Skip to content

Commit 3a3637c

Browse files
mppaskovagramfort
authored andcommitted
[MRG+1] Misleading gamma description (scikit-learn#8699) (scikit-learn#8716)
[DOC] update description of gamma for kernel methods
1 parent 485926e commit 3a3637c

File tree

4 files changed

+11
-11
lines changed

4 files changed

+11
-11
lines changed

sklearn/cluster/spectral.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -311,9 +311,8 @@ class SpectralClustering(BaseEstimator, ClusterMixin):
311311
by the clustering algorithm.
312312
313313
gamma : float, default=1.0
314-
Scaling factor of RBF, polynomial, exponential chi^2 and
315-
sigmoid affinity kernel. Ignored for
316-
``affinity='nearest_neighbors'``.
314+
Kernel coefficient for rbf, poly, sigmoid, laplacian and chi2 kernels.
315+
Ignored for ``affinity='nearest_neighbors'``.
317316
318317
degree : float, default=3
319318
Degree of the polynomial kernel. Ignored by other kernels.

sklearn/decomposition/kernel_pca.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ class KernelPCA(BaseEstimator, TransformerMixin):
3535
Degree for poly kernels. Ignored by other kernels.
3636
3737
gamma : float, default=1/n_features
38-
Kernel coefficient for rbf and poly kernels. Ignored by other
38+
Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other
3939
kernels.
4040
4141
coef0 : float, default=1

sklearn/kernel_approximation.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -382,8 +382,8 @@ class Nystroem(BaseEstimator, TransformerMixin):
382382
How many data points will be used to construct the mapping.
383383
384384
gamma : float, default=None
385-
Gamma parameter for the RBF, polynomial, exponential chi2 and
386-
sigmoid kernels. Interpretation of the default value is left to
385+
Gamma parameter for the RBF, laplacian, polynomial, exponential chi2
386+
and sigmoid kernels. Interpretation of the default value is left to
387387
the kernel; see the documentation for sklearn.metrics.pairwise.
388388
Ignored by other kernels.
389389

sklearn/svm/libsvm.pyx

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -88,8 +88,8 @@ def fit(
8888
set to polynomial), 3 by default.
8989
9090
gamma : float64, optional
91-
Gamma parameter in RBF kernel (only relevant if kernel is set
92-
to RBF). 0.1 by default.
91+
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
92+
kernels. 0.1 by default.
9393
9494
coef0 : float64, optional
9595
Independent parameter in poly/sigmoid kernel. 0 by default.
@@ -295,7 +295,8 @@ def predict(np.ndarray[np.float64_t, ndim=2, mode='c'] X,
295295
degree : int
296296
Degree of the polynomial kernel.
297297
gamma : float
298-
Gamma parameter in RBF kernel.
298+
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
299+
kernels. 0.1 by default.
299300
coef0 : float
300301
Independent parameter in poly/sigmoid kernel.
301302
@@ -494,8 +495,8 @@ def cross_validation(
494495
set to polynomial)
495496
496497
gamma : float
497-
Gamma parameter in RBF kernel (only relevant if kernel is set
498-
to RBF)
498+
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
499+
kernels. 0.1 by default.
499500
500501
coef0 : float
501502
Independent parameter in poly/sigmoid kernel.

0 commit comments

Comments
 (0)