|
| 1 | +#include "LCA.h" |
| 2 | +#include <cstdio> |
| 3 | +#include <vector> |
| 4 | +#include <iostream> |
| 5 | +/** |
| 6 | +*Constructor is initialized with a Adjacency List that |
| 7 | +*describe a tree and If It doesn't describe a tree it asserts failure. |
| 8 | +*/ |
| 9 | + |
| 10 | +LCA::LCA(std::vector< std::pair<int,int> > edges): _numberOfNodes(edges.size() + 1), _maxLog(getMaxLog()) |
| 11 | +{ |
| 12 | + //First we initialize the needed vectors |
| 13 | + parent.resize(_numberOfNodes); |
| 14 | + nodeHeight.resize(_numberOfNodes); |
| 15 | + visited.resize(_numberOfNodes); |
| 16 | + adjList.resize(_numberOfNodes); |
| 17 | + binaryLiftDp = std::vector< std::vector<int> >(_numberOfNodes, std::vector<int>(_maxLog)); |
| 18 | + /**Construction of the Adjacency List to increase |
| 19 | + *The efficiency of the tree traversal to O(V + E). |
| 20 | + */ |
| 21 | + for(auto edge : edges){ |
| 22 | + adjList[edge.first].push_back(edge.second); |
| 23 | + adjList[edge.second].push_back(edge.first); |
| 24 | + } |
| 25 | + //Initialize the Dynamic programming Vector. |
| 26 | + initDP(); |
| 27 | +} |
| 28 | + |
| 29 | +/** |
| 30 | +*DFS is used to find the parent and the height of each node |
| 31 | +*allowing the use of Binary Lifting. |
| 32 | +*/ |
| 33 | +void LCA::dfs(int currentNode, int currentParent) |
| 34 | +{ |
| 35 | + visited[currentNode] = true; |
| 36 | + parent[currentNode] = currentParent; |
| 37 | + nodeHeight[currentNode] = nodeHeight[currentParent] + 1; |
| 38 | + int adjacencySize = adjList[currentNode].size(); |
| 39 | + for(int idx = 0; idx < adjacencySize; idx++){ |
| 40 | + int nextNode = adjList[currentNode][idx]; |
| 41 | + if(!visited[nextNode]) |
| 42 | + { |
| 43 | + dfs(nextNode, currentNode); |
| 44 | + } |
| 45 | + } |
| 46 | +} |
| 47 | + |
| 48 | +/** |
| 49 | +*Used to Calculate the Log to the base of two |
| 50 | +*for the number of the nodes to create the sparse table |
| 51 | +*used in binary Lifting. |
| 52 | +*/ |
| 53 | +int LCA::getMaxLog(){ |
| 54 | + int curValue = 1; |
| 55 | + int curLog = 1; |
| 56 | + while(curValue < _numberOfNodes) curValue *= 2, curLog++; |
| 57 | + return curLog; |
| 58 | +} |
| 59 | + |
| 60 | +void LCA::initDP() |
| 61 | +{ |
| 62 | + dfs(0, -1); |
| 63 | + for(int i = 0; i < _numberOfNodes; i++) binaryLiftDp[i][0] = parent[i]; |
| 64 | + for(int i = 1; i <= _maxLog; i++) |
| 65 | + { |
| 66 | + for(int j = 0; j < _numberOfNodes; j++) |
| 67 | + { |
| 68 | + /** |
| 69 | + * Since the ith parent of the current node is equal to |
| 70 | + * the ith / 2 parent to the ith /2 parent of the current node |
| 71 | + * That's why the Recurrence relation is described as follow |
| 72 | + */ |
| 73 | + if(binaryLiftDp[j][i - 1] != -1) |
| 74 | + binaryLiftDp[j][i] = binaryLiftDp[binaryLiftDp[j][i - 1]][i - 1]; |
| 75 | + else binaryLiftDp[j][i] = -1; |
| 76 | + } |
| 77 | + } |
| 78 | +} |
| 79 | + |
| 80 | +int LCA::lcaQuery(int a, int b) |
| 81 | +{ |
| 82 | + /** |
| 83 | + * First Both nodes must have same height |
| 84 | + * So we will rise the node with the deeper height up in |
| 85 | + * the tree to where they're equal. |
| 86 | + */ |
| 87 | + if(nodeHeight[a] < nodeHeight[b]) std::swap(a,b); |
| 88 | + for(int i = _maxLog; i >= 0; i--) |
| 89 | + { |
| 90 | + if(binaryLiftDp[a][i] + 1 && nodeHeight[binaryLiftDp[a][i]] >= nodeHeight[b]) |
| 91 | + a = binaryLiftDp[a][i]; |
| 92 | + } |
| 93 | + /** |
| 94 | + * If the node Lower is the LCA then return it. |
| 95 | + * Else keep moving both nodes up as much as they aren't the same |
| 96 | + * until it's only 1 node left which is the direct parent of both of them |
| 97 | + */ |
| 98 | + if(a == b) return a; |
| 99 | + for(int i = _maxLog; i >= 0; i--) |
| 100 | + { |
| 101 | + if(binaryLiftDp[a][i] + 1 && binaryLiftDp[a][i] - binaryLiftDp[b][i]) |
| 102 | + a = binaryLiftDp[a][i], b = binaryLiftDp[b][i]; |
| 103 | + } |
| 104 | + return parent[a]; |
| 105 | +} |
| 106 | + |
| 107 | +int main(){ |
| 108 | + std::vector< std::pair<int,int> > edges; |
| 109 | + edges.push_back({0,1}); |
| 110 | + edges.push_back({1,2}); |
| 111 | + edges.push_back({2,3}); |
| 112 | + edges.push_back({1,4}); |
| 113 | + LCA* l = new LCA(v); |
| 114 | + std::cout << l->lcaQuery(0,1) << endl; |
| 115 | + std::cout << l->lcaQuery(3,4) << endl; |
| 116 | + std::cout << l->lcaQuery(3,2) << endl; |
| 117 | +} |
0 commit comments