| 
 | 1 | +{  | 
 | 2 | + "cells": [  | 
 | 3 | +  {  | 
 | 4 | +   "cell_type": "code",  | 
 | 5 | +   "execution_count": 37,  | 
 | 6 | +   "metadata": {},  | 
 | 7 | +   "outputs": [],  | 
 | 8 | +   "source": [  | 
 | 9 | +    "from nltk.tokenize import RegexpTokenizer\n",  | 
 | 10 | +    "from stop_words import get_stop_words\n",  | 
 | 11 | +    "from nltk.stem.porter import PorterStemmer\n",  | 
 | 12 | +    "from gensim import corpora, models\n",  | 
 | 13 | +    "import gensim"  | 
 | 14 | +   ]  | 
 | 15 | +  },  | 
 | 16 | +  {  | 
 | 17 | +   "cell_type": "code",  | 
 | 18 | +   "execution_count": 44,  | 
 | 19 | +   "metadata": {  | 
 | 20 | +    "collapsed": true  | 
 | 21 | +   },  | 
 | 22 | +   "outputs": [],  | 
 | 23 | +   "source": [  | 
 | 24 | +    "tokenizer = RegexpTokenizer(r'\\w+')\n",  | 
 | 25 | +    "\n",  | 
 | 26 | +    "# create English stop words list\n",  | 
 | 27 | +    "en_stop = get_stop_words('en')\n",  | 
 | 28 | +    "\n",  | 
 | 29 | +    "# Create p_stemmer of class PorterStemmer\n",  | 
 | 30 | +    "p_stemmer = PorterStemmer()\n",  | 
 | 31 | +    "    \n",  | 
 | 32 | +    "# create sample documents\n",  | 
 | 33 | +    "doc_a = \"Brocolli is good to eat. My brother likes to eat good brocolli, but not my mother.\"\n",  | 
 | 34 | +    "doc_b = \"My mother spends a lot of time driving my brother around to baseball practice.\"\n",  | 
 | 35 | +    "doc_c = \"Some health experts suggest that driving may cause increased tension and blood pressure.\"\n",  | 
 | 36 | +    "doc_d = \"I often feel pressure to perform well at school, but my mother never seems to drive my brother to do better.\"\n",  | 
 | 37 | +    "doc_e = \"Health professionals say that brocolli is good for your health.\" \n",  | 
 | 38 | +    "\n",  | 
 | 39 | +    "# compile sample documents into a list\n",  | 
 | 40 | +    "doc_set = [doc_a, doc_b, doc_c, doc_d, doc_e]\n",  | 
 | 41 | +    "\n",  | 
 | 42 | +    "# list for tokenized documents in loop\n",  | 
 | 43 | +    "texts = []\n",  | 
 | 44 | +    "\n",  | 
 | 45 | +    "# loop through document list\n",  | 
 | 46 | +    "for i in doc_set:\n",  | 
 | 47 | +    "    \n",  | 
 | 48 | +    "    # clean and tokenize document string\n",  | 
 | 49 | +    "    raw = i.lower()\n",  | 
 | 50 | +    "    tokens = tokenizer.tokenize(raw)\n",  | 
 | 51 | +    "\n",  | 
 | 52 | +    "    # remove stop words from tokens\n",  | 
 | 53 | +    "    stopped_tokens = [i for i in tokens if not i in en_stop]\n",  | 
 | 54 | +    "    \n",  | 
 | 55 | +    "    # stem tokens\n",  | 
 | 56 | +    "    stemmed_tokens = [p_stemmer.stem(i) for i in stopped_tokens]\n",  | 
 | 57 | +    "    \n",  | 
 | 58 | +    "    # add tokens to list\n",  | 
 | 59 | +    "    texts.append(stemmed_tokens)\n",  | 
 | 60 | +    "\n",  | 
 | 61 | +    "# turn our tokenized documents into a id <-> term dictionary\n",  | 
 | 62 | +    "dictionary = corpora.Dictionary(texts)\n",  | 
 | 63 | +    "    \n",  | 
 | 64 | +    "# convert tokenized documents into a document-term matrix\n",  | 
 | 65 | +    "corpus = [dictionary.doc2bow(text) for text in texts]\n",  | 
 | 66 | +    "\n",  | 
 | 67 | +    "# generate LDA model\n",  | 
 | 68 | +    "ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=2, id2word = dictionary, passes=20)"  | 
 | 69 | +   ]  | 
 | 70 | +  },  | 
 | 71 | +  {  | 
 | 72 | +   "cell_type": "code",  | 
 | 73 | +   "execution_count": 45,  | 
 | 74 | +   "metadata": {},  | 
 | 75 | +   "outputs": [  | 
 | 76 | +    {  | 
 | 77 | +     "name": "stdout",  | 
 | 78 | +     "output_type": "stream",  | 
 | 79 | +     "text": [  | 
 | 80 | +      "[(0, '0.072*\"drive\" + 0.043*\"health\" + 0.043*\"pressur\" + 0.043*\"caus\"'), (1, '0.081*\"brocolli\" + 0.081*\"good\" + 0.059*\"brother\" + 0.059*\"mother\"')]\n"  | 
 | 81 | +     ]  | 
 | 82 | +    }  | 
 | 83 | +   ],  | 
 | 84 | +   "source": [  | 
 | 85 | +    "print(ldamodel.print_topics(num_topics=2, num_words=4))"  | 
 | 86 | +   ]  | 
 | 87 | +  },  | 
 | 88 | +  {  | 
 | 89 | +   "cell_type": "code",  | 
 | 90 | +   "execution_count": 47,  | 
 | 91 | +   "metadata": {},  | 
 | 92 | +   "outputs": [  | 
 | 93 | +    {  | 
 | 94 | +     "name": "stdout",  | 
 | 95 | +     "output_type": "stream",  | 
 | 96 | +     "text": [  | 
 | 97 | +      "[(0, '0.072*\"drive\" + 0.043*\"health\" + 0.043*\"pressur\"'), (1, '0.081*\"brocolli\" + 0.081*\"good\" + 0.059*\"brother\"')]\n"  | 
 | 98 | +     ]  | 
 | 99 | +    }  | 
 | 100 | +   ],  | 
 | 101 | +   "source": [  | 
 | 102 | +    "print(ldamodel.print_topics(num_topics=3, num_words=3))"  | 
 | 103 | +   ]  | 
 | 104 | +  }  | 
 | 105 | + ],  | 
 | 106 | + "metadata": {  | 
 | 107 | +  "kernelspec": {  | 
 | 108 | +   "display_name": "Python 3",  | 
 | 109 | +   "language": "python",  | 
 | 110 | +   "name": "python3"  | 
 | 111 | +  },  | 
 | 112 | +  "language_info": {  | 
 | 113 | +   "codemirror_mode": {  | 
 | 114 | +    "name": "ipython",  | 
 | 115 | +    "version": 3  | 
 | 116 | +   },  | 
 | 117 | +   "file_extension": ".py",  | 
 | 118 | +   "mimetype": "text/x-python",  | 
 | 119 | +   "name": "python",  | 
 | 120 | +   "nbconvert_exporter": "python",  | 
 | 121 | +   "pygments_lexer": "ipython3",  | 
 | 122 | +   "version": "3.6.1"  | 
 | 123 | +  }  | 
 | 124 | + },  | 
 | 125 | + "nbformat": 4,  | 
 | 126 | + "nbformat_minor": 2  | 
 | 127 | +}  | 
0 commit comments