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Preface

LISP I i8 a programming system for the IBM 704 for comput-
ing with symbolic expressions. It has been used for symbolic
calculatlions in differential and integral calculus, electric
circuit theory, mathematical logic, and artlficial intelligence.

This manual contains a full description of the features of
LISP I as of March 1960. The system has a central core based
on a class of recursive functions of symbolic expresslons which
should be studled first and if possible used before the more
peripheral features are tried. This core 1s described in Chap-
ters 2 and 3, and LISP programs can be written and run using
this core provided someone familiar wlth the operational as-
pects of the system 1.,e. loaders, tapes etc. 18 avallable.
Later, the advanced features will be found useful although they
are less neat, and less carefully described.

This manual applies also to a verslon of LISP I being pre-
pared for the IBM 709.
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1. Introduction

The current basic LISP system uses about 12,000 of the
32,000 memory of the/ZQM. It includes routines for reading and
for printing, and it contains many LISP functions elither coded
in machiné language or given as S-expressions (see Chapter 2)
for the interpreter part of the system. A list of available
functions is included in the manual, and other functions may
be defined by the user. Chapters 2 and 3 of the manual should
glve the user enough information to enable him to use the baslic
system.

Enlargements of the basic system are available for various
purposes. The compller version of the LISP system can be usegd
to complle S-expressions into machine code., Values of complled
functions are computed about 60 times faster than the S-expres-
sions for the functions could be Interpreted and evaluated.

- The LISP-compller system uses about half of the 32,000 memory.

For on-line operation using M.I.T's Flexowriter-704 system,
the baslc LISP system can be augmented by a speclal package of
routines to control the input-output aspects of the Flexowrlter,

The Flexowriter version of LISP I does not contain the compiler

optlon.

Descriptions of the various features of the LISP system are
given in the manual together with an explanation of the procedure

to be followed in submitting, running, and debuggling a program
written 1n the LISP language.

Oyt



2. Recursive Functions of Symbolic Expressionsi’2

The LISP I programming system is based on a class of func-
tions of symbolic expressions which we now proceed to describe.

2.1 Functions and Functlon Definitions

We shall need a number of mathematlical ldeas and notations
concerning functions 1n general. Most of fhe 1deas are well
known dbut the notion of conditional expression is believed to
be new, and the use of conditional expressions permits functions
to be defined recursively in a new and convenient way.

a. Partial Functions

A partial function is a function that 1s defined only on
part of its domain, Partial functions necessarily arise when
functions are defined by computations because for some values
of the arguments, the computation defining the value of the
function may not terminate. However, some of our elementary
functions will be defined as partial functions.

' This chapter is taken from the Quarterly Progress Repcrt No. 53,
Research Laboratory of Electronics, M.I.T., April 15, 1959:
"Recursive Functions of Symbolic Expressions and Their Computa-
tion by Machine" by John McCarthy.

2

An article on the same subject by McCarthy is to appear in
the April 1960 issue of the Communlcations of the Association
for Computing Machinery.




b. Propositional Expressions and Predicates

A propositional expression is an expression whose possible
values are T (for truth) and F (for falsity). We shall as-
sume that the reader is familiar with the propositional con-
nectives A ("and"), VvV ("or"), and ~("not"). Typical pro-
positional expressions are :

X<y

(x<y) A (b=c)

X 1s prime

A predicate is a function whose range consists of the truth
values T and F.

¢. Conditional Expressions

The dependence of truth values on the values of guantltles
of other kinds is expressed in mathematics by predicates, and
the dependence of truth values on other truth values by logical
connectives. However, the notatlions for expressing symbolical-
ly the dependence of quantities of other kinds on truth values
1s 1nadequate, so that English words and phrases are generally
used for expressing these dependences in texts that describe
other dependences symbolically. For example, the function |x|
is usually defined in words. _

Condltional expressions are a device for expressing the de-
pendence of quantitiles on propositional quantities. A condition-
al expression has the form

(piﬂel)"')pn#en)
where the p's are propositional expregsions and the e's are ex-
pressions of any kind. It may be read, "If p, then e,, other-

wise if p, then e , otherwise if p_ then en,” or "p, yields

2Jlll
n
€1, ++sPy ylelds e



We now give the rules for determining whether the value
of (pl-* €1, 0 0,D en) is defined, and if so0 what its vaiue
1s. Examine the p's from left to right. If a p whose value
18 T is encountered before any p whose value 1s undefined is
encountered, then the value of the conditional expression 1s
the value of the corresponding e (1f this is defined). If any
undefined p 1s encountered before a true p, or if all p's are
false, or 1f the e corresponding to the first true p is un-
defined, then the value of the conditional expression is un-

defined. We now give examples.
(<2 =~ 4,132 = 3) = 4
(2¢2 = 4,252 —+ 3,251~ 2) =3
(241~ 4 T = 3) =3
(2¢1 = 3,7 3) = 3
(21 = 3,T —* 8) 1s undefined
(2¢1 = 3,41 = 4) 1is undefined

Some of the simplest applications of conditional expres-
sions are in giving such definitions as

[x] = (x¢0—~ -x,T = x)
51.] = (1=J —-1i,T= O)
sgn(x) = (x«0 — -1,x=0—* 0,T —* 1)

d. Recursive Function Definitions

By using conditional expressions we can, wlthout circu-
larity, define functions by formulas in which the defined func-
tion occurs. For example, we writle

n! = (n=0~* 1,T = n*(n-1)!)

When we use this formula to evaluate O! we get the answer 1;
because of the way in which the value of a conditional



expression was defined, the meaningless expression 0-({0-1)!
does not arise. The evaluation of 2! according to this defi-

nition proceeds as follows:

2t = (2=0 = 1,T = 2*(2-1)!)

= 2.1

= 2:(1=0 = 1,7 = 1-(1-1)!)
2-1-0!
2:1+(0=0 = 1,T = 0 (0-1)1!)
=211
=2

]

We now give two other applications of recursive function
definitions. The greatest common divisor, ged(m,n), of two
_positive integers m and n is computed by means of the
Euclidean algorithm. This algorithm 1s expressed by the re-
cursive funotioh definition:

ged(m,n)=(m>n =+ ged(n,m),rem(n,m)=0 = m,T = ged(rem(n,m),m))

where rem(n,m) denotes the remainder left when n 1s divided by m.
The Newtonlian algorithm for obtalnling an approximate square

root of a number a, starting with an initial approximation x

and requiring that an acceptable approximation y satisfy

lye-a|<16, may be written as

1, a
sart(a,x,e) = ([x°-al<e = x,T = sqrt(a,s(x+g),€))

The simultaneous recursive definition of several functions
is also possible, and we shall use such definitions if they
are required.

There is no guarantee that the computation determilned by a
recursive definition will ever terminate and, for example, an
attempt to compute n! from cur definition will only succeed 1f
n 1s a non-negative integer. If the computation does not ter-
minate, the function must be regarded as undefined for the

gilven arguments.
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The propositional connectives themselves can be defined by
condltional expressions. We write

pAQ = (p = q,T ™ F)
pvq = (p = T,T — q)
~p = {p—=F,T—T)
p>qa = (p * q, T~ T)

It 1s readily seen that the right-hand sides of the eguations
have the correct truth tables. If we consider situations in
which p or g may be undefined, the connectives A and V are seen
to be noncommutative. For example, if p 1s false and g 1s un-
defined, we see that according to the definitions glven above
PAq is false, but gAp 1s undefined. For our applications this
noncommutativity is desirable, since pAg is computed by first
computing p, and if p 1s false q is not computed. If the com-
putation for p does not terminate, we never get arocund to com-
puting q. We shall use proposltional connectives 1in this sense
hereafter.

e. Functions and Forms

It 48 usual in mathematics - outside of mathematical logic -
to use the word "function" imprecisely and to apply 1t to forms
such as y2+x. Because we shall later compute with expressions
for functions, we need a dilstinction between functions and forms
and a notation for expressing this distinction. This distinc-
tion and a notation for describing it, from which we deviate
trivially is given by Church.1

La. Church, The Calculi of Lambda-Conversion (Princeton

University Press, Princeton, N.J., 1941),.




Let f be an expression that stands for a function of two
integer variables. It should make sense to write £(3,4) and
the value of this expression should be determined. The ex-
pression y2+x does not meet this requirement; y2+x(3,4) is not
a conventional notation, and if we attempted to define it we
would be uncertain whether its value would turn out to be 13
or 19. Church calls an expression like y2+x a form. A form
can be converted into a function if we can determine the cor-
respondence between the variables occurring in the form and
the ordered 1list of arguments of the desired function. This
is accomplished by Church'!s A-notation.

If £ is a form in variables x,,...,X,, then A((xi,...,xn),EJ
will be taken to be the function of n variables whose value 1s
determined by substituting the arguments for the varilables
Xqyoons Xy in that order in & and evaluating the resulting ex-
pression. For example, x((x,y),y2+x) is a function of two
variables, and k((x,y),y2+x)(3,4) = 19,

The variables occurring in the list of variables of a
A-expression are dummy or bound, like variables of integration
in a definite integral. That 1s, we may change the names of
the bound varilables 1In a function expression without changlng
the»yalue of the expression, provided that we make the same
change for esach occurrence of the variable and do not make two
variables the same that previously were different. Thus A{{x,y),
y2+x),x((u,v),v2+u) and x((y,x),x2+y) denote the same function.

We shall frequently use expressions in which some of the
variables are bound by A's and others are not. Such an expres-
8ion may be regarded as defining a function with parameters.
The unbound variables are called free variables.

An adequate notation that distinguishes functions from forms
allows an unambiguous treatment of functions of functions. It
would involve too much of a digression to give examples here,



but we shall use functlons with functions as arguments later in
this manual.

Difficulties arise in combining functilions described by A-
expressions, or by any other notation involving variables, be-
cause different bound variables may be represented by the same
symbol. This is called collision of bound variables. There 1s
a notation involving operators that are called comblnators for
combining functions without the use of variables. Unfortunate-
ly, the combinatory expressions for interesting comblnations of
functions tend to be lengthy and unreadable.

. Expressions for Recursive Functions

The A-notation 1s inadequate for naming functions defined
recursively. For example, using A's, we can convert the de-
finition

sart(a,x,e) = (ixg—a\¢€ -+ x,T sqrt(a,%(x+§),é))
into
2 1 a
sqrt = h«a,x,é),(|x —a\‘é = x,T = sqrt(a,s(x+y),€)))

but the right-hand side cannot serve as an expression for the
function because there would be nothing to 1ndicate that the re-
ference to sqrt within the expression stocd for the expression
as a whole.

In order to be able to write expressions for recursive func-
tions, we introduce another notation: label (2,8 ) denotes the
expression € » brovided that occurrences of a within € are to
be interpreted as referring to the expression as a whole. Thus
we can write 1

label(sqrt,k((a,x,é),(|x2—a,¢é‘* x,T = sqrt (a,s(x+3),€))))

as a name for our sqgrt function.
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The symbol a in label(a,E) is also bound, that is, it may
be altered systematically without changing the meaning of the
expression. It behaves differently from a variable bound by a

A\, however,

2,2 Symbollc .Expresdions

We shall first define a class of symbollc expressions in
terms of ordered pairs and 1lists. Then we shall define filve
elementary functions and predicates, and bulld from them by
composition, conditional expressions, and recursive definitions
an extensive class of functions of which we shall give a num-
ber of examples. We shall then show how these functions can be
expressed as symbolic expressions, and we shall define a unl-
versal function apply that allows us to compute from the ex-
pression for a given function its value for glven arguments.
Finally, we shall define some functlons with functions as ar-
guments and gilve some useful examples,

a. A Class of Symbollc Expressions

We shall now define the S-expressions (S stands for sym-
bolic). They are formed by using the special characters

)

(
and an infinite set of distinguishable atomic symbols. For
atomic symbols, we shall use strings of capital Latin letters
and dlgits. Examples of atomic symbols are

A

ABA
APPLEPTENUMBER3
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There-is a twofold reason for departing from the usual
mathematical practice of using single letters for atomic sym-
bols. First, computer programs frequently require hundreds of
distinguishable symbols that must be formed from the 47 charac-
ters that are printable by the IBM 704 computer. Second, it
1s convenient to allow English words and phrases to stand for
atomic entities for mnemonic reasons. The symbols are atomic
in the sense that any substructure they may have as seguences
of characters 1is 1gnored. We assume only that different sym-
bols can be distinguished.

S-expressions are then defined as follows:

1, Atomic¢ symbols are S-expressions.

2. If ey and e, are S-expressions, so is (e e,
Examples of S-expressions are

5 .

(A:B)

((AB:C)-D)

An S-expression 1s then simply an ordered pair, the terms
of which may be atomic symbols or simpler S-expressions. We
can represent a list of arbitrary length in terms of S-expres-
sions as follows. The 1list

{my,myy e m )
is represented by the S-expression
(m1°(m2°{,_J(mncNIL)opg)))

Here NIL is an atomic symbol used to terminate lists,
Since many of the symbolic expressions with which we deal
are conveniently expressed as lists, we shall introduce a list

notation to abbreviate certain S-expressions. We have
1. (m) stands for (m°NIL).
2. {ml;guk,mn)-stands for {mj=fu,b(mn°NIL)=.u)),

3. (mljc,‘9mn=x) stands for fmlai:aafmncx)a,:))‘
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Subexpressions can be similarly abbreviated. Some examples
of these abbreviations are

((AB,C),D) for ((AB‘(C'NIL))-(D'NIL))
((A,B),C,D*E) for ((A«(B«NIL)})-(C-(D-E)))

Since we regard the expressions with commas as abbreviations
for those not involving commas, we shall refer to them all as S-

expressions.

b. Functlons of S-expressions and the Expressions That Represent
Them

We now define a class of functions of S-expressions. The
expressions representing these functions are written in a con-
ventional functional notation. However, 1n order to clearly
distingulsh the expressions representing functions from S-ex-
pressions, we shall use sequences of lower-case letters for
function names and variables ranging over the set of S-expres-
sions. We also use brackets and semicolons, instead of pa-
rentheses and commas, for denoting the application of functlons
to thelr arguments. Thus we write

car[x]
car[cons[ (A-B);x]]

In these M-expressions (meta-expressions) any S-expressions that

occur stand for themselves.
¢. The Elementary S-functions and Predicates

We introduce the following functions and predilcates:

1. atom

atom[x] has the value of T or F, accordingly as x 1s an
atomic symbol or not. Thus
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atom(X] =T
atom[ (X-A)] = F
2. eq

eqlx;y] is defined if and only if eitherlx-dr.y'is atomic.
eq[x;y]l =T 1f x and y are the same symbol, and eqlx;y] = F
otherwise. Thus

eq[¥;x] =T

eq[X;A]l = F

eq[X; (X+a)] = F

3. car
car[x] is defined if and only if x is not atomic.
car[(elsee)] = e,. Thus ' ‘
car(X] is undefined.
car[ (X+A)] = X
car[ ((X:A) ¥)] = (X.a)
4. cdr
cdr[x]) is also defined when x 1s not atomlc. We have
cdr[(ei-ee)} = e5. Thus
cdr{X] is undefined. ' X
edr (X+A)] = A
cdr{ ((X-A)-¥)] = Y

5. cons
cons[x;y] is defined for any x and y. We have

cons[el;ee] = {e;-e5). Thus

cons[x;A] = (Xx.4) _

cons[ (X.A);Y] = ((X-A)-Y)

car, cdr and cons are easily seen to satlsfy the relations

car(cons[x;y])] = x

cdr{cons[x;y]) = ¥

conslcar[x];cdr[x]] = x, provided that x 1s not atomic.
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The names '"car" and "cons'" will come to have mnemonic sig-
nificance only when we dilscuss the representation of the system
in the computer. Compositions of car and cdr glve the subex-
pressions of a given expression in a given position, Composi-
tions of cons form expressions of a gilven structure out of parts.
The class of functions which can be formed in this way 1s qulte
limited and not very interesting.

d. Recursive S-functions

We get a much larger class of functions (in fact; all com-
putable functions) when we allow ourselves to form new functions
of S-expressions by conditional expressions and recursive defi-
nition.

We now glve some examples of functions that are definable
in this way.

1. ff[x]

The value of ff{x] is the first atomic symbol of the S-ex-
pression x with the parentheses ignored. Thus

£ ((a-B)-C)] = A
We have

ffix] = [atom[x]) = x;T = £flcar(x]]]

We now trace 1n detall the steps in the evaluatilon of
el ((A-B)-C)]:

£el((A-B)-C)] = [atom[ ((A-B)-C)] = ((A-B)-C);T = £f[car[((A:B).C)]]]
[(F—~ ((A-B).C);T = ff[car[((ar-B).C)]1]]

(T = frlcar[ ({(A-B):C)]]]

fflcar{ ((A:B)-C)])

r£((A-B)]

[atom[ (a-B)] = (a-B);T = ff[car([(a-B)1]]

[F—~ (A-B);T — fflcar[(a-B)]]]

= [T— tflcar{ (A-B)]]]

il
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ftlcar((a-B))]

relAl

[atom[Aa) = A;T = £f(car{a)])
[T— a;7 = £f(car{al))

= A

i

2. substx;y;zl
This function gives the result of substituting the S-expres-
sion x for all occurrences of the atomic symbol y in the S-ex-

pression z. It 1s defined by
subst(x;y;z) = (atom(z] = [eqlz;y]— x;T7 — 2z];T —* cons[subst|
x;y;car(z]);substix;y;cdrlz])]]
As an example, we have
subst[ (X-A);B; ({A*B):C)] = ((A-(X-A))-C)

3. equallx;y]
This 1s a predicate that has the value T if x and y are the
same S-expressilon, and has the value I otherwise. We have

equal(x;y] = [atom[x)Aatom{y]reqlx;y))lvi~atom[x])Avatom[y]A
equallcar[x];car(y])lrequallcdr(x];cdr(y]]]

If€ 1s convenlent to see how the elementary functions look
in the abbreviated 1list notation. The reader will easily verify
that ‘

(1) car[(mi,mg,...,mn)] = my

(11) cdr[(ml,mg,...,mn)] = (my, v o,m )
(111) edr((m)] = NIL

(iv) cons[ml;(mg,...,mn)] = (mi,mg,...,mn)
(v) cons(m;NIL] = (m)

We define

null(x] = atom[x)Aeql{x;NIL)
This predicate is useful in dealing with 1lists.
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Compositions of car and cdr arise so frequently that many
expressions can be written more conclsely if we abbreviate

cadr[x] for car[cdr(x]],

caddr[x] for car[ecdr[cdr[x]]], etec.

Another useful abbreviation is to write list[el;ee;...;en]
for cons[el;cons[ee;...;cons[en;NIL]...]]. This function
gives the 1list, (el,...,en), as 2 function of its elements.

The following functions are useful when S-expressions are
regarded as lists.

1. append(x;y)

append[x;y] = [null[x] = y;T = cons[car(x];append{cdr[x];yl])]
An example 1s

append| (4,B); (¢,D,E)] = (A,B,C,D,E)

2. amonglx;y]

This predicate 1s true if the S-expression x occurs among
the elements of the list y. We have

among(x;y] = ~null(ylAlequal(x;carfiy)]lvamong[x;cdr[y]]]

3. patrlxsy] '

This function giQes the 1ist of pairs of corresponding ele-
ments of the 11sts x and ys We have _

pair[x;y] = [null[x]Anullly] = NIL;~atom[x])A~atomly] = consl

" 1ist[earlx])jcar[y]];patrledrix];edr(y]]]]

An example 1s o

pair[ (A,B,C); (X, (¥,2),U)] = ((A,X), (B,(Y¥,2)), (C,V))

4, sassocix;yl _ )

If y is a list of the form ((uy,vy),...,(u,,v,)) and x 1s
one of the ul's thengassoc[x;y] is the corresponding w. We have
sassoclx;y] = [caar[y]l = x— cadar(y];T —*cassoc[x;edriyl]l]

An example 1s £
sassoc[X; ((W, (A,B)), (X, (c,D)), (¥, (E,F)))) = (¢,D)
5. sublis[x;y)
Here x 1s'assumed to have the form of a l1list of pairs



~17-

((ui,vd)...,{uh,vn)), where the u's are atomic, and y may be
any S-expression. The value of sublis[xjy] 1s the result of
substituting each v for theAcorresponding u in y. In order to
define sublils, we first define an auxiliary function, We have

sub2(x;z] = [nulli{x]) — z;eqlcaar(x];z] — cadar(x]);T — sub2|
car(x];z]]
and
sublis[x;y] = [atom[y] = sub2(x;y];T = cons[sublis[x;car|
v1lisublis(x;edr(yl]])
We have

l('.'- )5 LY F ' = AR

sublisl (Oe-(A,B) Y, (¥, (B,0))); (A, X-¥)] = (5, (A;BY,B;C)

e. Representation of S-Functions by S-Expressions

S-functions have been described by M-expressions. We now
glve a rule for-translating M-expressions into S-expressions,
in order to be able to use S-functions for making certain com-
pﬁtations with S-functions and for answering certain questions
about S-functions.

The translation 1s determined by the following rules in
which we denote the translation of an M-expression % by g ¥,

1. If & 1is an S-expression £ * is (QUOTE, € ).

2. Variliables and function names that were represented by
strings of lower-case letters are translated to the correspond-
ing strings of the corresponding upper-case letters, Thus car*
1s CAR, and subst* is SUBST.

3. A form f[el;...;en] is translated to (f*,ef,‘..,eg).
Thusv{cons[car[x];cdr[le}* is (CONS, (CAR,X), (CDR,X)).

(Ip, = g5 5051 45 (COND, (p¥,ef) ..., (ph,e)).
{x[[xl;...;xn];é]}* is (LAMBDA,(xf;...,x;),g*).

3,
5.
6. f{lavbella;E)}* is (LABEL,a*,E%).
',f . e -

tr
| v
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With these conventions the substitution functlion whose
M-expression 1s labell[subst;A[[x;y;z];[atom[z] = [eqly;z] —
x;T =+ z];T = cons[subst[x;y;car(z]];subst{x;y;cdr(z])]]]1]] has

the S-expression

(LABEL, SUBST, (LAMBDA, (X,Y,Z), (COND, ( (ATOM,Z), (COND, ((EQ,Y,2),
X), ((QUOTE,T),2))), ((QUOTE,T), (CONS, (SUBST, X,Y, (CAR,2)), (SUBST,
X,Y, (CDR,2)))))))

This notatlion is writable and soméwhat readable. It can be
made easler to read and write at the cost of making its struc-
ture less regular. If more characters were avallable on the
computer, 1t could be improved considerably.

f. The Universal S-Function agélyi'
There is an S-function apply with the property that if £%

1s an S-expression for an S-function f and args is a list of’

arguments of the form (argl,...,argn), where argl,...,argn are

arbltrary S-expressions, then apply[f*;args] and flargl;...;argn]

are defined for the same values of argl,...,argn, and are equal

when defined. For example, '

M Ix;y);conslcarlx];y] 1L (4,8); (C,D)] = applyl (LAMBDA, (X,¥), (
CONS; (CAR)X))Y)); ((AJB)J (C)D))] = (A:C.oD)

1 _ . - -
Note’Fhaﬁ the APPLY operator for the 704 version of LISP I as
des¢ribed and, used in the rest of the manual is not identical

with this apply function.
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The S-functilor apply is defined by

applyl[f;args] = evallcons[f;appalargs]];NIL)

where

appalm] = [nulllm) = NIL;T — cons[1ist[QUOTE;car(m]];appal
cdr[m]]]]

and

evalle;p]l = [
atom{e] = [assocle;p]l;
atom{car(e]] = [
eq{car(e];QUOTE] = cadr[e];
eq{car[e]; ATOM] — atom{evallcadr[e];pll];
eqlcar(e];EQ) —* eqlevallcadr[e];pl;evallcaddr[el;pl];
eq[car[e];COND] = evcon[cdr(e];pl;
eqlcar(e];CAR] = car[evallcadr(e];pl];
eqlcar[e];CDR] — cdrlevall[cadr[el;pl];
eqlcar(e]);CONS] = cons[evallcadr(el;pl;evallcaddrie];pl];
T — evall[cons[assoc[car[e];pl;eviisledrel);pll;pl];
eqlcaarfe]; LABEL] = evallcons[caddar(el;cdrlel];cdrle]];
cons[list[cadar[el;carlell;pll];
eq[caar[e]; LAMBDA] — evallcaddar[el];append[pair(cadar(e];
evlis[ecdr(el;pl;pll]])

and

[eval[caar[c];p] — evallcadar[c];pl;T — evecon|
cdr[cl;pl]

eveonle;pl

and

[null{m] = NIL;T — cons{list[evallcar(mi;p);
evlis[edriml;pll]])

evlis[m;p]

We now explain a number of points about these definitions.
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1. apply itself forms an expression representing the value
of the function applied to the arguments, and puts the work of
evaluating this expression onto a function eval., It uses appq
o put quotes around each of the arguments, so that eval will

regard them as standing for themselves.

2. ggéi[e;p] has two arguments, an expression e to be
evaluated, and a list of pairs p. The first 1tem of each pair
is an atomic symbol, and the second is the expression for which
the symbol stands.

3. If the expression to be evaluated 1s atomic, eval evalu-
ates whatever 1s paired with it first on the 1list p.

Y., If e is not atomic but carf[el] is atémic, then the ex-
pression has one of the forms (QUOTE,e) or (ATOM,e) or (EQ,el,eQ)
or (COND,(pl,eﬁ,.,.,(pn,en)), or (CAR,e) or (CDR,e) or (CONS,el,
eg) or (f,el,...,en) where I is an atomic symbol.

In the case (QUOTE,e) the expression e, itself, is taken.

In the case of (ATOM,e) or (CAR,e) or (CDR,e) the expression e
is evaluated and the approprilate function taken. 1In the case
of (EQ,el,ee) or (CONS,el,eE) two expressions have to be evalu-
ated. In the case of (COND,(pi,el),...,(pn,en)) the p'!s have.
to be evaluated in order until a true p is found, and then the
corresponding e must be evaluated. This is accomplished by
evcon. Finally, in the case of (f,ei,...,en) we :evaluate the
expression that results from replacing f in this expression by
whatever 1t is paired with in the list p.

5. The evaluation of ((LABEL,f,E),e,,...,e,) is accom-
plished by evaluating (é,ei,...,en) with the pairinz (f, (LABEL,
r,£)) put on the front of the previous list p of pairs.

6. Finally, the evaluation of ((LAMBDA,(xl,...,xn),g),
el,...,en) is accomplished by evaluating & with the list of
pairs ((xi,el),...,(x e_)) put on the front of the previous
list p.

n)
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The 1ist p could be eliminated, and LAMBDA and LABEL expres-
slons evaluated by substituting the arguments for the variables
in the expression & -. Unfortunately, difficulties involving
collisions of bound variables arise, but they are avoided by
using the 1list p.

g. Functions with Functlions as Arguments

There are a number of useful functions some of whose argu-
ments are functions. They are especially useful in defining
other functions. One such function is maplist{x;f] with an S-
expression argument x and an argumedt f that 1s a funcfion from
S-expressions to S-expressions. We define

maplist{x;f] = [null[x] = NIL;T = cons{flx]);maplisticdrix];f]]]

. The usefulness of maplist is illusprated by formulas for the
partial derivative.with respect to x of expressions involving
sums and products of x and other variables. The S-expressions
that we shall differentiate are formed as follows.

1., An atomic gymbol is an allowed expression.

2. If e;,e,,...,e  are allowed expressions, (PLUS,el,...,en)
and (TIMES,el,...,en) are also, and represent the sum and product,
respectively, of €hs e €y

This is, essentially, the Polish notation for functions, ex-
cept that the inclusion of parentheses and cowmas allows func-
tions of variable numbers of arguments. An example of an allowed

expression 1s

1
For more exact information on arithmetic functions see Section 9.4.



-22-

(TIMES,X, (PLUS,X,A),Y), the conventional algebraic notation for
which is X(X+A)Y.
Our differentiation formula, which gives the derivative of
¥y with respect to x, is
diffly;x] = [atom[y]) — [ealy;x] = ONE;T = 2ZERO];eq(car(y];
PLUS] ~ cons[PLUS;maplist(cdr{y];n[{z];difr]
car(zl;x]11)seqlcar[y]; TIMES] = cons[PLUS;maplist{
cdrlyl;n[[z];cons[TIMES;maplist(edrly]);a[{w];~eal
z;w] = car(wl;T = difflcar[wl;x]11TI1111

The derivative of the allowed expression, as computed By
this formula, is (PLUS, (TIMES,ONE, (PLUS,X,A),Y), (TIMES,X, (
PLUS, ONE,ZERO),Y), (TIMES, X, (PLUS,X,A),ZERO))

Besides maplist, another useful function with functional
arguments 1s search, which 1s defined as

search[x;p;f;ul = [nulllx] = u;plx] = f(x];T = searchledr(x];psf;ull
The function search 1ls used to search a 1lsit for an element that

has the property p, and if such an element 1s found, f of that
element 1s taken. If there 1s no such element, the function u

of no argument 1s computed,

7]
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3. LISP Primer

The features of LISP described in this section permit the
user to define a number of S-functions and then compute the re-
sults of applying them to arguments.

3.1 Definition of Functions

In order to define functions we punch the following (using
columns 1-72 of as many cards as are necessary):

DEFINE ((

(name of first function definition of first function),

(name of second function, definition of second function),

(name of last function, definition of last function)

)) ()
For example, if we wish to define the functions ff, alt,
and subst given by

fflx] = [atom[x] = x;T = ff[car[x]]]
alt[x] = [nulllx]vnullledr[x]] = x;T = cons[car[x];altl
cdrlecdr[x1]1]11]
substx;y;z] = [atom[z] = [ealy;2z] = x;7 = 2];T = cons[subst|
x3y;car[z]];substx;y;cdr(z]]]]
we write
_ DEFINE ((

(FF (LAMBDA (X)‘(COND ((ATOM X X) (T (: F (CAR x))))))
, (ALH'QAMBDA (x) (COND ( (OR (NULL X) (NULL (CDR X))) x)
(T (CONS (CAR X) (ALT (CDR (CDR XIN))
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(SUBST (LAMBDA (X Y 2) (COND ((ATOM 2) (CONDI((EQ Y 2) X)
(T 2))) (T (CONS (SUBST X Y (CAR 2)) (SUBST X Y (CDR Z)))))))

Y0

A few dilscrepancies between the sltuation as it 1s and
what might be expected from the previous chapter should be
noted

1. The commas in writing S-expressions may be omltted.
This 1s an accldent.

: 2. According to the definition of apply in the previous
chapter one would expect to have to write (QUOTE T) in deslg-
nating the left-over case in a condltional expression. For
convenience, our apply allows (and in fact requires) that T be
written instead.
| 3. The predicates null V A and ~Vare built-in. We write
(NULL X) and (OR Dy Py «en pn) and (AND P, Po ...pn) and (NOT p):

"4, The dot notation e.g. (A*B) 1s mdt allowed in LISP I. -

Functlon definitions may involve other functlons which are
elther bullt-in or are defined earlier or later.

3.2 The Use of Functions

After the cards which define functions we can put cards
which cause their values to be computed and printed for given
arguments. This 1s done by writing a triplet-

function

list of arguments

p-list

In the simplest case the p-1list is null and is written ().
For example, in order to compute subst[(X,A);X; ((X,A),X)] we
write &

SUBST ((x A) X ((xB) X)) ()
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The answer (((X A) B) (X A)) will be printed.

3.3 Debugging

The main debugging tool is the pseudo-function -tracklist.
If you put a card

TRA:. 12

TRACKLIST (f, f, ... f) ()
after the cards which define the functions fi""’fn and before
the functions are used in computations, the computer will print
the arguments and values of fi,.;.,fn‘each time they are used
recursively in a computation. tracklist acts as a tracing pro-
gram, but usually it is not necessary to trace more than one or
two functions.

3.4 The Wang Algorithm for the Propositional Calculus

As an extended example of the use of a succession of func-
tion definitions to define an algorithm we give a LISP formula-
tion of an algorithm for deciding whether a formula is a theo-
rem of the propositional calculus published recently by Hao Wang.1
Readers completely unacquainted with propositional calculus

should probably skip this example.

1
Wang, Hao. "Toward Mechanical Mathematics'", IBM Journal of

Research and Development, Vol. 4, No. 1, January 1960
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(1) The Wang Algorithme. We quote from pages 5 and 6 of

Wang's paper.

"The propositional calculus (System P)

Since we are concerned with practical feasibility, 1t is pre-
ferable to use more logical connectlves to begin with when we
wish actually to apply the procedure to concrete cases. For
this purpose we use the five usual logical constants ~- (not),
cf(conjunction, V (disjunction), > (implication, — (bicondi-
tional), with their usual interpretations.

A propositional letter P, Q, R, M or N, et cetera, is a
formula (and an "atomic formula"). If ¢> ZP’ are formulae, then
~ P, <,756f2}f @ v I/J’QSDZ,U¢ U are formulae. If w, P
are strings of formulae (each, in particular, might be an empty
string or a single formula) and qﬁ is a formula, then T, qS, P
1s a string and 7 — P is a sequent which, intuitively speaking,
is true if and only if either some formula in the string w (the
"antecedent") 1s false or some formula in the string £ (the
"consequent") 1s true, i.e., the conjunction of all formulae in
the antecedent implies the disjunction of all formulae in the
consequent,

There are eleven rules of derivation. An initlal rule
states that a seguent with only atomic formulae (proposition
letters) is a theorem if and only if a same formula occurs on
both sides of the arrow. There are two rules for each of the
five truth functions--one introducing it into the antecedent,

This example is an excerpt from Memo 14 of the Artificial In-
telligence Project--R.L.E. and M.I.T. Computation Center, by
Jehn McCarthy, The Wang Algorithm for the Propositional Cal-

culus Programmed in LISP.
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one introducing it into the consequent. One need only reflect
on the intuitive meaning of the truth functions and the arrow
sign to be convinced that these rules are indeed correct. La-
ter on, a proof will be given of thelr completeness, i.e., all
intuitively valld sequents are provable, and of their consist-
ency, i.e., all provable sequents are intuitively valid.

P1. Initial rule: if A, 2{ are strings of atomic formulae,
then A = { is a theorem if some atomic formula occurs on
both sides of the arrow.

In the ten rules listed below, A and Z are always strings
(possibly empty) of atomic formulae. As a proof procedure in
the usual sense, each proof begins with a finlte set of cases
of P1 and continues with successive consequences obtained by
the other rules. As will be explained below, a proof looks like
a tree structure growing in the wrong direction. We shall, how
ever, be chiefly interested in doing the step backwards, there-
by incorporating the process of searching for a proof.

The rules are so designed that given any sequent, we can
find the first logical connective, 1.e., the leftmost symbol
in the whole sequent that is a connective, and apply the ap-
propriate rule to eliminate it, thereby resulting in one or two
premises which, taken together, are equivalent to the conclu-
sion. This process can be repeated until we reach a finite set
of sequents with atomic formulae only. Each connective-free
sequent can then be tested for being a theorem or not, by the
initial rule. If all of them are theorems, then the original
sequent 1s a theorem and we obtain a prcof; otherwise we get a
counterexample and a dlsproof. Some simple samples will make
this clear.



For example, gilven any éheorem of "Principia", we can auto-
matlcally prefix an arrow to it and apply the rules to look for
a proof., When the main connective is 7, it 1s simpler, though
not necessary, to replace the main connective by an arrow and
proceed. For example:

*2.45. p— : ~s(PVQ)- D -~P,
*5.21, b— :~P4~QDP = Qq

can be rewritten and proved as follows:

#2245, ~ (PVQ) = ~P (1)
(1) = ~vp,PVQ (2)
(2) P— PVQ (3)
(3) P—P,Q
VALID
#0521, = ~Pf~q Db = (1)
(1) ~P ffvz—*P——Q (2)
(2) ~P,~vQ = P=1 (3)
(3)~a—=pP=q,pP (%)
(%) = P = Q,P,2 (5)
(5) P—Q,pP,Q
VALID
(5) Q= P,p,n
VALID

P2a. Rule = ~: Ifd, S = A, pthen® =N, ~P,p.
P2b. Rule~— : If A, p — w,¢,then A\,~¢, p— T.

P3a. Rule =& : If%—A¢$,pand T = A, ¥,p,thend — x,cpcf’yp
P3b. Rule@ — : If A,$,Y,p = 7, then A gdY,p = 7.

Pla, Rule=—V : If § — )\CPL(P,then‘C—*)\cﬁVV,
Pib. Rule V= : If N\,¢,p—~ 7 and \Y,p— vthenxcfvyfp—vw

«
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PSa. Rule = D: If T, \Y,p thend = NP Y, p.
PSb. RuleD = : If A, ¥,P— 7 and NP w,cp,then 7\,4332/',,0-* T.

P6a. Rule *=: If¢, T — Ny, pand YT - )\,cp,/o,then‘é = A\, deys P
P6b. Rule= — : If¢,Y,\,p— T and A, A= 7,8,¥,then A\, =Y, p—= 7."

(2) The LISP Program. We define a function theorem [s]
whose value 1s truth or falsity according to whether the sequent.

s is theorem.
The sequent

S: “fi,...,kﬂn'*”qfl,...,HVh

1s represented by the S-expression

5% (ARRow,(\-fI,...,f;),_(\fff,...,l}f;))

where in each case the elllpsis ... denotes missing terms, and
where \P* denotes the S-expression for \P.

Propositional formulae are represented as follows:

1. TFor "atomic formulae" (Wang's terminology) we use
"atomic symbols" (LISP terminology).

2. The following table gives our "Cambridge Polish" way
of representing propositional formulae with given main con-
nectives.

. ﬂv’\_f becomes (NOT,&f*)
S 4/ ' becomes (AND, \p*, Yr)
S Y becomes (OR, “P*, Yr*)
. P DY becomes (IMPLIES, “f*, {*)
5.“? \P' becomes (EQUIV,kf*,VV*)'

Thus the sequent

~/P cB ~Q — P= Q,RVS

1s represented by

(ARROW, ( (AND, (NOT,P), (NOT,Q))), ((EQU1IV,P,Q), (OR,R,S)))

= w o e
11 U <
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The S-function theorem [s] 1s given in terms of auxiliary

functions as follows:
theorem [s] = thi[NIL;NIL;cadr[s];caddr[s]]

thilal;a2;a;¢c] = [nulllal = th2[al;22;NIL;NIL;c];T —
member{car(al;clv(iatom[car[al] —
thi{ [member(carlal;all;T — cons(carl
aljall);a2;edrial;e]; T — thifal;(
memberlcar{al;a2] — a2;T — cons[
carlal;a2l];ecdrlal;c]l]

th2lal;a2;cl;¢2;¢] = [nullle] = thlai;a2;el;c2);atom|
car[c]}) = th2[al;a2;[member[car|
clsedl] = ¢1;T — consfcar(c);cl]];
c2;cdrle]];T = th2[alj;a2;cl;[
mewber[car[cl;c2] — c2;T — cons(
car(cl;ec2]];:cdric]]]

thlal;a2;cl3c2) = [(nullfa2] = Avnull[c2]Athrlcar(c2];
al;al2jcl;cdr(c2]];T — thé[car[az];
aljcdria2];cl;c2]]

th is the main predicate through which all the recursions
take place. ftheorem, thl and th2 break up and sort the infor-
mation in the sequent for the benefit of th. The four argu-
ments of th are:
al: atomlc formulae on left side of arrow
a2: other formulae on left side of arrow
cl: atomic formulae on right side of arrow
c2: other formulae on right side of arrow
The atomlc formulae are kept separate from the others in
order to make faster the detection of the occurrence of formula
on both sides of the arrow and the finding of the next formula
o reduce. Each use of th represents one reductlon according



-31-

to one of the 10 rules. The formula to be reducéd is chosen
from the left side of the arrow if possible. According to
whether the formula to be reduced 1s on the left or right we
use thf or thr. We have

th4[u;al;a2;c1;c2] = [
car[u] = NOT = thir(cadr[ul];al;a2;cl;c2];
car[u] = AND — th24[cdr[ul;al;a2;cl;c2];
car[u] = OR = thillcadr(ul;al;a2;ci;c2]Athlif[
caddr[ul);al;a2;cl;c2];
IMPLIES = thi4[caddr[ul;al;a2;cl;c2]Athir(
cadr[ul;al;a2;cl;c2];
- car[u] = EQUIV = th24{cdr[ul;al;a2;cl;c2]Ather(
cdr{ul;al;a2;ci;c2];
T — error[list[THL;u;al;a2;ci;c2]]]

Il

car[u]

thrlu;al;a2;cl;c2] = [
car[u] = NOT = thlf[cadr{ul;al;a2;cl;c2];
car[u] = AND = thir[cadr[u];al;a2;cl;c2]Athir{
caddr[ul;al;a2;cl;c2];

car[u] = OR = th2r[cdr[ul;al;a2;cl;c2];
car[u] = IMPLIES — thii[cadr[ul];caddr{ul;al;a’2;cl;c2];
car[u] = EQUIV = thiil[cadr[u];caddr[ul;al;a2;cl;c2]A

" thili[caddr[u];cadr(ul;al;a2;cl;c2];
T = error[THR;al;a2;cl;c2]]]

The functions thif, thir, th24, th2r, thil distribute the
parts of the reduced formula to the appropriate places in the

reduced sequent.
" These functions are

thif[v;al;a2;cl;c2] = [atom[v] = member[v;cl]lV

th{cons[v;all;a2;¢c1;c2];T = member[v;c2]V
th[al;cons[v;a2];cl;c2]]
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thir{v;al;a2;cl;c2] = [atom{v] = member{v;al]V
th(al;a2;cons[v;cl];c2];T — member(v;a2]v
th(al;a2;el;cons(v;ec2]]]

th2f[vial;az;el;c2] = [atom[car[v]] = member[car[v]jcl]V
thil[cadr(v];cons[ecar(v]);ail;a2;cl;c2];T — member|
car(v];ec2]v
thif(cadr[v];al;cons[car{v];a2]l;ct;ec2])

thor{v;al;a2;cl;c2] = [atomlcar(v]] — member[car(v];allv
thlrfcadr[v};al;ae;cons[car[v];cl];cE];T'* member |
car(v];a2lv
thir(cadrl(v];al;a2;clscons[car(v];c2]]]

thil[vi;v2sal;a2;cl;c2] = [atom[vi] — member[vi;cl]V
thir[v2;cons[vi;all;a2;ci;c2]; T = member[vijc2]V
thir[v2;ai;cons[vi;a2];ci;c2]]

Finally the function member is defined by

member[x;ul] =~nulllulalequal(x;cariu]]lvmember(x;cdr{ul]]

(3) The LISP Program as Written in S-expressions. In this
section we give the translation of the functions of the preced-

ing section into S-expressions. Note that spaces are used in
place of commas.
We have
DEFINE ((
(THEOREM (LAMBDA (S) (THL NIL NIL (CADR S) (CADDR S))))

i



(THL (LAMBDA (A1 A2 A C) (COND ((NULL A)
(TH2 A1 A2 NIL NIL C)) (T

(OR (MEMBER (CAR A) C) (COND ((ATOM (CAR A)j
(THL (COND ((MEMBER (CAR A) AL ) AL)
(T (CONS (CAR A) AL))) A2 (CDR A) C))
(T (TH1 A1 (COND ((MEMBER (CAR A) AZ2) A2)
(T (coNs (CAR A) A2))) (CDR A) €))))))))

(TH2 (LAMBDA (A1 A2 C1 C2 C) (COND
((NULL C) (TH AL A2 C1 C2))

((ATOM (CAR C)) (TH2 AL A2 (COND
((MEMBER (CAR C) C1) c1) (T

(CONS (caAR ¢) c1))) c2 (cDr C)))

(T (TH2 A1 A2 c1 (COND ((M@=MBER

(CAR C) €2) c2) (T (COoNS (CaR c) c2)))
(CDR €))))))

(TH (LAMBDA (AL A2 C1 ¢2) (COND ((NULL A2) (AND (NOT (NULL C2))
(THR (CAR C€2) Ai A2 €1 (CDR €2)))) (T (THL (CAR A2) AL (CDR A2)
c1 ¢2)))))

(THL (LAMBDA (U Al A2 C1 c2) (coND
((EQ (CAR U) (QUOTE NOT)) (THLR (CADR U) ALl A2 Ci C2))
((EQ (CAR U) (QUOTE AND)) (TH2L (CDR U) AL A2 Ci C2))
((EQ (CAR U) (QuoTi OR)) (AND (THAL (CADR U) Al A2 Cl C2)
(THLL (CADDR U) Al A2 Ci1 C2) ))
((EQ (CAR U) (QUOTE IMPLIES)) (AND (THLL (CADDR U) AL A2 C1
c2) (THAR (CADR U) ALl A2 C1 C2) ))
((EQ (CAR U) (QuoTk EQUIV)) (AND (TH2L (CDR U) A1 A2 C1 C2)
(TH2R (CDR U) A1 a2 €1 C2) ))
(T (ERROR (LIST (QUOTE THL) U AL A2 C1 C2)))
)))
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(THR (LAMBDA (U A1 A2 Ci C2) (COND

((EQ (CAR U) (QUOTE NOT)) (THAL (CADR U) A1 A2 C1 C2))
((EQ (CAR U) (QUOTE AND)) (AND (THLR (CADR U) A1l A2 C1 C2)
(THAR (CADDR U) Al A2 C1 C2) ))

((EQ (CAR U) (QUOTE OR)) (TH2R (CDR U) A1 A2 C1 C2))

((EQ (CAR U) (QUOTE IMPLIES)) (TH11 (CADR U) (CADDR U)

A1 A2 C1 C2))

((EQ (CAR U) (QUOTE EQUIV)) (AND (TH11 (CADR U) (CADDR U)
Al A2 C1 C2) (TH11 (CADDR U) (CADR U) Al A2 C1 C2) ))

(T (ERROR (LIST (QUOTE THR) U Al A2 C1 C2)))

)))

(THAL (LAMBDA (V A1 A2 Ci1 C2) (COND

((ATOM V) (OR (MEMBER V C1)

(TH (CONS V A1) A2 Cc1 c2) ))

(T (OR (MEMBER V C2) (TH A1 (CONS V A2) C1 c2) ))

)))

(THAR (LAMBDA (V A1 A2 Cci1 c2) (COND

((aToM V) (OR (MEMBER V A1)

(TH A1 A2 (CONS V C1) C2) ))

(T (OR (MEMBER V A2) (TH A1 A2 C1 (CONS V C2))))

)))

(TH2L (LAMBDA (V A1 A2 Ci C2) (COND
((ATOM (CAR V) (OR (MEMBER (CAR V) C1)
(THAL (CADR V) (CONS (CAR V) Al) A2 C1 C2)))
(T (OR (MEMBER (CAR V) Cc2) (THAL (CADR V) A1 (CONS (CAR V)
A2) C1 c2)))
)))
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(TH2R (LAMBDA (V A1 A2 C1 C2) (COND

((ATOM (CAR V)) (OR (MEMBER (CAR V) A1)

(THAR (CADR V) A1 A2 (CONS (CAR V) C1) c2)))

(T (OR (MEMBER (CAR V) A2) (TH1R (CADR V) Al A2 Ci
(CONS (CAR V) Cc2))))

)))

(TH11 (LAMBDA (V1 V2 A1 A2 C1 C2) (COND
((ATOM V1) (OR (MEMBER Vi1 C1) (THAR V2 (CONS Vi A1) A2 C1

c2)))
(T (OR (MEMBER V1 C2) (TH1R V2 A1 (CONS Vi A2) C1 C2)))

)))

(MEMBER (LAMBDA (X U) (OR (AND (NOT (NULL U))
(EQUAL X (CAR U))) (MEMBER X (CDR U)))))
D ()
This causes the functions mentioned to be defined.
In our test run we next gave
PRACKLIST ((TH)) () ' '
which caused the argumentsxéhd values of the function th to be
printed each time the function came up in the recursion. Ac-
cidentally, it turns out that these arguments essentially con-
stitute a proof in Wang's style of the theorem.
In order to apply the method to the sequent
p = pVq
we write
THEOREM
((ARROW, (P), ((OR,P,Q))))
()

The APPLY operator, for each theorem and argument, evalu-
ates the proposition-and gives the answer as either true T}

NET



-36-

or falSeA(F)f

Thus the LISP function theorem in itself suffices to ap-
ply the Wang algorithm to any'trial proposition and determine
whether or not the proposition is a tautology.

)
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4, The LISP Programming System

In this section are included descriptions of the main
features of the LISP system. The various ways of defining and
evaluating symbolic expressions for functlions are given, and
some discussion is added on the use of numbers in LISP. The
program feature, which is a somewhat FORTRANQIike feature, is
explained, and finally the LISP compller is described.

4.1 The APPLY Operator

The basis of LISP programming is the APPLY operator which.
1s a synthesis of the apply and eval functions described in
Chaptér 2. The APPLY operator is the interpreter part of the
LISP system in the sense that S-expressions representing func-
tions and their arguments are read, interpreted and evaluated
by apply. The apply now in use is a functlon of three arguments,

apply[f;x;p]
where

f = an S-expression representing an‘S—function Jf of
n arguments; n=#0.

~
It

a llst of n arguments
a list of pairs, each of the form (atomic symbol,
value), used to assign values to free variables.

o)
|

The value of applyl[f;x;pl is the value of the S-function, ae R
evaluated at x, where the values assigned to any free varlables
are the values paired with the corresponding varlables on the
p-list. ‘




Example 1:
As a simple first example consider the function

M ly;zl;cons[ecar[yl;cdr[z]]]
applied to the list
((a,B),(C,D)),

where .no frée varlables—need to-be assigned. The arguments
fix, and.p for the apply function, written in the form of S-
expressions, are,

£ (LAMBDA, (Y,2), (CONS, (CAR,Y), (CDR,Z)))
X3 ((a,B),(C,D))
pi )

and the value of applylf;x;pl] is (A,D).
Note that the p-1ist must be included even though it is
the NIL 1list.

Example 2:
Some care must be exercised in writing the lists x and p

correctly. 1In the example,

I CAR

x: ((A,B))

p: ()
where applyl[f;x;p] = car[(A,B)] = 4,
since car is a function of one variable, the list x must be
written as ((A,B)) where (A,B) is the single argument. The
lis¢t,

X: (A,B)

would be wrong. .Note also that the LAMBDA definition is not
needed 1n this example since the specification of the arguments
i1s clear. It would be correct bubt unnecessary to write
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f: (LAMBDA, (Y), (CAR,Y))
x: ((a,B))
P ()

Example 3:
The followlng example, on the other hand, involves two
arguments,

f: CONS
: ((a),(B))
‘»V,p: ( ) — f
giving
,applyif;X;p] = cons[(A); (B)] = ((A),B)

The exact descriptions of function formats acceptable to the
APPLY operator are discussed further in Section 4.3.

Example 4:
As an example involving a p-list we have

£ (LAMBDA, (Y), (CONS,Y,Z)).
X: (A)
p: ((z,(B)))
where apply[f,x,p] = Al[yl;consly; (B)]1[A] = cons[A;(B)] = (A,B).

In this example, the A-specified argument, Y, is given as A by
the argument list x, and the free variable, Z, is set by the
p-list to (B).

Example 5:
The following example involves a recursive function so
that a label definition 1is required:
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subst[x;y;z] = [atom[z] = [eqly;z] = x;T — z];T = cons[substl
x3yscar[z]];substix;y;edr(z]]]]

f: (LABEL, SUBST, (LAMBDA, (X,Y,Z), (COND, (
(aTOM,Z), (COND, ((EQ,Y,2),X), (T,2))), (T,
(CONS (SUBST, X,Y, (CAR,Z)), (SUBST, X,Y, (CDR,Z)))))))
. xz  ((a,B),D,((D,C),D))
R ()

9 —_— :
where apply[f;x;pl = subst[(A,B);D; ((D,c),D)] = (((4,B),C), (A,B))
Note: The system for translating M-expressions into S-expres-
sions given in Chapter 2 would give rise to (QUOTE,T) in lieu
of T in the above S-expresslion. It 1s simpler to be able to
write T (or F) and so in LISP I the latter usage is required.
(QUOTE,T) and (QUOTE,F) must be replaced by T and F respective-
ly, and only the latter expressions will work.

A program for the LISP system consists of sequences of
f;x;p triplets strung together. The APPLY operator automatical-
ly operates on each triplet in turn and returns with the value
~of the triplet. Tﬁé.details for submitting and running such a
program are given in Chapter 5.

4°2 Definitions of Functions in LISP

In Chapter 2. functions are connected to thelr names only
through the use of the form LABEL. In the current LISP system,
there are two further ways a function can be defined:

The first of these relates to functions defined in the
system by machine-language subroutlnes. Such a subroutine for
a function may be already available as part of the LISP system
itself, in which case 1t appears among the functions given in
Section 9, or 1t may have been produced by the LISP compller.



44

In either case, if a machine-language subroutine:définés

a function, the assoclation list for the name of the function
(see Section 6.2) contains the indicator 'SUBR' to indicate
that a subroutine exists. SUBR in turn points to a transfer
instruction of the form

TXL, subroutine , , n

where n 1s the number of arguments of the function.
Thus the relevant part of the assoclation 1list has the
structure,

TXL subroutine , , n

The other way a function can be defined is by means of a
LISP S-expression (representing an M-expression), which 1is to
be interpreted during the running of a LISP program. In this
case the indicator 'EXPR' 1is on the associatlion list for the
name of the function. EXPR points to the S-expression defin-
ing the function, as follows:

'+ = mypR > —>> s

(S-expression defining the function)
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A function defined by an EXPR may be already available in the
LISP system itself, in which case it appears among the func---
tions glven in Section 9, or it may be defined by the user by
using the define function. Define is a pseudo-function (see
Section 4.3) whose effect is to assign definitions of the EXPR
sort to functions. The atomic symbol for the name of each
function to be defined must be paired with the S-expression de-
fining that function. A list of such pairs is then given as
the argument for define. The APPLY operator acting on define
of this argument creates, for each function defined, the EXPR
structure shown above,A 7

If EXPR is already on the association list for a function,
it 1s changed to point to the new S-expression, so that the .
define 1is really a redefine.

Consider for example the two functions, ff and alt dis-
cussed in Chapter 3,

fflx] = [atom[x] = x;T = fflcar[x]]],
and

[null[x]vnull[ecdr[x]] — x,T = cons|
car[x];alt[cdr[cdr(x]1]]].

alt[x]

i

These are defined by letting the APPLY operator evaluate the
following triplet, f;x;p, where x 1s a list of two pairs.

f: DEFINE,
X: (((FF, (LAMBDA, (X), (COND( (ATOM,X),X),
(T, (FF, (CAR,X)))))),
(ALT, (LAMBDA, (X), (COND, ( (OR, (NULL,X),
(NULL, (CDR,X))),X), (T, (CONS, (CAR,X),
~ (ALT, (CDR, (CDR,X))})))))))

p: ()




Note that the argument x starts with three parentheses: the
first parenthesls starts the list x, the second indicates that

x is a list of one argument, and the third starts the first pair.
After APPLY has evaluated this triplet, the define function will
have put the respective definitions, labelled by EXPR, on the
assoclation lists of the atomic symbols FF and ALT. Of course,
define itself 1s one of the functions already defined and avall-
able as part of the LISP system.

Incidentally, a function can be defined in terms of another
already-defined function--in which case the S-expression be-
comes simply the name of the establlished function. For example
suppose one wishes to define the function FRST by the pair
(FRST,CAR). After the define has been applied, the association
list for FRST will contain the structure

ﬁ-}EXPR > CAR —>> . .-

where CAR points to the already-established assoclation list
for CAR. Chains of definitions of this sort are perfectly legal
in LISP I.

The function define makes the use of label desirable only
when the labeled function 1is 1tself the result of a computation
and 1s not to be put on an association list for storage reasons.

4.3 Functions Appropriate to APPLY

Various kinds of functions can be used in LISP program-
‘ming. One way of classifying functions is to divide them into
functlions and pseudo-functions. A function in LISP is evaluated
for its value as such, e.g. car[(A,B,C)] = A, whereas a pseudo-
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function 1s used for 1its effect rather than its value, e.g.
define or compile. There is no difference in form however be-
tween functions and pseudo-functions.

In this section the classifying distinction will be made
instead on the basis of the form of the functions; there are
atomlic functions and compound functions. If the f of the f;
x;p triplet for the APPLY operator can be stated as an atomic
symbol, the function is called atomic. All other legal forms
for f are grouped under the heading of compound functions and

are discussed below. An atomic function is not necessarily a
simple or trivial function; it might be defined by a complicated
subroutine or S-expression occurring on its association list.

Atomic Functions

When the APPLY operator evaluates a function which is
atomic, that is, represented by an atomic symbol, it searches
the assoclation 1ist of the atomic symbol for either SUBR or
EXPR (see Section 4.2 just preceeding). If either is found,
the function description which it points to, represented by a
subroutine or an S-expression respectively, is used to evalu-
ate the atomic function of x (the 1list of arguments). If
neither SUBR or EXPR is found on the association list for the
function, then the p-list is searched for the function's atomic
symbol, and the expression palred with the symbol is used to
evaluate the atomic function of x.

Compound Functions

If a function is compound 1t 1s represented by an S-expres-



sion whose first element may be LAMBDA, LABEL, or F‘UNARG.1
Before treating the different types in detall we recall
from Chapter 2 that "If & is a form in (the) variables

Xqsyoee,X then

n}
N(xg, %), B)

willl be taken to be the function of n variables whose value is
determined by substituting the arguments for the variables
XqsoeosXpy in that order in é and evaluating the resulting ex-
pression."

For LABEL, on the other hand, from Chapter 2 we have "In
order to be able to write expressions for recursive functions
we introduce another notation: label(a,E) denotes the expres-
sion.é » provided that occurrences of a within E. are to be
interpreted as referring to the expression as a whole."

FUNARG has not been discussed ppex;ously; it was intro-
duced for convenience in writing the 704 system. Generally
speaking, the use of FUNARG is internal to the system and need
not concern the user. 1Its purpose is to tlie the correct p-list
of pairs to the function on which apply 1s operating. The fol-
lowing equivalence holds exactly:

apply[ (FUNARG,T,q);x;p] = applylf;x;al,

where q 1s the list of pairs to be used in place of p in evalu-
ating f[x].

1
If some different element is used here, or if parentheses

have been used incorrectly, the APPLY operator will usually
fail.
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When the APPLY operator evaluates a compound function, it
determines first of all which of the three possible cases is
involved.

If the S-expression for a compound function begins with
LAMBDA, the triplet for the APPLY operator will be

f: (LAMBDA, (X1,X2,...,XN),E)
X: (vya1,vY2,...,¥YN)
p: (1ist of pairs)

The APPLY operator palrs the dummy variablesl, Xi,Xx2,...,XN,
with the values given on the list of arguments, x. If the two
lists are not of the same length an error stop occurs. Other-
wise the list of pairs 1is added to the front of the p-1list.
Then the third element of the LAMBDA list, the form E for the
function, is evaluated using the enlarged p-1list of pairs of
assigned values.

The form & 1in the LAMBDA expression can be either an
atomic symbol or a longer S-expression. The following cases
can occur:

E = atomic symbol: The APPLY operator searches the association
list of the atomic symbol to see if it represents a con-
stant (signalled by either 'APVAL' or 'APVAL1' on the as-
sociation list--cf. Chapter 6), and if so the value of f
is that constant. If the atomic symbol does not represent
a constant, the p-1list 1s searched for the most recent
pairing of this atomic symbol, and the value given by this
palring is the value of f, Otherwise an error is indicated,
(see Chapter 8).

1
The list of dummy variables can be the null 1list, ( ).
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E = (atomic function, arguments): Cf. Example 4, Section 4.1--
the APPLY operator evaluates the atomic function as de-
scribed previously, and the result is the value of f.

E; = (special form, arguments): See the description below of
special forms. The value of f is the value given by APPLY
after evaluating the special form.

(atomic symbol): Note the difference between this ¥ which
is enclosed in parentheses and the first € given above.
The APPLY operator performs the function glven within the
parentheses. For example ¥ = (READ), when operated on by
APPLY would cause a list to be read from cards.

s
"

-

€ = (LABEL,t,¥): The APPLY operator carries out the evalua-
tion of the compound LABEL functlion as described below.
The value of f as gliven by APPLY is the labelling name, t.
Recall that in all the LAMBDA cases, the dummy variables
have been paired and put on the p-list before the form €
is evaluated.

If the S-expression for a compound function begins with
LABEL, the triplet for the APPLY operator will be

f: (LABEL,name,definition)
X: (1ist of arguments)
p: (1ist of pairs)

(See Example 5, Section 4.1) The APPLY operator pairs the atom-
ic symbol for the name of the function (the second element in
the LABEL list), with the definition and adds the pair to the
front of the p-list. It then applies the definition to the 1list
of arguments x using the enlarged p-list, and the result 1s the
value of the function.
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Note on Special Forms:

- Certain forms are classified under the heading of special
forms and are evaluated differently from the usual case. If
the first element of an S-expression is one of the special
forms, the rest of the elements in the S-expression are treated
in special ways described below under the particular cases. A
special form is signalled by either FSUBR or FEXPR in place of
SUBR or EXPR on the association list. Note that special forms
cannot be used for the atomic functions discussed above.

QUOTE 1is a special form of one argument that prévents its
argument from being evaluated. The value of a list beginning
with QUOTE is always the second element of the list.

COND 1is a special form which is a condiﬁiona; expression.
The part of the S-expression following COND is an arbitrary
number of arguments, each of which is a pair. For each pair
the first element is the proposition and the second element of
the palr 1s the correspondihg expression. The propositions are
evaluated in sequence from left to r;ght, until one is found
that is true, and then the expression corresponding to this pro-
position 1s evaluated and taken as the value of the entire con-
ditional. If there are no propositions that are true, an error
occurs. »

AND is a specilal form to test if all of the propositional
expressions following AND in the list are true. The propositions
are evaluated 1n sequence until one 1is found that 1is false or
until the end of the list 1s reached. The value of AND is re-
spectivély F or T.

OR 1s a special form to test 1f any of the propositional
expressions following OR in the list are true. The propositions
are evaluated in sequence until one is found that 1s true or un-
til the end of the list is reached. The value of OR is respec-
tively T or F.



-49-

PROG 1s a special form described under the program fea-
ture in Section 4.5.

Other special forms are described in Section 9.2.

4.4 Numbers in LISP

LISP II will be able to handle both integers and floating-
point numbers, but in LISP I integers are not allowed.

Floating-point numbers in LISP I can be added, multiplied
and raised to a power. The three functions available for these
purposes are sum, prdct, expt, and are described in Chapter 9.

The assoclation lists for floating-point numbers always
contain the designation 'FLO' for float. Floating-point num-
bers do not appear on the list of atomic symbols (see Section
6.2), but on a list of floating-point numbers. These list en-
tries point to the assoclation lists for the numbers them-
selves. If a number is negative the indicator, 'MINUS' pre-
cedes the association list for the number. The detalled
structure of association lists for floating-point numbers 1s
discussed in Section 6.2.

Numbers are brought into a LISP program by being defined
within S-expressions, and they must always be quoted. For ex-

ample the following expression is correct,
(SUM, (QUOTE,0.6),X)

where X stands for a floating-point number which is, for ex-
ample, paired with X on the p-list.
The exact rules for punching floating-point numbers for
the LISP I read program are:
1) A decimal point must be included but not as the first
symbol:
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Incorrect Correct
6 6. or 6.0
.0 0.0
A2 0.42
.003 0.003

2) A plus sign or a minus 8ign may precede a number, The
plus gign 1S not required.
3) Exponent lndication may be used. The power of ten is

preceded by a sign and may contaln one or two digits. Thus

4,24410 represents 4.21x1010

26.-2 represents 26%1.0” 2

4) Numerical values must be less in absolute value then
21284u1038). '

5) Significance is limited to eight decimal digits.

As an example of the use of numbers in LISP I conslider the
Turiction length. which finds the number of elements in a list.
Its definition, in S-expression form, is

(LABEL,LENGTH, (LAMBDA, (Y), (COND, { (NULL,Y), (QUOTE,0.0)), (T, (SUM,
(LENGTH, (CDR,Y)), (QUOTE,1.0))))))

k.5 Tne Program Feature

The program feature 1n LISP allows sequences of operations
(statements) to be expressed in LISP language. The effect is
rather l1ike a FORTRAN program with LISP statements. Each state-
ment may be a form to be evaluated, or an atomic symbol, or a
1ist beginning with GO or RETURN. The atomic symbols are used
as location markers wilithin the program.

]
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When a list beginning with GO is encountered, the rest of
that 1ist is evaluated under the assumption that the value will
be one of the location-marking atomic symbols. Then a search
is made of the program for this symbol, and when it is found
the statements following the locating symbol are executed. A
conditional expression to allow conditional branching may be
used in a GO 1list.

If a list beginning with RETURN is encountered, the rest
of the list is evaluated and the resultant value 1s the final
value of the entire program.

The other statement forms appearing 1n a program are evalu-
ated in sequence but the resulting values are ignored. This im-
plies that these forms are important mainly for their actions,
such as changing lists of various sorts, rather than for their
values.

A program form has the structure,

(PROG,L,sequence of statements)

where PROG signals to the APPLY operator that a program for se-
quential executlion is to follow. The list L is a list of pro-
gram variables which are handled in a manner similar to that

for dummy variables, although the two types must be distinguished.
The sequence of statements is the program to be executed.

The program variables are set equal to NIL at each (non-
recursive) entrance to the program, but their values may be
changed at any point whatsoever in the computation. For ex-
ample programs can occur within other (higher-level) programs
and in such cases an inner program can change any program varia-
ble of a higher-level program as well as its own program variables.
The functions available for changing program variables are set
and setq. The function set is a function of two variables both
of which are evaluated. Thus to set a program variable V equal
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to the value of an expression E, the V must be quoted in the
S-expression,

(SET, (QUOTE,V),E).

The function setq on the other hand treats its first argument
as 1f quoted and evaluates its second argument only. Thus the
S-expression becomes
(SETQ,V,E),

which is entirely equivalent to the previous, and usually more
convenient.

The following is an example of a program using the program
feature. It is a version of search, (see Chapter 2).

search[ 4;p;f;u] = (nuld{ 4] = u;pf£] = £[£];T — search|
cdr[ £1;p;f5ul]

Although the entire program is in the form of a large list, for
ease of reading it has been spaced out below in the form of a
sequential program, with the location-marking atomic symbols
set out to the left. The program variable is LT. The LAMBDA
expression for this program for the APPLY operator is,

(LAMBDA, (L,P,FN,U), (PROG, (LT),

(SETQ,LT,L),
TEST, (GO, (COND, ( (NULL,LT), (QUOTE,RETU)), (T, (QUOTE,CONT)))),
CONT, (GO, (COND, ((P,LT), (QUOTE,RETF)), (T, (QUOTE,STEP)))),
STEP, (SETQ,LT, (CDR,LT)),

GO, (QUOTE,TEST) ),
RETU, (RETURN, (U)),
RETF, (RETURN, (FN,L))

)

In the above note that a function of no arguments, such as
u, must be put in parentheses in order to be evaluated. Cf. (U)
in the line starting with RETU.
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Since the program feature will be used frequently in the
manual to describe LISP functlions, and since M-expressions are
easier to read than S-expressions, programs will usually be
written down in M-type notation. Program variables will be
given in lower case, but the atomlc symbols used as location-
marking symbols will be retained in capital letters. The ex-
pression

(SETQ, X,Y) becomes X =Y.

Using these rules and other obvious extensions of them the a-
bove program is written as follows:

program for search[f;p;fnsul with program variables f4t:

It = £
TEST go[null[ 4t] = RETU;T — CONT]
CONT go[pl £t] = RETF;T — STEP)
STEP 2t = cdr( 4]

go[TEST]
RETU return(u)
RETF return{fn(£]]

4,6 The Compiler

The LISP compiler is itself a pseudo-function which is
available to the APPLY operator. The compiler is called in by
the LISP function,

comdef(x],

where x 1s a 1list of names of the functions to be compiled.
Each function on the list will be compiled into a binary ma-
chine program provided the function 1s defined on its associa-
tion 1list by an indicator EXPR pointing to an S-expression.
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The value of comdef 1s a 1list of the names of the functions it
was able to compile.
The compller proceeds in three stages
1) Generation of LISP-SAP
2) Generation of binary program
3) SUBR put on association list

LISP-SAP is SAP in 1list form, for example
(( ,LXD,0,4),( ,TXI,G0007,4,-1),( ,TRA,*+5), (GOOO8,BSS,0),...)

In this example, the obJjects beginning with G are atomic sym-
bols generated for use within the compiler. The BSS,0 in the
last element above is used as 1t is in SAP to tag symbols
which need to have a memory locatlion assigned to them, but no
actual space reserved for them, i.e. the usual location-field
SAP symbol.

The LISP-SAP program for each function compiled is printed
out, on-line or off-line depending on the sense-switch settings.

After the compller has created the LISP-SAP program for a
function, the binary program is generated from LISP-SAP in two
passes. In the first pass all symbols associated with BSS,O0
are assigned locations in memory. In the second pass each in-
struction is assembled into memory. Then any unassigned sym-
bols found during the second pass are asslgned locations in
memory followlng the generated instructions.

When the binary program has been generated, the compller
puts on the functioﬁé association list the indicator SUBR polnt-
ing to a TXL to the binary program.,

After a function has been compiled, 1t can be used as if
it had been defined, but of course it will run much faster than
it would have as an interpreted expression.

If a function listed in comdef has SUBR on its association
list already, the compiler ignores the request for compilation

o -
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and goes ahead after printing out
(function name) HAS BEEN ALREADY COMPILED

If a function has not been defined at all, i.e. has neither
EXPR or SUBR on its associlation list, the compiler prints out

(function name) IS NOT DEFINED

and goes on.

If a programmer has a collection of functions which he
wants to compile and if some of the functions use each other as
subfunctions, a certain order of compilation should be followed.
If a function f uses a function g as a subfunction, then g
should be included in a comdef which comes before the comdef
involving f except in the following special case: 1f a closed
circle of function usage occurs, e.g.

f1 uses f2
I3

f2 uses

°

.

fn uses f,,

then all of the functions in the circle must be compiled in
the same comdef. Thus the functions listed in a given comdef
should be either unrelated or related in this circular sense.
Any other subfunctions on which they depend should have been
complled by a previous comdef.

Nofe: The above rule on order should be followed for
maximum compiling efficiency. It is also possible to complle
all functions in one comdef regardless of dependency. The one
unbreakable rule is that if a function f uses a function g as
a subfunction, g cannot be compiled in a comdef which comes af-
ter the one containing the f.




Another pseudo-function, compile{£], is available to com-
pile functions not previously defined. The argument £ of compile
is a2 list of function definitions; each one of which must be of
the form

(LABEL,NAME, (LAMBDA, (list of free variables),expression))

The functions caar,cadr, ...,cddar,cdddr are available to
the compiler; so it is possible to write simply (CADAR,X) in
lieu of (CAR, (CDR, (CAR,X))) in defining a function. If a
string of A's and D's of length greater than three is required,
i1t 1s again necessary to form the function by composition, i.e.
(CDADR(CAR,X)) for (CDADAR,X).

The compiler will accept any function definition which is
acceptable to the APPLY operator, except that the program fea-
ture 1s different insofar as the GO statement is concerned.
For the compiler version of PROG the argument of any GO must be
an atomic symbol; it cannot be a conditional expresslon. How-
ever, in distinctlon to the usual program-feature;, conditional
statements are themselves allowed as action statements by the
compiler provided they give rise to a definite action, e.g.
(COND, (P2, (GO,A)), (P2, (RETURN, X)), (P3, (SETQ,B, (CAR,B)))).
Furthermore, conditional expressions as used here do not need
to include a true (T) action. If none of the conditions are
satisfied, the next statement in the program following the
conditional statement is executed.

Thus the example of the PROG for search gilven in the pre-
vious section must be revised for the compller to the following

(LAMBDA, (L,P,FN,U), (PROG, (LT),
(SETQ,LT,L),
TEST, (COND, ( (NULL,LT), (RETURN, (U))), ({P,LT), (RETURN, (FN,L)))),
(SETQ,LT, (CDR,LT)),
(GO, TEST)
))
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In terms of the M-type notation introduced in the previous
section this becomes:

compiler program for search[£,p,fn,u] with program
variable ft:

Jt = L

TEST (nulil £t] = return{ul;pl4t] = return(fn(£]]]
Lt = cdr[4t]
go[ TEST]

In writing programs for the compiler the function sefg must
be used -- set is not acceptable,

Amplification of the compiler system 1ls under way. In
particular a feature will be included to permit a user to write
SAP-type programs deflning functions. Such programs will rep-
resent a third way (in addition to EXPR and SUBR) of defining
functions on their association lists, and should add flexibility
to the system. SAP-program definitions of functions will be
termed 'Macros' and willl be described in a later memo.

Two examples of compiled functions are given below.

1) memlis[x;y]

The function memlis([x;y] is a predicate whose value is true
if x 1s a member of the 1list y, and false otherwlise. Xx can be
an atomic symbol or a list.

In the program below the compller has generated certain
atomic symbols (GO005, G0006, GOOO8, GOOCY) as location refer-
ences in the program, and other symbols to be used as temporary
storage as indicated below.

GO001) 1Index Register 4 at entry to memlis subroutine
G0O002) Storage for x

G0003) Storage for y

GOOO4) Storage for final answer (true or false)
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G0007) Storage for the program variable M1
G0010) Temporary storage
G0011) Temporary storage

The arguments x and y are stored in the AC and MQ at entry,
and the answer is in the AC at exit.

The subroutine for equall[a;b] expects its two arguments in
the AC and MQ and comes back with either zero (false) or one
(true) in the AC.

The resulting LISP-SAP program 1s listed below exactly as
the compiler gives it on the output sheet, except for explanatory
comments to the right of the instructions.

FUNCTION APPLY(F,L,A) HAS BEEN ENTERED, ARGUMENTS..

COMPILE

(( (LABEL,MEMLIS, (LAMBDA, (X,Y), (PROG, (M1), (SETQ,M1,Y),M2, (COND,
((NULL,M1), (RETURN,F)), ((EQUAL, (CAR,M1),X), (RETURN,T))), (SETQ,
Mi, (CDR,M1)), (GO,M2))))))

(MEMLIS,BSS,0)

( ,SXD,G0001,4) save index register 4

( ,ST0,G0002) store x

( ,STQ,G0003) store y

( ,CLA,GO0003)

( ,ST0,G0007) set M1 =y

(G0006,BSS,0) location M2

( ,CLA,GO00T)

( ,TNZ,G0008) to GOOO8 if null[Mi] = F, or
( ,CLA,$ZERO) return with AC = F if null(Mi] = T
( ,TRA,GO0005)

(G0008,BSS,0)

( ,LXD,GO00T7,4)
( ,CLA,0,4)
( ’PAX9OJ)+) CaP[M:L] {

u

[
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,SXD, G001, 4)

(

( ,LDQ,G0002) x

( ,CLA,GOOL1) car[Mi]

( ,TSX,EQUAL,Y)

( ,ST0,G00010) result of equal test (note that the
( ,CLA,GO0010) compiler stores everything it computes)
( ,TZE,G0009) transfer if car[Mi] # x

( ,CLA, $ONE) otherwise return with AC = T

( ,TRA,G0005)

(G0009,BSS, 0)

( ,LXD,G0007,4)

( ,CLA,O,}4)

( ,PDX,0,4) cdr[Mmt]

( ,SXD,G0007,4) set ML = cdr[M1]

( ,TRA,GO006)

(G0005,BSS,0)

( ,5T0,GO00k4 ) answer (true (one) or false (zero))
( ,CLA,GO00Y)

( ,LXD,G0001,4) restore original index register ¥

( ,TRA,1,L4) return

END OF APPLY, VALUE 1S
(MEMLIS)

2) maplist{x;g]

The function maplist[x;g] 1s more complicated than the pre-
vious example, due both to its use of a function g, and to the
fact that mapllst may itself be used recursively by g. The lat-
ter fact requires that the arguments be saved each time the
routine is entered, and this is done by storing them in a pub-
lic push-down 1ist‘i The current next available space in this

1
See page 144 of the Quarterly Report referred to on the first

page of Chapter 2.
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push-down list is indicated by the (complement of thé) compiler
public push-down 1list indicator, $CPPI. This indicator is test-
ed by the program against the last available space in the list,
($ENPDL, or end of push-down 1list), and when there is no more
space available an error transfer to $NOPDL stops the computation.
Another use of storage is 1llustrated below by the cons
function which sends the result of the cons to free storage.
Each time the cons is used, a test is made of the indicator,
$FREE, which gives the (complement of the) next free-storage lo-
cation available. When free storage has been used up the sub-
routine $FROUT is used to call in the garbage collector to retrieve
some storage. (See Section 6.3.)
The treatment of the function g depends on whether i1t is de-
fined by a subroutine or by an S-expression to be interpreted.
If there 1s a subroutine for g, g will be in the form of an in-

struction
TXL{subr),0,0

stored in location GO003, so that the TSX,G0003,4 in the program
below amounts to a transfer to the subroutine. If g is defined
by an S-expression, then g, as stored in GOOO3, will have a dec-
rement pointing to the S-expression. The subroutine COMPAT be-
low carries out the interpretation of the expression using the
APPLY operator. Incidentally, the 1 in the line following the
use of COMPAT has been set up by the compiler to indlcate that
g 1s a function of one argument.

The LISP-SAP program 1s the following:

FUNCTION APPLY(F,X,P) HAS BEEN ENTERED, ARGUMENTS..

COMPILE

( ( (LABEL, MAPLIST, (LAMBDA, (X,@), (PROG, (M1,M2), (COND, ( (NULL,X),
(RETURN,NIL))), (SETQ,M1, (CONS, (G,X),NIL)), (SETQ,M2,ML), AL,
(SETQ, X, (CDR, X)), (COND, ( (NULL,X), (RETURN,M1))), (RPLACD,M2,
(CONS, (G,X),NIL)), (SETQ,M2, (CDR,M2)), (GO, A1) }))))

()



(MAPLIST,BSS,0)
,SXD,G0001, 4)

P T e T e e S S

, STQ, $ARG2)

,LXD, $CPPI, &)
,TXH, *+2, 4 $ENPDL)
,TSX, $NOPDL+1, 4 )

,LDQ,G0O001 )
,STQ,0, )
,LDQ, GO003 )
,STQ,1,u)
,LDQ,G0011 )
,STQ, 2, 4)
,LDQ,G0002)
,STQ, 3, 4)
,LDR,G0009)
,37Q, 4,4)

L,TIX, *+1,4,5)
,SXD, $CPPI, %)

,LDRQ, $ARG?)
,STO, GO002)
, STQ,G0003)
,CLA,GO002)
,TNZ ,GOO0O08 )
,CLA, $ZERO)
, TRA,G0005)

(G0008,BSS,0)
(GO007 ,BSS,0)

(

(
(
(
(
(

,CLA,G0002)

,LXD,G0O003, 4 )
,TXH, *+3,4,0)
,TSX,GO003, 4)

, TRA, *4+4)
,SXD, *+2,4)
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save 1lndex register 4

store g in temporary storage to free MQ
compiler push-down 1list indicator
transfer to *+2 if space availlable
otherwise (no more left), stop on error
current index register 4 — push-down list
current g — push-down 1list

current M2 —* push-down 1ist

current x = push-down list

current M1 — push-down 1list

update push-down 1is{ indicator

store x
store g
null{x] = F
null(x] =7

return, value = NIL

null(x) =T

extra (unused) line due to compiler

X — AC

g

transfer 1f g is S-expression

otherwlse use g as subroutine

returns here from subroutine for g

set up pointer to S-expression for COMPAT
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, TSX, COMPAT, 4 )
,0,1)
,ST0,G0010)
,LXD, $FREE, 4)
, TXH, *+2,4,0)
, TSX, $FROUT, 4)
,CLA,0,}4)
,STD, $FREE)
,CLA,GO010)
, ARS, 18)
,ADD, $ZERO)
,STO,0,4)
, SXD, GO0O0Y, &)
,CLA,G0009)
,STO0, GO011)
GO006,BSS,0)
,LXD,G0002,4)
,CLA,OQ,4)
,PDX,0,4)
,SXD, 0002, 4)
,CLA,G0O002)
,TNZ,G0013)
,CLA,G0009)
,TRA, GO005)
G0013,BSS,0)
G0012,BSS,0)
,CLA,GO002)
,LXD, GO003, 4)
,TXH, *+3,4,0)
,TSX, GO003, 4)
, TRA, *+4)
,8XD, *+2,4)
, TSX, COMPAT, 4)

AN TN TN AT TN TR T AT TR TR TR TR T TN TN AT TR TR TR AN TR AT AT TR TR T AT L T T T L TN

"1" means g has one argument
g(x)
next free-storage location

out of free storage--retrieve some

update next free-storage location

cons[g(x);NIL]
set ML = cons{g(x);NIL]

set M2 = ML
location Al

set x = cdrlx]
null[x] = P
null(x]} =T

return, value = M1

ete.
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,0,1)
,STO,GO0L5)
,LXD, $FREE, 4 )
, TXH, *+2,4,0)
,TSX, $FROUT, 4)
,CLA,0,4)
,STD, $FREE )
,CLA,GO015)
,ARS,18)
, ADD, $ZERO)
,ST0,0,4)
,SXD, 0014, 4)
,LXD,G0011, %)
,CLA,GO0L1L)
,STD, 0, 4)
,LXD,G0011, 4)
,CLA,0,4)
,PDX,0,4)
,SXD, 60011, 4)
,TRA,GOOQ6)
G0005,BSS,0)
,STO, G000 )
,LXD, $CPPI, L)
,TXI, *+1,4,5)
,SXD, $CPPI, %)
,LDQ,0, %)
,3TQ,GO00L)
,LDQ,1,4)
,STQ, GOO03)
,LDQ, 2, 4)
,STQ,G0011)
,LDQ, 3, 4)
,STQ,G0002)

all as before, g(x)

all as before, consl[g(x);NIL]

replacd[M2;cons[g(x);NIL]]

M2 = cdr[M2]
go to Al
return

store answer temporarily

prepare to restore items
from the push-down 1list

restore index register 4
restore g
regtore M2

restore x
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( ,LDQ,4,4)

( ,STQ,G0009) restore Mi
( ,CLA,GOOOL) answer — AC
( ,LXD,GO00L)

( ,TRA,1,4) return

END OF APPLY, VALUE IS ..
(MAPLIST)



5. Running a LISP Program

In this section, various aspects of running a LISP program
are discussed. In Section 5.1, we dliscuss how to punch cards,
put together a running deck, and submit a run. In Section 5.2,
the tracing program 1is described. Section 5.3 encompasses a
brief discussion of the current state of the LISP-Flexo system.
The error indications given by the LISP I system when running
a LISP program have been relegated to a late section (Chapter 8)
since they are in the nature of a reference look-up list.

5.1 Submitting a Run

As stated in the previous section, the foundation of LISP
programming 1s the APPLY operator, which 1s based on the function
apply(f;x;pl. The function f must have been defined by the
define funcftion or by one of the other ways mentlioned previously.
A LISP program consists of sets of triplets, f;x;p, which are
punched on cards and submitted in the appropriate order in a
deck.

Card Punching

Columns 1-72 (inclusive) of a punched card are read by the
LISP read program. The S-expression for the f, x, and p of each
triplet should be punched on cards with one or more spaces (blanks)
between each member of the triplet. There are no rules about the
location of the expression on the card; a new card may be started
at any point in an expression, and the punching on a given card
may stop at any column before column 73. In other words, card
boundaries are ignored. The read program reads until it fings
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the correct number of final parentheses.

The current version of the read program interprets a blank
(space) as a comma, so that no blanks are allowed within atomic
symbols. The read program ignores redundant commas so that a
double blank for example i1s read as a single comma.

Deck Format

A LISP program to be run must be preceded by an LCON deck
which calls the LISP system from tape. The LCON deck consists
of five cards labelled NYBOL1 followed by six cards labelled
LCON. 1If the LISP program is beilng run at the M.I.T. Computa-
tion Center, copies of the LCON deck may be found in room 26-265
in the drawer labelled "Utility Decks".

There are five possible directlion cards that can be used
following the LCON deck. These cards have the direction (TST,
SET,FLX,CRD, or FIN) in columns 8-~10 of the card and have the
following effects:

TST: Subsequent triplets are read in until a STOP card
(see 4. of the deck format below) is reached. The
lists read are put out onto tape 2 for off-line print-
ing together with a 1list of the atomlic symbols in the
machine. Control is then sent to the APPLY operator
which operates on each triplet in turn, putting out on
tape 2 the triplet f;x;p followed by the value of
applyl[f;x;pl. If any errors are found, an error indi-
cation is printed out. After all the triplets have
been evaluated, the memory 1s restored to its state at
the beginning of this TST.

13



SET:

Note:

FLX*:

CRD*:

FIN:

in a
card
card
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This card works the same way as TST except that
immediately after all the triplets have been evaluated
the state of the memory as 1t stands 1s read out onto
tape 8 as the new '"base'" image for the memory. Fubture
TST cards will restore the memory to this new "base"
state. If more SET cards are used, the functlions fol-
lowing them will be compounded into the "base" image.
If an error occurs during the evaluation of a triplet
in a SET the new base image for that SET is not written
out on tape.

The variable field (columns 12-72) for both SET
and TST cards should contain the problem number, the
programmer's number and name, and any other identifi-
cation desired.

The Flexowriter mode of operation (see Section
5.3) is called into control.

Control is returned from the PFlexowriter back to
the card reader.

The computer stops.

Any other card, such as a SAP REM card, may be included
deck between a STOP card and the next direction card. The
will be printed out but will have no other effect. Such a
in any other position in the deck will cause trouble,.

*The FLX and CRD direction cards are not understood by the basic
LISP system; only the LISP-flexo system can lnterpret them.
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A running deck (assuming no use of FLX or CRD) has the

following format.

1.

2.
3.

The LCON deck

A TST or SET card

The sequence of triplets f;x;p, on which the apply
function is to operate

A STOP card which contains the word STOP followed
by a large number of right parentheses followed by
the word STOP again,

STOP))))))))STOP

This information may be placed anywhere within
columns 1-72 on the card. It is used to guarantee
the safe completion of the reading program.

Cards such as in (2,3,4) above, repeated as often
as desired.

A FIN card

Two blank cards ( to prevent the card reader from
hanging up)

Operating Instructions

Tapes used:
TAPE NUMBER
2

I

0]

USE

Off-1ine printed output (suppressed by
sense switch 5 down)

Off—%ine card input (only if sense switch
1 up

Off-1ine punched card output
Temporary storage
LISP system tape



Sense switches used:
SWITCH NUMBER
1
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USE
UP: Off-line card input (tape 4)
DOWN: On-line card input

UP: Suppress on-line printing
DOWN: Print on-line

UP: Write all printing on tape 2 for
off-line printing

DOWN: No off-line printing

Both on-1line and off-line printing can be done at the same time.
All the above switches take.effect- immediately.

If a LISP program is being run at M.I.T. the following in-

dications should be given on the performance request card:

1) Production run
2) Switch 1 down
3) LISP system tape on tape drive 9. The current

number of this tape i3 posted in room 26-265 and
on the bulletin board in the 704 scheduler's room
4) Machine tape on tape drive 8

5) Output tape (usually machine tape) on tape drive 2

6) Tapes 8 and 9 are rewound by the program

7) Operating instructiocns are

CLR (clear)
LCD (Load cards)

The deck should be submitted along with 1its performance re-

quest card to the "regular runs" file in the scheduler's office.
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5.2 Tracing Option

A LISP tracing function called tracklist 1s available to
help the user locate his program errors. Of course, as with
any tracing system, tracklist consumes both time and paper, but
in some cases 1t may prove helpful.

The function tracklist is a function of one argument, X,
which 1s a 1list of the LISP functions to be traced. Each func-
tion mentioned in the 1list must be a function which has EXPR,
FEXPR, SUBR or FSUBR on its association list. Further if
tracklist is to trace a function which 1s on the "top:tlevell:
of APPLY, i.e. the f in applylf;x;p), then the S-éxpression for
f must start with LAMBDA or LABEL. Finally tracklist cannot
Erace the functions

car
cdr
cons
list

Whenever one of the functions included in the argument of
tracklist 1s encountered during the running of the LISP pro-
gram, tracklist gives a print-out (on or off-line depending on
sense switch 3) of the name of the function, its type, e.g.
SUBR, its arguments, and finally 1ts value. Thus the path of
computatien followed by the program is recorded.

If tracklist is called into actlon within a computation
preceded by a SET direction card (see Section 5.1), it con-
tinues to trace its arguments for the rest of the run (proviged
the SET card is successful and determines a new '"base' image).
If tracklist occurs within a computation preceded by a TST di-
rection card it continues only up to the STOP card.
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5.3 The Flexowriter System (for M.I.T. users only)1

The possibility of running LISP programs on line using the
Flexowriter as access to the 704, and time-sharing with an
"{innocent victim" is under development at M.I.T. The current
version of the LISP-Flexoc system is described here, but it is
subject to change. The reader who might wish first of all to
become familiar with the Flexowriter system, can find a write-
up of it, although for a different purpose, 1n Professor
Herbert M. Teager's memo, Programming Manual for the M.I.T.

Flexowriter Monitor Interpreter System of Time-Shared Program

Testing.

The LISP-Flexc System enables the user to read function
definitions into the 704 from cards or to type them in on the
Flexowriter, and to control the operation of LISP via Flexo-
writer type-ins.

Operating Instructions

To use the LISP-Flexo System on the M.I.T. 704 one must
(1) Turn on the two power switches for the Flexowriter
(2) Turn off the alarm clock
(3) Turn off the back interrupt switch
(4) Put the LISP-Flexo System tape on tape drive 10
The output will be either on the on-1line printer or on the
Flexowriter, at the option of the user. The input deck to be
put into the card reader has the following format,

1
The LISP-Flexo system does not contain the compiler option.
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1. GETOPFLEX card to call the M.I.T. Automatic Operator
program and the Flexowriter programs in {rom
the M.1.T. System tape

2. GETLISP card to get the LISP-Flexo System in from tape 10

3. Binary or octal correction cards currently needed for the
LISP-Flexo System (obtainable along with the three GET----
cards from room 26-265)

b, GETLISP2 card to transfer into operating program
5. PFLX direction card--see Section 5.1

6. Cards containing the triplets on which the APPLY operator is
to operate, provided the triplets are to be read in rather
than typed in on the Flexowrlter. The last triplet must be
followed by two cards of the form

IOFLIP(READ), (},)))))))),

where the extra parentheses are used as insurance. See be-
low for a description of the function IOFLIP. If no trip-
lets are to be read in, no cards need be placed between the
above FLX card and the FIN card below.

7. FIN direction card--see Section 5.1
8. 2 blank cards for the card reader

In the following description of the Flexowrlter system,
the three symbols ;D—, =+ , and b will be used, where
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)- indicates carrlage return
- indicates a tab
b indicates a blank (space)

When cards are read in on the card reader the FLX card
transfers control to the Flexo-APPLY operator. The Plexo-
writer then types out GO and wailts for an input. The system
at this time expects a LISP program to be typed on the Flexo-
writer. However, if there are cards in the card reader which
contain the LISP program, the type-in to send control to the
reader 1s

IOFLIP(READ), () 2

After the carriage return, cards containing the triplets for
the APPLY operator will be read in from the card reader and
applied.

If a program 1s to be typed in on the Flexowriter there
are two possible modes of operation, the Sequence-Mode and the

TEN-Mode. In the Sequence-Mode the entire S-expression for a
Eriplet f;x;p for the APPLY operator is typed in sequentizally,

and at the end of the three lists the APPLY operator operates

on them. This 18 satisfactory theoretically; but in practice,

due to the difficulty of typing S-expressions, it is inconvenilent,
since an error anywhere in the expression requires correcting, and
if the error was in a previous line (see Errors below) it cannot
be deleted at all. The TEN-Mode was developed to obviate this
difficulty and to allow the user to type S-expressions in small
fragments independenfly erasable. Below we describe in more de-
tail the use of the two modes.

Sequence-Mode

When the FLX card of the input has transferred control to



tne Flexo-APPLY operator, and the Flexowriter has cvyped oul GO,
the S-expressions for an APPLY triplet, ;x;p, should be typed
on the Flexowriter. The typing is done by typing up tc 72
cnaracters (fewer if desired) followed by a carriage return.
The Flexowriter then types out STOP and digests the information
to date. II a full triplet has not oeen completed, the Flexo-
writer types oubt GO as a request for more of the triplet. If a
Eriplet has been completed, the APPLY operator takes over and

E n2 triplet, Lyplnz out the answer followed cy a GO

o -
r

Lo

4%
—

(]

ting the next triplet.

[6)

gue
To stop the computation, one may respond to an initial GO,

or to a GO following the use of the APPLY operator, or to a GO

fellowing an error* (but not to a GO at other points, such as

in the middle of 1list type-ins), by typing in
— STOP p

Thne Flexowriter then types out STOP ard returns control to the
control outine which types out GO and expects a direction Cype-

in. One can then type either
—*bFINbbAD
to end the run, or
— bCRDbb
)

to return control to the card-reader for the next direction
card, e.g. TST, SET, PFLX, FIN.

Such a GO will hereafter be referred to zs a 'fresh" GO.
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TEN-Mode

There are ten buffers of core storage for S-expressions
set aside for use by the TEN-Mode of operation. Pleces of an
S-expression can be typed into these buffers in any sequence,
with overwriting allowed, and the Flexo-APPLY operator can be
asked to operate on any set of consecutive buffers, e.g. O
through 6, or 4 through 9.

To use the TEN-Mode, one may respond to a "fresh" GO (see
preceding footnote) by typing in

— TEN >

Then type in a number from O to 9 representing one of the ten
buffers, and then a tab, and then a (plece of a) S-expression
and then a carriage return, as in

8~ ((1,B),C) )
The Flexowriter will then type out a colon, :, and cne can type
into another buffer register in the same way as above by typing
a buffer-register number, a tab, the information, and finally a
carriage return.

When an entire triplet has been typed 1n, the APPLY operator

can be called for by typing, in response to the colon type-out,
the read-line direction,

— RLN‘Q

Then two numbers folleowed by a carriage return must be typed 1n,
n, n, , e.g. 01 , or 65 , or 99 . All the buffer registers,
n, to n, inclusive, are then fturned over to the read program,

which reads them in, printing out the number of each register as
it is read. When a complete triplet f;x;p has been found by the
read program, the APPLY operator operates on the triplet, prints
out the answer, and then returns control to the read program.
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The read program reads ahead until it finds either three more
lists for a triplet or until it has read Nye
the APPLY-operator takes over as above. 1In the second case, the
Flexowrlter types out GO. The typed-in response to this GO may
be either another read-line direction, or a type-in 1into a bufl-

In the first case,

fer register as described previously. Note that the read pro-
gram as used in the TEN-Mode remembers any incomplefe lists it
may have been reading at the end of the previous RLN request,
and considers this information to be the initial part of the
next materlial read.

To stop the operation of the TEN-Mode, provided no error
has occurred, one types into two consecutive registers, in re-
sponse to a "fresh'" GO (see previous footnote),

iny — STQOP PR
:ni+1 — ‘oFINbb}

Then one does a RLN of these two buffer registers to end the
run completely. One can instead replace the above FIN by a
CRD if one wishes to send control back to the card reader.

To stop the operation of the TEN-Mode after an error has
occurred, one types, 1in response to any Go; into three con-

secutive registers ny, N and n

1+1° 1+2

several

= ) 5
:ni+1"‘STOP2

:n - — bFINbbD‘ (or CRD in place of FIN).

i+2
Then one does a RLN of these three buffer reglsters.

To get from the TEN-Mode back to the Sequence-Mode one
types 1n, in response to a GO,

= ONE D—
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Errors

Typing errors may be erased by hitting the backspace key
which will erase the preceding character, or by hitting the
underline key, which will erase the entire line. Several charac-
ters at a time can be erased by using the backspace key the ap-
propriate number of times, but lines above the current line can
never be recovered for erasure.

Extra right parentheses give a read error.

The error type—outs described in Chapter 8 appear on the
Flexowriter without the sentence describing the error, for ex-
ample,

ERROR NUMBER :AZ2:

and this type-out is followed by the argument of the error if

it had one. The read program does not stop at the error; in the
TEN-Mode the read program goes on to read a new triplet in the
reglister following that in which the error occurred, in the Se-
guence-Mode the read program starts reading the next line typed
in.

Other Flexowriter Monitor Type-1ins

At any time except when the Flexowriter is itself typing
out a message one may type in any of the monitor directions, de-
scribed in Professor Teager's memo, QUE, ENT, EXE, LDC, BKP, TEN.

The Functions ioflex(x) and ioflip(y)

Two special functions loflex and joflip are avallable in
the LISP-Flexo System. They are functions of one argument and
a null p-list, and they have the following effects:
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Toflex(x) is a predicate which has the value true (T) or
false (F). If x = READ the predicate asks if the Flexowriter
is in the reading (type-in) mode; if x = PRINT the predicate
asks if the Flexowriter is in the printing (type-oub) mode; and
if x is something else an error message followed by F is typed
out.

Ioflip(y) 1s an operative function which changes control
as follows:

Vv = READ flips control between reading from
' cards or reading from type-in on
the Flexowriter
PRINT flips controi befween printing on

<
I

the on-line printer or by Flexo-
writer type-outs
¥y = anything else flips the last pailr that was flipped.
It assumes initially that this was a
’ READ.

Note At certain times the LISP-Flexo System may hang up trying
to read the card reader. How it gets into this trouble, and
how to get out of it are described below.

An input of the form IOFLIP, (READ), () given when operat-
ing in the Flexowriter type-in confrol will select the card
reader and cause the read program to try to read in cards con-
taining lists of triplets. If no cards of this form are in
the reader, and EOF (end-of-file) error from the read program
occurs, and the card reader is selected again. The card read-
er will not be in ready status, and if the START button on the
card reader is selected another EQF error will occur. To get
out of this cycle one can type a tab on the Flexowriter. The
tab will not be processed, but the Flexowriter keyboard will
lock. At this'point, pressing the START button on the card
reader will get the 704 back on the line so that the interrupt
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(from the tab type-in) will be processed and return control

< to the innocent victim.

Example Flexowriter Run

An example follows of an actual run with the Flexowriter.
The Flexowriter types out in a different color from the type-
in, and this is indicated below by underlining. At present
the commas separating elements of lists can be replaced by
blanks since the comma is inconveniently upper case. However
in the example the commas are used for clarity. Explanatory
comments have been put in below in lower case to the right of
the actual output.

The card-reader which was called in by IOFLIP(READ) below
had cards in it defining the function RVSE (reverse a list),
followed by a card IOFLIP(READ) to return to control to the

Flexowriter.
Flexowriter Sheet Explanation
FPLX the Flexowriter takes over, and
GO requests a type-in (Sequence Mode)
CDR  ((4,B,C)) () (type-in)
STOP the Flexowriter digests the in-
formation
A (B,C) and finds the answer,
GO and asks for more.
CDR ((A,B,C)) (type-in)

STOP
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GO

()

STOP

TEN
0 CAR  (((A,B),C)) ()
:1 cDbrR ((D,(E,F))) ()
:2  CONS ((G,H),
3 (1,3)) ()

:  RLN

o1

©
(A,B)

1
((E,F))
GO

RLN

22

2
Go

RLN

32

WRONG ORDER
RLN
33

3

the Flexowriter dces not have a full
triplet f;x;p, so asks for the rest
answer

(the TEN-Mode is entered)

(type-ins)

(read 1lines O and 1)

line 0O

answer
line 1

answer
(read line 2)
line 2

the Plexowriter asks for the rest
(read lines 3 to 2)

error

(read 1ine 3)-line 2 has been re-

membered
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((G,H),I,J) answer
Go
TEN
CAR  ((A B)) ()
LINE NUMBER MISSING RETYPE error indication

2 IOFLIP(READ) ()

:3 RVSE ((a,B,C,D)) ()
:4  TOFLEX(PRINT) () type-ins
:5  IOFLEX(NG) ()
: 6 STOP
:7 FIN
RLN (read lines 2 through 5)
25
2
READ go to card-reader to read in
definition of RVSE and REV1
(used in RVSE)
(RVSE,REV1)
READ flips back to Flexowriter
3 read line 3 and find
(D,C,B,4A) answer to RVSE
4 read line 4
T True-the Flexowriter 18 printing
5 read line 5
ERROR NUMBER :F 1: NG is not a valid argument for

IOFLEX, so
NG
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Q2 =

67
67

RLN

FIN

answer 1s False
(read line 6 and 7)

end of computation



e
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6. List Structures

Much of the following is taken from the M.I.T. report cited
in Chapter 2. 1In Sectilon 6.1 the representation of S-expres-
sions by 1list structures is described and an example of list
construction is included. In Section 6.2 association lists for
atomic symbols and for floating-point numbers are described.
Finally, in Section 6.3, a discussion of the use of free storage
and the operation of the "garbage collector" is given.

6.1 General Description

(1) Representation of S-expressions by List Structure

A list structure is a collection of computer words
arranged as in Fig. l1a or 1b. Each word of the 1list structure
1s represented by one of the subdivided rectangles in the
figure. The left box of a rectangle represents the address

field of the word and the right box represents the decrement
field. An arrow from a box to another rectangle means that
the fleld corresponding to the box contains the location of the
word corresponding to the other rectangle.

It is permitted for & substructure to occur in more
than one place in a l1ist sfructure, as in Fig. 1b, but it is
not permitted for a structure to have cycles, as in Fig...lc,
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An atomic symbol or a floating-point number 1s rep-
resented in the computer by a list structure of special form
called the assoclation list of the symbol. Such lists are de-
scribed in Section 6.2 which follows.

An S-expression x that is not atomic is represented
by a word, the address and decrement parts of which contain the
locations of the subexpressions car[x) and cdr[x], respectively.
In the list form of expressions the S-expression (A, (B,C),D) is

represented by the list structure of Fig. 2.

Fig. 2

When a list structure 1s regarded as representing a 1list, we
see that each term of the list occuples the address part of a
word, the decrement part of which points to the word containing
the next term, while the last word has NIL in its decrement.
The dot notation, e.g. (A:B), which is discussed in Section 2.2
1s not allowed in LISP I;. all lists and sublists must end with
NIL.

An expression that has a given subexpression occurring
more than once can be represented in more than one way. Whether
the 1ist structure for the subexpression 1s or is not repeated
depends upon the history of the program. Whether or not a sub-
expression is repeated will make no difference in the results
of a program as they appear outslde the machine, although it
wlll affect the time and storage requirements. For example,
the S-expression in 1list form ((4,B), (A,B)) can be represented

L5 ]



W

by elther the list structure of Fig. 3a or 3b.

Fig. 3

The prohibition against circular structures is es-
sentlially a prohibition against an expression beilng a subexpres-
sion of 1tself. Such an expression could not exlst on paper in
a world with our topology. Circular 1list structures would have
somé advantages in the machine, for example, for representing
recursive functions, bubt difficulties in printing them, and in
certain ofher operations, make it seem advisable not to use
them for the present.

The advantages of 1list structures for the storage of
symbolic expressions are:

_ 1. The size and even the number cf expressions with
which the program will have to deal cannot be predicted in ad-
vance. Therefore, it 1s difficult to arrange blocks of storage
of fixed length to contain them.

2. Registers can be put back on the free-storage 1list
when they are no longer needed. Even one register returned to
the list 1s of value, buf if expressions are stored linearly, it
is difficult to make use of blocks of registers of odd sizes
that may become avallable.
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3. An expression that occurs as a subexpression of

several expressions need be represented in storage only once.

(2) Construction of List Structures

The following simple example has been included to 1l1-
lustrate the exact construction of list structures. Two types
of structure are shown, and the recipe for using LISP to derive
one from the other is given.

In the 11st structures below the word 'NILf is shown
in the decrement of the final element of lists and sublists.
Strictly speaking in the current 704 representation of lists
this decrement contains zero rather than the indicator NIL which
would point to the association list for the atomic symbol NIL,
but the replacement generaily will not affect the user.

In the following example we assume that we have a
list of the form

Zl = ((AJB)C),O (D:E;F)a 2oy (X’Y9Z))’

which 1s represented as

A =B > [vim| [ E] +F [ NI X[ [z oy

and fhat we wish to construct a list of the form

£y = ((8,(B,C)), (D, (B,F)), ..., (%, (¥,2)))
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which 1s represented as

L — —— . —{ na]
~Ia NIL D] F>1 [NIL] =N
B[ J»{c [NIL] E NIL]

First we consider the typical substructure, (4, (B,C))
of the second 1list £2. This may be constructed from A, B, and
C by the operation

cons[A;cons[cons[B;cons[C;NIL])];NIL]]
Or, using the list operation, we can write the same thing as
1ist[a;11s¢6{B;C])
In any case, given a 1ist, t, of three atomic symbols,
t = (A,B,C),
the arguments A, B, and C to be used in the previous construc-
Eion are found from

A = car(t]
B = cadr[t] = car(edr(t]] = car([(B,C)]
C = caddr(t] = carlecdrlcdr{t]]] = car[edr((B,C)]] = car[(C)]

The first step in obtaining £2 from zl is to define a
function, grp, of three arguments which creates (X, (¥Y,2)) from
a 1list of the form (X,Y,Z)

define( ((grp;n[it);cons{car[t]);cons[cons{cadr(t];cons[caddrit];
NIL]];NIL]111))]
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Then grp 1s used on the list 4,, assuming ﬁi to be of
the form given. For this purpose a new function, mltgrp, is de-
fined recursively,

define[ ( (mltgrp;A[[£];[null[£] = NIL;T — cons[grplcar[£]];
mltgrplcdr{£]1]111))]

So mltgrp applied to the list £, takes each threesome, (X,Y,2),
in turn and applles grp to it Co put it in the new form,

(X, (¥,2)) until the 1list Ei has been exhausted and the new
list 32 achieved.

Note: Any l1list which is read into the computer by
LISP I can have only NIL (zero) in the final decrement. That
i1s, the dot notation (A-B) cannot be read by the current read
routine, so that the only way to get (A:-B) is by a cons within
the machine. Generally the use of such a cons to create a
full machine word should be avoided.

6.2 Association Lists

Within the LISP I system there is a list of atomic sym-
bols already available in the system. Each of these atomic
sywbols has an associlation 1list* associated with 1t, and in
fact the atomlic symbol on the list of atomic symbols points to

*
-In the local M.I.T. patois, assocclation lists are also referred

to as "property lists", and atomic symbols are sometimes called
"objects".
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the location of the association list. Integers are included
in the 1list of atomic symbols, but floating-point numbers are
listed on a separate list which will be discussed below,

When an atomic symbol 1s read by the read program a
check 1s made to see if 1t is already available on the list of
atomic symbols, If it is not, it is added to the list and an
assoclation 1list is created for it.

An association list 1s characterized by having the special
constant 777778 (1.e. minus 1) in the address section of the
first word. The rest of the list carriles any other information
that is to be associated with the atomic symbol. This infor-
mation may include: the print name (signalled by the indicator
'"PNAME! ), that is, the string of letters and digits which re-
present the symbol outside the machine; a numerical value if

the symbol represents a number; another S-expression 1f the
symbol, in some way, serves as a name for 1it; or the location

of a routine 1f the symbol represents a function for which there
is a machine-language subroutine.

Two kinds of value 1ndicators are used on association
lists: APVAL and APVALl1. Both indicate a value, but APVAL
points to a single word which has the value in the address part
and NIL (zero) in the decrement part, whereas APVALLl points to
a 1ist. The indicator APVAL acts like a stop to the garbage
collector (see Section 6.3 below) whereas APVALL allows the
garbage collector to look ahead through the part of the 1list
pointed to by APVALL1. Whenever a programmer wishes to put
some value on an association list for an atomlec symbol, he may
use the function attrib discussed in Chapter 9 to put a sublist
of the form (APVAL, ( )) on the association list.

For example, on the assoclation list for NIL, APVAL is
used as follows:
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NIL

Si] " —>aPVALT > T >fPNaME[ >  NIL|

0 NIL NIL

A similar structure holds for APVALLl list-segments. The last
word of a print name 1s filled out with a 6-bit combination
{(here shown as "?") that does not represent a character print-
able by the computer. Note incidentally that the print name
is depressed two levels to allow for names longer than one re-
gister length, for example,

T

EXAMPL

On the association lists for integers the indicator INT
points to the integral value. The integral value is glven as
a rull machine word with the value pushed to the right-hanad
end of the register.

On the assoclation lists of those atomic symbols which
represent functions, SUBR indicates a SAP subroutine for per-
forming a function. SUBR points to a TXL to the subroutine,



-91~

and the decrement of the TXL instruction contains the number of
arguments belonging to the function. Thus the following frag-
ment of an association 1list belongs to a function of two argu-
ments whose subroutine 1s located at 377218.

T bR [ > T -

L}TXL 37721, ,2 |

The indicator EXPR on an assoclation list of a function
points to the S-expression for the function, as in

ST RN N N S S B SR

S-expression de-

fining the function

The special forms discussed at the end of Section 4.3 have
FSUBR or FEXPR on thelr assoclation lists.

Either attrib or define (see Chapter 4) may be used to put
something on an association list. Attrib puts the item at the
end of the list, and define puts 1t at the beginning. Thus
define can be used to redefine an atomic symbol. Define puts

EXPR followed by the associated S-expression on the association
list of a function. Comdef (see Section Y4.6) puts SUBR on the
association list of the function compiled, and the SUBR points
to the TXL to the compiled subroutine.
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Floating-Point Numbers

Floating-polnt numbers are listed in a separate list. A
floating-point number 1s put on this list either as 1t is read
in or as it is generated within a calculation. Neither this
1list nor the 1list of atomic symbols has any duplications. An
association list is created for a floating-point number when
the number 1is put on the list of numbers.

The association list for floating-point numbers contains
the indicators NUMB and FLO (for floating-point), but the in-
dicator PNAME is not put on the 1list until a request for print-
ing the number i1s encountered. Only positive numerical values
are put on the assoclation 1lists for floating-point numbers; if
a number is negative the association list for the number is
preceded by the indicator MINUS, and the entry in the l1list of
floating-point numbers points to the MINUS indicaftor. Thus we

have

-1.0

L>{MINUS| — | NIL |

+1.0 =3 -1 NUMB —FL0] }=>{ |[NIL|

i.e. 202400000000

Just as a matter of interest we give below the assoclation
lists for atom and for the constant 1, just as they are repre-
sented in the 704%. We use the bar notation, add, to represent
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the 2's (8's) complement of an octal address.*

Preceding all the individual association lists in the 704
LISP I system is the 1list of all atomlic symbols. Each register
of this list has an entry of the form

X, 5Y

where x 1s the address of the first register of the association
list for this atomic symbol, and y 1s the address of the next
entry 1n the list of atomic symbols. Thus for atom whose as-
soclation list starts in 25146 the entry in the list of atomic
symbols is

location entry representing

24657 053120052632 25156, ,7H660

The association lists which appear in the followlng are

atomic symbol location of association list
atom 25146
constant 1 25201
subr 26705
pname 26231
(integer) int 25665
apval 25134

*
‘The term "findex" is sometimes used for the 2's complement

of an octal location.
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Then for atom the association l1list looks as follows:

location entry
25146 052631 OT7777
25147 052630 051547
25150 052625 052627
25151 000000 052626
25152 216346 447777
25153 052624 051073
25154 000000 052623
25155 700000 010762

or, in 1list form,

25146 25147 25150
~1[ >{PNAME| |[—>

representing

-1, ,25147

26231, ,25150

25151, ,25153

25152, ,0

BCD ATOM?? (77 =2)
26705, ,2515%

25155, ,0

TXL 10762, ,1 (Location . of SAP
subroutine for atom)

25153 25154
——fSuBr[  |—= [ Nin|
25151 25155
NIL ITXT. 10762, 4]
25152
| ATOM2? |

For the constant 1, the association list looks as follows:

location

25201
25202
25203
25204
25205
25206

entry

052576
052575
052572
000000
oL7TTT
052571

or77T7
051547
052574
052573
rreeT
052113

representing

-1, ,25202
26231, ,25203
55205, ,25206
25205, ,0

BCD 1229922

"9
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25207 052567 052570 25210, ,25211
25210 000000 000001 1, ,0
25211 052566 052644 2513%, ,25012
25212 000000 052565 25213, ,0
25213 000000 000001 1, ,0

or, in list form

=

25202 25203 25206 25207 25211 25212
“J>{pNaME[ > | }>finT | > [ |—>{APvAL] |>§ [NIL]
|
25204 25210 25213
NIL 000000000001| 1 NIL
25205

In this case, the constant 1 is tagged both as an integer
INT of value 1, and as a constant which when evaluated (APVAL)
yields the value 1.

6.3 The Free-Storage List and the Garbage Collector

At any given time only a part of the memory reserved for
list structures will actually be in use for storing S-expressions.
The remaining registers are arranged in a single list called the
free-storage list. A certain register, FREE, in the program
contains the location of the first register in this list. When
a word is required to form some additional list structure, the
first word on the free-storage list 1s taken and the number in
register FREE 1s changed to become the locatlion of the éecond
word on the free storage list. No provision need be made for
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the user to program the return of registers to the free-storage
list.

This return takes place automatically whenever the free-
storage list has been exhausted during the running of a LISP I
program. The program which retrieves the storage is a SAP-
coded program called the garbage collector.

Any piece of 1list structure that is accessible to programs
in the machine is consldered an active list and is not touched
by the garbage collector. The active lists are accessible to
the program through certain fixed sets of base registers such
as the registers in the list of atomic symbols, the registers
which contain partial results of the LISP computation in pro-
gress, etc. The list structures involved may be arbitrarily
long but each register which is actlive must be connected to a
base register through a car-cdr chain of registers. Any re-
gister that cannot be so reached 1s not accessible to‘any pro-
gram and is non-active; therefore its contents are no longer of
interest.

The non-active, i1.e. available, registers are reclaimed
for the free-storage list by the garbage collector as follows.
First every active reglster which can be reached through a
car-cdr chain is marked by setting its sign negative.* When-
ever a negative register is reached in a chain during this
process, the garbage collector knows that the rest of the list
involving that register has already been marked. Then the

*
.Special provision is made for the rare case when the sign of

a register is already negative.
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garbage collector does a linear sweep of the free storage area,
collecting all registers with a positive sign into a new free-
storage 1list, and restoring the original signs of the active
registers, Partial experience has 1ndicated that about a third
of the running time is taken up by the garbage collector.
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7. Example Exercises

Four exercises together with their solutions are given in
this section. The first two exercises involve formulating
LISF Tunctions to treat list structures. 1In case the reader
shouZ< like to try his hand at these before looking at the so-
lution, the first two problems to be solved are:

(1) Formulate a function which will "collapse" a list
structure, i.e. which will make a one-level list out of a
multilevel list, so that, for example,

((a),(B,(C,D))) Dbecomes (A,B,C,D)

(2) Formulate a function which will reverse a list, so
that, for example,

(A,B,C,D) becomes (D,C,B,A)

The third example shows how to define a length function
which will operate more efficiently than the one defined in
Section 4.4,

The fourth example involves applying a function to its
arguments when the function is specified only at the time the
APPLY operator is in control.

(1) Function to Collapse a List of Elements

The function formulated below uses the function append,
which is described in Chabter 9 and also in Chapter 2. Rough-
ly speaking append makes one list out of two, so that, for
example,

append( (X,Y,2); (P,Q)] = (X,Y,2,P,Q)
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The function collapse, is defined as follows:

collapse[ 4] = f;tom[ﬂ]'* constZ sNIL];nulllcdrl £]] -
[atom[car[£]] = £; ;T = collapse[car[ﬂ]]],
T — append[collapse[car[l]] collapse[cdr[ﬂ]]]]

For this particular example a complete record of the cards
punched for the run and of the computer results is given below.

In the run the APPLY operator operated on the define func-
tion to define collapse, and then applied the defined function
to three test cases.

The following is a listing of the cards punched for the run:

TST M948-371-P. FOX-EXERCISE 1 .

DEFINE ‘
(( (COLLAPSE, (LAMBDA, (L), (COND,

((aTom,L), (CoNS, L,NIL))

((NULL (CDR, L)), ) o

. (COND ((ATOM, (CAR, L)) L), (T,(COLLAPSE,(CAR,L)))))

(T, (APPEND, (COLLAPSE, (CAR,L)), (COLLAPSE, (CDR,L))))
))))) ()
COLLAPSE ((((A,B),((c))), ((D,(E,F)),(G), ((H))))) ()
COLLAPSE ((A, (B, (c,(D,(E))),F,(G,(H,3))))) ()
COLLAPSE ((((((a),B),C),D),E)) ()

STOP))))))))))STOP

FIN MO48-371-P. FOX-EXERCISE 1

These cards were then submitted for a run, following the
various directions as to deck format and so on given in Chapter
5. The results printed out during the running of the problem
by the APPLY operator, were the following (where comments on the
computer output have been added in square brackets):

le
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TST MO48-371-P. FOX-EXERCISE 1

APPLY OPERATOR AS OF SEPTEMBER 1, 1959
THE TIME IS NOW 2/16 1139.5

READ IN LISTS ...

DEFINE

(((COLLAPSE, (LAMBDA, (L), (COND, ( (ATOM,L), (CONS,L,NIL)), ((NULL, (
CDR, X)), (COND, ( (ATOM, (CAR,L)),L), (T, (COLLAPSE, (CAR,L))))), (T, (
APPEND, (COLLAPSE, (CAR, X)), (COLLAPSE, (CDR,L)))))))))

COLLAPSE
((((a,B),((c))), ((D, (E,F)), (G), ((H)))))

COLLAPSE
((a,(8,(c, (D, (E))),F, (G, (H,3)))))

COLLAPSE
((((((a),B),C),D),E))

STOP
THE TIME IS NOW 2/16 1139.7

[At this point all the cards through the STOP card have been
read in].

OBJECT LIST NOW IS

[Here the entire 1list of atomic symbols, including those Jjust
read in, is printed out].
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THE TIME IS NOW 2/16 1139.7

FUNCTION APPLY(F,X,P) HAS BEEN ENTERED, ARGUMENTS..

DEFINE ,

(((COLLAPSE, (LAMBDA, (L), (COND, ( (ATOM,L), (CONS,L,NIL)), ((NULL, (
CDR,L)), (COND, ((ATOM, (CAR,L)),L), (T, (COLLAPSE, (CAR,L))))), (T, (

APPEND, (COLLAPSE, (CAR,L)), (COLLAPSE, (CDR,L)))))))))

END OF APPLY, VALUE IS ...
(COLLAPSE)

[The function collapse has now been defined by having EXPR fol-
lowed by the defining S-expression put on its -association list].

[The function collapse is now used on the three examples].
THE TIME IS NOW 2/16 1139.7

FUNCTION APPLY(F,X,P) HAS BEEN ENTERED, ARGUMENTS..
COLLAPSE

((((a,B),((c))), ((D, (E,F)), (), ((H)))))

END OF APPLY, VALUE IS
(A’B,C’D,E’F’G}H)

THE TIME IS NOW 2/16 1139.8

FUNCTION APPLY(F,X,P) HAS BEEN ENTERED, ARGUMENTS..
COLLAPSE
((A’ (B, (C’ (D, (E)))’F’ (G, (H)J)))))

END OF APPLY, VALUE IS
(A,B,C,D,E,F,G,H,J)

[
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THE TIME IS NOW 2/16 1139.8

FUNCTION APPLY(F,X,P) HAS BEEN ENTERED, ARGUMENTS..
COLLAPSE

((((((n),B),C),D),E))

END OF APPLY, VALUE IS
(A’B,C’D)E)

[The FIN card is read and the run terminates].

(2) Function to Reverse a List

Two different functions are shown which purport to reverse
lists, but only the second definition is correct,.

First Definition

rvrse[ 4] = [null[£] = NIL;T — cons[rvrse[cdr[4]];cons[car[£];NIL]]]

Second Definition

\ rvde[£] = rev[£4;NIL]
revl[j;k] = [null[J] = k;T = revlcdr[ j];cons[car[jl;k]]]

To show the effect of these two definitlions on a given
- 1list the following cards were punched and run:
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DEFINE
( ((RVRSE, (LAMBDA, (L), (COND, ( (NULL,L),NIL),
(T, (CONS, (RVRSE, (CDR,L)), (CONS, (CAR,L),NIL)))))),
(RVDE, (LAMBDA, (L), (REV,L,NIL))),
(REV, (LAMBDA, (J,K), (COND, ( (NULL,J),K),
(T, (REV, (CDR,J), (CONS, (CAR,J),K))))))))
()
RVRSE ((A,B,C,D,E)) ()
RVDE  ((A,B,C,D,E)) ()

The results given for the two cases by the APPLY operator were
respectively
RVRSE((A,B,C,D,E)) () = (((((NIL,E),D),C),B),A)

and

RVDE((A:B)C,D:E)) () = (E:D;C:B,A)

Thus only the second definition does the job intended;
the first function, rvrse, erroneously creates a multilevel
list.

(3) Function to Count the Number of Elements in a List

The function given in Section 4.4 for the length of a list
length[£4] = [null[4] = 0.0;T = sum[length[ecdr[£]];1.0]]

This function will work correctly, but it is slow and inef-
ficilent in the sense that it must follow the recursion of
length down to the end of the list before it starts counting.
Then it counts out backwards through the list. The following
pair of functions counts forwards through the list, and there-
fore operates faster:

1

T ]
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lengthx[£] = [lengthy[£;0.0]]
lengthy[ j;k] = [null[j] = k;T = lengthylcdr(y];sum|
1.0;k]]]

(4) Specification of a Function During Run Time

The followlng somewhat obscure example shows how one can
leave the specification of a function until the time a program
is run, and at that time specify it in a particular way. This
cannot be done by the usual method of using the APPLY operation
on a f;x;p triplet since the APPLY operator expects f to be
already available. Instead one must use the APPLY operator on
a triplet whose f 1s the function eval, as 1n

EVAL
( (APPLY, (CAR,X),Y,NIL),
((X, (CADR,CDR)), (¥, ((A,B,C)))))

()

Here the second argument of eval, the p-list is used to set
the function (CAR,X) equal to CADR, and the result of the eval

is

apply[cadr; (A,B,C);NIL] = B
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Error Indications Given by LISP

Below are listed the print outs that occur (on-line or

off-line depending on sense switch 3) when an error is found

in a LISP program. Generally after an error is found control

is returned to the APPLY operator which starts to operate on

the next triplet. After errors which are more drastic, such

as no lnput data available or no more free storage avallable,

the run is terminated. The word bracketed by dashes in the

printouts below 1s the name of the LISP system subroutine in-

volved, e.g. -APP2-in Al, and need not concern the user.

A3

A5

AT

grrors during the operation of the APPLY operator:

TOO MANY ARGUMENTS FOR A FUNCTION -APP2-

I.c. there are more arguments than thce APPLY operator i1s
built to handle, (currently ten).

FUNCTION OBJECT HAS NO DEFINITION -APP2-

I.c¢c. the function represented oy an atomic symbol has neither
SUBR nor EXPR on its associatlon list, nor is it paired with
something on the p-1list. The atomic symbol for the name of
the function is printed out after the A2 print-out.
CONDITIONAL UNSATISFIED -EVCON-

I.e. nore of the conditional expressions in a conditional
were evaluated as true.

SETQ GIVEN ON A NON-EXISTENT PROGRAM VARIABLE -EVAL-

I.e. (see the program feature, Section 4.5) the program
variable 1s not within this program, nor is it in some
higher-level program in this run. The name of the pro-

gram variable 1s printed out.

SET GIVEN ON A NON-EXISTENT PROGRAM VARIABLE -EVAL-

See A5 above.
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A9

Al10

A1l

Al2

Al13

A1k

UNBOUND VARIABLE USED -EVAL-

I.e. a free or unbound variable has neifher APVAL or
APVAL1 (see Section 6.2) on its association 1list to signal
its value, nor is the variable paired with something on
the p-list. The name of the variable is printed out.
FUNCTION OBJECT HAS NO DEFINITION -EVAL-

I.e. a function does not have EXPR, FEXPR, SUBR, nor FSUBR
on its association list, nor 1s the function paired with
something on the p-1list. The name of the function is
printed out.

GO TO A POINT NOT LABELLED -INTER-

I.e. (see the program feature, Section 4.5) there is no
location-marking atomic symbol whose value corresponds to
the value given by evaluating the rest of the GO list.

RAN OUT OF STATEMENTS -INTER-

I.e. the interpreter didn't find a RETURN statement in a
program using the program feature.

TOO MANY ARGUMENTS -SPREAD-

J.e. there are more arguments than the APPLY operator is
built to handle, (currently ten).

APPLIED FUNCTION CALLED ERROR

If the APPLY operator reaches an "ERROR" in an expression,
for example T — ERROR, then All4 is printed out followed by
the argument of ERROR; 1f one has been assigned. It is
not necessary to assign an argument, but it is possible to

s,

assign a single argument, for example

(T, (ERROR, (QUOTE,NG)) )
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Errors due to computer inadequacies:

OUT OF PUBLIC PUSH DOWN LIST -SAVE-

I.e. the program has run out of space allotted to the
public push-down list.:L Currently about 1000 registers

are allotted, and, if they are used up, the recursion
being done is either too "deep" for the given capacity or
non-terminating.

FREE STORAGE COUNTER PANIC STOP. PRESS START TO CONTINUE
There is a free storage counter, called the "CONS counter",
assoclated with the LISP system. Every time a register is
taken from free storage, the counter is increased by one.
The counter 1s not changed by the garbage collector opera-
tion. Thus to some extent the counter indicates how a pro-
gram 1s operating--how much storage i1t 1s using, and so on,
or, for a program whose operation is known, how long it has
been running. The counter is initially set to zero, and
when 1t has reached 100,000, the computer stops after giv-
ing the error print out B2. When the start button has
been pressed to restart the computer the counter continues
counting, but no further stop occurs.

DIVIDE ERROR -OCTAL TO DECIMAL CONVERTER-

This error arises only when the computer malfunctions or
when some of the program has been written over.

1

See page 144 of the Quarterly Report referred to on the first

page of Chapter 2.



-110-

C

2

Fl

£

F

te

2

F3

i

5
6

Errors in list structures:

OBJECT GIVEN TO DESC AS LIST

I.e. (see desc in Chapter 9) in desclx;y], x is an atomic
symbol instead of the required list of A's and D's.
UNEQUAL LENGTH LISTS -MAP2- -

This error can occur only during the differentiation func-
tion; it implies a machine error.

'1ST ARG. LIST TOO SHORT -PAIR-

2ND ARG. LIST TOO SHORT -PAIR-

F2 and F3 occur when a list of pairs is being created out
of two lists, for example when a list of dummy variables
and their values is being appended to the p-list. The
items still remaining on the larger list are printed out
following the error indication.

CANNOT PAIR OBJECTS. PLEASE USE LIST -PAIR-

I.e. one of the lists to be paired is, erroneously, an
atomic symbol. This usually happens when the user gives a
single dummy variable in a LAMBDA expression as an atomic
symbol instead of as a list. The list is printed out fol-
lowing the error indication. '

FLVAL ASKED TO FIND VALUE OF NON-OBJECT

FLVAL ASKED TO FIND VALUE OF NON-FLOATING POINT NUMBER

F5 and F6 occur when the program is looking for the value
of a floating-point number,and finds either that it is not
an atomic symbol (F5), or that it is not a floating-point
number (F6).

i
"

1]
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Errors during the operation of the garbage collector:

G1 I HAVE FAILED TO FIND ANY GARBAGE. PANIC STOP.
-GARBAGE COLLECTOR-
I.e. there is simply no more memory space available.

G2 TOO MUCH MARKING OF NON-LIST STRUCTURE. PANIC STOP.
-GARBAGE COLLECTOR-
This error is given after G3 below has occurred ten times.
The leniency allowed here has been inserted to permit a
great deal of information to be gleaned from one run
rather than stopping immediately on an early error.

G3 MARKING IN NON-LIST AREA AT OCTAL/
This error occurs when illegal list structure is found
during the garbage-collector phase.

Errors during the operation of the directlon cards on input:

o1 NO INPUT DATA -OVERLORD-
Overlord 1s the LISP routine which is controlled by the
direction cards, Error 0l arises when an end-of-file is
found in the wrong place, due to wrong input data.
03 AN ERROR HAS OCCURRED IN THE PRECEDING SET
I.e. an error has been found somewhere in the program fol-
lowing the last SET direction card. This SET, see Section
5.1, will not create a new base image of the memory on tape.
o4 END OF FILE ON INPUT
Same as O1.
05 ERROR IN READING TAPE
This is a machine error in reading either tape 8 or 9.
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Pl

P2

R1

R2

R3

R5

R6

Errors during printing: -

PRIN1 ASKED TO PRINT NON-OBJECT

I.e. the printing program tried to print an item which
was not an atomic symbol.

PRIN1 ASKED TO PRINT UNPRINTABLE OBJECT

I.e. the printing program tried to print an atomic symbol
which does not have PNAME on its association list,

Errors during read-in:

ILLEGAL PUNCHING IN ON-LINE DATA -RTX-

Sic

13T OBJECT ON INPUT LIST ILLEGAL -READ-

This error may arise when there is an error in the number
of parentheses on the previous list read.

OBJECT INSIDE AN INPUT LIST IS ILLEGAL -~READ1-

I.e. an illegal character appeared in some atomic symbol.
END OF FILE -RDA-

The tape or card-reader ran out of cards before the correct
number of parentheses were read.

NUMBER TOO LARGE IN CONVERSION

The conversion program can convert a floating-point number
x of up to nine digits and an exponent, provided

|x| < 222 103°

ia
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9. PFunctions Available in LISP

In this section, a brief description is given of all the
functions available in the LISP system as of March 1, 1960.

A brief account is given for each function explaining the form
of its argument, and its value. Whether the function is in
machine language (otherwise it must be interpreted by the APPLY
operator), and whether it is a special form is also included.

In some cases, an M-expression for the function in terms of more
basic functions 1s appended, and in other cases a program writ-
ten in the notation of the program feature (Section 4.5) is
given. The user of course need only give the function name and
arguments--the M-expression or program are Jjust included here

as amplified description.

Since there are about ninety functions in the LISP system,
they have been grouped into subgroups for easlier reading. The
function index of Section 9.5 provides an alphabetic index for
looking up a function. Sections 9.1 and 9.2 include all the
functions which are generally used. Sectlion 9.1 discusses predi-
cates, apply and eval, simple functions, pseudo-functions for
defining other functions, functions to operate on lists, simple
arithmetic functions, input-output functions, and the compiler
functions. Section 9.2 consists of some special forms, such as
cond and quote. Section 9.3 discusses some of the less frequent-
ly used functions and could be skipped at first reading. Section
9.4 contains rather specialized functions which have been rele-
gated to the Supplementary LISP System. To find out how to use
a function from this last category one must consult the local
experts on LISP at M.I.T.
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9.1 General Functions

Predicates:

atom[x] : machine language

The argument of atom is evaluated and the value of atom
is true or false depending on whether the argument is or is
not an atomic symbol. In list terminology (see Chapter 6)
the argument is an atomic symbol if and only if car[x] = -1.

null[x] : machine language
The value of null is true if its argument is zero, and
false otherwise.

and[xl;xe;...;xn] : machine language; special form

The arguments of and are evaluated in sequence, from left
to right, until one is found that is false, or until the end
of the list is reached. The value of and is false or true re-
spectively.

gg[xlsxz;,..;xn] : machine language; special form

The arguments of or are evaluated in sequence, from left
to right, until one is found that is true, or until the end of
the list is reached. The value of or is true or false respec-
tively.

not[x] : machine language
The value of not 1s true if its argument is false, and

false if its argument 1is true.

w
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eqlx;y] : machine language
The value of eq is true 1f x =y and false if x f y.

equal(x;y] : machine language
The function equal compares the lists x and y and has the

value true if the two lists are 1ldentical, and false otherwise.

equal(x;y] = [ealx;y] = T;nulllx]lvnullly] = F;atom[x]vatom[
y] = F;T = equall[car[x];car([y]]Aequallcdr(x];
cdr(y]]]

eqilx;y]l : machine language
The function eql compares lists x and y of the following
speclal two-level form, where each element of the top level

points to a full word:

T —-—“ | \.—.I—r_[ b
>_'—....,[:—_} oy N N o Dypse 3 2
->'Full word! Full word

The value of eqllx;y] is true if the two lists are identical,
and false otherwise.

eqlx;y] = [ealx;y] = T;nulllx]vnullly] = F;T = eqlewr(
car[x]];cwrlcar(y]lAaeqllicdr(x];cdriy]]]

(cwr[n] is the 36-bit contents of register n)

Apply and Eval:

apply[f;x;p]l : machine language

The reader usually will not have occasion to use this
function because essentially 1t gets done for him, but it
operates as follows,
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apply[f;x;p] = [atom[f] = app2[f;x;p]; o

LAMBDA — evall[caddr(f];append[pair[cadr[f];

x];pll;

LABEL = applylcaddr[f];x;append[1ist[1ist[

cadr[f];caddr(f]]];pll;

car[f] = FUNARG — applylcadr[f];x;caddr[f]];T —.
applylevallf;pl;x;pl]

car[f]

car[f]

The forms involving LAMBDA, LABEL, and FUNARG are discussed
in Section 4.3. The satellite functions for apply are the fol-

lowing:

app2[f;x;p] : machine language
The function app2 i1s the apply operator (see apply) in the
case when f is atomic.
app2[f;x;p] = select[f;[CAR;caar[x]];[CDR;cdar[x]];[CONS;
cons[car[x];cadr[x]]];[LIST;x];search[f;
A jl;lealcarlj];SuBR]veqlcar[ j]l;EXPR]]];
A [3l;[ealcar[j];SUBR] = app3[cadrl jl;x];
T = applylcadr[J];x;pl];
A [ 3];applylcar[sassoc[f;p;error]];x;pll]]

t

See the function select.

app3[f;x] : machine language

In the case when app?2 (see above) in the apply function
finds an atomic function specified by a machine-language sub-
routine, app3 applies that subroutine to the list x of argu-

ments.
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eval[e;b] : machine language

The reader should have no occasion to use this function
as such, since 1t is called in by the APPLY operator, but he
might be interested in its modus operandi which is as follows,
(b is the 1list of pairs of bound variables):

evalle;b] = [atom[e] = search[e;n[[j];eqlcar[j];APVAL]V
eqlcar( 3];APVALL1]];caadr;n[[j];search[b;
MM jlsealcaar[ jl;ell;al[jl;cadarl jl];
M ljlserror]]]];

atom[carl[e]] —
search[cdar[e]l;n[[j];ealcar[ j];FSUBR]vVeqlcar( jl;
SUBR]veqlcar[ j];FEXPR]Veqlcar[ j]; EXPR]];
M jlsselectlcar( jl;
[FSUBR; app3(cadr( J];1listledrle];b]]];
[ SUBR;app3[cadr( jl;eviis[cdrlel;bl]];
[FEXPR;applylcadr[ j];1istlcdr(e];bl;bl];
applyl(cadr( j]l;eviis[cdr[el;bl;bl]];
M j]l;search(b;
A [jl;ealcaar( jl;carlel]l;
Ml dl;applylcadar( jl;eviis[cdrie]l;bl;b]];
MM 3l;error]lll];
T — applylcar(e];evlis[cdrlel;b]l;b]]

evlis[x;b] : machine language

The function evlis is used by ‘Zhe function eval :above.
The arguments of evlis are a list, x, of expresslons, and a
list, b, of bound variables. The function evlis constructs
a list of the values obtained by evaluating each element of
the list x, using eval and the list b, and the resultant list
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is the value of evlis.

evlis[x;b] = maplistlx;a[[Ji];evallcar[jl;bl]]

Simple Functions:

car[x] : machine language
See Chapter 2.
Examples:

car[ (A,B)] = A
car[ ((A,B))]= (A,B)

cdr[x] : machine language
See Chapter 2.
Examples:
edr[ (4,B)] = (B)
cdr[ ((4,B))] = NIL = ()

The APPLY operator can perform some multiple car's and
cdr's, e.g.

cadddr[x] = car[cdr[cdr[car(x]]]].

A depth of up to (and including) four a's or d's between the
¢ and the r is permissible.

cons[x;y] : machine language
cons[x;y] = (x.y)
See Chapter 2.
The value of cons is the (location of the) stored word.

4]



Defining Functions:

define[x]
The argument of define, x, is a list of pairs

((ul,vl),(ue,ve),...,(un,vn))
where each u 1s a name and each v is a N-expression or a
function. For each pair, define uses defl to make the EXPR
on the assocliation list for u point to v. The function
define puts things on at the front of the association list.
The value of define is the list of u's.

define[x] = deflist[x;EXPR]

deflist[x;PRO]
The function deflist i1s usually used to tile the EXPR-search
. required by define to the PRO-search in the program for defl.

deflist([x;PRO] = deflisi[x]

deflisi[x]

The argument of deflisl is a 1list of pairs. The function
defllisl does a defl of each pair and has as value the list of
the first element of cach pair.

Thus the functions deflist and deflisl carry out the pur-
pose of define by tying the PRO in defl to EXPR and by carry-
ing out the entire 1list of definitions (by the recurcive func-
tion deflisl).

deflisi[x] = [nullilx] = NIL;T — cons[defil[caar[x];
cadar{x]];deflisi[cdr(x]]]]
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14}

defi[x;e]

The function defl puts a pointer to the expression e on
the rest of the list x from the point where it finds the at-
tribute PRO. If no such attribute is found, one 1is created.
The value of defl is x. 1In practice, PRO is usually paired
with EXPR on the p-list.

defl is equivalent to the following (where the program
feature has been used)

AMIx;el; E] where £ 1s the following program with no pro-
gram variables.

rplaca(prop[x;PRO;A[[ ()];cdrlattrib[x;1ist[pro;NIL]]]1]];e]

return[x]

Thus the association list will end up with PRO pointing to e as
follows:

1)

. ———PRO_ ] l

1

attrib[x;e] : machine language

The function attrib concatenates its two arguments by
changing the last element of its first argument to point to the
second argument. Thus it is commonly used to tack something
onto the end of an association list. The value of attrib is the
second argument. For example

attrib[FF, (EXPR, (LAMBDA, (X), (COND, ((ATOM,X),X), (T, (FF, (CAR,X))))))]

would put EXPR followed by the LAMBDA expression for FF onto
the end of the association list for FF.

attrib can be used to define a function provided no other
definition comes earlier on the function's association list,
but in general it is better to use define.
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nconc[x;yl : machine language

The function nconc concatenates its arguments without
copying the first one. The operation is identical to that of
atfrib except that the value is the entire result, (i.e. the
modified first argument, x)..

The program for nconcl[x;y] has the program variable m and
is as follows:

nconcl[x;y] = progllm];
go[null[x] — RETU;T — CONT]
CONT m=Xx -

Al go[nulllcdr({x]] = A2;T — MORE]
MORE m = cdr[m]

go[Al]
A2 cdr[m] =y

RETN return(x]
RETU return(y]

Operations on Lists:

llgg[xl;xg;aa,;xn] : machine language; special form

The function list of any number of arguments has as value
the list of 1ts arguments.

For the APPLY operator, if p is the associated p-list,
and x represents the string of xi's above,

1ist[x] = maplistix;n[[j];evallcar[jl;pl]]

append[x;y] : machine language

The function append combines its two arguments into one
new list. The value of append is the resultant list. For
example,
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append[ (4,B), (C)]
append[ ((a)), (¢,D)]
append[x;y]

(A,B,C),

((a),c,D)

[null[x] = y;T —* cons[car[x];appendl
cdr(x];yll]

Note that append copies the top level of the first list; append
is like nconc except that nconc does not copy its first argument.

copy[x] : machine language
This function makes a copy of the list x. The value of
copy is the location of the copied 1list.

copy[x] = [nulll[x] = NIL;atom[x] = x;T = cons[copylcar(x]];
copyledr[x]]]1]

maplist(x;f]
The function maplist is a mapping of the list x onto a
new list f[x].

maplist[x;f] = [null[x] = NIL;T — cons[f[x];maplist[cdr(
x];£]1]]

mapcon|[x; f]

The function mapcon is like the function maplist except
that the resultant list is a concatenated one instead of
having been created by cons-ing.

mapcon[x;f] = [nuli[x] = NIL;T — append[f[x];mapcon[cdr|
x];£11]

map[x;f]
The function map is like the function maplist except that
the value of map is NIL, and map does not do a cons of the

"'

]

1)
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evaluated functions. map is used only when the action of
doing f(x) is important.

The program for mapl[x;f] has the program variable m and
is the following:

map[x;f] = progl[[m];

m =X

LOOP golnull[m] = END;T — CONT]

CONT £lm]
m = cdr[m]
go[LOOP]

END return[NIL]

gggg[x;y] : special form

The function conc evaluates the items on the list x, and

concatenates the values. The value of conc is the final con-

catenated list.

The items on the list x must eilther be bound

on the list of pairs, y, or have APVAL or APVAL1 on theilr as-

soclation lists.
Example:

let x = (X,Y,2)

and y = ((X,W),(Z,R))

and let Y have APVAL on its 1list pointing to
the value ?, then

conclx;y] = (w;?;R)

il

conclx;y] = mapcon[x;n[[jl;evallcar(jl;yl]l]

pair{x;y] : machine language

The function pair has as value the list of pairs of cor-

responding elements of the lists x and y. The arguments x and

y must be lists

of the same number of elements. They should not
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be atomic symbols.

search[x;p;f;ul

The function search looks through a list x for an element
that has the property p, and if such an element is found the
function f of that element is the value of search. If there is
no such element, the function u of one argument, x, is taken as
the value of search (in this case x is, of course, NIL).

search(x;p;f;ul = [nulllx] = ulx];plx] = £[x];T = search|
cdrlx];p;f;iull

substlx;y;z] : machine language

The function subst has as value the result of substituting
x for all occurrences of the atomic symbol y in the S—expressioh
Zl

subst[x;y;z] = [eqly;z] = copylx];atom[z] = z;T = cons|
subst[x;yscar(z]];substlx;y;cdrliz]]]]

sublis[x;y] : machine language
Here x is a list of pairs,

((ul’vl)’(uz,ve).’°'°’(un’vn))
where the u's are atomic. The value of sublis[x;y] is the
result of substituting each v for the corresponding u in y.

Note that the following M-expression is different from
that given in Chapter 2, though the result is the same.

sublis[x;y] = [nulllx] = y;nullly] = NIL;T — search[x;
M jlsequally;caar[J11130[[j];cadarl J]];
[atom[y] = y;T = cons[sublis[x;car[y]];
sublis[x;edr[y]11]1]1]

113

e
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inst[x;y;z] : machine language

Here x is assumed to be an incomplete 1list of pairs
((ui’vi)’(ue’v2)"°°’(un’vn))’ where the u's are atomic and
where some v's may be missing. The value of inst 1s false 1if
z cannot be obtained as sublis[X;y] where X is a completion of
X obtained by substituting appropriate pairs (u,v) for the un-
paired elements (u). If z can be obtained in this way, inst
[x;y;2z] has as value the completed list'§1 The purpose of
inst 1s to determine whether z 1s a substitution instance of
the expression y.

inst[{x;y;z] = [null{x] = F;nullly]vnulllz] = F;atom[y] —
search[x;A[[J];eqlcaarl J];y11;A[[§];nulll
cdar[J]] = maplistix;a[[k];[notleqlk;J1] —
car[k];T = cons[y;cons[z;NIL]]]11];eqlcadar|
3l;2] = x;T = Fl;[eqly;2] = x;T7 = Fl];T
inst[inst[x;car[y]l;carlz]];cdrly]l;cdr(z]]]

sassoc[x;y;u]l : machine language

The function sassoc searches y, which 1s a 1list of lists,
for a sublist whose first element is identical with x. If
such a sublist is found, the value of sassoc is the sublist
with the first element removed. Otherwise the function u of
no arguments is taken as the value of sassoc.

sassoe[x;y;ul = [nullly] = ull;eqlcaar[y]l;x] —* cdar(yl;
T — sassoc[x;edr[y]l;ull
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Arithmetic Functions:

sumlx;y] : machine language

The function sum computes the sum of two floating-polint
numbers. The arguments x and y can be quoted numbers, or can
represent numbers by being paired with numbers on the p-list.
Thus the followlng two cases are equivalent:

(1) (SuM, (QUOTE,3.0), (QUOTE,21.4))
(2) (SumM, (QUOTE,3.0),V) with (V,21.4) on the p-list.

prdct[x;y] : machine language

The function prdct computes the floating-point product of
two floating-point numbers. The arguments x and y must be ex-
pressed 1n one of the forms glven under the functlon sum.
expt[x,n] : machine language

The value of expt is the floating-point number x™ where x
1s a floating-point number and n is a floating-point positive
or negative integer. The arguments must follow one of the
forms described under the function sum.

Input-Output Functilons

read : machine language

The function read of no arguments reads one list from
cards or tape (depending on the sense-switch settings). The
value of read is the list it has read.
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print{x]

The function print prints out (on-line or off-line depend-
ing on sense-switch settings) its argument x if x is a legal
list structure, and malfunctions i1f it is not. If x is NIL a
blank line is printed. The value of print is always zero.

In the following explanation of print, prin2 is a routine
which places in the line to be printed up to six BCD charac-
ters when the characters are pushed to the left with the rest
of the register filled in by the illegal character 77. The
locations & , ﬁ s ¥ , and 5 mentioned below contain respec-
tively BCD representations of left-parenthesis, right-paren-
thesis, comma, and blank (space) in the form appropriate for
prin2.

print[x] = progl[[];printalx];terpri]

Here terpri (terminate print) is a machine language function
which prints out the line of characters which have been placed
there by the function prin2.

printalx] = [nulllx] = prin2[d];atom[x] = prini[x];
T — prog[[£1]; (printa subprogram)]]

where the (printa subprogram) is_the following:

1 = x
prin2[e]

PL printalcar([£1]]
nulllcdr[ £1]1] = go (END]
prin2[¥]

21 = cdr[£1]
go[ PL]

END prin2[ B]
return
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prini[x] : machine language

The routine prinl prints the print name of the atomic
symbol x. The value of prinl is NIL. If x is not an atom,
an error occurs.

printprop[x]
The function printprop prints the properties on the as-

sociation 1ist of the atomic symbol, x. The parts of the
1ist pointed to by any of FLO, SUBR, FSUBR, PNAME, APVAL, or
INT are not printed.

The function prog2[x;y] used by printprop has the value
¥y, though x may be used to effect some action. For example,

printprop[x] = prog2[print[list[PROPERTIES;OF;x]];
printpi[cdr(x]]]

prints out
(PROPERTIES, OF,X)

and then goes to printpl below.

printplix] (see printprop[x])
The function printpl, which does the printing of the
properties is

printpi[x] = [null[x] — NIL;T — prog2[print[car[x]];
search[ (FLO, SUBR, FSUBR, PNAME, APVAL, INT) ;
A jl;eqlcar[jl;car(x]]];
A [k];printpi[edr[ecdr[x]]]];
A [m];printpilcdr[x]]]]]
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punch@[x] : machine language

The function punchf writes the list x out onto tape 7 in
BCD form for off-line punching. The resultant cards have the
list information 1n consolidated form, i.e. extra blanks have
been left out and commas inserted in the correct locations.
All 72 columns of the card are used.

punchs[x] : machine language

The function punchs writes the list x out onto tape 7
for off-line pﬁnching. Each sublist of the top level of list
X appears as a separate card punched in SAP format. punchs is
used with the LISP compiler.

punchdef[x]
The function punchdef writes the definition of the func-

tions named in the list x out on tape 7 in BCD for off-line
punching. If any item of the list x does not have EXPR or
its association list, punchdef gives an error indication.

Error Function:

error[x] : machine language

The function error of one argument (the list x) causes
an error print-out followed by a print-out of x. x can be
given as NIL.

Compller Functions:

comdef[x]
The pseudo-function comdef complles all the functions
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named on the 1list x provided that the functions have EXPR and
a definition on their association lists. See Section 4.6.

The function comdef uses the function compile (see below)
as shown in the following:

comdef[x] = compile[mapcon[x;A[[j]; "program"]]]

where the "program" involved is as follows with program vari-
ables k and p:

p = car[J]
k = get[p;EXPR]
return[null[k] = PROGA;T —* PROGB]
PROGA [nulll[get[p;SUBR]] = print[cons[p; (IS,NOT,DEFINED)]];
T = print[cons[p; (HAS, ALREADY ,BEEN, COMPILED) ] ]
return[NIL]
PROGB  rempropl[p;EXPR]
return[eq[car[k];LABEL] = 1ist[k];T — 1list[
11st[LABEL;p;k]]]

I

getlx;y]

The function get 1s used by comdef above. It searches
the list x for an item identical with y. When such an element
is found the value of get is car of the rest of the list be-
ginning immediately after the element.

compile[x]

The pseudo-function compile can be used to compile func-
tions not previously defined. The argument of compile is a
list of function definitions, each one of which must be of
the form

(LABEL,NAME, (LAMBDA, (1ist of free variables),Expression))
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9.2 Special Forms

quote : machlne language; special form

The value of a list beginning with QUOTE is always the
rest of the list. Note that QUOTE must be used in expressions
being evaluated whenever one wishes to avoild evaluating an
item--for example (QUOTE,X) yields X itself rather than a
value assigned to X by some other means.

cond[xl;xe;...;xn] : machine language; special form

The function cond has a variable number of arguments,
each one of which 1s a pair of expressions of the form

(conditional,expression)

The propositions are evaluated untlil one 1s found that is true.
The expression corresponding to this proposition 1is evaluated
and taken as the value of the entire conditional.

Except for its use with the compiler at least one of the
propositions of cond must be true or an error will occur.

label[a;b] : machine language; special function
The effect of label as the first element of an expression
is described in Section 4.3 of this manual.

label[a;b] = eval[cadr[al;append[list[a]l;b]]

format[x;f;v]

The function format has the value x. x 1s an atomic sym-
bol, f i1s a list structure, and v is a list of variables oc-
curring in f. The function format causes x and the variables
of v to become functions which are available to the APPLY op-
erator. The following example of its use 1s taken from an
earlier version of the programmer'!s manual.
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Consider format[SHAKESPEARE; (UNDER,GREENWOOD, TREE);
(GREENWOOD, TREE ) ]
There are two variables involved, GREENWOOD and TREE.
Then the execution of format generates three functions to
which we could glve arguments

shakespeare[ SPREADING; CHESTNUT]
greenwood [ (BENEATH, SPREADING,CHESTNUT) ]
tree [ (BENEATH, SPREADING, CHESTNUT) ]

Executing these functions in turn gives

(UNDER, SPREADING, CHESTNUT)
SPREADING
and CHESTNUT respectively.

Thus shakespeare has as argument a list u which must con-
tain as many terms as v; and substitutes in f for one occur-
rence of each variable 1n v the corresponding variable in u.

greenwood and tree have as argument a list structure g
and pick out the element in g which occupies a position cor-
responding to their's in f.

format[n;f;v] = A[[n;f;v];[A[[s;t];tllattriv[n;sublis[[[“y;v];
[F;£];[P;formatplv]]]; (EXPR, (LAMBDA,V, (
SUBLIS, (LIST,P), (CONST,F)))]]1formatgln;f;v]1]]]

formatp[v]

Il

[nuli([v] = A;T = cons[subst[car[v];X; (LIST,
(CONST,X),X)]; formatpledr[v]]]]

formatqln;f;v] = [null[v] = n; T — Allz];[z = NO = error;T —
Mx;yl;yllattrib[car[v];subst(z;R; (EXPR,
((LAMBDA, (X), (DESC,R,X))))]1]1][formatqln;f;
cdr(v]]]]l{picklcar[v];f]]]

e
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function[f] : machine language; special form

If the first element of an S-expression is FUNCTION, the
second element i1s understood to be the function. A new list is
constructed with first element FUNARG, second element equal to
f, and third element equal to the current list of bound varil-
ables. I.e.

eval[ (FUNCTION,f);b] = (FUNARG,f,b)

Having such a list of bound varilables carried along with
the function insures that the proper values of the bound vari-
ables are used when the function is evaluated. Thus

apply[ (FUNARG,f,b);x;a] = applyl[f;x;b]

Erog[pv;el;eg;e3;...;en] : machine language; special form

The program feature is discussed in Section 4.5, For in-
terest we include here the program which the interpreter uses
to work out a program given by the list pv of program vari-

ables, and the sequence, €4,€550-+,€ of program statements.

n
In the following p is the usual p-1list of pairs, and e

stands for the entire l1list
(pv,ei,ee,e3,...,en)

so that car[e] = pv.
The program variables used below for the program for prog

are t2, p2,pr, and r.

t2 = maplist[car(el;alljl;1ist[car[J];NIL]]]

p2 = append[t2;p]
pr = cdrlel
r = pr
ML go[atom[car[r]] = ADV;eql[caar[r];GO] = GO;

eqlcaar[r];RETURN] — RET;T — NORM]
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NORM evallcarir];p2]

ADV r = cdr[r]

go[ML]
RET return[evallcadar[r];p2]]
Go t2 = evall[cadar[r];p2]

search(pr;a[[jl;eqlcar[jl;t2];A[[J];setalr;edar[ jl];
A [Jdl;error]]
go[ML]

select[q;(ql,el);(qe,ee);...;(qn,en);e] : special form

The qi's in select are evaluated in sequence from left to
right until one is found such that

qi =q,

and the value of select is the value of the corresponding ey -
If no such qy is found the value of select is that of e.

9.3 Further Functions

rplacalx;y] : machine language

This pseudo-function replaces the address part of the
first argument x by the second argument y. I.e. y is stored
in the address part of the location pointed to by the first
argument. The value of rplaca is NIL.

rplacd[x;y] : machine language

This pseudo-function replaces the decrement part of the
first argument x by the second argument y. I.e. y 1is stored in
the decrement part of the location pointed to by the first ar-
gument. The value of rplacd is NIL.
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desc[x;y] : machine language

The function desc (descend) is a function of two arguments,
the first of which must be a list of the atomic symbols A (for
gg;) and D (for ggg). The value of desc is the result of exe-
cuting on the second argument the sequence of car's and cdr's
specified by the first argument. The operation indicated by
the first element of the 1list of A's and D's is executed first.

Illegal 1list structure is not checked for.

desclx;y] = [null[x] — y;atom[x] = error; eqlcar[x];A] —
descl[edr{x];car[y]l]l;T = desc[cdr[x];cdr(y]]]

pick[x;y]

The function pick finds the atomic symbol, x, in the list
structure, y. The value of pick is a list of A's (for car) and
D's (for cdr) which give the location of x in y. This value
could be used for example as the first argument of desc.

Example:

pick[v; (((u,v)),w)] = (A,A,D,A)

pick[x;y] = [nullly] = NOj;equallx;y] — NIL;atom[y] — NO;
T = A[[j];[equall j;NO] = A[[k];[equallk;NO] = NO;
T = cons[D;k]]][pick[x;edr[y]]];T = cons[a;3]1]]
[pick[x;carly]]l]]

proplx;y;ul : machine language

The function prop searches the list x, for an item identical
with y. If such an element is found, the value of prop is the
rest of the list beginning immediately after the element. Other-
wise the value is u, where u is a function of no arguments.

proplx;y;ul = [null[x] = ull;eqlcar(x];y] = cdr[x];
T — proplcdr(x];y;ull
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remprop[x;p]

The function remprop searches the list, x, looking for all
occurrences of the property p. When such a property is found,
its name and the succeeding element are removed from the list.
The two "ends" of the list are tied together as indicated by
the dashed line below,

‘>name of the property

The value of remprop is NIL.
remprop[x;p] = rempi[x],
where,

rempl[x] = [null[xJAuli[cdr[x]] = NIL;cadr[x] = p —
prog2[rplacd[x;[null[cddr[x]] = NIL;T —
cdddr[x]]];rempai(x]];T = rempi[cdr[x]]] ,

where prog2[u;v] has the value v, and uses u to effect an action.

set[x;yl : machine language
setq[x;y] : machine language; special form

The set and setq functions are used to change the values
of the program variables when using the program feature (see
Section 4.5). The program variables are initially bound to
null lists.

Note that (in S-expression form),

(SET, (QUOTE,V),e) = (SETQ,V,e)

[



-137-

intv[x] : machine language; special function
The function intv finds the address of the value of the
integer on the association list of x.

intv[x] = caar[propledr(x];INT;error]]

flvallx] : machine language

The function flval finds the address of the floating-
point number on the association list x. The wvalue of flval
is the address of the floating-point number.

The program for flval is

flval(x] = progll[];
not[atom[x]] = return[error]
Bl nulll[cdr[x]] = returnlerror]
x = cdr[x]
car[x] # FLO — go[B1]
return[cadr(x]]

tsflot[x] : machine language _

The proposition tsflot is true if the association list for
x contains FLO pointing to a floating-point number. Otherwise
the proposition 1s false.

The program for tsflot 1s

tsflot = progll[];
not[atom[x]] = return[F]
B1 nulllx] = return[F]
car[x] = FLO = return[T]
x = cdrx]
go[B1]
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count : machlne language

The function count is a function of no arguments. Its
value 1is identically zero. 1Its effect is to turn on the CONS
counter. If the counter 1s already on, count resets the
counter to zero.

The CONS counter 1s a counter which is incremented every-
time a word 1s constructed by the LISP system and put into
free storage. Thils counter is to some extent a measure of
the length of a program and an indicator of the amount of
free storage 1t is using up.

uncount : machine language

The function uncount of no arguments turns off the CONS
counter. See the function count for a description of this
counter,

speak : machlne language

The function speak of no arguments, causes the contents
of the CONS counter to be printed on-line or off-line depend-
ing on the sense-switch settings. See the function count for
a description of this counter.

compsrch(x;d; f;ul

The function compsrch composes an S-expression which will
be interpreted by the APPLY operator as a search. The purpose
of this new function is to speed up the operation of the search
on its recursive paths. The search, at each recursion, re-
quires the APPLY operator to rebind all of the variables x, 4,
f, and u, whereas generally only the X need be revised. The
search in compsrch rebinds only the x at each recursion.

)
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The program for compsrch has the program variable v and
is the following:

compsrch[x;d;f;u]l = prog(lv];
Vv = gensym (see the function gensym)
return[defi[x;[searchf[x;v;subst[v;car[bndv[d]];
form[d]];subst[v;car[bndv[f]];form[£]];form[ul]]]]

In this program the PRO of defl has been tied to EXPR on the
p-list.

Note that compsrch avoids the rebinding of d and f by
substituting the uniquely generated atomic symbol for v into
d and f.

The functions searchf. bndv, and form are described below.

As an example of the use of compsrch, assume that a func-
tion, called FINDNAME, 1s to be defined for the interpreter,
where FINDNAME is to search any list for PNAME and have the
portion of the llst pointed to by PNAME as its value.

Below are examples of how this function may be defined
(using the APPLY operator), by using DEFINE, and then, on the
other hand, by using COMPSRCH.

DEFINE

(FINDNAME, (LAMBDA, (L), (SEARCH,L,
(FUNCTION, (LAMBDA, (J), (EQ, (CAR,J), (QUOTE,PNAME)))),
(FUNCTION, (LAMBDA, (J), (CADR,J))),
(FUNCTION,ERROR)
)))

or

COMPSRCH

(FINDNAME,

(LAMBDA, (J), (EQ, (CAR,J), (QUOTE,PNAME)) ),

(LAMBDA, (J), (CADR,J)),

(LAMBDA, (),ERROR),

()
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bndv[x]
This function has been introduced into the function
compsrch as a functlion whose form later may change.

bndv = cadr[x]

form[x]
This function has been introduced into the function
compsrch as a function whose form later may change.

form[x] = caddr[x]

searchf[x;v;p;f;ul
See the function compsrch; the function searchf is the
fast search whose S-expression 1s set up by compsrch.

searchf[x;v;p;f;ul = A[[x;v;p;f;ul;sublisl ((NAME,x), (VAR,vV), (PF,p),
(FF,f), (UF,u)); (LAMBDA, (VAR), (COND,
((NULL,VAR),UF), (PF,FF), (T, (NAME,

(CDR,VAR)))))1]]

cpl : machine language
The function cpl copies into free storage a list of the
following special two-level form (see the function eql), where

each element of the top level points to a full word.

]

Y

| -

—>4full word L>{Full word |
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The value of c¢cpl 1s the location of the copled list.

epi[x] = [null[x] = NIL;T = cons[consw[cwr[car[x]]];
cpiledr[x]]]] ’

(Here cwr[n] is the 36-bit contents of register n.)

consw : machine language .

The function consw (construct word) is not strictly
grammatical in the LISP-sense., It takes the contents of the
AC and sends them to the next free storage location. As with
cons the value of consw is the location of the stored word.

gensym : machlne language

The function gensym has no arguments. 1Its value is a
new, distinct, and freshly-created atomic symbol with a print
name of the form GO0001,G0002,...,G9999.

This functlon is useful for creating atomic symbols when
one 1s needed; each one is guaranteed unique.

tracklist[x] : See Section 5.2

The function tracklist is a function of one argument
which 1s a list of the LISP functions to be traced. Each
function mentioned in the list must be a function which has
EXPR, FEXPR, SUBR, or FSUBR on 1its association 1list. The
value of tracklist 1s a list of the routines it will be able
to trace.

makecblr[x]
This function ("make car or cdr abler") uses the function
desc to speed up and improve functions such as caar or caddr,

etec. The argument x is a list of pairs of the form, for
example,



~14o-

((caar, (A)A)): (cadr, (D,A)): (cader (D:D:A))) MR | )'

The function makcblr takes this list and on the association
list of the first element of each palr puts EXPR followed by
the lambda expression,

A [ 3];desc[waY; 311,

where the second list of the pair has been substituted for
WAY. The function funarg is used below to bind the PRO used
by defl to EXPR.

makeblr[x] = funarg[A[j]l;maplist[j;A[[k];defi[car[car[k]];
subst[car[cdr[car[k]]];WAY;
(LAMBDA, (J), (DESC, (QUOTE,WAY),K))11111];
( (PRO,EXPR) ) ]

prog2[x;y]
The value of prog2 is always the value of the second ar-

gument y, but the expression for the first argument x is
evaluated first. x generally is used to effect some action.
Cf. the use of prog2 in the function printprop.

9.4 Functions on the Supplementary LISP System

compab[x;y;z] : machine language

The function compab is a predicate whose value is true if
the absolute value of the difference between x and y is less
than 2z, and whose value is false otherwise. x, y, and z are
all floating-point numbers.

LY
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greater[p;q] : machine language

The function greater is a predicate whose value is true
if the fifteen-bit quantity p is greater than the fifteen-
bit quantity q. Otherwise, the value of greater is false.
This function 1s useful for ordering atomic symbols in a list,
e.g. to put the l1list in some canonical form for comparison
with other such lists.

larger[x;y] : machine language

The predicate larger is true if list x is larger than
list y, and false otherwise. Larger 1s used, as one may note
in the definition below, to mean either that some pair of
corresponding elements obey the greater relation, or, if this
is not relevant, that the list x 1is the longer.

larger(x;y] = [null[x] = F;nullly] — T;atom[x]Aatom(y] —
greater[x;yl;atom[x] — F;atom[y] = T;
larger[car[x];carly]] = T;larger{car(y];
car[x]] = F; T = larger[cdr[x];cdr(y]]]

smplfy[x] : machine language

The function smplfy takes the algebraic expression x and
simplifies it. The resultant expression is the value of
smplfy.

The notation allowed in the algebraic expression is any
compounding of the following modified polish notation:

(TIMES,A,B,C); (any number (>1) of arguments)
(PLUS,A,B,C); (any number (>1) of arguments)

(MINUS, X)
(POWER,X,Y) = X*
(RECIP,X) = —%

X
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For example,

(a)(b)(—%—) - g is written as

(PLUS, (TIMES,A,B, (RECIP,C)), (MINUS, (POWER,D,E)))

For further discussion of the smplfy function, see
Goldberg, Solomon H., "Solution of an Electrical Network using
a Digital Computer", S.M. Thesis, Course VI, M.I.T., August,
1959.

distrble;p] : machine language

The function dstrb will distribute conditionally the
products of sums appearing in the expression e. The proposi-
tion p determines whether a given sum is to be distributed.
Thus in the following example let the proposition p of a sum
be that "if y is included in a sum, do not distribute this
sum", then

(x+a) (y+z+b ) (w+2) distributes to
(xw) (y+z+0 )+ (2x) (y+2z+0 )+ (aw) (y+z+b )+ (22) (y+2+b)

For the correct notation for sums and products 1iIn LISP see
above under the function smplfy.

diff{y;x] : machine language
The function diff differentiates the algebraic expression

y, with respect to x. The value of diff is the (unsimplified)
3y

ax
the association lists of all the functions used in the expres-

sion, y, except for PLUS and TIMES. See the notation and
reference given under smplfy.

algebraic expression, Gradients must be provided on
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matrixmultiply[x;y] : machine language
This function has as value a matrix which is the product

of the row matrix, x, and the column matrix, y. The two ma-
trices are entered either as direct functional arguments in
matrixmultiply or from being given on the p-list. For ex-

ample, 1f the matrix
A= 411 21 343
8s1 8pp 83
831 32 233

is to be multipliéd by itself, the two arguments, for the
APPLY operator are in the form

X
Yy

(MATRIX, (ROW1,A11,A12,A13), (ROW2,A21,A22,A23), (ROW3,A31,A32,A33))
(MATRIX, (COL1,A11,A21,A31), (COL2,A12,A22,A32), (COL3,A12,A23,A33))

Actually any atomic symbols may be used in place of ROW or COL.
It is only necessary that the rest of each sublist be the ele-
ments of the row matrix and the column matrix to the right or-
der. See page 126 of the following reference where this func-
tion was developed,
Goldberg, Solomon H., "Solution of an Electrical Network
using a Digital Computer", S.M. Thesis, Course VI, M.I.T.,
August, 1959.

reduce[m] : machine language

The function reduce reduces an nxn matrix to an (n-1)x
(n-1) matrix. The function has been used in electrical net-
work reduction. See the references under reducetonxn below.
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reducetonxn{m;n] : machine language

This function uses the function reduce to reduce a square
matrix m to an nxn matrix whose rank is less than that of m.
The argument n must be given in floating-point form. This
function has been used in electrical network reductlon, see

Edwards, Daniel J., "Symbolic Circuit Analysis with the

TO4 Electronic Calculator", S.B. Thesis, Course VI, M.I.T.,

June, 19539.

Goldberg, Solomon H., "Solution of an Electrical Network
using a Digital Computer", S.M. Thesis, Course VI, M.I.T.,
August, 1959.
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GENERAL INDEX

Active register, 96
APPLY operator, 37
APVAL, 46, 89
APVAL1, 46, 89
Arguments

functional, 21

number of, 107
Arithmetic functions, 126
Association 1list, 84, 88-95
Atomic function; see Functions, atomic
Atomic symbol, 10

list of, 88

Base memory image, 67
Bound variable; see Variable, bound

Card punching, 65
Collapsing-list function, 99
Comma
omission of, 24, 66
Compiler, 53-64
functions, 129-130
Compound function; see Functions, compound
Conditionals, 4, 107
in program feature, 56
Cons counter, 109, 138
Conversion, see Numbers, conversion of
CRD, 67
cwr, 115

-151-
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GENERAL INDEX

Debugging; see Tracing
Definition of functions, 23, 40-43, 9i, 119
at run time, 105
error indication, 107, 108
Differentiation, 22, 14k
Dot notation, 24, 84, 88
Dummy variable; see Variable, dummy

Elementary functions, 12
Error indications, 107-112
EXPR, 41, 44, 53, 91

FEXPR, 48

FIN, 67

Findex, 93

Flexowriter, 71-82

FLO, 49, 92

Floating-point numbers; see Numbers
FLX, 67

Forms, 7

Fortran, 50

Free storage, 60, 95-97

Free variable; see Variable, free
FSUBR, 48

FUNARG, 45, 133



GENERAL INDEX

Functions, 3
alphabetic list of, 147-150
arguments for, 107
atomic, 44
compound, 44
computable, 14
definition; see Definition of functions
partial, 3
pseudo-, 43
recursive, 3, 5, 9
use of, 24, 37

Garbage collector, 89, 95-97, 111
GO, 50-51
fresh, 74

Input-output functions, 126
INT, 90

Integers, 49, 90, 137
Ioflex, 77

Ioflip, 77

Label, 9, 17, 43, 45, 47
Lambda, 8, 17, 45
LCON deck, 66
Length-of-1list function, 50, 104
LISP-SAP, 54
List, 11, 16
of atomic symbols, 88
of floating-point numbers, 92
operations on a, 121-125

-153-
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GENERAL INDEX
List structure, 83-95

M (meta) - expressions, 12
translation to S-expressions, 17
for program feature, 53

Macro, 57

MINUS, 49, 92

NUMB, 92

Numbers, 49-50, 137
assoclation list for, 92
conversion of, 112
floating-point, #49-50, 92
list of floating-polint numbers, $2
range of, 50

See also: Arithmetic functions, Integers

Object, 88
Overlord, 111

p-list, 20, 37, 45-47

Partial function; see Functions, partial

Performance request card, 69
PNAME, 89-90, 92

Polish notation, 21
Predicates, 4, 114

Program feature, 50-53, 133

Program varlable; see Varlable, program

Property list, 88
See Assoclation 1ist



GENERAL INDEX

Propositional
calculus; see Wang algorithm
connectives, 4, 7
expression, 4
Pseudo-function; see Functions, pseudo-
Push-down 1list, 59, 109

Quote, 17, 24, 40, 48

Recursive function; see Functions, recursive

Request card, 69

REM

RETURN, 50-51
Reversing-list function, 103

S (symbolic) - expressions, 10
translation from M-expressions, 17
represented by list structure, 83-86

Sequence-mode, 73

SET, 67

Set, 51, 107

Setq, 51, 107

Special forms, 48, 131-134

STOP, 66

SUBR, 41, 44, 54, 90

Supplementary system, 142

Switches, 69

_155_.
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GENERAL INDEX

Tapes, 68

TEN-mode, 75

Tracing, 25, 70
Tracklist, 25, 70
Triplet, 40

TST, 66

TXL to subroutine, 41, 54

Variable
bound, 8, 9
dummy, 8, 46
free, 8, 37, 108
program, 51

Wang algorithm, 25





