Skip to content

Commit 5c14b5d

Browse files
committed
try to implement rectangle_fitting
1 parent 0e951b3 commit 5c14b5d

File tree

1 file changed

+135
-11
lines changed

1 file changed

+135
-11
lines changed

Mapping/rectangle_fitting/rectangle_fitting.py

Lines changed: 135 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -8,13 +8,45 @@
88

99
import matplotlib.pyplot as plt
1010
import math
11-
import random
1211
import numpy as np
1312
import itertools
13+
import random
1414

1515
show_animation = True
1616

1717

18+
class Rectangle():
19+
20+
def __init__(self):
21+
self.a = [None] * 4
22+
self.b = [None] * 4
23+
self.c = [None] * 4
24+
25+
self.rect_c_x = [None] * 5
26+
self.rect_c_y = [None] * 5
27+
28+
def plot(self):
29+
self.calc_rect_contour()
30+
plt.plot(self.rect_c_x, self.rect_c_y, "-r")
31+
32+
def calc_rect_contour(self):
33+
34+
self.rect_c_x[0], self.rect_c_y[0] = self.calc_cross_point(
35+
self.a[0:2], self.b[0:2], self.c[0:2])
36+
self.rect_c_x[1], self.rect_c_y[1] = self.calc_cross_point(
37+
self.a[1:3], self.b[1:3], self.c[1:3])
38+
self.rect_c_x[2], self.rect_c_y[2] = self.calc_cross_point(
39+
self.a[2:4], self.b[2:4], self.c[2:4])
40+
self.rect_c_x[3], self.rect_c_y[3] = self.calc_cross_point(
41+
[self.a[3], self.a[0]], [self.b[3], self.b[0]], [self.c[3], self.c[0]])
42+
self.rect_c_x[4], self.rect_c_y[4] = self.rect_c_x[0], self.rect_c_y[0]
43+
44+
def calc_cross_point(self, a, b, c):
45+
x = (b[0] * -c[1] - b[1] * -c[0]) / (a[0] * b[1] - a[1] * b[0])
46+
y = (a[1] * -c[0] - a[0] * -c[1]) / (a[0] * b[1] - a[1] * b[0])
47+
return x, y
48+
49+
1850
class VehicleSimulator():
1951

2052
def __init__(self, ix, iy, iyaw, iv, max_v, w, L):
@@ -36,11 +68,11 @@ def update(self, dt, a, omega):
3668
self.v = self.max_v
3769

3870
def plot(self):
39-
plt.plot(self.x, self.y, ".r")
71+
plt.plot(self.x, self.y, ".b")
4072

4173
# convert global coordinate
4274
gx, gy = self.calc_global_contour()
43-
plt.plot(gx, gy, "-r")
75+
plt.plot(gx, gy, "--b")
4476

4577
def calc_global_contour(self):
4678
gx = [(ix * math.cos(self.yaw) + iy * math.sin(self.yaw))
@@ -99,7 +131,7 @@ def get_observation_points(vlist, angle_reso):
99131

100132
for vx, vy in zip(gx, gy):
101133
vangle = math.atan2(vy, vx)
102-
vr = math.hypot(vx, vy) # * random.uniform(0.95, 1.05)
134+
vr = math.hypot(vx, vy) * random.uniform(0.99, 1.01)
103135

104136
x.append(vx)
105137
y.append(vy)
@@ -132,6 +164,84 @@ def ray_casting_filter(xl, yl, thetal, rangel, angle_reso):
132164
return rx, ry
133165

134166

167+
def calc_area_criterion(c1, c2):
168+
c1_max = max(c1)
169+
c2_max = max(c2)
170+
c1_min = min(c1)
171+
c2_min = min(c2)
172+
173+
alpha = - (c1_max - c1_min) * (c2_max - c2_min)
174+
175+
return alpha
176+
177+
178+
def calc_closeness_criterion(c1, c2):
179+
c1_max = max(c1)
180+
c2_max = max(c2)
181+
c1_min = min(c1)
182+
c2_min = min(c2)
183+
184+
D1 = [min([np.linalg.norm(c1_max - ic1),
185+
np.linalg.norm(ic1 - c1_min)]) for ic1 in c1]
186+
D2 = [min([np.linalg.norm(c2_max - ic2),
187+
np.linalg.norm(ic2 - c2_min)]) for ic2 in c2]
188+
189+
d0 = 0.01
190+
beta = 0
191+
for i, _ in enumerate(D1):
192+
d = max(min([D1[i], D2[i]]), d0)
193+
beta += (1.0 / d)
194+
195+
return beta
196+
197+
198+
def rectangle_search(x, y):
199+
200+
X = np.array([x, y]).T
201+
202+
dtheta = np.deg2rad(0.5)
203+
minp = (-float('inf'), None)
204+
for theta in np.arange(0.0, math.pi / 2.0 - dtheta, dtheta):
205+
206+
e1 = np.array([math.cos(theta), math.sin(theta)])
207+
e2 = np.array([-math.sin(theta), math.cos(theta)])
208+
209+
c1 = X @ e1.T
210+
c2 = X @ e2.T
211+
212+
# alpha = calc_area_criterion(c1, c2)
213+
beta = calc_closeness_criterion(c1, c2)
214+
215+
# cost = alpha
216+
cost = beta
217+
218+
if minp[0] < cost:
219+
minp = (cost, theta)
220+
221+
# calc best rectangle
222+
sin_s = math.sin(minp[1])
223+
cos_s = math.cos(minp[1])
224+
225+
c1_s = X @ np.array([cos_s, sin_s]).T
226+
c2_s = X @ np.array([-sin_s, cos_s]).T
227+
228+
rect = Rectangle()
229+
rect.a[0] = cos_s
230+
rect.b[0] = sin_s
231+
rect.c[0] = min(c1_s)
232+
rect.a[1] = -sin_s
233+
rect.b[1] = cos_s
234+
rect.c[1] = min(c2_s)
235+
rect.a[2] = cos_s
236+
rect.b[2] = sin_s
237+
rect.c[2] = max(c1_s)
238+
rect.a[3] = -sin_s
239+
rect.b[3] = cos_s
240+
rect.c[3] = max(c2_s)
241+
242+
return rect
243+
244+
135245
def adoptive_range_segmentation(ox, oy):
136246

137247
alpha = 0.2
@@ -167,7 +277,7 @@ def main():
167277
simtime = 30.0 # simulation time
168278
dt = 0.2 # time tick
169279

170-
angle_reso = np.deg2rad(3.0) # sensor angle resolution
280+
angle_reso = np.deg2rad(2.0) # sensor angle resolution
171281

172282
v1 = VehicleSimulator(-10.0, 0.0, np.deg2rad(90.0),
173283
0.0, 50.0 / 3.6, 3.0, 5.0)
@@ -186,20 +296,34 @@ def main():
186296
# step1: Adaptive Range Segmentation
187297
idsets = adoptive_range_segmentation(ox, oy)
188298

299+
# step2 Rectangle search
300+
rects = []
301+
for ids in idsets: # for each cluster
302+
cx = [ox[i] for i in range(len(ox)) if i in ids]
303+
cy = [oy[i] for i in range(len(oy)) if i in ids]
304+
rects.append(rectangle_search(cx, cy))
305+
189306
if show_animation: # pragma: no cover
190307
plt.cla()
191308
plt.axis("equal")
192309
plt.plot(0.0, 0.0, "*r")
193310
v1.plot()
194311
v2.plot()
195312

196-
# plt.plot(ox, oy, "ob")
313+
# Plot range observation
197314
for ids in idsets:
198-
plt.plot([ox[i] for i in range(len(ox)) if i in ids],
199-
[oy[i] for i in range(len(ox)) if i in ids],
200-
"o")
201-
# plt.plot(x, y, "xr")
202-
# plot_circle(ex, ey, er, "-r")
315+
x = [ox[i] for i in range(len(ox)) if i in ids]
316+
y = [oy[i] for i in range(len(ox)) if i in ids]
317+
318+
for (ix, iy) in zip(x, y):
319+
plt.plot([0.0, ix], [0.0, iy], "-og")
320+
321+
# plt.plot([ox[i] for i in range(len(ox)) if i in ids],
322+
# [oy[i] for i in range(len(ox)) if i in ids],
323+
# "o")
324+
for rect in rects:
325+
rect.plot()
326+
203327
plt.pause(0.1)
204328

205329
print("Done")

0 commit comments

Comments
 (0)