@@ -26,9 +26,9 @@ def compute_kernel_slow(Y, X, kernel, h):
2626
2727
2828def test_kernel_density (n_samples = 100 , n_features = 3 ):
29- np .random .seed (0 )
30- X = np . random . random (( n_samples , n_features ) )
31- Y = np . random . random (( n_samples , n_features ) )
29+ rng = np .random .RandomState (0 )
30+ X = rng . randn ( n_samples , n_features )
31+ Y = rng . randn ( n_samples , n_features )
3232
3333 for kernel in ['gaussian' , 'tophat' , 'epanechnikov' ,
3434 'exponential' , 'linear' , 'cosine' ]:
@@ -52,8 +52,8 @@ def check_results(kernel, bandwidth, atol, rtol):
5252
5353
5454def test_kernel_density_sampling (n_samples = 100 , n_features = 3 ):
55- np .random .seed (0 )
56- X = np . random . random (( n_samples , n_features ) )
55+ rng = np .random .RandomState (0 )
56+ X = rng . randn ( n_samples , n_features )
5757
5858 bandwidth = 0.2
5959
@@ -80,16 +80,16 @@ def test_kernel_density_sampling(n_samples=100, n_features=3):
8080 assert_raises (NotImplementedError , kde .sample , 100 )
8181
8282 # non-regression test: used to return a scalar
83- X = np . random . random (( 4 , 1 ) )
83+ X = rng . randn ( 4 , 1 )
8484 kde = KernelDensity (kernel = "gaussian" ).fit (X )
8585 assert_equal (kde .sample ().shape , (1 , 1 ))
8686
8787
8888def test_kde_algorithm_metric_choice ():
8989 """Smoke test for various metrics and algorithms"""
90- np .random .seed (0 )
91- X = np . random . random (( 10 , 2 )) # 2 features required for haversine dist.
92- Y = np . random . random (( 10 , 2 ) )
90+ rng = np .random .RandomState (0 )
91+ X = rng . randn ( 10 , 2 ) # 2 features required for haversine dist.
92+ Y = rng . randn ( 10 , 2 )
9393
9494 for algorithm in ['auto' , 'ball_tree' , 'kd_tree' ]:
9595 for metric in ['euclidean' , 'minkowski' , 'manhattan' ,
0 commit comments