@@ -23,7 +23,7 @@ def calc_delta_r(x_predicted,y_predicted,x_true,y_true):
2323 """ Compute the scalar distance between predicted halo centers
2424 and the true halo centers. Predictions are matched to the closest
2525 halo center.
26- Notes: It takes in the predicted and true positions, and then loops over each possile configuration and finds the most optimal one.
26+ Notes: It takes in the predicted and true positions, and then loops over each possible configuration and finds the most optimal one.
2727 Arguments:
2828 x_predicted, y_predicted: vector for predicted x- and y-positions (1 to 3 elements)
2929 x_true, y_true: vector for known x- and y-positions (1 to 3 elements)
@@ -34,11 +34,11 @@ def calc_delta_r(x_predicted,y_predicted,x_true,y_true):
3434 e.g if true_halo_indexes=[0,1] and measured_halo_indexes=[1,0] then the first x,y coordinates of the true halo position matches the second input of the predicted x,y coordinates.
3535 """
3636
37- num_halos = len (x_true ) #Only works for number of halso > 1
37+ num_halos = len (x_true ) #Only works for number of halos > 1
3838 num_configurations = mt .factorial (num_halos ) #The number of possible different comb
3939 configurations = np .zeros ([num_halos ,num_configurations ],int ) #The array of combinations
4040 #I will pass back
41- distances = np .zeros ([num_configurations ],float ) #THe array of the distances
41+ distances = np .zeros ([num_configurations ],float ) #The array of the distances
4242 #for all possible combinations
4343
4444 radial_distance = [] #The vector of distances
@@ -49,7 +49,7 @@ def calc_delta_r(x_predicted,y_predicted,x_true,y_true):
4949 count = 0 #For the index of the distances array
5050 true_halo_indexes = [] #The tuples which will show the order of halos picked
5151 predicted_halo_indexes = []
52- distances_perm = np .zeros ([num_configurations ,num_halos ],float ) #The distance between eac
52+ distances_perm = np .zeros ([num_configurations ,num_halos ],float ) #The distance between each
5353 #true and predicted
5454 #halo for every comb
5555 true_halo_indexes_perm = [] #log of all the permutations of true halos used
@@ -63,9 +63,9 @@ def calc_delta_r(x_predicted,y_predicted,x_true,y_true):
6363 distances_perm [count ,j ]= np .sqrt ((x_true [j ]- x_predicted [int (perm [j ])])** 2 \
6464 + (y_true [j ]- y_predicted [int (perm [j ])])** 2 )
6565 #This array logs the distance between true and
66- #predicted halo for ALL configruations
66+ #predicted halo for ALL configurations
6767
68- which_true_halos .append (j ) #logthe order in which I try each true halo
68+ which_true_halos .append (j ) #log the order in which I try each true halo
6969 which_predicted_halos .append (int (perm [j ])) #log the order in which I true
7070 #each predicted halo
7171 true_halo_indexes_perm .append (which_true_halos ) #this is a tuple of tuples of
@@ -109,7 +109,7 @@ def calc_theta(x_predicted, y_predicted, x_true, y_true, x_ref, y_ref):
109109
110110
111111 # Angle at which the halo is at
112- #with respect to the reference poitn
112+ #with respect to the reference point
113113 phi [x_true != x_ref ] = np .arctan ((y_predicted [x_true != x_predicted ]- \
114114 y_true [x_true != x_predicted ])\
115115 / (x_predicted [x_true != x_predicted ]- \
@@ -165,7 +165,7 @@ def get_ref(x_halo,y_halo,weight):
165165 """ Gets the reference point of the system of halos by weighted averaging the x and y
166166 coordinates.
167167 Arguments:
168- x_halo, y_halo: Vector num_halos referrin to the coordinates of the halos
168+ x_halo, y_halo: Vector num_halos referring to the coordinates of the halos
169169 weight: the weight which will be assigned to the position of the halo
170170 num_halos: number of halos in the system
171171 Returns:
@@ -190,7 +190,7 @@ def main_score( nhalo_all, x_true_all, y_true_all, x_ref_all, y_ref_all, sky_pre
190190 r = np .array ([],dtype = float ) # The array which I will log all the calculated radial distances
191191 angle = np .array ([],dtype = float ) #The array which I will log all the calculated angles
192192 #Load in the sky_ids from the true
193- num_halos_total = 0 #Keep track of how many halos are iput into the metric
193+ num_halos_total = 0 #Keep track of how many halos are input into the metric
194194
195195
196196
@@ -205,12 +205,12 @@ def main_score( nhalo_all, x_true_all, y_true_all, x_ref_all, y_ref_all, sky_pre
205205 x_predicted = np .array ([],dtype = float )
206206 y_predicted = np .array ([],dtype = float )
207207 for i in xrange (nhalo ):
208- x_predicted = np .append (x_predicted ,float (sky [0 ])) #get the predictd values
208+ x_predicted = np .append (x_predicted ,float (sky [0 ])) #get the predicted values
209209 y_predicted = np .append (y_predicted ,float (sky [1 ]))
210210 #The solution file for the test data provides masses
211211 #to calculate the centre of mass where as the Training_halo.csv
212212 #direct provides x_ref y_ref. So in the case of test data
213- #we need to calculae the ref point from the masses using
213+ #we need to calculate the ref point from the masses using
214214 #Get_ref()
215215
216216 x_ref = x_ref_all [selectskyinsolutions ]
@@ -219,7 +219,7 @@ def main_score( nhalo_all, x_true_all, y_true_all, x_ref_all, y_ref_all, sky_pre
219219 num_halos_total = num_halos_total + nhalo
220220
221221
222- #Single halo case, this needs to be separately caluclated since
222+ #Single halo case, this needs to be separately calculated since
223223 #x_ref = x_true
224224 if nhalo == 1 :
225225 #What is the radial distance between the true and predicted position
@@ -260,15 +260,15 @@ def main_score( nhalo_all, x_true_all, y_true_all, x_ref_all, y_ref_all, sky_pre
260260 # Find what the average distance the estimate is from the halo position
261261 av_r = sum (r )/ len (r )
262262
263- #In order to quanitfy the orientation invariance we will express each angle
264- # as a vector and find the average vecor
263+ #In order to quantify the orientation invariance we will express each angle
264+ # as a vector and find the average vector
265265 #R_bar^2=(1/N Sum^Ncos(theta))^2+(1/N Sum^Nsin(theta))**2
266266
267267 N = float (num_halos_total )
268268 angle_vec = np .sqrt (( 1.0 / N * sum (np .cos (angle )) )** 2 + \
269269 ( 1.0 / N * sum (np .sin (angle )) )** 2 )
270270
271- W1 = 1. / 1000. #Weight the av_r such that < 1 i a good score > 1 isnt so good.
271+ W1 = 1. / 1000. #Weight the av_r such that < 1 is a good score > 1 is not so good.
272272 W2 = 1.
273273 metric = W1 * av_r + W2 * angle_vec #Weighted metric, weights TBD
274274 print 'Your average distance in pixels you are away from the true halo is' , av_r
@@ -304,7 +304,7 @@ def main(user_fname, fname):
304304
305305
306306
307- num_halos_total = 0 #Keep track of how many halos are iput into the metric
307+ num_halos_total = 0 #Keep track of how many halos are input into the metric
308308
309309
310310 sky_prediction = c .reader (open (user_fname , 'rb' )) #Open the result.csv
@@ -314,9 +314,9 @@ def main(user_fname, fname):
314314 with open (user_fname , 'r' ) as f :
315315 header = float ((f .readline ()).split (',' )[1 ]) #try and make where the
316316 #first input would be
317- #a float, if succed its
318- #not a header
319- print 'THE INPUT FILE DOESNT APPEAR TO HAVE A HEADER'
317+ #a float, if succeed it
318+ #is not a header
319+ print 'THE INPUT FILE DOES NOT APPEAR TO HAVE A HEADER'
320320 except :
321321 print 'THE INPUT FILE APPEARS TO HAVE A HEADER, SKIPPING THE FIRST LINE'
322322
@@ -343,7 +343,7 @@ def main(user_fname, fname):
343343 x_predicted = np .array ([],dtype = float )
344344 y_predicted = np .array ([],dtype = float )
345345 for i in xrange (nhalo ):
346- x_predicted = np .append (x_predicted ,float (sky [2 * i + 1 ])) #get the predictd values
346+ x_predicted = np .append (x_predicted ,float (sky [2 * i + 1 ])) #get the predicted values
347347 y_predicted = np .append (y_predicted ,float (sky [2 * i + 2 ]))
348348 #The solution file for the test data provides masses
349349 #to calculate the centre of mass where as the Training_halo.csv
@@ -357,7 +357,7 @@ def main(user_fname, fname):
357357 num_halos_total = num_halos_total + nhalo
358358
359359
360- #Single halo case, this needs to be separately caluclated since
360+ #Single halo case, this needs to be separately calculated since
361361 #x_ref = x_true
362362 if nhalo == 1 :
363363 #What is the radial distance between the true and predicted position
@@ -398,15 +398,15 @@ def main(user_fname, fname):
398398 # Find what the average distance the estimate is from the halo position
399399 av_r = sum (r )/ len (r )
400400
401- #In order to quanitfy the orientation invariance we will express each angle
402- # as a vector and find the average vecor
401+ #In order to quantify the orientation invariance we will express each angle
402+ # as a vector and find the average vector
403403 #R_bar^2=(1/N Sum^Ncos(theta))^2+(1/N Sum^Nsin(theta))**2
404404
405405 N = float (num_halos_total )
406406 angle_vec = np .sqrt (( 1.0 / N * sum (np .cos (angle )) )** 2 + \
407407 ( 1.0 / N * sum (np .sin (angle )) )** 2 )
408408
409- W1 = 1. / 1000. #Weight the av_r such that < 1 i a good score > 1 isnt so good.
409+ W1 = 1. / 1000. #Weight the av_r such that < 1 is a good score > 1 is not so good.
410410 W2 = 1.
411411 metric = W1 * av_r + W2 * angle_vec #Weighted metric, weights TBD
412412 print 'Your average distance in pixels you are away from the true halo is' , av_r
0 commit comments