@@ -64,15 +64,15 @@ Scaled data has zero mean and unit variance::
6464..     >>> print_options = np.set_printoptions(print_options)
6565
6666preprocessing `` module further provides a utility class
67- :class: `Scaler ` that implements the ``Transformer `` API to compute
67+ :class: `StandardScaler ` that implements the ``Transformer `` API to compute
6868the mean and standard deviation on a training set so as to be
6969able to later reapply the same transformation on the testing set.
7070This class is hence suitable for use in the early steps of a
7171:class: `sklearn.pipeline.Pipeline `::
7272
73-   >>> scaler = preprocessing.Scaler ().fit(X) 
73+   >>> scaler = preprocessing.StandardScaler ().fit(X) 
7474  >>> scaler 
75-   Scaler (copy=True, with_mean=True, with_std=True) 
75+   StandardScaler (copy=True, with_mean=True, with_std=True) 
7676
7777  >>> scaler.mean_                                      # doctest: +ELLIPSIS 
7878  array([ 1. ...,  0. ...,  0.33...]) 
@@ -94,7 +94,7 @@ same way it did on the training set::
9494
9595It is possible to disable either centering or scaling by either
9696passing ``with_mean=False `` or ``with_std=False `` to the constructor
97- of :class: `Scaler `.
97+ of :class: `StandardScaler `.
9898
9999
100100.. topic :: References: 
@@ -115,7 +115,7 @@ of :class:`Scaler`.
115115
116116.. topic :: Sparse input 
117117
118-   :func: `scale ` and :class: `Scaler ` accept ``scipy.sparse `` matrices
118+   :func: `scale ` and :class: `StandardScaler ` accept ``scipy.sparse `` matrices
119119  as input **only when with_mean=False is explicitly passed to the 
120120  constructor **. Otherwise a ``ValueError `` will be raised as
121121  silently centering would break the sparsity and would often crash the
@@ -132,7 +132,7 @@ of :class:`Scaler`.
132132
133133.. topic :: Scaling target variables in regression 
134134
135-     :func: `scale ` and :class: `Scaler ` work out-of-the-box with 1d arrays.
135+     :func: `scale ` and :class: `StandardScaler ` work out-of-the-box with 1d arrays.
136136    This is very useful for scaling the target / response variables used
137137    for regression.
138138
@@ -243,7 +243,7 @@ It is possible to adjust the threshold of the binarizer::
243243         [ 1.,  0.,  0.], 
244244         [ 0.,  0.,  0.]]) 
245245
246- As for the :class: `Scaler ` and :class: `Normalizer ` classes, the
246+ As for the :class: `StandardScaler ` and :class: `Normalizer ` classes, the
247247preprocessing module provides a companion function :func: `binarize `
248248to be used when the transformer API is not necessary.
249249
0 commit comments