@@ -48,7 +48,7 @@ must be installed on your system:
48
48
Toolkit.
49
49
* The libcupti-dev library, which is the NVIDIA CUDA Profile Tools Interface.
50
50
This library provides advanced profiling support. To install this library,
51
- issue the following command for CUDA Toolkit >= 8 .0:
51
+ issue the following command for CUDA Toolkit >= 9 .0:
52
52
53
53
<pre >
54
54
$ <b >sudo apt-get install cuda-command-line-tools</b >
@@ -65,16 +65,38 @@ must be installed on your system:
65
65
<pre >
66
66
$ <b >sudo apt-get install libcupti-dev</b >
67
67
</pre >
68
+
68
69
* ** [ OPTIONAL] ** For optimized inferencing performance, you can also install
69
- NVIDIA TensorRT 3.0. For details, see
70
- [ NVIDIA's TensorRT documentation] ( http://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html#installing-tar ) .
71
- Only steps 1-4 in the TensorRT Tar File installation instructions are
72
- required for compatibility with TensorFlow; the Python package installation
73
- in steps 5 and 6 can be omitted. Detailed installation instructions can be found at [ package documentataion] ( https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/tensorrt#installing-tensorrt-304 )
70
+ ** NVIDIA TensorRT 3.0** . The minimal set of TensorRT runtime components needed
71
+ for use with the pre-built ` tensorflow-gpu ` package can be installed as follows:
72
+
73
+ <pre >
74
+ $ <b >wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1404/x86_64/nvinfer-runtime-trt-repo-ubuntu1404-3.0.4-ga-cuda9.0_1.0-1_amd64.deb</b >
75
+ $ <b >sudo dpkg -i nvinfer-runtime-trt-repo-ubuntu1404-3.0.4-ga-cuda9.0_1.0-1_amd64.deb</b >
76
+ $ <b >sudo apt-get update</b >
77
+ $ <b >sudo apt-get install -y --allow-downgrades libnvinfer-dev libcudnn7-dev=7.0.5.15-1+cuda9.0 libcudnn7=7.0.5.15-1+cuda9.0</b >
78
+ </pre >
74
79
75
80
** IMPORTANT:** For compatibility with the pre-built ` tensorflow-gpu `
76
- package, please use the Ubuntu ** 14.04** tar file package of TensorRT
77
- even when installing onto an Ubuntu 16.04 system.
81
+ package, please use the Ubuntu ** 14.04** package of TensorRT as shown above,
82
+ even when installing onto an Ubuntu 16.04 system.<br />
83
+ <br />
84
+ To build the TensorFlow-TensorRT integration module from source rather than
85
+ using pre-built binaries, see the [ module documentation] ( https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/tensorrt#using-tensorrt-in-tensorflow ) .
86
+ For detailed TensorRT installation instructions, see [ NVIDIA's TensorRT documentation] ( http://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html ) .<br />
87
+ <br />
88
+ To avoid cuDNN version conflicts during later system upgrades, you can hold
89
+ the cuDNN version at 7.0.5:
90
+
91
+ <pre >
92
+ $ <b > sudo apt-mark hold libcudnn7 libcudnn7-dev</b >
93
+ </pre >
94
+
95
+ To later allow upgrades, you can remove the hold:
96
+
97
+ <pre >
98
+ $ <b > sudo apt-mark unhold libcudnn7 libcudnn7-dev</b >
99
+ </pre >
78
100
79
101
If you have an earlier version of the preceding packages, please upgrade to
80
102
the specified versions. If upgrading is not possible, then you may still run
@@ -194,7 +216,7 @@ Take the following steps to install TensorFlow with Virtualenv:
194
216
Virtualenv environment:
195
217
196
218
<pre >(tensorflow)$ <b >pip3 install --upgrade \
197
- https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1 -cp34-cp34m-linux_x86_64.whl</b ></pre >
219
+ https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0 -cp34-cp34m-linux_x86_64.whl</b ></pre >
198
220
199
221
If you encounter installation problems, see
200
222
[ Common Installation Problems] ( #common_installation_problems ) .
@@ -299,7 +321,7 @@ take the following steps:
299
321
300
322
<pre >
301
323
$ <b >sudo pip3 install --upgrade \
302
- https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1 -cp34-cp34m-linux_x86_64.whl</b >
324
+ https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0 -cp34-cp34m-linux_x86_64.whl</b >
303
325
</pre >
304
326
305
327
If this step fails, see
@@ -485,7 +507,7 @@ Take the following steps to install TensorFlow in an Anaconda environment:
485
507
486
508
<pre >
487
509
(tensorflow)$ <b >pip install --ignore-installed --upgrade \
488
- https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1 -cp34-cp34m-linux_x86_64.whl</b ></pre >
510
+ https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0 -cp34-cp34m-linux_x86_64.whl</b ></pre >
489
511
490
512
<a name =" ValidateYourInstallation " ></a >
491
513
## Validate your installation
@@ -659,14 +681,14 @@ This section documents the relevant values for Linux installations.
659
681
CPU only:
660
682
661
683
<pre >
662
- https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1 -cp27-none-linux_x86_64.whl
684
+ https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0 -cp27-none-linux_x86_64.whl
663
685
</pre >
664
686
665
687
666
688
GPU support:
667
689
668
690
<pre >
669
- https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0rc1 -cp27-none-linux_x86_64.whl
691
+ https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0 -cp27-none-linux_x86_64.whl
670
692
</pre >
671
693
672
694
Note that GPU support requires the NVIDIA hardware and software described in
@@ -678,14 +700,14 @@ Note that GPU support requires the NVIDIA hardware and software described in
678
700
CPU only:
679
701
680
702
<pre >
681
- https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1 -cp34-cp34m-linux_x86_64.whl
703
+ https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0 -cp34-cp34m-linux_x86_64.whl
682
704
</pre >
683
705
684
706
685
707
GPU support:
686
708
687
709
<pre >
688
- https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0rc1 -cp34-cp34m-linux_x86_64.whl
710
+ https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0 -cp34-cp34m-linux_x86_64.whl
689
711
</pre >
690
712
691
713
Note that GPU support requires the NVIDIA hardware and software described in
@@ -697,14 +719,14 @@ Note that GPU support requires the NVIDIA hardware and software described in
697
719
CPU only:
698
720
699
721
<pre >
700
- https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1 -cp35-cp35m-linux_x86_64.whl
722
+ https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0 -cp35-cp35m-linux_x86_64.whl
701
723
</pre >
702
724
703
725
704
726
GPU support:
705
727
706
728
<pre >
707
- https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0rc1 -cp35-cp35m-linux_x86_64.whl
729
+ https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0 -cp35-cp35m-linux_x86_64.whl
708
730
</pre >
709
731
710
732
@@ -716,14 +738,14 @@ Note that GPU support requires the NVIDIA hardware and software described in
716
738
CPU only:
717
739
718
740
<pre >
719
- https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1 -cp36-cp36m-linux_x86_64.whl
741
+ https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0 -cp36-cp36m-linux_x86_64.whl
720
742
</pre >
721
743
722
744
723
745
GPU support:
724
746
725
747
<pre >
726
- https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0rc1 -cp36-cp36m-linux_x86_64.whl
748
+ https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0 -cp36-cp36m-linux_x86_64.whl
727
749
</pre >
728
750
729
751
0 commit comments