|
| 1 | +#!/usr/bin/env python |
| 2 | +# coding: utf-8 |
| 3 | + |
| 4 | +# In[ ]: |
| 5 | + |
| 6 | + |
| 7 | +from classes import usermovie |
| 8 | +import numpy as np |
| 9 | +from sklearn.metrics import mean_squared_error |
| 10 | +from math import sqrt |
| 11 | + |
| 12 | +def hit_rate(users, movies): |
| 13 | + hits = 0 |
| 14 | + denom = 0 |
| 15 | + actual = [] |
| 16 | + predicted = [] |
| 17 | + actualall = [] |
| 18 | + predictedall = [] |
| 19 | + for u1 in users: |
| 20 | + u = users[u1] |
| 21 | + userid = u.userid |
| 22 | + usermovies = [] |
| 23 | + if userid in users: |
| 24 | + denom = denom + 1 |
| 25 | + ufactor = users[userid].factor |
| 26 | + for m1 in movies: |
| 27 | + m = movies[m1] |
| 28 | + mfactor = m.factor |
| 29 | + dotp = np.dot(ufactor, mfactor) |
| 30 | + if m.movieid in u.movies_all: |
| 31 | + actualall.append(u.movies_all[m.movieid]) |
| 32 | + predictedall.append(float(dotp)) |
| 33 | + |
| 34 | + if m.movieid in u.movies_test: |
| 35 | + actual.append(u.movies_test[m.movieid]) |
| 36 | + predicted.append(dotp) |
| 37 | + |
| 38 | + usermovied = usermovie() |
| 39 | + usermovied.userid = userid |
| 40 | + usermovied.movieid = m.movieid |
| 41 | + usermovied.rating = dotp |
| 42 | + usermovies.append(usermovied) |
| 43 | + |
| 44 | + usermovies.sort(key=lambda x: x.rating, reverse=True) |
| 45 | + count = 0 |
| 46 | + for um in usermovies: |
| 47 | + userid = um.userid |
| 48 | + movieid = um.movieid |
| 49 | + #rating = um.rating |
| 50 | + if movieid in users[userid].movies_test: |
| 51 | + hits = hits + 1 |
| 52 | + break |
| 53 | + count = count + 1 |
| 54 | + if count > 9: |
| 55 | + break |
| 56 | + |
| 57 | + sortedpredicted = predicted |
| 58 | + least = min(sortedpredicted) |
| 59 | + sortedpredicted = [x + least for x in sortedpredicted] |
| 60 | + sortedpredicted = [x / max(sortedpredicted) for x in sortedpredicted] |
| 61 | + sortedpredicted = [x * 5 for x in sortedpredicted] |
| 62 | + predicted = sortedpredicted |
| 63 | + |
| 64 | + sortedpredicted = predictedall |
| 65 | + least = min(sortedpredicted) |
| 66 | + sortedpredicted = [x + least for x in sortedpredicted] |
| 67 | + sortedpredicted = [x / max(sortedpredicted) for x in sortedpredicted] |
| 68 | + sortedpredicted = [x * 5 for x in sortedpredicted] |
| 69 | + predictedall = sortedpredicted |
| 70 | + |
| 71 | + rms = sqrt(mean_squared_error(actual, predicted)) |
| 72 | + rmsall = sqrt(mean_squared_error(actualall, predictedall)) |
| 73 | + |
| 74 | + return hits, denom, rms, rmsall |
| 75 | + |
| 76 | +def hit_rate_SVD(users, movies, svd): |
| 77 | + hits = 0 |
| 78 | + denom = 0 |
| 79 | + actual = [] |
| 80 | + predicted = [] |
| 81 | + actualall = [] |
| 82 | + predictedall = [] |
| 83 | + for u1 in users: |
| 84 | + u = users[u1] |
| 85 | + userid = u.userid |
| 86 | + usermovies = [] |
| 87 | + if userid in users: |
| 88 | + denom = denom + 1 |
| 89 | + for m1 in movies: |
| 90 | + m = movies[m1] |
| 91 | + dotp = float(svd.predict(int(userid), int(m.movieid))[3]) |
| 92 | + |
| 93 | + if m.movieid in u.movies_all: |
| 94 | + actualall.append(u.movies_all[m.movieid]) |
| 95 | + predictedall.append(float(dotp)) |
| 96 | + |
| 97 | + if (str(m.movieid) in u.movies_test) | (int(m.movieid) in u.movies_test): |
| 98 | + actual.append(u.movies_test[m.movieid]) |
| 99 | + predicted.append(float(dotp)) |
| 100 | + |
| 101 | + usermovied = usermovie() |
| 102 | + usermovied.userid = userid |
| 103 | + usermovied.movieid = m.movieid |
| 104 | + usermovied.rating = dotp |
| 105 | + usermovies.append(usermovied) |
| 106 | + |
| 107 | + usermovies.sort(key=lambda x: x.rating, reverse=True) |
| 108 | + count = 0 |
| 109 | + for um in usermovies: |
| 110 | + userid = um.userid |
| 111 | + movieid = um.movieid |
| 112 | + |
| 113 | + if (str(movieid) in users[userid].movies_test) | (int(movieid) in users[userid].movies_test): |
| 114 | + hits = hits + 1 |
| 115 | + break |
| 116 | + count = count + 1 |
| 117 | + if count > 9: |
| 118 | + break |
| 119 | + |
| 120 | + rms = sqrt(mean_squared_error(actual, predicted)) |
| 121 | + rmsall = sqrt(mean_squared_error(actualall, predictedall)) |
| 122 | + |
| 123 | + return hits, denom, rms, rmsall |
| 124 | + |
0 commit comments