Skip to content

Commit 9fe6cd6

Browse files
committed
Add Project 12 hints and eqns
1 parent b93da1f commit 9fe6cd6

24 files changed

+880
-196
lines changed

Project#12/README.md

Lines changed: 25 additions & 196 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ and time-dependent Hartree-Fock (TDHF), which is also known as the random-phase
66
approximation (RPA). The purpose of this project is to develop simple
77
implementations of these two methods and to understand the basic differences
88
between them. This project assumes you have completed at least the
9-
[CCSD programming project](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2305).
9+
[CCSD programming project](../Project%2305).
1010

1111
You can read more about these methods in
1212
[J.B. Foresman, M. Head-Gordon, J.A. Pople, and M.J. Frisch, J. Phys. Chem. 96, 135-141 (1992)](http://pubs.acs.org/doi/pdf/10.1021/j100180a030) (CIS)
@@ -18,39 +18,27 @@ The fundamental idea behind CIS is the representation of the excited-state wave
1818
functions as linear combinations of singly excited determinants relative to the
1919
Hartree-Fock reference wave function, *viz.*
2020

21-
```
22-
EQUATION
23-
\[ |\Psi(m)\rangle = \sum_{jb} c_j^b(m) \{ a^+_b a_j \} |\Phi_0\rangle = \sum_{jb} c_j^b(m) |\phi_j^b\rangle, \]
24-
```
21+
<img src="./figures/singly-excited-determinant.png" height="60">
2522

2623
where *m* identifies the various excited states, and we will use *i* and *j*
2724
(*a* and *b*) to denote occupied (unoccupied) spin-orbitals. Inserting this
2825
into the Schr<html>&ouml;</html>dinger equation and left-projecting onto a
2926
particular singly excited determinant gives
3027

31-
```
32-
EQUATION
33-
\sum_{jb} \langle \phi_i^a|H|\phi_j^b\rangle c_j^b(m) = E(m) c_i^a(m).
34-
```
28+
<img src="./figures/excited-det-schrod-eqn.png" height="60">
3529

3630
If we recognize that we have one of these equations for every combination of
3731
*i* and *a* spin-orbitals, then this equation may be viewed as a matrix
3832
eigenvalue problem:
3933

40-
```
41-
EQUATION
42-
\[ {\mathbf {\underline{\underline H}}}\ {\mathbf {\underline c}}(m) = E(m) {\mathbf {\underline c}}(m). \]
43-
```
34+
<img src="./figures/matrix-eigenvalue-problem.png" height="60">
4435

4536
To solve this equation, we need an expression for the matrix elements in terms
4637
of things we already know, i.e. Fock matrix elements and two-electron
4738
integrals. This can be done using either algebraic or diagrammatic techniques
4839
to obtain (in the spin-orbital notation of previous projects):
4940

50-
```
51-
EQUATION
52-
\langle \phi_i^a | H | \phi_j^b \rangle = H_{ia,jb} = f_{ab} \delta_{ij} - f_{ij} \delta_{ab} + \langle aj || ib \rangle.
53-
```
41+
<img src="./figures/matrix-elements.png" height="60">
5442

5543
Our task is then relatively simple: Build the Hamiltonian matrix (expressed in
5644
the basis of all singly excited determinants) using the above expression and
@@ -60,7 +48,7 @@ occupied orbitals times the number of unoccupied orbitals. For our
6048
STO-3G/H<sub>2</sub>O test case, with its ten occupied and four unoccupied
6149
spin-orbitals, the matrix will be 40 x 40.
6250

63-
* Hint: CIS Hamiltonian for STO-3G H<sub>2</sub>O
51+
* [Hint](./hints/hint1.md): CIS Hamiltonian for STO-3G H<sub>2</sub>O
6452

6553
Make sure you can compute the correct CIS excitation energies for each of the
6654
four test cases provided at the end of the page. Before you move on to the
@@ -84,99 +72,11 @@ from a simple two-electron/two-orbital example (such as the *1s 2s* excited
8472
state configuration of the He atom). One can easily show that the four
8573
possible determinants arising from this configuration,
8674

87-
```
88-
EQUATION
89-
\[ \left|
90-
\begin{array}{cc}
91-
\uparrow & \\
92-
\hline
93-
\uparrow & \\
94-
\hline
95-
\end{array}
96-
\right\rangle,\ \
97-
\left|
98-
\begin{array}{cc}
99-
& \downarrow \\
100-
\hline
101-
& \downarrow \\
102-
\hline
103-
\end{array}
104-
\right\rangle,\ \
105-
\left|
106-
\begin{array}{cc}
107-
\uparrow & \\
108-
\hline
109-
& \downarrow\\
110-
\hline
111-
\end{array}
112-
\right\rangle,\ \
113-
\left|
114-
\begin{array}{cc}
115-
& \downarrow \\
116-
\hline
117-
\uparrow & \\
118-
\hline
119-
\end{array}
120-
\right\rangle,\ \ \]
121-
```
75+
<img src="./figures/four-possible-determinants.png" height="60">
12276

12377
are components of one singlet and one triplet in the following combinations:
12478

125-
```
126-
EQUATION
127-
\[ |\Phi^3_1\rangle = \left|
128-
\begin{array}{cc}
129-
\uparrow & \\
130-
\hline
131-
\uparrow & \\
132-
\hline
133-
\end{array}
134-
\right\rangle,\ \
135-
|\Phi^3_{-1}\rangle = \left|
136-
\begin{array}{cc}
137-
& \downarrow \\
138-
\hline
139-
& \downarrow\\
140-
\hline
141-
\end{array}
142-
\right\rangle,\ \
143-
|\Phi^3_{0}\rangle =
144-
\frac{1}{\sqrt{2}}\left\{
145-
\left|
146-
\begin{array}{cc}
147-
\uparrow & \\
148-
\hline
149-
& \downarrow\\
150-
\hline
151-
\end{array}
152-
\right\rangle -
153-
\left|
154-
\begin{array}{cc}
155-
& \downarrow \\
156-
\hline
157-
\uparrow & \\
158-
\hline
159-
\end{array}
160-
\right\rangle\right\},\ \ {\rm and}\ \
161-
|\Phi^1_{0}\rangle =
162-
\frac{1}{\sqrt{2}}\left\{
163-
\left|
164-
\begin{array}{cc}
165-
\uparrow & \\
166-
\hline
167-
& \downarrow\\
168-
\hline
169-
\end{array}
170-
\right\rangle +
171-
\left|
172-
\begin{array}{cc}
173-
& \downarrow \\
174-
\hline
175-
\uparrow & \\
176-
\hline
177-
\end{array}
178-
\right\rangle\right\}, \]
179-
```
79+
<img src="./figures/singlet-triplet-combinations.png" height="60">
18080

18181
where the superscript is the spin multiplicity (*2S+1*) and the subscript is
18282
the *M<sub>S</sub>* value of the wave function. So, if we wanted to compute
@@ -192,13 +92,7 @@ expression and the equation for the CIS Hamiltonian matrix elements in the
19292
previous section, we may write a spin-factored equation for the
19393
<html>&alpha;</html> coefficients as
19494

195-
```
196-
EQUATION
197-
c_{i_\alpha}^{a_\alpha}(m) E(m) = \sum_{j_\alpha b_\alpha}
198-
\left[ f_{a_\alpha b_\alpha} \delta_{i_\alpha j_\alpha} - f_{i_\alpha j_\alpha} \delta_{a_\alpha b_\alpha} + \langle a_\alpha j_\alpha || i_\alpha b_\alpha \rangle \right]
199-
c_{j_\alpha}^{b_\alpha}(m) + \sum_{j_\beta b_\beta} \langle a_\alpha j_\beta ||
200-
i_\alpha b_\beta \rangle c_{j_\beta}^{b_\beta}(m).
201-
```
95+
<img src="./figures/pin-factored-eqn.png" height="60">
20296

20397
Note that the mix-spin cases (where *j=*<html>&alpha;</html> and
20498
*b=*<html>&beta;</html> or *vice versa*) do not contribute since the Fock
@@ -207,39 +101,27 @@ carry out spin integration on the integrals in the above expression and assume
207101
that the <html>&alpha;</html> and <html>&beta;</html> CI coefficients are
208102
identical for the same spatial orbitals, i.e.,
209103

210-
```
211-
EQUATION
212-
c_{i_\alpha}^{a_\alpha}(m) = c_{i_\beta}^{a_\beta}(m).
213-
```
104+
<img src="./figures/identical-ci-coeff.png" height="60">
214105

215-
we obtain the ***spatial orbital*** expression
106+
we obtain the <b><i>spatial orbital</i></b> expression
216107

217-
```
218-
EQUATION
219-
c_i^a(m) E(m) = \sum_{jb} \left[ f_{ab} \delta_{ij} - f_{ij} \delta_{ab} + 2 <aj|ib> - <aj|bi> \right] c_j^b(m).
220-
```
108+
<img src="./figures/spatial-orbital-expression.png" height="60">
221109

222110
The part in brackets above is an expression for the spatial-orbital CIS
223111
Hamiltonian, spin-adapted for singlet excited states, and diagonalization of
224112
this matrix will yield only the singlet eigenvalues you obtained from your
225113
spin-orbital matrix earlier.
226114

227-
* Hint: Spin-adapted CIS singlet Hamiltonian for STO-3G H<sub>2</sub>O
115+
* [Hint](./hints/hint2.md): Spin-adapted CIS singlet Hamiltonian for STO-3G H<sub>2</sub>O
228116

229117
How about the triplets? We use exactly the same spin-factorization, but
230118
instead require
231119

232-
```
233-
EQUATION
234-
c_{i_\alpha}^{a_\alpha}(m) = -c_{i_\beta}^{a_\beta}(m).
235-
```
120+
<img src="./figures/inverse-ci-coeff.png" height="60">
236121

237122
This yields a slightly simpler Hamiltonian:
238123

239-
```
240-
EQUATION
241-
c_i^a(m) E(m) = \sum_{jb} \left[ f_{ab} \delta_{ij} - f_{ij} \delta_{ab} - <aj|bi> \right] c_j^b(m),
242-
```
124+
<img src="./figures/simpler-hamiltonian.png" height="60">
243125

244126
which, upon diagonalization, will yield only the triplet eigenvalues (but each only occurring once) from your earlier diagonalziation.
245127

@@ -266,47 +148,23 @@ TDHF/RPA wave function expansion in terms of orbital rotations instead of
266148
Slater determinants, but that's a discussion for another day.) The TDHF/RPA
267149
eigenvalue equations take the form
268150

269-
```
270-
EQUATION
271-
\left(
272-
\begin{array}{cc}
273-
{\mathbf {\underline{\underline A}}} & {\mathbf {\underline{\underline B}}} \\
274-
-{\mathbf {\underline{\underline B}}} & - {\mathbf {\underline{\underline A}}} \\
275-
\end{array}
276-
\right) \left(
277-
\begin{array}{c}
278-
{\mathbf {\underline X}} \\
279-
{\mathbf {\underline Y}} \\
280-
\end{array}
281-
\right) = E \left(
282-
\begin{array}{c}
283-
{\mathbf {\underline X}} \\
284-
{\mathbf {\underline Y}} \\
285-
\end{array}
286-
\right).
287-
```
151+
<img src="./figures/tdhf-eqn.png" height="60">
288152

289153
The definition of the ***A*** matrix is just the CIS matrix itself, *viz.*
290154

291-
```
292-
EQUATION
293-
A_{ia,jb} \equiv \langle \phi_i^a | H | \phi_j^b \rangle = f_{ab} \delta_{ij} - f_{ij} \delta_{ab} + \langle aj || ib \rangle,
294-
```
155+
<img src="./figures/A-matrix.png" height="60">
295156

296157
while **X** and **Y** are the parameters of single excitations and
297158
de-excitations, respectively, and the ***B*** matrix is simply
298159

299-
```
300-
EQUATION
301-
B_{ia,jb} \equiv \langle ab || ij \rangle.
302-
```
160+
<img src="./figures/B-matrix.png" height="60">
303161

304162
Thus, the row/column dimension of the TDHF/RPA Hamiltonian is twice that of the
305163
CIS Hamiltonian, and the matrix is non-symmetric (so you must be careful about
306164
the diagonalization function you choose). Do you obtain twice as many
307165
excitation energies?
308166

309-
* Hint: TDHF/RPA Hamiltonian for STO-3G H<sub>2</sub>O
167+
* [Hint](./hints/hint3.md): TDHF/RPA Hamiltonian for STO-3G H<sub>2</sub>O
310168

311169
## A Better Approach to Solving the TDHF/RPA Eigenvalue Equations
312170

@@ -316,57 +174,28 @@ Hamiltonian storage cost), one can rearrange the eigenvalue equations. First
316174
write eigenvalue equation two separate equations, each in terms of the
317175
submatrices **A** and **B**:
318176

319-
```
320-
EQUATION
321-
\[ {\mathbf {\underline{\underline A}}} {\mathbf {\underline X}} + {\mathbf {\underline{\underline B}}} {\mathbf {\underline Y}} = E {\mathbf {\underline X}} \]
322-
```
177+
<img src="./figures/smarter-tdhf-1.png" height="60">
323178

324179
and
325180

326-
```
327-
EQUATION
328-
\[
329-
-{\mathbf {\underline{\underline B}}} {\mathbf {\underline X}} - {\mathbf {\underline{\underline A}}} {\mathbf {\underline Y}} = E {\mathbf {\underline Y}}. \]
330-
```
181+
<img src="./figures/smarter-tdhf-2.png" height="60">
331182

332183
Now take +/- combinations of these equations to obtain
333184

334-
```
335-
EQUATION
336-
\[
337-
({\mathbf {\underline{\underline A}}} - {\mathbf {\underline{\underline B}}})
338-
({\mathbf {\underline X}} - {\mathbf {\underline Y}})
339-
= E ({\mathbf {\underline X}} + {\mathbf {\underline Y}}) \]
340-
```
185+
<img src="./figures/smarter-tdhf-3.png" height="60">
341186

342187
and
343188

344-
```
345-
EQUATION
346-
\[ ({\mathbf {\underline{\underline A}}} + {\mathbf {\underline{\underline B}}})
347-
({\mathbf {\underline X}} + {\mathbf {\underline Y}})
348-
= E ({\mathbf {\underline X}} - {\mathbf {\underline Y}}). \]
349-
```
189+
<img src="./figures/smarter-tdhf-4.png" height="60">
350190

351191
Solve for ***(X+Y)*** in the second equation:
352192

353-
```
354-
EQUATION
355-
\[ ({\mathbf {\underline X}} + {\mathbf {\underline Y}})
356-
= E ({\mathbf {\underline{\underline A}}} + {\mathbf {\underline{\underline B}}})^{-1}
357-
({\mathbf {\underline X}} - {\mathbf {\underline Y}}). \]
358-
```
193+
<img src="./figures/smarter-tdhf-5.png" height="60">
359194

360195
Insert this result into the first equation, rearrange a bit, and finally
361196
obtain:
362197

363-
```
364-
EQUATION
365-
\[ ({\mathbf {\underline{\underline A}}} + {\mathbf {\underline{\underline B}}})
366-
({\mathbf {\underline{\underline A}}} - {\mathbf {\underline{\underline B}}})
367-
({\mathbf {\underline X}} - {\mathbf {\underline Y}})
368-
= E^2 ({\mathbf {\underline X}} - {\mathbf {\underline Y}}). \]
369-
```
198+
<img src="./figures/smarter-tdhf-6.png" height="60">
370199

371200
This is an eigenvalue equation of the same dimension as the CIS eigenvalue
372201
equation (number of occupied orbitals times number of unoccupied orbitals),

Project#12/figures/A-matrix.png

9.92 KB
Loading

Project#12/figures/B-matrix.png

5.17 KB
Loading
9.15 KB
Loading
Loading
4.77 KB
Loading
4.89 KB
Loading
4.69 KB
Loading
9.85 KB
Loading
12.1 KB
Loading
Loading
Loading

Project#12/figures/smarter-tdhf-1.png

4.67 KB
Loading

Project#12/figures/smarter-tdhf-2.png

4.51 KB
Loading

Project#12/figures/smarter-tdhf-3.png

5.98 KB
Loading

Project#12/figures/smarter-tdhf-4.png

6.18 KB
Loading

Project#12/figures/smarter-tdhf-5.png

6.54 KB
Loading

Project#12/figures/smarter-tdhf-6.png

6.95 KB
Loading
Loading
19.9 KB
Loading

Project#12/figures/tdhf-eqn.png

8.86 KB
Loading

0 commit comments

Comments
 (0)