@@ -1156,8 +1156,10 @@ def make_low_rank_matrix(n_samples=100, n_features=100, *, effective_rank=10,
11561156    n  =  min (n_samples , n_features )
11571157
11581158    # Random (ortho normal) vectors 
1159-     u , _  =  linalg .qr (generator .randn (n_samples , n ), mode = 'economic' )
1160-     v , _  =  linalg .qr (generator .randn (n_features , n ), mode = 'economic' )
1159+     u , _  =  linalg .qr (generator .randn (n_samples , n ), mode = 'economic' ,
1160+                      check_finite = False )
1161+     v , _  =  linalg .qr (generator .randn (n_features , n ), mode = 'economic' ,
1162+                      check_finite = False )
11611163
11621164    # Index of the singular values 
11631165    singular_ind  =  np .arange (n , dtype = np .float64 )
@@ -1315,7 +1317,7 @@ def make_spd_matrix(n_dim, *, random_state=None):
13151317    generator  =  check_random_state (random_state )
13161318
13171319    A  =  generator .rand (n_dim , n_dim )
1318-     U , _ , Vt  =  linalg .svd (np .dot (A .T , A ))
1320+     U , _ , Vt  =  linalg .svd (np .dot (A .T , A ),  check_finite = False )
13191321    X  =  np .dot (np .dot (U , 1.0  +  np .diag (generator .rand (n_dim ))), Vt )
13201322
13211323    return  X 
0 commit comments