forked from Kyligence/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans.py
executable file
·85 lines (66 loc) · 2.75 KB
/
kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
The K-means algorithm written from scratch against PySpark. In practice,
one may prefer to use the KMeans algorithm in ML, as shown in
examples/src/main/python/ml/kmeans_example.py.
This example requires NumPy (http://www.numpy.org/).
"""
import sys
from typing import List
import numpy as np
from pyspark.sql import SparkSession
def parseVector(line: str) -> np.ndarray:
return np.array([float(x) for x in line.split(' ')])
def closestPoint(p: np.ndarray, centers: List[np.ndarray]) -> int:
bestIndex = 0
closest = float("+inf")
for i in range(len(centers)):
tempDist = np.sum((p - centers[i]) ** 2)
if tempDist < closest:
closest = tempDist
bestIndex = i
return bestIndex
if __name__ == "__main__":
if len(sys.argv) != 4:
print("Usage: kmeans <file> <k> <convergeDist>", file=sys.stderr)
sys.exit(-1)
print("""WARN: This is a naive implementation of KMeans Clustering and is given
as an example! Please refer to examples/src/main/python/ml/kmeans_example.py for an
example on how to use ML's KMeans implementation.""", file=sys.stderr)
spark = SparkSession\
.builder\
.appName("PythonKMeans")\
.getOrCreate()
lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0])
data = lines.map(parseVector).cache()
K = int(sys.argv[2])
convergeDist = float(sys.argv[3])
kPoints = data.takeSample(False, K, 1)
tempDist = 1.0
while tempDist > convergeDist:
closest = data.map(
lambda p: (closestPoint(p, kPoints), (p, 1)))
pointStats = closest.reduceByKey(
lambda p1_c1, p2_c2: (p1_c1[0] + p2_c2[0], p1_c1[1] + p2_c2[1]))
newPoints = pointStats.map(
lambda st: (st[0], st[1][0] / st[1][1])).collect()
tempDist = sum(np.sum((kPoints[iK] - p) ** 2) for (iK, p) in newPoints)
for (iK, p) in newPoints:
kPoints[iK] = p
print("Final centers: " + str(kPoints))
spark.stop()