|
655 | 655 | "print(\"Eager performance\")\n",
|
656 | 656 | "compute_gradients(model, inputs, labels)\n",
|
657 | 657 | "print(timeit.timeit(lambda: compute_gradients(model, inputs, labels),\n",
|
658 |
| - " number=10)* 1000, \"ms\")\n", |
| 658 | + " number=10)* 100, \"ms\")\n", |
659 | 659 | "\n",
|
660 | 660 | "print(\"\\ntf.function compiled performance\")\n",
|
661 | 661 | "compiled_compute_gradients = tf.function(compute_gradients)\n",
|
662 | 662 | "compiled_compute_gradients(model, inputs, labels) # warmup\n",
|
663 | 663 | "print(timeit.timeit(lambda: compiled_compute_gradients(model, inputs, labels),\n",
|
664 |
| - " number=10) * 1000, \"ms\")" |
| 664 | + " number=10) * 100, \"ms\")" |
665 | 665 | ]
|
666 | 666 | },
|
667 | 667 | {
|
|
737 | 737 | "\n",
|
738 | 738 | "print(\"Running vectorized computaton\")\n",
|
739 | 739 | "print(timeit.timeit(lambda: vectorized_per_example_gradients(inputs, labels),\n",
|
740 |
| - " number=10) * 1000, \"ms\")\n", |
| 740 | + " number=10) * 100, \"ms\")\n", |
741 | 741 | "\n",
|
742 | 742 | "print(\"\\nRunning unvectorized computation\")\n",
|
743 | 743 | "per_example_gradients = unvectorized_per_example_gradients(inputs, labels)\n",
|
744 | 744 | "print(timeit.timeit(lambda: unvectorized_per_example_gradients(inputs, labels),\n",
|
745 |
| - " number=5) * 1000, \"ms\")" |
| 745 | + " number=5) * 200, \"ms\")" |
746 | 746 | ]
|
747 | 747 | },
|
748 | 748 | {
|
|
892 | 892 | "\n",
|
893 | 893 | " _g() # warmup\n",
|
894 | 894 | " t = timeit.timeit(_g, number=number)\n",
|
895 |
| - " times.append(t * 1000)\n", |
| 895 | + " times.append(t * 1000. / number)\n", |
896 | 896 | " return times\n",
|
897 | 897 | "\n",
|
898 | 898 | "\n",
|
|
0 commit comments