| 
 | 1 | +# encoding=utf-8  | 
 | 2 | +# @Author: WenDesi  | 
 | 3 | +# @Date:   08-11-16  | 
 | 4 | + | 
 | 5 | +# @Last modified by:   WenDesi  | 
 | 6 | +# @Last modified time: 08-11-16  | 
 | 7 | + | 
 | 8 | +import math  | 
 | 9 | +import random  | 
 | 10 | + | 
 | 11 | + | 
 | 12 | +def predict_(x, w):  | 
 | 13 | +    wx = sum([w[j] * x[j] for j in xrange(len(w))])  | 
 | 14 | +    exp_wx = math.exp(wx)  | 
 | 15 | + | 
 | 16 | +    predict1 = exp_wx / (1 + exp_wx)  | 
 | 17 | +    predict0 = 1 / (1 + exp_wx)  | 
 | 18 | + | 
 | 19 | +    if predict1 > predict0:  | 
 | 20 | +        return 1  | 
 | 21 | +    else:  | 
 | 22 | +        return 0  | 
 | 23 | + | 
 | 24 | + | 
 | 25 | +def train(features, labels):  | 
 | 26 | +    w = [0.0] * (len(features[0]) + 1)  | 
 | 27 | + | 
 | 28 | +    learning_step = 0.00001  | 
 | 29 | +    max_iteration = 1000  | 
 | 30 | +    correct_count = 0  | 
 | 31 | +    time = 0  | 
 | 32 | + | 
 | 33 | +    while time < max_iteration:  | 
 | 34 | +        index = random.randint(0, len(labels) - 1)  | 
 | 35 | +        x = features[index]  | 
 | 36 | +        x.append(1.0)  | 
 | 37 | +        y = labels[index]  | 
 | 38 | + | 
 | 39 | +        if y == predict_(x, w):  | 
 | 40 | +            correct_count += 1  | 
 | 41 | +            if correct_count > max_iteration:  | 
 | 42 | +                break  | 
 | 43 | +            continue  | 
 | 44 | + | 
 | 45 | +        print 'iterater times %d' % time  | 
 | 46 | +        time += 1  | 
 | 47 | +        correct_count = 0  | 
 | 48 | + | 
 | 49 | +        wx = sum([w[i] * x[i] for i in xrange(len(w))])  | 
 | 50 | +        exp_wx = math.exp(wx)  | 
 | 51 | + | 
 | 52 | +        for i in xrange(len(w)):  | 
 | 53 | +            w[i] -= learning_step * (-y * x[i] + float(x[i] * exp_wx) / float(1 + exp_wx))  | 
 | 54 | + | 
 | 55 | +    return w  | 
 | 56 | + | 
 | 57 | + | 
 | 58 | +def predict(features, w):  | 
 | 59 | +    labels = []  | 
 | 60 | + | 
 | 61 | +    for feature in features:  | 
 | 62 | +        feature.append(1)  | 
 | 63 | +        x = feature  | 
 | 64 | + | 
 | 65 | +        labels.append(predict_(x,w))  | 
 | 66 | + | 
 | 67 | +    return labels  | 
 | 68 | + | 
 | 69 | + | 
 | 70 | +def build_dataset(label, original_posins, radius, size):  | 
 | 71 | +    datasets = []  | 
 | 72 | +    dim = len(original_posins)  | 
 | 73 | + | 
 | 74 | +    for i in xrange(size):  | 
 | 75 | +        dataset = [label]  | 
 | 76 | +        for j in xrange(dim):  | 
 | 77 | +            point = random.randint(0, 2 * radius) - radius + original_posins[j]  | 
 | 78 | +            dataset.append(point)  | 
 | 79 | +        datasets.append(dataset)  | 
 | 80 | + | 
 | 81 | +    return datasets  | 
 | 82 | + | 
 | 83 | +if __name__ == "__main__":  | 
 | 84 | + | 
 | 85 | +    # 构建训练集  | 
 | 86 | +    trainset1 = build_dataset(0, [0, 0], 10, 100)  | 
 | 87 | +    trainset2 = build_dataset(1, [30, 30], 10, 100)  | 
 | 88 | + | 
 | 89 | +    trainset = trainset1  | 
 | 90 | +    trainset.extend(trainset2)  | 
 | 91 | +    random.shuffle(trainset)  | 
 | 92 | + | 
 | 93 | +    trainset_features = map(lambda x: x[1:], trainset)  | 
 | 94 | +    trainset_labels = map(lambda x: x[0], trainset)  | 
 | 95 | + | 
 | 96 | +    # 训练  | 
 | 97 | +    w = train(trainset_features, trainset_labels)  | 
 | 98 | + | 
 | 99 | +    # 构建测试集  | 
 | 100 | +    testset1 = build_dataset(0, [0, 0], 10, 500)  | 
 | 101 | +    testset2 = build_dataset(1, [30, 30], 10, 500)  | 
 | 102 | + | 
 | 103 | +    testset = testset1  | 
 | 104 | +    testset.extend(testset2)  | 
 | 105 | +    random.shuffle(testset)  | 
 | 106 | + | 
 | 107 | +    testset_features = map(lambda x: x[1:], testset)  | 
 | 108 | +    testset_labels = map(lambda x: x[0], testset)  | 
 | 109 | + | 
 | 110 | +    # 测试  | 
 | 111 | +    testset_predicts = predict(testset_features, w)  | 
 | 112 | +    print 'asad'  | 
 | 113 | +    accuracy_score = float(len(filter(lambda x: x == True, [testset_labels[i] == testset_predicts[  | 
 | 114 | +                           i] for i in xrange(len(testset_predicts))]))) / float(len(testset_predicts))  | 
 | 115 | +    print "The accruacy socre is ", accuracy_score  | 
0 commit comments