@@ -297,9 +297,9 @@ Query for k-nearest neighbors
297297 >>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
298298 >>> tree = {BinaryTree}(X, leaf_size=2) # doctest: +SKIP
299299 >>> dist, ind = tree.query([X[0]], k=3) # doctest: +SKIP
300- >>> print ind # indices of 3 closest neighbors
300+ >>> print( ind) # indices of 3 closest neighbors
301301 [0 3 1]
302- >>> print dist # distances to 3 closest neighbors
302+ >>> print( dist) # distances to 3 closest neighbors
303303 [ 0. 0.19662693 0.29473397]
304304
305305Pickle and Unpickle a tree. Note that the state of the tree is saved in the
@@ -313,9 +313,9 @@ pickle operation: the tree needs not be rebuilt upon unpickling.
313313 >>> s = pickle.dumps(tree) # doctest: +SKIP
314314 >>> tree_copy = pickle.loads(s) # doctest: +SKIP
315315 >>> dist, ind = tree_copy.query(X[0], k=3) # doctest: +SKIP
316- >>> print ind # indices of 3 closest neighbors
316+ >>> print( ind) # indices of 3 closest neighbors
317317 [0 3 1]
318- >>> print dist # distances to 3 closest neighbors
318+ >>> print( dist) # distances to 3 closest neighbors
319319 [ 0. 0.19662693 0.29473397]
320320
321321Query for neighbors within a given radius
@@ -324,10 +324,10 @@ Query for neighbors within a given radius
324324 >>> np.random.seed(0)
325325 >>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
326326 >>> tree = {BinaryTree}(X, leaf_size=2) # doctest: +SKIP
327- >>> print tree.query_radius(X[0], r=0.3, count_only=True)
327+ >>> print( tree.query_radius(X[0], r=0.3, count_only=True) )
328328 3
329329 >>> ind = tree.query_radius(X[0], r=0.3) # doctest: +SKIP
330- >>> print ind # indices of neighbors within distance 0.3
330+ >>> print( ind) # indices of neighbors within distance 0.3
331331 [3 0 1]
332332
333333
@@ -623,7 +623,7 @@ cdef class NeighborsHeap:
623623 dist_arr [0 ] = val
624624 ind_arr [0 ] = i_val
625625
626- #descend the heap, swapping values until the max heap criterion is met
626+ # descend the heap, swapping values until the max heap criterion is met
627627 i = 0
628628 while True :
629629 ic1 = 2 * i + 1
@@ -1282,9 +1282,9 @@ cdef class BinaryTree:
12821282 >>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
12831283 >>> tree = BinaryTree(X, leaf_size=2) # doctest: +SKIP
12841284 >>> dist, ind = tree.query(X[0], k=3) # doctest: +SKIP
1285- >>> print ind # indices of 3 closest neighbors
1285+ >>> print( ind) # indices of 3 closest neighbors
12861286 [0 3 1]
1287- >>> print dist # distances to 3 closest neighbors
1287+ >>> print( dist) # distances to 3 closest neighbors
12881288 [ 0. 0.19662693 0.29473397]
12891289 """
12901290 # XXX: we should allow X to be a pre-built tree.
@@ -1415,10 +1415,10 @@ cdef class BinaryTree:
14151415 >>> np.random.seed(0)
14161416 >>> X = np.random.random((10, 3)) # 10 points in 3 dimensions
14171417 >>> tree = BinaryTree(X, leaf_size=2) # doctest: +SKIP
1418- >>> print tree.query_radius(X[0], r=0.3, count_only=True)
1418+ >>> print( tree.query_radius(X[0], r=0.3, count_only=True) )
14191419 3
14201420 >>> ind = tree.query_radius(X[0], r=0.3) # doctest: +SKIP
1421- >>> print ind # indices of neighbors within distance 0.3
1421+ >>> print( ind) # indices of neighbors within distance 0.3
14221422 [3 0 1]
14231423 """
14241424 if count_only and return_distance :
0 commit comments