@@ -6,7 +6,7 @@ and time-dependent Hartree-Fock (TDHF), which is also known as the random-phase
6
6
approximation (RPA). The purpose of this project is to develop simple
7
7
implementations of these two methods and to understand the basic differences
8
8
between them. This project assumes you have completed at least the
9
- [ CCSD programming project] ( https://github.com/CrawfordGroup/ProgrammingProjects/tree/master /Project%2305) .
9
+ [ CCSD programming project] ( .. /Project%2305) .
10
10
11
11
You can read more about these methods in
12
12
[ J.B. Foresman, M. Head-Gordon, J.A. Pople, and M.J. Frisch, J. Phys. Chem. 96, 135-141 (1992)] ( http://pubs.acs.org/doi/pdf/10.1021/j100180a030 ) (CIS)
@@ -18,39 +18,27 @@ The fundamental idea behind CIS is the representation of the excited-state wave
18
18
functions as linear combinations of singly excited determinants relative to the
19
19
Hartree-Fock reference wave function, * viz.*
20
20
21
- ```
22
- EQUATION
23
- \[ |\Psi(m)\rangle = \sum_{jb} c_j^b(m) \{ a^+_b a_j \} |\Phi_0\rangle = \sum_{jb} c_j^b(m) |\phi_j^b\rangle, \]
24
- ```
21
+ <img src =" ./figures/singly-excited-determinant.png " height =" 60 " >
25
22
26
23
where * m* identifies the various excited states, and we will use * i* and * j*
27
24
(* a* and * b* ) to denote occupied (unoccupied) spin-orbitals. Inserting this
28
25
into the Schr<html >ö ; </html >dinger equation and left-projecting onto a
29
26
particular singly excited determinant gives
30
27
31
- ```
32
- EQUATION
33
- \sum_{jb} \langle \phi_i^a|H|\phi_j^b\rangle c_j^b(m) = E(m) c_i^a(m).
34
- ```
28
+ <img src =" ./figures/excited-det-schrod-eqn.png " height =" 60 " >
35
29
36
30
If we recognize that we have one of these equations for every combination of
37
31
* i* and * a* spin-orbitals, then this equation may be viewed as a matrix
38
32
eigenvalue problem:
39
33
40
- ```
41
- EQUATION
42
- \[ {\mathbf {\underline{\underline H}}}\ {\mathbf {\underline c}}(m) = E(m) {\mathbf {\underline c}}(m). \]
43
- ```
34
+ <img src =" ./figures/matrix-eigenvalue-problem.png " height =" 60 " >
44
35
45
36
To solve this equation, we need an expression for the matrix elements in terms
46
37
of things we already know, i.e. Fock matrix elements and two-electron
47
38
integrals. This can be done using either algebraic or diagrammatic techniques
48
39
to obtain (in the spin-orbital notation of previous projects):
49
40
50
- ```
51
- EQUATION
52
- \langle \phi_i^a | H | \phi_j^b \rangle = H_{ia,jb} = f_{ab} \delta_{ij} - f_{ij} \delta_{ab} + \langle aj || ib \rangle.
53
- ```
41
+ <img src =" ./figures/matrix-elements.png " height =" 60 " >
54
42
55
43
Our task is then relatively simple: Build the Hamiltonian matrix (expressed in
56
44
the basis of all singly excited determinants) using the above expression and
@@ -60,7 +48,7 @@ occupied orbitals times the number of unoccupied orbitals. For our
60
48
STO-3G/H<sub >2</sub >O test case, with its ten occupied and four unoccupied
61
49
spin-orbitals, the matrix will be 40 x 40.
62
50
63
- * Hint: CIS Hamiltonian for STO-3G H<sub >2</sub >O
51
+ * [ Hint] ( ./hints/hint1.md ) : CIS Hamiltonian for STO-3G H<sub >2</sub >O
64
52
65
53
Make sure you can compute the correct CIS excitation energies for each of the
66
54
four test cases provided at the end of the page. Before you move on to the
@@ -84,99 +72,11 @@ from a simple two-electron/two-orbital example (such as the *1s 2s* excited
84
72
state configuration of the He atom). One can easily show that the four
85
73
possible determinants arising from this configuration,
86
74
87
- ```
88
- EQUATION
89
- \[ \left|
90
- \begin{array}{cc}
91
- \uparrow & \\
92
- \hline
93
- \uparrow & \\
94
- \hline
95
- \end{array}
96
- \right\rangle,\ \
97
- \left|
98
- \begin{array}{cc}
99
- & \downarrow \\
100
- \hline
101
- & \downarrow \\
102
- \hline
103
- \end{array}
104
- \right\rangle,\ \
105
- \left|
106
- \begin{array}{cc}
107
- \uparrow & \\
108
- \hline
109
- & \downarrow\\
110
- \hline
111
- \end{array}
112
- \right\rangle,\ \
113
- \left|
114
- \begin{array}{cc}
115
- & \downarrow \\
116
- \hline
117
- \uparrow & \\
118
- \hline
119
- \end{array}
120
- \right\rangle,\ \ \]
121
- ```
75
+ <img src =" ./figures/four-possible-determinants.png " height =" 60 " >
122
76
123
77
are components of one singlet and one triplet in the following combinations:
124
78
125
- ```
126
- EQUATION
127
- \[ |\Phi^3_1\rangle = \left|
128
- \begin{array}{cc}
129
- \uparrow & \\
130
- \hline
131
- \uparrow & \\
132
- \hline
133
- \end{array}
134
- \right\rangle,\ \
135
- |\Phi^3_{-1}\rangle = \left|
136
- \begin{array}{cc}
137
- & \downarrow \\
138
- \hline
139
- & \downarrow\\
140
- \hline
141
- \end{array}
142
- \right\rangle,\ \
143
- |\Phi^3_{0}\rangle =
144
- \frac{1}{\sqrt{2}}\left\{
145
- \left|
146
- \begin{array}{cc}
147
- \uparrow & \\
148
- \hline
149
- & \downarrow\\
150
- \hline
151
- \end{array}
152
- \right\rangle -
153
- \left|
154
- \begin{array}{cc}
155
- & \downarrow \\
156
- \hline
157
- \uparrow & \\
158
- \hline
159
- \end{array}
160
- \right\rangle\right\},\ \ {\rm and}\ \
161
- |\Phi^1_{0}\rangle =
162
- \frac{1}{\sqrt{2}}\left\{
163
- \left|
164
- \begin{array}{cc}
165
- \uparrow & \\
166
- \hline
167
- & \downarrow\\
168
- \hline
169
- \end{array}
170
- \right\rangle +
171
- \left|
172
- \begin{array}{cc}
173
- & \downarrow \\
174
- \hline
175
- \uparrow & \\
176
- \hline
177
- \end{array}
178
- \right\rangle\right\}, \]
179
- ```
79
+ <img src =" ./figures/singlet-triplet-combinations.png " height =" 60 " >
180
80
181
81
where the superscript is the spin multiplicity (* 2S+1* ) and the subscript is
182
82
the * M<sub >S</sub >* value of the wave function. So, if we wanted to compute
@@ -192,13 +92,7 @@ expression and the equation for the CIS Hamiltonian matrix elements in the
192
92
previous section, we may write a spin-factored equation for the
193
93
<html >&alpha ; </html > coefficients as
194
94
195
- ```
196
- EQUATION
197
- c_{i_\alpha}^{a_\alpha}(m) E(m) = \sum_{j_\alpha b_\alpha}
198
- \left[ f_{a_\alpha b_\alpha} \delta_{i_\alpha j_\alpha} - f_{i_\alpha j_\alpha} \delta_{a_\alpha b_\alpha} + \langle a_\alpha j_\alpha || i_\alpha b_\alpha \rangle \right]
199
- c_{j_\alpha}^{b_\alpha}(m) + \sum_{j_\beta b_\beta} \langle a_\alpha j_\beta ||
200
- i_\alpha b_\beta \rangle c_{j_\beta}^{b_\beta}(m).
201
- ```
95
+ <img src =" ./figures/pin-factored-eqn.png " height =" 60 " >
202
96
203
97
Note that the mix-spin cases (where * j=* <html >&alpha ; </html > and
204
98
* b=* <html >&beta ; </html > or * vice versa* ) do not contribute since the Fock
@@ -207,39 +101,27 @@ carry out spin integration on the integrals in the above expression and assume
207
101
that the <html >&alpha ; </html > and <html >&beta ; </html > CI coefficients are
208
102
identical for the same spatial orbitals, i.e.,
209
103
210
- ```
211
- EQUATION
212
- c_{i_\alpha}^{a_\alpha}(m) = c_{i_\beta}^{a_\beta}(m).
213
- ```
104
+ <img src =" ./figures/identical-ci-coeff.png " height =" 60 " >
214
105
215
- we obtain the *** spatial orbital*** expression
106
+ we obtain the < b >< i > spatial orbital</ i ></ b > expression
216
107
217
- ```
218
- EQUATION
219
- c_i^a(m) E(m) = \sum_{jb} \left[ f_{ab} \delta_{ij} - f_{ij} \delta_{ab} + 2 <aj|ib> - <aj|bi> \right] c_j^b(m).
220
- ```
108
+ <img src =" ./figures/spatial-orbital-expression.png " height =" 60 " >
221
109
222
110
The part in brackets above is an expression for the spatial-orbital CIS
223
111
Hamiltonian, spin-adapted for singlet excited states, and diagonalization of
224
112
this matrix will yield only the singlet eigenvalues you obtained from your
225
113
spin-orbital matrix earlier.
226
114
227
- * Hint: Spin-adapted CIS singlet Hamiltonian for STO-3G H<sub >2</sub >O
115
+ * [ Hint] ( ./hints/hint2.md ) : Spin-adapted CIS singlet Hamiltonian for STO-3G H<sub >2</sub >O
228
116
229
117
How about the triplets? We use exactly the same spin-factorization, but
230
118
instead require
231
119
232
- ```
233
- EQUATION
234
- c_{i_\alpha}^{a_\alpha}(m) = -c_{i_\beta}^{a_\beta}(m).
235
- ```
120
+ <img src =" ./figures/inverse-ci-coeff.png " height =" 60 " >
236
121
237
122
This yields a slightly simpler Hamiltonian:
238
123
239
- ```
240
- EQUATION
241
- c_i^a(m) E(m) = \sum_{jb} \left[ f_{ab} \delta_{ij} - f_{ij} \delta_{ab} - <aj|bi> \right] c_j^b(m),
242
- ```
124
+ <img src =" ./figures/simpler-hamiltonian.png " height =" 60 " >
243
125
244
126
which, upon diagonalization, will yield only the triplet eigenvalues (but each only occurring once) from your earlier diagonalziation.
245
127
@@ -266,47 +148,23 @@ TDHF/RPA wave function expansion in terms of orbital rotations instead of
266
148
Slater determinants, but that's a discussion for another day.) The TDHF/RPA
267
149
eigenvalue equations take the form
268
150
269
- ```
270
- EQUATION
271
- \left(
272
- \begin{array}{cc}
273
- {\mathbf {\underline{\underline A}}} & {\mathbf {\underline{\underline B}}} \\
274
- -{\mathbf {\underline{\underline B}}} & - {\mathbf {\underline{\underline A}}} \\
275
- \end{array}
276
- \right) \left(
277
- \begin{array}{c}
278
- {\mathbf {\underline X}} \\
279
- {\mathbf {\underline Y}} \\
280
- \end{array}
281
- \right) = E \left(
282
- \begin{array}{c}
283
- {\mathbf {\underline X}} \\
284
- {\mathbf {\underline Y}} \\
285
- \end{array}
286
- \right).
287
- ```
151
+ <img src =" ./figures/tdhf-eqn.png " height =" 60 " >
288
152
289
153
The definition of the *** A*** matrix is just the CIS matrix itself, * viz.*
290
154
291
- ```
292
- EQUATION
293
- A_{ia,jb} \equiv \langle \phi_i^a | H | \phi_j^b \rangle = f_{ab} \delta_{ij} - f_{ij} \delta_{ab} + \langle aj || ib \rangle,
294
- ```
155
+ <img src =" ./figures/A-matrix.png " height =" 60 " >
295
156
296
157
while ** X** and ** Y** are the parameters of single excitations and
297
158
de-excitations, respectively, and the *** B*** matrix is simply
298
159
299
- ```
300
- EQUATION
301
- B_{ia,jb} \equiv \langle ab || ij \rangle.
302
- ```
160
+ <img src =" ./figures/B-matrix.png " height =" 60 " >
303
161
304
162
Thus, the row/column dimension of the TDHF/RPA Hamiltonian is twice that of the
305
163
CIS Hamiltonian, and the matrix is non-symmetric (so you must be careful about
306
164
the diagonalization function you choose). Do you obtain twice as many
307
165
excitation energies?
308
166
309
- * Hint: TDHF/RPA Hamiltonian for STO-3G H<sub >2</sub >O
167
+ * [ Hint] ( ./hints/hint3.md ) : TDHF/RPA Hamiltonian for STO-3G H<sub >2</sub >O
310
168
311
169
## A Better Approach to Solving the TDHF/RPA Eigenvalue Equations
312
170
@@ -316,57 +174,28 @@ Hamiltonian storage cost), one can rearrange the eigenvalue equations. First
316
174
write eigenvalue equation two separate equations, each in terms of the
317
175
submatrices ** A** and ** B** :
318
176
319
- ```
320
- EQUATION
321
- \[ {\mathbf {\underline{\underline A}}} {\mathbf {\underline X}} + {\mathbf {\underline{\underline B}}} {\mathbf {\underline Y}} = E {\mathbf {\underline X}} \]
322
- ```
177
+ <img src =" ./figures/smarter-tdhf-1.png " height =" 60 " >
323
178
324
179
and
325
180
326
- ```
327
- EQUATION
328
- \[
329
- -{\mathbf {\underline{\underline B}}} {\mathbf {\underline X}} - {\mathbf {\underline{\underline A}}} {\mathbf {\underline Y}} = E {\mathbf {\underline Y}}. \]
330
- ```
181
+ <img src =" ./figures/smarter-tdhf-2.png " height =" 60 " >
331
182
332
183
Now take +/- combinations of these equations to obtain
333
184
334
- ```
335
- EQUATION
336
- \[
337
- ({\mathbf {\underline{\underline A}}} - {\mathbf {\underline{\underline B}}})
338
- ({\mathbf {\underline X}} - {\mathbf {\underline Y}})
339
- = E ({\mathbf {\underline X}} + {\mathbf {\underline Y}}) \]
340
- ```
185
+ <img src =" ./figures/smarter-tdhf-3.png " height =" 60 " >
341
186
342
187
and
343
188
344
- ```
345
- EQUATION
346
- \[ ({\mathbf {\underline{\underline A}}} + {\mathbf {\underline{\underline B}}})
347
- ({\mathbf {\underline X}} + {\mathbf {\underline Y}})
348
- = E ({\mathbf {\underline X}} - {\mathbf {\underline Y}}). \]
349
- ```
189
+ <img src =" ./figures/smarter-tdhf-4.png " height =" 60 " >
350
190
351
191
Solve for *** (X+Y)*** in the second equation:
352
192
353
- ```
354
- EQUATION
355
- \[ ({\mathbf {\underline X}} + {\mathbf {\underline Y}})
356
- = E ({\mathbf {\underline{\underline A}}} + {\mathbf {\underline{\underline B}}})^{-1}
357
- ({\mathbf {\underline X}} - {\mathbf {\underline Y}}). \]
358
- ```
193
+ <img src =" ./figures/smarter-tdhf-5.png " height =" 60 " >
359
194
360
195
Insert this result into the first equation, rearrange a bit, and finally
361
196
obtain:
362
197
363
- ```
364
- EQUATION
365
- \[ ({\mathbf {\underline{\underline A}}} + {\mathbf {\underline{\underline B}}})
366
- ({\mathbf {\underline{\underline A}}} - {\mathbf {\underline{\underline B}}})
367
- ({\mathbf {\underline X}} - {\mathbf {\underline Y}})
368
- = E^2 ({\mathbf {\underline X}} - {\mathbf {\underline Y}}). \]
369
- ```
198
+ <img src =" ./figures/smarter-tdhf-6.png " height =" 60 " >
370
199
371
200
This is an eigenvalue equation of the same dimension as the CIS eigenvalue
372
201
equation (number of occupied orbitals times number of unoccupied orbitals),
0 commit comments