| 
22 | 22 | from ..metrics import pairwise_distances  | 
23 | 23 | 
 
  | 
24 | 24 | 
 
  | 
25 |  | -def optics(X, min_samples=5, max_eps=np.inf, metric='euclidean',  | 
 | 25 | +def optics(X, min_samples=5, max_eps=np.inf, metric='minkowski',  | 
26 | 26 |            p=2, metric_params=None, maxima_ratio=.75,  | 
27 | 27 |            rejection_ratio=.7, similarity_threshold=0.4,  | 
28 | 28 |            significant_min=.003, min_cluster_size=.005,  | 
@@ -60,7 +60,7 @@ def optics(X, min_samples=5, max_eps=np.inf, metric='euclidean',  | 
60 | 60 |         clusters across all scales; reducing `max_eps` will result in  | 
61 | 61 |         shorter run times.  | 
62 | 62 | 
  | 
63 |  | -    metric : string or callable, optional (default='euclidean')  | 
 | 63 | +    metric : string or callable, optional (default='minkowski')  | 
64 | 64 |         metric to use for distance computation. Any metric from scikit-learn  | 
65 | 65 |         or scipy.spatial.distance can be used.  | 
66 | 66 | 
  | 
@@ -215,7 +215,7 @@ class OPTICS(BaseEstimator, ClusterMixin):  | 
215 | 215 |         clusters across all scales; reducing `max_eps` will result in  | 
216 | 216 |         shorter run times.  | 
217 | 217 | 
  | 
218 |  | -    metric : string or callable, optional (default='euclidean')  | 
 | 218 | +    metric : string or callable, optional (default='minkowski')  | 
219 | 219 |         metric to use for distance computation. Any metric from scikit-learn  | 
220 | 220 |         or scipy.spatial.distance can be used.  | 
221 | 221 | 
  | 
@@ -353,7 +353,7 @@ class OPTICS(BaseEstimator, ClusterMixin):  | 
353 | 353 |     the Conference "Lernen, Wissen, Daten, Analysen" (LWDA) (2018): 318-329.  | 
354 | 354 |     """  | 
355 | 355 | 
 
  | 
356 |  | -    def __init__(self, min_samples=5, max_eps=np.inf, metric='euclidean',  | 
 | 356 | +    def __init__(self, min_samples=5, max_eps=np.inf, metric='minkowski',  | 
357 | 357 |                  p=2, metric_params=None, maxima_ratio=.75,  | 
358 | 358 |                  rejection_ratio=.7, similarity_threshold=0.4,  | 
359 | 359 |                  significant_min=.003, min_cluster_size=.005,  | 
 | 
0 commit comments