|
5 | 5 | from sklearn.utils.testing import assert_almost_equal |
6 | 6 | from sklearn.utils.testing import assert_array_equal |
7 | 7 | from sklearn.utils.testing import assert_array_almost_equal |
| 8 | +from sklearn.utils.testing import assert_raises_regexp |
8 | 9 | from sklearn.utils.testing import assert_equal |
9 | 10 | from sklearn.utils.testing import assert_greater |
10 | 11 | from sklearn.utils.testing import assert_raises |
@@ -67,7 +68,23 @@ def test_predict_2_classes(): |
67 | 68 |
|
68 | 69 | def test_error(): |
69 | 70 | # Test for appropriate exception on errors |
70 | | - assert_raises(ValueError, LogisticRegression(C=-1).fit, X, Y1) |
| 71 | + msg = "Penalty term must be positive" |
| 72 | + assert_raises_regexp(ValueError, msg, |
| 73 | + LogisticRegression(C=-1).fit, X, Y1) |
| 74 | + assert_raises_regexp(ValueError, msg, |
| 75 | + LogisticRegression(C="test").fit, X, Y1) |
| 76 | + |
| 77 | + msg = "Tolerance for stopping criteria must be positive" |
| 78 | + assert_raises_regexp(ValueError, msg, |
| 79 | + LogisticRegression(tol=-1).fit, X, Y1) |
| 80 | + assert_raises_regexp(ValueError, msg, |
| 81 | + LogisticRegression(tol="test").fit, X, Y1) |
| 82 | + |
| 83 | + msg = "Maximum number of iteration must be positive" |
| 84 | + assert_raises_regexp(ValueError, msg, |
| 85 | + LogisticRegression(max_iter=-1).fit, X, Y1) |
| 86 | + assert_raises_regexp(ValueError, msg, |
| 87 | + LogisticRegression(max_iter="test").fit, X, Y1) |
71 | 88 |
|
72 | 89 |
|
73 | 90 | def test_predict_3_classes(): |
|
0 commit comments