsgcGQVbl3cDAA4NtjlgmGMh2s4eKV+lnp8nrjSjJmhugGxPULRIiXMy7VaLH9WMH133ATxJ3qYy2wOWt7PDehL3545nbc3tsfWp0e//35Al769mSbx6dkXsL2YwWQyYCHYjq/wS7ZBgZDVmTCgCCoFHKcKaq2SEPATAdruHglMdiwpt3r67Q6Y4AaycwQ3QClQo6ZtxiyQx/9ltVp3ajLa62jXuhqfQI98PHjI/D2I0MgkxkyZN8fbxkUNuj0+PtXxwEADw/vhkFdvSw9VLJSDIasiJeLE8b07QKgeaVDZxEEwSEbLorEaaicS7VWsy3HmaIqCALg765CFw/pajHINs0Y0Q0qpRzH8ypw5GJ5p3zGgQuXIAiGAn9r+zsqk8nwh8EheKppAcoLW4616Mr9/v5MnCmqhq+bCovu6ivFMMlKMRiyMuLKhm+P5XfqXkMlVRrUanWQy4Buvo7TcFHk46ZC96ZNGQ9n3/weR+Zg7DzNrBB1gK+bCpObvn989FtWp3zGZ00F2rf3tt6+PAnj+yAqzBuV9Y149os06JraZ+SV1+Hfe84CABbfHcl9/8gEgyErE9cvAC5OCmSX1eJ4J3aUFVeshfq4QKV0zL8G4jYCKU27b0tNnLLry87T1EGP3RoOAPj+eAGKK83bwPVYbjl+PlMChVyG+FsjzHpuc3JSyLHm4SFwVyuRknUJcW/8hAfW/YaZ7x5AXYMOI8J9MW0YN2UlU475U9CKuaqUGNfPsGHgjqY+GJ3BuFu9v3unfYa1E2serCUYEvd66h3guH8mdHMGhnphaDdvNOgEPLnxMC7VmG+/w7V7zwEAJkeFoJufdWeTu/m5YsWUgVDIZcgsrcHh7MvIKquFUi7Dy/cPhEwmk3qIZGUkb7pILcVG+GL7sYJOLaK+IO5JZuXf1DqTuBrmWG456rQ6yTdqPN8UDPViMEQ34R/3DcQf3z+IoxfL8eD63/DxE7EI9Xa5qXOeKarCzpOGTbXnjrVMU9ibdV90KIZ280F2WS2qNY2o1jSid4A7M6/UKmaGrFDPph+G50qqO+0zHLnHkCjM1wVBns5o0Ak4clHauqEaTSPym/alYzBEN2NgqBe+fGokgr2ccb6kBtPW/WbMOnbUf5qyQncNCELvQNsJJsJ8XTGqtz/uGhiEacO6IirMW+ohkZViMGSFxB+GFy/VdloDtSwH7T59JZlMhtgehqkyca8lqZxvCnz93VUs7KSb1ivAA1v+fCt6dnFDQUU9nt2U1uEFGdllNfimaXXr/Dt7mXOYRFaDwZAV6uKuhqezEnqhubbHnPT65mX1PRw4GAKsp25I/M29Zxdmhcg8Qrxd8PmcW6BuWm7f0b/j6386D71g2FBa3BSWyN4wGLJCMpmsearsJtPbrSmorIemUQ+lXHbTtQS2Ttx1OzXnMrSNesnGcZb1QtQJAjycMXWoYeXU+/szb/j9WaU12Px7LgDgaWaFyI4xGLJSvbp0XjAk1gt183V1+H15enZxh6+bCppGPY7nlUs2Dq4ko87yxKhwAMDu9KJ2b2QqenPPGTTqBdzRtwuGdbeejtNE5ubYPwmtWK9OzAxlsnjaSCaTGfsNHZRwqqx5JZntFKeSbegV4IExfbpAEIAPfs1q9/vSCyqNtULPTWC3ZrJvDIaslBgMnS8xf82QmBlyxD3JWiN13ZC2UY/sS4aCdk6TUWd4YpShSeLm3y+2e/uZ13ZmQBCAPwwOZq0Q2T0GQ1ZKLKS9UFJtbCdvLo68J1lrxGDo96zLaNRZvm4oq6wGOr0Ad7USgZ7Wtd8T2Yfbe/ujT6A7arQ6bEq5eN3jD2dfQtLpYijkMiSM72OBERJJi00XrVSYrytUSjk0jXrkXa4za8fX5oaLDIYAoF+wJzyclaiqb0R6QZXFd7I2riQLcGdnXOoUMpkMj98WgRe2HsfafedQUFGP0X380S/YE6cKKpGWU46T+ZVo1OuhlMtxpmln+geHdUUPrnAkB8BgyEop5DL08HfD6cIqnCupMlsw1KjT4+IlsceQ43afvpJCLkNMdx/szSjBoaxLkgVDvfhDhzrR/UNC8e4vF3C+pAYbfs3Ehl+vvbpMrZRjwbjeFhodkbQYDFmxngHuhmCouBp3Rgaa5Zz55fVo0AlQKeUI8XLsZfVXigrzxt6MEpzoxM1x23KOy+rJApydFPh6/ij8lFGCn8+U4OezJSioqEeEvxuGhHljcFcvuKmVaNQLaNTpMbirN0IcvPUGOQ4GQ1ZMrBs6X2y+IupMsV7IzxVyOadkRFFdvQEAR3PLLf7ZDIbIUtzVSkwaHIxJg4MhCAI0jXo4O0m7Jx+RNWABtRXr1Ql7lIk/eHs48G71rRFXy1worUFVO1fbmINeL+BCKYMhsjyZTMZAiKgJgyErdmXjxY7uK3Q1ZiFa18VDjRAvZwgCcDK/0mKfm1deh/oGPVQKOcJ8OCVBRCQFBkNWrEcXN8hkQEVdA0qrtWY553kGQ20a3DRVdjzXcnVDYnAa4e/m8N3AiYikwu++VszZSYEwH8OKr/NmmioTp9wYDLUkriI7ZsEi6rPFhiXMvQL550FEJBUGQ1auZxdDLyBzbMtxqUaLSzWGDFOPLuwxdLXBYjBkwSJqLqsnIpIegyErZ849ysRzdPVxgauKCwmvNqipiDq7rBYVtZYpomYNFxGR9BgMWbnmPcpuPhgyTsnwB2+rvF1V6N7U3PK4BabK9HoBGYWGP5M+gdyglYhIKgyGrFxnZIY4JdM2MTt0LK+80z8rs6wGNVodnJ3kxulQIiKyPAZDVk5svFhQUY9qTeNNnYtTMtdnrBu62PmZIbHbdb9gT64kIyKSEL8DWzlvVxX83VUADDvY3wwuq78+4/J6C0yTicGQmI0iIiJpMBiyAT273PxUWY2mEfkV9QAYDF3LgBBPyGSGZoil1ZpO/awTeYbmjgNDGAwREUmJwZANMEfdkFiA7e+ugreryizjskcezk7o4W+o3+nM7JAgCDiRbzj/QGaGiIgkZRXB0Nq1axEeHg5nZ2fExsYiJSWlzWPfffdd3H777fDx8YGPjw/i4uJaHC+TyVp9/Otf/+rsS+kUxg1bb2KajPVC7WeJTtQ5l2pRVd8IlVKO3my4SEQkKcmDoU2bNiEhIQHLly9HamoqoqKiMHHiRBQXF7d6/L59+zBjxgzs3bsXycnJCAsLw4QJE5CXl2c8pqCgwOSxYcMGyGQyPPDAA5a6LLMyR2aIwVD7NTdf7LxgSMw69QvygBOLp4mIJCX5d+E33ngDTz75JOLj49G/f3+sX78erq6u2LBhQ6vHf/rpp5g7dy6io6MRGRmJ9957D3q9HklJScZjgoKCTB5ff/017rjjDvTo0cNSl2VWYgCTXVaLBp2+Q+c4y2X17dY/2BMAkF7QeRu2ivVCAzhFRkQkOUmDIa1Wi8OHDyMuLs74nFwuR1xcHJKTk9t1jtraWjQ0NMDX17fV14uKivDdd9/hiSeeaPMcGo0GlZWVJg9rEuzlDFeVAo16AdllNR06R/NKMjb3u57IpmAor7wOFXWd04maK8mIiKyHpMFQaWkpdDodAgMDTZ4PDAxEYWFhu86xaNEihISEmARUV/roo4/g4eGBqVOntnmOxMREeHl5GR9hYWHtvwgLkMlkN7WiTNuoR/alWgCcJmsPLxcnhHq7AABOd0J2yKR4mivJiIgkJ/k02c1YuXIlvvjiC2zbtg3Ozs6tHrNhwwbMnDmzzdcBYPHixaioqDA+Ll682FlD7rDmbTluPDOUVVYDnV6Au1qJQE+1uYdml/oFGzJonTFVlnu5DuW1DXBSyNAniMEpEZHUJN2t09/fHwqFAkVFRSbPFxUVISgo6Jrvfe2117By5Urs2bMHgwcPbvWYX375BRkZGdi0adM1z6VWq6FWW3eQcDNF1OJ7ega4QyaTmXVc9qpfsCf2pBfjdNPeYeZ0sikr1CfQA2qlwuznJyKiGyNpZkilUmHYsGEmxc9iMfTIkSPbfN+rr76Kl19+GTt27EBMTEybx73//vsYNmwYoqKizDpuKdzMNBn3JLtx/TqxiPo464WIiKyKpJkhAEhISMDs2bMRExODESNGYPXq1aipqUF8fDwAYNasWQgNDUViYiIAYNWqVVi2bBk+++wzhIeHG2uL3N3d4e7e/MO+srISmzdvxuuvv275i+oEV+5er9cLkMvbn+ERi3X7sJ9Nu4nBUEZRFXR6AYobuN/Xw5VkRETWRfJgaPr06SgpKcGyZctQWFiI6Oho7Nixw1hUnZOTA7m8OYG1bt06aLVaTJs2zeQ8y5cvx4svvmj8+osvvoAgCJgxY4ZFrqOzdfdzhVIuQ61Wh8LKeoQ0FfheT6NOj+TzZQCAW3r4deYQ7Uo3X1e4OClQ16BDZmmN2QrPBUHgSjIiIisjeTAEAPPnz8f8+fNbfW3fvn0mX2dlZbXrnHPmzMGcOXNucmTWw0khR3c/V5wvqcG54up2B0NHc8tRpWmEt6sTt324AQq5DH2DPJB2sRynCyvNFgwVVNSjrEYLhVyGyCC2OSAisgY2vZrM0XSkiPqnM6UAgNt6+Zt1qscRdEbdUNrFcgBA30APODuxeJqIyBowGLIhxmDoBvYo++VsCQBgTO8unTIme9a8vN58K8pSsy8DAIZ29zbbOYmI6OYwGLIhxg1b25kZqqhtwNGmTMTtffw7a1h2qzMyQ0ea/jyGdvMx2zmJiOjmMBiyIVeuKGuPX8+XQi8AvQPcEezVvhojata3qaanoKIe5bXamz6ftlFvXFY/hMEQEZHVYDBkQ8TMUGm1tl0/nH8+Y5giu51TZB3i6eyErj6GINIcU2Un8yugbdTD102FcD/Xmz4fERGZB4MhG+KmViLM1/DD+UhO+TWPFQQBv5w1FE9ziqzjzDlVJv6ZDQnzZidwIiIrwmDIxoztEwAA2HWq6JrHXSitQV55HVQKOW6JYH+hjhKDodOFNx8MpeYYiqeHdPO+6XMREZH5MBiyMeP7G5pR7j5VBL1eaPM4cYpseIQPXFRcwt1R/YLMt6JMzAyxeJqIyLowGLIxt/Twg4daidJqjXFlUmvEKbLRrBe6KVduy6Ft1Hf4PEWV9cgrr4NcBgwO8zbT6IiIyBwYDNkYlVKOsZGGqbLdbUyVnS2qwn6xXojB0E3p5usKf3c1tI16pGRe6vB5jjRNkfUJ9IC72ioavxMRURMGQzZoQtNU2a5ThS1e0+kF/HXLMWh1etwZGWBsHEgdI5fLcGekIaBMOn3tOq1rSRWnyLpzioyIyNowGLJBY/t2gZNChgtN+5Rd6cPfsnAkpxweaiVWTBnIVUtmMK6fIfhMSi+GILRdp3UtYmaI9UJERNaHwZAN8nB2wsiehuXyV06V5ZTV4rWdGQCAxff0Y6NFMxnVyx8qhRw5l2rb3fDyStpGPY7lGpotDuVKMiIiq8NgyEZdPVVWo2nEoi3HUNegw8gefpgxIkzK4dkVN7USt/Q0tCdISi++4fenF1RC06iHt6sTIvzdzD08IiK6SQyGbJS4xP5ITjmWbDuOW/6ZhOQLZXB2kmPlA4M4PWZm45qK1pNO33gwdLhpc1Y2WyQisk4MhmxUoKczopqWaH96MAdVmkZE+Lth7SND0d2P2Qdzu7MpGDqcffmG9ynbm2EIoG7pweaXRETWiMGQDXtiVARcnBQYFxmAjx8fgaSEMcZiXzKvMF9X9Al0h04v4KemhpbtUVXfgAMXygAAcf35Z0NEZI3Y8MSGTY4KweSoEKmH4TDG9QvEmaJqJKUX477o0Ha955ezpWjQCejh72bcaJeIiKwLM0NE7STWDe3LKEajrn3dqPc0rfZjVoiIyHoxGCJqpyHdfODt6oTK+kb8dr7susc36vTGeiExkCIiIuvDYIionRRyGe4dbJiW/Of36dfNDqXmlONybQO8XZ0wjJ2niYisFoMhohvw7Pg+8HJxwunCKmw8kH3NY5PSDVNkd/QNgFLBf2pERNaK36GJboCvmwp/vasvAOCNXWdQXFXf5rG7m4KhOK7wIyKyagyGiG7Qw8O7YXBXL1RpGrHy+9OtHnOhpBoXSmrgpJBhdB9/C4+QiIhuBIMhohukkMvw8n0DIZMBW4/k4ddzpS2OEbftuKWHHzycnSw9RCIiugEMhog6ICrMGzNGdAMAxH9wCB/9lmXc0f6H4wVY/9N5AJwiIyKyBWy6SNRBf7unH4or67EnvRjLvzmJ/edKIZcBO08aaoV6B7jj/nY2ZyQiIunIBPHXWTKqrKyEl5cXKioq4OnpKfVwyIoJgoAPf8tC4venoW1aaq+Uy/DnsT0x745ecHZSSDxCIiLH0dGf38wMEd0EmUyG+NsiMDzcF4u2HIObWol/3DcAkUEMoomIbAWDISIzGBjqhe8W3C71MIiIqANYQE1EREQOjcEQEREROTQGQ0REROTQJA+G1q5di/DwcDg7OyM2NhYpKSltHvvuu+/i9ttvh4+PD3x8fBAXF9fq8enp6Zg8eTK8vLzg5uaG4cOHIycnpzMvg4iIiGyUpMHQpk2bkJCQgOXLlyM1NRVRUVGYOHEiiouLWz1+3759mDFjBvbu3Yvk5GSEhYVhwoQJyMvLMx5z/vx5jBo1CpGRkdi3bx+OHTuGpUuXwtnZ2VKXRURERDZE0j5DsbGxGD58ON5++20AgF6vR1hYGJ5++mm88MIL132/TqeDj48P3n77bcyaNQsA8PDDD8PJyQkbN27s8LjYZ4iIiMj2dPTnt2SZIa1Wi8OHDyMuLq55MHI54uLikJyc3K5z1NbWoqGhAb6+vgAMwdR3332HPn36YOLEiQgICEBsbCy++uqra55Ho9GgsrLS5EFERESOQbJgqLS0FDqdDoGBpns3BQYGorCwsF3nWLRoEUJCQowBVXFxMaqrq7Fy5Urcdddd2LVrF6ZMmYKpU6fip59+avM8iYmJ8PLyMj7CwsI6fmFERERkU2y26eLKlSvxxRdfYN++fcZ6IL3esB3Cfffdh2effRYAEB0djd9++w3r16/HmDFjWj3X4sWLkZCQYPy6srKSAREREZGDkCwY8vf3h0KhQFFRkcnzRUVFCAoKuuZ7X3vtNaxcuRJ79uzB4MGDTc6pVCrRv39/k+P79euH/fv3t3k+tVoNtVrdgasgIiIiWyfZNJlKpcKwYcOQlJRkfE6v1yMpKQkjR45s832vvvoqXn75ZezYsQMxMTEtzjl8+HBkZGSYPH/mzBl0797dvBdAREREdkHSabKEhATMnj0bMTExGDFiBFavXo2amhrEx8cDAGbNmoXQ0FAkJiYCAFatWoVly5bhs88+Q3h4uLG2yN3dHe7u7gCA559/HtOnT8fo0aNxxx13YMeOHfj222+xb98+Sa6RiIiIrJukwdD06dNRUlKCZcuWobCwENHR0dixY4exqDonJwdyeXPyat26ddBqtZg2bZrJeZYvX44XX3wRADBlyhSsX78eiYmJWLBgAfr27YstW7Zg1KhRFrsuIiIish2S9hmyVuwzREREZHs6+vPbZleTdSYxPmS/ISIiItsh/ty+0TwPg6FWVFVVAQCX1xMREdmgqqoqeHl5tft4TpO1Qq/XIz8/Hx4eHpDJZGY9t9jD6OLFiw49Bcf7YMD70Iz3woD3wYD3wYD3oVl77oUgCKiqqkJISIhJzfH1MDPUCrlcjq5du3bqZ3h6ejr8X2yA90HE+9CM98KA98GA98GA96HZ9e7FjWSERJLuWk9EREQkNQZDRERE5NAYDFmYWq3G8uXLHX77D94HA96HZrwXBrwPBrwPBrwPzTrzXrCAmoiIiBwaM0NERETk0BgMERERkUNjMEREREQOjcEQEREROTQGQxa0du1ahIeHw9nZGbGxsUhJSZF6SJ0qMTERw4cPh4eHBwICAnD//fcjIyPD5Jj6+nrMmzcPfn5+cHd3xwMPPICioiKJRmwZK1euhEwmw8KFC43POdJ9yMvLwx//+Ef4+fnBxcUFgwYNwu+//258XRAELFu2DMHBwXBxcUFcXBzOnj0r4YjNT6fTYenSpYiIiICLiwt69uyJl19+2WQ/JXu8Dz///DPuvfdehISEQCaT4auvvjJ5vT3XfOnSJcycOROenp7w9vbGE088gerqagtehXlc6140NDRg0aJFGDRoENzc3BASEoJZs2YhPz/f5Bz2cC+u93fiSk899RRkMhlWr15t8rw57gODIQvZtGkTEhISsHz5cqSmpiIqKgoTJ05EcXGx1EPrND/99BPmzZuHAwcOYPfu3WhoaMCECRNQU1NjPObZZ5/Ft99+i82bN+Onn35Cfn4+pk6dKuGoO9ehQ4fw3//+F4MHDzZ53lHuw+XLl3HbbbfByckJP/zwA06dOoXXX38dPj4+xmNeffVVvPXWW1i/fj0OHjwINzc3TJw4EfX19RKO3LxWrVqFdevW4e2330Z6ejpWrVqFV199FWvWrDEeY4/3oaamBlFRUVi7dm2rr7fnmmfOnImTJ09i9+7d2L59O37++WfMmTPHUpdgNte6F7W1tUhNTcXSpUuRmpqKrVu3IiMjA5MnTzY5zh7uxfX+Toi2bduGAwcOICQkpMVrZrkPAlnEiBEjhHnz5hm/1ul0QkhIiJCYmCjhqCyruLhYACD89NNPgiAIQnl5ueDk5CRs3rzZeEx6eroAQEhOTpZqmJ2mqqpK6N27t7B7925hzJgxwjPPPCMIgmPdh0WLFgmjRo1q83W9Xi8EBQUJ//rXv4zPlZeXC2q1Wvj8888tMUSLmDRpkvD444+bPDd16lRh5syZgiA4xn0AIGzbts34dXuu+dSpUwIA4dChQ8ZjfvjhB0Emkwl5eXkWG7u5XX0vWpOSkiIAELKzswVBsM970dZ9yM3NFUJDQ4UTJ04I3bt3F958803ja+a6D8wMWYBWq8Xhw4cRFxdnfE4ulyMuLg7JyckSjsyyKioqAAC+vr4AgMOHD6OhocHkvkRGRqJbt252eV/mzZuHSZMmmVwv4Fj34ZtvvkFMTAwefPBBBAQEYMiQIXj33XeNr2dmZqKwsNDkXnh5eSE2Ntau7sWtt96KpKQknDlzBgBw9OhR7N+/H3fffTcAx7kPV2rPNScnJ8Pb2xsxMTHGY+Li4iCXy3Hw4EGLj9mSKioqIJPJ4O3tDcBx7oVer8ejjz6K559/HgMGDGjxurnuAzdqtYDS0lLodDoEBgaaPB8YGIjTp09LNCrL0uv1WLhwIW677TYMHDgQAFBYWAiVSmX8xy0KDAxEYWGhBKPsPF988QVSU1Nx6NChFq850n24cOEC1q1bh4SEBPztb3/DoUOHsGDBAqhUKsyePdt4va39W7Gne/HCCy+gsrISkZGRUCgU0Ol0WLFiBWbOnAkADnMfrtSeay4sLERAQIDJ60qlEr6+vnZ7XwBDTeGiRYswY8YM4waljnIvVq1aBaVSiQULFrT6urnuA4Mhsoh58+bhxIkT2L9/v9RDsbiLFy/imWeewe7du+Hs7Cz1cCSl1+sRExODf/7znwCAIUOG4MSJE1i/fj1mz54t8egs53//+x8+/fRTfPbZZxgwYADS0tKwcOFChISEONR9oOtraGjAQw89BEEQsG7dOqmHY1GHDx/Gv//9b6SmpkImk3XqZ3GazAL8/f2hUCharA4qKipCUFCQRKOynPnz52P79u3Yu3cvunbtanw+KCgIWq0W5eXlJsfb2305fPgwiouLMXToUCiVSiiVSvz000946623oFQqERgY6BD3AQCCg4PRv39/k+f69euHnJwcADBer73/W3n++efxwgsv4OGHH8agQYPw6KOP4tlnn0ViYiIAx7kPV2rPNQcFBbVYdNLY2IhLly7Z5X0RA6Hs7Gzs3r3bmBUCHONe/PLLLyguLka3bt2M3zuzs7Px3HPPITw8HID57gODIQtQqVQYNmwYkpKSjM/p9XokJSVh5MiREo6scwmCgPnz52Pbtm348ccfERERYfL6sGHD4OTkZHJfMjIykJOTY1f3Zdy4cTh+/DjS0tKMj5iYGMycOdP4/45wHwDgtttua9Fe4cyZM+jevTsAICIiAkFBQSb3orKyEgcPHrSre1FbWwu53PTbr0KhgF6vB+A49+FK7bnmkSNHory8HIcPHzYe8+OPP0Kv1yM2NtbiY+5MYiB09uxZ7NmzB35+fiavO8K9ePTRR3Hs2DGT750hISF4/vnnsXPnTgBmvA8dr/umG/HFF18IarVa+PDDD4VTp04Jc+bMEby9vYXCwkKph9Zp/vznPwteXl7Cvn37hIKCAuOjtrbWeMxTTz0ldOvWTfjxxx+F33//XRg5cqQwcuRICUdtGVeuJhMEx7kPKSkpglKpFFasWCGcPXtW+PTTTwVXV1fhk08+MR6zcuVKwdvbW/j666+FY8eOCffdd58QEREh1NXVSThy85o9e7YQGhoqbN++XcjMzBS2bt0q+Pv7C3/961+Nx9jjfaiqqhKOHDkiHDlyRAAgvPHGG8KRI0eMK6Tac8133XWXMGTIEOHgwYPC/v37hd69ewszZsyQ6pI67Fr3QqvVCpMnTxa6du0qpKWlmXz/1Gg0xnPYw7243t+Jq129mkwQzHMfGAxZ0Jo1a4Ru3boJKpVKGDFihHDgwAGph9SpALT6+OCDD4zH1NXVCXPnzhV8fHwEV1dXYcqUKUJBQYF0g7aQq4MhR7oP3377rTBw4EBBrVYLkZGRwjvvvGPyul6vF5YuXSoEBgYKarVaGDdunJCRkSHRaDtHZWWl8MwzzwjdunUTnJ2dhR49eghLliwx+UFnj/dh7969rX5PmD17tiAI7bvmsrIyYcaMGYK7u7vg6ekpxMfHC1VVVRJczc251r3IzMxs8/vn3r17jeewh3txvb8TV2stGDLHfZAJwhUtT4mIiIgcDGuGiIiIyKExGCIiIiKHxmCIiIiIHBqDISIiInJoDIaIiIjIoTEYIiIiIofGYIiIiIgcGoMhIqJ2kMlk+Oqrr6QeBhF1AgZDRGT1HnvsMchkshaPu+66S+qhEZEdUEo9ACKi9rjrrrvwwQcfmDynVqslGg0R2RNmhojIJqjVagQFBZk8fHx8ABimsNatW4e7774bLi4u6NGjB7788kuT9x8/fhx33nknXFxc4Ofnhzlz5qC6utrkmA0bNmDAgAFQq9UIDg7G/PnzTV4vLS3FlClT4Orqit69e+Obb77p3IsmIotgMEREdmHp0qV44IEHcPToUcycORMPP/ww0tPTAQA1NTWYOHEifHx8cOjQIWzevBl79uwxCXbWrVuHefPmYc6cOTh+/Di++eYb9OrVy+QzXnrpJTz00EM4duwY7rnnHsycOROXLl2y6HUSUSfo0DazREQWNHv2bEGhUAhubm4mjxUrVgiCIAgAhKeeesrkPbGxscKf//xnQRAE4Z133hF8fHyE6upq4+vfffedIJfLhcLCQkEQBCEkJERYsmRJm2MAIPz97383fl1dXS0AEH744QezXScRSYM1Q0RkE+644w6sW7fO5DlfX1/j/48cOdLktZEjRyItLQ0AkJ6ejqioKLi5uRlfv+2226DX65GRkQGZTIb8/HyMGzfummMYPHiw8f/d3Nzg6emJ4uLijl4SEVkJBkNEZBPc3NxaTFuZi4uLS7uOc3JyMvlaJpNBr9d3xpCIyIJYM0REduHAgQMtvu7Xrx8AoF+/fjh69ChqamqMr//666+Qy+Xo27cvPDw8EB4ejqSkJIuOmYisAzNDRGQTNBoNCgsLTZ5TKpXw9/cHAGzevBkxMTEYNWoUPv30U6SkpOD9998HAMycORPLly/H7Nmz8eKLL6KkpARPP/00Hn30UQQGBgIAXnzxRTz11FMICAjA3XffjaqqKvz66694+umnLXuhRGRxDIaIyCbs2LEDwcHBJs/17dsXp0+fBmBY6fXFF19g7ty5CA4Oxueff47+/fsDAFxdXbFz504888wzGD58OFxdXfHAAw/gjTfeMJ5r9uzZqK+vx5tvvom//OUv8Pf3x7Rp0yx3gUQkGZkgCILUgyAiuhkymQzbtm3D/fffL/VQiMgGsWaIiIiIHBqDISIiInJorBkiIpvH2X4iuhnMDBEREZFDYzBEREREDo3BEBERETk0BkNERETk0BgMERERkUNjMEREREQOjcEQEREROTQGQ0REROTQGAwRERGRQ/t/+x8Ys5tutfIAAAAASUVORK5CYII=\n" - }, - "metadata": {} - } - ] + "execution_count": null, + "outputs": [] }, { "cell_type": "code", @@ -480,33 +263,22 @@ "print(electricity_data[\"Region\"])" ], "metadata": { - "id": "kT7euZcTW482", - "outputId": "90bf7751-d116-4865-9dd5-148b8871f5b6", - "colab": { - "base_uri": "https://localhost:8080/" - } + "id": "kT7euZcTW482" }, - "execution_count": 116, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "0 Africa\n", - "1 Africa\n", - "2 Africa\n", - "3 Africa\n", - "4 Africa\n", - " ... \n", - "1605 Central & South America\n", - "1606 Central & South America\n", - "1607 Central & South America\n", - "1608 Central & South America\n", - "1609 Central & South America\n", - "Name: Region, Length: 1610, dtype: object\n" - ] - } - ] + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "print(electricity_data.columns) # Si 2020 es una columna\n", + "print(electricity_data.index) # Si 2020 es un índice\n" + ], + "metadata": { + "id": "oDKGm3BTajlP" + }, + "execution_count": null, + "outputs": [] }, { "cell_type": "code", @@ -534,7 +306,7 @@ "id": "EOl4zF1VTp-c", "outputId": "7284c06d-770b-439c-bc62-cbea103533d7" }, - "execution_count": 118, + "execution_count": null, "outputs": [ { "output_type": "error", From 487632222b9191261537eb5af6e7e3febff1cd9a Mon Sep 17 00:00:00 2001 From: KKhuates <66379642+KKhuates@users.noreply.github.com> Date: Fri, 24 Nov 2023 22:08:48 -0300 Subject: [PATCH 16/16] Creado mediante Colaboratory --- PREDICCIONAICNN.ipynb | 684 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 684 insertions(+) create mode 100644 PREDICCIONAICNN.ipynb diff --git a/PREDICCIONAICNN.ipynb b/PREDICCIONAICNN.ipynb new file mode 100644 index 0000000..be74d48 --- /dev/null +++ b/PREDICCIONAICNN.ipynb @@ -0,0 +1,684 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from keras.models import Sequential\n", + "from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout\n", + "from keras.regularizers import l1_l2\n", + "from keras.callbacks import EarlyStopping" + ], + "metadata": { + "id": "H7kZjC_GUZZd" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "9_FId2wvQAgd" + }, + "outputs": [], + "source": [ + "# Cargar el archivo de estadísticas de electricidad\n", + "file_path = 'Global_Electricity_Statistics.csv' # Asegúrate de cambiar esto a tu ruta de archivo\n", + "electricity_data = pd.read_csv(file_path)\n" + ] + }, + { + "cell_type": "code", + "source": [ + "# Convertir todos los valores a números, tratando los valores no numéricos como nulos\n", + "years_columns = electricity_data.columns[3:] # Columnas de años\n", + "electricity_data[years_columns] = electricity_data[years_columns].apply(pd.to_numeric, errors='coerce')\n" + ], + "metadata": { + "id": "dM7ktPDSOl8N" + }, + "execution_count": 3, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "\n", + "# Reemplazar valores 0 con NaN utilizando una máscara booleana\n", + "for column in years_columns:\n", + " mask = electricity_data[column] == 0\n", + " electricity_data.loc[mask, column] = pd.NA\n", + "\n", + "# Calcular la media de cada fila excluyendo NaN\n", + "row_means = electricity_data[years_columns].mean(axis=1)\n", + "\n", + "# Usar `fillna` en cada columna para reemplazar NaN con la media correspondiente de cada fila\n", + "for year in years_columns:\n", + " electricity_data[year] = electricity_data[year].fillna(row_means)\n", + "\n", + "# Verificar si hay valores nulos después de la normalización\n", + "null_values_after_normalization = electricity_data[years_columns].isna().sum().sum()\n" + ], + "metadata": { + "id": "374vEgbTOw3P" + }, + "execution_count": 4, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Asegúrate de que los datos están agrupados por región y año como se hizo anteriormente\n", + "grouped_data = electricity_data.groupby('Region')[years_columns].sum().transpose()\n", + "\n", + "# Crear un gráfico de líneas\n", + "plt.figure(figsize=(15, 8)) # Ajusta el tamaño del gráfico según tus necesidades\n", + "\n", + "for region in grouped_data.columns:\n", + " plt.plot(grouped_data.index, grouped_data[region], label=region)\n", + "\n", + "# Agregar títulos y etiquetas\n", + "plt.title('Consumo de Electricidad por Región a lo Largo del Tiempo')\n", + "plt.xlabel('Año')\n", + "plt.ylabel('Consumo de Electricidad (Unidades)')\n", + "plt.xticks(rotation=45) # Rota las etiquetas del eje X para mejor legibilidad\n", + "plt.legend() # Añade una leyenda para identificar cada línea/región\n", + "\n", + "# Mostrar el gráfico\n", + "plt.show()" + ], + "metadata": { + "id": "lWY6qwmkQ2PL", + "outputId": "78b64a25-44f8-4243-e027-e22241dfe43b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 379 + } + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOcAAALTCAYAAABdWWYwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdvH8e+mh1QCgYBA6L33IlUgVOmC1CBNijwICKJ0UBGliqBgIIgiilSp0pXepPeYEB/pLSG0tHn/2Cf7siRAAoEN8Ptc117unDlz5p7J7EbunGIyDMNAREREREREREREnjs7WwcgIiIiIiIiIiLyqlJyTkRERERERERExEaUnBMREREREREREbERJedERERERERERERsRMk5ERERERERERERG1FyTkRERERERERExEaUnBMREREREREREbERJedERERERERERERsRMk5EREREXmlbdy4kbFjx3Lr1i1bhyIiIiKvICXnREREXkEjR47EZDLZ5Nwmk4mRI0fa5NwPExgYSM6cOVN8XM6cOQkMDHxsveDgYEwmE2FhYSk+x8PUqFGDGjVqpFp7L6vHPeshISE0a9aMTJky4ebm9hwje7QnfSZfdcn9TCYlNb+bnsVnXkREXl5KzomISJoVEhJCjx49yJ07Ny4uLnh6elKlShWmTJnCnTt3bB2e3CfhH6IPe+3cufO5xHH79m1GjhzJ5s2bn8v55PHCwsKsngU7Ozt8fHyoX78+O3bssGls9+7do1WrVvTp04fu3bvbNJZnLTAwEHd3d1uH8UKrUaPGI7/nEl5p7Y8PIiKS9jnYOgAREZGkrFy5klatWuHs7EzHjh0pWrQo0dHRbN26lQ8++ICjR48yc+ZMW4cpDxg9ejS5cuVKVJ43b97ncv7bt28zatQogBT1Kps1axbx8fEpPt/Jkyexs9PfOpPj7bffpkGDBsTFxXHq1CmmT59OzZo12bNnD8WKFXtm5x06dCgffvhhkvsOHz5M586dee+9957Z+eXl8fHHH9O1a1fL9p49e5g6dSofffQRhQoVspQXL16cIkWK0KZNG5ydnW0RqoiIvGCUnBMRkTQnNDSUNm3a4O/vz8aNG8mSJYtlX+/evTlz5gwrV660YYTyMPXr16ds2bK2DiPZbt26hZubG46Ojk90vP7hbZZwHx+ldOnStG/f3rJdtWpV6tevz4wZM5g+ffozi83BwQEHh6T/l7ds2bIv1POaliXnGXjR1alTx2rbxcWFqVOnUqdOnST/GGBvb/+cIhMRkRed/tQrIiJpzvjx44mKiiIoKMgqMZcgb968/Oc//7Fsx8bGMmbMGPLkyYOzszM5c+bko48+4t69e1bH5cyZk0aNGrF161bKly+Pi4sLuXPn5vvvv7eqFxMTw6hRo8iXLx8uLi5kyJCB119/nXXr1lnqPGy+rwfniUoY0vfll1/y9ddfkzt3btKlS0fdunX5559/MAyDMWPGkC1bNlxdXWnSpAnXrl1L1O706dMpUqQIzs7OZM2ald69e3Pjxo1k3c+tW7dSrlw5XFxcyJMnD99+++1D6/7www+UKVMGV1dXfHx8aNOmDf/880+yzvM0/v33X9555x0yZ86Ms7MzRYoUYfbs2Ynq3b17l5EjR5I/f35cXFzIkiULzZs3JyQkhLCwMHx9fQEYNWpUoiFmCcP6QkJCaNCgAR4eHrRr186y78H5veLj45kyZQrFihXDxcUFX19f6tWrx969ey11kprf6ujRo9SqVQtXV1eyZcvG2LFjk+yVt2zZMho2bEjWrFlxdnYmT548jBkzhri4uER1Z86cSZ48eXB1daV8+fL8+eefyb63JpOJPn368OOPP1KgQAFcXFwoU6YMf/zxR6K6f/31F/Xr18fT0xN3d3feeOONREOSE4Ywb9myhV69epEpUyayZcuW7HgSVK1aFTAPX7/fjRs36NevH9mzZ8fZ2Zm8efPy+eefJ7qHV69epUOHDnh6euLt7U2nTp04ePAgJpOJ4OBgS72k5pxL7e+Mh/nyyy+pXLkyGTJkwNXVlTJlyvDrr78m9xYlcuvWLQYMGGC5NwUKFODLL7/EMIwnbvN+Z8+epVevXhQoUABXV1cyZMhAq1atEs2b9rhnIOG77v7nNanvzEuXLtGlSxcyZ86Mi4sLJUqUYO7cucmK1TAMxo4dS7Zs2UiXLh01a9bk6NGjSdZN7jOVmh4259zq1aupWrUqbm5ueHh40LBhw0RxJ3xXhYeH06hRI9zd3Xnttdf4+uuvAXOPz1q1auHm5oa/vz/z589P8tx//PEHPXr0IEOGDHh6etKxY0euX7+eKNan+f0iIiKpQz3nREQkzfntt9/InTs3lStXTlb9rl27MnfuXFq2bMmAAQPYtWsXn332GcePH2fJkiVWdc+cOUPLli3p0qULnTp1Yvbs2QQGBlKmTBmKFCkCmP8x/9lnn9G1a1fKly9PZGQke/fuZf/+/Yl6TiTXjz/+SHR0NO+99x7Xrl1j/PjxvPXWW9SqVYvNmzczePBgzpw5w1dffcXAgQOtElMjR45k1KhR1K5dm549e3Ly5ElmzJjBnj172LZt2yN7fR0+fJi6devi6+vLyJEjiY2NZcSIEWTOnDlR3U8++YRhw4bx1ltv0bVrVy5fvsxXX31FtWrV+Ouvv/D29n7sdUZERHDlyhWrMpPJRIYMGR56zMWLF6lYsaIlieTr68vq1avp0qULkZGR9OvXD4C4uDgaNWrEhg0baNOmDf/5z3+4efMm69at48iRI9SuXZsZM2bQs2dPmjVrRvPmzQHzELMEsbGxBAQE8Prrr/Pll1+SLl26h8bVpUsXgoODqV+/Pl27diU2NpY///yTnTt3PrS31YULF6hZsyaxsbF8+OGHuLm5MXPmTFxdXRPVDQ4Oxt3dnf79++Pu7s7GjRsZPnw4kZGRfPHFF5Z6QUFB9OjRg8qVK9OvXz/+/vtv3nzzTXx8fMiePftD47/fli1b+Pnnn+nbty/Ozs5Mnz6devXqsXv3booWLQqYk4pVq1bF09OTQYMG4ejoyLfffkuNGjXYsmULFSpUsGqzV69e+Pr6Mnz48Cda5TQhaZE+fXpL2e3bt6levTr//vsvPXr0IEeOHGzfvp0hQ4Zw/vx5Jk+eDJgTp40bN2b37t307NmTggULsmzZMjp16pSsc6f2d8bDTJkyhTfffJN27doRHR3NggULaNWqFStWrKBhw4bJv1mYk1FvvvkmmzZtokuXLpQsWZK1a9fywQcf8O+//zJp0qQUtZeUPXv2sH37dtq0aUO2bNkICwtjxowZ1KhRg2PHjiX6vCT1DMyYMYM+ffpQtWpV3n//fcLCwmjatCnp06e3SuDduXOHGjVqcObMGfr06UOuXLlYuHAhgYGB3Lhxw+oPMEkZPnw4Y8eOpUGDBjRo0ID9+/dTt25doqOjreol95l6HubNm0enTp0ICAjg888/5/bt28yYMYPXX3+dv/76y+oPBHFxcdSvX59q1aoxfvx4fvzxR/r06YObmxsff/wx7dq1o3nz5nzzzTd07NiRSpUqJZpSoE+fPnh7ezNy5EjL742zZ8+yefNmS8L6aX6/iIhIKjJERETSkIiICAMwmjRpkqz6Bw4cMACja9euVuUDBw40AGPjxo2WMn9/fwMw/vjjD0vZpUuXDGdnZ2PAgAGWshIlShgNGzZ85HmrV69uVK9ePVF5p06dDH9/f8t2aGioARi+vr7GjRs3LOVDhgwxAKNEiRJGTEyMpfztt982nJycjLt371ric3JyMurWrWvExcVZ6k2bNs0AjNmzZz8yzqZNmxouLi7G2bNnLWXHjh0z7O3tjfv/NyAsLMywt7c3PvnkE6vjDx8+bDg4OCQqf9CcOXMMIMmXs7OzVV3AGDFihGW7S5cuRpYsWYwrV65Y1WvTpo3h5eVl3L592zAMw5g9e7YBGBMnTkx0/vj4eMMwDOPy5cuJ2k/QqVMnAzA+/PDDJPfd/3PbuHGjARh9+/Z96LkMw/xMderUybLdr18/AzB27dplKbt06ZLh5eVlAEZoaKilPOG67tejRw8jXbp0lp9/dHS0kSlTJqNkyZLGvXv3LPVmzpxpAEk+gw9K+Dns3bvXUnb27FnDxcXFaNasmaWsadOmhpOTkxESEmIpO3funOHh4WFUq1bNUpbws3799deN2NjYx54/4TMwatQo4/Lly8aFCxeMP//80yhXrpwBGAsXLrTUHTNmjOHm5macOnXKqo0PP/zQsLe3N8LDww3DMIxFixYZgDF58mRLnbi4OKNWrVoGYMyZM8dSPmLECKtn/Vl8ZzzMgz/j6Ohoo2jRokatWrUee+yDz+TSpUsNwBg7dqxVvZYtWxomk8k4c+bMY9tzc3NLUbyGYRg7duwwAOP777+3lD3sGbh3756RIUMGo1y5clbfa8HBwYme18mTJxuA8cMPP1jKoqOjjUqVKhnu7u5GZGTkQ+NM+F5s2LCh1efxo48+MgCrz2RynynDSPzd9DgLFy40AGPTpk2J9iXco4TP/M2bNw1vb2+jW7duVvUuXLhgeHl5WZUnfFd9+umnlrLr168brq6uhslkMhYsWGApP3HiRKK4E85dpkwZIzo62lI+fvx4AzCWLVtmGMbT/34REZHUo2GtIiKSpkRGRgLg4eGRrPqrVq0CoH///lblAwYMAEg0N13hwoUtw+kAfH19KVCgAH///belzNvbm6NHj3L69OmUX8BDtGrVCi8vL8t2Qi+k9u3bW82HVaFCBaKjo/n3338BWL9+PdHR0fTr189q4YFu3brh6en5yLn34uLiWLt2LU2bNiVHjhyW8kKFChEQEGBVd/HixcTHx/PWW29x5coVy8vPz498+fKxadOmZF3n119/zbp166xeq1evfmh9wzBYtGgRjRs3xjAMq3MHBAQQERHB/v37AVi0aBEZM2ZMcvL+B4ctPkrPnj0fW2fRokWYTCZGjBiRonOtWrWKihUrUr58eUuZr6+vZfjs/e7vTXfz5k2uXLlC1apVuX37NidOnABg7969XLp0iXfffRcnJydL/cDAQKvn6XEqVapEmTJlLNs5cuSgSZMmrF27lri4OOLi4vj9999p2rQpuXPnttTLkiULbdu2ZevWrZbPZoJu3bqlaE6tESNG4Ovri5+fH1WrVuX48eNMmDCBli1bWuosXLiQqlWrkj59eqtnoXbt2sTFxVmG4q5ZswZHR0e6detmOdbOzo7evXs/No5n8Z3xMPf/jK9fv05ERARVq1a1PNMpsWrVKuzt7enbt2+iuA3DeOTnLLnujzcmJoarV6+SN29evL29k4z5wWdg7969XL16lW7dull9r7Vr186qh2TC9fj5+fH2229byhwdHenbty9RUVFs2bLloXEmfC++9957Vp/HhF6290vuM/WsrVu3jhs3bvD2229bxWFvb0+FChWS/I69f/EJb29vChQogJubG2+99ZalvECBAnh7eyf5PHbv3t2q51vPnj1xcHCwfAae5veLiIikLg1rFRGRNMXT0xMwJyuS4+zZs9jZ2SVaDdTPzw9vb2/Onj1rVX5/kipB+vTprebhGT16NE2aNCF//vwULVqUevXq0aFDB6vhkSn14HkTEisPDktMKE+IJyH+AgUKWNVzcnIid+7cia7vfpcvX+bOnTvky5cv0b4CBQpY/oEGcPr0aQzDSLIukOyhTeXLl0/RBPuXL1/mxo0bzJw586Gr7166dAkwz01WoECBh07unxwODg7Jmh8tJCSErFmz4uPjk6L2z549m2j4JyT++YF5GOnQoUPZuHFjosRXRESEpT0g0c/F0dHRKon2OEn9XPPnz8/t27e5fPkyYB7+l1SchQoVIj4+nn/++cdqGGdSq/I+Svfu3WnVqhV3795l48aNTJ06NdH8eqdPn+bQoUOWuQMflPAsnD17lixZsiQaZpmcVYGfxXfGw6xYsYKxY8dy4MABq/nsUpJMvj/urFmzJvrDRcIqoY/6LkiuO3fu8NlnnzFnzhz+/fdfq7nsEp7J+z34DCTE8OC9dXBwSDSn49mzZ8mXL1+i1Y6Tcz0P+1z4+vomSgIm95l61hL+2FOrVq0k9yf87kuQMM/l/by8vMiWLVui58fLyyvJ5/HB++Pu7k6WLFksQ8qf5veLiIikLiXnREQkTfH09CRr1qwcOXIkRccl9x+7D+vpc/8/QqtVq0ZISAjLli3j999/57vvvmPSpEl88803lp4MJpMpyUnYk5rM/1HnTU48z0N8fDwmk4nVq1cnGZO7u/szOy+YexA+bL6wp0mKPsjZ2TlRMsAWbty4QfXq1fH09GT06NHkyZMHFxcX9u/fz+DBg5/pRPWpJal59B4lX7581K5dG4BGjRphb2/Phx9+SM2aNS0J3fj4eOrUqcOgQYOSbCN//vxPF/R9UvM7Iyl//vknb775JtWqVWP69OlkyZIFR0dH5syZk2gC/7TivffeY86cOfTr149KlSrh5eWFyWSiTZs2ST6TKX0GbOF5PlOPiwPM8875+fkl2v/gHx3S+u8MERFJXUrOiYhImtOoUSNmzpzJjh07qFSp0iPr+vv7Ex8fz+nTpy09LsC8yMCNGzfw9/d/ohh8fHzo3LkznTt3JioqimrVqjFy5EhLci59+vRJDiNK7Z4GCfGfPHnSqqdUdHQ0oaGhlmRHUnx9fXF1dU1yeO7JkyettvPkyYNhGOTKleu5/WMVzDF6eHgQFxf3yGsBc4y7du0iJibmoT35nqRH0sPOtXbtWq5du5ai3nP+/v7Jut+bN2/m6tWrLF68mGrVqlnKQ0NDE7UH5l439/e4iYmJITQ0lBIlSiQrrqRiOnXqFOnSpbP0zkmXLl2iOAFOnDiBnZ1dshefSK6PP/6YWbNmMXToUNasWQOY73tUVNRjnwV/f382bdrE7du3rXrPnTlz5rHnfVbfGQ9atGgRLi4urF27FmdnZ0v5nDlznqg9f39/1q9fz82bN616zyUMgU6NuH/99Vc6derEhAkTLGV3795N9sqdCTGcOXOGmjVrWspjY2MJCwuzSrT7+/tz6NAh4uPjrRLmybme+z8X938vXr58OVEPsuQ+U89anjx5AMiUKdNzi+X06dNWP4eoqCjOnz9PgwYNgKf7/SIiIqnL9n86FhERecCgQYNwc3Oja9euXLx4MdH+kJAQpkyZAmD5R8aDK+5NnDgRIMUrIgJcvXrVatvd3Z28efNaDUvLkycPJ06csAwJBDh48CDbtm1L8fkepXbt2jg5OTF16lSrnhFBQUFEREQ88vrs7e0JCAhg6dKlhIeHW8qPHz/O2rVrreo2b94ce3t7Ro0alagHhmEYie5JarG3t6dFixYsWrQoyd6S99/fFi1acOXKFaZNm5aoXkLMCYma5CYTHqZFixYYhsGoUaMeeq6kNGjQgJ07d7J7925L2eXLl/nxxx+t6iX0frm/rejoaKZPn25Vr2zZsvj6+vLNN99YrUIZHBycomvcsWOH1Zxh//zzD8uWLaNu3brY29tjb29P3bp1WbZsmWXIG5gTVvPnz+f1119PNOzuaXl7e9OjRw/Wrl3LgQMHAHjrrbfYsWNHoucTzD/T2NhYAAICAoiJiWHWrFmW/fHx8Xz99dePPe+z+M5Iir29PSaTyao3bVhYGEuXLn2i9ho0aEBcXFyi53/SpEmYTCbq16//NOEC5pgffL6/+uqrh/YIflDZsmXJkCEDs2bNsvyswLxa9YNJswYNGnDhwgV+/vlnS1lsbCxfffUV7u7uVK9e/aHnqV27No6Ojnz11VdW8Sa18mpyn6lnLSAgAE9PTz799FNiYmIS7b//uy61zJw50+pcM2bMIDY21vKsPM3vFxERSV3qOSciImlOnjx5mD9/Pq1bt6ZQoUJ07NiRokWLEh0dzfbt21m4cCGBgYEAlChRgk6dOjFz5kzLUMHdu3czd+5cmjZtatVrILkKFy5MjRo1KFOmDD4+Puzdu5dff/2VPn36WOq88847TJw4kYCAALp06cKlS5f45ptvKFKkSKL5w56Gr68vQ4YMYdSoUdSrV48333yTkydPMn36dMqVK0f79u0fefyoUaNYs2YNVatWpVevXpZ//BYpUoRDhw5Z6uXJk4exY8cyZMgQwsLCaNq0KR4eHoSGhrJkyRK6d+/OwIEDHxvv6tWrLT1f7le5cuWHzpE2btw4Nm3aRIUKFejWrRuFCxfm2rVr7N+/n/Xr13Pt2jUAOnbsyPfff0///v3ZvXs3VatW5datW6xfv55evXrRpEkTXF1dKVy4MD///DP58+fHx8eHokWLUrRo0cfGfr+aNWvSoUMHpk6dyunTp6lXrx7x8fH8+eef1KxZ0+pZuN+gQYOYN28e9erV4z//+Q9ubm7MnDnT0kvo/vuRPn16OnXqRN++fTGZTMybNy9RYsTR0ZGxY8fSo0cPatWqRevWrQkNDWXOnDkpmnOuaNGiBAQE0LdvX5ydnS1JwPuTj2PHjmXdunW8/vrr9OrVCwcHB7799lvu3bvH+PHjU3L7ku0///kPkydPZty4cSxYsIAPPviA5cuX06hRIwIDAylTpgy3bt3i8OHD/Prrr4SFhZExY0aaNm1K+fLlGTBgAGfOnKFgwYIsX77c8qw8qgfls/jOSErDhg2ZOHEi9erVo23btly6dImvv/6avHnzWj0LydW4cWNq1qzJxx9/TFhYGCVKlOD3339n2bJl9OvXz9Iz61FiYmIYO3ZsonIfHx969epFo0aNmDdvHl5eXhQuXJgdO3awfv16MmTIkKwYnZycGDlyJO+99x61atXirbfeIiwsjODgYPLkyWP1c+nevTvffvstgYGB7Nu3j5w5c/Lrr7+ybds2Jk+e/MhFgXx9fRk4cCCfffYZjRo1okGDBvz111+sXr2ajBkzWtVN7jP1rHl6ejJjxgw6dOhA6dKladOmDb6+voSHh7Ny5UqqVKmS5B8enkZ0dDRvvPEGb731luX3xuuvv86bb74JPP3vFxERSUXPc2lYERGRlDh16pTRrVs3I2fOnIaTk5Ph4eFhVKlSxfjqq6+Mu3fvWurFxMQYo0aNMnLlymU4Ojoa2bNnN4YMGWJVxzAMw9/f32jYsGGi81SvXt2oXr26ZXvs2LFG+fLlDW9vb8PV1dUoWLCg8cknnxjR0dFWx/3www9G7ty5DScnJ6NkyZLG2rVrjU6dOhn+/v6WOqGhoQZgfPHFF1bHbtq0yQCMhQsXWpXPmTPHAIw9e/ZYlU+bNs0oWLCg4ejoaGTOnNno2bOncf369eTcRmPLli1GmTJlDCcnJyN37tzGN998Y4wYMcJI6n8DFi1aZLz++uuGm5ub4ebmZhQsWNDo3bu3cfLkyUeeIyHuh73mzJljqQsYI0aMsDr+4sWLRu/evY3s2bMbjo6Ohp+fn/HGG28YM2fOtKp3+/Zt4+OPP7b8rP38/IyWLVsaISEhljrbt2+3XO/95+rUqZPh5uaWZPwP/twMwzBiY2ONL774wihYsKDh5ORk+Pr6GvXr1zf27dtnqePv72906tTJ6rhDhw4Z1atXN1xcXIzXXnvNGDNmjBEUFGQARmhoqKXetm3bjIoVKxqurq5G1qxZjUGDBhlr1641AGPTpk1WbU6fPt3IlSuX4ezsbJQtW9b4448/Ej23DwMYvXv3Nn744QcjX758hrOzs1GqVKlE5zAMw9i/f78REBBguLu7G+nSpTNq1qxpbN++3arOw57Rh3nYZyBBYGCgYW9vb5w5c8YwDMO4efOmMWTIECNv3ryGk5OTkTFjRqNy5crGl19+afUZvHz5stG2bVvDw8PD8PLyMgIDA41t27YZgLFgwQJLvaSe9dT+zniYoKAgyz0vWLCgMWfOnId+9h6U1DN58+ZN4/333zeyZs1qODo6Gvny5TO++OILIz4+PlntPezzmSdPHsMwDOP69etG586djYwZMxru7u5GQECAceLEiUTP+eOegalTpxr+/v6Gs7OzUb58eWPbtm1GmTJljHr16lnVu3jxouV8Tk5ORrFixay+Kx4lLi7OGDVqlJElSxbD1dXVqFGjhnHkyJEkP5PJfaaS+m56lIULFyb5eTWM/79H93/mDcP83R8QEGB4eXkZLi4uRp48eYzAwEBj7969ljoP+66qXr26UaRIkUTlDz6nCefesmWL0b17dyN9+vSGu7u70a5dO+Pq1auJjn+a3y8iIpI6TIah2UNFREREXlYmk4nevXuneq+ctGjp0qU0a9aMrVu3UqVKFVuHI/8THx+Pr68vzZs3txqKLM9GcHAwnTt3Zs+ePSlaPVtERGxHc86JiIiIyAvnzp07VttxcXF89dVXeHp6Urp0aRtFJXfv3k00PPv777/n2rVr1KhRwzZBiYiIpHGac05EREREXjjvvfced+7coVKlSty7d4/Fixezfft2Pv30U1xdXW0d3itr586dvP/++7Rq1YoMGTKwf/9+goKCKFq0KK1atbJ1eCIiImmSknMiIiIi8sKpVasWEyZMYMWKFdy9e5e8efPy1VdfPXSxDnk+cubMSfbs2Zk6dSrXrl3Dx8eHjh07Mm7cOJycnGwdnoiISJqkOedERERERERERERsRHPOiYiIiIiIiIiI2IiScyIiIiIiIiIiIjai5JyIiIiIiIiIiIiNaEGIVBIfH8+5c+fw8PDAZDLZOhwREREREREREbEhwzC4efMmWbNmxc7u4f3jlJxLJefOnSN79uy2DkNERERERERERNKQf/75h2zZsj10v5JzqcTDwwMw33BPT08bRyMiIiIiIiIiIrYUGRlJ9uzZLTmjh1FyLpUkDGX19PRUck5ERERERERERAAeO/2ZFoQQERERERERERGxESXnREREREREREREbETJORERERERERERERvRnHPPkWEYxMbGEhcXZ+tQRF56jo6O2Nvb2zoMERERERERkUdScu45iY6O5vz589y+fdvWoYi8EkwmE9myZcPd3d3WoYiIiIiIiIg8lJJzz0F8fDyhoaHY29uTNWtWnJycHrtSh4g8OcMwuHz5Mv/973/Jly+fetCJiIiIiIhImqXk3HMQHR1NfHw82bNnJ126dLYOR+SV4OvrS1hYGDExMUrOiYiIiIiISJqlBSGeIzs73W6R50W9U0VERERERORFoGyRiIiIiIiIiIiIjSg5J0/FMAy6d++Oj48PJpOJAwcOPLSuyWRi6dKlzy02EREREREREZG0Tsk5SZYdO3Zgb29Pw4YNrcrXrFlDcHAwK1as4Pz58xQtWvShbZw/f5769es/61BFRERERERERF4YSs5JsgQFBfHee+/xxx9/cO7cOUt5SEgIWbJkoXLlyvj5+eHgkHiNkejoaAD8/PxwdnZ+bjGLiIiIiIiIiKR1Ss7JY0VFRfHzzz/Ts2dPGjZsSHBwMACBgYG89957hIeHYzKZyJkzJwA1atSgT58+9OvXj4wZMxIQEAAkHtb63//+l7fffhsfHx/c3NwoW7Ysu3btAsxJvyZNmpA5c2bc3d0pV64c69evf56XLSIiIiIiIiLyzCXu5iTPhWEY3ImJe+7ndXW0T/Eqlr/88gsFCxakQIECtG/fnn79+jFkyBCmTJlCnjx5mDlzJnv27MHe3t5yzNy5c+nZsyfbtm1Lss2oqCiqV6/Oa6+9xvLly/Hz82P//v3Ex8db9jdo0IBPPvkEZ2dnvv/+exo3bszJkyfJkSPHk98AEREREREREZE0RMk5G7kTE0fh4Wuf+3mPjQ4gnVPKfuxBQUG0b98egHr16hEREcGWLVuoUaMGHh4e2Nvb4+fnZ3VMvnz5GD9+/EPbnD9/PpcvX2bPnj34+PgAkDdvXsv+EiVKUKJECcv2mDFjWLJkCcuXL6dPnz4pil9EREREREREJK3SsFZ5pJMnT7J7927efvttABwcHGjdujVBQUGPPK5MmTKP3H/gwAFKlSplScw9KCoqioEDB1KoUCG8vb1xd3fn+PHjhIeHP9mFiIiIiIiIiIikQeo5ZyOujvYcGx1gk/OmRFBQELGxsWTNmtVSZhgGzs7OTJs27aHHubm5PToOV9dH7h84cCDr1q3jyy+/JG/evLi6utKyZUvL4hIiIiIiIiIiIi8DJedsxGQypXh46fMWGxvL999/z4QJE6hbt67VvqZNm/LTTz89cdvFixfnu+++49q1a0n2ntu2bRuBgYE0a9YMMPekCwsLe+LziYiIiIiIiIikRRrWKg+1YsUKrl+/TpcuXShatKjVq0WLFo8d2voob7/9Nn5+fjRt2pRt27bx999/s2jRInbs2AGY56xbvHgxBw4c4ODBg7Rt29ayWISIiIiIiIiIyMtCyTl5qKCgIGrXro2Xl1eifS1atGDv3r1ERkY+UdtOTk78/vvvZMqUiQYNGlCsWDHGjRtnWfF14sSJpE+fnsqVK9O4cWMCAgIoXbr0U12PiIiIiIiIiEhaYzIMw7B1EC+DyMhIvLy8iIiIwNPT02rf3bt3CQ0NJVeuXLi4uNgoQpFXiz53IiIiIiIiYkuPyhXdTz3nREREREREREREbETJORERERERERERERtRck5ERERERERERGxr+zS4ftbWUdiEknMiIiIiIiIiImI7x1fA7x/DN1Xh9jVbR/PcKTknIiIiIiIiIiK2EXUJfutrfl+mE6TzsW08NqDknIiIiIiIiIiIPH+GAcvfg9tXIXNRqDXU1hHZhJJzIiIiIiIiIiLy/O2fC6fWgL0TNJ8JDs62jsgmlJwTEREREREREZHn62oIrPnI/P6N4ZC5iG3jsSEl50RERERERERE5PmJi4Ul70LMLchZFSr2tnVENqXknDxTYWFhmEwmDhw4YOtQXhg1atSgX79+tg5DRERERERE5NnYNgn+uxucPaHpdLB7tdNTr/bVS7Lt2LEDe3t7GjZsmKLjsmfPzvnz5ylatOhTnT8+Pp7BgweTNWtWXF1dKV68OMuWLUv28StWrKB69ep4eHiQLl06ypUrR3Bw8FPF9KwsXryYMWPG2DoMERERERERkdR37i/YPM78vsEX4J3DtvGkAUrOSbIEBQXx3nvv8ccff3Du3LlkH2dvb4+fnx8ODg5Pdf4ffviBSZMmMXHiRI4fP87EiRNxc3NL1rFfffUVTZo0oUqVKuzatYtDhw7Rpk0b3n33XQYOHPhUcT0LPj4+eHh42DoMERERERERkdQVcwcWd4f4WCjcBIq3tnVEaYKSc/JYUVFR/Pzzz/Ts2ZOGDRsm6nF2/fp12rVrh6+vL66uruTLl485c+YAiYe1xsXF0aVLF3LlyoWrqysFChRgypQpj43Bzs4OX19f2rRpQ86cOalduza1a9d+7HH//PMPAwYMoF+/fnz66acULlyYvHnzMmDAAL744gsmTJjArl27LPWPHj1Ko0aN8PT0xMPDg6pVqxISEmLZ/91331GoUCFcXFwoWLAg06dPtzrf4MGDyZ8/P+nSpSN37twMGzaMmJgYy/6RI0dSsmRJ5s2bR86cOfHy8qJNmzbcvHnTUufBYa3z5s2jbNmyeHh44OfnR9u2bbl06dJjr11EREREREQkTVk/Eq6cAnc/aDQZTCZbR5QmKDlnK4YB0bee/8swUhzqL7/8QsGCBSlQoADt27dn9uzZGPe1M2zYMI4dO8bq1as5fvw4M2bMIGPGjEm2FR8fT7Zs2Vi4cCHHjh1j+PDhfPTRR/zyyy+PjOGNN94gIiKCYcOGpSj2X3/9lZiYmCR7yPXo0QN3d3d++uknAP7991+qVauGs7MzGzduZN++fbzzzjvExsYC8OOPPzJ8+HA++eQTjh8/zqeffsqwYcOYO3eupU0PDw+Cg4M5duwYU6ZMYdasWUyaNMnqvCEhISxdupQVK1awYsUKtmzZwrhx4x56DTExMYwZM4aDBw+ydOlSwsLCCAwMTNF9EBEREREREbGpkI2w6xvz+yZfQzof28aThjzdWEN5cjG34dOsz/+8H50Dp+QNB00QFBRE+/btAahXrx4RERFs2bKFGjVqABAeHk6pUqUoW7YsADlz5nxoW46OjowaNcqynStXLnbs2MEvv/zCW2+9leQxt2/fpk6dOrRt25Z169Zx584dvvjiC0z/y7B7enoye/ZsWrZsmejYU6dO4eXlRZYsWRLtc3JyInfu3Jw6dQqAr7/+Gi8vLxYsWICjoyMA+fPnt9QfMWIEEyZMoHnz5pbYjx07xrfffkunTp0AGDp0qKV+zpw5GThwIAsWLGDQoEGW8vj4eIKDgy1DVzt06MCGDRv45JNPkrz+d955x/I+d+7cTJ06lXLlyhEVFYW7u3uSx4iIiIiIiIikGbevwdJe5vflukK+x4+Ee5UoOSePdPLkSXbv3s2SJUsAcHBwoHXr1gQFBVmScz179qRFixbs37+funXr0rRpUypXrvzQNr/++mtmz55NeHg4d+7cITo6mpIlSz60fnBwMDdu3ODrr78mKiqKGjVq0LlzZ7777jv++9//EhUVRZUqVZ76Wg8cOEDVqlUtibn73bp1i5CQELp06UK3bt0s5bGxsXh5eVm2f/75Z6ZOnUpISAhRUVHExsbi6elp1VbOnDmt5pTLkiXLI4ep7tu3j5EjR3Lw4EGuX79OfHw8YE6KFi5c+ImvV0REREREROS5WDUQbp6HDHmhzmhbR5Pm2DQ5N2PGDGbMmEFYWBgARYoUYfjw4dSvXx+Au3fvMmDAABYsWMC9e/cICAhg+vTpZM6c2dJGeHg4PXv2ZNOmTbi7u9OpUyc+++wzqwUINm/eTP/+/Tl69CjZs2dn6NChiYYFfv3113zxxRdcuHCBEiVK8NVXX1G+fPlnd/GO6cy92J43x3Qpqh4UFERsbCxZs/5/Lz/DMHB2dmbatGl4eXlRv359zp49y6pVq1i3bh1vvPEGvXv35ssvv0zU3oIFCxg4cCATJkygUqVKeHh48MUXX1jN+/agQ4cOUaRIERwdHUmfPj3r1q2jatWqNGvWjHz58lGvXr0ke8aBuedbREQE586ds7oGgOjoaEJCQqhZsyYArq6uD40hKioKgFmzZlGhQgWrffb29oB5Rdt27doxatQoAgICLL3wJkyYYFX/weSfyWSyJNwedOvWLQICAggICODHH3/E19eX8PBwAgICiI6Ofmi8IiIiIiIiImnC4V/hyCIw2UOzmSkezfcqsOmcc9myZWPcuHHs27ePvXv3UqtWLZo0acLRo0cBeP/99/ntt99YuHAhW7Zs4dy5c5YhhWBeXKBhw4ZER0ezfft25s6dS3BwMMOHD7fUCQ0NpWHDhtSsWZMDBw7Qr18/unbtytq1ay11fv75Z/r378+IESPYv38/JUqUICAg4NlOum8ymR/I5/1KwWSLsbGxfP/990yYMIEDBw5YXgcPHiRr1qyWudoAfH196dSpEz/88AOTJ09m5syZSba5bds2KleuTK9evShVqhR58+a1WnAhKa+99hoHDhywLJqQKVMm1q9fz+HDh5k0aRJjx4596LEtWrTA0dExUYIM4JtvvuHWrVu8/fbbABQvXpw///zTagGHBJkzZyZr1qz8/fff5M2b1+qVK1cuALZv346/vz8ff/wxZcuWJV++fJw9e/aR1/Y4J06c4OrVq4wbN46qVatSsGBBLQYhIiIiIiIiL4aI/8LK/ub31QdBtjK2jSetMtKY9OnTG999951x48YNw9HR0Vi4cKFl3/Hjxw3A2LFjh2EYhrFq1SrDzs7OuHDhgqXOjBkzDE9PT+PevXuGYRjGoEGDjCJFilido3Xr1kZAQIBlu3z58kbv3r0t23FxcUbWrFmNzz77LNlxR0REGIARERGRaN+dO3eMY8eOGXfu3El2e2nBkiVLDCcnJ+PGjRuJ9g0aNMgoW7asYRiGMWzYMGPp0qXG6dOnjSNHjhiNGjUyypcvbxiGYYSGhhqA8ddffxmGYRhTpkwxPD09jTVr1hgnT540hg4danh6eholSpR4aBz//vuvkSFDBqNGjRrGtm3bjBMnThizZs0yMmTIYKRLl87o1avXI69j0qRJhp2dnfHRRx8Zx48fN86cOWNMmDDBcHZ2NgYMGGCpd+XKFSNDhgxG8+bNjT179hinTp0yvv/+e+PEiROGYRjGrFmzDFdXV2PKlCnGyZMnjUOHDhmzZ882JkyYYBiGYSxbtsxwcHAwfvrpJ+PMmTPGlClTDB8fH8PLy8tyjhEjRiS61kmTJhn+/v6W7erVqxv/+c9/DMMwjEuXLhlOTk7GBx98YISEhBjLli0z8ufPb3VPJWkv6udORERERETkpRAXZxjBjQ1jhKdhzKxpGLHRto7ouXtUruh+aWa11ri4OBYsWMCtW7eoVKkS+/btIyYmhtq1/3+SwIIFC5IjRw527NgBmIcRFitWzGqYa0BAAJGRkZbedzt27LBqI6FOQhvR0dHs27fPqo6dnR21a9e21HlVBQUFUbt2bas51RK0aNGCvXv3cujQIZycnBgyZAjFixenWrVq2Nvbs2DBgiTb7NGjB82bN6d169ZUqFCBq1ev0qtXr0fGkTVrVnbv3k3GjBlp3rw5pUqV4vvvv+f7779n5cqVzJw5k4kTJz70+H79+rFkyRL+/PNPypYtS9GiRZk/fz4zZsywGnqbIUMGNm7cSFRUFNWrV6dMmTLMmjXLMgy1a9eufPfdd8yZM4dixYpRvXp1goODLT3n3nzzTd5//3369OlDyZIl2b59e4pXl32Qr68vwcHBLFy4kMKFCzNu3LgkhwuLiIiIiIiIpCm7v4XQLeDgah7Oap94fncxMxmGYdgygMOHD1OpUiXu3r2Lu7s78+fPp0GDBsyfP5/OnTtz7949q/rly5enZs2afP7553Tv3p2zZ89aDVG9ffs2bm5urFq1ivr165M/f346d+7MkCFDLHVWrVpFw4YNuX37NtevX+e1115j+/btVKpUyVJn0KBBbNmy5aFzod27d88qtsjISLJnz05ERESiBQDu3r1LaGgouXLlwsXF5anul4gkjz53IiIiIiIiNnLpBHxbDeLuQcMJ5hVaX0GRkZF4eXklmSu6n817zhUoUIADBw6wa9cuevbsSadOnTh27Jitw3qszz77DC8vL8sre/bstg5JRERERERERMS2YqNhcTdzYi5vbSjbxdYRpXk2T845OTmRN29eypQpw2effUaJEiWYMmUKfn5+REdHc+PGDav6Fy9exM/PDwA/Pz8uXryYaH/CvkfV8fT0xNXVlYwZM2Jvb59knYQ2kjJkyBAiIiIsr3/++eeJrl9ERERERERE5KWxZRxcOASu6aHJ1ylamPJVZfPk3IPi4+O5d+8eZcqUwdHRkQ0bNlj2nTx5kvDwcMvw00qVKnH48GGr1SvXrVuHp6cnhQsXttS5v42EOgltODk5UaZMGas68fHxbNiwwWqY64OcnZ3x9PS0eomIiIiIiIiIvLLCd8LWSeb3jaeAx8M7Pcn/c7DlyYcMGUL9+vXJkSMHN2/eZP78+WzevJm1a9fi5eVFly5d6N+/Pz4+Pnh6evLee+9RqVIlKlasCEDdunUpXLgwHTp0YPz48Vy4cIGhQ4fSu3dvnJ2dAXj33XeZNm0agwYN4p133mHjxo388ssvrFy50hJH//796dSpE2XLlqV8+fJMnjyZW7du0blzZ5vcFxERERERERGRF8q9m7CkBxjxUOJtKNzE1hG9MGyanLt06RIdO3bk/PnzeHl5Ubx4cdauXUudOnUAmDRpEnZ2drRo0YJ79+4REBDA9OnTLcfb29uzYsUKevbsSaVKlXBzc6NTp06MHj3aUidXrlysXLmS999/nylTppAtWza+++47AgICLHVat27N5cuXGT58OBcuXKBkyZKsWbPGahVYERERERERERF5iLUfwfUw8MoO9T+3dTQvFJuv1vqyeNQKHFo1UuT50+dORERERETkOTmxCha8DZggcAXkfN3WEaUJL8xqrSIiIiIiIiIi8oKKugzL3zO/r9xHibknoOSciIiIiIiIiIiknGHAb33h9hXIVARqDbN1RC8kJedERERERERERCTl/poHJ1eBvRM0nwkOzraO6IWk5Jy8tHLmzMnkyZNtHcYzYTKZWLp0qa3DeGqBgYE0bdrU1mGIiIiIiIhISl37G1Z/aH5fayj4FbVtPC8wJefksS5cuMB7771H7ty5cXZ2Jnv27DRu3JgNGzak6nlq1KhBv379UrXNxzlz5gwBAQF4enri4+ND/fr1uXz58mOPi4uLY9y4cRQsWBBXV1d8fHyoUKEC3333XarGN3LkSEqWLJmqbf7000/Y29vTu3fvVG33SUyZMoXg4GBbhyEiIiIiIiIpER8HS96FmFvgXwUq9bF1RC80B1sHIGlbWFgYVapUwdvbmy+++IJixYoRExPD2rVr6d27NydOnHiu8RiGQVxcHA4OqfPodu/enYiICLZs2UK6dOnYsWMHyVnAeNSoUXz77bdMmzaNsmXLEhkZyd69e7l+/XqqxPUsBQUFMWjQIL799lsmTJhgk5VM4+LiMJlMeHl5Pfdzi4iIiIiIyFPaNhn+2QVOHtB0BtjZ2zqiF5p6zskj9erVC5PJxO7du2nRogX58+enSJEi9O/fn507d1rq3bhxg65du+Lr64unpye1atXi4MGDlv0JPcDmzZtHzpw58fLyok2bNty8eRMwD2/csmULU6ZMwWQyYTKZCAsLY/PmzZhMJlavXk2ZMmVwdnZm69athISE0KRJEzJnzoy7uzvlypVj/fr1Kb4+Ozs7AgICKFWqFAUKFCAwMJBMmTI99rjly5fTq1cvWrVqRa5cuShRogRdunRh4MCBljr37t2jb9++ZMqUCRcXF15//XX27Nlj2R8cHIy3t7dVu0uXLsVkMln2jxo1ioMHD1ruyf29zK5cuUKzZs1Ily4d+fLlY/ny5Y+NOzQ0lO3bt/Phhx+SP39+Fi9ebLU/IaYVK1ZQoEAB0qVLR8uWLbl9+zZz584lZ86cpE+fnr59+xIXF2d1rQMHDuS1117Dzc2NChUqsHnz5kTtLl++nMKFC+Ps7Ex4eHiiYa3x8fGMHz+evHnz4uzsTI4cOfjkk08s+wcPHkz+/PlJly4duXPnZtiwYcTExDz2ukVERERERCSVnD8Imz41v28wHtL72zael4CSczZiGAa3Y24/91dyeoUluHbtGmvWrKF37964ubkl2n9/YqlVq1ZcunSJ1atXs2/fPkqXLs0bb7zBtWvXLHVCQkJYunQpK1asYMWKFWzZsoVx48YB5uGNlSpVolu3bpw/f57z58+TPXt2y7Effvgh48aN4/jx4xQvXpyoqCgaNGjAhg0b+Ouvv6hXrx6NGzcmPDw8RT+HJk2aMH36dPbv35+i4/z8/Ni4ceMjh8AOGjSIRYsWMXfuXPbv30/evHkJCAiwuieP0rp1awYMGECRIkUs96R169aW/aNGjeKtt97i0KFDNGjQgHbt2j227Tlz5tCwYUO8vLxo3749QUFBiercvn2bqVOnsmDBAtasWcPmzZtp1qwZq1atYtWqVcybN49vv/2WX3/91XJMnz592LFjBwsWLODQoUO0atWKevXqcfr0aat2P//8c7777juOHj2aZBJ0yJAhjBs3jmHDhnHs2DHmz59P5syZLfs9PDwIDg7m2LFjTJkyhVmzZjFp0qRk3U8RERERERF5SjF3YHF3iI+FQo2hxNu2juiloGGtNnIn9g4V5ld47ufd1XYX6RzTJavumTNnMAyDggULPrLe1q1b2b17N5cuXcLZ2bwyy5dffsnSpUv59ddf6d69O2DuFRUcHIyHhwcAHTp0YMOGDXzyySd4eXnh5OREunTp8PPzS3SO0aNHU6dOHcu2j48PJUqUsGyPGTOGJUuWsHz5cvr0Sd5Y940bN/Lhhx8yatQoGjVqxM8//0zVqlUBWLRoEYGBgZaefQ+aOHEiLVu2xM/PjyJFilC5cmWaNGlC/fr1Abh16xYzZswgODjYUjZr1izWrVtHUFAQH3zwwWPjc3V1xd3dHQcHhyTvSWBgIG+/bf4i/PTTT5k6dSq7d++mXr16SbaXcP+/+uorANq0acOAAQMIDQ0lV65clnoxMTHMmDGDPHnyANCyZUvmzZvHxYsXcXd3p3DhwtSsWZNNmzbRunVrwsPDmTNnDuHh4WTNmhWAgQMHsmbNGubMmcOnn35qaXf69OlWP7f73bx5kylTpjBt2jQ6deoEQJ48eXj99dctdYYOHWp5nzNnTgYOHMiCBQsYNGjQY++niIiIiIiIPKUNo+HyCXDLBI2mwP9GfsnTUc85eajk9rI7ePAgUVFRZMiQAXd3d8srNDSUkJAQS72cOXNaEnMAWbJk4dKlS8k6R9myZa22o6KiGDhwIIUKFcLb2xt3d3eOHz+eop5zH374Ib1792bgwIEEBQXRuHFjfvvtNwAOHz5slRR6UOHChTly5Ag7d+7knXfe4dKlSzRu3JiuXbsC5l6CMTExVKlSxXKMo6Mj5cuX5/jx48mO8VGKFy9uee/m5oanp+cj7+e6deu4desWDRo0ACBjxozUqVOH2bNnW9VLly6dJTEHkDlzZnLmzIm7u7tVWcK5Dh8+TFxcHPnz57f6+W/ZssXq5+/k5GQV84OOHz/OvXv3eOONNx5a5+eff6ZKlSr4+fnh7u7O0KFDU9xbUkRERERERJ7A35th53Tz+yZfg1sGm4bzMlHPORtxdXBlV9tdNjlvcuXLlw+TyfTYRR+ioqLIkiWL1RxjCe4f+uro6Gi1z2QyER8fn6xYHhxWO3DgQNatW8eXX35J3rx5cXV1pWXLlkRHRyerPYBDhw7x/vvvA1C/fn2CgoJo1aoV06ZNIzg4mPHjxz/yeDs7O8qVK0e5cuXo168fP/zwAx06dODjjz9O1vnt7OwSJUBTMn9aSu9nUFAQ165dw9X1/5+B+Ph4Dh06xKhRo7Czs3tou486V1RUFPb29uzbtw97e+tJQO9P6Lm6ulrm00vK/XElZceOHbRr145Ro0YREBCAl5cXCxYsYMKECY88TkRERERERJ7SneuwtJf5fdl3IH9d28bzklFyzkZMJlOyh5faio+PDwEBAXz99df07ds3UYLsxo0beHt7U7p0aS5cuICDgwM5c+Z84vM5OTlZLTLwKNu2bSMwMJBmzZoB5gRRWFhYis732muv8ccff1iGhrZo0YKoqCg6d+5M8eLFadWqVYraK1y4MGAe0ponTx6cnJzYtm0b/v7myTFjYmLYs2cP/fr1A8DX15ebN29y69Yty709cOCAVZspuSePcvXqVZYtW8aCBQsoUqSIpTwuLo7XX3+d33///aHDYR+nVKlSxMXFcenSJcuw4CeRL18+XF1d2bBhg6UH4v22b9+Ov7+/VfLz7NmzT3w+ERERERERSaZVH0Dkv+CTG+qOtXU0Lx0l5+SRvv76a6pUqUL58uUZPXo0xYsXJzY2lnXr1jFjxgyOHz9O7dq1qVSpEk2bNmX8+PHkz5+fc+fOsXLlSpo1a5ZoSOrD5MyZk127dhEWFoa7uzs+Pj4PrZsvXz4WL15M48aNMZlMDBs2LNm98BIMGjSIXr164efnR+vWrYmIiGDHjh2kS5eOEydOsG3btocObW3ZsiVVqlShcuXK+Pn5ERoaypAhQ8ifPz8FCxbEwcGBnj178sEHH+Dj40OOHDkYP348t2/fpkuXLgBUqFCBdOnS8dFHH9G3b1927dpltRprwj0JDQ3lwIEDZMuWDQ8PD8u8fikxb948MmTIwFtvvZWo91qDBg0ICgp64uRc/vz5adeuHR07dmTChAmUKlWKy5cvs2HDBooXL07Dhg2T1Y6LiwuDBw9m0KBBODk5UaVKFS5fvszRo0fp0qUL+fLlIzw8nAULFlCuXDlWrlzJkiVLnihmERERERERSaYji+DwQjDZQ/NZ4JR4wUh5OppzTh4pd+7c7N+/n5o1azJgwACKFi1KnTp12LBhAzNmzADMvQBXrVpFtWrV6Ny5M/nz56dNmzacPXvWaqXNxxk4cCD29vYULlwYX1/fR84lNnHiRNKnT0/lypVp3LgxAQEBlC5dOkXX1qNHD37++Wd+++03ypQpw5tvvkl0dDQnTpygQ4cONG3a1Gq10fsFBATw22+/0bhxY/Lnz0+nTp0oWLAgv//+Ow4O5pz3uHHjaNGiBR06dKB06dKcOXOGtWvXkj59esDcM/GHH35g1apVFCtWjJ9++omRI0danadFixbUq1ePmjVr4uvry08//ZSia0wwe/ZsmjVrluSw0hYtWrB8+XKuXLnyRG2DeRXYjh07MmDAAAoUKEDTpk3Zs2cPOXLkSFE7w4YNY8CAAQwfPpxChQrRunVry9x2b775Ju+//z59+vShZMmSbN++nWHDhj1xzCIiIiIiIvIIUZdg5UBY3MO8XW0gZEte5xtJGZOR3Fn/5ZEiIyPx8vIiIiICT09Pq3137961rIjp4uJiowhFXi363ImIiIiIiDyBuxGw/SvYMR1ibpnLCjaCVsFg7/jIQ8Xao3JF99OwVhERERERERGRV13MXdjzHfw5Ae5cM5e9VgZqj4Rc1Wwa2stOyTkRERERERERkVdVXCwcWgCbPoPI/5rLMuaHN4abe8wlMT2SpC4l50REREREREREXjWGASdWwobRcOWkuczzNagxBEq8DfZKGT0vutMiIiIiIiIiIq+SsK2wfiT8d4952zU9VB0A5bqCo6tNQ3sVKTknIiIiIiIiIvIqOH/Q3FPuzHrztmM6qNgLqvQFFy/bxvYKU3JORERERERERORldjUENn0KR341b9s5QJlAqDYIPDLbNDRRck5ERERERERE5OV08yJs+Rz2z4X4WHNZ0ZZQ62PwyW3b2MRCyTkRERERERERkZfJ3QjYNhV2ToeY2+ayvHXMK7BmKW7b2CQRJedERERERERERF4GMXdg9yzYOhHuXDeXZSsHtUdCztdtGpo8nJJz8kKqUaMGJUuWZPLkybYORURERERERMS24mLh4HzYPA4i/zWXZSxg7ilXsCGYTLaNTx5JyTl5pMDAQObOnZuoPCAggDVr1tggIrPFixfj6Ohos/OLiIiIiIiI2JxhwPHfYOMYuHLKXOaZDWp+BCXagJ29beOTZFFyTh6rXr16zJkzx6rM2dn5idoyDIO4uDgcHJ7u0fPx8Xmq40VEREREREReaOG7YO0Q+HefedvVB6oNhLJdwNHFtrFJitjZOgBJ+5ydnfHz87N6pU+fnrCwMEwmEwcOHLDUvXHjBiaTic2bNwOwefNmTCYTq1evpkyZMjg7O7N161ZCQkJo0qQJmTNnxt3dnXLlyrF+/Xqr806fPp18+fLh4uJC5syZadmypWVfjRo16Nevn2V73rx5lC1bFg8PD/z8/Gjbti2XLl16lrdFRERERERE5PmLjYb1I2F2gDkx5+gG1QbBfw5Apd5KzL2A1HPORgzDwLhz57mf1+TqiskGY80//PBDvvzyS3Lnzk369On5559/aNCgAZ988gnOzs58//33NG7cmJMnT5IjRw727t1L3759mTdvHpUrV+batWv8+eefD20/JiaGMWPGUKBAAS5dukT//v0JDAxk1apVz/EqRURERERERJ6hS8dhcTe4cNi8XeJtqDMa3DPZNi55KkrO2Yhx5w4nS5d57uctsH8fpnTpUnTMihUrcHd3tyr76KOPaNu2bbLbGD16NHXq1LFs+/j4UKJECcv2mDFjWLJkCcuXL6dPnz6Eh4fj5uZGo0aN8PDwwN/fn1KlSj20/XfeecfyPnfu3EydOpVy5coRFRWVKHYRERERERGRF0p8POz6xtxjLu6eeQhr48lQuImtI5NUoOScPFbNmjWZMWOGVZmPjw+RkZHJbqNs2bJW21FRUYwcOZKVK1dy/vx5YmNjuXPnDuHh4QDUqVMHf39/cufOTb169ahXrx7NmjUj3UMSi/v27WPkyJEcPHiQ69evEx8fD0B4eDiFCxdOyeWKiIiIiIiIpB0R/4WlPSH0D/N23jrQZBp4+Nk2Lkk1Ss7ZiMnVlQL799nkvCnl5uZG3rx5E5VHRUUB5iG6CWJiYh7axv0GDhzIunXr+PLLL8mbNy+urq60bNmS6OhoADw8PNi/fz+bN2/m999/Z/jw4YwcOZI9e/bg7e1t1datW7cICAggICCAH3/8EV9fX8LDwwkICLC0JyIiIiIiIvLCObQQVg6AexHgmA7qjoWy74ANpquSZ0fJORsxmUwpHl6a1vj6+gJw/vx5y5DT+xeHeJRt27YRGBhIs2bNAHOiLywszKqOg4MDtWvXpnbt2owYMQJvb282btxI8+bNreqdOHGCq1evMm7cOLJnzw7A3r17n+LKRERERERERGzo9jVYNRCOLDJvv1YGms2EjIk7zsiLT8k5eax79+5x4cIFqzIHBwcyZsxIxYoVGTduHLly5eLSpUsMHTo0WW3my5ePxYsX07hxY0wmE8OGDbMMRQXzPHd///031apVI3369KxatYr4+HgKFCiQqK0cOXLg5OTEV199xbvvvsuRI0cYM2bM0120iIiIiIiIiC2EbIKlveDmOTDZQ/VBUHUg2CuF87Kys3UAkvatWbOGLFmyWL1ef/11AGbPnk1sbCxlypShX79+jB07NlltTpw4kfTp01O5cmUaN25MQEAApUuXtuz39vZm8eLF1KpVi0KFCvHNN9/w008/UaRIkURt+fr6EhwczMKFCylcuDDjxo3jyy+/TJ2LFxEREREREXkeYu7A6sEwr6k5MeeTB7qsgxofKjH3kjMZ908YJk8sMjISLy8vIiIi8PT0tNp39+5dQkNDyZUrFy4uLjaKUOTVos+diIiIiIi8MM4dgMXd4cpJ83a5rlBnNDi5PfIwSdselSu6n1KvIiIiIiIiIiK2EBcL2ybD5s8gPhbcM0OTryFfHVtHJs+RknMiIiIiIiIiIs/btb9hybvwzy7zdqE3odFkcMtg07Dk+VNyTkRERERERETkeTEM2P89rBkCMbfA2RMafAHFW4PJZOvoxAaUnBMREREREREReR6iLsNvfeHkKvO2fxVo9g1457BtXGJTSs6JiIiIiIiIiDxrJ1bB8vfg9hWwd4Jaw6BSb7Czt3VkYmNKzomIiIiIiIiIPCv3bsLaj8xDWQEyFYHmM8GvqG3jkjRDyTkRERERERERkWchfBcs6Q7XwwATVO4DNYeCo4utI5M0RMk5EREREREREZHUFBsNW8bB1klgxINXdmg6A3JVtXVkkgYpOSciIiIiIiIiklqu/Q0LA+H8QfN2ibeh/ufg4mXTsCTtUnJORERERERERCQ1XA2B4IZw8zy4podGk6FIU1tHJWmcna0DkLQtMDAQk8mU6FWvXj1bhyYiIiIiIiKSdtyfmPMtCD23KzEnyaKec/JY9erVY86cOVZlzs7OT9SWYRjExcXh4KBHT0RERERERF4SV87A3Eb/S8wVgk6/gbuvraOSF4R6zsljOTs74+fnZ/VKnz49YWFhmEwmDhw4YKl748YNTCYTmzdvBmDz5s2YTCZWr15NmTJlcHZ2ZuvWrdy7d4++ffuSKVMmXFxceP3119mzZ4+lnYTjVq5cSfHixXFxcaFixYocOXLEKratW7dStWpVXF1dyZ49O3379uXWrVvP47aIiIiIiIiImBNzCT3mMhVWYk5STMk5GzEMg5h7cc/9ZRiGTa73ww8/ZNy4cRw/fpzixYszaNAgFi1axNy5c9m/fz958+YlICCAa9euWR33wQcfMGHCBPbs2YOvry+NGzcmJiYGgJCQEOrVq0eLFi04dOgQP//8M1u3bqVPnz62uEQRERERERF51Vw5bU7MRV1QYk6emMYW2khsdDwz/7PluZ+3+5TqODrbp+iYFStW4O7ublX20Ucf0bZt22S3MXr0aOrUqQPArVu3mDFjBsHBwdSvXx+AWbNmsW7dOoKCgvjggw8sx40YMcJy3Ny5c8mWLRtLlizhrbfe4rPPPqNdu3b069cPgHz58jF16lSqV6/OjBkzcHFxSdF1ioiIiIiIiCTbldMQ3Mg6MeeW0dZRyQtIyTl5rJo1azJjxgyrMh8fHyIjI5PdRtmyZS3vQ0JCiImJoUqVKpYyR0dHypcvz/Hjx62Oq1SpktU5CxQoYKlz8OBBDh06xI8//mipYxgG8fHxhIaGUqhQoWTHJyIiIiIiIpJslh5zFyFTEei0XIk5eWJKztmIg5Md3adUt8l5U8rNzY28efMmKo+KigKwGiqbMOQ0qTZSW1RUFD169KBv376J9uXIkSPVzyciIiIiIiLC5VPmxR+UmJNUouScjZhMphQPL01rfH3N4+jPnz9PqVKlAKwWh3iYPHny4OTkxLZt2/D39wfMSb09e/ZYhqgm2LlzpyXRdv36dU6dOmXpEVe6dGmOHTuWZOJQREREREREJNXdn5jLXBQ6Lge3DLaOSl5wSs7JY927d48LFy5YlTk4OJAxY0YqVqzIuHHjyJUrF5cuXWLo0KGPbc/NzY2ePXvywQcf4OPjQ44cORg/fjy3b9+mS5cuVnVHjx5NhgwZyJw5Mx9//DEZM2akadOmAAwePJiKFSvSp08funbtipubG8eOHWPdunVMmzYt1a5fREREREREhMsnzXPM3boEmYtBx2VKzEmqUHJOHmvNmjVkyZLFqqxAgQKcOHGC2bNn06VLF8qUKUOBAgUYP348devWfWyb48aNIz4+ng4dOnDz5k3Kli3L2rVrSZ8+faJ6//nPfzh9+jQlS5bkt99+w8nJCYDixYuzZcsWPv74Y6pWrYphGOTJk4fWrVun3sWLiIiIiIiIXDoBcxsrMSfPhMm4f8IweWKRkZF4eXkRERGBp6en1b67d+8SGhpKrly5tIJoMm3evJmaNWty/fp1vL29bR2OvID0uRMRERERkVRx6YR5KOuty+bEXKflkM7H1lHJC+BRuaL7qeeciIiIiIiIiEhS7k/M+RUzzzGnxJykspQv3SkiIiIiIiIi8rK7dPy+xFxxJebkmVHPOUmTatSogUZci4iIiIiIiE1cOm5e/OH2lf8l5pYpMSfPjHrOiYiIiIiIiIgkuHjs/xNzWUooMSfPnJJzIiIiIiIiIiJgTszNbfz/ibkOS5WYk2dOw1pFRERERERERC4eM88xd/uqEnPyXKnnnIiIiIiIiIi82i4evS8xV1JDWeW5UnJORERERERERF5dF478byjrVchaCjouBdf0to5KXiEa1ioiIiIiIiIir6aExNyda+bEXIel4Opt66jkFaOec5KqatSoQb9+/R5ZJ2fOnEyePPmRdUwmE0uXLgUgLCwMk8nEgQMHUiVGERERERERES4cVmJO0gQl5+SRAgMDMZlMvPvuu4n29e7dG5PJRGBgoKVs8eLFjBkz5jlGmDybN2/GZDIl+bpw4UKqnCM5SUcRERERERFJAy4chrlv/i8xV1qJObEpJefksbJnz86CBQu4c+eOpezu3bvMnz+fHDlyWNX18fHBw8PjeYeYbCdPnuT8+fNWr0yZMtk6LBEREREREXle7u8x91oZ6LBEiTmxKSXn5LFKly5N9uzZWbx4saVs8eLF5MiRg1KlSlnVfXBY66VLl2jcuDGurq7kypWLH3/8MVH7p0+fplq1ari4uFC4cGHWrVv32JiOHDlC/fr1cXd3J3PmzHTo0IErV6489rhMmTLh5+dn9bKzM38M9uzZQ506dciYMSNeXl5Ur16d/fv3W441DIORI0eSI0cOnJ2dyZo1K3379rVc99mzZ3n//fctPfJEREREREQkjTl/6H+JuetKzEmaoeScjRiGQczdu8/9ZRjGE8X7zjvvMGfOHMv27Nmz6dy582OPCwwM5J9//mHTpk38+uuvTJ8+nUuXLln2x8fH07x5c5ycnNi1axfffPMNgwcPfmSbN27coFatWpQqVYq9e/eyZs0aLl68yFtvvfVE15bg5s2bdOrUia1bt7Jz507y5ctHgwYNuHnzJgCLFi1i0qRJfPvtt5w+fZqlS5dSrFgxwJyszJYtG6NHj7b0yBMREREREZE05MIR+P7N/yXmypoTcy5eto5KRKu12krsvXtM7dTyuZ+379xfcXRxSfFx7du3Z8iQIZw9exaAbdu2sWDBAjZv3vzQY06dOsXq1avZvXs35cqVAyAoKIhChQpZ6qxfv54TJ06wdu1asmbNCsCnn35K/fr1H9rutGnTKFWqFJ9++qmlbPbs2WTPnp1Tp06RP3/+hx6bLVs2q21/f3+OHj0KQK1ataz2zZw5E29vb7Zs2UKjRo0IDw/Hz8+P2rVr4+joSI4cOShfvjxgHs5rb2+Ph4cHfn5+Dz2/iIiIiIiI2MCV0zCv6X2JucVKzEmaoeScJIuvry8NGzYkODgYwzBo2LAhGTNmfOQxx48fx8HBgTJlyljKChYsiLe3t1Wd7NmzWxJzAJUqVXpkuwcPHmTTpk24u7sn2hcSEvLI5Nyff/5pNSeeo6Oj5f3FixcZOnQomzdv5tKlS8TFxXH79m3Cw8MBaNWqFZMnTyZ37tzUq1ePBg0a0LhxYxwc9DESERERERFJs66fhe+bwK3L4Fcc2i9SYk7SFGUVbMTB2Zm+c3+1yXmf1DvvvEOfPn0A+Prrr1MrpBSLioqicePGfP7554n2ZcmS5ZHH5sqVyyo5eL9OnTpx9epVpkyZgr+/P87OzlSqVIno6GjAvDDGyZMnWb9+PevWraNXr1588cUXbNmyxSrJJyIiIiIiImlE5HnzUNbIfyFjAc0xJ2mSknM2YjKZnmh4qS3Vq1eP6OhoTCYTAQEBj61fsGBBYmNj2bdvn2VY68mTJ7lx44alTqFChfjnn384f/68JbG2c+fOR7ZbunRpFi1aRM6cOVO119q2bduYPn06DRo0AOCff/5JtMiEq6srjRs3pnHjxvTu3ZuCBQty+PBhSpcujZOTE3FxcakWj4iIiIiIiDyFW1fMPeauh0H6nNBxGbg9egSYiC1oQQhJNnt7e44fP86xY8ewt7d/bP0CBQpQr149evTowa5du9i3bx9du3bF1dXVUqd27drkz5+fTp06cfDgQf78808+/vjjR7bbu3dvrl27xttvv82ePXsICQlh7dq1dO7c+bHJsUuXLnHhwgWrV0xMDAD58uVj3rx5HD9+nF27dtGuXTurWIODgwkKCuLIkSP8/fff/PDDD7i6uuLv7w9Azpw5+eOPP/j333+TtXKsiIiIiIiIPCN3bsC8ZnDlJHi+Bh2Xg+ejR1qJ2IqSc5Iinp6eeHp6Jrv+nDlzyJo1K9WrV6d58+Z0796dTJkyWfbb2dmxZMkS7ty5Q/ny5enatSuffPLJI9vMmjUr27ZtIy4ujrp161KsWDH69euHt7c3dnaPfqQLFChAlixZrF779u0DzItVXL9+ndKlS9OhQwf69u1rFau3tzezZs2iSpUqFC9enPXr1/Pbb7+RIUMGAEaPHk1YWBh58uTB19c32fdIREREREREUtG9KPixFVw4BG6+5h5z6f1tHZXIQ5kMwzBsHcTLIDIyEi8vLyIiIhIlr+7evUtoaCi5cuXC5QUbyiryotLnTkRERETkFRRzF+a3gtA/zIs+BK4Ev2K2jkpeUY/KFd1PPedERERERERE5MUXFwMLO5kTc07u0H6xEnPyQlByTkRERERERERebPFxsLg7nFoDDi7Q9mfIVtbWUYkki5JzIiIiIiIiIvLiio+H5X3h6GKwc4TWP0DO120dlUiy2TQ599lnn1GuXDk8PDzIlCkTTZs25eTJk1Z1atSogclksnq9++67VnXCw8Np2LAh6dKlI1OmTHzwwQfExsZa1dm8eTOlS5fG2dmZvHnzEhwcnCier7/+mpw5c+Li4kKFChXYvXt3ql+ziIiIiIiIiKQSw4A1H8KBH8BkBy2DIF8dW0clkiI2Tc5t2bKF3r17s3PnTtatW0dMTAx169bl1q1bVvW6devG+fPnLa/x48db9sXFxdGwYUOio6PZvn07c+fOJTg4mOHDh1vqhIaG0rBhQ2rWrMmBAwfo168fXbt2Ze3atZY6P//8M/3792fEiBHs37+fEiVKEBAQwKVLl579jRARERERERGRlNs4BnZ/a37fZDoUbmLbeESeQJparfXy5ctkypSJLVu2UK1aNcDcc65kyZJMnjw5yWNWr15No0aNOHfuHJkzZwbgm2++YfDgwVy+fBknJycGDx7MypUrOXLkiOW4Nm3acOPGDdasWQNAhQoVKFeuHNOmTQMgPj6e7Nmz89577/Hhhx8+Nnat1iqStuhzJyIiIiLykvtzAmwYbX7fcAKU62rbeEQe8EKu1hoREQGAj4+PVfmPP/5IxowZKVq0KEOGDOH27duWfTt27KBYsWKWxBxAQEAAkZGRHD161FKndu3aVm0GBASwY8cOAKKjo9m3b59VHTs7O2rXrm2p86B79+4RGRlp9RIRERERERGR52DXt/+fmKszWok5eaE52DqABPHx8fTr148qVapQtGhRS3nbtm3x9/cna9asHDp0iMGDB3Py5EkWL14MwIULF6wSc4Bl+8KFC4+sExkZyZ07d7h+/TpxcXFJ1jlx4kSS8X722WeMGjXq6S5aRERERERERFJm/zxYPcj8vvpgqPIf28Yj8pTSTHKud+/eHDlyhK1bt1qVd+/e3fK+WLFiZMmShTfeeIOQkBDy5MnzvMO0GDJkCP3797dsR0ZGkj17dpvFIyIiIiIiIvLSO7IYfutrfl+xN9QYYtt4RFJBmhjW2qdPH1asWMGmTZvIli3bI+tWqFABgDNnzgDg5+fHxYsXreokbPv5+T2yjqenJ66urmTMmBF7e/sk6yS08SBnZ2c8PT2tXpJ6AgMDadq0qa3DeGqbN2/GZDJx48YNW4ciIiIiIiLyYju5BhZ3AyMeSneCgE/AZLJ1VCJPzabJOcMw6NOnD0uWLGHjxo3kypXrscccOHAAgCxZsgBQqVIlDh8+bLWq6rp16/D09KRw4cKWOhs2bLBqZ926dVSqVAkAJycnypQpY1UnPj6eDRs2WOq8qgIDAzGZTIwbN86qfOnSpZhS4UswLCwMk8lk+bmmhjt37uDj40PGjBm5d+9eqrX7JCpXrsz58+fx8vKyaRwiIiIiIiIvtL83wy8dIT4WirWCRpOUmJOXhk2Tc7179+aHH35g/vz5eHh4cOHCBS5cuMCdO3cACAkJYcyYMezbt4+wsDCWL19Ox44dqVatGsWLFwegbt26FC5cmA4dOnDw4EHWrl3L0KFD6d27N87OzgC8++67/P333wwaNIgTJ04wffp0fvnlF95//31LLP3792fWrFnMnTuX48eP07NnT27dukXnzp2f/41JY1xcXPj888+5fv16qrYbHR2dqu0lWLRoEUWKFKFgwYIsXbr0mZwjOWJiYnBycsLPzy9VEpkiIiIiIiKvpPBd8FNbiLsHBRpC0xlgZ2/rqERSjU2TczNmzCAiIoIaNWqQJUsWy+vnn38GzD3a1q9fT926dSlYsCADBgygRYsW/Pbbb5Y27O3tWbFiBfb29lSqVIn27dvTsWNHRo8ebamTK1cuVq5cybp16yhRogQTJkzgu+++IyAgwFKndevWfPnllwwfPpySJUty4MAB1qxZk2iRiFdR7dq18fPz47PPPntkvYSkmLOzMzlz5mTChAlW+3PmzMmYMWPo2LEjnp6edO/e3dJbslSpUphMJmrUqGF1zJdffkmWLFnIkCEDvXv3JiYm5rHxBgUF0b59e9q3b09QUFCi/SaTiW+//ZZGjRqRLl06ChUqxI4dOzhz5gw1atTAzc2NypUrExISYnXcsmXLKF26NC4uLuTOnZtRo0YRGxtr1e6MGTN48803cXNz45NPPklyWOu2bduoUaMG6dKlI3369AQEBFgSn2vWrOH111/H29ubDBky0KhRo0RxiIiIiIiIvDLOHYAfW0HMLchdE1rNAXtHW0clkqpMhmEYtg7iZRAZGYmXlxcRERGJ5p+7e/cuoaGh5MqVCxcXF8A8pNeIiX/ucZoc7VLUiyswMJAbN27QqVMn2rZty+nTp8mWLRtLly6lWbNmJDw++/bto3z58owcOZLWrVuzfft2evXqxfTp0wkMDATMybnr168zfPhwy3xy165do3z58qxfv54iRYrg5OSEj48PgYGBLFmyhLZt2/Kf//yHM2fO0Lp1ayZPnky3bt0eGm9ISAhFihTh/PnzGIbBa6+9xokTJ/D39///e2Ay8dprrzFx4kRKlizJ4MGDOXDgALlz52bQoEHkyJGDd955B29vb1avXg3An3/+SaNGjZg6dSpVq1YlJCSE7t27ExgYyIgRIyztZsqUiXHjxlG9enUcHBz4+++/qVmzJtevX8fb25sDBw5QsWJF3nnnHXr06IGDgwObNm2iTZs2ZMyYkUWLFmEymShevDhRUVEMHz6csLAwDhw4gJ1dmpgi8oWR1OdOREREREReIJdOQHADuH0VclSC9ovAyc3WUYkk26NyRfdTci6VpDQ5Fx8dx7nh2597nFlHV8bOKfndfxOSc0uXLqVSpUoULlyYoKCgRMm5du3acfnyZX7//XfLsYMGDWLlypUcPXoUMCfnSpUqxZIlSyx1wsLCyJUrF3/99RclS5a0Ou/mzZsJCQnB3t4c71tvvYWdnR0LFix4aLwff/wxx44ds5yjadOmlCxZkpEjR1rqmEwmhg4dypgxYwDYuXMnlSpVIigoiHfeeQeABQsW0LlzZ8sQ69q1a/PGG28wZMj/rwT0ww8/MGjQIM6dO2dpt1+/fkyaNMlSZ/PmzVbJubZt2xIeHp5oVeKHuXLlCr6+vhw+fJiiRYsm6xgxU3JOREREROQFdu1vmF0foi5AlpLQaTm4aC5vebEkNzmnrjiSbJ9//rllTr4HHT9+nCpVqliVValShdOnTxMXF2cpK1u2bLLPV6RIEUtiDsyLgNy/8MeD4uLimDt3Lu3bt7eUtW/fnuDgYOLjrXspJsxZCFiGLhcrVsyq7O7du0RGRgJw8OBBRo8ejbu7u+XVrVs3zp8/z+3bt5N9fQcOHOCNN9546P7Tp0/z9ttvkzt3bjw9PcmZMycA4eHhj2xXRERERETkpRHxX5jbxJyYy1QYOixRYk5eag62DuBVZXK0I+voyjY575OqVq0aAQEBDBkyxDJUNaXc3JLfBdnR0XoeAZPJlCjJdr+1a9fy77//0rp1a6vyuLg4NmzYQJ06dZJsO2GYb1JlCeeLiopi1KhRNG/ePNF57++V9bjrc3V1feT+xo0b4+/vz6xZs8iaNSvx8fEULVr0mS2eISIiIiIikqZEXYLvm0BEOPjkhg5LIZ2PraMSeaaUnLMRk8mEKQXDS9OKcePGUbJkSQoUKGBVXqhQIbZt22ZVtm3bNvLnz2/V++1BTk5OAFa9655UUFAQbdq04eOPP7Yq/+STTwgKCrJKzqVU6dKlOXnyJHnz5n2qGIsXL86GDRsYNWpUon1Xr17l5MmTzJo1i6pVqwIke/iriIiIiIjIC+/2NZjXDK6eAc9s0HEZeGiRRnn5KTknKVKsWDHatWvH1KlTrcoHDBhAuXLlGDNmDK1bt2bHjh1MmzaN6dOnP7K9TJky4erqypo1a8iWLRsuLi54eaW8u/Lly5f57bffWL58eaK52Tp27EizZs24du0aPj5P9heX4cOH06hRI3LkyEHLli2xs7Pj4MGDHDlyhLFjxya7nSFDhlCsWDF69erFu+++i5OTE5s2baJVq1b4+PiQIUMGZs6cSZYsWQgPD+fDDz98onhFREREREReKPduwo8t4eIRcMtknmPOO4etoxJ5LjTnnKTY6NGjEw0vLV26NL/88gsLFiygaNGiDB8+nNGjRz92+KuDgwNTp07l22+/JWvWrDRp0uSJYvr+++9xc3NLcj63N954A1dXV3744YcnahsgICCAFStW8Pvvv1OuXDkqVqzIpEmTrFaBTY78+fPz+++/c/DgQcqXL0+lSpVYtmwZDg4OlsUu9u3bR9GiRXn//ff54osvnjhmERERERGRF8LdSJjfGv7dB67pzT3mMuSxdVQiz41Wa00lKV2tVUSeLX3uREREREReAFGX4IcWcOEQOHmYe8y9VtrWUYmkiuSu1qphrSIiIiIiIiLy/F0NgR+aw/UwSJcR2v2ixJy8kpScExEREREREZHn69wB8xxzty6Dtz90WKKhrPLKUnJORERERERERJ6fkE3wc3uIjgK/YtBukVZllVeaknMiIiIiIiIi8nwc/hWWvAvxMZCzKrSZDy4Pn4tL5FWg1VpFRERERERE5NnbMR0WdTEn5oo0g/aLlJgTQT3nnqv4+HhbhyDyytBC1CIiIiIiaYRhwPqRsG2yebt8d6j3Odipv5AIKDn3XDg5OWFnZ8e5c+fw9fXFyckJk8lk67BEXlqGYXD58mVMJhOOjo62DkdERERE5NUVFwPL+8LB+ebtWsOg6gDQv4lFLJScew7s7OzIlSsX58+f59y5c7YOR+SVYDKZyJYtG/b29rYORURERETk1RR9CxYGwunfwWQPjadA6Q62jkokzVFy7jlxcnIiR44cxMbGEhcXZ+twRF56jo6OSsyJiIiIiNjKrasw/y34dy84uEKrYChQz9ZRiaRJSs49RwlD7DTMTkRERERERF5aN8JhXnO4ehpcvKHdQshe3tZRiaRZSs6JiIiIiIiISOq4eBR+aAE3z4NnNuiwGHwL2DoqkTRNyTkREREREREReXph2+Cnt+FeBPgWgvaLwOs1W0clkuYpOSciIiIiIiIiT+fYcljUFeLuQY5K8PZP4Jre1lGJvBDsbB2AiIiIiIiIiLzA9gTBwk7mxFyBhtBhiRJzIimgnnMiIiIiIiIiknKGAZvHwZZx5u3SnaDhRLBXqkEkJfSJEREREREREZGUiY+Dlf1hX7B5u/pgqDEETCabhiXyIlJyTkRERERERESSL+aOeX65EysAEzT8Esp1tXVUIi8sJedEREREREREJHnu3DCvyBq+HeydoMV3ULiJraMSeaEpOSciIiIiIiIijxd5Dn5oAZeOgbOneUXWnK/bOiqRF56ScyIiIiIiIiLyaJdPwQ/NIeIfcPeD9ovAr6itoxJ5KSg5JyIiIiIiIiIP988emN8K7lyHDHmh/WJI72/rqEReGkrOiYiIiIiIiEhihgHHlsKSnhB7B14rA20XglsGW0cm8lJRck5ERERERERErJ3dDutHwT87zdt568Bbc8HJzbZxibyElJwTEREREREREbPzh2DDaDizzrzt4AIVe0HNj8De0baxibyklJwTERERERERedVdDYFNn8CRReZtOwco3RGqDQLPLLaNTeQlp+SciIiIiIiIyKsq8jxs+Rz+mgfxseayoi3NPeUy5LFtbCKvCCXnRERERERERF41t6/Btsmw61uIvWsuy1cXag2DLMVtGprIq0bJOREREREREZFXRfQt2DkDtk2FexHmsuwVofYI8K9s29hEXlFKzomIiIiIiIi87GKjYV8w/PEF3LpkLstcFN4Ybu4xZzLZNDyRV5mScyIiIiIiIiIvq/g4OLzQvNjDjXBzWfqcUHMoFG0BdnY2DU9ElJwTERERERERefkYBpxcBRvGwOXj5jL3zFB9EJTqCA5Oto1PRCyUnBMRERERERF5mYT+CRtGwX/3mLddvOD196F8D3BKZ9vYRCQRJedEREREREREXgbnDsCG0RCywbzt4AoVe0KVvuCa3qahicjDpTg5Fxoayp9//snZs2e5ffs2vr6+lCpVikqVKuHi4vIsYhQRERERERGRh7lyGjaOhWNLzdt2DlAmEKp9AB5+toxMRJIh2cm5H3/8kSlTprB3714yZ85M1qxZcXV15dq1a4SEhODi4kK7du0YPHgw/v7+zzJmEREREREREYn4F7aMg79+BCMOMEGxVlBzCPjktnV0IpJMyUrOlSpVCicnJwIDA1m0aBHZs2e32n/v3j127NjBggULKFu2LNOnT6dVq1bPJGARERERERGRV1psNGydCH9OhLh75rL89aDWMPAratvYRCTFTIZhGI+rtHbtWgICApLV4NWrVwkLC6NMmTJPHdyLJDIyEi8vLyIiIvD09LR1OCIiIiIiIvIyOn8IlvaCi4fN2zkqQ+0RkKOibeMSkUSSmytKVs+55CbmADJkyECGDBmSXV9EREREREREHiOht9wfX0B8LLj6QIMvoGgLMJlsHZ2IPAW7lB6wf/9+Dh8+bNletmwZTZs25aOPPiI6OjpVgxMRERERERF55V04DLNqwebPzIm5Qo2h9y4o1lKJOZGXQIqTcz169ODUqVMA/P3337Rp04Z06dKxcOFCBg0alOoBioiIiIiIiLyS4mJg8ziYWcM8jNXVB1oEwVvzwD2TraMTkVSS4uTcqVOnKFmyJAALFy6kWrVqzJ8/n+DgYBYtWpTa8YmIiIiIiIi8ei4chlk1/7+3XMFG6i0n8pJK1pxz9zMMg/j4eADWr19Po0aNAMiePTtXrlxJ3ehEREREREREXiVxMfDnBM0tJ/IKSXFyrmzZsowdO5batWuzZcsWZsyYAUBoaCiZM2dO9QBFREREREREXgkXDsPSnub/grm3XKNJGsIq8pJLcXJu8uTJtGvXjqVLl/Lxxx+TN29eAH799VcqV66c6gGKiIiIiIiIvNTiYuDPifDH+P/1lksPDb5UbzmRV4TJMAwjNRq6e/cu9vb2ODo6pkZzL5zIyEi8vLyIiIjA09PT1uGIiIiIiIjIi0C95UReWsnNFaW45xzAjRs3+PXXXwkJCeGDDz7Ax8eHY8eOkTlzZl577bUnDlpERERERETklaDeciLyPylOzh06dIg33ngDb29vwsLC6NatGz4+PixevJjw8HC+//77ZxGniIiIiIiIyMvhwpH/9ZY7ZN5WbzmRV5pdSg/o378/nTt35vTp07i4uFjKGzRowB9//JGqwYmIiIiIiIi8NOJiYMt4mFnDnJhzTQ8tgqD1D0rMibzCUtxzbs+ePXz77beJyl977TUuXLiQKkGJiIiIiIiIvFSS6i3XcCJ4ZLZtXCJicylOzjk7OxMZGZmo/NSpU/j6+qZKUCIiIiIiIiIvhbgY2DrJ3GMuPkZzy4lIIike1vrmm28yevRoYmJiADCZTISHhzN48GBatGiR6gGKiIiIiIiIvJAuHIHv3oBNn5gTcwUbQa9dUKylEnMiYpHi5NyECROIiooiU6ZM3Llzh+rVq5M3b148PDz45JNPnkWMIiIiIiIiIi+O++eWO3/Q3Fuu+XfmueU0jFVEHpDiYa1eXl6sW7eOrVu3cujQIaKioihdujS1a9d+FvGJiIiIiIiIvDiuhsCvnc1JOYACDc0rsSopJyIPYTIMw7B1EC+DyMhIvLy8iIiIwNPT09bhiIiIiIiIyPP2z274qQ3cvmruLVf/Cw1hFXmFJTdXlKyec1OnTk32ifv27ZvsuiIiIiIiIiIvhWPLYXE3iL0LWUrC2wvAM4utoxKRF0Cyes7lypXLavvy5cvcvn0bb29vAG7cuEG6dOnIlCkTf//99zMJNK1TzzkREREREZFX1M4ZsGYIYED+etAiCJzdbR2ViNhYcnNFyVoQIjQ01PL65JNPKFmyJMePH+fatWtcu3aN48ePU7p0acaMGZNqFyAiIiIiIiKSpsXHmZNyaz4EDCjbBVr/qMSciKRIiuecy5MnD7/++iulSpWyKt+3bx8tW7YkNDQ0VQN8UajnnIiIiIiIyCsk5o55GOvx38zbtUdBlf9ofjkRsUjVOefud/78eWJjYxOVx8XFcfHixZQ2JyIiIiIiIvJiuXXFvPDDf/eAvRM0+waKtrB1VCLygkrWsNb7vfHGG/To0YP9+/dbyvbt20fPnj2pXbt2qgYnIiIiIiIikqZcDYHvapsTcy7e0HGZEnMi8lRSnJybPXs2fn5+lC1bFmdnZ5ydnSlfvjyZM2fmu+++exYxioiIiIiIiNhe+C5zYu56KHjngC7rwL+yraMSkRdcioe1+vr6smrVKk6dOsWJEycAKFiwIPnz50/14ERERERERETShGPLYFE3iLsHWUtB21/APZOtoxKRl0CKk3MJ8ufPr4SciIiIiIiIvNwMA3ZOh7UfAwbkrw8tg8DJzdaRichL4omSc//9739Zvnw54eHhREdHW+2bOHFiqgQmIiIiIiIiYlPxcbD2I9j1jXm7XFeoPx7s7G0bl4i8VFKcnNuwYQNvvvkmuXPn5sSJExQtWpSwsDAMw6B06dLPIkYRERERERGR5yv6NizuBidWmLfrjIHK74HJZNu4ROSlk+IFIYYMGcLAgQM5fPgwLi4uLFq0iH/++Yfq1avTqlWrZxGjiIiIiIiIyPMTdRnmNjYn5uydoeUcqNJXiTkReSZSnJw7fvw4HTt2BMDBwYE7d+7g7u7O6NGj+fzzz1M9QBEREREREZHn5soZCKoN/+4F1/TQcRkUbW7rqETkJZbi5Jybm5tlnrksWbIQEhJi2XflypXUi0xERERERETkeQrfaU7MXQ8Db3/osg78K9k6KhF5yaV4zrmKFSuydetWChUqRIMGDRgwYACHDx9m8eLFVKxY8VnEKCIiIiIiIvJsHV0Ci3tA3D3IWhra/gzumWwdlYi8AlKcnJs4cSJRUVEAjBo1iqioKH7++Wfy5cunlVpFRERERETkxWIYsGMa/D7UvF2gAbT4DpzcbBuXiLwyTIZhGLYO4mUQGRmJl5cXEREReHp62jocEREREREReZz4OFjzIeyead4u3x3qjQM7e9vGJSIvheTmilLcc05ERERERETkhRd9GxZ1hZMrzdt1P4FKvbUiq4g8d8lKzqVPnx5TMr+grl279lQBiYiIiIiIiDxTUZfhp9bw7z6wd4bmM6FIU1tHJSKvqGSt1jp58mQmTZrEpEmTGDrUPA4/ICCAkSNHMnLkSAICAgAYNmxYik7+2WefUa5cOTw8PMiUKRNNmzbl5MmTVnXu3r1L7969yZAhA+7u7rRo0YKLFy9a1QkPD6dhw4akS5eOTJky8cEHHxAbG2tVZ/PmzZQuXRpnZ2fy5s1LcHBwoni+/vprcubMiYuLCxUqVGD37t0puh4RERERERFJ466chu/eMCfmXH2g03Il5kTEplI851yLFi2oWbMmffr0sSqfNm0a69evZ+nSpcluq169erRp04Zy5coRGxvLRx99xJEjRzh27BhububJN3v27MnKlSsJDg7Gy8uLPn36YGdnx7Zt2wCIi4ujZMmS+Pn58cUXX3D+/Hk6duxIt27d+PTTTwEIDQ2laNGivPvuu3Tt2pUNGzbQr18/Vq5caUks/vzzz3Ts2JFvvvmGChUqMHnyZBYuXMjJkyfJlOnxK/RozjkREREREZE07uwOWPA23LkO6XNCu0WQMa+toxKRl1Ryc0UpTs65u7tz4MAB8ua1/gI7c+YMJUuWtKzk+iQuX75MpkyZ2LJlC9WqVSMiIgJfX1/mz59Py5YtAThx4gSFChVix44dVKxYkdWrV9OoUSPOnTtH5syZAfjmm28YPHgwly9fxsnJicGDB7Ny5UqOHDliOVebNm24ceMGa9asAaBChQqUK1eOadOmARAfH0/27Nl57733+PDDDx8bu5JzIiIiIiIiaVRcLGyfApvHQVw0vFYW3l4A7r62jkxEXmLJzRUla1jr/TJkyMCyZcsSlS9btowMGTKktDkrERERAPj4+ACwb98+YmJiqF27tqVOwYIFyZEjBzt27ABgx44dFCtWzJKYA/OQ28jISI4ePWqpc38bCXUS2oiOjmbfvn1Wdezs7Khdu7alzoPu3btHZGSk1UtERERERETSmIvHIKg2bBhtTswVehM6/abEnIikGSlerXXUqFF07dqVzZs3U6FCBQB27drFmjVrmDVr1hMHEh8fT79+/ahSpQpFixYF4MKFCzg5OeHt7W1VN3PmzFy4cMFS5/7EXML+hH2PqhMZGcmdO3e4fv06cXFxSdY5ceJEkvF+9tlnjBo16skuVkRERERERJ6tuFjYNhm2fG5Oyrl4Qb3PoUQbrcgqImlKipNzgYGBFCpUiKlTp7J48WIAChUqxNatWy3JuifRu3dvjhw5wtatW5+4jedpyJAh9O/f37IdGRlJ9uzZbRiRiIiIiIiIAObeckt7wvkD5u389aDRZPDMYsuoRESSlOLkHJjnZ/vxxx9TLYg+ffqwYsUK/vjjD7Jly2Yp9/PzIzo6mhs3blj1nrt48SJ+fn6WOg+uqpqwmuv9dR5c4fXixYt4enri6uqKvb099vb2SdZJaONBzs7OODs7P9kFi4iIiIiISOqLizH3ltv8OcTHmHvL1R8PxVurt5yIpFnJmnPu/vnUHpxn7WnmXTMMgz59+rBkyRI2btxIrly5rPaXKVMGR0dHNmzYYCk7efIk4eHhVKpUCYBKlSpx+PBhLl26ZKmzbt06PD09KVy4sKXO/W0k1Elow8nJiTJlyljViY+PZ8OGDZY6IiIiIiIikoZdPArfvQEbx5oTc/nrQa9dGsYqImlesnrOpU+fnvPnz5MpUya8vb0xJfHFZhgGJpOJuLi4ZJ+8d+/ezJ8/n2XLluHh4WGZI87LywtXV1e8vLzo0qUL/fv3x8fHB09PT9577z0qVapExYoVAahbty6FCxemQ4cOjB8/ngsXLjB06FB69+5t6dn27rvvMm3aNAYNGsQ777zDxo0b+eWXX1i5cqUllv79+9OpUyfKli1L+fLlmTx5Mrdu3aJz587Jvh4RERERERF5zuJiYOtk89xy8THg4v2/3nJvKSknIi+EZCXnNm7caFlBddOmTal28hkzZgBQo0YNq/I5c+YQGBgIwKRJk7Czs6NFixbcu3ePgIAApk+fbqlrb2/PihUr6NmzJ5UqVcLNzY1OnToxevRoS51cuXKxcuVK3n//faZMmUK2bNn47rvvCAgIsNRp3bo1ly9fZvjw4Vy4cIGSJUuyZs2aRItEiIiIiIiISBpx4Qgs6wXnD5q389eHxpPBI+npiURE0iKTYRiGrYN4GURGRuLl5UVERASenp62DkdEREREROTlFRcDWyfBlvH/31uuwRdQrJV6y4lImpHcXNETLQhx48YNdu/ezaVLl4iPj7fa17FjxydpUkREREREROTxLhwxr8R64ZB5u0ADaDRJveVE5IWV4uTcb7/9Rrt27YiKisLT09Nq/jmTyaTknIiIiIiIiKS+uBj4cyL88YV6y4nISyXFybkBAwbwzjvv8Omnn5IuXbpnEZOIiIiIiIjI/7tw+H+95Q6btws0/F9vOc0RLiIvvhQn5/7991/69u2rxJyIiIiIiIg8W5becuMhPhZc00P9L6BYS/WWE5GXRoqTcwEBAezdu5fcuXM/i3hEREREREREEveWK9gIGk5UbzkReemkODnXsGFDPvjgA44dO0axYsVwdHS02v/mm2+mWnAiIiIiIiLyiomNhq0Jc8v9r7dcgy+haAv1lhORl5LJMAwjJQfY2dk9vDGTibi4uKcO6kWU3OVxRURERERE5CHOH4KlveDifb3lGk0C90y2jUtE5AkkN1eU4p5z8fHxTxWYiIiIiIiIiJXYaPhzAvz55f96y/mYV2JVbzkReQWkODknIiIiIiIikmruXIcfWsC/+8zb6i0nIq+YZCfn+vfvn2S5l5cX+fPnp3nz5jg7O6daYCIiIiIiIvKSuxsB85rDuf3g4g0NJ6i3nIi8cpKdnPvrr7+SLL9x4wZnzpxh2LBhbNy4kRw5cqRacCIiIiIiIvKSuhtp7jF3br95GGvgSshc2NZRiYg8dyleECIpkZGRtGvXDg8PD+bPn58acb1wtCCEiIiIiIhIMt2LMifm/tlp7jHX6TfIUtzWUYmIpKrk5ooevvRqCnh6ejJs2DC2bduWGs2JiIiIiIjIyyr6FsxvbU7MOXtBx6VKzInIKy1VknMAGTNm5Nq1a6nVnIiIiIiIiLxsYu7AT23g7FZw9oQOSyBrKVtHJSJiU6mWnNu5cyd58uRJreZERERERETkZRJzFxa0hdA/wMkd2i+CbGVsHZWIiM0le0GIQ4cOJVkeERHBvn37+PTTTxkxYkSqBSYiIiIiIiIvidh78EsHCNkIjumg3ULIXt7WUYmIpAnJTs6VLFkSk8lEUutHZMyYkf79+9OrV69UDU5ERERERERecLHRsDAQTv8ODq7Q9hfwr2zrqERE0oxkJ+dCQ0OTLPf09CR9+vSpFpCIiIiIiIi8JOJiYNE7cHIVOLjA2z9Brqq2jkpEJE1JdnLO39//WcYhIiIiIiIiL5O4WFjcDY7/BvZO0OZHyFPT1lGJiKQ5yVoQYufOnclu8Pbt2xw9evSJAxIREREREZEXXHwcLH0Xji4BO0do/QPkrW3rqERE0qRkJec6dOhAQEAACxcu5NatW0nWOXbsGB999BF58uRh3759qRqkiIiIiIiIvCDi42FZHzi8EOwc4K25kD/A1lGJiKRZyRrWeuzYMWbMmMHQoUNp27Yt+fPnJ2vWrLi4uHD9+nVOnDhBVFQUzZo14/fff6dYsWLPOm4RERERERFJa+Lj4be+cHA+mOyh5Wwo2NDWUYmIpGkmI6nlVx9h7969bN26lbNnz3Lnzh0yZsxIqVKlqFmzJj4+Ps8qzjQvMjISLy8vIiIi8PT0tHU4IiIiIiIiz5dhwMr+sHc2mOygxXdQtIWtoxIRsZnk5oqSvSBEgrJly1K2bNmnCk5EREREREReIoYBqweZE3OYoOk3SsyJiCRTsuacExEREREREUmSYcDaj2H3TMAETb6GEq1tHZWIyAtDyTkRERERERF5MoYB60fAzq/N242nQKl2to1JROQFo+SciIiIiIiIpJxhwMaxsG2KebvhBCjTybYxiYi8gJScExERERERkZTb8jn8+aX5ff3xUK6rbeMREXlBKTkn/8fefcdZUtX5/39V1c33dp7p6cmZnCVjQlhAdBVBVzChrOvKiondNSeWVdTdxbAGvj9dw6oY0BVdURBB1sBIGkmSJsfu6Z7ON99bVb8/qm7qMNM90923e/r9fFiPqjpVt/rcZpA77/s554iIiIiIiEzO7/4d7rvJO77ok3DW39e3PyIic9iEVmv94he/OOEHvutd7zrkzoiIiIiIiMgs98cvwL03escXfgLOva6u3RERmesM13Xdg920evXqmvOenh7S6TTNzc0ADAwMEIvFaG9vZ+vWrdPS0dluaGiIpqYmBgcHaWxsrHd3REREREREpt6GL8NdH/KOz/8IvOif69sfEZFZbKJZ0YSGtW7btq28ffKTn+SUU07h6aefpq+vj76+Pp5++mlOO+00brzxxil7AyIiIiIiIjKLPPD/VYK5F71fwZyIyBSZUOVctbVr1/LjH/+YU089tab9kUce4dWvfjXbtm2b0g7OFaqcExERERGRI9bD34BfvNc7fv71cMHHwDDq2ycRkVluSivnqnV2dlIsFke127bNvn37Jvs4ERERERERmc02/nclmDv3nQrmRESm2KTDuQsuuIC///u/Z+PGjeW2Rx55hGuvvZYLL7xwSjsnIiIiIiIidfTYD+Hn/qJ/Z10Lf3WjgjkRkSk26XDuG9/4Bh0dHZx++umEw2HC4TBnnnkmixYt4utf//p09FFERERERERm2tb/g5/9A+DCGX8Hl9ykYE5EZBoEJvuChQsX8stf/pLnnnuOZ555BoBjjjmGo446aso7JyIiIiIiInXQ8yz86I3gFOGEK+Cln1UwJyIyTSYdzpUcddRRCuRERERERESONMke+N5rIDsIy8+CV34FzEkPuhIRkQk6pHBu9+7d/PznP2fnzp3k8/maazfffPOUdExERERERERmWCEDP3gdDOyAllVw5a0QjNS7VyIiR7RJh3P33HMPr3jFK1izZg3PPPMMJ5xwAtu3b8d1XU477bTp6KOIiIiIiIhMN8eB26+F3Q9CpBle/2OIL6h3r0REjniTrk3+4Ac/yD/90z/xxBNPEIlE+MlPfsKuXbt40YtexGte85rp6KOIiIiIiIhMt9/+K/zlp2AG4bXfhQXr690jEZF5YdLh3NNPP82b3vQmAAKBAJlMhkQiwb/8y7/wmc98Zso7KCIiIiIiItNs43fg9//hHb/ii7D6BfXtj4jIPDLpcC4ej5fnmVu8eDFbtmwpX9u/f//U9UxERERERESm39b74Bfv8Y5f+D445XX17I2IyLwz6Tnnzj77bP7whz9w7LHHcumll/KP//iPPPHEE/zP//wPZ5999nT0UURERERERKZDz7PwwzeBU4QTXg3nf6jePRIRmXcmHc7dfPPNJJNJAG644QaSySQ//OEPWb9+vVZqFRERERERmSuS3fC9V0NuEJafDa/8MhhGvXslIjLvGK7ruvXuxJFgaGiIpqYmBgcHaWxsrHd3RERERERExlfIwLdeDnsehpbV8NZ7IN5W716JiBxRJpoVTXrOOREREREREZnDHAd++nYvmIs0w+tvUzAnIlJHExrW2tLSgjHB8ua+vr7D6pCIiIiIiIhMo3v/BZ66HcwgXPk9WLC+3j0SEZnXJhTOff7zny8f9/b28q//+q9cfPHFnHPOOQBs2LCBu+66i49+9KPT0kkRERERERGZAhv/G/7wOe/4Ff8Jq55f3/6IiMjk55y74oorOP/887nuuutq2r/0pS/xm9/8httvv30q+zdnaM45ERERERGZ1bb81lsAwinCi96vlVlFRKbZtM05d9ddd3HJJZeMar/kkkv4zW9+M9nHiYiIiIiIyHTrfgZ+dLUXzJ34GnjxB+vdIxER8U06nGtra+NnP/vZqPaf/exntLVpElEREREREZFZJdkNt74GcoOw4hx4xZdggnOKi4jI9JvQnHPVbrjhBt761rdy3333cdZZZwHwwAMPcOedd/K1r31tyjsoIiIiIiIih6iQge9fBQM7oWU1vPZ7EIzUu1ciIlJl0uHcm9/8Zo499li++MUv8j//8z8AHHvssfzhD38oh3UiIiIiIiJSZ44DP/172PMwRJrh9T+GuEY7iYjMNpNeEELGpgUhRERERERkVrn74/DHz4MZhDf9DFadV+8eiYjMKxPNiiZUOTc0NFR+yNDQ0AHvVTAlIiIiIiJSZ498ywvmAF75ZQVzIiKz2ITCuZaWFjo7O2lvb6e5uRljjMlDXdfFMAxs257yToqIiIiIiMgEbbkXfnG9d/yiD8DJr61vf0RE5IAmFM7de++9tLa2AvDb3/52WjskIiIiIiIih6j7afjR1eDacOLfwIs/UO8eiYjIQWjOuSmiOedERERERKSukt3wtQtgcCesOMebZy4QrnevRETmrYlmReZkH/zNb36T2267bVT7bbfdxre//e3JPk5EREREREQOVz4N37/SC+Za18KVtyqYExGZIyYdzt10000sWLBgVHt7ezuf+tSnpqRTIiIiIiIiMkGOAz/9e9jzCERb4PW3Qay13r0SEZEJmnQ4t3PnTlavXj2qfeXKlezcuXNKOiUiIiIiIiITdM8n4OmfgxXyKuba1ta7RyIiMgmTDufa29t5/PHHR7U/9thjtLW1TUmnREREREREZAIe/ib88Qve8Su+BCvPrW9/RERk0iYdzl111VW8613v4re//S22bWPbNvfeey/vfve7ufLKK6ejjyIiIiIiIjLS5nvgjn/0jl/8QTj5tfXtj4iIHJLAZF9w4403sn37di644AICAe/ljuPwpje9SXPOiYiIiIiIzIQt98JtbwbXhpNeCy96f717JCIih8hwXdc9lBc+99xzPPbYY0SjUU488URWrlw51X2bUya6PK6IiIiIiMgh2/MI/OYG2PZ/3vnK8+CNP9XKrCIis9BEs6JJV86VHHXUURx11FGH+nIRERERERGZqO5n4N4b4ZlfeOdmEE6/Bl7yYQVzIiJz3ITCueuvv54bb7yReDzO9ddff8B7b7755inpmIiIiIiIyLw3sBPu+zQ89n1wHcCAk6+CF38AWub36CURkSPFhMK5P//5zxQKBQA2btyIYRhj3jdeu4iIiIiIiExCsgd+/+/w8DfAznttx7wcXvIRaD+2vn0TEZEpdchzzkktzTknIiIiIiKHLTsI9/8nbPgKFFJe2+oXwgUfh2Wn17dvIiIyKdMy51yhUCAajfLoo49ywgknHHYnRUREREREBChk4MH/D/7wOcj0e21LTvVCubXn17dvIiIyrSYVzgWDQVasWIFt29PVHxERERERkfnDLsCfvwv/91kY3uu1LTjaG7567F+Dpg4SETniTXq11g9/+MN86EMf4jvf+Q6tra3T0ScREREREZEjm+PAX/4HfvtJ6NvqtTUt9xZ6OOlKsCb9VzUREZmjJv3/+F/60pfYvHkzS5YsYeXKlcTj8ZrrGzdunLLOiYiIiIiIHFFcFzbdDff+C3Q94bXFFsAL/wlOvwYC4fr2T0REZtykw7lXvvKVWpVVRERERERksnZsgHtugJ0bvPNwI5z7Tjj7Wgg31LdvIiJSN1qtdYpotVYRERERERlT1xNwz42w6S7vPBCBM/8Onn89xDRVkIjIkWqiWZE52QevWbOG3t7eUe0DAwOsWbNmso8TERERERE5MvVugR//LdzyfC+YMyw47Wp450a46F8VzImICHAIw1q3b98+5mqtuVyO3bt3T0mnRERERERE5qyhTvi/z8CfvwNO0Ws7/nI4/8OwYF19+yYiIrPOhMO5n//85+Xju+66i6ampvK5bdvcc889rF69emp7JyIiIiIiMhcUMrDp1/DEbfDcXWDnvfZ1F8IFH4PFJ9e3fyIiMmtNOJy77LLLADAMg6uvvrrmWjAYZNWqVfzHf/zHlHZORERERERk1rKLsP138MSP4en/hdxQ5drys+CCj8Oq8+rXPxERmRMmPOec4zg4jsOKFSvo7u4unzuOQy6X49lnn+XlL3/5pH747373O/76r/+aJUuWYBgGt99+e831N7/5zRiGUbNdcsklNff09fXx+te/nsbGRpqbm/nbv/1bkslkzT2PP/44L3jBC4hEIixfvpzPfvazo/py2223ccwxxxCJRDjxxBP55S9/Oan3IiIiIiIi84Drwq6H4Jfvg5uPhe+8Ch79nhfMNS6D894Nb/8DXHOXgjkREZmQSc85t23btin74alUipNPPplrrrmGyy+/fMx7LrnkEr75zW+Wz8PhcM3117/+9XR2dnL33XdTKBR4y1vewtve9jZuvfVWwFsZ46KLLuLCCy/klltu4YknnuCaa66hubmZt73tbQDcf//9XHXVVdx00028/OUv59Zbb+Wyyy5j48aNnHDCCVP2fkVEREREZI7qfsYbsvrkj6F/e6U92grHvwpOfI1XLWdOes09ERGZ5wzXdd3JvOBd73oX69at413veldN+5e+9CU2b97M5z//+UPriGHw05/+tDx8FrzKuYGBgVEVdSVPP/00xx13HA899BCnn346AHfeeSeXXnopu3fvZsmSJXz1q1/lwx/+MF1dXYRCIQA+8IEPcPvtt/PMM88A8NrXvpZUKsUvfvGL8rPPPvtsTjnlFG655ZYJ9X+iy+OKiIiIiMgcMbALnvyJN2x13xOV9mAcjnmZF8itPR+sYP36KCIis9ZEs6JJf63zk5/8hPPOG12efe655/LjH/94so87qPvuu4/29naOPvporr32Wnp7e8vXNmzYQHNzczmYA7jwwgsxTZMHHnigfM8LX/jCcjAHcPHFF/Pss8/S399fvufCCy+s+bkXX3wxGzZsmPL3IyIiIiIis1iqFx76L/jGS+HzJ8BvPu4Fc2YAjnopXPFf8M+b4IqvwVEXKZgTEZHDNulhrb29vTUrtZY0Njayf//+KelUySWXXMLll1/O6tWr2bJlCx/60Id46UtfyoYNG7Asi66uLtrb22teEwgEaG1tpaurC4Curq5Rq8guWrSofK2lpYWurq5yW/U9pWeMJZfLkcvlyudDQ0Pj3isiIiIiIrNYLgnP/sobtrrlHnCK/gUDVp4HJ74ajnslxFrr2k0RETkyTTqcW7duHXfeeSfXXXddTfuvfvUr1qxZM2UdA7jyyivLxyeeeCInnXQSa9eu5b777uOCCy6Y0p81WTfddBM33HBDXfsgIiIiIiKHqJiHLfd6gdyzv4RCunKt4yRvyOoJl0PTsvr1UURE5oVJh3PXX3891113HT09PbzkJS8B4J577uE//uM/Dnm+uYlas2YNCxYsYPPmzVxwwQV0dHTQ3d1dc0+xWKSvr4+Ojg4AOjo62LdvX809pfOD3VO6PpYPfvCDXH/99eXzoaEhli9ffuhvTkREREREppfjwM4NXiD31O2Q6a9ca1kNJ/0NnPBqWHhU3booIiLzz6TDuWuuuYZcLscnP/lJbrzxRgBWrVrFV7/6Vd70pjdNeQer7d69m97eXhYvXgzAOeecw8DAAI888gjPe97zALj33ntxHIezzjqrfM+HP/xhCoUCwaA3H8Tdd9/N0UcfTUtLS/mee+65h/e85z3ln3X33XdzzjnnjNuXcDg8auVYERERERGZpfZvgh+8HvY/W2lLLIITrvCGrS45DQyjfv0TEZF5a9KrtVbr6ekhGo2SSCQO6fXJZJLNmzcDcOqpp3LzzTdz/vnn09raSmtrKzfccANXXHEFHR0dbNmyhfe9730MDw/zxBNPlIOxl770pezbt49bbrmFQqHAW97yFk4//XRuvfVWAAYHBzn66KO56KKLeP/738+TTz7JNddcw+c+9zne9ra3AXD//ffzohe9iE9/+tO87GUv4wc/+AGf+tSn2LhxIyeccMKE3otWaxURERERmaW2/Q5++AbIDkK4EY57hTdsddULwLTq3TsRETlCTTQrOqRwrlgsct9997FlyxZe97rX0dDQwN69e2lsbJxUUHffffdx/vnnj2q/+uqr+epXv8pll13Gn//8ZwYGBliyZAkXXXQRN954Y83iDX19fVx33XX87//+L6ZpcsUVV/DFL36xph+PP/4473jHO3jooYdYsGAB73znO3n/+99f8zNvu+02PvKRj7B9+3bWr1/PZz/7WS699NIJvxeFcyIiIiIis9DG/4ZfvNdb5GHZmXDlrZBYWO9eiYjIPDBt4dyOHTu45JJL2LlzJ7lcjueee441a9bw7ne/m1wuxy233HLYnZ+LFM6JiIiIiMwijgO/+Tjc/0Xv/IRXwyu/DMFIffslIiLzxkSzInOyD373u9/N6aefTn9/P9FotNz+qle9invuuefQeisiIiIiIjJV8in40RsrwdyLPwhXfF3BnIiIzEqTXhDi97//Pffffz+hUKimfdWqVezZs2fKOiYiIiIiIjJpQ3vh+1dC52NgheGyr3gLPoiIiMxSkw7nHMfBtu1R7bt376ahoWFKOiUiIiIiIjJpex/1grnhTogt8OaXW3FWvXslIiJyQJMe1nrRRRfx+c9/vnxuGAbJZJKPf/zjk1pAQUREREREZMo8cwd886VeMLfwGPi7exTMiYjInDDpBSF2797NxRdfjOu6bNq0idNPP51NmzaxYMECfve739He3j5dfZ3VtCCEiIiIiEgduC7c/59w98cAF9a+BF7zLYg01btnIiIyz03baq0AxWKRH/zgBzz++OMkk0lOO+00Xv/619csEDHfKJwTEREREZlhdgHuuB42/rd3fvrfwks/C9akZ+8RERGZchPNig7pv1qBQIA3vOENh9w5ERERERGRw5Lphx9dDdv+DwwTLv4UnPV2MIx690xERGRSJhTO/fznP5/wA1/xilcccmdEREREREQOqm8rfO9voHcThBLw6m/AURfXu1ciIiKHZELh3GWXXTahhxmGMeZKriIiIiIiIlNix/3wg9dDpg8al8HrfggdJ9S7VyIiIodsQuGc4zjT3Q8REREREZEDe/T78PN3glOAJafBVd+Hho5690pEROSwaKZUERERERGZ3RwHfvtJ+P2/e+fHvRIuuwVCsfr2S0REZAqYE73x0ksvZXBwsHz+6U9/moGBgfJ5b28vxx133JR2TkRERERE5rlCBn78lkow9/zr4dXfUjAnIiJHjAmHc3fddRe5XK58/qlPfYq+vr7yebFY5Nlnn53a3omIiIiIyPw1vA++9TJ46nYwg/DKr8CFHwdzwn+NERERmfUmPKzVdd0DnouIiIiIiEyZrifh+1fC4C6ItsBrvwurnl/vXomIiEw5zTknIiIiIiKzy3O/9oay5pPQtg5e9yNoW1vvXomIiEyLCYdzhmFgGMaoNhERERERkSnhuvDA/4O7PgiuA6teAH/z3xBrrXfPREREps2khrW++c1vJhwOA5DNZnn7299OPB4HqJmPTkREREREZFLsItz5fnjo6975qW+El90MgVB9+yUiIjLNJhzOXX311TXnb3jDG0bd86Y3venweyQiIiIiIvNLdhBuewtsuQcw4K9ugHPfBRqpIyIi88CEw7lvfvOb09kPERERERGZj3qehR++AfY/B4EoXPE1OPav690rERGRGaMFIUREREREpD7+cjv87B3ewg8Ni+Gq78OSU+vdKxERkRmlcE5ERERERGaWXYTffBw2fMk7X/l8eM03IdFe336JiIjUgcI5ERERERGZOclub365HX/wzs99J1zwCbD0VxMREZmf9F9AERERERGZGTsfgNuuhuFOCCXglV+G4y+rd69ERETqSuGciIiIiIhML9eFB78Gd30QnCIsOBpe+11YeFS9eyYiIlJ35qG86Dvf+Q7nnXceS5YsYceOHQB8/vOf52c/+9mUdk5EREREROa4fAr+523wq3/2grnjXwV/d6+COREREd+kw7mvfvWrXH/99Vx66aUMDAxg2zYAzc3NfP7zn5/q/omIiIiIyFzVuwW+fiE88SMwLLj4U/Dqb0I4Ue+eiYiIzBqTDuf+8z//k6997Wt8+MMfxrKscvvpp5/OE088MaWdExERERGROeqZO+D/ezF0PwXxdrj6f+Gcd4Bh1LtnIiIis8qk55zbtm0bp5566qj2cDhMKpWakk6JiIiIiMgc5djw20/C7//DO19+NrzmW9C4uK7dEhERma0mXTm3evVqHn300VHtd955J8cee+xU9ElEREREROaiVC989/JKMHfWtfDmXyiYExEROYBJV85df/31vOMd7yCbzeK6Lg8++CDf//73uemmm/j6178+HX0UEREREZHZbvcj8KM3wdBuCMbgFf8JJ7663r0SERGZ9SYdzr31rW8lGo3ykY98hHQ6zete9zqWLFnCF77wBa688srp6KOIiIiIiMxWrguPfAt+9T6w89C6Fl77XVh0XL17JiIiMicYruu6h/ridDpNMpmkvb19Kvs0Jw0NDdHU1MTg4CCNjY317o6IiIiIyPQrZOCOf4JHv+udH/NyuOwrEGmqb79ERERmgYlmRZOunKsWi8WIxWKH8wgREREREZmL+rfDD98IXY+DYcIFH4Pz3qPVWEVERCZpQuHcqaeeijHB/8hu3LjxsDokIiIiIiKz3Ka74SdvhewAxBbAq78Ba15U716JiIjMSRMK5y677LLycTab5Stf+QrHHXcc55xzDgB/+tOf+Mtf/sI//MM/TEsnRURERERkFnAc+L/PeBsuLD0d/ubb0LSs3j0TERGZsyYUzn384x8vH7/1rW/lXe96FzfeeOOoe3bt2jW1vRMRERERkdkh3Qf/8zbYfLd3fsZb4eJPQSBc336JiIjMcZNeEKKpqYmHH36Y9evX17Rv2rSJ008/ncHBwSnt4FyhBSFERERE5IjV+Rj88A0wsBMCEXj55+GUq+rdKxERkVltolmROdkHR6NR/vjHP45q/+Mf/0gkEpns40REREREZDb783fhvy7ygrmWVfC3dyuYExERmUKTXq31Pe95D9deey0bN27kzDPPBOCBBx7gG9/4Bh/96EenvIMiIiIiIlIHAzvh1x+Fp273ztdfDJf/P4i21LVbIiIiR5pJh3Mf+MAHWLNmDV/4whf47ne/C8Cxxx7LN7/5Tf7mb/5myjsoIiIiIiIzKJ+CP3we7v8iFLNgmPDiD8IL/gnMSQ+8ERERkYOY9JxzMjbNOSciIiIic5rjwBO3wW8+AcN7vbZVL4BLboKOE+vaNRERkbloolnRpCvnRERERETkCLP7Ebjz/bD7Ie+8eSVc9K9w7F+DYdS3byIiIkc4hXMiIiIiIvPV0F74zQ3w+A+882AcXviPcPY7IKjF3kRERGaCwjkRERERkfmmkIENX4Lf3wyFtNd28uvggo9B4+L69k1ERGSeUTgnIiIiIjJfuC489TNvFdbBnV7bsjPhpZ+Gpc+rb99ERETmqcMK50prSRiah0JEREREZHbrfBzu/ADs+KN33rgULrwBTny15pUTERGpo0NaC/2///u/OfHEE4lGo0SjUU466SS+853vTHXfRERERETkcCV74Ofvgv/3Qi+YC0TgRR+A6x6Ck16jYE5ERKTOJl05d/PNN/PRj36U6667jvPOOw+AP/zhD7z97W9n//79vPe9753yToqIiIiIyCQV8/DALfC7f4PckNd2whVetVzz8vr2TURERMoMtzQ2dYJWr17NDTfcwJve9Kaa9m9/+9t84hOfYNu2bVPawbliaGiIpqYmBgcHaWxsrHd3RERERGS+cl147k6460PQt9VrW3wKXPJpWHlOXbsmIiIyn0w0K5p05VxnZyfnnnvuqPZzzz2Xzs7OyT5ORERERESmSvfTcOcHYetvvfN4O1z4cW8lVvOQZrQREZFD4OSKGEELw9TUAXJwkw7n1q1bx49+9CM+9KEP1bT/8Ic/ZP369VPWMRERERERmaB0H9x3Ezz0X+DaYIXg7H+AF/wjRDSqQ0RkuhUHsuS2DJLbOkhu2yB2XxYMMONBrEQQMxHCTASx4t6x1xbEKrUnghhBq95vY8a5ros9mKewZ5j8niRG0KTx/BX17taMm3Q4d8MNN/Da176W3/3ud+U55/74xz9yzz338KMf/WjKOygiIiIiIuOwi/DwN+C3n4TsgNd2zMvhohuhdU1duyYiciQrDuTIbR3wwritfhg3kgtOsoCTLADpgz7TCFmYDeMHeGY8iNUQwowHMaOBOVeVVw7idntBXH5PksKeJE6qUL7Hag4rnJuIK664ggceeIDPfe5z3H777QAce+yxPPjgg5x66qlT3T8RERERERnL5nu8eeV6nvHO24+HS26CNS+qb79ERI5ABw3jTAgtbSC8ponwmiZCyxtwiy52Mo+TKmAnCzjJPE6ycmz7wZ2dzIPt4uZt7F4bu3eMoG8k0/DDuiCB1ghWa5RAa6S8Wc1hjED9pjPwgrgchd3JcYO4MhOC7XGCSxOEliVwXRdjnq0kPukFIWRsWhBCRERERGZEug9+9X54wh+1Em2Fl3wYTnszWJP+7l1ERMZQHMx5QdyWAW+Y6sjAbGQYt6oRM3xo/x/sui5uzh4/wEt5AV6p3c0UD/5QA6ymsB/cRQi0lYK7KFZrBDMWmLIAbOwgbhgnNUY/TQgu8oO4pQlvvzh+xA7pnbYFIUq6u7vp7u7GcZya9pNOOulQHykiIiIiIgfy7J3wv++C5D4wTDjz7+HF74doS717JiIyp00kjAv6YVzkMMO4kQzDwIgEMCMBWBA96P1u0SlX49mDOYr9Wey+LEV/s/uyuAUHeyCHPZCDrYOjf2bYqgR31RV3rRECLZFxq+5c18UeyFHYM5EgziC4KFYO4kLLGgh2xDGCWqBopEn/SXrkkUe4+uqrefrppxlZdGcYBrZtT1nnREREREQEyAx4q7A+dqt33rYeXnULLDu9rt0SkSOH67jguuB4AQyOt7mlfdHFLTrljaLjtRUcXNsp7yk4tff61xjx+spzKu2YBmbIwghb3vxrYQsjZGKErTHardHt/r2GdfDwxy6FcVsHyW0doHiAMC68ponwykYvPJsFjICJ1RTGagrD0sSo667r4iQLlbCuN1MT3NlDedycTaEzRaEzNcYPAKsxXBPcuUWH/O5hCnuTBw/iliUILVUQNxmT/pN1zTXXcNRRR/Ff//VfLFq0aN6NAxYRERERmVGbfgM/fycM7wUMOPc6OP/DEDx4dYWIzB1uwcHJFnFyNm62iJMt4mZtnKztH5eu2ZX7cnY5PMMP11wHf19qHxm24Ydwrt+Od+1IEvBDvlKAVwrzQhZGwKCwJzk6jDMguGx2hnGTZRgGVkMIqyFEeOXooZRuwaHYXwnrKsGdF+K5eQd7MIc9mCO/bXTVnYK4qTfpP2lbt27lJz/5CevWrZuO/oiIiIiICEB2CH79Ydj439556xq47Kuw4uz69ktExuQWbOyUN8G/ky7iZKoCtlyxEqpl7XLQVgngimDP4oDM8Kq1jKAJlrc3AgaGNaLNMvxrlY2A4R2XX1fVVrMZuI6Lm3Nw8zZO3g8f87YXRPrnTt6pHJfa/XvKv8Oii1MsQvoAc7MZEFyaILymmfDauR3GTZYRNAm2xwi2x0Zdc10XJ1WoBHe9XnBnmEZlnjgFcVNu0n/yLrjgAh577DGFcyIiIiIi02XLb71qucFd3vlZ18IFH4PQ6L9Iicwlru3g5p0xgxdcKsMUq4cyhiywjBkftVUdtpVDt1TtcfW5m5+aKZ6MsIUZsTDCAW8f8fZmJIARsTDD/j4S8CrBLANMA8MATAMMA8M0wMRv965jGhgmYJSOvXtqrpeeUfM65syIObc4MthzRgV4bt4hsDBKeNX8CeMmwzAMrEQIKxGCFVrscqZM+k/i17/+da6++mqefPJJTjjhBILBYM31V7ziFVPWORERERGReSWXhLs/Bg//l3fevBIu+wqsen59+zVHObkiha40hc4khb0pCl0pnGzRCyUs098bI/amF2CUrpuGF37U3GeO8TqjEpJYpjfka0nCuzaHuba3CmN15VI5/MjbuLkRQVvNsTPqNRQPsTrMNGrnFAtZo84rwxjNEecWRtAsD2108/a4YZvtB26HHLZZBmY8iBUPjg7V/PNxQ7dS2DbH/8zUU6kKz4wFD36zyCwy6XBuw4YN/PGPf+RXv/rVqGtaEEJERERE5BBt+z387B0wsMM7P+OtcOENEB492bfUKq8e6E9uXuhMku9MjV5tcYaZsQDhdc2E1zUTWddCoDVS1/5MhOu4FPalvRUrtwyQ2zqIm5uGv+OZYIQCmH6QZoQt7+fnvcqmUcMUHRc3W8Se6X+kVWGbmQiOcRyqHCeCXhA4R6rMRGYL23bo25uie/sQhmFw3POX1LtLM27S4dw73/lO3vCGN/DRj36URYsWTUefRERERETmj3wKfnMDPPj/vPOm5fDKL8GaF9e1W7OVW3AodFeq4fJ+IOdmx55bymwMEVocJ7g4QXBxHDMR9IIe263aOyPOR+xtp7Jipe2C7Y4496/77W7eJr87iZMuknl8P5nH9wMQaIsQXt9CZF0z4bXNmNH6D6lzXZdib7YSxm0ZxEkVam8KGOWqrsrKmGbNKpmjqtiq26tW3DSC3vlEh6nWDIMdqypv5DxkpaGLBWfcKj8zaGL6AZsVD1Ydh8rHCttEpofjuPR3pejZMUz39iG6dw6zf1cSu+gA0LQwqnBuInp7e3nve9+rYE5ERERE5HDt2AA/+wfo2+qdP+/N8Fc3QkTz/ADYw/lR1XDFnrS3uuRIpuFNcL447m1LvEDOitdneJtrO+R3DZPdNEBu8wD5XUPexOq9naT+1AkGhJY1EF7fTGRdM6EVjd5E+TOgOJgjt7kSxtmDuZrrRtAktLqJyNomwmub6zo817BMjKg5K4JMEZkc13EZ7MnQvWOI7h3DdO8YomdXkuIY1bjhWICFKxpoX9WI67jzbnj3pP8f7vLLL+e3v/0ta9eunY7+iIiIiIgc+QoZuPdfYcOXARcalsAr/xPWXVjvnk0713HB9avOHPy9i5P0grh8VRjnDBfGfIYZCxDsiBNckqiEce2xGQu3JsKwTMKrmgivaoK/WomTLZLbOkh2Uz+5zQMUezLkdw2T3zXM8L27MEIm4dVN5cq6wKLYlFVs2alCTWVccX+m9gbLILSigchabwhuaFnDrPpdikyGYzsU8w6FvE0hZ1PM2xRyjr+3KRZsXAeMqoUuDMNbDMMwDG9lWgNvYQ3/X0HDNDAY+3r52L+v/Dxz5N7ANMc6r7TVnJsGZmlxjznAdV2Ge7N07ximZ+cQ+7YP07NzmHxmdFVzIGzRvqKBhSsbWLSykYUrG2haGJ3XVaqTDueOOuooPvjBD/KHP/yBE088cdSCEO9617umrHMiIiIiIkecXQ/B7ddC7ybv/JQ3wMWfhGhzXbtV4toOhe4Mhb1JCnuSFHszlSGeTu1+ZMBG9XXXxbW9a7hV1yezHoABgbZoJYBb7AVyVmNozv0lzowEiB7XRvS4NgCKAzlym/vLlXVOqkD22X6yz/YzCJgNIW/463pvvjqrMTThn+Vki+S2D5Wr4wqdqdobDAguTXhh3NpmQqsaMUPWFL5bkQNzXZdi3iGfLVLI2uSzRfLZ6jCteu8FbcWc7e/9oK3qeuneQt7GOdRFR2axUmBXCuvK56aBFTAJRQOEYwHCsSCRuLcf+zxAJB4kFAtgWYcXwKcGcjUVcd07hskmR3+hYgVNFixL0L6ykfZVDbSvaKS5I4Y5R0LHmWK4rjupP7mrV68e/2GGwdatWw+7U3PR0NAQTU1NDA4O0tioYQgiIiIiMkIhC/fdBPd/EVwHEh3wii/CURfXrUtO3qbQlfKDuBT5vUkK+1KHvqLmYTBCplcNt7iqIq4jPi9CI9dxKXSlyG0eILt5gPy2QdxC7djdwKKYH9a1EF7d5M3bVnp9wSa3Y7hcHZffPTxq6G9gUawcxoXXNGmYqEya67heIFYdpo3YV8I2vy1nk88UKVTv/WuTSyIOgQHBkEUgbBEMmQRCFsGwRSBkYhiG9/NdF9f1wkLvPVYf+3v/unf/wa7X3uc6rvedhP+lxVjn0/57GEcwbBH2g7uIH+SFq4K8SCxAOF4J+bLJQk0Ylx7Mj3qmaRq0LUvQvrKBdr8irnVJ/LCDwLlsolnRpMM5GZvCOREREREZ156NXrVczzPe+UmvhZd+BqItM9YFJ10gv9cP4vYmye9NUuzJjFnJZoQtgksShJbECS6KY4RMML3xW4Zp+JP547X5VRzVe/yqjtFt/t4ArKrnmXNn6NZMcAsOuR1D5cq6wt5k7T8nfxhqaGkDhb1JcjuHRgWqVlvED+OaCK9pxmqYeOWdzF+u4zLUm6V3T5K+vUl696bo3ZMi2Z+lkLMnV/k6EQaEwhbBSIBQpBSeVe9NL2Arh2xeWyBUuW/UecgL4KygOScqbN2qgND1q5Fdx8VxXL+t6ryqrXRuFx1y6SK5dJFsqkAuXSif51IFsumi15by9vns1Ky+bBjQuiTOwpWNtPtzxbUtjRMIHvlfqEzGRLMifV0iIiIiIjJdinn43Wfh9zeDa0N8Ibz883Dsy6ftR7quizOU96rg9vrVcHuS2AO5Me83E0FCSxNetdqSOKElCayWiMKyOjKCJpF13kIRTZdUzRm3eYDspn7s/hz5bUPktw2VX2M2hiqVcWubCLRE6vgOZLZzXZfMcMEP4VL07vGCuL7O1JiT9VczDAhFAwTDVmUfsQhFAgQjlaAtVArcIpV7a+4Le9tcCNCmk1Ge286AGci1HNshn7H9IM8L7LLl8K507gV7pfNcukggZJUr4tpXNrBgeQPBsIK4qTLpcO6aa6454PVvfOMbh9wZEREREZEjRudjcPs/wL4nvfMTroCX/hvE26bsR7iOS7EvW1UNl6KwJ4mTGnshBas14lXDLUn4lXGJSc1lJvVhxYPETlpI7KSFABR7M15FXWeSYEec8LpmAgvm92Tq1Qp5m2yyQDZZIJPM+/tCua1YdGoqkEZWI+G6OE5VJdOI+5wRr6ncV6lmwoVIIkisMVTZmsL+3juPN4VnJNzIZ4u1AdzeJL17UmPODwZgBgxaOuK0LY3TtiRB65I4TQujhGNBghGLwBypSJOxmZZJJGESSdRnJWsZ26TDuf7+/przQqHAk08+ycDAAC95yUumrGMiIiIiInOSXYDf/wf87t/AKUKsDV52Mxx/2WE91snZFPb5K5l2lVY0TeGOVeViQmBhjNCS2oo4zTN2ZAi0RUm0RevdjRlRLNhkk0WyqXxNwFY59ttTVeHbiPn66mW4L3vQe4JhqyawKwd4jZUAL9YUIpoIYh5k3i676DCwL10J4fz9cO84/TCgaUGUtqVeAFfaN7dHD/qzRGRqTfq/zj/96U9HtTmOw7XXXsvatWunpFMiIiIiInOO48Czv4T7Pg37nvDajv1reNnnILFwwo9xHRe7L0uhK0W+FMR1pbDH+wt2wCS4OF6uiAstSRDsiGFo3h+ZAtlUgb69SWzbxbWr5r2qmvNq1N4e3eYdV82dZbs4rrcvtdVWvHn7wkGGWI7HtAwiiSDRRJBIIkgkHioflxYEMAxvbkTDNDD9uRDLK2GWrhn+NbNybvj3mmbtM6pfB5BNFkgP5UkP5v19jvRQnpR/XMw7FHI2gz0ZBnsyB35DBkQTQWKNYeLlIC+EFbQY6ErRuzfFQFfaq/wbQ6wpRNuSOK1LE7QtSdC2NE7L4jjBebDgishcMGULQjz77LO8+MUvprOzcyoeN+doQQgRERGRecouwpM/gT/cXFnwIdoCl/67N5T1AMO/nHSBQle6HMAVOlMU9qVw82NX/pgNofIqpsEOrzIusDCGYWmImUydof0Ztj22n22P97B302B5Vcp6McyqoC3uh22JIFH/2AvdQjVh3FyYyyyfLVaCu6E8KT+8qwR6OdKDeTLD+Qmv6BmKWLT64Vtp37YkoSGMInUy4wtCbNmyhWKxOFWPExERERGZ3QpZePR78McvwMAOry3cCGe8Fc55B8QXlG91bZdib4ZCZ5JCZ7ocxNmDYy/SQMAkuCjmhXBVYZyV0PxwM81xXIp5G7vgUPD3xbxDMW97+8KIfd7BLto0tcdYsr6ZeFO43m/hoFzXZf/uJNse7WHrY/vp3Z2sud7QFiEYtjAtrzKsZm9Sriyr2dfcM+Ka/5rScwzLaw8ErdpqN/84FA3M+qDtUHgLJgRoXhQ74H2O45JNFirhXVVwV8jZNC+KlYelJlrCR+TvSuRIN+lw7vrrr685d12Xzs5O7rjjDq6++uop65iIiIiIyKyUG4aHvwEbvgzJfV5bbAHu2f+Ae9JbcIhR7MxQ6NxTqYjbl4Li2KUvVnO4EsD5+0BbVNVwh6mQt8mMqEJKDeXJZ4oUC164ZucdCnkHu2DX7vM2RT+Mc8b55zZRTe1RlqxvZun6Zhavb6ZxlswV59gOezcPsu3RHrY9tr9mfjTDgMXrmll98gJWn7yQpoWzo8/zlWka5TnoROTINOlhreeff37NuWmaLFy4kJe85CVcc801BALzc5JZDWsVERERmZvcooOTs3GzRX9v4+SKuDm79jyZwtn9FG7PThw7iOPGcM1GnOACXCc87lDUEiNk1lbCLY4TXBTXIg2TYBcdMsOVYYA183kN+dVE/nEhe2hzlR2IFTAJhEwCQZNAyPKOQ1bl3N8blsH+XcPs352EEX/bSrSGWbK+mSXrmll6VAtN7TO3ymo+W2TX031se3Q/25/YTy5dGfkUCJosP66V1ScvZNVJbURVpSkictgmmhVN2Zxz853COREREZHZx3Vdivsz5LcPkds+RLEvi5urDeHGq2g7ZKaB1RImNCKIs1oiGKaq4Uayiw7ZVIHMcMGvdPMq3ErBWzmMG8yTTRUm9WwraJYnz482eCthhqOB0aHamCFb1bWg1zbZf365dIHOLYPs3TTA3k0DdO8YHjV/W7QxxJJ1zV513VHNtC6OT+mfk/RQnu2P72fbYz3serofu1gJkSPxIKtOXsDqkxaw/LhWLQ4gIjLFpi2cy2QyuK5LLOaNi9+xYwc//elPOe6447jooosOr9dzmMI5ERERkfpzbYfC3hS57YPktg+R3z6EM8FAxwiZGOEAZsTCCFuYZh4juQ1z6DkMN4lJGqOxCXP98zFXnYoRCXr3RQKYYQsjYmGGAxAw5uWcT67rUsjaZFMFb0sWRhwXa8/965NdjdM0DaKNldUqYw1Vx43h8vC/WGOIYGR2LQqQzxbZt22oHNbt2zZUE5YBhGMBFleFdQuWJTAtc1I/Z2Bfmq2P9bD9sf10bh2sqd5rXBBh9SkLWXPyAjrWNE362SIiMnHTFs5ddNFFXH755bz97W9nYGCAo48+mlAoxP79+7n55pu59tprD7vzc5HCOREREZGZ5+SK5HcO+0HcIPmdw7iFEcNLAwah5Q2EVzUR7Ih74duIQM3whyIC0PUk/OFz8Jf/Add/1srz4AXXw9oLDrj66pHEdVxSgzmGe7NkqoK2XFXYlknmy6FbLlXAsQ+tCtEwIJIIVgVr4UoAVw7evC0SCx4xFYjFgk339mH2bupn76YBOrcOURwRVgbDFovXNrHkKG8obPvKRqxgbaDmOi7dO4bZ+lgP2x7tob8rXXN94YoG1pzizR/XuiQ+qwJLEZEj2bSt1rpx40Y+97nPAfDjH/+Yjo4O/vznP/OTn/yEj33sY/M2nBMRERGR6WcP58ltHywPUy3sHT2nlxkLEFrZSHhVI6FVTYSWJjACE6gO2vUg/P4/4Lk7K23rL4LnXw8rz5naNzJLOLbDcF+Wwe4Mgz2129D+DPbIoHMCrKBJJB70tkT1PlDbVnVPOBo4YgK3yQgELW/+ufXNANi2w/6dSfZs6qdz0wB7Nw+SzxTZ+VQfO5/qA7zfb8fqRhav94bA7nlugG2P9ZAezJefa5oGS45qZs0pC1l10gIaWiP1eHsiIjJBkw7n0uk0DQ0NAPz617/m8ssvxzRNzj77bHbs2DHlHRQRERGRmeM6LoXOFLltg+S2DVLoTGGGLMxEECsRxEyEvON40G8Lla8Zwamdr6pmvrhtg+R2DGH3ZkfdZ7WECa9qIrTKC+QCC2MTD3pcF7b+Fn5/M2z/vd9owPGXeaHc4pOm7P3USzFvM7Q/y2BPelQAN9ybHTUHWjXDNGhoDRNJhPwgLVAO1aKJIOGRYVsiqHnLDoNlmSxa3cii1Y1w0Uocx6Vvb5I9zw34Yd0AmeECe54bYM9zAzWvDYYtVhzfxppTFrDyhDbCsWB93oSIiEzapMO5devWcfvtt/OqV72Ku+66i/e+970AdHd3aziniIiIyBzj2g75PUny2wbJbRsit30Qd8QqlxOdEcwYEeJZiSBmOcQb0TbG0MSa+eK2DZHfMYiTKo74IRDsiPtBnBfIBZrCk3/jjgPP3uFVyu39s9dmBuHkK+G898CCdZN/Zh3lM8Wq0M0P4bq96rdkf+6Ar7WCJo0LojQtjNLUHqVpgb9fGCXRGsHSnGR1Y5oGC5Y1sGBZAye/ZDmu6zKwL83eTV4419+Von1VI2tOXsiyo1tGDXcVEZG5YdLh3Mc+9jFe97rX8d73vpcLLriAc87xSvx//etfc+qpp07qWb/73e/4t3/7Nx555BE6Ozv56U9/ymWXXVa+7rouH//4x/na177GwMAA5513Hl/96ldZv359+Z6+vj7e+c538r//+7+YpskVV1zBF77wBRKJRPmexx9/nHe84x089NBDLFy4kHe+8528733vq+nLbbfdxkc/+lG2b9/O+vXr+cxnPsOll1462V+PiIiIyKzmFhzyu4a9SrTtg+R3DOHma4cuGmHLGxK6uonQ8gawXexkHidZwE4VcJIFnGQeO+kd28k82C5u3sbus7H7Rle3jWLghXTxIFZDCNd2Kew+8Hxx4VWNhFY2YkYm/RG2wi7AEz/25pTb/6z/M6LwvDfDuddB07JDf/Y0KuRshvuyJPuyDPdlGe719qXhp5nhAy96EYpYNLXHvBDOD95KW7wpPC+HlM5FhmHQ0hGnpSPO8S9YWu/uiIjIFJn0J5tXv/rVPP/5z6ezs5OTTz653H7BBRfwqle9alLPSqVSnHzyyVxzzTVcfvnlo65/9rOf5Ytf/CLf/va3Wb16NR/96Ee5+OKLeeqpp4hEvHkTXv/619PZ2cndd99NoVDgLW95C29729u49dZbAW/yvYsuuogLL7yQW265hSeeeIJrrrmG5uZm3va2twFw//33c9VVV3HTTTfx8pe/nFtvvZXLLruMjRs3csIJJ0z2VyQiIiIyazh5m/yOofIw1fyuYSjWDmM0YwFCq5oIr24ivKaJ4OL4pMIa13Vxc7Yf1tWGeOVQL1nASXnHTroILn7IV6C4rzJ5/SHPF3cw2UF49Puw4cswuNNrCzfBmX8HZ18L8QWH/zMOkeu6ZJOFmtDNC+Jy5bbsBFacjTYE/cAtRmNV+NbUHiUSD2oRABERkVlq0qu1ThfDMGoq51zXZcmSJfzjP/4j//RP/wTA4OAgixYt4lvf+hZXXnklTz/9NMcddxwPPfQQp59+OgB33nknl156Kbt372bJkiV89atf5cMf/jBdXV2EQiEAPvCBD3D77bfzzDPPAPDa176WVCrFL37xi3J/zj77bE455RRuueWWCfVfq7WKiIjIbOBki+T8Odry2wbJ707CiDnFzIagF8T5W6B9EnO0TQHXdnBSRS+480M813YJLU9Mbr64idj7Z3jov+DJn0DBDwHjC+Hsf4Az/hYiTVP3s8Zh2w6p/lxV6FYdwuVI9mUpTmDhhVDEoqEtQqI1QoO/lYejLowSih5GRaGIiIhMuWlbrTWVSvHpT3+ae+65h+7ubhyn9oPE1q1bJ9/bMWzbto2uri4uvPDCcltTUxNnnXUWGzZs4Morr2TDhg00NzeXgzmACy+8ENM0eeCBB3jVq17Fhg0beOELX1gO5gAuvvhiPvOZz9Df309LSwsbNmzg+uuvr/n5F198Mbfffvu4/cvlcuRylfk7hoaGpuBdi4iIiEyOnSr488VVFnAYuXqp1RwuB3GhNU0E2iJ1raIyLBOrMYTVGDr4zYcin/bCuIe/AXs3VtoXHusFcqe+AYLRKftxjuOS7M8y1JPxFl7Y7y20MNybJdmfJTWQYyJfh8eaQuXQraE1MiKIC2uCfxERkSPUpMO5t771rfzf//0fb3zjG1m8ePG0fbDr6uoCYNGiRTXtixYtKl/r6uqivb295nogEKC1tbXmntWrV496RulaS0sLXV1dB/w5Y7npppu44YYbDuGdiYiIiEye67rYg3mK3WkKPWmK+9LkdgzVDAktCSyIegsm+MNUAy2ROvS4Dnqe9QK5R78PuUGvzQrBca+E06+BFefAIX52zWeLDO3PMrQ/U57nbagnUw7iHPvA6ZsZMGho8QK3htba0K2hLUKiOaLJ/EVEROapSYdzv/rVr7jjjjs477zzpqM/c8YHP/jBmmq7oaEhli9fXsceiYiIyJHALToUezMUutMUuzMUe9IUerz9yIUbSgKLYlXDVBuxGg9h9dK5qpiHZ/4XHv4mbP99pb15pRfInfqGCc0n57ou6aF8OXirDeCyZIbyB3y9aRk0LojSuMAbatrYFq0K4sLEGkJadEFERETGNOlwrqWlhdbW1unoS42Ojg4A9u3bx+LFi8vt+/bt45RTTinf093dXfO6YrFIX19f+fUdHR3s27ev5p7S+cHuKV0fSzgcJhyeRx98RUREZEo56YIXunVXwrdid5piX3bUsNQy0yCwIEJgYYzgwhihZQlCqxqxEtM0PHQ2698Bj3wL/vwdSPV4bYYJR73UC+XWvgTM2kq0Qt4mWbXC6VCPNwS1FMIdbN63cDxA04IojQuj5bneSvt4cxhT4ZuIiIgcgkmHczfeeCMf+9jH+Pa3v00sFpuOPgGwevVqOjo6uOeee8ph3NDQEA888ADXXnstAOeccw4DAwM88sgjPO95zwPg3nvvxXEczjrrrPI9H/7whykUCgSD3jwdd999N0cffTQtLS3le+655x7e8573lH/+3XffzTnnnDNt709ERESOfK7jYg/magK4QneaYk8GJzn+6ptG2CLQHiO4MOrvYwTaowRaIxjWPB766Niw6W5v6OqmX+O6Ljk3TiZyMpm1ryG95ELSxQYyT+dJP/gcmaE8meE86aE86eECxZx9wMcbBiRaIzWhW2Uf0ZxvIiIiMi0mvVrrqaeeypYtW3Bdl1WrVpUDr5KNGzeO88rRkskkmzdvLj/35ptv5vzzz6e1tZUVK1bwmc98hk9/+tN8+9vfZvXq1Xz0ox/l8ccf56mnniIS8eZOeelLX8q+ffu45ZZbKBQKvOUtb+H000/n1ltvBbwVXo8++mguuugi3v/+9/Pkk09yzTXX8LnPfY63ve1tANx///286EUv4tOf/jQve9nL+MEPfsCnPvUpNm7cyAknnDCh96LVWkVEROYv13Ep9mYo7ktT2OcHcN1pivszuAeoxrKaQl4VXHuMwMJo+dhsCNZ1wYZ6chyXbLJQCdWG8mT295LZ8hjp3dtJZ4NknCYyTjNptxnHndx3zcGwRePCaLkCrmlBpFwJ19AWwZrP4aeIiIhMqWlbrfWyyy47nH7VePjhhzn//PPL56U53K6++mq+9a1v8b73vY9UKsXb3vY2BgYGeP7zn8+dd95ZDuYAvve973HddddxwQUXYJomV1xxBV/84hfL15uamvj1r3/NO97xDp73vOexYMECPvaxj5WDOYBzzz2XW2+9lY985CN86EMfYv369dx+++0TDuZERERkfnAdF3sgR6Er5QVwXSkvjOtJQ3Gc7zstg0BbtFwFV66IWxjFDE/6o9ic5bouuXSR1ECO5ECOVH+OZH/WO/a39FCebLIwzsqmHf42WihiEW0MEWsMEWsIEW0Ilc+jDUGvzT8Phq15G3yKiIjI7DTpyjkZmyrnREREjhyu62IP5b1KuFIAty9FsXv8RRmMoOkFb4v8AK5UDTcPhqK6jksmWfCCt/4syf5cOXRL9ufK7cVxfndjPJGIlSJm9BE1B4iZA0Qbo8RWH0t07cnEWuJEGyrhWyBoTev7ExERETkU01Y5V/LII4/w9NNPA3D88cdz6qmnHuqjREREROrCdV2cZKESvpWGpe5L4WbHmZ/MMrw54BZ5QVxwUZzgohhWa+SIXI3TsR3SQ3kvcCsFbQM5Un7VW6nNsSf2fW8kHiTeEibREibR7O3jzWHihZ3EdvyM6LafEHV6MA0HQgk46W+8BR46TpzmdyoiIiJSH5MO57q7u7nyyiu57777aG5uBmBgYIDzzz+fH/zgByxcuHCq+ygiIiJyWNyig50sYPdnKezzK+G60hS7Uzip4tgvMiGwIFoO3wJ+EBdoi2JYR14IV5IeytO1ZZC9mwfo3DzA/l1JHGcCwZsBscaQH7hFvACu2QveEn4YF28KEwhVVbn1PAd/+SH8+afQ80ylfdHxcMY1cNJrIdww9W9SREREZBaZdDj3zne+k+HhYf7yl79w7LHHAvDUU09x9dVX8653vYvvf//7U95JERERkZFc28FJFbCHC9jJPM5wHjtZGLHPYw8XcDPjBHAABgRaIwT8EC64KEawI05gQRQjcIQPR3VdBnsydG4eoHPzIJ1bBhnYlx51n2ka5ZAt3hwuB2+Jlki5LdYUmthiCvs3w19+6m3df6m0W2E4/jI4/W9h+Zne0qkiIiIi88Ck55xramriN7/5DWeccUZN+4MPPshFF13EwMDAVPZvztCccyIiIofPdVw/cMvjJEv7fCWAq2obt+JtPKaB1RTyqt8WeXPCBTvi3sIMofkxZ5ljO+zfnfSCuM0D7N0ySGYoP+q+1iVxlqxrZvG6JjrWNNFwuEN2+7ZWArmuJyrtZgDWvgSOvxyOfilEmw/9Z4iIiIjMMtM255zjOASDwVHtwWAQx5noJL8iIiIyX7lFh2Jvxp/bLU2xO01xf8YL3VIFmMzXhiaY8RBWIojZ4O2thhBmIoTVUNtmRAPzbpXOQs5m37ZB9vphXNe2IYq52rn0zIDBolWNLF5bCeMi8dGf9Satf0clkOt8tNJuWLDmxXDC5XD0pRBrPfyfJSIiIjKHTTqce8lLXsK73/1uvv/977NkyRIA9uzZw3vf+14uuOCCKe+giIiIzE1u0aG4P0Oh2w/h9qUodKcp7s/CgeYwM8CMB7ESIcyGkfvqAC6IGQsekYswHKr0UJ7OLQPlyrieXUncEb/rcCxAx9omFq9tYvG6ZtpXNkzdaqcDu+Cp271Abs8jlXbDhNUvhONfBcf8NcTbpubniYiIiBwBJh3OfelLX+IVr3gFq1atYvny5QDs2rWLE044ge9+97tT3kERERGZ3cohXGnF01IY15uBcYrqjbDlLbLQ7s3xFlgYw2oMeaFbLHhEL7gwVSY6X1yiNczitc0sWeeFca2L41MbaA7ugad+5gVyux+stBsmrDzPC+SOfQUktGiYiIiIyFgmHc4tX76cjRs38pvf/IZnnvFW1Tr22GO58MILp7xzIiIiMntUQriUXwmX9irhJhzCVVY9tRpD826I6UQVcjaZ4TzpoXzVvuAdD5faCqQHc+TSI+bdM6BtSbw8RHXxumYaWiNT38nhrkogt3NDbQdWnlsJ5BoWTf3PFhERETnCTHpBCBmbFoQQEZEjhVtwKOzPlIehlueFO1AIF7G8BRYWxSvVcArhAG+Ri2yq4AdrBTJDfshWCt/84K0UxBXzE5/Dd9rmixtLstsP5G6HHX+kZnLA5Wd7gdxxr4TGxdPz80VERETmmClfEOLee+/luuuu409/+tOoBw4ODnLuuedyyy238IIXvODQey0iIiIzxi04FHrS5WGoNSHcOF/dGRGrUgHnh3DB9hjmPAzh8tki6cE86aEcqYE8qcEc6UF/71e7pYfzZIfzTPar0EDQJNoYItoQItYQrDoOEW0MevuGEE3t0ambL24s6b7KHHLb/wBuVXC47Aw/kLsMmpZOXx9EREREjnATDuc+//nP83d/93djJn1NTU38/d//PTfffLPCORERkVnGLdgUujOVEK7bW5yh2Jc9QAgX8IK36hBuUQyz4cgO4VzXJZ+1SQ/mSA3mSQ34gduQvx/wgrfUYI5C1j74A6uE44FyqBYrhW2NQaI1bd55MGzV7/fs2LDlt/Dod+GZO8DOV64tOc0L5I6/DJpX1Kd/IiIiIkeYCYdzjz32GJ/5zGfGvX7RRRfx7//+71PSKREREZk8J29T7MnULMpQ6E5jHyiEi44RwrXHMRuCR0wI5zouhbxNIWd7w0sH85XwraraLeW3T2ZYaSBsEW8KEW8KE6veN4Yq1W6NISKJIJZlTuO7nAL7N8Gj34PHfgDDnZX29uPhpNd4FXKtq+vWPREREZEj1YTDuX379hEMjj+HSSAQoKenZ0o6JSIiIuNzssXy6qg1IVz/+CGcGQvUDEMN+ENTzcTsCuFc18UuOhRyNoWsF6gVcjb5bLGmrXxe02ZTyI24L2dTzE2uwg0gFLGIN3tBW6wxTLw5TLwpVA7gSiFcKDLptbVml+wQ/OV/4M/fq11pNdoCJ74GTnk9LD4ZZtGfEREREZEjzYQ/US5dupQnn3ySdevWjXn98ccfZ/FiTQAsIiIyFdyCQ7Ev41XC7c9QrNqcZGHc15mxAIFF/sqo7d6iDMH22RXCZZMF+jqT9O1N0deZpq8zyWBPxgvUsjaOMz1rVRkGhKIBL3RrHKParSlMvDlErClMMDSN87jVm+PA9t/Bo7fCUz+HYsZrN0xYd6EXyB39UgiE69tPERERkXliwuHcpZdeykc/+lEuueQSIpFIzbVMJsPHP/5xXv7yl095B0VERI5UruNi92e9KrgRAZw9kBu3Cg7AbAgSWBAbNSTVSoRm7g0cRDZV8AM4f/OPM0P5g78Yb1GEYMQiGLYIhgOESsflfYBg2Kq0+/cFIxah8n2B8msCQXPWBJR10b/dC+Qe/T4M7qy0LzjKC+ROvhIaOurWPREREZH5ynDdia0ftm/fPk477TQsy+K6667j6KOPBuCZZ57hy1/+MrZts3HjRhYtWjStHZ6tJro8roiIzC+u6+IMFyjuT1Pcn60K4dIUe7Ngj/+fYSNsEVgYJbAgSnCBty9t5iwaTplNFejrTNFfFcD17U2RPkAI19AaoXVJnJbFcVoXx2npiBGOBcrhWjBsYZrzOEibKvkUPPUzb9jqjj9U2sNNcMLlcOobYOnzNGxVREREZBpMNCua8Cf7RYsWcf/993PttdfywQ9+kFKmZxgGF198MV/+8pfnbTAnIiLiui52b5b83qQ3F1wphOvJ4OYPMOdZwCDQNiKA8wM5Mz57hqIC5NIFbxjq3mRNJVx6cPwQLtEaptUP4FqXxGldnKBlcWzuz9U2m7ku7NzgBXJP3Q75pH/BgDUv9qrkjn05BKN17KSIiIiIlEzqk/HKlSv55S9/SX9/P5s3b8Z1XdavX09LS8t09U9ERGaIbTvYeYdiwaGYtynmHeyiQyQRJN4cVhVTFddxKfZmKOxJemHcbm/vZscJ4QywWiKVAM4P3wJtUazmMMYs+t3aBYeh3gyDPRmG9mcZ7EmXK+JSBwrhWrwQrmVJVRDXEScUVQg3YwZ3w2Pf94au9m2ttLesrgxbbV5ev/6JiIiIyJgO6RNzS0sLZ5xxxlT3RUREDsIuOqQGc6T6c+TSRQp5G7tQG6gVCzbFQiloK7V518e7t5h3cA8wCb9pGTS0RmhcGKWxLULjgqi/eceR+Pirec91ruN6c8LtSZL3t8LeJO5YK4AGDIIdcW9bGKtUwbVGMALmzHd+DK7rkk0VGOrJMrg/7e8zDPVkGNqfIXmQue7izWG/Ai5e2S9WCFc3hQw8cwf8+buw9T7K//CCcTj+VXDq62HFORq2KiIiIjKL6ZO0iMgsUSzYpAbyJPuzJPtzpAZyJPtzJPuz5eP0cP6AwclUCQRNrJCJFTDJDhdwbJfBHq+aaizhWICGtghNC6I0LIjStKAS4DW0RrCCsyOYOhjXcSn2pL0ArhzEpcYelhowCS2OE1yaILQ0QXBpguCiGIZV//dq2w7Jvmy5+m2oJ+MFcH4Ilx+vws8XCFs0lcLXhVFaO0pzw8UIx47cIHZOcF3o3wa7HvLmkPvLzyA3WLm+8vleIHfsKyCcqF8/RURERGTCFM6JiMyAQt4m5QdtST9oS/Xn/GMvfMsMFyb0LDNgkGgOE4kHCYQsAiGTQNDCCprlY29vEgj57f5x+bofvgXL1yuvsUasaOk4LqmBnFdZ1Vsa6phhuDfD4P4smaE8uXSRXDrJ/l3J0R02INEcrqm0q668izWG6jKvmmuPFcQlcQvO6LcQNAmWg7gGL4hrj9YtiLOLDvlMkWR/zg/gMjXVb8N9uQNWQoJXAde4wAtUGxd6/zya/H20YXbNdTev5dOwdyPsehB2P+RtqZ7ae5pWwClXwclXQevq+vRTRERERA6ZwjkRkcNUyNsk+7LlKrekH7p5YZzXlksXJ/SsQNAk3hIm0RIm0RzxjpvDJFoj3r4lTCQxs8GJaXpDWhtaIyxl9ByjhZzNUG+G4f3ZSnXW/qy3781SzNn+7yHH3k2jnx8ImiRaIwTDFlbAxAoaWAELK2BgBb3qvcpm+PfUtpkBP1gstZkGJi6m42+2t5Ep4nSnsbtSFPeloThGEBcyCS6uVMOFliUILIhhWIf/O3ddl0LOppC1yWWK5Etb1iafKVbasqVr3n2FbNW1jI09Rr9HsoKmF7j51W/V4VtjW4RAyDrs9yNTzHVhYIdXFbf7QS+Q2/ckOCP+/8MMwuKTYfmZcNTFsOqFYNa/YlNEREREDo3CORGRAygWKsFSqj/LcFXgluybZPAWtmhoCRP3Q7ZES4RE+dw7DscCc65iKRi2aFuSoG3J6CF0ruuSGS74QV2GoZ6sX33nHSf7sxQLDgP70gAEDAj6+4Bh+HsIGhCgcl66HjTA9a85BpgGYHgribuA7W/jKbouA7bLoO0y6MIwBpm8i7l1CHP7MKZlYlpG1TbOuVl7zXXcqrDNroRtWfugFW2TEW0M1YZvfhVc04KoV5E4ixaakDEUMrD30UoQt+tBSHWPvq9hMSw7wwvjlp3pBXPByIx3V0RERESmh8I5EZm3bNupqW5L9ue8Criqud4mOtQ0GLFItES88K0qeEs0V85DEWvOBW+Hw7UdnFSBQLJAc9GhIWCyuCGAY0SwIxZOSxh7OEpxOI+bLo5ZxXa4bMB2oYhLwYW84zJYrARyyan/kRNimAahqEUoEiAUDRCOevtQxPL2pbaq89K9oahFOBogGAloBd25xHW91VR3PeANTd31IHQ9Ac6I/48xA9BxkhfElcK4pmVa0EFERETkCKZwTkSOWI7jepPid2cY6E4z2J1huD9bDuDSQxNbXKE07DLRUlvxVt63RgjPg5UqXcfFyRRxUgWcZB47WcBJFcr7kW1uZmIVhaNYBmbEwggHMMMWRtiq7COBqnP/esQa3VY6H2OFVNd1cRwXx/Y213axbad87tQcl+4d77pT8yzHf5ZpGlWBmlUVtnkBWyBkzqugdl4qZKHzsUpV3O6HYLhz9H2JRbVVcUtOgWB0xrsrIiIiIvVz5P9tUkSOaKVhkwPdaQb2pRnsTjOwrxLGHWxurtLiComWCInWcLn6rXzeHCEcn3tDTSeiNmwrYKf8kM3fyufJAnYqj5MqwGQrzUww40GseAgzEcRMBLHiQcxEyN9X2oxIYNxAbSoZhoFlGViack2mSmYA9v3F356Arie9ueLsfO19hgUdJ1aCuOVnQPNKVcWJiIiIzHMK50RkTshni14F3L50OYjzjjPkD1ChZVoGTQujNC+K0bQwSkNbpKby7UhaldItOjjpqkq2kSHbiGMnXZxQ5eBIRjSAlQj6oVspYAtV2vxzMx7EjAY075kcORwH+rd5w1H3PemFcV1PwuDOse+PLYDlZ3kh3LIzYcmpEIrNbJ9FREREZNZTOCcis4ZddBja7wdwfvVbKYxLD+bHf6EBDa0RmhfFaG6P0bwoSlO7d9zQFjni5uUq9KRJP9JNYV+qJnRzswda+mB8RjTghWzxqsCttCUqAZyVCGLGgtNe2SYyK+SG/fCtKojb9xQUUmPf37QcFh0Pi06AjhO8RRtaVqsqTkREREQOSuGciEwLu+h4q1Wm/S1TIJcuVtr8fT5dIJsuMtiTYXh/BvcAlVzRhmBVAOftmxZFaVoYJRA8sscougWb9BP7ST3URX7b0Pg3Gt4wUjNWVcU2RuhWbo8FMCyFbTKPOQ4M7PACuNJw1H1PQv/2se8PRKD9WC+EKwVxi46HaMuMdltEREREjhwK50RkXPlskcxwvhym5UuhWsoL28rn/rWsH7blMkWK+UNbBjMYtvzgLUpTTRAXJRwLTvE7nP3ye5OkHuoi/efuSmWcAZGjW4kc04JVGj5a2jSMVGR8haxfCVc1L9y+pyA/PPb9DUv88M0P4DpOhNa1YOnjk4iIiIhMHX26FBEKOZv+rhR9e1P07vX2fZ1Jkn25w352KGIRigUIx4KEowHCsYC/D3rtflvjgghN7TFijaEjZg64Q+Vki6Qf7SH1UBeFPclyu9USJn56B7HTFxFoCtexhyJzyOBueO4u2HQ3bPs/KKRH32OFYOExXvhWroY7AWKtM99fEREREZl3FM6JzCPFvE1/V5q+zlIAl6Jvb5Kh3uy4CwMEwtaIUC3gh2pB77h0rSp0K7WHooEjbr636eK6LvkdQ6Qe2kfm8R7cgl95aBlEj28jfkYH4bXNqooTORjHht0P+YHcr73quGrxhdBxkh/Anejt29aBNf8qc0VERERkdlA4J3IEsgsOA91pvxIuWQ7ihnrGn9Mt2hCkdXHc25bEaV2SoHVJnEhcf2GdTnYyT3pjN6mHuij2ZMrtgfYo8TMWEzt1IVYiVMceiswB6T7YfA9sugs2/wYy/ZVrhgnLzoD1F8FRF3sVcfO8OldEREREZheFcyJzmG07DO7LlCvgShVxA90ZXGfsFC4cD/gBXKISxC2OE2tUADRTXMclt3mA1ENdZJ7qBdv7Z2UETaInLSR+ZgehFQ3zfnivyLhc11s9ddNd8NyvYfeD4FbNcxlpgnUXwlGXwNoLIN5Wv76KiIiIiByEwjmROcB1XdJDefbvTtK7O+nt9yQZ2JfGsccO4UIRq1z9VqmGi2tOtzoqDuRIP9xF6uF92AOV+fyCyxLEz+ggdvJCzIj+b1lkTPkUbPtdZf64od2119uPq1THLTtTizaIiIiIyJyhT64is4xtOwx0pdm/a5j9VUFcZrgw5v3BsEXL4jhtS+I1QVy8OawQbhZwbYfs032kHuoi+1x/eW4/IxIgdupC4md0EFqSqG8nRWar/u1eZdymu2Db78GuWqQmEIXVL4SjLoL1F0Pz8rp1U0RERETkcCicE6mjbLLA/t3DlYq4Pd7QVKc4uhrOMKB5UYy2ZQkWLEvQttSrimtojSiEm4UKPWlSD+8j/cg+nGQlWA2vaSJ+RgfRE9owglYdeygyC9kF2PmnynDV/c/WXm9aUQnjVr8AgtH69FNEREREZAopnBOZAY7jMtidrgnhencnSfbnxrw/FLH8EK7BC+KWeUFcMKQwZ7Zy0gXynSkKe5Nknuojv22wfM1MBIk/bxGxMzoILlCYIFLmutDzLOz4ozdkdctvIVf5dwfDghVnV4arLjxGizmIiIiIyBFH4ZzIFMtni+V54Upb394kxbwz5v2NCyIsWNZQrohbsCxBQ5uq4WYr13WxB3IU9ibJ701R8AO56jnkADAgcnQr8TMWETmmFcMy69NhkdnELkDn47DzftixAXZugExf7T2xNlj3V16F3NqXQLSlPn0VEREREZkhCudEDkGxYDPYk2GwO8NAd5rB7gyD3WkGujOkRoY0vkDQpHVpJYArDU0NRfWv4Wzl2g6F7gyFvUlv60yR35vCzRbHvN9qjRBaHCe4vIHYqe0EmsIz3GORWSafhj0P+0Hc/bDrISikau8JRGHZ6bDyPG+F1aWngakqYRERERGZP5QKiIzDLjoM7c8wUBW8efu0Nxx17EVSAUi0hL1KuKWJckVcU3sM01Q13GzlZIsUulIU9iS94amdKQpdKRhrNVzLINgeI7gkQXBJnNBib6+VVmXey/TDzgf8yrj7Ye+j4IxYzCbSBCvO8baV58HikyEQqkt3RURERERmA/1NUuY123YY3p+trX7r8fbDvVncAwRwoYhFU3uM5vZo7X5RjEg8OHNvQibFdV2c4bw3JLVcDZfE7s2Oeb8RtrwAbkmCoB/CBdtjGAENUxVhaK8Xwu3c4FXHdT/FqG8uGhbDynP9MO5cWHgsmPr3R0RERESkROGczHmO42IXHZyig130ju2Cg207OKXzokMhZ4+qhBvuzeI64ydwwbBFU3uU5vZYZb/QC+GiDUHNCzfLuY5LsTdDYa8XwHnDU1M4qcKY91tNIa8abrEfxi1JYLWE9c9ZBLzFG3q3VM0Xdz/0bx99X9u6ShC34hxoWaVFHEREREREDkDhnEw5x3Ep5mwKOZt8tkjBPy5k7fJxTXvOpljwAjXHrg3YRp7b/rnjB2520T1guDYRgZBJ08JK5Vt1GBdrDCmYmSNc26GwL03Br4jL+0Gcm7dH32xAoD3mzQ/nD00NLk5gqeJRpFbvFtj8G2811R0bINVde90wYdEJtZVxifb69FVEREREZI5SOCdjKhZstj/eSyFXJF8VqnkBW7EmbMvnbApVYdt4q5LOFDNgYAXMqs0/D5o0tEZqq+DaY8SbFcDNNU7e9uaH25uksMevihtvfriA6VfCeUFcaEmCYEcMI6gJ50VGKea9irjnfg3P3Ql9W2qvWyFY+rzKfHHLz/DmkBMRERERkUOmcE7GZBcc7vrak4f1DMM0CEUsguGqLWIRDAeqjr0tEDRHBWrmQc6r7y8FcqZlKGg7wjiZYmVI6p4k+b0pij3pMRfkMCJWeThqcEmc0NIEgQUxDEt/JkTGNbwPNv0aNt0FW+6D/HDlmhnwquFWv8jbLzkNgpG6dVVERERE5EikcE7GFAxbLFnfXBOghcKBmvPS8XjtVsBUUCaTYg/nye+pCuI6U9h9Yy/UYCaChJZWBXFLElitEf2ZEzkYx4HOP3vVcZvugr1/rr0eXwjrL4ajLoI150OksT79FBERERGZJxTOyZhMy+RV/3havbshc4jrulB0cHI2bs7GyTu4ef/Yb3PzNo7fVm7P2ziZIoV9KZzhcRZqaAlXKuKWekNTrcbQDL9DkTksOwRbfwvP3QWb7h49d9ySUyuB3OJTtZqqiIiIiMgMUjgnIjXcgkOxP0uxN0OxL4uTLlaCNX/vhW9VIVvea+dwpxs0ILAwWjU0NUFoSRwzpoUaRCZt/2Zv3rhNd3mLOThV4XcoAWvPh6MugXV/BQ2L6tdPEREREZm3nHyewu495HfuoLBzJ0YwSMtVV9W7WzNO4ZzIPOO6Lk66iN1XCeCKvVmKfRnsviz2UH7M+dwmwwiZGCELM2xhhCyM8Ihjf199HFgQJbg4jhnSQg0ih6SY81ZVLQ1X7dtae71tXaU6bsW5EFD1qYiIiIhMPyeTIb9zF4VdO8nv2El+504/jNtFobPTm3bFF1q5UuGciBwZXMfFHshR7PPCN7s364dw3rmbtQ/4eiNsEWiNEGiLYCZCNSHaWMGaETIxwwGMsIkRtDBMzfsmMiOGu7zFHJ67C7beB/lk5ZoZhFXn+YHcxdC2tm7dFBEREZEjm51Mkt/hVb/ld+7ywjc/iCt2dx/wtWYsRnDFCkIrVhBau2aGejy7KJwTmaOcvD1G9VvWa+vPgn3g8jezMeQHcNFyEGf552YsoIUVZim3UMBJpXDSadxi0Z8bzMAw8I4NAwwTDDBK5/78YbXnhheils4NA4OqZ5hzY0EXt1jEHh7GGRrCHhrGGR7CHvI2Z3gYe3AIe3gIZ2gYe2gIt1gguHQpoeUrCK1YTnDZckIrlmM1NdX7rUxcqhee/DE89gPYu7H2WmIRrL/IC+PWvBjCDXXpooiIiIgcHtdxcAsF3Hze2493XCxiBAIYlgVWACNg+cfW6LbSfaZV2zaBz/2u62IPDPjhW6kCzqt+y+/cid3Xd8DXm42NhFauJLRiBcEVywmtWElopRfIWW1tc+LvHtNJ4ZzIHOAWbPJ7U+R3DpPfNUR+1zB2f+7AL7IML3RrrYRu5RCuJaLhozPAdV3cTAYnnS4Hagfcp8Zrrxy7hbEXzZg2hoERDGJEIpjhMEY4jBEJY4YjGOEwZiSMUToOhzEiEYxwyLse8dtGHHuvCfuv915rBIM4qVRNqOYFbV6o5gwNYQ8PYw8NekHb8DDO4CBOOj0lb9NsaiK03AvqgstXEFq+zNuvWE5g0SIv2Kwnu+BVyD16q1clV54/zoClp1WGq3acrMUcRERERA7AW8iuWAm5DrTlC7iFfNXxeNvIe/IjnuG3jXzGAYI37AOPdppSplkJ6kyzHOJVB3qlz+QHYrW1edVvK1YQXLnC+0K8FMA1N8/Me5mjFM6JzDKu41LszfhBnLcVOlPgjK6EM6KBcuAWaI1WVb9FsBrDGl56GFzXxU2nsZNJPxhKlsMiJzlcqdIqtQ8nywGSk0yWAzXcw5zAbxxGKIQRCHjTA7quN0+D63ofNqrOD/vnu673QSGfP+z1PqaTGYthNjZiNTZiNjZgNTRiNTZgNjZhNTR4bY1NYBoUdu/x5rvYuYv87l3YPftxBgfJDg6SffLJUc82QiGCy5YRWr6cYDnAW+596Fi2DDMcnr431vm4F8g9cRuk91faF58Mp7wejn8VJNqn7+eLiIjItKj+zOY6jvfZzXFwHRcc2zt2XbBt73rpXtsB16kc43pfpI6xYVl1q0ZyHQc3l8PJZnFzOdxsFqe0z2Rxc1mcbM7fZ3GzOZxc1vvcWSz64VmxXBnmFguVtuKI9lLbgdqrrjHTX3ZPlUDA+2cbCtX+s7YsXMeGoo1r27h20Tt2HO93ZnvtFIvj/92g9OewUDjo9OOBjg7vc/HKFV712wovgAsuX4GViE/5254vFM6J1JmdKngh3M4hP4xL4maLo+4zE0FCyxsq29KEVjE9CNd1cZJJ7N5ein192H19EwvXhr3KrKn8tsqMxTDj8dH7+HjtY7RV7Y3gxP/Zu9VhneN4/8GtPnfxPuSVz/3/JJc+JObzOLl85cNT+TiHm8+VP1BVHzs5/77SB7FcrupDmH+9fJzDLRQw43GshgY/YGv0QrWmxqqgzQ/fGrygrdyWSEzq9zGSk06T37W7Etjt2umV5+/eRWHPXtx8nvzWreS3bh39YsMgsGgRoWXL/HkyvOAuvG4d4fXrD63iLtnthXGP3gr7qsLCeDuc9Ddwyutg0fGH/H5FRETmssoXqCmcVNL7UjSZ9L5QTfojDlIj2kr3+CMS3GKhsgBa6XPPOHu3dOME76+8jspnKT9kKx+XwrjpVhoBUQrrgoERAV5o3GBvVNAH5c9vTjbjfY6rDtyq95mMV/k1h9S83+rwKxSEMX8nE/zd1TzrIMch/7mhMe4JBqdkJIfrOF7ga9u4RRvsYm2IV2qzHX9faTNjMYLLl2NGIlPwG5eRDNedprKOeWZoaIimpiYGBwdpbGysd3dklnKLDvm9yXJFXH7XMHZvdvSNAZPQ0kRNGGe1hGfkmy/XcbAHB7H7B7AH+gE/WIrFMKNRLxiKRus2zM/N5yn293uBW28fxd792L19FPt6R+z7sHt7D/+DgWV5IVFDg1+B1YjVkMBsqNo3NmAmGsp7syGBFY9jxGLevo6/Lzk8brFIoaurMrFtObjbTWHnTpxUatzXmk1NxJ73PGJnnkHsjDOIHHOMNzRgLMUcPHcnPPp9b/iq6wfDVgiOvtSrklv7ErD0nZqIiMwdrm37lVIZnGzWmzM3m8VJZ7yAJ5PByWRxMn57Ko2TGitUqzpPpaZtZMKsZZqVKjjT9D5XljbD8Kqd/G1WCgS8qUxK06RU7yNhjEi0MlWKPzrECAQwggEvGAsEMALBSlv5eqjcZgRK7aUwK1B+Trk9FKx6dlXwOME510QOxUSzIoVzU0ThnIzkui52b7YcwuV2DVPYmxxzoYbAwmhNEBdcHMewpibMcXI5r2Ksv59iXz92fz92f58XcJXO+/ooDvjnAwMT+ibP8IO6kcGdGY9VXYvXtJeCvZrXxWIY4XClwm1k0La/txy0Ffv6DjrPwVjMWAyrrQ2rtcWruBorVGsYEbr5lVtGNKr/WMuYXNfF7u/3grtd3kS4hZ27yO/aRfaZZ3BHzIdnNjR4Yd0ZZxA70w/ruh/3ArknfwyZ/srNS0+HU66C4y+HWOsMvzMRkbnNdZxKIJQpBUCZSiDkz+XkFm1wvL1rF8tt1cfjXveHj9Vcrx5SZjtYjY0E2hcSWNju7yubGY3W+9c0LrdY9D439vZS7O3F7u3FHhiohGiZUthWHa5V/Z6zWdx0ujyccdpYFmbC+0LUTCS8LR7HTMSxEgnMuN9WOi+1xeO1Ffelz3mlXfl8nD1VnwsP+hrT+0xvmiOODX9Sfn8BLsvyrptGTQg32WGpk59L7QBzp43YcF1/ruAIZjRSNY9wKWCLjArgytcC+nJR5i+FczNM4dz85mSL/mqpGYr70uVAzkmPMTw1FqgEcSsaCS2b3PBUJ5+n2NVFcf9+L1SrDtlGhG7F/v5RAcFEmQ0N3qSdpuF9y5nOTOscapNiWQRaW7Ha2kbv29qw2loJlNpaW2f1B2A5MrmFAtmnniL90EOkHnyQzCMbR1XZmUGILsgSa88TX5gjsnIhxqmvhZNfBwuPqlPPRURmjus43lQSQ0PeQkDJZKWCKu0Ha9lM+djJZrzPI9XH5RCuEhq52TFGJcwyZkNDJaxrb68J7ipBXvuUzd/kpNPel53791Ps66t8jtzfi93XS3F/b/nLUXtgYFo+7xnRKGYkghmNesf+uRGLYka8cyMWxUo0jBGqxf2wrdJmRCL6AlVEZj2FczNM4dyRzZu7rECxN+OHcFmKvRlsP5BzUqNDOAAsg9ASf3jqCn94auv4HyTcYpFiTw+Fzi6KXZ0UOrsodNUe2/v3j/naAwoECLS0YLW0YLW2YrU0E2hp9c9bvGut/nlLC4HmZoxQaMzfg+sPSXAyGW/oQdpb+KC8Kmk67bWXz1NVK5amK68t3eu/1mxo8MK0BQv8oK2VQGslaLNa/cCtrQ2zsVHDRGVOcTNJsnd9g/TdPyH99E7SPSGcQu2fYSMaJXbaaX5l3ZlETzh+zH8PRURmE7dYLK+gXQrZ7KHB8srb3irbpfahyqrb/urc0/2l31iBkBEK+SsQWhhWoGY1Qiyzqs2/HrDAKq1gWN3mHZdfU91mGtgDgxR7eipbdzfFnp5JhYdGLEZg4QKCI6vv/EDPam72Vjbv3V873Ydf8Vb0Rx5M+staw/A+E7a1eaMPWpoxo/5IiWjE/71GMWPR2uNIxL9vxO88HNZnNxGZlxTOzTCFcxPnui5u3sZJFXFSBZx0AUwDMxLACFuYEQsjHMAImTP6bZhru9iDuaoAztuXAjg3f+ChnmY86K2a2hYltCxBaEWjNzw14H0Q8Ya59vohWyfFMYK3Ynf3hBYhMMJhAu3tXrDWXAnWAq0tWC3Vx941M5GY1d8suq47q/snckhcF3Y/5C3s8OT/QG6wcmnpWeRaLyDV10T60SdJP/wwzuBgzcuNSIToqacQO+MM4meeSeSkkzAV1omIzy0WvSqxQgG3UIRiwZ+4u7SaYcEfhjn2OXax6lrRH5Y5znk+jz087AVr5ZBtCGdw0KuqP0xGNOov+JPwgp1SNZV/PCoAGisMivlVWNXHkcisC4RKi1VVh3XF7tEBXrGn54Dzmh4KIxwuh23lkQatbQQWtGGN3Dc3jz9PqoiITJjCuRk2n8M5t+Bgpwte0OaHbU6qiF0+LuCki+XrdroAxQn8sTPwwrpwACNi1YR3Zrg2yPP21qiAz4xYGCHLm78BcAu2X/WWramCs3szFPtz4BygXwZYTeFyAGe1Rgi0RbBaI5hhGzczjD0w4H1D2dVVW/3W2Umxq2tik7QGAgTb2wksXkywo4Pg4g4CHYsJLu4guHgxgcWLvQ9MCrNEZh/Xhb6t8JefwmPfh97NlWtNy+HkK+Hkq6Btbe3LHIfcc8+RfvAh0g89RPrhh7H7+2vuMcJhoiefTOzMM4mdcQbRU07GDIdn4l2JyGEohWg1FePVVeQHqjavfl3Gf63fPttWQjTjcW+F7cYmf9XthvKx1eSvwt3YhNXUWFmV299UJTw2J5Wqrbzr6aFQFd4Ve3qwBwa9ue2qRx8saKsafbCAQFsrVtsCb15gfX4UEZlRCudm2JEWzrlFh/zOIexUsRKw+SGbnaoN4g5WUTaugIkVD2LGAriOi5uzcbI2bq5YWap8ihghCyNojD/8tNwnA6sxiBU3MMJFDDOL6wzj5vpxUvtxBvuxBwaxBwYq2+AgFA/y3HJHDAILFtQGb4sXE/TDt0DHYgIL2vRNpchc4TjQ8zTsuL+yJbsq14MxOO6VXiC36gXe5M4T4DoOuc2bvaDuoYdJP/ggdl9fzT1GMEhg8eIx5uyJjK4qKR9HK0OS/LZypUnUn8hZqwuL4BYKOKkUdjKFk/JWh6ysGpmqWTWyZmXJqvvKQdxMhGiW5a0+aFlVKxuWzv1VCv17DnZeXgnRqqyWaASD3oJJ5WCtCauxwTtuavIWUNKE7yIiIqMonJthR1o4Z6cKdN74p4m/wDQw4wHMWNAL3PzQzduPaEt4bWZo7ADKdV3cgoObtXFyxRF7GzdbxMnVHo+6J1fEydpjroyKUQQjA8Uh3Gwf9vA+7P492D3bsXv3cqjJoBGJ+HO2NXthW0cHgcUdNcFbsH2hvh0WmcvsInQ9VhvGZQdq7zGDsOJsL5A77hUQbjjsH+u6LvmtW72w7sEHST30EHbPIcw/OUFGOFyZKygS8VdcjldWWS6tvhyLYcXjGDUrMMf96/HyfaVVmVWxIYfDdV0oFHDyBdx8Djefx815eyeXr2lz8nncXN47z+dq27KZUWGaXQ7gvPNpWWHSskavcB6LecF6LD5q5XNvcvzS/bX/7pXuM2IxL0BToC4iIjIrTTQr0ldcMiYzGiCwMOqFaH6oVgnYgl4QF6+EbkZ4cst8H4hhGBghC0IWFhMPstx8ntz27eQ3bya3eTO57k3kNm+j0NkDZhgjEMLJ9EPhIHOjGIY3zKK5efTWMkabv5mRyGG+cxGZdQpZ2POIH8T9EXY9CIURcwAFY7D8TFh5Hqw8F5Y+D4JTu0KwYRiE164lvHYtLVdeieu6FHbupNjbW16Z0En7qxdmMjiZbM1KhuXVDrNZ/3pphUN/dUO/vcTN5bBzORgYmLo3UR1MjNzifpAXT2A2JLAaGmqP/ZX5rEQCs6FBQd80cl3XC7KGh/0AywutSvOajTWPmVusmpvMtr17qucuK/rzm1Wd19zjv8YtFHDzhXLg5uZyOIWqkC2Xm/EVw41wuLxqpBmPY8WrVo6sXkkyFh9xX7wcaJcCNiMU0p9bERERGZMq56bIkVY5N5u5xSL5nTvJPbfJC+E2bya3eRP57TvGHV5qNjYSXru2vKrVuFtLszf3iYaVisxPuWHY9UClKm7PI2CPGJIWaYIV53pB3MrzYPFJYAXr098p5DqOF4Zks958WNksTiaLm0nXzJVVXnU5laptH6dt0isETkQw6IUfDQ1egBf3QjsvLGmoHDc0YCZGHMdjGMHg6O0I+P99t1j0qsBKoVp1wJZMYg+Xjocrx8PD3jDN4eHykE0mMj/qbBAMYoZCXlgbCmGEQ955qHQexggFMcPhqrYQZjhSDnzNhB+klc7jXvBm+SGbEZz7/26LiIhI/ahyTg6L67oM/Oi2yrfCNR9cvQ+y0z0807VtCrt2VQK4TZvJbdpEftu2cRdWMONxwuvWET5qPeF16witW0d43XoC7Qv1bbWIjJbqhZ0bvCBu5/3Q+Ri4I+bRTCyqBHErz4WFx0547ri5xDBNbxhrNAotLVP2XNdxvKq9dMoL/cYK8lLp2nm7hoexk8NVx5WACX9oY2nezyljmqMDu4A315YRCnrzeI3aQmMHfcEgGIZXYeY6YDu4ju0tOuTYuM5Yba53v+OAU3XtQG22jZPJlH9X1dWPh80wvP/2N/iBZig09rxkgdL8ZtaI87HnLqu5Jxjw50qrnBuhcCVkK4VuoTBmOFQVuPnHR+C/hyIiIjI/KZyTMbmZDF0f//gB7zFCoZrQrjyEIzHGkI94JeArfRtdvi8apdDVRW7TJi+A2+xVxOW3bB13zhcjGvVCuNK2fh3h9esJdHQohBOR8Q3trZ0vrufp0fc0r6wEcSvPhdY1XtAih8QwTayEV4l0uLygL12p+BpOepP1lwK84eSIUG+M43Ta+4JnZKW1Xzk4LXONzTAjEqkMA074w4MTCb+KMIHVkDjgsGFvmGZM4ZeIiIjIDFE4J2NybZvEBRdUViIrTZZc9c28m89j5/PY/f3T1g8jHCa0do0fwK0v74NLlugvDSJyYLkkdD7qDU3d8wjs2QiDu0bft/CYSmXcinOgaemMd1Umxgv6vBCJjo7DelZpcQF30lux6jg/9j3+6pyGaYJpgWlglPaWBaaFYRojrpkYlgmGCZY5qs2wTK9i0zTLzzUsr9qxOlSbicp2EREREZlaCudkTFZDA8u//KUxr7nFYqVyIZWqWvGsKshLJr1hSqV5bkasgjZyXhsjGCS0Zk2lCq4Uwi1bdkTMAyQi08wuQPfTfgj3sBfE9TwzeoiqYULHSZXKuBXnQLytPn2WujIMA/zhkSIiIiIi9aRwTibNCAS81UynYOELJ5/HSaWwGhowAvrjKCIT4LrQv71SDbfnEW+uuOIY8201LoOlp3krqC59Hiw5BcINM91jERERERGRcSkNkboyQ96kzyIi40r1wt6NVcNTH4F07+j7wk2w9FRYerofxp0GDYc39FFERERERGS6KZwTEZHZo5CBzsf9oal+ENe/ffR9Vgg6TqxUxC19HrSuPSJXURURERERkSObwjkREakP14W+rbDrAdj1oBfE7fsLuPboe9vW1wZxHSdAIDzzfRYREREREZliCudERGRmFDKw98+VMG7XA2MPT423w7LT/bniToclp0K0eca7KyIiIiIiMhMUzomIyPQY2lsbxHU+Bk6x9h4r7IVvy8+AZWd4VXGNS8Ew6tNnERERERGRGaZwTkREDp9dhH1PVIK4XQ/C4K7R9yUWwfKzKtvikzQ8VURERERE5jWFcyIiMnnpPtj9UO18cYV07T2GCYtOqArjzoTmFaqKExERERERqaJwTkREDsxxoHeTH8T5Ydz+50bfF27yhqcuP9sL4paeBuGGme+viIiIiIjIHKJwTkREahWy3sINOzfAzj/B7gch0z/6vrZ1lYq45WfBgqPBNGe+vyIiIiIiInOYwjkRkfku0+9Vw5XCuD2PgJ2vvScQ8RZrKAVxy86EeFt9+isiIiIiInIEmdUlDp/4xCcwDKNmO+aYY8rXs9ks73jHO2hrayORSHDFFVewb9++mmfs3LmTl73sZcRiMdrb2/nnf/5nisXa1QLvu+8+TjvtNMLhMOvWreNb3/rWTLw9EZH6GNgFj98Gv7gevnIufGY13Po38IfPeQGdnYf4Qjj2FXDxp+Dv7oUP7IK3/BIu/AQc/VIFcyIiIiIiIlNk1lfOHX/88fzmN78pnwcClS6/973v5Y477uC2226jqamJ6667jssvv5w//vGPANi2zcte9jI6Ojq4//776ezs5E1vehPBYJBPfepTAGzbto2XvexlvP3tb+d73/se99xzD29961tZvHgxF1988cy+WRGRqeY40PN0pSpuxwYY2j36vrZ1sOJsWHGOt7Wu0cINIiIiIiIiM8BwXdetdyfG84lPfILbb7+dRx99dNS1wcFBFi5cyK233sqrX/1qAJ555hmOPfZYNmzYwNlnn82vfvUrXv7yl7N3714WLVoEwC233ML73/9+enp6CIVCvP/97+eOO+7gySefLD/7yiuvZGBggDvvvHPCfR0aGqKpqYnBwUEaGxsP742LiByqYg72bKyEcbv+BNnB2nsMCxaf7AdxZ3tbor0+/RURERERETlCTTQrmvWVc5s2bWLJkiVEIhHOOeccbrrpJlasWMEjjzxCoVDgwgsvLN97zDHHsGLFinI4t2HDBk488cRyMAdw8cUXc+211/KXv/yFU089lQ0bNtQ8o3TPe97zngP2K5fLkcvlyudDQ0NT84ZFRCZj1HxxG8HO1d4TjHurqJbCuKWnQzhRn/6KiIiIiIhIjVkdzp111ll861vf4uijj6azs5MbbriBF7zgBTz55JN0dXURCoVobm6uec2iRYvo6uoCoKurqyaYK10vXTvQPUNDQ2QyGaLR6Jh9u+mmm7jhhhum4m2KiEyM60LvFm/11N0Pwc4HoPspYEQBdHxhZXjqirOh40SwgnXpsoiIiIiIiBzYrA7nXvrSl5aPTzrpJM466yxWrlzJj370o3FDs5nywQ9+kOuvv758PjQ0xPLly+vYIxE54mQHYffD/vYQ7HnYq5QbqXUtrDxH88WJiIiIiIjMQbM6nBupubmZo446is2bN/NXf/VX5PN5BgYGaqrn9u3bR0dHBwAdHR08+OCDNc8oreZafc/IFV737dtHY2PjAQPAcDhMOByeirclIgKODT3PeCHc7oe8QK7nWUZVxQUisPgUWHY6LD/TC+M0X5yIiIiIiMicNafCuWQyyZYtW3jjG9/I8573PILBIPfccw9XXHEFAM8++yw7d+7knHPOAeCcc87hk5/8JN3d3bS3e395vfvuu2lsbOS4444r3/PLX/6y5ufcfffd5WeIiEyLVG9VEPeQN1dcfnj0fS2rYNmZsOwML5BbdAIEQjPeXREREREREZkeszqc+6d/+if++q//mpUrV7J3714+/vGPY1kWV111FU1NTfzt3/4t119/Pa2trTQ2NvLOd76Tc845h7PPPhuAiy66iOOOO443vvGNfPazn6Wrq4uPfOQjvOMd7yhXvb397W/nS1/6Eu973/u45ppruPfee/nRj37EHXfcUc+3LiJHErsA+/5SG8b1bR19XzAOS0/zKuKWneEt3JBYOPP9FRERERERkRkzq8O53bt3c9VVV9Hb28vChQt5/vOfz5/+9CcWLvT+svq5z30O0zS54ooryOVyXHzxxXzlK18pv96yLH7xi19w7bXXcs455xCPx7n66qv5l3/5l/I9q1ev5o477uC9730vX/jCF1i2bBlf//rXufjii2f8/YrIEWK4y1tBtTQ8de+foZgZfd+Co/yquNO9MK79WDCtme+viIiIiIiI1I3huq578NvkYIaGhmhqamJwcJDGxsZ6d0dEZopjQ/fTsOtP3uqpO/8EgztH3xdp8oem+sNTlz4Poi0z318RERERERGZERPNimZ15ZyIyKyTT8GeR7wgbtefYNdDkBusvccwof34SkXcsjOgbR2YZn36LCIiIiIiIrOWwjkRkQMZ3ldVFbcBuh4Hp1h7TyjhBXErzoHlZ3nH4Yb69FdERERERETmFIVzIiIljgP7n/NCuF3+ENX+baPva1gCK86ubO3Hg6X/OxUREREREZHJ098mRWT+KmRh70YvhNv5Jy+Qyw6MuMmARcd7FXErzoEVZ0HTcjCMevRYREREREREjjAK50Rk/kjt9yviNnjDVPf+GZxC7T2BqD9E9WxYfjYsP8NbzEFERERERERkGiicE5Ejk+NAzzNeGLfrQW/ft2X0fYlFflWcP0S14ySwgjPfXxEREREREZmXFM6JyJEhNwy7H64EcbsfHr2KKsDCYypVcSvOgpbVGqIqIiIiIiIidaNwTkTmHteF/u2VIG7Xg9D9F3Cd2vuCMVj6PK8yrrSKaqy1Ll0WERERERERGYvCORGZ/QpZ6HzMD+L8MC7VPfq+phWw/Ew/jDsTFp2gVVRFRERERERkVtPfWkVk9hneVxvEdT4Kdr72HjMIS07xK+LO8MK4xiX16K2IiIiIiIjIIVM4JyL1lUtC72bY/VBlmOrAjtH3xRb4c8X5lXGLT4FgZMa7KyIiIiIiIjKVFM6JyPTLJaF/G/Rugb6t3qqpvVu942TXGC8wYNHxtUNUtXCDiIiIiIiIHIEUzonI1KgJ4PwQ7oABXJVoa2WI6vIzvUUcIk0z0m0RERERERGRelI4JyITl0v6lW9bDy2Aa10DbWu9fetaaFvjHUdbZqb/IiIiIiIiIrOMwjkRqWUXoG8b7H/O2w46BLWKAjgRERERERGRSVE4JzJfpfu8hRhKIdz+Td6+fzs4xfFfpwBOREREREREZMoonBM5kjk2DOysBG/VIVx6//ivC8ZhwXpva1unAE5ERERERERkmiicEzkS5Ib9KrgRIVzvFrBz47+ucakfwh0Fbesrx41LtDKqiIiIiIiIyAxQOCcyVzgODO32Q7fqIG4TDO8d/3VW2Kt+KwVvC46CBeu8tnDDzPVfREREREREREZROCcy2+SGawO43k2wf7N3XsyM/7r4Qj94qw7h1kPTcjCtmeu/iIiIiIiIiEyYwjmRenBsGNzlV7+VAjg/kBvuHP91ZhBaV/tDUNfBgqMrlXCaC05ERERERERkzlE4JzKdsoNe1dv+52oDuIPNBRdfWBXAVc0H17wSLP1rKyIiIiIiInKk0N/yRQ5XPgX926Fvq7f1bqkMSU11j/86K+StgjoygGtbB9Hmmeq9iIiIiIiIiNSRwjmRicgMQP82P4Db5m9+GJfsOvBrEx2V0K28Muo6aF6hueBERERERERE5jmFcyIArgvp3krgVh2+9W2FTN+BXx9phtY1/ra6tgou0jgjb0FERERERERktnJdl2Qhyb7UPrrT3exL76Mr3eUdp/axL72PhbGF3HLhLfXu6oxTOCfzh+N4VW5jBnDbID984NfH22sDuNK+ZTXEWmfmPYiIiIiIiIjMMo7r0JftqwnaSgHcvvS+clummDngcwZyAzPT4VlG4ZzMfcUcJLv9bZ+/jXNczB74WY3L/OBtdVUQtwZaVkG4YUbejoiIiIiIiMxfruvi4lb2uHj/c3Fcp3wNvLaDPeugP+9gz8AllU+NCtpK4VtpX3SKE3p/jaFGFsUX0R5rpyPWwaKYd7wovoiOWMeEnnGkUTgns5PjeENJS6Ha8AFCt+zAxJ9rWN5cbzXVb/7WvBKCkWl7SyIiIiIiIlJ/BadArpgja2fJFrPk7KrjYo6MnSFXzJGzc2SKGe96MUvWztYeV9078nrOztWEa47rAGMEb1X3lI7nKgODtmgbi2KLagK30nkpkIsGovXu6qyjcE6mn+NAbtBbVCE76IVpmYHafaqnKnjzq+Bce+I/wwxCYhEk2sfZ+8dNy8AKTse7FBERERERmZdc16XgFMYMuEpt1fua9qprBaeA4zrYro3t2N7eP3Zch6Jb9K5XX6u+7hTHva/6uj2Zv2sKAAEzUAncxgnfFsQWEDT19+1DoXBOJsYujg7WxgrZxgrgskNwqOl/rK0qXBsjbCvtoy1gGIf9NkVERERERI50tmOTKqZI5pMM54dJFpLecWGYVD7FcGGYZD5JsuBdTxfTlQqzqjCturKsVBk210QDUcJWmLAVLh9HAhEiVoRwIEzEihAJRGray+el40CYqBWtuT9khTAxMQwDA2P03j8Gr+LMNMya85H3jTrHv7fqeCTjAH9HHvc147RbpoVpmBP+vcrkKJyTsaX74NuvqIRsB1ssYSICUYg2eyubRpoqx9FmiC8YHbrFF6rKTUREREREZj3HdRjODzOQG6A/289QfgjbsccMXExMMGrPxwppSiGJaZhjhzuGgeM6pAqpcsA2nPdCtVShErCVg7aq43QxPW2/C9MwywFVdZA1MviqaQ944VjIDGGZFpZhVfaGFwoFzIC3N7z9ePeNajMrryk9o9SPkBk6YIAlU69YKJAe6CfZ30eqv4/kgL/3z6ONTVx63T/Wu5szTuGcjC0YhX1PjG4PJbxgrRSqjbsf455AeGb6LiIiIiIicohc1yVdTNOf7S+HbTX7XD8D2dr9YG5wTg6VDJkhEqEEDaEGEsGEt4W8fUOooXwcC8aIBqIHDdsiVoSAGVDgdYhc16WQy5IdHiYzPEQmOUy2vB8mkxzy95X2Yj5POBojkmggkkgQiScI+/tIosE7rzqOJLzzQHBqC2EqoVsvqX5/P9BPsq+P1EAlfMsMDx3wOQ0LFk5pv+YKhXMytmAU3vATv8qtuRK4qZJNRERERETmiFJF21B+iKHcEIP5wUqwVhW4jQzbCk7hkH5ePBinOdxMU7gJy7DKE/yXFwOomvR/1AIBYy0SMN6iAf65gUE8FKch2FAbqgUTNe3l6/49pftCVmjKftdSy3FssskkmeHRgdqBAje7OLEVT6ul+vsm/ZpAOFwJ7KpCu5pQL5Eg6u9dx6lUu/X31QZw/X1kDxK6VTOtAPGWFhItrSRa2vzjNuLNLTS0KZwTqbXuwnr3QERERERE5jnXdcna2XK4Vr0fyg8xmBscdz+cHz7k1S/DVpiWSAst4Raaw800R5q945H7cDMtEW+vsGvucV0Xu1Agn81QyGYpZDMUcrma8/yB2nPZyrl/nM9mKOZyh9wn9u2VlQAAXvZJREFUKxAg0tBINNFApKGBaKLR3zeU26ONjUQSjQRCIXKpFNnUMNlkklwqSTY5TDaVJJtKkU0O17Tl0mlwXYq5HMlcjmTv/in7XVqBAPGWVuItrSSa/X35vIV4qxfARRsaVV05gsI5ERERERERmRGZYobB3GC5Ym0wN+hVrvnH1RVu1fu8kz+snxsNRGkMNdIYbvSCtnBtwFYO4aqCt2ggOkXvWqab67rk0qlKJVoyWa5OywwPk00O+Xtvy2cyNWGb60zfYhbhWHxUsDZu4Nbgtf3/7d15mBTV1T/wU1uvs6MgqOwooIAIKIu+EtlcolFA0IgiEBdeFRCNETSCSkwUNPGNRIygaFxjxBh30ZgfiiuGYRNREVxYRYaZ6Z5eajm/P6qrurpngOllZpri+3mefqrqVnWdvj3dd7pP37pX8fqaLHllGDrF6uooFgqZCTwraRcOmc+btbSSeoltQRSSybYyR9LNsfQVFSPpliUk5wAAAAAAACAj6RMgpCfZ9rce03PoTSRIVOottZNsJZ4Se7uhZamn1D4OPdoOHWo8RtFEIi09sdbgpaCJWz4SbLLHS4rPRx6fjxSfnxSvlxSf397eX7ni85HH6yfFl1ruCxaRKEl5eFbyRxQlMxFYVNzSDwUckJwDAAAAAAA4zEW0CFVFq2hvdK99c25bSTZrWROvscdMy5QsynbvtVJvqb1e4i2hUk9paoLNsR6QA+iVU8A0VaV4pI7idXUUi9SRGolQLFJnlkXqKFZXR/FIhOLROorXRcwya39dHcWjEYqGQqTFs0/gKl4f+YqLyVeU3iOtODFhgnnzBgJpyTYfKT4viWJhJdLg8IHkHAAAAAAAgMvE9BhVRavop+hPdpKtoW0r+RbRIlnFCcgBezy29GSbc93aLveVI8lWwNRYlOqqq6muZl/K0rwUNJFcsxNtZkItnljPZiKD/RElyU6kmYm1EvIVFZmXfSbK/Iky+1LRomKSPeghCYcmJOcAAAAAAACagW7opBoqaYZWb5leZt0a2mct43qc9sX2pfR22xvZS1WxKgqr4YwfnyIqVOGrsG/lvnJ72VDCrdRbistFC5yh6xSpraG6mmqqq95HdTXVFEks6+otq0mNZpekdVJ8fvL6/aT4A+T1+8njD5DHHyBvIJBYd5T5/eSxyn1+M9lWVEwePxK4cHhBcg4AAAAAAA57BhsU1aJUp9VRnVpHES1ir6cv0/dF1Ei9fXE9Xi+hlu2sodmSBblekq2h5Jt1CypBJEQOAYauU3hfFYX2/kShfXspUm0m2MINJN8ioVoizux1JykKBUrKKFBaSoGSUgqUliUuBQ2aSbSAn7z+BhJtgQApPh8uDQXIApJzAAAAAABwSFN11ZzlM15DtfHa5DKWWlYTr6GwGk4m1bRIynpzEwWRFFEhWZRJFmV7PX25v32KqNizjFb4K6jCW0EV/gp7u1jBzImHEmvG0XDVXqrd+5OZfLNuVdZyL9Xt20ecyXh/gkD+4hI70Za+9JeWOpJxZeTx+/G6AWhmSM4BAAAAAECLYmaKaBGqiddQdaw6NcHmTLrFUsus8nwm1gQSKKAEKCAHKKAEyC/7KSAHyK+Yy/Ry57HOfYqokCIppAjmUhZlkgU5ZV1CD6PDhq5pFN63Ny3htjcl+Va79yfSYo2bDEGUJAqWVVBReQUFylITbv60BJy/pAS92QAKHJJzAAAAAACQNwYbVBOroX2xfSm36lg1VUWrkuuxKnvmz32xfaQZuQ8mX6wUU4m3hIo9xVTiSS7tdW8JBZUgBeVgMtmWSKr5ZT8FlAD5JB96DUGjaKpKkdpqitSYY7pFaqopUltDkZpqqqupTknA1dVUN/ryUm8wSEXlraiowrwVJ5bB8uR6oKSUBFFs4hoCQHNBcg4AAAAAAOphZorpMQqpIdoX3VcvmbYvuq/BRFt1rDrrsdVkUbaTaSWeEir2FlOJUpKScHMm2pxlRUoReqJB1piZ4pGInWCzkm11dsKthiK1zu1qikcy67EpSjIVVVQkE2/lFXYCzr6VV5Di9TVRLQGgUCE5BwAAAADgIrqhU51WR2E1TKF4iEJqyFxXQ1Sn1lFITZTFwyn70o8Jx8Okcfa92YJK0J7Vs8xbRmW+5Ayf5d7y5HpiJtASTwn5ZYx1BfmjayrVVVdTeF+VfavbV2Un2OzeboltXcv89S6Ioj2em9+6FZdQoKSEispbUTCRgCuuaEX+4hL0dgOABiE5BwAAAABQYDRDo+pYdUpPtfT16lg11aq1dpLNSqrVaXV5fSwCCVTiLaFybzmVekvrJdysZJu1r9xXTqWeUlIkJa+PA4CIiA2DIqHalGRbSvKtuorC+8yZS6O1NRmfX/Z6zURbsTlWW6C4JC3plrruDWKGWwDIHZJzAAAAAABNxJro4EBJtvQx2aykW65kUaYipYiCSjC59KRuN2ZfQAmQKKC3DzQdXVPNS0pra81kW3VVvd5u4ep99pKNxs9UKkoSBcrKKVhaTsGyMgqUlidmJU1PuJWQv7gEl5QCtABmpphmUDimkWYwtSk5/N6HSM4BAAAAAByAZmgUVsNUE6+hUDxEtfHalNlEQ2qo3va+2D6qjpqJt7gRzzp2safY7qXm7LVmrRd7iu0EWpFSZCbWPGZSzSN58vgsACQxM+mqSvFohOJ1deYyUkfxSGLZYHlD+8yybC4n9ZeUUrCsnAKlZRQsKzdvifWAtV1WTr5gES4lhWan6gbFNIM03SDNYNJ0Js0wEsu09QaPcZY5j0ksHesGE3kkgTyySB5JJI8skZLY9spiojxZZpUrkui4T2JbEkkUD94T1DCY6lSdwjEtcdMpHDfXQzGN6uJ6SnkoplFdTKNQTKe6tOOspW6YY5V2a11Ey2ee0dR/ooKD5BwAAAAAuJLBBsX0GEW1KEW1KEX0CNWpdXYSrTZeS6F4KLmt1trJN2eiLayGc34ssiinXg66n2SbdZmoNQabLOLjOjQ961LR0N6fKLyvikJVP1F4714K7auicNVPVFdTk0iyJRNthp777LrpPH5/IuGWTK6ZybZEAi5R7i8pJUnGewMah5kpqhoUSiSEwjGNIqpOMdWgmKZTNG0Z0wyKquYyphoU1fSUZcy5dBxr30cz7ETToUiRBPJIIimOxJ1HFskwmMKJpFtdXG+y+HojZzV2G7RoAAAAAIch3dCpNl5r9vCKV9tjmNXEa+z16ng1heIhEgSBFFEhWZRJEZUG163thpYH2qdICsmCTIIgUEyLUVSPUkSLmAk1PZFU0yINljV4TGLb2pdPftlPxUqx2VvNU0TFnmJ7tlCrB5tVVuoppVJfMvkWkAMYlwqanT0+W9VeClXtNZNuVVUUqtpLYef6vqqsk22K10cev588/oC59PnJEwiYywbLHOX2fnMpSphtF5Jimk7hmE6hqEa1MdVcj6lUG9Xs9VBifyixvzamUShqHavZt5ZOlkmiQLJ1k0RSJCFRJpIsmeWKJJplkmgfa5UpknmsJAmkiAJJonkOWRJIIIFU3aC4ZlAssbS245pBcT1t6VhXdYNUPfW5UXUmVdeJGpGAEwWioEemoFemoFcylx7HulemoMdZnti3n/sEPDJJjei550ZIzgEAAAAcwlRdpep4NdXEalKSbFZyrTrWwL54NdXGcx/T7FDiET3kk30UUAJmAk1xJNUSibb0JJu1bR2jiJjgAAqDFo9TJFRDkZoac1w2O/m2l8KJW2jfXgpXZZZ085eUUlF5hTnDaOIWLKugQFkZef3BREItmVRTfD4SRSTU3EDTDYqoZu8xswdYct3qUWYmbQzSDINUjUlNXIJpJXhU3byMM64nL7mMJ8pU+7jEfQwmVTPPZR2vJh5DKJF8i+uNH1uwMQQ7kWQmgbyJyzu9ipRYl8inmEuvIpIvsfTKIvkaOsYqTzvGWlqXikqC0KhLRVuKkfg7xXWD1LQkXsyR6BMEgYJeiYrspJtMPkXED095guQcAAAAQJ5ohmb32IrrcXsZ02P20lqPao59RnJfTIulHO+8X8r99SiF4rnPzFmkFFGpt5RKPCVU6i01b55Se71IKSKDDNIMjVRdJY3TlobWYJlq7H+ZXqYZGjEx+SQf+eTETfKRX/bX27bLEsc2tO0s88t+8kpekpBAgALEhkHRujBFQ7UUra2lSKjGXNbWUjRUQ5HaWoqEailaW5NYmsdosVhGcfwlpVRUVk7BilZ2wq2ovIKCFRVUVGYm44JlZSTJSEAXEsNgimo61cV1isR1iqjOdc1ejzqSatG0pJp5KaaeknhzJtysMq2AL8MMJHpeFSeSQkVemYp8iWXaurW/2Oc4NnFMQJEKOknWUkRRIJ8okU/B/8mWhOQcAAAAHDYMNlIugXTenOV1Wl2Dx+3vvtZNNdQWqZdAgnkppSOxVuItSUmyOccxs7aLPcXoDQaQJ2o8RtHaWoqGUpNr5naNvUwm2WopFgoRc3a9gwRBJF9xsZl0s3u7taJgeXmi15u5HiwrR9Itj5jNwfhjds8ic/yxuG7Y45BZPY7q4ubg99FEUq0ukUiz1iOqRhF7XU9ZN++X355jjWX1/vIrZi8xnyLZvcAUSUgszUsvFVkkxb5UM7lfToxbZl226UmUpR5j3ldx7PN7pJREW9AjkSxhQg9wPyTnAAAA4JBgsEF1ah2F1JA9a6Y1S6ZzxkxrkH/n4P7Weq69zDLhk3zkkTzklbz20lpvaJ/zGOexzqVPTr1fsVJs925DzzCA/DB0naLhUP0kW20NRcMhM9Fm9WgL1drJNi2eWW82J8XrI19xMfmLShLLYvIVl5DfuV5UnHKM1x/ALKRkJsuciTArwVXn6F1m9TAzl5o9aH9MSw7qn0yw6amJN8flfVbirSU6mfkUkQIemfyKRH6PRAGPZCfQnEk06zJLf2LdJyfLfYp5CadPNs/hS1y66XPc3yvjMkWAloDkHAAAADSLmB6zk2f2LJlqTTKB5kiyWTNoWutWco0pf9+InJdJWpdBOretsoAcOPBxip/8Uuq2R/Tgyw1AC2Jm0tQ4xcJh81YXolg4bCfdoqFQ8hLSxGWjVlksnP3svIIokr+4hHzBIju55isqNsuKihPJttQEnK+omGTl0OnZZvUc0w22xw/TDCbNcKwnxhjTjeS4ZFq9ZfJYazumpSXS6iXXkttWoi2i6i2SLLMokmCPP+axxjCTzZ5mzkRaynoiyWauSynrgQb2+XE5JoDrITkHAAAAB8XMFFbDKb3WauO1dgLNmVxL78Vm3eJGPC+PRRZlKvGUUJFSZA7k75g90zlbprVuz6qpFFNQCdoJNlFAjxOAQqapKsXCIYqGQ4kEW5hi4RDF6sIUdW4nkm7mdrJc17KbfdTiDQTJV1xMvmBxvSRbMtGWTLD5i4vJ4z+0ZuVlZqqOqLS7Nka7aqK0uyZGu2rN5e7aKO1KLKvCKqm6QXoioVaoPLJIAY9EAcWR6EokxMwEmZzocSbWT6gpEnkkMTG4v+RItFnHSMkJBBITBXgkEUkzAMgLJOcAAAAOAwYb9RJmziSbtW3vV+sn24wsx0VyEkiol1CzEmf2dtq6fUwi4eaVvIfUl1+Aw52uacnx1qxLQhPrzls0VOtIroVJU3NP6AuCSN5g0LwFguQLBskbLLJ7r/mKGrps1CwXpUP3UvHGJt121cQoruVnXDNFEszxxUSBZMkcg8xaV0SRJHF/ZeZYY5IokNdKrllJNUeSLdmzLDXR5uxhhrHJAOBQheQcAABAAdMNnaJ6YhIC1ZyowJp8IKyGG0ymOZNsVvItpObnklCr15qVULMSZ1ZPNiupZh1jlZV4SqjIU0RBJYgeawCHMGeibX9JtvR9sbrsLxMlQSBvIEDeQBF5g0HyBYvIGwgm1oN2uVlWRL7EPm+wiHzBICk+f4sl85nZ7mmmG0w6M+mJyzcN69JQPVFuGIlLPB37HDfNYDLscxmkG0SaYY6F9mMolnPSrSygUOtiL7Up8dGRiWWbYi+1LvFRmxIvlQc85JGTg/srokiSJJgTAkgiiQLhRxMAgBwgOQcAAJAjZraTZWE1TGEtTBH14LOBHmjWT+vYmJ79AOMN8Um+lJ5oxZ5iKlFKUradtyKliEq8JXbyDb3WANxBjcfMnmqhUGIcNuvy0cSYbM6yUCj3RJsg2L3U/MUl5C8pcYzDZm77iort5JsvaCbdPD5/g5Me6AYnZ7SMGxRRdaqNa7Rb1Ska0SlSrVFd/CeKqtbMl+YyGtcpnhjjzJk40wwjNZGWsi+RPNMb2ue4n55aXghXfx4s6da62Cz3KYduL0EAADdAcg4AAA5LzExxI06heMhOqoXU5PpBy+JmEs5a5uOSzwMRSKg3EYFzfLWGbg0l3TySp0kfJwA0D2YmXdPsMdmioZBjvTa5bSXawuHEZaPmMbqqZh+8gUSbnWRLJNyUYDGJ/iCRL0i6J0C67KeozimD+O9JDPIfietUF9MpUpvYVqspou5NrOsNLuN607a5TU0WBZIcNzllXSRRJJITl31KgmBf/ikKqccqkkitijxIugEAHOKQnAMAgGZjsEExPUZRLWr2DNPNHmIxPUaqrpJqmDfN0Ox1VU/drrePNfu+BzzO0ChmxFKSahrnNlh4OoEEKlKKyK/4683wub/ZQJ0zfFr3sWcRVRz3lXzosQZwCGBm0lWV1HiMtFiM1FiMtLh5s9bNZdzcnzhOi8fS7hNPuY8Wj6fdP0Zs5JagEkSRZH+QZH+QJH+QRK+fBG+AyBsg9vhJ9/hIl/2kyT6Kyn6KiT6qE30UFjwUUY1kj7S4TpGQTnV7kwk03agioqr8PKkHqoNA9syWPiU5I2aDy8S6VxZJEkWSRCIpMUaaM0EmS0LD5Y4x0hosd95fcOxL2RYwgQAAANSD5BwAwGGGme2Elr1MJLIaWkb1qJ1Ms8Y+sxJq1qWX6cc4l879+b5EM18CcoCKlCIKKOYy6AlSUA5SkafI3JcYKy2oBFOOS7lPYhZQJNAADi3MTFosRvFoxLxFIqRGIhSPmevxSITUaJTi0TrHulXuuE/iGDUaJUPXm+/xk0CG4iVN9pMmeyku+SgmeSkm+igieKhO8FIdKRQicz0mmreo5CVVUMzslkUnorrErR7jQDv3S5GERPJMthNozgH8zXXZsX6QBFsDiTa0uwAAcKhDcg4AIE+Y2eydpcfsHltxPZ7Se6uh8vR1KzFml+sqxY14vXOoukoqq6Tp2gF7jTWUcCsEHtFDPtln3iQfeSQPyaJMiqjYN3tbUkgWZFKktPK0Y/a7zzqHKNdLqgWUACYoADiEpCTTImbCLB5NJMcidXayzC5PLFPWnYm1aJSIm2hwMFEilhViSSEWFdJFmTRRJk1QSBUkipNEMZYpShJFWSSVrP0yqYK5tLad6/Y+Qaa46ElNsDWSRxapWBbJp0jkU0Tyygde+hWZ/B7RnEVTSc6aaSXe/B7Rnj3T70iyKZg9EwAA4KCQnAMA19INneJGnOK6eYvpMbO3lx6lmBaze3dZPcDs/Y5eX84y57793aepxx1rKlbiy0pmOZdeyWtejin5U5JpKcvE5ZrO7ZR9aff1Sl6SRIyDA+BmbBiJSzGjKZdjqrFoyuWc1n41Fk0mzRxJtIZ6qHETtLVMRIbkIU3ykCZ6SBUVigsKxQSZYqRQVFBIFRSKi4q9TxWtMo9jPVnOWSb+gx6JAl6Zgh6Jgl6Zgh6ZAl6Jgh6Zgl4zGWYt05NrPlkir2Im3bxyw0uPJOLSSgAAgAKC5BwANBtmprAaptp4LdXEa6gmXkO18VoKqSGKalEziWbE7fHHrISaaqgU02N2ks2ZcLOOj+txUnWVYkbyOJ2b77KihjgTXh7RY/fscq47e3ylHCN56u1PL5dF2extZsXZT4ItPdnW0D5cEgRweGPDoHg0QrFwODljZzhEsXCYYnXhgyTVYhSPJtbt8dOiZOQy4UBjHjMRxYVEUiyRLDMTYx47cRYXPaTa6wqpgictueaxE2qaIDe6B5ooUCIpJpFPFsmrSCm90KxLNwMeR4LNa/YqMxNsqck2Z/LNr0hInAEAABxmkJwDgEZjZorqUaqJmUm1WrWWauO1VB2rNretm1prH2Ml4KxjW6pnmSiI9mWUVk8wr+Q1e3HJXruXl1fy1tvfmPtYZdb9FVFBzzAAaDbMTJoap2goROGaWqqpqaXamhoK19RSOBSiSKiWouEwxcJhiteFSI3UkR4Jkx6LEMcixPEICU11aSeRfRmmmnJpplJvPT2plkykeeol2NKTaR5ZtC+z9CcSZ9all2WKszzRi0xJ9jRz9iqz9te/tDO5rkgCftQAAACAvEFyDuAQ5RzU37q00l43Yg2WWz3OnL3QDlYejoftxFpNvCYv45UpokIlnhIq9hRTiaeEijxF9qWOimT2DvNKXvKIHvJIiZtj3TrOK3qT+xPH2OdIrFv7ZBHNHQA0HV1TKWaPcxalWDRG0VicYvF4YqlSPLFU43GKx1VSVY3UeJxUVSXNvmmkaxrpmkq6ppGha2QklqxrxJpObGjEuk6kayRqMZK1KCl6jKQcegtbaSZNkBITBnjsiQOSvc9SE2nOMdFUQbHXSfaQqHhIUDwkyl4SPQp5ZMm8SQJ5ZJEUSSSPLJJHEkmRRSpObNuTBSQSa9bsmwGPRL60iQCcS58ikYTeZgAAAHCIwrdVgCZk9TSLaBHzpprLOq0uWea41anJ8gaPUZPlMT3WYr3QJEGiYk+xnVxLX3eWWdvOMq/kRY8DAJcyDCbVMEjTmTQ9ua7qBmkGk6YbpOpMmpFYJspVPXlcPHGMqhvmtpa2rRukamnbOpOqObeT94lryW1D10nQ4yTpKklGnCTNXMp6nCRDI0mPk2yo9tK6KYZKshEn2dAS23GzjDVSDJUkym97LFB2H9IMEigmeiieSKxpspc02UeGx0es+Ik8fhK8fhJ9AVL8QZL95tIbLCJ/MEhFfh8dmZb08ilm4swri+SRJFJkwUyqSYkyR7JNFtGjDAAAACBTSM7BYU/VVYroycSZdYtq0ZQkmbXd0DHOhFpUi6bch6npLhNyssY1c/YWs9cdPcrSy/Z3rEcyxz8rUorqJdn8sh9fvgByZM7um0xg6XpqUkszUpNWVmLLKtMNtpNc9rojAaYZqfdxxmnoHPaxVqxE8kxPS6ilJtwcZYk4usHpFSWJdZJIN5eOm8z1y5I3Y7/329+xgQaPN1K385xES6cJEqmCTLogky5IpAsisSARi+aNRIlIlIkkiQRJJkGUSJBlEiSZREkmSZZJlM2lJMskywrJikKyIpPs8ZCiyKQoHvJ4FFIUmfzBIAWLi6iopISKi4upuDhIfq+SmCUTiTIAAACAQwGSc1AwmJlUQ6WoHk2ZWTOux+3JAuztho7RD3xMTIuZCTM9mpKI0zj3yzQbwyeZs1lat4ASSNlu8KYkjpVTjw3IAXt8MyuhhvHNoCUxMxlMpBtMRiLppBtMRiJBZLC5bd/Sto3E/Q1mYjbPx2T2wmIyy4nJXmfr2ERsczv5OIg4sZ16nMFcL+GkO3t6pSWznL27zOMaSIA5jzvIeXTjAEmspvnDkEgGyayRbOgksWYnxGTWUpbWevp+H2uJBJdmJ7usfeIBEmxyMyXDsiWIIkkeH0leH8leL8keH0leL8len3nz+UjxONYdS8Ve+snjM4/x+Pzk8XpJUhSz15skYGwyAAAAAGgUJOegQTE9RgsrF5Ju6KSzTpqhkc66ve1cd+7TWEsek7Z9oOOsGTdbkizI5Jf95JN99ZJkDZUFlEC9hJtf8ZNP8qUk3gJygHyyj0RBbNH6Qar0ZJKVMLKTSY4EkmFQg8kk532cSSc7IZO4vM7qVaQa5mV3VqLGeRmfvZ22z7y/c3/yeCOR3LF6Z1pjubOjjs5tZyfO/R2TPEfynMyU6J1lJro03bCfO2eiDRqJmWTWyMda4pJILZEU00hhjXykk0fQyMM6eQWdFNbIQ+Y+JZFkk9m8nFIyEgkzQyPRcRMMjQTdXC80kiyTpHhIUhSSFQ9JikySrDi2zXW7TJbrlSWPd5Sllx/gOI/PbybRkDQDAAAAgAKA5Bw0SDM0emz9Yy0WXyDBnPVS9tqD/lu9xHyyz962yyRf6jFS/WO8kne/CbeAHCBFUlqsvociZqaYZiaf4pp5i2nJ9biu29up5c7jdXOpJy+1sy7R06zeTUayN5K1bfU+cm6by2SvJd1xLrunlGGkJNqg+UiiQJIgkCgSyaJIopAoS9xEwbwJAqUuyZyMURAEEgWzbUjZTjku9X6iIBAJRGLaOWVRIEkUSZEEkiVzjCyZDFLIIIXMhJdCZsJLMlRH8kslUTf3m8mvOAm6RoKuEmkqkW7eWDO3DTVOrMbJSNx0NUZ6PE56vOV+iJA9XjNR5fEkElgekj0ekhUPyZ7EtpU483jNMlkh2eOxk13W/VKSYFZiLT05pnhS1iVZRkIMAAAAACANknPQII/ooct7Xk6SKJEsyCSJEkmCRLIokySY6+n7nEtZkBs8xr5/2rY17pk1Y6cs4guchROX4cW01GRXTNNJ1dhOdjkHPbcTYLpBqpYcLD2WfpwjWeYcdD0liaY3nFiL64V5qVq+CAKRJCSTR2ZiKXVbEs1kk7VPTiSZJFEwB0eXRJITCSCPJJAsmrMSKon9smQurSSRIiX2JQZVNwdXN4/zpB8vmsckH7C1EOzH7yi2309C/bs4yhq+r+SoV3r9nck1WXQ8R4JzH2X1fmZm0lWV1HiMtFiM1FiMtHhyaa/HouYx8bh5nPP4tPuYy3jillw39P33MNMTt6YgKQopHi/JXi8pXq+ZEPN6k2Vp+1KW1vFWcs2RbLPOaybZPEiMAQAAAAAUMCTnoEGKpNCvB/y6pR9GXqRcnsiOSxadlyHqqfu0tP3OSx0163x6/XGzrJuVSIs5EmkxNbked+5TnUk3PaU8rpvrfAh08vIkZurzyGLKujetzLntlSV7lj9FTvZokkXBTGo5ts2EV+q2eVzqtpRelnae9CRaSm8uMZmQyzSJYei6nQDSVZV0XSND08nQNTJ0nXRNs9cNTSNdj5Nh6A0co5MR18jQNDIMI3GsnnZfnaKJbTYMYsMgI7FMruv7KU9f15PrnCx3HmsRzC5rZtLOXhdIEAWiRI82q4zshFzqfYTELf08RER6PJ5MrCUSZy3x4rcSWs7El+JMhDn3pR3nLFd8vpQkm+LzpSXWPCRirEgAAAAAgMMeknPQIFU36ONv9joGN3fM9pc2MLpzlkDVcWmheSmhkTaAev2B0XUjdYwvw9j/WGDp5cll/SScVe42HlkkrzMRlkhueSSzV5Y3kejyWD2xrDLJcaxs9uRybifLk9tK4hivnEykedJiexKxRbHleuSYEwIYZOhGMomVSFwZVmJLNcu0eJzUWNRcOnpbpfaqiiWOS/bQSm7HU3ttJbYNvan6VgERkSjJdlLLSnjJHk+9Hmayx0qk+dJ6m3lS77O/RJviIUHE+JAAAAAAANB8kJyDBkVVnSYs+bilH0aTEwSye1E5e1WlXLonpV/CJ5IkkrkUkj2uzKV5f68joeVVkr3FvLKU3KdIZu8xJbXck3Y/KynmlQ+eBGPDIF3XiXXd7LmVSFKl3tLLY8mkltWTK64ne24ljtMNg8KGTiFdt8vt5JfVA8ta13UyDGdyLNlDy76fkZZAM/SU5Bo74phljvvoul1Pq6yQyIqHRFkiUZJJlCQSZZkkybFtrcsSSY5jRCltW5Ts80iOY6xtQZJIFEUSRNFeCqLkWBf3s37wY0RRssuIiIg5OXmENUuEY53t/ebMqcRsTiphz7JqHUfmMYZzv3kuuV6CLXkZpyihhxkAAAAAALgTknPQIEUS6fg2xfalhLIkJtcTA6lblw8qKYOrJ8fCkqXkcYrkvDRRtC81tMbTShnTK3GZYeplh8mxq6xyMW1Mq4bKneOGOS9nlMXMLl20kl6GppKmqualhYmboamJddVRppmDvzv3qSrpEc1cJi5xtM+lqlSnaVSrqcljE+fRtOQx6XGsJJyVrDokrn9tZsmEmEiiJCcTP4rHHrPLecmi3cvK40vbPsCx1nkSY3xhXC8AAAAAAABoLCTnoEE+RaI3b/ifFn0Mhq6TppqDteuqSlpipkNNVUlT46THE0s1TnFVTRxn7k85To2TFldJV+P2WGCpSTUtJRmWTIAlywqtZ1YmBEG0E1PJXltWL66Gyp37zXWrJ5W9Lkl2zyrzHKnHNHgfUUy5v9V7K1km2+cSRbNXWLJ3mONxiWKyV5kkkSClxk0eJ+HyRAAAAAAAACh4SM5Bg3RNpW/++2nKAPSGY4B73Sq3BrDXzZ5gumNw+/0NZG/YyTHHQPiJRFoysRZPGYi+0AiiSJKskKTIJMmKedmiLJMkJZaKQqKskKzIJMqKWWYtleS2KMskK9b9lfrHJPbJzhiKeZx9eaNsJrokWU48LsflkEhQAQAAAAAAABQ0JOegQVo8Tv+67+6Wfhg283JEhSTFmhHRQ7KikJQYwN2aXdHcr5hlnsQyUSZZN2eizJn0kuVEQi29LDVxZiW9AAAAAAAAAAByheRcmoULF9L8+fNp586d1KdPH/rzn/9Mp5xySks/rGYnyQq1O67HAQejT9mWJbOHmPNySOcg+Ac5j51UcyTYJE8yqYZkGAAAAAAAAAC4kcCMEeQtzz33HF1++eW0aNEiOvXUU+lPf/oTPf/887Rp0yZq3br1Ae9bU1NDpaWlVF1dTSUlJc30iAEAAAAAAAAAoBA1NleEwagc7r//frryyitp0qRJ1LNnT1q0aBEFAgF69NFHW/qhAQAAAAAAAACACyE5lxCPx+mzzz6j4cOH22WiKNLw4cPpww8/rHd8LBajmpqalBsAAAAAAAAAAEAmkJxL2LNnD+m6Tm3atEkpb9OmDe3cubPe8b///e+ptLTUvh177LHN9VABAAAAAAAAAMAlkJzL0qxZs6i6utq+ff/99y39kAAAAAAAAAAA4BCD2VoTjjjiCJIkiXbt2pVSvmvXLjrqqKPqHe/1esnr9TbXwwMAAAAAAAAAABdCz7kEj8dD/fr1o3feeccuMwyD3nnnHRo0aFALPjIAAAAAAAAAAHAr9JxzmDlzJk2cOJH69+9Pp5xyCv3pT3+icDhMkyZNaumHBgAAAAAAAAAALoTknMP48ePpxx9/pNtvv5127txJJ510Er3xxhv1JokAAAAAAAAAAADIB4GZuaUfhBvU1NRQaWkpVVdXU0lJSUs/HAAAAAAAAAAAaEGNzRVhzDkAAAAAAAAAAIAWguQcAAAAAAAAAABAC0FyDgAAAAAAAAAAoIUgOQcAAAAAAAAAANBCkJwDAAAAAAAAAABoIUjOAQAAAAAAAAAAtBAk5wAAAAAAAAAAAFoIknMAAAAAAAAAAAAtBMk5AAAAAAAAAACAFoLkHAAAAAAAAAAAQAtBcg4AAAAAAAAAAKCFIDkHAAAAAAAAAADQQpCcAwAAAAAAAAAAaCFIzgEAAAAAAAAAALQQJOcAAAAAAAAAAABaCJJzAAAAAAAAAAAALURu6QfgFsxMREQ1NTUt/EgAAAAAAAAAAKClWTkiK2e0P0jO5UltbS0RER177LEt/EgAAAAAAAAAAKBQ1NbWUmlp6X73C3yw9B00imEYtH37diouLiZBEFr64eRFTU0NHXvssfT9999TSUkJ4hRIDMQp3BiIU9hx3FQXt8VxU10Qp3BjIE7hxkCcwo2BOIUdx011cVscN9XFjXGaEzNTbW0ttWvXjkRx/yPLoedcnoiiSMccc0xLP4wmUVJS0ixvDDfFcVNd3BbHTXVBnMKNgTiFGwNxCjuOm+ritjhuqovb4ripLohTuDEQp3BjIE7hO1CPOQsmhAAAAAAAAAAAAGghSM4BAAAAAAAAAAC0ECTnYL+8Xi/NmTOHvF4v4hRQDMQp3BiIU9hx3FQXt8VxU10Qp3BjIE7hxkCcwo2BOIUdx011cVscN9XFjXEKESaEAAAAAAAAAAAAaCHoOQcAAAAAAAAAANBCkJwDAAAAAAAAAABoIUjOAQAAAAAAAAAAtBAk5wAAAAAAAAAAAFoIknMAkJPmmFPGMIwmjwEA2UM7AJCZ5pqPrbneN81Rn+aIEYvFmjyGW2GOwcw113Om63qzxGlqzdWeRaPRZo3nlvYTcofkHOTMTW92t31YbkqhUIiIiARBaLIYe/fuJSIiUWzapuq7776jtWvXEpE7/jZOzfWaRjuQOTe81tAOHBqa6jWdfl43tQNNxfqS3NTP1Z49e4jIfN805RfzzZs3U1VVVZO2AUREW7Zsoeeff56qq6ubLMamTZtoxIgR9PXXXzdZDCKicDhM8XicqqqqiOjQTwCkv76asj5uaWPi8TgRJZPBTVWvnTt3EhGRJElN2g589dVXVFlZ2WTnJzLbmgcffJB+/PHHJo3z+eefU/fu3WnNmjVN+rmjpqaGqqqqaOfOnSQIQpO9bzRNI6Lka6wp4uCzQP4gOQcZ2717N61bt44++eQTImq6L2XWG9tqVJrCvn376Ntvv6UvvviCiKjJGsedO3fSBx98QP/617+IyPyw3BRxvvjiC5o/fz6Fw+G8n9upsrKSLrvsMtq8eXOTxVi/fj2NGDGCFi9e3GQxiIg2bNhAHTt2pGuuuYaImi4BsHXrVnr00UfpzjvvpM2bNzfZP67du3fT+vXraeXKlcTMTfb+bI52oDnaACK0A9lCO5A5N7UDmzZtojlz5tAVV1xBixcvpi+++KJJ3ju7du2iL7/8Mq/nbMiWLVto0aJFNHPmTFq+fLmd3MqnL7/8km666SYaM2YMzZs3j7Zs2ZL3GFaczp0701VXXUVETffFfM2aNdStWzd68cUX835up7Vr19Ipp5xCq1evtr+Y5/t1VllZSQMHDqT333+/SZP0n3/+OY0bN46GDh1Ko0aNoo8++qhJ2hvn+/PBBx+kdevWkSAIeW9zNm7cSNdffz1dcMEFNHv2bPrss8/yXp8ffviBPvvsMyJq2h+Cvv76a7r77rtp4sSJtHjxYtq6dWuTxPniiy/o6quvplGjRtHVV19N69evb5J6bd68mdq1a0fnnHMOETVtO3D88cfThx9+mPdzW9auXUunnnoqffvtt3bb3BTvz8rKSjr99NPpu+++o+XLlzdZnA0bNtDPf/5zGjZsGPXu3ZveeuutJmkHNm7cSNOmTaOLLrqIbrjhBvrwww/zHsdtnwVaHANkoLKykrt168adOnXiNm3a8Mknn8zvvfceh8PhvMZZv349n3POOVxVVcXMzKqq5vX8zMzr1q3j0047jbt168Zdu3blSy+9NO8xmJnXrl3LJ5xwAvfq1YvLysp4yJAheY9hGAaHQiHu1KkTC4LAs2bN4lgslvc4zOZrQJZlvummmxp8HPmwYcMGLisr45kzZ/I333yTl3M2ZPXq1RwMBvm0007jHj168PLly5k5f/WwrF27lo8++mj+n//5H27Tpg0fffTR/MMPP+Q1BjPzmjVr+Pjjj+c+ffpwhw4duGfPnvzqq69ydXV1XuM0RzvQHG0AM9qBbKEdyJyb2oENGzZwaWkpjxkzhgcPHsynnnoqH3PMMfz2228zc/6eu88//5zbt2/P48aN4/Xr1+flnA1Zu3Ytt2vXjs8++2zu1q0bH3/88XzPPfewrut5q8vatWu5VatWPHHiRL7gggt44MCB/Lvf/Y4Nw8j7a+3FF1/k1q1b88CBA/mqq66yy3Vdz1uMyspKDgaD/Jvf/CZv52zId999x+3bt+cbb7wxpdxq2/JRp8rKSvb7/Txv3jweN24c9+vXL+dzNmTDhg1cXl7OM2bM4Pnz5/NFF13EI0eO5EgkktfXwLp167i8vJwnT57Mv/jFL/iss87i8vJyfuONN/IWg5l548aNXFJSwhMnTuQxY8bwiBEj2Ov18hNPPJG3GF988QW3adOGBwwYwO+9917ezptu3bp1fOSRR/K4ceN40KBBPGDAAL7mmms4FArlNc7atWu5vLycr776ap46dSqPGjWKJ02axPF4PO/twAcffMDHHnssd+vWjUeNGmWX57sdCAQCTdoObN++nbt06cIzZ85MKa+rq8trnMrKSvb5fHznnXfyjBkzuEuXLvZnz3z+bTZu3MitWrXiX//61/z000/zVVddxd26dbP/R+cr1vr167m8vJyvueYanjp1Ko8fP55lWeZHHnkkb69rt30WKARIzkGj7dixgzt37syzZ8/mNWvW8KeffsrDhw/ntm3b8uLFi7mmpiYvcb755hv7y2W/fv3sL+eapuXl/MzJhvHmm2/m5cuX8+LFi7lXr178f//3f3mLwWw2Jq1ateLZs2fzxo0b+b333uM2bdrw+++/n9c4lqlTp/KVV17JgUCAr7/++nrJklwbyXXr1nEgEODbbrvNLqupqeHdu3fndF6neDzOl156KV999dXMbD7mVatW8QsvvMC7d+/mSCSSlzjWB4o5c+ZwOBzmjh078vTp0/NybqcffviBu3btynfddZf99+jSpQs/9dRTeY3z7bffcvv27Xnu3Ln81Vdf8bZt23jEiBHcunVrXrBgAe/ZsycvcZqjHWiONoAZ7UC20A5kzk3tgKZpPGHChJRE9urVq3nKlCksSRK/8sorzJz7F8Bt27bx4MGDuU+fPnzKKafwlClTeN26dTmdsyFbt27lbt268ezZszkejzMz8y233MJdu3bN2+ts8+bN3KFDB7711lvtsilTpvC0adOYOf8/Prz22mt83HHH8R/+8Afu1auX/T5iZq6trc35/Bs3bmRZlvnOO+9kZvNv/c477/DDDz/MK1euzGvS+dlnn+WhQ4facW699Va++OKLefTo0fzOO+/kfP7Vq1ezx+PhW265hZmZ//3vf3OHDh342WefzfncTpFIhC+88EKeOnWqXbZkyRK+9NJLOR6P848//piXOKFQiEeNGpXyw8lnn33G5eXl7PV6+e9//zsz5ydB87//+798wQUX2Nu7du3i2267jSVJ4r/85S/MnNv/mx07dvDQoUN5yJAhfPbZZ/PIkSN5xYoVOT/udN999x337NnTfg0wMy9cuJA7d+7M27Zty1ucb775hrt06ZLSDsydO5cnT57MzGwnTPLxtzEMgz/88EPu0aMHP/3003zcccfxOeecY+/PR72sdsB63gzD4BdeeIHvvvtufuaZZ3jTpk05x2BmfuONN3jw4MHMbD43119/PZ977rk8YMAAfuKJJ/LSTq9evZplWeZZs2YxM/OWLVv42GOP5XvvvTfnczupqsqXX345X3755XbZ8uXLefTo0bx3717+/vvv8xInGo3ymDFj+Prrr7fLtm/fzt27d2ePx8P33XcfM+f2/nTbZ4FCgeQcNNqqVau4a9eu/MUXX6SUT5o0idu3b89PP/10zl/6wuEwT5s2jceMGcPPPfccDxw4kHv37p3XL+fV1dX8i1/8gq+99lq7zGrELrvsspzPb/npp5944MCBKb/2qqrKZ555Jj/33HP82GOP8Y4dO/ISy2r4JkyYwPfffz+//fbbrCiKHXvx4sU5N/i7du3i0tJS/tnPfmaXXXPNNTxo0CDu3r07n3vuufaX81xeB5FIhAcMGMAvvPACMzMPGzaMe/fuzUVFRdy+fXv+3e9+x7t27cqpLl9++SULgpDyAWnRokV8xBFH8Mcff5zTudO9+eabfPLJJ6d8WTnvvPN43rx5fN111/Frr72Wc32YmV944QUeOnQo19bW2u+Tf/7zn+zz+fj444/nxYsXM3PuiZmmbgeaow1gRjuQLbQD2XFTOxCPx/mMM85I+SLLzLx7926eOnUq+3w+/vDDD7OvRMI777zDo0aN4srKSl66dCmffPLJef9QrmkaP/DAAzxu3DjesWOH/Zzt3LmT27dvz2vXrs1LjEWLFvHkyZN579699nN/3XXX8ZlnnslnnHEGT5gwgVeuXJlzLMv333/Pl1xyCe/Zs4fvv/9+7t27N8+cOZMnTZrEixYtspOQ2dB1ne+44w4WBIE///xzZmY+88wzuU+fPlxaWspdunThYcOG8Zo1a/JSl/nz5/MvfvELZmYeNGiQ3dNozJgxLAgCL1myhJmze03/9NNP3L9//5TX8o8//sh9+/bN6/8BZvN/Tu/evfnBBx+0y2bPns3t27fnPn36cMeOHfmxxx5j5tzen3v27OGePXvyP/7xj5RzjRkzhocOHcoej4c/+uij7CviMHr0aJ4yZUq98rvvvpsFQeBXX3015TFk6tNPP+Vhw4bxypUr+fXXX2+SBJ1hGPz444/zBRdcwFu3brX/j0ajUe7cubPdkzofnnvuOb788stT2vqZM2dy7969+ZRTTuHTTjvN7t2Yjx5H4XCYx4wZw9u2beMXX3yRu3btyhdeeCFPmjTJ/kEqF4sWLWJBEPiVV15hXdf5jDPO4AEDBnD79u25V69e3KVLF/7ggw9yrsdTTz3F//M//8PMzKeffjqfddZZPHv2bL7uuutYEASeM2cOM2f/nNXU1PC5556b0g7U1NTweeedx2effXbOj98pEonw6aefznPnzrXL5syZw+Xl5XziiSdyaWkpz507l6PRaE5xamtruXfv3rxo0SJmTv4ANGXKFD7nnHPsv1su3PRZoJAgOQeN9u9//5uPOOII3rx5MzNzSqN+ySWXcNu2bfPypezhhx/mp59+mpmZ33///bx/Od+1axdPmjTJjmH9I37kkUf4jDPOYMMwUj645lKXBQsWpHyIuOuuu9jj8fCAAQO4W7du3KZNG/sDeS5xrDo8/fTTdiP5yiuvsMfjsS/R+fbbb7M+v2Xs2LF88skn8+LFi/nUU0/l4cOH8/33388LFy7kXr16cY8ePexf/rKtTyQS4REjRvCyZcv41ltv5VGjRvGGDRs4HA7zrFmz+MQTT+RHH300pd6Z+uijj+xfdS1r1qzhnj178oIFC5g5f0mgxx9/nIuLi+0veQsWLGBFUXjChAk8ZMgQ7tq1K9977705x7vnnnu4Xbt2KWVvvfUWT548mc8//3w+6qij8tKN/d13323yduCvf/1rk7YBzM3bDtx3333N0g5Y923qduCiiy5q8nYgGo26qh144oknmqUduPfee5ulHbj22mt50KBBvHfv3pTy7777jseMGcPnnHNOzpfRRiKRlC92jz76qP2h3Jk0y/VL7NKlS/mBBx5IKdu1axeXlZXxu+++m9O5LZs3b065FOeOO+5gn8/Hd999N99+++08fvx47ty5c94u3w6Hw9y7d29evXo1h8Nh/utf/8qtWrViQRDs5y6X19rOnTv5qquuYq/XyyeeeCKPHj2aKysrOR6P87Jly3jkyJF80UUX5aWX3lNPPcVt2rThxYsX8znnnMM//fSTve93v/sdy7Kc02VOn3zyib1uPSfLli1jn8/H//nPf7J/4GkMw+BLLrmEe/Xqxf/4xz/4pptu4kAgwEuXLuVXX32V7777bhZFMefE0+7du3nQoEE8b948u0fRN998w+3ateMXXniBzzrrLL700ktZ07Sc3ztz587lY4891u6FZZ0vHo/zNddcwz169Mj5x6fKykp7/dVXX7UTdP/v//0/u9z6H5Dt/4JXX33VTmIwm/Wora3lo48+mp9//vksH3l9VVVVKT9s3nvvvezz+fhPf/oTL1q0iKdOncoejycvPwowm/9H+/btaydh/v3vf3NZWVlKO5Brr925c+eyJEncpUsXHjNmDG/atIk1TeNPPvmEL7roIu7fv3/OPzy9/vrr7PP5+PHHH+fRo0ennO+JJ55gQRByvhLB2cvPeh29//77LAiCnejOl2nTpnFxcTEvXLiQr732Wvb7/fzMM8/w6tWr+amnnmJBEHjZsmU5xYjH43zeeefxlClT7P/FW7du5SOOOILfeustvuKKK3jIkCE5J2jd9FmgUCA5B41mGAb36NEjpQu7M7Pfo0ePlO6zucZiNj8orVixot6X87q6Ov7mm2+y+kccjUb5s88+qxfr4Ycf5oEDB6aU5dOrr77KHTp04Jdeesn+cDl06NCUHii5eumll7hv37728/Kzn/2MJUniiy++OG91+uUvf8mSJPEvfvGLlMvYtm3bxh06dKg3Lkw2Ro8ezSeffDJPmjSJn3zyyZR9kyZN4r59++Z0fufrxvm8TJs2LW9fXp369evHFRUVPGrUKPZ4PPzWW2/Z+2644Qbu1KlTvX9smdq4cSN36NCBb7jhBt61axd/+umnHAwG7a7rnTt35ocffjinGMzmc9ezZ88maQca+rLYFG2Adf9Vq1bZ203RDjT0obep2gHnY22qdsCZrGzKdsB6jE3dDjj/Pk3VDjjP279//yZrB6w4n3/+ebO0A8899xyfdNJJfN9999W7lH3p0qXcrl07/u6773KOk/56behX8zvuuCNvvbSseJFIhLt3757Sg/Kll17KqU7WuaPRKJ9zzjkpvRbee+89bt26dcprIlvxeJxVVeWRI0faY3SNHz+eS0pKuFu3bvaltLmyekf079/f7kFn+eMf/8hHHXVUXi5v3bp1K5933nncr1+/lMtbmc0kardu3fi5557LKUb662zLli3cr18//u1vf5sSL1fvvPMOjxs3ji+44ALu2rVrynsxFovxCSecYPcCysWMGTO4d+/e/Mtf/pLvvfdeLioqsnuJz58/n0844YSsk7PO5+Ljjz/mIUOG8HXXXWcnTKz9b7/9Nrdr145Xr16dU4x0r732Gp911lk8atQoO5E5ffr0rHoDNvQcOF8L/fr145deesnefvzxx7O6VLOhOLFYjK+88sqU97yVRM12zL6GPttOnDiRX3zxRWY2f0CtqKjg9u3bp3yGy1R6febNm8e9evWq97d+/vnnuVWrVlklG5110XWdL774Yu7UqZP945+mafYxffv25fvvvz/zijDvtxexYRhcU1PD559/Pl922WVcV1eXUzvgvO/mzZv52muv5QkTJvDJJ5/M8+fPTzl2yJAhfM011+Qc509/+hMPHDiQTz/9dJ41axYHg0H7vM888wx37NiR9+3bl1Ucy3PPPcd9+/Z13WeBloTZWmG/fvzxR/rss89o7dq1VFtbS4Ig0L333kuVlZU0ffp0IiLyer32dOB9+vTJaop7Z5xQKERE5mxMuq6TJEl02mmn0T333EOBQIDOOOMM2r17N9188810+eWXUzQabXSMVatW2dNin3zyyURkzsDjnCHJmsVIEAS64YYbaPTo0VnXJX2mxK5du9Jrr71G559/PpWXlxMR0amnnprR+RuKU1dXR0TmzJZdunShNm3akCiKNGXKFPryyy9p/vz59PLLL9OVV15p/62yiVNTU0NERE899RTNnj2bLrnkEjryyCPtY9u0aUMdO3ak2trarGNY9/3jH/9I0WiUli5dSnv37rXrR0Q0atQo8nq99vTzmcSxXgPO141zRqGrr76aioqK6LHHHkuJmW19rOds1apV9Le//Y0mTJhAgwcPpsGDB1MkEiEiohEjRpDX6814Zk1nnEgkQl26dKEbb7yRli1bRr1796Zhw4bRlVdeSTNnziRd18nr9drPZSbq6urIMAz7ORNFke69917673//m7d2wIqhqmpKuaZpeWsDnHEikQj5/X7q16+fHSef7YAVp6FZZvPZDjj/NtbjZ2bq1KlTXtsBK45zlrennnqKbrnllry1Aw3V5Y9//CPV1dXltR1wvgZkWU7Zl892wIrjfHyffvopPfHEE3ltB9LjdOzYkW666Sb6xz/+kbd2YOvWrfTII4/QkiVL6M033yQionHjxtFpp51GDz/8MD355JMp5xwwYAAFAoGMXwMNxbFeC9Zrb+LEiTRt2jRavXo1PfDAAzR+/Hi644476v0tGxvnjTfeaPAYURRJFEU7/uzZs+nqq69u9GvhQHXxer308ssv07nnnmu/5ioqKqhNmzZUUVHR6Hqkx3nrrbeIiEhRFJJlmfr27Utff/01XX755bRixQp6+eWXafr06bRs2TK68cYbs45j1efII4+kO+64gx544AHq0qULESX/Tl27dqXy8nLyeDw5x+nQoQMNGzaMvv32W6qsrKQtW7bYsw0WFRVRWVkZeb3erGJYz5mz/SQy30dnnXUW/eUvf6Hdu3dnNbthQ6+zM888k5577jlavHgxybJMRx99tB1X0zQqKSmhtm3bZh3n9ddfJyKz7Rw/fjzt27ePXn/9dfrtb39LDz74IBERlZaWkt/vz7hd27dvHxGZ7w3r73zKKafQeeedRx988AEtWLCAtm3bZj9X3bt3p2AwmFGb5oyRPtOj9XjPPvtsmj59OomiSHfffTddeOGF9H//938ZvdasOJIk1fs/7fwsIIqiHffWW2+l6667LqNZVZ1xnP8/mZk8Hg8tWrSIRowYYddVEARq27YtHXvssY2O4YzjfN6sx3nCCSdQZWUlTZgwgd5991167bXX6KGHHqIVK1bQ+PHjs4qTXp9bb72VnnjiCerevTsRJf+XtmvXjo488kgKBAI51UUURRo9ejSVlZXRli1baPPmzSRJkn1MUVGR/Xkq0ziKojQ4q6ggCFRcXEzDhw+nZcuW2a/tfLxvOnfuTA8++CA98sgjJMsyHXXUUURktp+appHX66VOnTplHcd6TU+fPp2mTp1KnTt3pi+//JJ+97vf0UMPPURE5v+hkpKSjGJs376dXnnlFVq2bBmtWrWKiMzPAgMHDqRHHnkkb58FnHGcszQzs/23ysdngYLVAglBOASsXbuWe/Towb169WJBEOyBv6uqqnjBggV83HHH8ZVXXplyn4svvpivvPLKjGY3ayiO877WumEYvGLFCh4yZAjLsszBYLDRYwI1FKOhXz+eeeYZPuWUU5iZedasWRwIBDK6Vn5/cQ70XEycOJGvv/76vD1nqqry8OHD+bjjjuM2bdrYPQT//ve/c5s2bXjnzp051cc582P6eAiqqvL5559v/wLUmPrs7zmLxWL8j3/8gzt16sQnnXQSr1+/3o49bdo0HjVqVEYDwDb2NaCqKo8aNYqHDx/e6HMfLI7zOXviiSe4d+/eKfeZMWMGn3baaRl1+06PY42ZFYlEeNu2bbx8+fKUX5Framp4+PDh/MwzzzBz43uErVu3jocPH85Dhw7l4447jv/yl7/wDz/8wJqm8X333cddu3bNuR1Ij/HQQw/xli1b7P3WL7S5tAGNiWM91lzbgYPFaUg27cCB4miaxmeeeWZe2oGG4nz55Zf2/vTZ0rJpBw5UlxdeeIE7duyYl3agsa+BXNuBht43X331lb1/6dKleWkH0uMsXLjQ7r2yfft2fvPNN3NuB6wZRgcOHMhdunThoqIivuKKK+xfyKdMmcInnngiz5gxg7/++mv+8ccf+eabb+bjjjsuo8knGorzq1/9irdv324f4+ytsWTJElYUhUtLSzPqmdOYOMzmZ50jjzySV65cyXfddRf7fD7+9NNPm6QuzOYEFAMGDMhoUoD9xbF6q911110sCAJ36tTJbgOqqqr4L3/5iz0sQbZxJk+efMB2ZPr06TxixIiMep82FGfSpEl2b+kFCxbwUUcdxb179+aPPvqI161bx7fffjt37Nix0T0zMvnbfP/993zSSSfx3LlzM+4xs7/nzBnnwgsv5JkzZ/KOHTs4Eonw7bffzu3bt8/o0uaG4kycODGlN0x6b5bJkyfzmDFjMprJ+/PPP+dOnTrZPQmZU3sc3X777Xzqqafyeeedx5WVlfzVV1/xLbfcwh06dGj0Za0NxUh/3p1t1ssvv8zl5eVcVlaWculrPuIwm5+nOnfuzC+++CL/4Q9/YJ/Pl9LbPt/1YTbHIOzTp09GlwIfLM7ixYtZEATu1q2b3Q5Eo1F+9dVXU/4vZRPnYL0vb7zxRh48eLD9Hs4mhrOH+9/+9jc+/vjjuaSkhP/5z3/y22+/zbfddhsfc8wxGb1vMvnbGIbBgwcP5ssuuyzjsTob85xNmTKFzz33XN6yZQvv2bOH58yZw0cffXTOf5v093f6Y7/mmmt45MiRjZ7xdu3atdy5c2c+5ZRT+IgjjuD+/fvbnyWYma+44gru1atXXj4LpMdJv7Tc+bfK9rNAIUNyDur5+uuvuU2bNvyb3/yGt27dygsXLmRBEOyxivbs2cMPPfQQt23blvv27ctTp07lSy+9lAOBQEbjfjQURxTFegOWWw1ZJBLhc889lysqKhodp7ExmM3EybBhw/j2229nj8eTculrPuMwm/9sbrvtNm7dunW9gfVziRMKhXjChAncv3//eo8/k7FfMq2Ppml82223cbt27Rr9oX9/rzPrQ3ZdXR2/8cYb3LVrVz722GN5+PDhPHr0aC4rK8uo23Jj62J9APjvf//Loiim/NPJV5zvv/+eKyoq+Oyzz+YHH3yQr776aq6oqMi5Ps7nLV0kEuFZs2Zxu3bteOvWrY2O8+WXX/KRRx7JM2bM4Oeff57nzp3LgiDwhRdeyGvWrOF4PM4PPfQQt2vXLut2YH8xxowZkzK+hPWPOJs2IJM4zLm1A5nEYc6+HThQHGvclQkTJvCAAQNyagcaE8cpm3ZgfzFGjx5tfxF64403uFu3bjm1A43921j/b7JtBw4UxxpX8Pvvv+dWrVrl1A4c6Hlr6LWWTTtQW1vLgwYNsi9T37FjB7/++utcUVHBw4YNsxOBd9xxB59++un27MpHHXUU//e//210XQ4U56yzzuKvv/7aPlbXddY0jadNm8bl5eUZtQOZxKmtreW+ffvy0KFDM/pSnkkMZnN23V//+tdcXl6e0d//QHFGjhzJ27dvZ1VVeerUqfaYataXzUwSTQeKM2rUqHrv82+//ZZvuukmrqioyOhStgPFGT58uJ3UevLJJ/mss85iQRD4hBNO4K5duzb6tZbp30bXdR45ciQPHTo0o0RWY+PMmzePBwwYwK1bt+YzzzyT27Vrl7f3zYgRI+rVp7KykqdPn86lpaUZDaT+3Xff8UknncTdunXjE088ke+44w57n/N5eeyxx/jss89mQRD4xBNP5A4dOjS6PgeK0VDSRNd1njFjBhcXF+etLulxdF3n0047jU844QQOBAKNTs5nGoeZ+YsvvuAbbriBy8vLM0o0HiiOMwn0m9/8JqPEYrZxLBs3buQZM2Zk1K419nX23nvv8cSJE7moqIh79uzJvXv3zuh9k+nfhpn5yiuv5FNPPTWjHxsaG+fJJ5/kM844gz0eDw8cOJDbt2+ft/o0NHTHypUr+dprr+WSkpJG/22+/vprPuaYY/jmm2/mffv28apVq3jixIk8efLklI4auX4WOFCc9DEyDcPI+rNAoUNyDuq57bbb+Oc//3lK2dlnn83vv/8+v//++/avpd988w1PnDiRL7roIr788ssznjVlf3FWrlzJH3zwQUqPhng8zn/4wx/Y4/FklBnPJIY161BpaWnG/8QyifPuu+/yL3/5S27btm1GjdbB4rz//vtcVVXFtbW1OQ/6nkl93nnnHR47diy3bt06o/oc7HVm/fofi8V47ty5PH36dL7lllt448aNTVYXwzD4+++/53HjxmU8MHdj4yxfvpz79u3Lffv25Z///Od5f984H/cnn3zCl156acb/IJnNng8XX3xxStkVV1zBPp+PR48ebY8xtHnzZr7iiiuyagf2F8Pv9/PYsWNT3oeapmXVBmQa5+GHH866Hcgkzn/+85+s24EDxRk9ejR//fXXvHv37oySsZnGGTt2bEri79///ndW7cDBXmfWh8doNMp33nln1u1AJn8bZs66HWhsnLfeeov79euXdTtwsDjOL5KrVq3Kqh2IRCJ88skn87PPPptSvmnTJj7iiCNS2qFdu3bx66+/zu+//37GMwIfLM4FF1yQ8gXwk08+YUEQMvqynGmcvXv3cocOHbiioiKjL8uZxPjoo4/4f//3f7lPnz4ZxWhMnPT/EdnKpD4ffPABT548mbt3755xG32wOOedd55dZhgGf/bZZ/zVV19lNNB8JnWxvtR+9913GY8xdrA4559/vl326quv8j333MOLFi3KuK05WJwLL7zQTgLs27eP//a3v3Hfvn0z+tsYhsH33HMPn3POOfzWW2/xnDlzuHv37vtNnDCb49Bt2LCh0b2/GhMjPQG0du1aPvroozP6H51pHFVVefDgwRknzjONs379ervnbL7jZNKzPF/1Wbt2Ld9www3cq1evRrdr2bzOvvrqK965c2fKBDH5rouluro6o97GjYnj7Mm2bt06XrJkCb/wwgsZfX/LtD66rvNLL73EgwYNavTfJhaL8cyZM3ncuHEpf4MlS5Zwq1at6vWK27NnT1afBTKNw5z9Z4FCh+Qc1DN9+nQ+++yz7YGprUsjBgwYwG3atKk3SxJzdrN+HSjOUUcdxaNGjUqJ89hjj9UbdDgfMazZuD7++GMeNGhQVlMzZxLno48+4lmzZmX85fJgcdq0acMjRozIecaiTOuzcuVKnjFjBm/YsCGvdRk5ciS/8847zVKX9NdzY7t5Z1of54ycNTU1eY+zv/dNJt3jLWPHjrUHkLYui5k3bx6PHDmSjzvuOJ49e3a9+2TaDhwoxvHHH29frmv9WpZNG5BJHObc2oHGxolEIjm1Awf728yaNYuZc5/QIpP6ZNsOZPK3aY66OH/Rzub9ebA4zvdNLu1Aps9bNu1AKBTio48+usEvFGvWrOFgMMhz587N+LFnE+euu+5KuU9jL5PKJc7vf//7jN+fmcZYuXJlvUtq8xXnzjvvzPi82cRx1ufdd9/NahKI5nitZVqXbNvPxsTJx6QPmdanrq4uq/fNjh07eOnSpcxsJuGtBIDz75Hp5X7ZxEjv1ZTNDJCZxnn00Uez+vyUaZz169dnNaNpY+LkY8bxTOuzevXqjGfpbUyM/U3i1JR1yXY22+Z43zQ2Tvp7J/1S9wOJRCJ8//338yOPPMLMyefdmoTO+jvnOmlOY+Oky6ZNK3RIzkE9Dz30EAeDQR47dixfeumlrCgKL1u2jEOhEH/44Yd8+umn8y233JIyPlI2jWRj4+TyBbOxMZjNxirbN3kmcXRdz7qxzyROLjKJo2laVv9gMvn7W41+U77OmHP753KwOKeddpr9vslFJu/PXNxwww3ctm1buxv/jh07uLy8nJcvX84PPfQQ+/3+er+KZfr3OViMQCCQcS+cXOOEQqGs24HGxHFefpxtO1BIz5tVH8MwsmoHsqlLNu1AoTxnfr8/LzOXNVd97rvvPj7mmGP45Zdftsusv/O8efP41FNP5Z9++inn9qaxcaz3TLafCxoTxzn7cFPFyGRsuVzi/PTTTzkn6ZvjOWtsnFzrU0jP2Z49e3L6bJNJnFzr47R9+/YGEwD//Oc/85IIOlgMq375qNP+4rzwwgs5n7uQ4vzzn//M24zDB4qTz/q0dF2aK86LL76Yt/dNU8Vx9uq13nc7duzgrl27pnyeyfQqkHzEyWfbViiQnIMG/fnPf+Y//OEPPHbs2HrTOV9xxRV8+umn56XROlic0047Lec4jYmR7ZfkTOPkowFujuessXFyrU8h1QVxUn377bc8ePBg9nq9fNZZZ3EgELAnf9izZw8fffTROffSbI4YiFPYcdxUl0M9zvbt2/njjz/mN954w27bt2zZwhdddBGffvrp/Oabb6Ycv2jRIu7RoweHw+HDNo6b6uK2OG6qS0vHYeaUH+S3bdtmJwDmzJnDM2bMYEEQeNu2bQUTA3EKO46b6uK2OFaM119/PeW7hDPeF198wa1atbKTZr/97W+5vLw8ox8DmivOocYF881CLjZt2kRLly6lH374gfr06UNDhw6l/v3703XXXUdERDNmzCC/309E5tTfzqm5DcNo9PTy2cY58cQTGx0nlxiZyCUOZzAFd3M8Z81Vn0OhLoiTjDNy5Ejq3bs3vfnmm7Rw4UIyDIMmTJhAl156KRERfffddxQIBKi0tLRR52+uGIhT2HHcVBe3xVm7di2df/755PV6adeuXXTUUUfR3LlzacyYMXTzzTfTHXfcQbfddhvt3buXLr74YlJVlb755htq3bo16bp+WMZxU13cFsdNdWnJOG3btqXbb7+dRo0aRRUVFWQYBhERtWvXjq6++mpiZrrzzjuprKyMPv30U2rXrl1BxECcwo7jprq4Lc7BYljfNQRBIFEUqaioiObNm0cLFiyg9957j1q1apWXuuQrziGp+fKAUGg2bNjAZWVlfNFFF/E111zDxx57LJ988sm8cOFC+5g777yTg8Egr1ixgj/44AOeM2cOV1RUZDSuUHPEcVNd3BbHTXU5XOKcdNJJvGjRIvuY9F54N998M5900kmNvjSrOWIgTmHHcVNd3BZn9+7d3L17d549ezZv3ryZt23bxuPHj+fjjjuO77jjDo5Go1xZWcnXXHMNy7LMffr04YEDB3J5eXlGg8u7KY6b6uK2OG6qSyHE6dGjB8+ZM8e+dNnZW+Wyyy7jkpKSRn/maI4YiFPYcdxUF7fFaWwMZnN8u759+/L48ePZ4/FkNDlLc8U5VCE5d5iqra3lUaNG8c0332yX/fDDD9yqVStu06aNPYisrus8fvx4FkWRjzvuOD7ppJMymlWsOeK4qS5ui+OmuhzOcSwrVqzg66+/nouLixv9ob85YiBOYcdxU13cGGfDhg3csWPHeh96f/Ob3/AJJ5zACxYsYMMw7HEt77rrLl60aFHGA6W7KY6b6uK2OG6qS6HE6dWrF997770pl8guXryYy8rKMhpnqjliIE5hx3FTXdwWJ5MYn3/+OQuCwH6/P+PZuZsrzqEKybnDVDgc5gEDBvDTTz9tbzMzX3TRRTxs2DAeNGgQv/baa/bxK1as4HXr1mU8m1BzxHFTXdwWx011ORzjDB48OCXO+++/z1OnTuX169cXVAzEKew4bqqLG+NUVlbyMcccwytWrGDm1Flqp02bxh06dOA1a9ZkdE63x3FTXdwWx011KaQ4nTp1Somzc+fOlAHcCyUG4hR2HDfVxW1xMomxY8cOvvbaazOe0bw54xyqkJw7DBmGwbt27eJ27drx/Pnz7fLvv/+ee/bsyY8//jj37t2bp0yZUvBx3FQXt8VxU10O5zi/+tWvUu4XiUQKKgbiFHYcN9XFjXEsAwYM4J/97Gf2djQatdf79+/PF198cVbndXMcN9XFbXHcVJdCjJPLZGDNEQNxCjuOm+ritjiZtDXZft5ozjiHIiTnDiPpb9YHH3yQBUHgyZMn82233cZFRUX2bG/PP/88d+zYMWWq90KK46a6uC2Om+qCOMk4mcxo3BwxEKew47ipLm6LEwqFuKamhqurq+2y//73v9y6dWu+5JJL7DLrnDNnzuTzzjsvo3q4LY6b6uK2OG6qi9viuKkuiIPXgNviuKkuboLk3GFi06ZNvGDBAt6+fbtdpus6L126lAcMGMBnnXUW33PPPfa+P//5z9y3b9+Mpylujjhuqovb4ripLoiD1wDi4DXgtjgbNmzgkSNHct++fbldu3b85JNPMrP5y/QzzzzDRxxxBI8dO5bj8bid+J8wYQJffPHFrKpqo2O5KY6b6uK2OG6qi9viuKkuiIPXgNviuKkuboPk3GHgq6++4oqKChYEgWfNmlVvBrdIJJLSnZSZ+brrruOxY8dyJBJp9BujOeK4qS5ui+OmuiBOdnHcVBfEyS6Om+ritjgbNmzgVq1a8Q033MBPPfUUz5w5kxVFsQeMDofD/K9//YuPOeYY7t69O19wwQU8btw4DgaDvG7dukbVw21x3FQXt8VxU13cFsdNdUEcvAbcFsdNdXEjJOdcLhQK8eTJk/mKK67ghQsXsiAI/Otf/zrlg7/zQ/3GjRt5xowZXFxczGvXri2oOG6qi9viuKkuiIPXAOLgNeC2OD/99BOPHDmSp02bllI+dOhQvv7661PKampq+Oabb+Zf/epXfN111/GGDRsaXRc3xXFTXdwWx011cVscN9UFcfAacFscN9XFrWQCVxNFkfr160etWrWi8ePH0xFHHEEXX3wxERHdfPPNdMQRR5AgCEREVFtbS8uXL6fVq1fTihUrqFevXgUVx011cVscN9UFcfAaQBy8BtwWR1VV2rdvH40dO5aIiAzDIFEUqVOnTrR3714iImLzB1sqLi6me+65J+W4xnJTHDfVxW1x3FQXt8VxU10QB68Bt8VxU11cq2lyflBIQqFQyvazzz7LgiDwTTfdxHv27GFmcxDqXbt2saqqvHfv3oKN46a6uC2Om+qCOHgNIA5eA26L8+WXX9rr8XicmZlvu+02vuyyy1KOcw7anM14L26K46a6uC2Om+ritjhuqgviZBfHTXVxWxw31cWN0HPuMBAMBomISNd1EkWRxo8fT8xMv/zlL0kQBJoxYwYtWLCAtmzZQk8//TSVl5cXbBw31cVtcdxUF8TBawBx8BpwW5xu3boRkfnLtKIoRGT+cr179277mN///vfk9Xpp2rRpJMuy3WPvcI3jprq4LY6b6uK2OG6qC+LgNeC2OG6qiys1VdYPCpNhGPZsKM8++ywrisLHH388y7JsD9B4qMRxU13cFsdNdUGcwo2BOIUdx011cVsc69fpW2+9lc8++2xmZv7tb3/LgiBwZWVlXmK4LY6b6uK2OG6qi9viuKkuiFO4MRCncGM0Zxw3QHLuMGQYhv0mOfPMM7mioiKjwasLKY6b6uK2OG6qC+IUbgzEKew4bqqLm+JYyb85c+bwVVddxfPnz2ev18ufffZZ3mK4LY6b6uK2OG6qi9viuKkuiFO4MRCncGM0Zxw3QHLuMKVpGt9www0sCAKvWbPmkI7jprq4LY6b6oI4hRsDcQo7jpvq4rY48+bNY0EQuLS0lD/99NMmieG2OG6qi9viuKkubovjprogTuHGQJzCjdGccQ5lSM4dpjRN48WLF/Pq1asP+Thuqovb4ripLohTuDEQp7DjuKkubovz6aefsiAIvGHDhiaL4bY4bqqL2+K4qS5ui+OmuiBO4cZAnMKN0ZxxDmUCM3NLj3sHLYOZm2XgxeaI46a6uC2Om+qCOIUbA3EKO46b6uK2OOFw2J6QAnEKJwbiFG4MxCncGIhT2HHcVBe3xXFTXQ5lSM4BAAAAAAAAAAC0ELGlHwAAAAAAAAAAAMDhCsk5AAAAAAAAAACAFoLkHAAAAAAAAAAAQAtBcg4AAAAAAAAAAKCFIDkHAAAAAAAAAADQQpCcAwAAAAAAAAAAaCFIzgEAAABAzpiZhg8fTt26daO1a9fS8OHDacuWLS39sAAAAAAKHpJzAAAAANAoH374IUmSROeee269fVu3biVJkujBBx+kyy67jMrKyqhTp04t8CgBAAAADi0CM3NLPwgAAAAAKHy/+tWvqKioiJYsWUKbNm2idu3atfRDAgAAADjkoeccAAAAABxUKBSi5557jqZOnUrnnnsuLV261N73n//8hwRBoHfeeYf69+9PgUCABg8eTJs2bUo5x0MPPURdunQhj8dDxx9/PP3tb39r5loAAAAAFB4k5wAAAADgoP7+979T9+7d6fjjj6cJEybQo48+SukXYNx6661033330apVq0iWZZo8ebK978UXX6Tp06fTjTfeSOvXr6err76aJk2aRO+++25zVwUAAACgoOCyVgAAAAA4qCFDhtC4ceNo+vTppGkatW3blp5//nkaOnQo/ec//6Gf/exn9Pbbb9OwYcOIiOi1116jc889lyKRCPl8PhoyZAidcMIJ9Ne//tU+57hx4ygcDtOrr77aUtUCAAAAaHHoOQcAAAAAB7Rp0yb65JNP6JJLLiEiIlmWafz48bRkyZKU43r37m2vt23bloiIdu/eTUREGzdupCFDhqQcP2TIENq4cWNTPnQAAACAgie39AMAAAAAgMK2ZMkS0jQtZQIIZiav10sPPvigXaYoir0uCAIRERmG0XwPFAAAAOAQhJ5zAAAAALBfmqbRE088Qffddx9VVlbatzVr1lC7du3omWeeadR5evToQStXrkwpW7lyJfXs2bMpHjYAAADAIQM95wAAAABgv1555RWqqqqiKVOmUGlpacq+MWPG0JIlS2j+/PkHPc+vf/1rGjduHPXt25eGDx9OL7/8Mi1btozefvvtpnroAAAAAIcE9JwDAAAAgP1asmQJDR8+vF5ijshMzq1atYrWrl170PNccMEF9MADD9CCBQvohBNOoIcffpgee+wxGjp0aBM8agAAAIBDB2ZrBQAAAAAAAAAAaCHoOQcAAAAAAAAAANBCkJwDAAAAAAAAAABoIUjOAQAAAAAAAAAAtBAk5wAAAAAAAAAAAFoIknMAAAAAAAAAAAAtBMk5AAAAAAAAAACAFoLkHAAAAAAAAAAAQAtBcg4AAAAAAAAAAKCFIDkHAAAAAAAAAADQQpCcAwAAAAAAAAAAaCFIzgEAAAAAAAAAALQQJOcAAAAAAAAAAABayP8Hd5w4cS7A/AIAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Normalizar los datos\n", + "scaler = MinMaxScaler()\n", + "scaled_data = scaler.fit_transform(grouped_data)\n", + "\n", + "# Reformatear los datos para la CNN\n", + "# Suponiendo que cada columna (región) es un 'canal' y cada fila es un punto de tiempo\n", + "X = scaled_data.reshape(scaled_data.shape[0], 1, scaled_data.shape[1])\n", + "\n", + "# Dividir en entrenamiento y prueba (usando los últimos datos para prueba)\n", + "train_size = int(X.shape[0] * 0.8)\n", + "X_train, X_test = X[:train_size, :, :], X[train_size:, :, :]\n", + "\n", + "# Generar Y (etiquetas) para los conjuntos de entrenamiento y prueba\n", + "Y_train, Y_test = X_train[:, :, :], X_test[:, :, :]" + ], + "metadata": { + "id": "9MZcbtw9t95l" + }, + "execution_count": 6, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Asegúrate de que la forma de X_train sea correcta\n", + "# X_train debería tener una forma (num_samples, num_steps, num_features)\n", + "print(\"Forma de X_train:\", X_train.shape)\n" + ], + "metadata": { + "id": "jR-a5gHyQPMt", + "outputId": "84a08881-d3fc-41a1-a5fe-f915bf4aaf26", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Forma de X_train: (33, 1, 7)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Diseño de la CNN con ajustes\n", + "model = Sequential()\n", + "# Añadir regularización a la capa convolucional\n", + "model.add(Conv1D(filters=64, kernel_size=1, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2]), kernel_regularizer=l1_l2(l1=0.01, l2=0.01)))\n", + "model.add(MaxPooling1D(pool_size=1))\n", + "model.add(Flatten())\n", + "# Añadir Dropout para reducir el sobreajuste\n", + "model.add(Dropout(0.5))\n", + "# Capa densa con regularización\n", + "model.add(Dense(50, activation='relu', kernel_regularizer=l1_l2(l1=0.01, l2=0.01)))\n", + "model.add(Dense(X_train.shape[2]))\n", + "\n", + "# Compilar el modelo con un optimizador y tasa de aprendizaje ajustados\n", + "model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mse'])\n", + "\n", + "# Resumen del modelo para verificar la arquitectura\n", + "model.summary()" + ], + "metadata": { + "id": "1eAT7FatQ3_W", + "outputId": "1d80c495-eb16-4017-bee3-65c8a5c15e06", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Model: \"sequential\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " conv1d (Conv1D) (None, 1, 64) 512 \n", + " \n", + " max_pooling1d (MaxPooling1 (None, 1, 64) 0 \n", + " D) \n", + " \n", + " flatten (Flatten) (None, 64) 0 \n", + " \n", + " dropout (Dropout) (None, 64) 0 \n", + " \n", + " dense (Dense) (None, 50) 3250 \n", + " \n", + " dense_1 (Dense) (None, 7) 357 \n", + " \n", + "=================================================================\n", + "Total params: 4119 (16.09 KB)\n", + "Trainable params: 4119 (16.09 KB)\n", + "Non-trainable params: 0 (0.00 Byte)\n", + "_________________________________________________________________\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "early_stopping = EarlyStopping(monitor='val_loss', patience=100, mode='min')\n", + "history = model.fit(X_train, Y_train, epochs=500, validation_data=(X_test, Y_test), callbacks=[early_stopping], verbose=10)" + ], + "metadata": { + "id": "xros5lXUS3eR", + "outputId": "6d35db43-be9d-47dd-ad65-4e1d9411868e", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/500\n", + "Epoch 2/500\n", + "Epoch 3/500\n", + "Epoch 4/500\n", + "Epoch 5/500\n", + "Epoch 6/500\n", + "Epoch 7/500\n", + "Epoch 8/500\n", + "Epoch 9/500\n", + "Epoch 10/500\n", + "Epoch 11/500\n", + "Epoch 12/500\n", + "Epoch 13/500\n", + "Epoch 14/500\n", + "Epoch 15/500\n", + "Epoch 16/500\n", + "Epoch 17/500\n", + "Epoch 18/500\n", + "Epoch 19/500\n", + "Epoch 20/500\n", + "Epoch 21/500\n", + "Epoch 22/500\n", + "Epoch 23/500\n", + "Epoch 24/500\n", + "Epoch 25/500\n", + "Epoch 26/500\n", + "Epoch 27/500\n", + "Epoch 28/500\n", + "Epoch 29/500\n", + "Epoch 30/500\n", + "Epoch 31/500\n", + "Epoch 32/500\n", + "Epoch 33/500\n", + "Epoch 34/500\n", + "Epoch 35/500\n", + "Epoch 36/500\n", + "Epoch 37/500\n", + "Epoch 38/500\n", + "Epoch 39/500\n", + "Epoch 40/500\n", + "Epoch 41/500\n", + "Epoch 42/500\n", + "Epoch 43/500\n", + "Epoch 44/500\n", + "Epoch 45/500\n", + "Epoch 46/500\n", + "Epoch 47/500\n", + "Epoch 48/500\n", + "Epoch 49/500\n", + "Epoch 50/500\n", + "Epoch 51/500\n", + "Epoch 52/500\n", + "Epoch 53/500\n", + "Epoch 54/500\n", + "Epoch 55/500\n", + "Epoch 56/500\n", + "Epoch 57/500\n", + "Epoch 58/500\n", + "Epoch 59/500\n", + "Epoch 60/500\n", + "Epoch 61/500\n", + "Epoch 62/500\n", + "Epoch 63/500\n", + "Epoch 64/500\n", + "Epoch 65/500\n", + "Epoch 66/500\n", + "Epoch 67/500\n", + "Epoch 68/500\n", + "Epoch 69/500\n", + "Epoch 70/500\n", + "Epoch 71/500\n", + "Epoch 72/500\n", + "Epoch 73/500\n", + "Epoch 74/500\n", + "Epoch 75/500\n", + "Epoch 76/500\n", + "Epoch 77/500\n", + "Epoch 78/500\n", + "Epoch 79/500\n", + "Epoch 80/500\n", + "Epoch 81/500\n", + "Epoch 82/500\n", + "Epoch 83/500\n", + "Epoch 84/500\n", + "Epoch 85/500\n", + "Epoch 86/500\n", + "Epoch 87/500\n", + "Epoch 88/500\n", + "Epoch 89/500\n", + "Epoch 90/500\n", + "Epoch 91/500\n", + "Epoch 92/500\n", + "Epoch 93/500\n", + "Epoch 94/500\n", + "Epoch 95/500\n", + "Epoch 96/500\n", + "Epoch 97/500\n", + "Epoch 98/500\n", + "Epoch 99/500\n", + "Epoch 100/500\n", + "Epoch 101/500\n", + "Epoch 102/500\n", + "Epoch 103/500\n", + "Epoch 104/500\n", + "Epoch 105/500\n", + "Epoch 106/500\n", + "Epoch 107/500\n", + "Epoch 108/500\n", + "Epoch 109/500\n", + "Epoch 110/500\n", + "Epoch 111/500\n", + "Epoch 112/500\n", + "Epoch 113/500\n", + "Epoch 114/500\n", + "Epoch 115/500\n", + "Epoch 116/500\n", + "Epoch 117/500\n", + "Epoch 118/500\n", + "Epoch 119/500\n", + "Epoch 120/500\n", + "Epoch 121/500\n", + "Epoch 122/500\n", + "Epoch 123/500\n", + "Epoch 124/500\n", + "Epoch 125/500\n", + "Epoch 126/500\n", + "Epoch 127/500\n", + "Epoch 128/500\n", + "Epoch 129/500\n", + "Epoch 130/500\n", + "Epoch 131/500\n", + "Epoch 132/500\n", + "Epoch 133/500\n", + "Epoch 134/500\n", + "Epoch 135/500\n", + "Epoch 136/500\n", + "Epoch 137/500\n", + "Epoch 138/500\n", + "Epoch 139/500\n", + "Epoch 140/500\n", + "Epoch 141/500\n", + "Epoch 142/500\n", + "Epoch 143/500\n", + "Epoch 144/500\n", + "Epoch 145/500\n", + "Epoch 146/500\n", + "Epoch 147/500\n", + "Epoch 148/500\n", + "Epoch 149/500\n", + "Epoch 150/500\n", + "Epoch 151/500\n", + "Epoch 152/500\n", + "Epoch 153/500\n", + "Epoch 154/500\n", + "Epoch 155/500\n", + "Epoch 156/500\n", + "Epoch 157/500\n", + "Epoch 158/500\n", + "Epoch 159/500\n", + "Epoch 160/500\n", + "Epoch 161/500\n", + "Epoch 162/500\n", + "Epoch 163/500\n", + "Epoch 164/500\n", + "Epoch 165/500\n", + "Epoch 166/500\n", + "Epoch 167/500\n", + "Epoch 168/500\n", + "Epoch 169/500\n", + "Epoch 170/500\n", + "Epoch 171/500\n", + "Epoch 172/500\n", + "Epoch 173/500\n", + "Epoch 174/500\n", + "Epoch 175/500\n", + "Epoch 176/500\n", + "Epoch 177/500\n", + "Epoch 178/500\n", + "Epoch 179/500\n", + "Epoch 180/500\n", + "Epoch 181/500\n", + "Epoch 182/500\n", + "Epoch 183/500\n", + "Epoch 184/500\n", + "Epoch 185/500\n", + "Epoch 186/500\n", + "Epoch 187/500\n", + "Epoch 188/500\n", + "Epoch 189/500\n", + "Epoch 190/500\n", + "Epoch 191/500\n", + "Epoch 192/500\n", + "Epoch 193/500\n", + "Epoch 194/500\n", + "Epoch 195/500\n", + "Epoch 196/500\n", + "Epoch 197/500\n", + "Epoch 198/500\n", + "Epoch 199/500\n", + "Epoch 200/500\n", + "Epoch 201/500\n", + "Epoch 202/500\n", + "Epoch 203/500\n", + "Epoch 204/500\n", + "Epoch 205/500\n", + "Epoch 206/500\n", + "Epoch 207/500\n", + "Epoch 208/500\n", + "Epoch 209/500\n", + "Epoch 210/500\n", + "Epoch 211/500\n", + "Epoch 212/500\n", + "Epoch 213/500\n", + "Epoch 214/500\n", + "Epoch 215/500\n", + "Epoch 216/500\n", + "Epoch 217/500\n", + "Epoch 218/500\n", + "Epoch 219/500\n", + "Epoch 220/500\n", + "Epoch 221/500\n", + "Epoch 222/500\n", + "Epoch 223/500\n", + "Epoch 224/500\n", + "Epoch 225/500\n", + "Epoch 226/500\n", + "Epoch 227/500\n", + "Epoch 228/500\n", + "Epoch 229/500\n", + "Epoch 230/500\n", + "Epoch 231/500\n", + "Epoch 232/500\n", + "Epoch 233/500\n", + "Epoch 234/500\n", + "Epoch 235/500\n", + "Epoch 236/500\n", + "Epoch 237/500\n", + "Epoch 238/500\n", + "Epoch 239/500\n", + "Epoch 240/500\n", + "Epoch 241/500\n", + "Epoch 242/500\n", + "Epoch 243/500\n", + "Epoch 244/500\n", + "Epoch 245/500\n", + "Epoch 246/500\n", + "Epoch 247/500\n", + "Epoch 248/500\n", + "Epoch 249/500\n", + "Epoch 250/500\n", + "Epoch 251/500\n", + "Epoch 252/500\n", + "Epoch 253/500\n", + "Epoch 254/500\n", + "Epoch 255/500\n", + "Epoch 256/500\n", + "Epoch 257/500\n", + "Epoch 258/500\n", + "Epoch 259/500\n", + "Epoch 260/500\n", + "Epoch 261/500\n", + "Epoch 262/500\n", + "Epoch 263/500\n", + "Epoch 264/500\n", + "Epoch 265/500\n", + "Epoch 266/500\n", + "Epoch 267/500\n", + "Epoch 268/500\n", + "Epoch 269/500\n", + "Epoch 270/500\n", + "Epoch 271/500\n", + "Epoch 272/500\n", + "Epoch 273/500\n", + "Epoch 274/500\n", + "Epoch 275/500\n", + "Epoch 276/500\n", + "Epoch 277/500\n", + "Epoch 278/500\n", + "Epoch 279/500\n", + "Epoch 280/500\n", + "Epoch 281/500\n", + "Epoch 282/500\n", + "Epoch 283/500\n", + "Epoch 284/500\n", + "Epoch 285/500\n", + "Epoch 286/500\n", + "Epoch 287/500\n", + "Epoch 288/500\n", + "Epoch 289/500\n", + "Epoch 290/500\n", + "Epoch 291/500\n", + "Epoch 292/500\n", + "Epoch 293/500\n", + "Epoch 294/500\n", + "Epoch 295/500\n", + "Epoch 296/500\n", + "Epoch 297/500\n", + "Epoch 298/500\n", + "Epoch 299/500\n", + "Epoch 300/500\n", + "Epoch 301/500\n", + "Epoch 302/500\n", + "Epoch 303/500\n", + "Epoch 304/500\n", + "Epoch 305/500\n", + "Epoch 306/500\n", + "Epoch 307/500\n", + "Epoch 308/500\n", + "Epoch 309/500\n", + "Epoch 310/500\n", + "Epoch 311/500\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Visualizar el entrenamiento\n", + "plt.plot(history.history['loss'], label='train')\n", + "plt.title('Model Loss periodo Epoch')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Epoch')\n", + "plt.legend()\n", + "plt.show()" + ], + "metadata": { + "id": "uQuljCCiQnBd", + "outputId": "15c0864e-71e1-4fdf-e9bf-ff9661d08ad8", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + } + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMzklEQVR4nO3deXwTdcIG8GeSNGnTI70vKG0ppVCg5caCHMoNAoLIqYKLsgioqPiurK8Kriys7qsIKoqugKuIAuKBIFBOQShnOQTKYUvL0Za2NL2v5Pf+URoJPSlpJ2me78d82sxMkifT1D7M/GZGEkIIEBEREVkhhdwBiIiIiKrDokJERERWi0WFiIiIrBaLChEREVktFhUiIiKyWiwqREREZLVYVIiIiMhqsagQERGR1WJRISIiIqvFokLUiCRJwvz58+/6cUlJSZAkCatWrbJ4JnvQr18/9OvXz2LPZ28/j4r3++9//1vuKGSHWFTI7qxatQqSJEGSJOzbt6/SfCEEgoKCIEkSHnroIRkS1t/u3bshSRLWr18vdxS6CxVFoLrb4sWL5Y5IJBuV3AGI5OLo6Ig1a9bg/vvvN5u+Z88eXLlyBRqNRqZkZGnbtm2TO0KdTJw4EcOGDas0vVOnTjKkIbIOLCpkt4YNG4Z169Zh6dKlUKn+/FVYs2YNunTpgoyMDBnTkSUUFBRAq9VCrVbLHaVOOnfujMcee0zuGERWhbt+yG5NnDgRmZmZ2L59u2laSUkJ1q9fj0mTJlX5mPz8fLz00ksICgqCRqNBREQE/v3vf+POi5AXFxfjhRdegI+PD1xdXTFy5EhcuXKlyue8evUq/vKXv8DPzw8ajQbt2rXD559/brk3WoU//vgDjz76KDw9PaHVanHffffh559/rrTcsmXL0K5dO2i1Wnh4eKBr165Ys2aNaX5ubi7mzJmDkJAQaDQa+Pr6YuDAgTh27FiNrz9//nxIkoRz585h3LhxcHNzg5eXF55//nkUFRVVWv7LL79Ely5d4OTkBE9PT0yYMAEpKSlmy/Tr1w/t27fH0aNH0adPH2i1Wvz97383zbtzjEp6ejqmTZsGPz8/ODo6Ijo6GqtXr6702tnZ2Zg6dSp0Oh3c3d0xZcoUZGdnV/m+du7cid69e8PZ2Rnu7u4YNWoUzp49W+O6uFshISF46KGHsG3bNnTs2BGOjo6IjIzEd999V2nZuv6ci4qKMH/+fLRu3RqOjo4ICAjAmDFjcOnSpUrLrlixAmFhYdBoNOjWrRsOHz5s0fdHdCduUSG7FRISgpiYGHz99dcYOnQoAGDLli3Q6/WYMGECli5dara8EAIjR47Erl27MG3aNHTs2BFbt27Fyy+/jKtXr+K9994zLfvUU0/hyy+/xKRJk9CzZ0/s3LkTw4cPr5QhLS0N9913HyRJwuzZs+Hj44MtW7Zg2rRpyMnJwZw5cyz+vtPS0tCzZ08UFBTgueeeg5eXF1avXo2RI0di/fr1GD16NADg008/xXPPPYexY8eaCsTJkycRFxdnKnIzZszA+vXrMXv2bERGRiIzMxP79u3D2bNn0blz51qzjBs3DiEhIVi0aBEOHjyIpUuX4ubNm/jiiy9MyyxcuBCvvfYaxo0bh6eeego3btzAsmXL0KdPHxw/fhzu7u6mZTMzMzF06FBMmDABjz32GPz8/Kp83cLCQvTr1w8XL17E7NmzERoainXr1mHq1KnIzs7G888/D6D8Zz5q1Cjs27cPM2bMQNu2bbFx40ZMmTKl0nPGxsZi6NChaNmyJebPn4/CwkIsW7YMvXr1wrFjxxASElLr+igoKKhyS567u7vZVr8LFy5g/PjxmDFjBqZMmYKVK1fi0UcfxS+//IKBAwcCqPvP2WAw4KGHHsKOHTswYcIEPP/888jNzcX27dtx+vRphIWFmV53zZo1yM3NxV//+ldIkoS3334bY8aMwR9//AEHB4da3x9RvQgiO7Ny5UoBQBw+fFh88MEHwtXVVRQUFAghhHj00UfFAw88IIQQIjg4WAwfPtz0uO+//14AEG+99ZbZ840dO1ZIkiQuXrwohBAiPj5eABAzZ840W27SpEkCgHjjjTdM06ZNmyYCAgJERkaG2bITJkwQOp3OlCsxMVEAECtXrqzxve3atUsAEOvWrat2mTlz5ggA4tdffzVNy83NFaGhoSIkJEQYDAYhhBCjRo0S7dq1q/H1dDqdmDVrVo3LVOWNN94QAMTIkSPNps+cOVMAECdOnBBCCJGUlCSUSqVYuHCh2XKnTp0SKpXKbHrfvn0FAPHxxx9Xer2+ffuKvn37mu4vWbJEABBffvmlaVpJSYmIiYkRLi4uIicnRwjx58/87bffNi1XVlYmevfuXenn0bFjR+Hr6ysyMzNN006cOCEUCoV44oknalwfFT/f6m4HDhwwLRscHCwAiA0bNpim6fV6ERAQIDp16mSaVtef8+effy4AiHfffbdSLqPRaJbPy8tLZGVlmeb/8MMPAoD46aefanx/RPeCu37Iro0bNw6FhYXYtGkTcnNzsWnTpmp3+2zevBlKpRLPPfec2fSXXnoJQghs2bLFtByASsvduXVECIENGzZgxIgREEIgIyPDdBs8eDD0en2tu1DqY/PmzejevbvZIGIXFxdMnz4dSUlJOHPmDIDyf8VfuXKlxk377u7uiIuLw7Vr1+qVZdasWWb3n332WVNGAPjuu+9gNBoxbtw4s/Xj7++P8PBw7Nq1y+zxGo0GTz75ZK2vu3nzZvj7+2PixImmaQ4ODnjuueeQl5eHPXv2mJZTqVR45plnTMsplUpTzgrXr19HfHw8pk6dCk9PT9P0qKgoDBw40PR+ajN9+nRs37690i0yMtJsucDAQNMWEQBwc3PDE088gePHjyM1NdWUvS4/5w0bNsDb27vSewLKD6e/3fjx4+Hh4WG637t3bwDlu5iIGgp3/ZBd8/HxwYABA7BmzRoUFBTAYDBg7NixVS57+fJlBAYGwtXV1Wx627ZtTfMrvioUCrNN5gAQERFhdv/GjRvIzs7GihUrsGLFiipfMz09vV7vqyaXL19Gjx49Kk2//X20b98ef/vb3xAbG4vu3bujVatWGDRoECZNmoRevXqZHvP2229jypQpCAoKQpcuXTBs2DA88cQTaNmyZZ2yhIeHm90PCwuDQqFAUlISgPJdHEKISstVuHN3Q7Nmzeo0cPby5csIDw+HQmH+b7WqfpYBAQFwcXExW+7On2XF8ndOr3jOrVu3Ij8/H87OzjXmCg8Px4ABA2rN36pVq0olonXr1gDKD3X29/ev88/50qVLiIiIMNu1VJ0WLVqY3a8oLTdv3qz1sUT1xaJCdm/SpEl4+umnkZqaiqFDh5qNeWhIRqMRAPDYY49VOeYBKP8XuVzatm2LhIQEbNq0Cb/88gs2bNiAjz76CK+//joWLFgAoHyLVO/evbFx40Zs27YN77zzDv71r3/hu+++M437uRt3/vE1Go2QJAlbtmyBUqmstPydBcLJyemuX5PqrqqfAYBKg8mJLIlFheze6NGj8de//hUHDx7EN998U+1ywcHBiI2NRW5urtlWlXPnzpnmV3w1Go2mf6lWSEhIMHu+iiOCDAZDnf4VbSnBwcGVsgCV3wcAODs7Y/z48Rg/fjxKSkowZswYLFy4EPPmzYOjoyMAICAgADNnzsTMmTORnp6Ozp07Y+HChXUqKhcuXEBoaKjp/sWLF2E0Gk0DT8PCwiCEQGhoqGmLgSUEBwfj5MmTMBqNZltVqvpZ7tixA3l5eWal6M71V7F8devV29u71q0pd+PixYsQQpgVu/PnzwOAad3V9eccFhaGuLg4lJaWckAsWSWOUSG75+LiguXLl2P+/PkYMWJEtcsNGzYMBoMBH3zwgdn09957D5Ikmf4wV3y986ihJUuWmN1XKpV45JFHsGHDBpw+fbrS6924caM+b6dWw4YNw6FDh3DgwAHTtPz8fKxYsQIhISGm8RCZmZlmj1Or1YiMjIQQAqWlpTAYDNDr9WbL+Pr6IjAwEMXFxXXK8uGHH5rdX7ZsGYA/1+GYMWOgVCqxYMGCSv9qF0JUylhXw4YNQ2pqqlkxLSsrw7Jly+Di4oK+ffualisrK8Py5ctNyxkMBlPOCgEBAejYsSNWr15tdujy6dOnsW3btipP4nYvrl27ho0bN5ru5+Tk4IsvvkDHjh3h7+9vyl6Xn/MjjzyCjIyMSp9rgFtKyDpwiwoRUO2ul9uNGDECDzzwAF599VUkJSUhOjoa27Ztww8//IA5c+aYxqR07NgREydOxEcffQS9Xo+ePXtix44duHjxYqXnXLx4MXbt2oUePXrg6aefRmRkJLKysnDs2DHExsYiKyurXu9nw4YNpn853/k+X3nlFdMh2c899xw8PT2xevVqJCYmYsOGDaYtDIMGDYK/vz969eoFPz8/nD17Fh988AGGDx8OV1dXZGdno3nz5hg7diyio6Ph4uKC2NhYHD58GP/3f/9Xp5yJiYkYOXIkhgwZggMHDpgO6Y6OjgZQ/q/9t956C/PmzUNSUhIefvhhuLq6IjExERs3bsT06dMxd+7cu14/06dPxyeffIKpU6fi6NGjCAkJwfr167F//34sWbLEtMVsxIgR6NWrF1555RUkJSWZzldyZ0EDgHfeeQdDhw5FTEwMpk2bZjo8WafT1fn6TseOHcOXX35ZaXpYWBhiYmJM91u3bo1p06bh8OHD8PPzw+eff460tDSsXLnStExdf85PPPEEvvjiC7z44os4dOgQevfujfz8fMTGxmLmzJkYNWrU3axaIsuT6WgjItncfnhyTe48PFmI8sM7X3jhBREYGCgcHBxEeHi4eOedd0yHcVYoLCwUzz33nPDy8hLOzs5ixIgRIiUlpdLhyUIIkZaWJmbNmiWCgoKEg4OD8Pf3F/379xcrVqwwLXO3hydXd6s4VPXSpUti7Nixwt3dXTg6Ooru3buLTZs2mT3XJ598Ivr06SO8vLyERqMRYWFh4uWXXxZ6vV4IIURxcbF4+eWXRXR0tHB1dRXOzs4iOjpafPTRRzVmFOLPw5PPnDkjxo4dK1xdXYWHh4eYPXu2KCwsrLT8hg0bxP333y+cnZ2Fs7OzaNOmjZg1a5ZISEgwLdO3b99qD6e+8/BkIcrX+5NPPim8vb2FWq0WHTp0qHL9ZmZmiscff1y4ubkJnU4nHn/8cXH8+PEqfx6xsbGiV69ewsnJSbi5uYkRI0aIM2fO1Lo+ajs8ecqUKaZlKz6XW7duFVFRUUKj0Yg2bdpUeUh6XX7OQghRUFAgXn31VREaGmr6DI4dO1ZcunTJLN8777xT6bFVfaaJLEkSgtv2iKhxzZ8/HwsWLMCNGzfg7e0tdxybEhISgvbt22PTpk1yRyFqFByjQkRERFaLRYWIiIisFosKERERWS2OUSEiIiKrxS0qREREZLVYVIiIiMhq2fQJ34xGI65duwZXV9dK1wghIiIi6ySEQG5uLgIDAytdHPRONl1Url27hqCgILljEBERUT2kpKSgefPmNS5j00Wl4jTXKSkpcHNzkzkNERER1UVOTg6CgoLMLvBaHZsuKhW7e9zc3FhUiIiIbExdhm1wMC0RERFZLRYVIiIislosKkRERGS1bHqMChERUUMxGo0oKSmRO4ZNcnBwgFKptMhzsagQERHdoaSkBImJiTAajXJHsVnu7u7w9/e/5/OcsagQERHdRgiB69evQ6lUIigoqNYTkpE5IQQKCgqQnp4OAAgICLin52NRISIiuk1ZWRkKCgoQGBgIrVYrdxyb5OTkBABIT0+Hr6/vPe0GYk0kIiK6jcFgAACo1WqZk9i2ipJXWlp6T8/DokJERFQFXkPu3lhq/bGoEBERkdViUSEiIqJKQkJCsGTJErljcDAtERFRU9GvXz907NjRIgXj8OHDcHZ2vvdQ94hFpRqp+iIUlhoQ6i3/D4mIiMgShBAwGAxQqWr/8+/j49MIiWrHXT9VWLk/Efct2oF3tp6TOwoREVGdTJ06FXv27MH7778PSZIgSRJWrVoFSZKwZcsWdOnSBRqNBvv27cOlS5cwatQo+Pn5wcXFBd26dUNsbKzZ892560eSJHz22WcYPXo0tFotwsPD8eOPPzb4+2JRqUJkgBsA4OjlmxBCyJyGiIjkJIRAQUmZLLe7+Rv0/vvvIyYmBk8//TSuX7+O69evIygoCADwyiuvYPHixTh79iyioqKQl5eHYcOGYceOHTh+/DiGDBmCESNGIDk5ucbXWLBgAcaNG4eTJ09i2LBhmDx5MrKysu5p/daGu36qENXcHSqFhLScYly5WYggT57wh4jIXhWWGhD5+lZZXvvMm4OhVdftT7VOp4NarYZWq4W/vz8A4Ny58j0Db775JgYOHGha1tPTE9HR0ab7//jHP7Bx40b8+OOPmD17drWvMXXqVEycOBEA8M9//hNLly7FoUOHMGTIkLt+b3XFLSpVcFIr0a6ZDgBwLPmmzGmIiIjuTdeuXc3u5+XlYe7cuWjbti3c3d3h4uKCs2fP1rpFJSoqyvS9s7Mz3NzcTKfKbyjcolKNLi08cCIlG0eSbmJUx2ZyxyEiIpk4OShx5s3Bsr22Jdx59M7cuXOxfft2/Pvf/0arVq3g5OSEsWPH1nq1aAcHB7P7kiQ1+IUbWVSq0TXEA5/vT8TRy9yiQkRkzyRJqvPuF7mp1WrTJQBqsn//fkydOhWjR48GUL6FJSkpqYHT1Q93/VSjS7AHAOBcag7yistkTkNERFS7kJAQxMXFISkpCRkZGdVu7QgPD8d3332H+Ph4nDhxApMmTWrwLSP1xaJSDT83RzT3cIJRAPHJ2XLHISIiqtXcuXOhVCoRGRkJHx+fasecvPvuu/Dw8EDPnj0xYsQIDB48GJ07d27ktHUjCRs+/jYnJwc6nQ56vR5ubm4Wf/7n1x7HD/HX8MKA1nh+QLjFn5+IiKxPUVEREhMTERoaCkdHR7nj2Kya1uPd/P3mFpUadL21++fI5YY9RpyIiIiqxqJSg863ikp8cjYMRpvd8ERERGSzWFRq0MbfDc5qJXKLy3A+LVfuOERERHaHRaUGSoWETi3Kt6rwMGUiIqLGx6JSi4rDlFlUiIjsiw0fa2IVLLX+WFRq0TWkvKgcTuKAWiIie6BUlp8NtraztFLNCgoKAFQ+m+3dso1T7cmoUwsPKBUSrtwsxHV9IQJ0TnJHIiKiBqRSqaDVanHjxg04ODhAoeC/6e+GEAIFBQVIT0+Hu7u7qfjVl6xFZf78+ViwYIHZtIiICNPVHq2Bi0aFyAA3nLqqx+GkmxgZzaJCRNSUSZKEgIAAJCYm4vLly3LHsVnu7u6mqzjfC9m3qLRr1w6xsbGm+yqV7JEq6RriUV5UErMwMjpQ7jhERNTA1Go1wsPDufunnhwcHO55S0oF2VuBSqWySONqSN1DPLFyfxLHqRAR2RGFQsEz01oB2Xe8XbhwAYGBgWjZsiUmT55c7XUJ5NTl1oDahLRc6AtKZU5DRERkP2QtKj169MCqVavwyy+/YPny5UhMTETv3r2Rm1v1ydWKi4uRk5NjdmsMvq6OCPNxhhDAb5cyGuU1iYiISOaiMnToUDz66KOIiorC4MGDsXnzZmRnZ+Pbb7+tcvlFixZBp9OZbkFBQY2WtU9rHwDA3gs3Gu01iYiI7J3su35u5+7ujtatW+PixYtVzp83bx70er3plpKS0mjZTEXlfAZPAkRERNRIrKqo5OXl4dKlSwgICKhyvkajgZubm9mtsfQI9YRaqcDV7EL8kZHfaK9LRERkz2QtKnPnzsWePXuQlJSE3377DaNHj4ZSqcTEiRPljFUlrVqFbqHlg2r3nufuHyIiosYga1G5cuUKJk6ciIiICIwbNw5eXl44ePAgfHx85IxVrftblec6cClT5iRERET2QdbzqKxdu1bOl79rPVp6AgAOJWXBaBRQKCSZExERETVtVjVGxdp1aKaDVq1EdkEpzqdXfQg1ERERWQ6Lyl1wUCrQJbh8nErcHzxLLRERUUNjUblLPULLd//EJXKcChERUUNjUblLPVp6AQAOJWbxfCpEREQNjEXlLkU110GjUiAjrwSXbuTJHYeIiKhJY1G5SxqVEp1blI9TOchxKkRERA2KRaUeKg5TjktkUSEiImpILCr10CO0fJxK3B+ZHKdCRETUgFhU6qFTC3eolQqk5xYjKbNA7jhERERNFotKPTg6KNExyB1A+VYVIiIiahgsKvXEcSpEREQNj0WlnjhOhYiIqOGxqNRT52B3qBQSrumLcOVmodxxiIiImiQWlXrSqlWIaq4DABzkOBUiIqIGwaJyDypOp89xKkRERA2DReUeVFyg8CDHqRARETUIFpV70C3EE2qlAlduFiIxI1/uOERERE0Oi8o9cNao0C20/Lo/uxNuyJyGiIio6WFRuUf9WvsCAHafZ1EhIiKyNBaVe9QvwgdA+TiVwhKDzGmIiIiaFhaVe9TK1wXN3J1QUmbEgT8y5I5DRETUpLCo3CNJktD31lYVjlMhIiKyLBYVC+jX+s+iwsOUiYiILIdFxQJ6tvKGg1JCclYBD1MmIiKyIBYVC3DRqNAtpPzkb9z9Q0REZDksKhZScfQPD1MmIiKyHBYVC+kXUX4+lbg/MlFUysOUiYiILIFFxULCfV3g7+aI4jIjL1JIRERkISwqFiJJEvreOvpnD8epEBERWQSLigX1uVVU9l5gUSEiIrIEFhULur+VNxQScDE9D1ezC+WOQ0REZPNYVCxIp3VApxblV1Pey6N/iIiI7hmLioX1Cec4FSIiIkthUbGwiuv+7L+YgVKDUeY0REREto1FxcI6NNPBXeuA3OIyxKdkyx2HiIjIprGoWJhSIaH3rd0/HKdCRER0b1hUGkCfcG8AwB4WFSIionvCotIAKk78duqqHpl5xTKnISIisl0sKg3A180RbfxdIQSw72KG3HGIiIhsFotKA6k4+oe7f4iIiOqPRaWB9DUNqM2A0ShkTkNERGSbWFQaSJcQD2jVSmTkFePM9Ry54xAREdkkFpUGolEp0TPMCwAvUkhERFRfLCoNqOLoH55On4iIqH5YVBpQ39a+AICjl28it6hU5jRERES2h0WlAbXw0iLU2xllRoHfLmXKHYeIiMjmsKg0sIrdP7vOpcuchIiIyPawqDSwQZF+AIDNp66juMwgcxoiIiLbwqLSwO5r6YUAnSNyisqw8yy3qhAREd0NFpUGplBIeLhTMwDAhmNXZU5DRERkW1hUGsGYW0Vld0I6sgtKZE5DRERkO1hUGkG4nyta+7mgzCiw9wIvUkhERFRXLCqNpF9E+TlVdidwnAoREVFdWU1RWbx4MSRJwpw5c+SO0iD6Rfx5llpepJCIiKhurKKoHD58GJ988gmioqLkjtJgugZ7wlmtRGZ+CU5f08sdh4iIyCbIXlTy8vIwefJkfPrpp/Dw8JA7ToNRqxTo1cobALCb1/4hIiKqE9mLyqxZszB8+HAMGDBA7igNjuNUiIiI7o5Kzhdfu3Ytjh07hsOHD9dp+eLiYhQXF5vu5+TkNFS0BlExTiU+JRs380vg4ayWOREREZF1k22LSkpKCp5//nl89dVXcHR0rNNjFi1aBJ1OZ7oFBQU1cErLCnR3QoSfK4wC2HuBu3+IiIhqI1tROXr0KNLT09G5c2eoVCqoVCrs2bMHS5cuhUqlgsFQ+bo48+bNg16vN91SUlJkSH5vbj/6h4iIiGom266f/v3749SpU2bTnnzySbRp0wZ/+9vfoFQqKz1Go9FAo9E0VsQG0TfCB5/s/QN7zt+AwSigVEhyRyIiIrJashUVV1dXtG/f3myas7MzvLy8Kk1vSroGe8LVUYXM/BIcT76JriGeckciIiKyWrIf9WNv1CoFHmxTfvTPtjNpMqchIiKyblZVVHbv3o0lS5bIHaPBDW7nDwDY+nsqhOBZaomIiKpjVUXFXvRt7QO1SoHLmQVISMuVOw4REZHVYlGRgbNGhd63zlK79TR3/xAREVWHRUUmt+/+ISIioqqxqMikf1tfKCTgzPUcpGQVyB2HiIjIKrGoyMTLRYNutw5N5tE/REREVWNRkRF3/xAREdWMRUVGAyP9AABHkrKQmVdcy9JERET2h0VFRkGeWrQLdINRALFnufuHiIjoTiwqMvtz9w+LChER0Z1YVGRWUVT2XchAXnGZzGmIiIisC4uKzFr7uSDES4sSgxG7E9LljkNERGRVWFRkJkmSaavKNu7+ISIiMsOiYgUGtSs/+mfXuXSUlBllTkNERGQ9WFSsQKcgD/i4apBbXIbfLmXIHYeIiMhqsKhYAYVCMp1ThUf/EBER/YlFxUpUjFPZfiYVBqOQOQ0REZF1YFGxEj3DvKBzckBGXgniEjPljkNERGQVWFSshINSgSG3tqr8fPK6zGmIiIisA4uKFRkeFQAA+OV0KsoMPPqHiIiIRcWKxIR5wUPrgMz8EsQlZskdh4iISHYsKlbEQanAoMiKa/+kypyGiIhIfiwqVmZw+/LDlLf9ngYjj/4hIiI7x6JiZXqGecNZrURqThFOXtXLHYeIiEhWLCpWxtFBiQfa+AIoH1RLRERkz1hUrNCfFylMhRDc/UNERPaLRcUK9YvwgVqpwB8Z+biYnid3HCIiItmwqFghV0cH3B/uDYBH/xARkX1jUbFSg9uVH/3zC4sKERHZMRYVKzWgrR8UEnD6ag5SsgrkjkNERCQLFhUr5eWiQc+w8t0/3x5JkTkNERGRPFhUrNjE7i0AAN8cTuG1f4iIyC6xqFixgZF+8HJWIz23GDvPpcsdh4iIqNGxqFgxtUqBsV2bAwA2HLsicxoiIqLGx6Ji5UZEBQIA9p7PQFGpQeY0REREjYtFxcq1C3RDoM4RhaUG7L+YIXccIiKiRsWiYuUkScKAyPJzqmw/kyZzGiIiosbFomIDBt4qKrFn02E08to/RERkP1hUbECPUC+4OqqQkVeMg4mZcschIiJqNCwqNkCtUmB4hwAAwMZjV2VOQ0RE1HhYVGzE6E7NAABbTqeisIRH/xARkX1gUbER3UI80czdCXnFZdh+loNqiYjIPrCo2AiFQjJtVdnIk78REZGdYFGxIaM7lxeVvRcykJFXLHMaIiKihseiYkPCfFwQ3VwHg1HgpxPX5I5DRETU4FhUbIxp989xHv1DRERNH4uKjXkoOhBKhYSTV/S4mJ4ndxwiIqIGxaJiY7xdNOjb2gcAsPE4B9USEVHTxqJigyp2/3x//BpPqU9ERE0ai4oNGhjpB1eNClezC3EoKUvuOERERA2GRcUGOTooMbSDPwCeUp+IiJo2FhUbNbpTcwDA5lPXUVTKU+oTEVHTxKJio3qElp9SP7e4DLE8pT4RETVRLCo2SqGQMKpjIADu/iEioqZL1qKyfPlyREVFwc3NDW5uboiJicGWLVvkjGRTxtw6pf6e8zeQyVPqExFREyRrUWnevDkWL16Mo0eP4siRI3jwwQcxatQo/P7773LGshmtfF3RoZkOZUaBTSevyx2HiIjI4mQtKiNGjMCwYcMQHh6O1q1bY+HChXBxccHBgwfljGVTKs6p8h1PqU9ERE2Q1YxRMRgMWLt2LfLz8xETEyN3HJsx4tYp9U+kZOPSDZ5Sn4iImhbZi8qpU6fg4uICjUaDGTNmYOPGjYiMjKxy2eLiYuTk5Jjd7J2Pqwa9w70BAN9zqwoRETUxsheViIgIxMfHIy4uDs888wymTJmCM2fOVLnsokWLoNPpTLegoKBGTmudbr+iMk+pT0RETYkkhLCqv2wDBgxAWFgYPvnkk0rziouLUVz859EtOTk5CAoKgl6vh5ubW2PGtCqFJQZ0WxiLvOIyfPvXGHQP9ZQ7EhERUbVycnKg0+nq9Pdb9i0qdzIajWZl5HYajcZ0KHPFjQAntRJD2t86pT6vqExERE2IrEVl3rx52Lt3L5KSknDq1CnMmzcPu3fvxuTJk+WMZZPG3Nr9s+kkT6lPRERNh0rOF09PT8cTTzyB69evQ6fTISoqClu3bsXAgQPljGWT7mvphQCdI67ri7DzXDqGdQiQOxIREdE9k7Wo/Oc//5Hz5ZuU8lPqN8PHey7hu2NXWVSIiKhJsLoxKlR/FafU352Qjqz8EpnTEBER3TsWlSaktZ8r2gW6ocwoeE4VIiJqEupVVFJSUnDlyp9Hlxw6dAhz5szBihUrLBaM6mdCt/Jzy6w9nAwrO/KciIjortWrqEyaNAm7du0CAKSmpmLgwIE4dOgQXn31Vbz55psWDUh3Z1SnZnB0UOB8Wh6OJd+UOw4REdE9qVdROX36NLp37w4A+Pbbb9G+fXv89ttv+Oqrr7Bq1SpL5qO75ObogIeiAgEAa+JSZE5DRER0b+pVVEpLS6HRaAAAsbGxGDlyJACgTZs2uH79uuXSUb1M7F6+++fnU9egLyyVOQ0REVH91auotGvXDh9//DF+/fVXbN++HUOGDAEAXLt2DV5eXhYNSHevcwsPtPZzQVGpET/Ec1AtERHZrnoVlX/961/45JNP0K9fP0ycOBHR0dEAgB9//NG0S4jkI0kSJnZvAQBYE8dBtUREZLvqfVFCg8GAnJwceHh4mKYlJSVBq9XC19fXYgFrcjcXNbI32QUl6P7PHSgpM2LjzJ7o1MKj9gcRERE1gga/KGFhYSGKi4tNJeXy5ctYsmQJEhISGq2kUM3ctWoMv3V22q8PJcuchoiIqH7qVVRGjRqFL774AgCQnZ2NHj164P/+7//w8MMPY/ny5RYNSPU3qUf57p+fTlxHThEH1RIRke2pV1E5duwYevfuDQBYv349/Pz8cPnyZXzxxRdYunSpRQNS/XUN9kArXxcUlhrwA89US0RENqheRaWgoACurq4AgG3btmHMmDFQKBS47777cPnyZYsGpPqTJAmTbg2q/YqDaomIyAbVq6i0atUK33//PVJSUrB161YMGjQIAJCens5BrVZmTOdmUKsUOJeai/iUbLnjEBER3ZV6FZXXX38dc+fORUhICLp3746YmBgA5VtXOnXqZNGAdG/ctWo8xEG1RERko+pVVMaOHYvk5GQcOXIEW7duNU3v378/3nvvPYuFI8uYyEG1RERko+pVVADA398fnTp1wrVr10xXUu7evTvatGljsXBkGV2DPRDOQbVERGSD6lVUjEYj3nzzTeh0OgQHByM4OBju7u74xz/+AaPRaOmMdI8kSTIdqsxBtUREZEvqVVReffVVfPDBB1i8eDGOHz+O48eP45///CeWLVuG1157zdIZyQLGdGoODQfVEhGRjVHV50GrV6/GZ599ZrpqMgBERUWhWbNmmDlzJhYuXGixgGQZOq0DhkcF4LtjV7EmLpmn1CciIptQry0qWVlZVY5FadOmDbKysu45FDWMinOq/HTyGgfVEhGRTahXUYmOjsYHH3xQafoHH3yAqKioew5FDaNLsAda+7mgqNTIQbVERGQT6rXr5+2338bw4cMRGxtrOofKgQMHkJKSgs2bN1s0IFmOJEmY2L0FFvx0Bl/FJeOx+4IhSZLcsYiIiKpVry0qffv2xfnz5zF69GhkZ2cjOzsbY8aMwe+//47//ve/ls5IFjSmU3M4OpQPqo1L5G46IiKybpKw4LGqJ06cQOfOnWEwGCz1lDXKycmBTqeDXq/nqfvvwqsbT+GruGQMaOuHz6Z0lTsOERHZmbv5+13vE76R7frL/aEAgB3n0pCUkS9zGiIiouqxqNihMB8XPNjGF0IAK/cnyh2HiIioWiwqdmrara0q3x65An0BD1UmIiLrdFdH/YwZM6bG+dnZ2feShRpRzzAvtPF3xbnUXHx9OBkz+obJHYmIiKiSu9qiotPparwFBwfjiSeeaKisZEGSJJm2qqz+LQllBl6jiYiIrM9dbVFZuXJlQ+UgGYzsGIjFW87hur4I28+kYWiHALkjERERmeEYFTumUSkx8dZp9Vf9liRvGCIioiqwqNi5yfe1gFIhIS4xC+dSc+SOQ0REZIZFxc4F6JwwuJ0fAGD1b5dlTkNERGSORYUwJSYEAPD98as8VJmIiKwKiwqhe6gn2vi7orDUgHVHU+SOQ0REZMKiQpAkCVN6hgAAvjhwGQajxS7/REREdE9YVAgAMKpjINwcVUjOKsDuhHS54xAREQFgUaFbtGoVxncLAgCsPsBBtUREZB1YVMjk8ftCIEnA3vM3cDE9T+44RERELCr0pxZeWvRvU36o8oq9l2ROQ0RExKJCd5j5QPnFCb87dhXXsgtlTkNERPaORYXMdG7hgZiWXigzCnz66x9yxyEiIjvHokKVVGxV+fpQMjLzimVOQ0RE9oxFhSq5v5U3oprrUFRqxMr9SXLHISIiO8aiQpVIkoSZ/VoBAFYfSEJuEU+rT0RE8mBRoSoNivRDK18X5BaV4ZvDPK0+ERHJg0WFqqRQSHjq/lAAwMr9SSgzGGVORERE9ohFhar1cKdm8HJW42p2Ibb+niZ3HCIiskMsKlQtRwclHrsvGADw2T4eqkxERI2PRYVq9Nh9wVCrFDienI2jl2/KHYeIiOwMiwrVyMdVg9EdmwEA/sOtKkRE1MhYVKhW03qXD6r95XQqkjMLZE5DRET2hEWFatXazxV9WvvAKLhVhYiIGpesRWXRokXo1q0bXF1d4evri4cffhgJCQlyRqJq/LVPSwDAt0eu4GZ+icxpiIjIXshaVPbs2YNZs2bh4MGD2L59O0pLSzFo0CDk5+fLGYuq0DPMC+0C3VBYasDqA0lyxyEiIjshCSGE3CEq3LhxA76+vtizZw/69OlT6/I5OTnQ6XTQ6/Vwc3NrhIT2bdPJa5i95jhcHVXY9z8PQqd1kDsSERHZoLv5+21VY1T0ej0AwNPTs8r5xcXFyMnJMbtR4xnWPgARfq7ILSrjWBUiImoUVlNUjEYj5syZg169eqF9+/ZVLrNo0SLodDrTLSgoqJFT2jeFQsILA8MBAJ/vT+JYFSIianBWU1RmzZqF06dPY+3atdUuM2/ePOj1etMtJYUXy2tsgyL9ERnghrziMqz4lVtViIioYVlFUZk9ezY2bdqEXbt2oXnz5tUup9Fo4ObmZnajxlW+VaU1AGD1b0nIyCuWORERETVlshYVIQRmz56NjRs3YufOnQgNDZUzDtXRgLa+6NBMh4ISAz7Zc0nuOERE1ITJWlRmzZqFL7/8EmvWrIGrqytSU1ORmpqKwsJCOWNRLSRJwou3tqr89+BlpOcWyZyIiIiaKlmLyvLly6HX69GvXz8EBASYbt98842csagO+kX4oFMLdxSVGrF8N7eqEBFRw5B9109Vt6lTp8oZi+rg9q0qa+KSOVaFiIgahFUMpiXbdH8rb0Q116G4zIj/HrgsdxwiImqCWFSo3iRJwvRb1wD64kASCksMMiciIqKmhkWF7smQdv4I8nTCzYJSfBXHrSpERGRZLCp0T1RKBWY/0AoA8MGui8gpKpU5ERERNSUsKnTPHuncHK18XZBdUIqPeQQQERFZEIsK3TOVUoG/DWkDAPh8fyJS9TyvChERWQaLClnEgLa+6BrsgaJSI5bEnpc7DhERNREsKmQRkiRh3rDyrSrfHknBhbRcmRMREVFTwKJCFtMl2BODIv1gFMC727lVhYiI7h2LClnU3MERkCRgy+lUnLySLXccIiKycSwqZFGt/VwxumMzAMA7WxNkTkNERLaORYUs7oWBreGglPDrhQwcuJQpdxwiIrJhLCpkcUGeWkzo1gIA8M7WcxBCyJyIiIhsFYsKNYhnH2wFRwcFjiVnY+vvqXLHISIiG8WiQg3C180RT/cuv2Dhoi3nUFJmlDkRERHZIhYVajAz+obBx1WDy5kF+OJAktxxiIjIBrGoUINx1qjw8qAIAMDSHRdwM79E5kRERGRrWFSoQT3SpTnaBrghp6gM7++4IHccIiKyMSwq1KCUCgn/O7wtAODLg5dx6UaezImIiMiWsKhQg+vVyhsD2vqizCiwaPNZueMQEZENYVGhRjFvWFuoFBJiz6Zj34UMueMQEZGNYFGhRhHm44LH7gsGAPx94ykUlJTJnIiIiGwBiwo1mpcGtUagzhHJWQX415ZzcschIiIbwKJCjcbV0QH/GhsFAPji4GVcTM+VOREREVk7FhVqVL3DfTC4nR+EAJbuuCh3HCIisnIsKtTonusfDgD46eQ1XEjjVhUiIqoeiwo1unaBOtNWlfk//c6rKxMRUbVYVEgWfx/WFhqVAvsvZuK7Y1fljkNERFaKRYVkEezljDkDWgMA3vr5DDLzimVORERE1ohFhWTzVO9QtPF3xc2CUiz8mWesJSKiylhUSDYOSgUWPxIFSQK+O34Vv164IXckIiKyMiwqJKuOQe6YEhMCAHh142kUlhjkDURERFaFRYVkN3dwBAJunbH2/R0X5I5DRERWhEWFZOeiUeEfo9oDAD799Q+cuZYjcyIiIrIWLCpkFQZE+mFYB38YjALzvjsJg5HnViEiIhYVsiLzR7SDq6MKJ67o8eXBy3LHISIiK8CiQlbD180R/zOkDQDg31sTkJ5TJHMiIiKSG4sKWZVJ3VsgurkOucVlWPDTGbnjEBGRzFhUyKooFRIWju4ApULCz6eu48cT1+SOREREMmJRIavTvpkOzz7YCgDw2venkarnLiAiInvFokJWadYDrRDVXAd9YSn+Z8NJXmGZiMhOsaiQVXJQKvDuuGhoVArsPX8DX8Ulyx2JiIhkwKJCVquVr6vpKKCFP59FUka+zImIiKixsaiQVXuyZwjua+mJwlIDXvw2nieCIyKyMywqZNUUCgn/fjQaLhoVjiVn45O9l+SOREREjYhFhaxecw8t3hgRCQB4b/t5XguIiMiOsKiQTRjbpTkGRvqh1CDw4rfxKC4zyB2JiIgaAYsK2QRJkrBoTAd4OatxLjUX724/L3ckIiJqBCwqZDO8XTRYOLoDAGDF3j+w42yazImIiKihsaiQTRnS3h+P3dcCQgBz1sbjjxt5ckciIqIGxKJCNuf1h9qha7AHcovLMP2/R5FbVCp3JCIiaiAsKmRz1CoFPnqsM/zdHHExPQ8vr+Mp9omImioWFbJJvq6O+PjxLlArFfjl91R8eyRF7khERNQAZC0qe/fuxYgRIxAYGAhJkvD999/LGYdsTMcgd7w0qDUAYMFPZ5DIU+wTETU5shaV/Px8REdH48MPP5QzBtmwp3q3RPdQTxSUGPDU6sPI4XgVIqImRdaiMnToULz11lsYPXq0nDHIhikVEj6Y2An+bo64dCMfL6yN53gVIqImxKbGqBQXFyMnJ8fsRuTr5ojPpnSFWqXAjnPp+CouWe5IRERkITZVVBYtWgSdTme6BQUFyR2JrET7Zjr8z+AIAMBbP5/B+bRcmRMREZEl2FRRmTdvHvR6vemWksIjPehPf+kVivtbeaOo1IinvziC7IISuSMREdE9sqmiotFo4ObmZnYjqqBQSFg6sROauTvhcmYBZq85jjKDUe5YRER0D2yqqBDVxtNZjU+f6AonByX2XczAoi3n5I5ERET3QNaikpeXh/j4eMTHxwMAEhMTER8fj+RkDoak+osMdMO746IBAP/Zl4j1R6/InIiIiOpL1qJy5MgRdOrUCZ06dQIAvPjii+jUqRNef/11OWNREzC0QwCe6x8OAPj7d6dwLPmmzImIiKg+JGHDJ53IycmBTqeDXq/neBWqxGgUmPHlUWw7kwZfVw1+evZ++Lk5yh2LiMju3c3fb45RoSZLoZDw7viOaO3ngvTcYkz/4ggKSsrkjkVERHeBRYWaNBeNCp8+0RXuWgecuKLH7DXHUcojgYiIbAaLCjV5wV7O+OyJrnB0UGDnuXS8temM3JGIiKiOWFTILnQN8cSyiZ0BAKsPXMbmU9dlTkRERHXBokJ2Y2CkH/7atyUAYO66Ezj4R6bMiYiIqDYsKmRX5g6KQO9wbxSUGDDl80PYdyFD7khERFQDFhWyKw5KBT59oiv6t/FFcVn5NYGOXs6SOxYREVWDRYXsjqODEh891hl9W/ugsNSAqSsP4/RVvdyxiIioCiwqZJc0KiU+fqwLuod4IreoDE98fgjnUnPkjkVERHdgUSG75aRW4j9TuyKquQ5Z+SUY/8lBnEjJljsWERHdhkWF7JqrowP++5ce6NTCHfrCUkz+LA5xPBqIiMhqsKiQ3dNpHfDltB6IaemFvOIyTFl5CLsT0uWORUREYFEhAgA4a1RY+WQ3PNjGF0Wl5UcDbeFJ4YiIZMeiQnSLo0P5ANvhUQEoNQjMWnMMG45ekTsWEZFdY1Ehuo1apcDSCZ3waJfmMArgpXUn8H7sBRiNQu5oRER2iUWF6A5KhYR/PRKFp+4PBQC8F3seL68/CQPLChFRo2NRIaqCQiHhfx+KxL8e6QClQsKGY1fwygaWFSKixsaiQlSD8d1aYMn4jlBIwLqjV/DMl0dRVGqQOxYRkd1gUSGqxYjoQHw0uTPUKgW2nUnDox8fwNXsQrljERHZBRYVojoY0j4AX07rAQ+tA05d1WPksn04yBPDERE1OBYVojrqHuqJH2ffj8gAN2Tml+Cxz+LwxYEkCMFxK0REDYVFheguBHlqseGZnhjVMRBlRoHXf/gdf994GiVlRrmjERE1SSwqRHfJSa3EkvEd8crQNpAk4OtDyXjsszik5xTJHY2IqMlhUSGqB0mSMKNvGD6f0g2uGhUOJWVh6Pu/Ys/5G3JHIyJqUlhUiO7BA2188f3sXmjj74rM/BI8ufIQPt+XyHErREQWwqJCdI/CfFzw/axeGNe1/LT7b246g0mfxuGPG3lyRyMisnksKkQW4OigxL8eicJrD0VCo1LgwB+ZGPXBfuxOSJc7GhGRTWNRIbIQSZIw7f5QxL7YF91DPJFbXIYnVx3GO1vPodTAo4KIiOqDRYXIwoI8tfjyqR6Y2L0FhAA+3HUJw97/Fb9e4EBbIqK7xaJC1ADUKgUWjemADyd1hofWARfS8/D4fw5h7roT0BeWyh2PiMhmsKgQNaDhUQHY/fIDmNozBJIErD96BYPf24ud59LkjkZEZBNYVIgamM7JAfNHtsO3f41BqLczUnOK8JdVR/D0F0eQklUgdzwiIqvGokLUSLqFeGLzc70xvU9LqBQStp9Jw4B39+C97edRVGqQOx4RkVWShA2fmSonJwc6nQ56vR5ubm5yxyGqswtpuXjjx9/x26XyKzA393DCc/3DMbpTMzgo+e8HImra7ubvN4sKkUyEENh8KhVv/XwG1/Xl1wlq7uGEWQ+0wriuQVAqJJkTEhE1DBYVIhtSUFKGLw9exoq9icjIKwYAtAt0w/8MaYPerbyhYGEhoiaGRYXIBhWVGvBVXDLejz2PnKIyAEALTy0m9WiBR7s0h5eLRuaERESWwaJCZMMy8orxwc6L2HDsCnJvFRa1UoHB7f0xvmsQeoZ5cSsLEdk0FhWiJqCgpAybTlzHV3GXceKK3jS9mbsTxncLwuQeLbiVhYhsEosKURNz+qoe3xxOwffxV822svRs5YX+bf3Qv40vAt2dZE5JRFQ3LCpETVRRqQG/nE7Fyv2JZltZACAywA0D2vqif1s/dGim4+4hIrJaLCpETZwQAhfS8xB7Ng07zqbjWPJN3P6b7OOqQf82vujb2gdRQe4I1DlCklhciMg6sKgQ2ZnMvGLsSriBHWfTsPf8DeSXmJ/p1tNZjfbNdOjcwh2dW3ggqrkO7lq1TGmJyN6xqBDZseIyA+L+yMKOs2k4nHQT59NyUWas/Gvu66pBhL8rwn1dEeHvgtZ+rgj3c4WLRiVDaiKyJywqRGRSVGpAQmouTlzJxrHLN3E0+SZSsgqrXb65hxMi/FwR4e9qKjKh3s5wUisbMTURNWUsKkRUo9yiUlxIz8P51FycT8vD+bRcJKTl4kZucbWP8XHVINhTixZeWgR7OqOFlxNaeDoj2EsLL2c1x8AQUZ2xqBBRvWTll+B8Wm55cUnNvfV9HvSFpTU+zlmtRJCnFsFeWjRz18JD6wB3ZzU8tWr4uGrg66qBv84Rjg7cKkNELCpEZGH6glJczsrH5cwCJGcVIDmzAJez8pGSVYhr+kLU5f8iSoWEUG9neGgdoFWr4KxRQuekhrvWobzYOKmh0zrAQ1s+zd3JATqtAzQqlhuipuZu/n5z1BwR1UqndUCU1h1Rzd0rzSsuM+DKzUJTgbmmL4S+oBTZBaXIzC9Gem4x0nOKUVhqwMX0vLt+ba1aCXcnB7hXFBjtre+d7vxeDQ+tA9ycHOCsUUHroOS5ZIiaABYVIronGpUSYT4uCPNxqXYZIQTScopxIT0XeUVlyC8xIK+oFPrCMtwsKIG+sBTZBSW4WVBq+l5fWAqjAApKDCgoMeCavuiuszk5KOGsUZYXF7UKzmoltJryr863f9X8Oc9Fo4JWrbz19dZ9Tfl9jUrBsThEjYxFhYganCRJ8Nc5wl/nWOfHGI0CuUVlyC4sQXZB6W2FpvSO+1UXHAAoLDWgsNSAjLwSi7wPpUKCk4MSTmoltGrlHd+XFxmVUoJKoYBaVf7VQamAg0qCWqkov6nKp6lVVdxXKeCglKC5bZrDbY9TKxVQKCQoFRIUEqCQyr9XShK3HlGTxaJCRFZJoZCg05aPUwn2qvvjhBAoLjMiv7gMBSUG5JeUIb/YgIJbX8unlyHv1rS84jIUFBuQV1JWPq/YUD7ttmUKbp1Az2AUyCsuf4w1qq7A3Dn9z6/l61lZw/Tb50sSzJ+3hukKReXXMy1bxetVbKmSJECCdOvrn/cr5pV/lW6bd+v+re8hVSxdw3Pd/jiz5/1z+cqvY/48t5Ywz1CxbBWvU7505edCpee+7fVNr2U+/3a337tzY59029yKXHeuc4X052fjThWTtGoVPJ3lO0EkiwoRNSmSJMHRQQlHByXuot/UyGAUpsJSfitDUanBdL/i+5IyI0oNRpQZBUrLjCg1CpQajOXfG4woMRhRUiZufTWg1CBQUlYx/dYyt30tue1rqUHAUMWJ++7MWV6pbPYYCbJCI6MDsXRiJ9le3yqKyocffoh33nkHqampiI6OxrJly9C9e3e5YxERASjfWuDq6ABXRwdZcxiM5WXFKMpvBqOA0QgYRM3ThRB/LnPndGP5vIrpRuNtzyEEDLemm5atw3Tjrecx3PbVYMQdr2c+XQhAoOIrTPdv/Qfg1nKmeX/ex+2PreJ5bj260uNuvw/c8VhhepRpOVR6bvPnQUWeKp6r2te5431UfDF/bvNMVbnzAN47Fy3/bJQvZxR//ozEre8NNTy5g1JR/Qs3AtmLyjfffIMXX3wRH3/8MXr06IElS5Zg8ODBSEhIgK+vr9zxiIisRsXuEyJ7Im9NAvDuu+/i6aefxpNPPonIyEh8/PHH0Gq1+Pzzz+WORkRERDKTtaiUlJTg6NGjGDBggGmaQqHAgAEDcODAgUrLFxcXIycnx+xGRERETZesRSUjIwMGgwF+fn5m0/38/JCamlpp+UWLFkGn05luQUFBjRWViIiIZCD7rp+7MW/ePOj1etMtJSVF7khERETUgGQdTOvt7Q2lUom0tDSz6WlpafD396+0vEajgUajaax4REREJDNZt6io1Wp06dIFO3bsME0zGo3YsWMHYmJiZExGRERE1kD2w5NffPFFTJkyBV27dkX37t2xZMkS5Ofn48knn5Q7GhEREclM9qIyfvx43LhxA6+//jpSU1PRsWNH/PLLL5UG2BIREZH9kcSdp7OzITk5OdDpdNDr9XBzc5M7DhEREdXB3fz9tqmjfoiIiMi+sKgQERGR1WJRISIiIqvFokJERERWi0WFiIiIrJbshyffi4oDlnhxQiIiIttR8Xe7Lgce23RRyc3NBQBenJCIiMgG5ebmQqfT1biMTZ9HxWg04tq1a3B1dYUkSRZ97pycHAQFBSElJYXnaKkC10/tuI5qx3VUO66jmnH91M4a15EQArm5uQgMDIRCUfMoFJveoqJQKNC8efMGfQ03Nzer+cFaI66f2nEd1Y7rqHZcRzXj+qmdta2j2rakVOBgWiIiIrJaLCpERERktVhUqqHRaPDGG29Ao9HIHcUqcf3UjuuodlxHteM6qhnXT+1sfR3Z9GBaIiIiatq4RYWIiIisFosKERERWS0WFSIiIrJaLCpERERktVhUqvDhhx8iJCQEjo6O6NGjBw4dOiR3JNnMnz8fkiSZ3dq0aWOaX1RUhFmzZsHLywsuLi545JFHkJaWJmPihrd3716MGDECgYGBkCQJ33//vdl8IQRef/11BAQEwMnJCQMGDMCFCxfMlsnKysLkyZPh5uYGd3d3TJs2DXl5eY34LhpObetn6tSplT5TQ4YMMVumKa+fRYsWoVu3bnB1dYWvry8efvhhJCQkmC1Tl9+r5ORkDB8+HFqtFr6+vnj55ZdRVlbWmG+lwdRlHfXr16/S52jGjBlmyzTldbR8+XJERUWZTuIWExODLVu2mOY3pc8Qi8odvvnmG7z44ot44403cOzYMURHR2Pw4MFIT0+XO5ps2rVrh+vXr5tu+/btM8174YUX8NNPP2HdunXYs2cPrl27hjFjxsiYtuHl5+cjOjoaH374YZXz3377bSxduhQff/wx4uLi4OzsjMGDB6OoqMi0zOTJk/H7779j+/bt2LRpE/bu3Yvp06c31ltoULWtHwAYMmSI2Wfq66+/NpvflNfPnj17MGvWLBw8eBDbt29HaWkpBg0ahPz8fNMytf1eGQwGDB8+HCUlJfjtt9+wevVqrFq1Cq+//rocb8ni6rKOAODpp582+xy9/fbbpnlNfR01b94cixcvxtGjR3HkyBE8+OCDGDVqFH7//XcATewzJMhM9+7dxaxZs0z3DQaDCAwMFIsWLZIxlXzeeOMNER0dXeW87Oxs4eDgINatW2eadvbsWQFAHDhwoJESyguA2Lhxo+m+0WgU/v7+4p133jFNy87OFhqNRnz99ddCCCHOnDkjAIjDhw+bltmyZYuQJElcvXq10bI3hjvXjxBCTJkyRYwaNarax9jT+hFCiPT0dAFA7NmzRwhRt9+rzZs3C4VCIVJTU03LLF++XLi5uYni4uLGfQON4M51JIQQffv2Fc8//3y1j7G3dSSEEB4eHuKzzz5rcp8hblG5TUlJCY4ePYoBAwaYpikUCgwYMAAHDhyQMZm8Lly4gMDAQLRs2RKTJ09GcnIyAODo0aMoLS01W19t2rRBixYt7HZ9JSYmIjU11Wyd6HQ69OjRw7RODhw4AHd3d3Tt2tW0zIABA6BQKBAXF9fomeWwe/du+Pr6IiIiAs888wwyMzNN8+xt/ej1egCAp6cngLr9Xh04cAAdOnSAn5+faZnBgwcjJyfH9C/qpuTOdVThq6++gre3N9q3b4958+ahoKDANM+e1pHBYMDatWuRn5+PmJiYJvcZsumLElpaRkYGDAaD2Q8OAPz8/HDu3DmZUsmrR48eWLVqFSIiInD9+nUsWLAAvXv3xunTp5Gamgq1Wg13d3ezx/j5+SE1NVWewDKreN9VfYYq5qWmpsLX19dsvkqlgqenp12styFDhmDMmDEIDQ3FpUuX8Pe//x1Dhw7FgQMHoFQq7Wr9GI1GzJkzB7169UL79u0BoE6/V6mpqVV+xirmNSVVrSMAmDRpEoKDgxEYGIiTJ0/ib3/7GxISEvDdd98BsI91dOrUKcTExKCoqAguLi7YuHEjIiMjER8f36Q+QywqVKOhQ4eavo+KikKPHj0QHByMb7/9Fk5OTjImI1s1YcIE0/cdOnRAVFQUwsLCsHv3bvTv31/GZI1v1qxZOH36tNm4LzJX3Tq6fcxShw4dEBAQgP79++PSpUsICwtr7JiyiIiIQHx8PPR6PdavX48pU6Zgz549cseyOO76uY23tzeUSmWlkdFpaWnw9/eXKZV1cXd3R+vWrXHx4kX4+/ujpKQE2dnZZsvY8/qqeN81fYb8/f0rDc4uKytDVlaWXa63li1bwtvbGxcvXgRgP+tn9uzZ2LRpE3bt2oXmzZubptfl98rf37/Kz1jFvKaiunVUlR49egCA2eeoqa8jtVqNVq1aoUuXLli0aBGio6Px/vvvN7nPEIvKbdRqNbp06YIdO3aYphmNRuzYsQMxMTEyJrMeeXl5uHTpEgICAtClSxc4ODiYra+EhAQkJyfb7foKDQ2Fv7+/2TrJyclBXFycaZ3ExMQgOzsbR48eNS2zc+dOGI1G0/9s7cmVK1eQmZmJgIAAAE1//QghMHv2bGzcuBE7d+5EaGio2fy6/F7FxMTg1KlTZoVu+/btcHNzQ2RkZOO8kQZU2zqqSnx8PACYfY6a8jqqitFoRHFxcdP7DMk9mtfarF27Vmg0GrFq1Spx5swZMX36dOHu7m42MtqevPTSS2L37t0iMTFR7N+/XwwYMEB4e3uL9PR0IYQQM2bMEC1atBA7d+4UR44cETExMSImJkbm1A0rNzdXHD9+XBw/flwAEO+++644fvy4uHz5shBCiMWLFwt3d3fxww8/iJMnT4pRo0aJ0NBQUVhYaHqOIUOGiE6dOom4uDixb98+ER4eLiZOnCjXW7KomtZPbm6umDt3rjhw4IBITEwUsbGxonPnziI8PFwUFRWZnqMpr59nnnlG6HQ6sXv3bnH9+nXTraCgwLRMbb9XZWVlon379mLQoEEiPj5e/PLLL8LHx0fMmzdPjrdkcbWto4sXL4o333xTHDlyRCQmJooffvhBtGzZUvTp08f0HE19Hb3yyitiz549IjExUZw8eVK88sorQpIksW3bNiFE0/oMsahUYdmyZaJFixZCrVaL7t27i4MHD8odSTbjx48XAQEBQq1Wi2bNmonx48eLixcvmuYXFhaKmTNnCg8PD6HVasXo0aPF9evXZUzc8Hbt2iUAVLpNmTJFCFF+iPJrr70m/Pz8hEajEf379xcJCQlmz5GZmSkmTpwoXFxchJubm3jyySdFbm6uDO/G8mpaPwUFBWLQoEHCx8dHODg4iODgYPH0009X+odAU14/Va0bAGLlypWmZerye5WUlCSGDh0qnJychLe3t3jppZdEaWlpI7+bhlHbOkpOThZ9+vQRnp6eQqPRiFatWomXX35Z6PV6s+dpyuvoL3/5iwgODhZqtVr4+PiI/v37m0qKEE3rMyQJIUTjbb8hIiIiqjuOUSEiIiKrxaJCREREVotFhYiIiKwWiwoRERFZLRYVIiIislosKkRERGS1WFSIiIjIarGoEFGTIkkSvv/+e7ljEJGFsKgQkcVMnToVkiRVug0ZMkTuaERko1RyByCipmXIkCFYuXKl2TSNRiNTGiKyddyiQkQWpdFo4O/vb3bz8PAAUL5bZvny5Rg6dCicnJzQsmVLrF+/3uzxp06dwoMPPggnJyd4eXlh+vTpyMvLM1vm888/R7t27aDRaBAQEIDZs2ebzc/IyMDo0aOh1WoRHh6OH3/8sWHfNBE1GBYVImpUr732Gh555BGcOHECkydPxoQJE3D27FkAQH5+PgYPHgwPDw8cPnwY69atQ2xsrFkRWb58OWbNmoXp06fj1KlT+PHHH9GqVSuz11iwYAHGjRuHkydPYtiwYZg8eTKysrIa9X0SkYXIfVVEImo6pkyZIpRKpXB2dja7LVy4UAhRflXcGTNmmD2mR48e4plnnhFCCLFixQrh4eEh8vLyTPN//vlnoVAoTFdYDgwMFK+++mq1GQCI//3f/zXdz8vLEwDEli1bLPY+iajxcIwKEVnUAw88gOXLl5tN8/T0NH0fExNjNi8mJgbx8fEAgLNnzyI6OhrOzs6m+b169YLRaERCQgIkScK1a9fQv3//GjNERUWZvnd2doabmxvS09Pr+5aISEYsKkRkUc7OzpV2xViKk5NTnZZzcHAwuy9JEoxGY0NEIqIGxjEqRNSoDh48WOl+27ZtAQBt27bFiRMnkJ+fb5q/f/9+KBQKREREwNXVFSEhIdixY0ejZiYi+XCLChFZVHFxMVJTU82mqVQqeHt7AwDWrVuHrl274v7778dXX32FQ4cO4T//+Q8AYPLkyXjjjTcwZcoUzJ8/Hzdu3MCzzz6Lxx9/HH5+fgCA+fPnY8aMGfD19cXQoUORm5uL/fv349lnn23cN0pEjYJFhYgs6pdffkFAQIDZtIiICJw7dw5A+RE5a9euxcyZMxEQEICvv/4akZGRAACtVoutW7fi+eefR7du3aDVavHII4/g3XffNT3XlClTUFRUhPfeew9z586Ft7c3xo4d23hvkIgalSSEEHKHICL7IEkSNm7ciIcffljuKERkIzhGhYiIiKwWiwoRERFZLY5RIaJGwz3NRHS3uEWFiIiIrBaLChEREVktFhUiIiKyWiwqREREZLVYVIiIiMhqsagQERGR1WJRISIiIqvFokJERERWi0WFiIiIrNb/A7yvWccmEMMJAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "plt.plot(history.history['val_loss'], label='test')\n", + "plt.title('Model Loss periodo Epoch')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Epoch')\n", + "plt.legend()\n", + "plt.show()" + ], + "metadata": { + "id": "O5NpleLGSF4Q", + "outputId": "6b580f18-825b-4a8c-b5f0-b3ac81749864", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + } + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPZ0lEQVR4nO3dd3hUVf4/8PedyZS0mUkvJCShBUJIaBIjUpQaEBBEqgouyiKwylp+yrqr6OqiuJa1LOp+V8C14FLdRel1QTqEXiQkkF4ImUmdJDPn90fI6JBACknuJPN+Pc88ZO7cufO5ZybMO+ece68khBAgIiIickAKuQsgIiIiuhUGFSIiInJYDCpERETksBhUiIiIyGExqBAREZHDYlAhIiIih8WgQkRERA6LQYWIiIgcFoMKEREROSwGFaIWJEkSFi1a1ODnpaSkQJIkLF++vMlrcgaDBw/G4MGDm2x7zvZ+VO/vX//6V7lLISfEoEJOZ/ny5ZAkCZIkYe/evTUeF0IgNDQUkiThgQcekKHCxtu1axckScLq1avlLoUaoDoI3Or21ltvyV0ikWxc5C6ASC5arRbffPMN7r33Xrvlu3fvRlpaGjQajUyVUVPbsmWL3CXUy9SpUzFq1Kgay3v16iVDNUSOgUGFnNaoUaOwatUqfPjhh3Bx+eVX4ZtvvkGfPn2Ql5cnY3XUFEpKSuDm5ga1Wi13KfXSu3dvPPLII3KXQeRQOPRDTmvq1Km4du0atm7daltWXl6O1atXY9q0abU+p7i4GM899xxCQ0Oh0WgQGRmJv/71r7j5IuRmsxm///3v4efnB09PT4wdOxZpaWm1bjM9PR2/+c1vEBAQAI1Gg+7du+OLL75ouh2txeXLl/Hwww/D29sbbm5uuPvuu/HDDz/UWO+jjz5C9+7d4ebmBi8vL/Tt2xfffPON7fHCwkIsWLAA4eHh0Gg08Pf3x7Bhw3Ds2LHbvv6iRYsgSRLOnz+PSZMmQafTwcfHB8888wzKyspqrP/VV1+hT58+cHV1hbe3N6ZMmYLU1FS7dQYPHozo6GgcPXoUAwcOhJubG/7whz/YHrt5jkpOTg5mzZqFgIAAaLVaxMbGYsWKFTVeu6CgADNnzoRer4fBYMCMGTNQUFBQ637t2LEDAwYMgLu7OwwGA8aNG4dz587dti0aKjw8HA888AC2bNmCnj17QqvVIioqCmvXrq2xbn3f57KyMixatAhdunSBVqtFUFAQJkyYgKSkpBrrfv755+jYsSM0Gg3uuusuHD58uEn3j+hm7FEhpxUeHo74+Hh8++23SEhIAABs3LgRRqMRU6ZMwYcffmi3vhACY8eOxc6dOzFr1iz07NkTmzdvxgsvvID09HS8//77tnWfeOIJfPXVV5g2bRruuece7NixA6NHj65RQ3Z2Nu6++25IkoT58+fDz88PGzduxKxZs2AymbBgwYIm3+/s7Gzcc889KCkpwdNPPw0fHx+sWLECY8eOxerVqzF+/HgAwD/+8Q88/fTTmDhxoi1AnDx5EgcPHrQFuTlz5mD16tWYP38+oqKicO3aNezduxfnzp1D796966xl0qRJCA8Px+LFi3HgwAF8+OGHuH79Or788kvbOm+++Sb+9Kc/YdKkSXjiiSeQm5uLjz76CAMHDsTx48dhMBhs6167dg0JCQmYMmUKHnnkEQQEBNT6uqWlpRg8eDAuXbqE+fPnIyIiAqtWrcLMmTNRUFCAZ555BkDVez5u3Djs3bsXc+bMQbdu3bBu3TrMmDGjxja3bduGhIQEdOjQAYsWLUJpaSk++ugj9O/fH8eOHUN4eHid7VFSUlJrT57BYLDr9fv5558xefJkzJkzBzNmzMCyZcvw8MMPY9OmTRg2bBiA+r/PFosFDzzwALZv344pU6bgmWeeQWFhIbZu3YrTp0+jY8eOttf95ptvUFhYiN/+9reQJAlLlizBhAkTcPnyZahUqjr3j6hRBJGTWbZsmQAgDh8+LD7++GPh6ekpSkpKhBBCPPzww+K+++4TQggRFhYmRo8ebXve+vXrBQDxxhtv2G1v4sSJQpIkcenSJSGEEImJiQKAmDt3rt1606ZNEwDEq6++als2a9YsERQUJPLy8uzWnTJlitDr9ba6kpOTBQCxbNmy2+7bzp07BQCxatWqW66zYMECAUD873//sy0rLCwUERERIjw8XFgsFiGEEOPGjRPdu3e/7evp9Xoxb968265Tm1dffVUAEGPHjrVbPnfuXAFAnDhxQgghREpKilAqleLNN9+0W+/UqVPCxcXFbvmgQYMEAPHpp5/WeL1BgwaJQYMG2e5/8MEHAoD46quvbMvKy8tFfHy88PDwECaTSQjxy3u+ZMkS23qVlZViwIABNd6Pnj17Cn9/f3Ht2jXbshMnTgiFQiEee+yx27ZH9ft7q9v+/ftt64aFhQkAYs2aNbZlRqNRBAUFiV69etmW1fd9/uKLLwQA8d5779Woy2q12tXn4+Mj8vPzbY9///33AoD473//e9v9I7oTHPohpzZp0iSUlpZiw4YNKCwsxIYNG2457PPjjz9CqVTi6aeftlv+3HPPQQiBjRs32tYDUGO9m3tHhBBYs2YNxowZAyEE8vLybLcRI0bAaDTWOYTSGD/++CP69etnN4nYw8MDs2fPRkpKCs6ePQug6q/4tLS023btGwwGHDx4EBkZGY2qZd68eXb3f/e739lqBIC1a9fCarVi0qRJdu0TGBiIzp07Y+fOnXbP12g0ePzxx+t83R9//BGBgYGYOnWqbZlKpcLTTz+NoqIi7N6927aei4sLnnrqKdt6SqXSVme1zMxMJCYmYubMmfD29rYtj4mJwbBhw2z7U5fZs2dj69atNW5RUVF26wUHB9t6RABAp9Phsccew/Hjx5GVlWWrvT7v85o1a+Dr61tjn4Cqw+l/bfLkyfDy8rLdHzBgAICqISai5sKhH3Jqfn5+GDp0KL755huUlJTAYrFg4sSJta575coVBAcHw9PT0255t27dbI9X/6tQKOy6zAEgMjLS7n5ubi4KCgrw+eef4/PPP6/1NXNychq1X7dz5coVxMXF1Vj+6/2Ijo7Giy++iG3btqFfv37o1KkThg8fjmnTpqF///625yxZsgQzZsxAaGgo+vTpg1GjRuGxxx5Dhw4d6lVL586d7e537NgRCoUCKSkpAKqGOIQQNdardvNwQ7t27eo1cfbKlSvo3LkzFAr7v9Vqey+DgoLg4eFht97N72X1+jcvr97m5s2bUVxcDHd399vW1blzZwwdOrTO+jt16lQjRHTp0gVA1aHOgYGB9X6fk5KSEBkZaTe0dCvt27e3u18dWq5fv17nc4kai0GFnN60adPw5JNPIisrCwkJCXZzHpqT1WoFADzyyCO1znkAqv4il0u3bt1w4cIFbNiwAZs2bcKaNWvw97//Ha+88gpee+01AFU9UgMGDMC6deuwZcsWvPPOO3j77bexdu1a27yfhrj5y9dqtUKSJGzcuBFKpbLG+jcHCFdX1wa/JtVfbe8BgBqTyYmaEoMKOb3x48fjt7/9LQ4cOIDvvvvuluuFhYVh27ZtKCwstOtVOX/+vO3x6n+tVqvtL9VqFy5csNte9RFBFoulXn9FN5WwsLAatQA19wMA3N3dMXnyZEyePBnl5eWYMGEC3nzzTSxcuBBarRYAEBQUhLlz52Lu3LnIyclB79698eabb9YrqPz888+IiIiw3b906RKsVqtt4mnHjh0hhEBERIStx6AphIWF4eTJk7BarXa9KrW9l9u3b0dRUZFdKLq5/arXv1W7+vr61tmb0hCXLl2CEMIu2F28eBEAbG1X3/e5Y8eOOHjwICoqKjghlhwS56iQ0/Pw8MDSpUuxaNEijBkz5pbrjRo1ChaLBR9//LHd8vfffx+SJNm+mKv/vfmooQ8++MDuvlKpxEMPPYQ1a9bg9OnTNV4vNze3MbtTp1GjRuHQoUPYv3+/bVlxcTE+//xzhIeH2+ZDXLt2ze55arUaUVFREEKgoqICFosFRqPRbh1/f38EBwfDbDbXq5ZPPvnE7v5HH30E4Jc2nDBhApRKJV577bUaf7ULIWrUWF+jRo1CVlaWXTCtrKzERx99BA8PDwwaNMi2XmVlJZYuXWpbz2Kx2OqsFhQUhJ49e2LFihV2hy6fPn0aW7ZsqfUkbnciIyMD69ats903mUz48ssv0bNnTwQGBtpqr8/7/NBDDyEvL6/G5xpgTwk5BvaoEAG3HHr5tTFjxuC+++7Dyy+/jJSUFMTGxmLLli34/vvvsWDBAtuclJ49e2Lq1Kn4+9//DqPRiHvuuQfbt2/HpUuXamzzrbfews6dOxEXF4cnn3wSUVFRyM/Px7Fjx7Bt2zbk5+c3an/WrFlj+8v55v186aWXbIdkP/300/D29saKFSuQnJyMNWvW2HoYhg8fjsDAQPTv3x8BAQE4d+4cPv74Y4wePRqenp4oKChASEgIJk6ciNjYWHh4eGDbtm04fPgw3n333XrVmZycjLFjx2LkyJHYv3+/7ZDu2NhYAFV/7b/xxhtYuHAhUlJS8OCDD8LT0xPJyclYt24dZs+ejeeff77B7TN79mx89tlnmDlzJo4ePYrw8HCsXr0a+/btwwcffGDrMRszZgz69++Pl156CSkpKbbzldwc0ADgnXfeQUJCAuLj4zFr1izb4cl6vb7e13c6duwYvvrqqxrLO3bsiPj4eNv9Ll26YNasWTh8+DACAgLwxRdfIDs7G8uWLbOtU9/3+bHHHsOXX36JZ599FocOHcKAAQNQXFyMbdu2Ye7cuRg3blxDmpao6cl0tBGRbH59ePLt3Hx4shBVh3f+/ve/F8HBwUKlUonOnTuLd955x3YYZ7XS0lLx9NNPCx8fH+Hu7i7GjBkjUlNTaxyeLIQQ2dnZYt68eSI0NFSoVCoRGBgohgwZIj7//HPbOg09PPlWt+pDVZOSksTEiROFwWAQWq1W9OvXT2zYsMFuW5999pkYOHCg8PHxERqNRnTs2FG88MILwmg0CiGEMJvN4oUXXhCxsbHC09NTuLu7i9jYWPH3v//9tjUK8cvhyWfPnhUTJ04Unp6ewsvLS8yfP1+UlpbWWH/NmjXi3nvvFe7u7sLd3V107dpVzJs3T1y4cMG2zqBBg255OPXNhycLUdXujz/+uPD19RVqtVr06NGj1va9du2aePTRR4VOpxN6vV48+uij4vjx47W+H9u2bRP9+/cXrq6uQqfTiTFjxoizZ8/W2R51HZ48Y8YM27rVn8vNmzeLmJgYodFoRNeuXWs9JL0+77MQQpSUlIiXX35ZRERE2D6DEydOFElJSXb1vfPOOzWeW9tnmqgpSUKwb4+IWtaiRYvw2muvITc3F76+vnKX06qEh4cjOjoaGzZskLsUohbBOSpERETksBhUiIiIyGExqBAREZHD4hwVIiIicljsUSEiIiKHxaBCREREDqtVn/DNarUiIyMDnp6eNa4RQkRERI5JCIHCwkIEBwfXuDjozVp1UMnIyEBoaKjcZRAREVEjpKamIiQk5LbrtOqgUn2a69TUVOh0OpmrISIiovowmUwIDQ21u8DrrbTqoFI93KPT6RhUiIiIWpn6TNvgZFoiIiJyWAwqRERE5LAYVIiIiMhhteo5KkRERC3NarWivLxc7jIcmkqlglKpbJJtMagQERHVU3l5OZKTk2G1WuUuxeEZDAYEBgbe8XnOGFSIiIjqQQiBzMxMKJVKhIaG1nmiMmclhEBJSQlycnIAAEFBQXe0PQYVIiKieqisrERJSQmCg4Ph5uYmdzkOzdXVFQCQk5MDf3//OxoGYhwkIiKqB4vFAgBQq9UyV9I6VIe5ioqKO9oOgwoREVED8Npy9dNU7cSgQkRERA6LQYWIiIgcFoMKERFRGzZ48GAsWLCgybY3c+ZMPPjgg022vbowqNxClrEMKXnFcpdBRETk1BhUarF8XzLuXrwdb286L3cpREREjTZz5kzs3r0bf/vb3yBJEiRJQkpKCk6fPo2EhAR4eHggICAAjz76KPLy8mzPW716NXr06AFXV1f4+Phg6NChKC4uxqJFi7BixQp8//33tu3t2rWrWfeB51GpRWSgDgBwMs0ocyVEROSohBAorbDI8tquKmW9jqr529/+hosXLyI6Ohqvv/46gKrT2/fr1w9PPPEE3n//fZSWluLFF1/EpEmTsGPHDmRmZmLq1KlYsmQJxo8fj8LCQvzvf/+DEALPP/88zp07B5PJhGXLlgEAvL29m3VfGVRqEd1OB0kC0gtKkVdkhq+HRu6SiIjIwZRWWBD1ymZZXvvs6yPgpq77K1yv10OtVsPNzQ2BgYEAgDfeeAO9evXCX/7yF9t6X3zxBUJDQ3Hx4kUUFRWhsrISEyZMQFhYGACgR48etnVdXV1hNptt22tuHPqphadWhQ6+7gCAU+xVISKiNuTEiRPYuXMnPDw8bLeuXbsCAJKSkhAbG4shQ4agR48eePjhh/GPf/wD169fl61e9qjcQmyIAUm5xTiZZsR9Xf3lLoeIiByMq0qJs6+PkO21G6uoqAhjxozB22+/XeOxoKAgKJVKbN26FT/99BO2bNmCjz76CC+//DIOHjyIiIiIOym7URhUbqFHiB5rj6fjZFqB3KUQEZEDkiSpXsMvclOr1bbT/wNA7969sWbNGoSHh8PFpfb6JUlC//790b9/f7zyyisICwvDunXr8Oyzz9bYXnPj0M8txIQYAAAn040QQshbDBERUSOFh4fj4MGDSElJQV5eHubNm4f8/HxMnToVhw8fRlJSEjZv3ozHH38cFosFBw8exF/+8hccOXIEV69exdq1a5Gbm4tu3brZtnfy5ElcuHABeXl5d3wtn7owqNxCVJAOSoWE3EIzskxlcpdDRETUKM8//zyUSiWioqLg5+eH8vJy7Nu3DxaLBcOHD0ePHj2wYMECGAwGKBQK6HQ67NmzB6NGjUKXLl3wxz/+Ee+++y4SEhIAAE8++SQiIyPRt29f+Pn5Yd++fc1av+P3WcnEVa1ElwBPnMs04WSaEUF6V7lLIiIiarAuXbpg//79NZavXbu21vW7deuGTZs23XJ7fn5+2LJlS5PVVxf2qNxGbIgeADhPhYiISCYMKrfRwxZUeIgyERGRHBhUbiP2xoTaU5xQS0REJAsGldvoEuAJtVKBgpIKpOaXyl0OERGR02FQuQ21iwLdgquu+3OC81SIiAhgD3s9NVU7MajUIaYdJ9QSERGgVFadDba8vFzmSlqHkpISAFUXQbwTPDy5DrGhBvzrwBUkphbIXQoREcnIxcUFbm5uyM3NhUqlgkLBv/VrI4RASUkJcnJyYDAYbAGvsRhU6tCrvQFA1ZE/FRYrVEp+MImInJEkSQgKCkJycjKuXLkidzkOz2AwNMkVlhlU6tDB1x16VxWMpRU4l2mynVqfiIicj1qtRufOnTn8UweVSnXHPSnVGFTqIEkSerU3YNeFXBy7cp1BhYjIySkUCmi1WrnLcBocx6iH3u29AADHOU+FiIioRTGo1EN1UDl29brMlRARETkXBpV6iA3VQ5KA1PxS5Baa5S6HiIjIaTCo1IOnVoUu/p4A2KtCRETUkhhU6ql3mAEAcPxqgax1EBERORMGlXrqxXkqRERELY5BpZ562078VoAKi1XeYoiIiJwEg0o9dfD1gE7rgrIKKy5kFcpdDhERkVNgUKknhULi8A8REVELY1BpgOrr/hy7wqBCRETUEhhUGuCXE78VyFsIERGRk2BQaYCe7Q2QJOBqfgnyinjiNyIioubGoNIAOq0Knfw8APB8KkRERC2BQaWBeN0fIiKilsOg0kC/nKGWQYWIiKi5Mag0UPUhyidSjajkid+IiIiaFYNKA3XyqzrxW2mFBecyeeI3IiKi5sSg0kAKhYQ+YVW9KodT8mWuhoiIqG1jUGmEvuHeAIAjVxhUiIiImhODSiPcVR1UUq5DCCFzNURERG0Xg0ojxITooVJKyCk0IzW/VO5yiIiI2iwGlUbQqpTo0U4PgPNUiIiImpOsQWXRokWQJMnu1rVrVzlLqjfb8A8vUEhERNRsXOQuoHv37ti2bZvtvouL7CXVS/WRP0fYo0JERNRsZE8FLi4uCAwMlLuMBqsOKj/nFKGgpBwGN7XMFREREbU9ss9R+fnnnxEcHIwOHTpg+vTpuHr16i3XNZvNMJlMdje5+Hho0NHPHQBwlMM/REREzULWoBIXF4fly5dj06ZNWLp0KZKTkzFgwAAUFtZ+xtfFixdDr9fbbqGhoS1csb2+YVXzVA6nMKgQERE1B0k40IlACgoKEBYWhvfeew+zZs2q8bjZbIbZbLbdN5lMCA0NhdFohE6na8lSAQCrjqTihdUn0TfMC6ufuqfFX5+IiKg1MplM0Ov19fr+ln2Oyq8ZDAZ06dIFly5dqvVxjUYDjUbTwlXdWvWRPyfTjCirsECrUspcERERUdsi+xyVXysqKkJSUhKCgoLkLqVewnzc4OuhQbnFitPpRrnLISIianNkDSrPP/88du/ejZSUFPz0008YP348lEolpk6dKmdZ9SZJEvraLlDIeSpERERNTdagkpaWhqlTpyIyMhKTJk2Cj48PDhw4AD8/PznLapC+4VVB5SgvUEhERNTkZJ2jsnLlSjlfvkn8+gy1VquAQiHJXBEREVHb4VBzVFqjqGAdXFVKFJRUICm3SO5yiIiI2hQGlTukUirQM9QAgNf9ISIiamoMKk3grvDqCbWcp0JERNSUGFSaQJ/qeSo88oeIiKhJMag0gd7tDVBIwNX8EuSYyuQuh4iIqM1gUGkCnloVugZWnQKY81SIiIiaDoNKE+nLeSpERERNjkGlifTlPBUiIqImx6DSRPrdCCpnMowoLKuQuRoiIqK2gUGliQTqtQjzcYNVcJ4KERFRU2FQaUJxEVW9Kgcvc54KERFRU2BQaUJxET4AgIPJ12SuhIiIqG1gUGlCcR2qelROpRlRUl4pczVEREStH4NKEwrxckM7gysqrQJHOU+FiIjojjGoNLHqXhXOUyEiIrpzDCpNzDahlvNUiIiI7hiDShOrnlB7ItWIsgqLzNUQERG1bgwqTSzMxw0BOg3KLVYcu8p5KkRERHeCQaWJSZL0y2HKnKdCRER0RxhUmoFtQi3nqRAREd0RBpVmcHeHqh6VY1cLOE+FiIjoDjCoNIMOvu7w99SgvJLzVIiIiO4Eg0ozkCQJ8R2relUOJHH4h4iIqLEYVJpJ/I3hn/2XGVSIiIgai0GlmVT3qCSmFqC0nPNUiIiIGoNBpZm093ZDsF6LCguv+0NERNRYDCrNRJIk3N2xevgnT+ZqiIiIWicGlWZUfZjyfk6oJSIiahQGlWZUPaH2ZJoRxeZKmashIiJqfRhUmlGotxtCvFxRaRU4nMLT6RMRETUUg0oz42HKREREjceg0sx44jciIqLGY1BpZtVB5VS6EYVlFTJXQ0RE1LowqDSzIL0rwn3cYBXgPBUiIqIGYlBpAdW9KjxMmYiIqGEYVFrA3ZxQS0RE1CgMKi2g+sifMxkmGEs4T4WIiKi+GFRagL9Oiw5+7hACOJjMXhUiIqL6YlBpITyfChERUcMxqLQQTqglIiJqOAaVFlI9ofZ8ViGuF5fLXA0REVHrwKDSQnw9NOgS4AGA81SIiIjqi0GlBdnmqXD4h4iIqF4YVFoQz6dCRETUMAwqLSjuRlC5mF2EvCKzzNUQERE5PgaVFuTtrkbXQE8AwAH2qhAREdWJQaWF8TBlIiKi+mNQaWHVE2rZo0JERFQ3BpUWFhfhA4UEJOUWI9NYKnc5REREDo1BpYXp3VSICTEAAPZczJW3GCIiIgfnMEHlrbfegiRJWLBggdylNLtBXfwAAHsu5slcCRERkWNziKBy+PBhfPbZZ4iJiZG7lBYx8EZQ2XspDxarkLkaIiIixyV7UCkqKsL06dPxj3/8A15eXnKX0yJiQ/TQaV1gLK3AibQCucshIiJyWLIHlXnz5mH06NEYOnSo3KW0GBelAvd29gXAeSpERES3I2tQWblyJY4dO4bFixfXa32z2QyTyWR3a60Gdq4a/tnNoEJERHRLsgWV1NRUPPPMM/j666+h1Wrr9ZzFixdDr9fbbqGhoc1cZfOpnqdyIrUAxpIKmashIiJyTJIQQpbZnOvXr8f48eOhVCptyywWCyRJgkKhgNlstnsMqOpRMZt/uUaOyWRCaGgojEYjdDpdi9XeVIa+txuXcorwybTeGB0TJHc5RERELcJkMkGv19fr+9ulhWqqYciQITh16pTdsscffxxdu3bFiy++WCOkAIBGo4FGo2mpEpvdwM5+uJRThD0XcxlUiIiIaiFbUPH09ER0dLTdMnd3d/j4+NRY3lYNivTDF/uSsftiLoQQkCRJ7pKIiIgciuxH/TizuAhvuKqUyDKV4Wxm650YTERE1Fxk61Gpza5du+QuoUVpVUr07+SLbeeysf1cDroH6+UuiYiIyKGwR0VmQ7r5AwC2n8+RuRIiIiLHw6Ais/u7VgWVE6kFyCksk7kaIiIix8KgIrMAnRY92lUN+ew6z5O/ERER/RqDigOoHv7Zdi5b5kqIiIgcC4OKAxjaLQBA1dWUyyosMldDRETkOBhUHED3YB0CdBqUlFtw4PI1ucshIiJyGAwqDkCSJNzftapXZQeP/iEiIrJhUHEQQ24c/bPtbDZkuvwSERGRw2FQcRD3dvaFm1qJDGMZTqUb5S6HiIjIITCoOAitSonBkX4AgM1nsmSuhoiIyDEwqDiQEd0DAQCbTjOoEBERAQwqDuW+rv5QKSUk5RbjUk6h3OUQERHJjkHFgei0KtzT0RcAsPkMT/5GRETEoOJgRkZXDf9wngoRERGDisMZ2i0AkgScTDMivaBU7nKIiIhkxaDiYPw8NbgrzBsAsIW9KkRE5OQYVBzQ8O5VZ6ndyKN/iIjIyTGoOKDqeSqHU/KRYyqTuRoiIiL5MKg4oBAvN/Rqb4AQ7FUhIiLnxqDioEb3CAIA/HAqU+ZKiIiI5MOg4qBG3Qgqh1Pykc3hHyIiclIMKg4q2OCK3tXDP+xVISIiJ8Wg4sBGxwQD4PAPERE5LwYVBzaqR/XRP9eRZeTwDxEROR8GFQcWpHdF3zAvAMCP7FUhIiInxKDi4EbHVE2qZVAhIiJnxKDi4BKigyBJwJEr15Fp5LV/iIjIuTCoOLhAvfZXwz88+RsRETkXBpVWwHbyt5MZMldCRETUshhUWoGEHlXDP8euFiCjgMM/RETkPBhUWoEAnRZ3hXsD4KRaIiJyLgwqrcQDMbz2DxEROR8GlVZiZHQgJAk4frUAaddL5C6HiIioRTCotBL+nlr0uzH8s5FH/xARkZNgUGlFqod/NnD4h4iInASDSisyIjoQCgk4kVqA1HwO/xARUdvHoNKK+HtqERfhAwDYeJq9KkRE1PYxqLQy1df++eEkgwoREbV9DCqtzMjq4Z80I4d/iIiozWNQaWV8PTS4u0PV8A/PqUJERG0dg0orxOEfIiJyFgwqrdDI7lXDP6fSjbh6jcM/RETUdjGotEI+Hhrc09EXAPBfXlGZiIjaMAaVVmpMbNXwz/eJ6RBCyFwNERFR82hUUElNTUVaWprt/qFDh7BgwQJ8/vnnTVYY3d7I6CCoXRS4mF2Ec5mFcpdDRETULBoVVKZNm4adO3cCALKysjBs2DAcOnQIL7/8Ml5//fUmLZBqp3dVYUhXfwDA+sR0mashIiJqHo0KKqdPn0a/fv0AAP/+978RHR2Nn376CV9//TWWL1/elPXRbYzr2Q4A8J/EDFisHP4hIqK2p1FBpaKiAhqNBgCwbds2jB07FgDQtWtXZGbykNmWcl9XP+i0LsgyleFg8jW5yyEiImpyjQoq3bt3x6effor//e9/2Lp1K0aOHAkAyMjIgI+PT5MWSLemcVHazqmy/jiHf4iIqO1pVFB5++238dlnn2Hw4MGYOnUqYmNjAQD/+c9/bENC1DKqh382nspCWYVF5mqIiIialktjnjR48GDk5eXBZDLBy8vLtnz27Nlwc3NrsuKobv3CvRGs1yLDWIbt53JsPSxERERtQaN6VEpLS2E2m20h5cqVK/jggw9w4cIF+Pv713s7S5cuRUxMDHQ6HXQ6HeLj47Fx48bGlOS0FAoJ43tX9aqsPHxV5mqIiIiaVqOCyrhx4/Dll18CAAoKChAXF4d3330XDz74IJYuXVrv7YSEhOCtt97C0aNHceTIEdx///0YN24czpw505iynNbkvu0BAHsv5fGKykRE1KY0KqgcO3YMAwYMAACsXr0aAQEBuHLlCr788kt8+OGH9d7OmDFjMGrUKHTu3BldunTBm2++CQ8PDxw4cKAxZTmt9j5uGNDZF0IA3x1OlbscIiKiJtOooFJSUgJPT08AwJYtWzBhwgQoFArcfffduHLlSqMKsVgsWLlyJYqLixEfH1/rOmazGSaTye5GVabcVdWrsupoKiotVpmrISIiahqNCiqdOnXC+vXrkZqais2bN2P48OEAgJycHOh0ugZt69SpU/Dw8IBGo8GcOXOwbt06REVF1bru4sWLodfrbbfQ0NDGlN8mDYsKgI+7GtkmM3ZeyJW7HCIioibRqKDyyiuv4Pnnn0d4eDj69etn6wHZsmULevXq1aBtRUZGIjExEQcPHsRTTz2FGTNm4OzZs7Wuu3DhQhiNRtstNZXDHNXULgo81CcEALDyECfVEhFR2yCJRl56NysrC5mZmYiNjYVCUZV3Dh06BJ1Oh65duza6oKFDh6Jjx4747LPP6lzXZDJBr9fDaDQ2uCenLUrKLcKQd3dDIQH7XrofQXpXuUsiIiKqoSHf343qUQGAwMBA9OrVCxkZGbYrKffr1++OQgoAWK1WmM3mO9qGs+ro54G4CG9YBfDNQfaqEBFR69eooGK1WvH6669Dr9cjLCwMYWFhMBgM+POf/wyrtf4TORcuXIg9e/YgJSUFp06dwsKFC7Fr1y5Mnz69MWURgBn3hAMAvj10FeZKnqmWiIhat0admfbll1/GP//5T7z11lvo378/AGDv3r1YtGgRysrK8Oabb9ZrOzk5OXjssceQmZkJvV6PmJgYbN68GcOGDWtMWQRgeFQAgvRaZBrL8OOpTIzvFSJ3SURERI3WqDkqwcHB+PTTT21XTa72/fffY+7cuUhPb5kL5HGOSu0+2XkJ72y+gNhQA76f11/ucoiIiOw0+xyV/Pz8WueidO3aFfn5+Y3ZJDWhyXeFQq1U4ERqARJTC+Quh4iIqNEaFVRiY2Px8ccf11j+8ccfIyYm5o6Lojvj66HBA7FVFydc8VOKvMUQERHdgUbNUVmyZAlGjx6Nbdu22c6hsn//fqSmpuLHH39s0gKpcWbeE461x9Kx4WQG/jCqG/w8NXKXRERE1GCN6lEZNGgQLl68iPHjx6OgoAAFBQWYMGECzpw5g3/9619NXSM1QkyIAb3aG1BhEfiWJ4AjIqJWqtEnfKvNiRMn0Lt3b1gsLXNYLCfT3t73iel4ZmUiAnQa7H3xfqiUjT5tDhERUZNpkRO+keNLiA6Cr4cG2SYzNp/JkrscIiKiBmNQacPULgpMi6u6qjIn1RIRUWvEoNLGTY9rDxeFhMMp13Emwyh3OURERA3SoKN+JkyYcNvHCwoK7qQWagYBOi0SegThvycysOKnFCyZGCt3SURERPXWoB4VvV5/21tYWBgee+yx5qqVGmnmPWEAgO8TM3C9uFzmaoiIiOqvQT0qy5Yta646qBn1bu+F6HY6nE43YeXhVDw1uKPcJREREdUL56g4AUmSMCM+HADw1YErqLTU/wrXREREcmJQcRJjYoPh5aZCekEptp/PkbscIiKiemFQcRJalRJT+vFQZSIial0YVJzII3eHQSEBPyVdw8XsQrnLISIiqhODihNpZ3DF8KhAAOxVISKi1oFBxcnMuCccALD2WDqMpRXyFkNERFQHBhUnc3cHb0QGeKK0woJVR1LlLoeIiOi2GFScjCRJeOzGCeD+deAKrNYmu3g2ERFRk2NQcULje7WDTuuCK9dKsPtirtzlEBER3RKDihNyU7tgUt9QAMByTqolIiIHxqDipB6LD4ckAbsv5uJybpHc5RAREdWKQcVJtfdxw/2R/gCAL/dfkbkaIiKi2jGoOLHqQ5VXHUnlocpEROSQGFSc2IDOvogM8ERxuQVfHWCvChEROR4GFScmSRLmDO4AAFi2LxllFRaZKyIiIrLHoOLkHogJRjuDK/KKyrH6aJrc5RAREdlhUHFyKqUCTw6IAAB8vucyKi1WmSsiIiL6BYMKYfJd7eHtrsbV/BL8eDpL7nKIiIhsGFQIrmolZsSHAwA+3ZUEIXhafSIicgwMKgQAeCw+DG5qJc5mmrDn5zy5yyEiIgLAoEI3eLmrMbVfewDA0l2XZK6GiIioCoMK2cy6NwIuCgkHLufj+NXrcpdDRETEoEK/CDa44sFe7QAAn+5OkrkaIiIiBhW6yZxBVSeA23I2G5dyeLFCIiKSF4MK2enk74lhUQEQgr0qREQkPwYVqmHu4I4AgHXH05GUy14VIiKSD4MK1dCrvReGdvOHxSrw/taLcpdDREROjEGFavXc8EgAwIaTmTiTYZS5GiIiclYMKlSrbkE6jI0NBgC8u4W9KkREJA8GFbql3w/rAqVCwo7zOTiSki93OURE5IQYVOiWInzdMalvCABgyeYLvAYQERG1OAYVuq3f3d8ZahcFDiXn43+8BhAREbUwBhW6rWCDKx69OwwA8A57VYiIqIUxqFCd5g7uCHe1EqfSjdh8JkvucoiIyIkwqFCdfDw0mHVvBADgr1suwmJlrwoREbUMBhWqlycGdoDeVYVLOUVYfzxd7nKIiMhJMKhQvei0Kjx149T672+7iPJKq8wVERGRM2BQoXqbER8OP08N0q6X4rvDV+Uuh4iInACDCtWbq1qJp+/vBAD4cMcllJZbZK6IiIjaOgYVapDJd7VHqLcrcgvNWLE/Re5yiIiojZM1qCxevBh33XUXPD094e/vjwcffBAXLlyQsySqg9pFgd8P7QIAWLorCaayCpkrIiKitkzWoLJ7927MmzcPBw4cwNatW1FRUYHhw4ejuLhYzrKoDuN6tkNnfw8YSyvwjz2X5S6HiIjaMEk40KlGc3Nz4e/vj927d2PgwIF1rm8ymaDX62E0GqHT6VqgQqq26XQW5nx1FG5qJfb8v/vg66GRuyQiImolGvL97VBzVIxGIwDA29u71sfNZjNMJpPdjeQxonsAYkL0KCm34O87k+Quh4iI2iiHCSpWqxULFixA//79ER0dXes6ixcvhl6vt91CQ0NbuEqqJkkSXhgRCQD46sAVpBeUylwRERG1RQ4TVObNm4fTp09j5cqVt1xn4cKFMBqNtltqamoLVkg3u7eTL+7u4I1yixUfbf9Z7nKIiKgNcoigMn/+fGzYsAE7d+5ESEjILdfTaDTQ6XR2N5LPr3tVVh1NQ1JukcwVERFRWyNrUBFCYP78+Vi3bh127NiBiIgIOcuhRugT5o0hXf1hsQq8vfG83OUQEVEbI2tQmTdvHr766it888038PT0RFZWFrKyslBayvkOrclLCV2hVEjYcjYb+5OuyV0OERG1IbIGlaVLl8JoNGLw4MEICgqy3b777js5y6IG6hzgiWn92gMA3vjhLCxWhzninYiIWjkXOV/cgU7hQndowdDOWJ+YjjMZJqw9loaH+/KILCIiunMOMZmWWj8fDw1+d+OChe9svoCS8kqZKyIioraAQYWazIx7whHq7YqcQjM+281T6xMR0Z1jUKEmo3FRYmFCNwDAZ3uSkGnkpGgiIrozDCrUpBKiA9E3zAtlFVa8s5lXwiYiojvDoEJNSpIk/OmBKADA2mPpOJlWIG9BRETUqjGoUJOLDTVgfK92AIA3fjjHo7uIiKjRGFSoWbwwIhIaFwUOJedj69lsucshIqJWikGFmkWwwRWz7q26JMKSzRdQabHKXBEREbVGDCrUbOYM7giDmwqXcoqw5lia3OUQEVErxKBCzUanVWH+fVUngXt/688oLbfIXBEREbU2DCrUrB6ND0M7gyuyTGVY9lOy3OUQEVErw6BCzUrjosRzw7sAAJbuSsK1IrPMFRERUWvCoELNblzPdogK0qGwrBJ/3XJR7nKIiKgVYVChZqdUSFg0tjsAYOXhqzidbpS5IiIiai0YVKhF9IvwxtjYYAgBvLjmJCp4uDIREdUDgwq1mD8+0A0GNxXOZJjw8Y5LcpdDREStAIMKtRh/Ty3+PC4aAPDJzkscAiIiojoxqFCLeiAmCKN6BKLSKvDsvxNhruS5VYiI6NYYVKhFSZKEP4+Lho+7Ghezi/AujwIiIqLbYFChFufjocFbD8UAAD7fcxn7LuXJXBERETkqBhWSxbCoAEyLaw8AePbfibheXC5zRURE5IgYVEg2fxzdDR383JFtMuOltSchhJC7JCIicjAMKiQbN7ULPpzSCyqlhM1nsrHqKK+wTERE9hhUSFbR7fR4dlgkAODP/z2LjIJSmSsiIiJHwqBCsps9sAN6tTeg0FyJl9ae4hAQERHZMKiQ7JQKCX99OBYaFwX2XMzFd4dT5S6JiIgcBIMKOYSOfh54fnjVENAbP5xDOoeAiIgIDCrkQH5zbwT6hHmhyFyJF1fzKCAiImJQIQeiVEh4Z2IMtCoF9l7KwzeHrspdEhERyYxBhRxKBz8P/L8RXQEAb/5wDqn5JTJXREREcmJQIYcz855w9Av3Rkm5Bf9v9UlYrRwCIiJyVgwq5HAUCglLJsbAVaXE/svX8MW+ZLlLIiIimTCokEMK93XHHx/oBgB4e9N5nE43ylwRERHJgUGFHNa0fu0xLCoAFRaBZ1YeR0l5pdwlERFRC2NQIYclSRLefigGAToNknKL8ecN5+QuiYiIWhiDCjk0b3c13pvUE5IEfHvoKjadzpK7JCIiakEMKuTw+nfyxeyBHQAAL609iUwjz1pLROQsGFSoVXhuWCR6tNOjoKQCL63hhQuJiJwFgwq1CmoXBd6f3BNqpQK7L+ZifWK63CUREVELYFChVqOTvweeGdoZAPDaf88ir8gsc0VERNTcGFSoVZk9sAO6BelQUFKBRf85I3c5RETUzBhUqFVRKRVY8lAMFBKw4WQmfjyVKXdJRETUjBhUqNXpEaLHbwd1BAC8sOoELuUUylwRERE1FwYVapWeHdYFd3fwRnG5BbNWHEFOYZncJRERUTNgUKFWSaVU4ONpvRHi5Yor10rw6P8dwvXicrnLIiKiJsagQq2Wr4cGXz8RB39PDS5kF2LmskMoLKuQuywiImpCDCrUqoX5uOOrJ+Lg5abCiTQjfrP8MMMKEVEbwqBCrV6XAE98+Zs4eGpccDjlOh795yGYGFaIiNoEBhVqE3qE6PHNk3fD4KZCYmoBZi0/jNJyi9xlERHRHWJQoTajR4geXz8RB09tVc/K7H8dgbmSYYWIqDWTNajs2bMHY8aMQXBwMCRJwvr16+Ush9qA7sF6LH/8LriqlPjfz3l45ttEVFqscpdFRESNJGtQKS4uRmxsLD755BM5y6A2pk+YN/7xWF+olQpsOpOFF9ecgtXKqy0TEbVGLnK+eEJCAhISEuQsgdqoezv74uNpvfDU18ew5lgaPDRKLBrbHZIkyV0aERE1AOeoUJs1vHsg/vpwDCQJWLH/Ct7ZfAFCsGeFiKg1kbVHpaHMZjPMZrPtvslkkrEaag3G9wpBsdmCP64/jb/vSkJhWSUWje0OpYI9K0RErUGr6lFZvHgx9Hq97RYaGip3SdQKPHJ3GF4b2x2SBPzrwBU89dVRlFXwaCAiotagVQWVhQsXwmg02m6pqalyl0StxIx7wvHx1N5QKxXYcjYbj/7zIIrMlXKXRUREdWhVQUWj0UCn09ndiOprdEwQvpzVz3aeld8sP4yScoYVIiJHJmtQKSoqQmJiIhITEwEAycnJSExMxNWrV+Usi9qwuzv44KtZVafbP5ScjydWHOEwEBGRA5M1qBw5cgS9evVCr169AADPPvssevXqhVdeeUXOsqiNiw01YPlv+sFdrcRPSdcw56ujPCkcEZGDkkQrPl7TZDJBr9fDaDRyGIga7FByPmZ8cQilFRZMj2uPNx6M5nlWiIhaQEO+v1vVHBWiptQvwhsfTOkJSQK+PngVX+xLkbskIiK6CYMKObUR3QPxh4RuAIA3fjiLrWezZa6IiIh+jUGFnN4TAyIwtV97CAE8/e1xnE43yl0SERHdwKBCTk+SJLw+rjsGdPZFaYUFs1YcRqaxVO6yiIgIDCpEAACVUoFPpvdGZ38PZJvMeHzZYRSWVchdFhGR02NQIbpBp1Xhi5l3wddDg/NZhZj3zXFU8LBlIiJZMagQ/Uqotxu+mNkXriol9lzMxZ/Wn+YVl4mIZMSgQnSTmBADPpzaCwoJWHk4FW/8cI5hhYhIJgwqRLUYFhWAN8f3AAD8c28ywwoRkUwYVIhuYWq/9vjLr8LKa/89C4uVYYWIqCUxqBDdxrS4X8LK8p9SMP3/DiDbVCZzVUREzoNBhagO0+La429TesJNrcSBy/lI+Nv/sOtCjtxlERE5BQYVonoY17MdNvzuXkQF6ZBfXI6Zyw5j8Y/nePgyEVEzY1AhqqcOfh5YO/cezIgPAwB8tucyHv50P65eK5G5MiKitotBhagBtColXhsXjU8f6Q2d1gWJqQUY/sFuvL/1IkrLLXKXR0TU5jCoEDXCyOgg/PjMAMRFeKOswoq/bf8Z97+7C98npvMwZiKiJiSJVvy/qslkgl6vh9FohE6nk7scckJCCPx4Kgt/+fEc0guqLmTYJ8wLr46JQkyIQd7iiIgcVEO+vxlUiJpAWYUF/9hzGX/flYTSiqohoIl9QvD/RkTCX6eVuToiIsfCoEIkkyxjGZZsOo+1x9MBAFqVAg/1DsHku0LRo50ekiTJXCERkfwYVIhkdvzqdby+4SyOXy2wLQvzccOYmGCMiQ1GZKCnfMUREcmMQYXIAQghcDA5H/86cAXbz2WjrOKXc650CfDAAzHBeCAmCB38PGSskoio5TGoEDmYYnMltp/PwX9PZGD3hVyU/+pEcdHtdBjdIxhDu/mjk78Hh4eIqM1jUCFyYMbSCmw5k4UNJzOx91Ke3YUO2xlcMaSbPx65OwxdAjg8RERtE4MKUSuRX1yOjaczsflMNg5cvobyyl96WgZ28cOseyMwsLMve1mIqE1hUCFqhUrLLdh/OQ+rjqRh85ksVHe0dAnwwLR+7TG2Zzt4u6vlLZKIqAkwqBC1cqn5JVi2LwXfHb6K4hun5ndRSLivqz8e6h2C+7v6Q+3CE0sTUevEoELURpjKKrD2aBrWHEvHqXSjbbnBTYUxMcEY2MUPd4V7weDGnhYiaj0YVIjaoIvZhVhzLA3rj6cj22S2e6xroCf6RXgjNsSAqGAdIgM8oVBwXgsROSYGFaI2zGIV2HspD5tOZ+FQ8jUk5RbXWMfHXY17OvkiLsIbHXzdYXBTQ6mQUF5phafWBYF6LbQqpQzVExExqBA5ldxCMw6n5ONQcj7OZZpwKt2IkhvzWm5FpZTQLUiHXqEG9GrvhZgQPUK83DjvhYhaBIMKkRMrr7QiMbUAe3/Oxcl0I67ml6CwrBJWq4DaRQFjaUWtQUYhAYE6Ldp5ucLPUwM/Dw18PTTw89Sgc4AnugV5wk3tIsMeEVFb05Dvb/6vQ9TGqF0U6BfhjX4R3rU+LoRA2vVSJKYW4PjVAhxPvY6zGSaYK63IMJYhw1hW6/MUEhDh647odnq093aDm9oF7holXBQKaFUKdPDzQLcgT2hcOKRERE2HPSpEBCEEcovMSLteioyCUuQVmpFbZEZeYTkyTWU4n2lCTqG5zu24q5UYHOmPYVEB6N3eC+28XKHkpF4iugmHfoioyeWYynAmw4QzGUbkFppRXG5BsbkSlVaBorJKXMguRH5xud1zNC4KRPi6w8dDDR93DSJ83dHBzx0dfD0Q7usGT62qyeoTQiDLVIajV67j4OV8XMguRN6vw5UESAAUkgRJAjQuSkQF6dAnzAu9wwzo4OvBI6Wo1SgttyDLVIZMYynyisphrrCg3GKFVQCuKiWCDVp09POAv6fGIc9szaBCRC3OahU4lW7ElrNZ2HUhFz/nFNldEqA2fp5V4SXM2w0+Hhp4uang5aaGwU0FF6UE642nu2tcoHaRUFZhRVmFBaUVVSEp22RGlqkMqfklOJNhqhGUGkKndUHnAE8E6rTw0LjAXeMCD40S7jd+9tS6wNtdbavPy00NN7XSIb8EqPXLKzLjZFoBTqQacSKtAFnGMlRaBSotVhSUVqCgpKJe2/HQuKCDnzs6+Xuge7Ae3YN1aO/tBne1C1zVyltOoLdaBcoqLSgtt8BFoYDeren+qAAYVIjIAVisAmnXS3A5rxjGkgpkmcqQnFuMy3lFSM4rRl5R40PFrSgVEroEeOLuDlXnlAnUa6G4ESSEEBAAhKj62VRWiRNpBTh65TpOphWgrOL2oao2ahcFdFoVvN1ViG6nR+/2XujV3oCugboGD3kJIVBSbkFBaQVMpRXQu6rg76mBi1LeI7EqLVakF1T91V5SXolis6Xq33ILSsyVsApAq1LA10MDf8+qydd+nhp4aFzaVIgTQqDIXImCkgoYS6tuaddLkHa9FNeKy6F1qerFiAz0RGSAJ/zq6MkQQiC30Ixskxl5RVVDrZdzi3ExuxAXsgqRXlBaZ01uaiUC9Vr4eWigVVWFDoUElJRbkHa9FFeuFcNaxze8SinBVaWEm9oFViFQWmGBucJqd4X3Cb3a4b3JPevbVPXCybREJDulQkKYjzvCfNxrfdxYWoGUvGIk5xUjNb8E+SXlKCipwPWSclwvqYAQwvYffWFZBSxWAa2LElqVAhqVEm5qJfw9NQjUaRFscEVUsA5dAjwbdH6YkdGBAIAKixUXsgpx5VoJcgrLUGyuRJG5qtem6udKmMoq7Oorr7SivNKKvKKqL5qL2UVYeywdQNVfsRG+7mhncEWwwRXuGiVUyqovkcKySly/sa8FJRUoKK3anrGkwu7LoboNA3XaG9upOiIrwtcDHf3c0dHfA7omGDqrsFhxvbgcmcYyZJnKkH7jCy7lWgmuXCtG2vVSVNb1bVcLjYvCdtRYkF5ra4tggyt0ri6Q8MuXuMUqUFJeidIKC0rKLTBXWGCutN64VS0ru/FYabnFdsXxX3KAZLvvopDgoXGBp1YFD60LXFVVnxmtSmn38y/3q/5VuyiQXlCKi9mF+Dm7CDmFZcgvLse1onJcKy7H9ZJyuyud18XPU4NuQTr4eWggRFXvRHWPYG6hGanXS24bjiUJ6OjngZgQPXqGGhDu4w6VUgGVUoKnVoUggxaedYRBc6UFV6+VICm3COezCnEmw4SzGSbkFpptn7UKi0CFpRKmsspbbqeiEe9/U2KPChFRA1X3flwvKUdhWSWyjGU4nlqA41ev4/jVAhSZb/2ffl1USgk6rQrG0oo6A4KPuxrhvu6IuHHzdq8ajnJVKeGqrgpzGhclcovMSL8xUbrqVhVKrheXo7AetWpcFAjQaauGwdRKuN3411WthEKSUHrjyzev0IycQvMd7b+j07gooHdVQe+qQrDBFSFervD10KCs0oIreSW4mF2IlHr0ZABVR9L5e2rh46GGt7sa4T7u6BLggc4BnogK1jVJEL2V8korSsstKKmo6iUrLbdAqZDsgpxWpYDGRdksE+I59ENEJBOLVeBSThGu5pcg/XoJMo1lKKuwoNwiYLFaodOq4OWuht5VZZvronetWmZwVdnmvVisVUMD6QWlSL8RMFLzS5CcV4yk3KIal1G4E9VfmAF6LYL1WoT5uCPcx63qX183BHhqGzTRuKS8EnmF5cgtMiO30IxMY1X96QWlSL9eWuM8PgpJgptGaQtZGpUSGpeqL0mNi6IqdN0IX1qVEipl9XBe1fN//SVWYbGisKwShWVVvWHVc5qqezN+uW+xm/NUVmGBn6cGXQI80SXAE8EGV/i4q20honp+Un167ErLLTiTYcTl3GLkFpnhopDsvvi93NUI83ZDOy9XqGQe2pMLgwoRURtXZK60DZ2l5BUj+VoxTKWVKK2otA2RVA+Z+HpoEGxwRTuD1jb8EqTXwttdDcONoMTDyKklcY4KEVEb56FxQXQ7PaLb6eUuhahZOWefExEREbUKDCpERETksBhUiIiIyGExqBAREZHDYlAhIiIih8WgQkRERA6LQYWIiIgcFoMKEREROSwGFSIiInJYDCpERETksBwiqHzyyScIDw+HVqtFXFwcDh06JHdJRERE5ABkDyrfffcdnn32Wbz66qs4duwYYmNjMWLECOTk5MhdGhEREclM9qDy3nvv4cknn8Tjjz+OqKgofPrpp3Bzc8MXX3whd2lEREQkM1mDSnl5OY4ePYqhQ4falikUCgwdOhT79++vsb7ZbIbJZLK7ERERUdvlIueL5+XlwWKxICAgwG55QEAAzp8/X2P9xYsX47XXXquxnIGFiIio9aj+3hZC1LmurEGloRYuXIhnn33Wdj89PR1RUVEIDQ2VsSoiIiJqjMLCQuj1+tuuI2tQ8fX1hVKpRHZ2tt3y7OxsBAYG1lhfo9FAo9HY7nt4eCA1NRWenp6QJKlJazOZTAgNDUVqaip0Ol2TbrstYPvUjW1UN7ZR3dhGt8f2qZsjtpEQAoWFhQgODq5zXVmDilqtRp8+fbB9+3Y8+OCDAACr1Yrt27dj/vz5dT5foVAgJCSkWWvU6XQO88Y6IrZP3dhGdWMb1Y1tdHtsn7o5WhvV1ZNSTfahn2effRYzZsxA37590a9fP3zwwQcoLi7G448/LndpREREJDPZg8rkyZORm5uLV155BVlZWejZsyc2bdpUY4ItEREROR/ZgwoAzJ8/v15DPS1Jo9Hg1VdftZsTQ79g+9SNbVQ3tlHd2Ea3x/apW2tvI0nU59ggIiIiIhnIfmZaIiIiolthUCEiIiKHxaBCREREDotBhYiIiBwWg0otPvnkE4SHh0Or1SIuLg6HDh2SuyTZLFq0CJIk2d26du1qe7ysrAzz5s2Dj48PPDw88NBDD9U403Bbs2fPHowZMwbBwcGQJAnr16+3e1wIgVdeeQVBQUFwdXXF0KFD8fPPP9utk5+fj+nTp0On08FgMGDWrFkoKipqwb1oPnW1z8yZM2t8pkaOHGm3Tltun8WLF+Ouu+6Cp6cn/P398eCDD+LChQt269Tn9+rq1asYPXo03Nzc4O/vjxdeeAGVlZUtuSvNpj5tNHjw4Bqfozlz5tit05bbaOnSpYiJibGdxC0+Ph4bN260Pd6WPkMMKjf57rvv8Oyzz+LVV1/FsWPHEBsbixEjRiAnJ0fu0mTTvXt3ZGZm2m579+61Pfb73/8e//3vf7Fq1Srs3r0bGRkZmDBhgozVNr/i4mLExsbik08+qfXxJUuW4MMPP8Snn36KgwcPwt3dHSNGjEBZWZltnenTp+PMmTPYunUrNmzYgD179mD27NkttQvNqq72AYCRI0fafaa+/fZbu8fbcvvs3r0b8+bNw4EDB7B161ZUVFRg+PDhKC4utq1T1++VxWLB6NGjUV5ejp9++gkrVqzA8uXL8corr8ixS02uPm0EAE8++aTd52jJkiW2x9p6G4WEhOCtt97C0aNHceTIEdx///0YN24czpw5A6CNfYYE2enXr5+YN2+e7b7FYhHBwcFi8eLFMlYln1dffVXExsbW+lhBQYFQqVRi1apVtmXnzp0TAMT+/ftbqEJ5ARDr1q2z3bdarSIwMFC88847tmUFBQVCo9GIb7/9VgghxNmzZwUAcfjwYds6GzduFJIkifT09BarvSXc3D5CCDFjxgwxbty4Wz7HmdpHCCFycnIEALF7924hRP1+r3788UehUChEVlaWbZ2lS5cKnU4nzGZzy+5AC7i5jYQQYtCgQeKZZ5655XOcrY2EEMLLy0v83//9X5v7DLFH5VfKy8tx9OhRDB061LZMoVBg6NCh2L9/v4yVyevnn39GcHAwOnTogOnTp+Pq1asAgKNHj6KiosKuvbp27Yr27ds7bXslJycjKyvLrk30ej3i4uJsbbJ//34YDAb07dvXts7QoUOhUChw8ODBFq9ZDrt27YK/vz8iIyPx1FNP4dq1a7bHnK19jEYjAMDb2xtA/X6v9u/fjx49etidwXvEiBEwmUy2v6jbkpvbqNrXX38NX19fREdHY+HChSgpKbE95kxtZLFYsHLlShQXFyM+Pr7NfYYc4sy0jiIvLw8Wi6XG6fsDAgJw/vx5maqSV1xcHJYvX47IyEhkZmbitddew4ABA3D69GlkZWVBrVbDYDDYPScgIABZWVnyFCyz6v2u7TNU/VhWVhb8/f3tHndxcYG3t7dTtNvIkSMxYcIEREREICkpCX/4wx+QkJCA/fv3Q6lUOlX7WK1WLFiwAP3790d0dDQA1Ov3Kisrq9bPWPVjbUltbQQA06ZNQ1hYGIKDg3Hy5Em8+OKLuHDhAtauXQvAOdro1KlTiI+PR1lZGTw8PLBu3TpERUUhMTGxTX2GGFTothISEmw/x8TEIC4uDmFhYfj3v/8NV1dXGSuj1mrKlCm2n3v06IGYmBh07NgRu3btwpAhQ2SsrOXNmzcPp0+ftpv3RfZu1Ua/nrPUo0cPBAUFYciQIUhKSkLHjh1bukxZREZGIjExEUajEatXr8aMGTOwe/duuctqchz6+RVfX18olcoaM6Ozs7MRGBgoU1WOxWAwoEuXLrh06RICAwNRXl6OgoICu3Wcub2q9/t2n6HAwMAak7MrKyuRn5/vlO3WoUMH+Pr64tKlSwCcp33mz5+PDRs2YOfOnQgJCbEtr8/vVWBgYK2fserH2opbtVFt4uLiAMDuc9TW20itVqNTp07o06cPFi9ejNjYWPztb39rc58hBpVfUavV6NOnD7Zv325bZrVasX37dsTHx8tYmeMoKipCUlISgoKC0KdPH6hUKrv2unDhAq5eveq07RUREYHAwEC7NjGZTDh48KCtTeLj41FQUICjR4/a1tmxYwesVqvtP1tnkpaWhmvXriEoKAhA228fIQTmz5+PdevWYceOHYiIiLB7vD6/V/Hx8Th16pRdoNu6dSt0Oh2ioqJaZkeaUV1tVJvExEQAsPscteU2qo3VaoXZbG57nyG5Z/M6mpUrVwqNRiOWL18uzp49K2bPni0MBoPdzGhn8txzz4ldu3aJ5ORksW/fPjF06FDh6+srcnJyhBBCzJkzR7Rv317s2LFDHDlyRMTHx4v4+HiZq25ehYWF4vjx4+L48eMCgHjvvffE8ePHxZUrV4QQQrz11lvCYDCI77//Xpw8eVKMGzdOREREiNLSUts2Ro4cKXr16iUOHjwo9u7dKzp37iymTp0q1y41qdu1T2FhoXj++efF/v37RXJysti2bZvo3bu36Ny5sygrK7Ntoy23z1NPPSX0er3YtWuXyMzMtN1KSkps69T1e1VZWSmio6PF8OHDRWJioti0aZPw8/MTCxculGOXmlxdbXTp0iXx+uuviyNHjojk5GTx/fffiw4dOoiBAwfattHW2+ill14Su3fvFsnJyeLkyZPipZdeEpIkiS1btggh2tZniEGlFh999JFo3769UKvVol+/fuLAgQNylySbyZMni6CgIKFWq0W7du3E5MmTxaVLl2yPl5aWirlz5wovLy/h5uYmxo8fLzIzM2WsuPnt3LlTAKhxmzFjhhCi6hDlP/3pTyIgIEBoNBoxZMgQceHCBbttXLt2TUydOlV4eHgInU4nHn/8cVFYWCjD3jS927VPSUmJGD58uPDz8xMqlUqEhYWJJ598ssYfAm25fWprGwBi2bJltnXq83uVkpIiEhIShKurq/D19RXPPfecqKioaOG9aR51tdHVq1fFwIEDhbe3t9BoNKJTp07ihRdeEEaj0W47bbmNfvOb34iwsDChVquFn5+fGDJkiC2kCNG2PkOSEEK0XP8NERERUf1xjgoRERE5LAYVIiIiclgMKkREROSwGFSIiIjIYTGoEBERkcNiUCEiIiKHxaBCREREDotBhYjaFEmSsH79ernLIKImwqBCRE1m5syZkCSpxm3kyJFyl0ZErZSL3AUQUdsycuRILFu2zG6ZRqORqRoiau3Yo0JETUqj0SAwMNDu5uXlBaBqWGbp0qVISEiAq6srOnTogNWrV9s9/9SpU7j//vvh6uoKHx8fzJ49G0VFRXbrfPHFF+jevTs0Gg2CgoIwf/58u8fz8vIwfvx4uLm5oXPnzvjPf/7TvDtNRM2GQYWIWtSf/vQnPPTQQzhx4gSmT5+OKVOm4Ny5cwCA4uJijBgxAl5eXjh8+DBWrVqFbdu22QWRpUuXYt68eZg9ezZOnTqF//znP+jUqZPda7z22muYNGkSTp48iVGjRmH69OnIz89v0f0koiYi91URiajtmDFjhlAqlcLd3d3u9uabbwohqq6KO2fOHLvnxMXFiaeeekoIIcTnn38uvLy8RFFRke3xH374QSgUCtsVloODg8XLL798yxoAiD/+8Y+2+0VFRQKA2LhxY5PtJxG1HM5RIaImdd9992Hp0qV2y7y9vW0/x8fH2z0WHx+PxMREAMC5c+cQGxsLd3d32+P9+/eH1WrFhQsXIEkSMjIyMGTIkNvWEBMTY/vZ3d0dOp0OOTk5jd0lIpIRgwoRNSl3d/caQzFNxdXVtV7rqVQqu/uSJMFqtTZHSUTUzDhHhYha1IEDB2rc79atGwCgW7duOHHiBIqLi22P79u3DwqFApGRkfD09ER4eDi2b9/eojUTkXzYo0JETcpsNiMrK8tumYuLC3x9fQEAq1atQt++fXHvvffi66+/xqFDh/DPf/4TADB9+nS8+uqrmDFjBhYtWoTc3Fz87ne/w6OPPoqAgAAAwKJFizBnzhz4+/sjISEBhYWF2LdvH373u9+17I4SUYtgUCGiJrVp0yYEBQXZLYuMjMT58+cBVB2Rs3LlSsydOxdBQUH49ttvERUVBQBwc3PD5s2b8cwzz+Cuu+6Cm5sbHnroIbz33nu2bc2YMQNlZWV4//338fzzz8PX1xcTJ05suR0kohYlCSGE3EUQkXOQJAnr1q3Dgw8+KHcpRNRKcI4KEREROSwGFSIiInJYnKNCRC2GI81E1FDsUSEiIiKHxaBCREREDotBhYiIiBwWgwoRERE5LAYVIiIiclgMKkREROSwGFSIiIjIYTGoEBERkcNiUCEiIiKH9f8BQaXv1Tdxds4AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "print(electricity_data[\"Region\"])" + ], + "metadata": { + "id": "kT7euZcTW482" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "print(electricity_data.columns) # Si 2020 es una columna\n", + "print(electricity_data.index) # Si 2020 es un índice\n" + ], + "metadata": { + "id": "oDKGm3BTajlP" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "uKxrVjY4U9qL" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file