Skip to content

Commit 257e100

Browse files
committed
Merge pull request scikit-learn#2385 from ndawe/tree
[MRG] DOC: missing doc of splitter parameter in tree.py
2 parents d085b85 + 8ecd509 commit 257e100

File tree

1 file changed

+10
-0
lines changed

1 file changed

+10
-0
lines changed

sklearn/tree/tree.py

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -338,6 +338,11 @@ class DecisionTreeClassifier(BaseDecisionTree, ClassifierMixin):
338338
The function to measure the quality of a split. Supported criteria are
339339
"gini" for the Gini impurity and "entropy" for the information gain.
340340
341+
splitter : string, optional (default="best")
342+
The strategy used to choose the split at each node. Supported
343+
strategies are "best" to choose the best split and "random" to choose
344+
the best random split.
345+
341346
max_features : int, float, string or None, optional (default=None)
342347
The number of features to consider when looking for the best split:
343348
- If int, then consider `max_features` features at each split.
@@ -532,6 +537,11 @@ class DecisionTreeRegressor(BaseDecisionTree, RegressorMixin):
532537
The function to measure the quality of a split. The only supported
533538
criterion is "mse" for the mean squared error.
534539
540+
splitter : string, optional (default="best")
541+
The strategy used to choose the split at each node. Supported
542+
strategies are "best" to choose the best split and "random" to choose
543+
the best random split.
544+
535545
max_features : int, float, string or None, optional (default=None)
536546
The number of features to consider when looking for the best split:
537547
- If int, then consider `max_features` features at each split.

0 commit comments

Comments
 (0)