@@ -41,12 +41,12 @@ def multilayer_perceptron(x, weights, biases):
4141 layer_1 = tf .add (tf .matmul (x , weights ['w1' ]), biases ['b1' ])
4242 layer_1 = tf .nn .relu (layer_1 )
4343 # Create a summary to visualize the first layer ReLU activation
44- tf .histogram_summary ("relu1" , layer_1 )
44+ tf .summary . histogram ("relu1" , layer_1 )
4545 # Hidden layer with RELU activation
4646 layer_2 = tf .add (tf .matmul (layer_1 , weights ['w2' ]), biases ['b2' ])
4747 layer_2 = tf .nn .relu (layer_2 )
4848 # Create another summary to visualize the second layer ReLU activation
49- tf .histogram_summary ("relu2" , layer_2 )
49+ tf .summary . histogram ("relu2" , layer_2 )
5050 # Output layer
5151 out_layer = tf .add (tf .matmul (layer_2 , weights ['w3' ]), biases ['b3' ])
5252 return out_layer
@@ -91,24 +91,24 @@ def multilayer_perceptron(x, weights, biases):
9191init = tf .initialize_all_variables ()
9292
9393# Create a summary to monitor cost tensor
94- tf .scalar_summary ("loss" , loss )
94+ tf .summary . scalar ("loss" , loss )
9595# Create a summary to monitor accuracy tensor
96- tf .scalar_summary ("accuracy" , acc )
96+ tf .summary . scalar ("accuracy" , acc )
9797# Create summaries to visualize weights
9898for var in tf .trainable_variables ():
99- tf .histogram_summary (var .name , var )
99+ tf .summary . histogram (var .name , var )
100100# Summarize all gradients
101101for grad , var in grads :
102- tf .histogram_summary (var .name + '/gradient' , grad )
102+ tf .summary . histogram (var .name + '/gradient' , grad )
103103# Merge all summaries into a single op
104- merged_summary_op = tf .merge_all_summaries ()
104+ merged_summary_op = tf .summary . merge_all ()
105105
106106# Launch the graph
107107with tf .Session () as sess :
108108 sess .run (init )
109109
110110 # op to write logs to Tensorboard
111- summary_writer = tf .train . SummaryWriter (logs_path ,
111+ summary_writer = tf .summary . FileWriter (logs_path ,
112112 graph = tf .get_default_graph ())
113113
114114 # Training cycle
0 commit comments