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Abstract

Many modern data sets require inference methods that can estimate the shared and individual-
specific components of variability in collections of matrices that change over time. Promis-
ing methods have been developed to analyze these types of data in static cases, but only a
few approaches are available for dynamic settings. To address this gap, we consider novel
models and inference methods for pairs of matrices in which the columns correspond to
multivariate observations at different time points. In order to characterize common and
individual features, we propose a Bayesian dynamic factor modeling framework called Time
Aligned Common and Individual Factor Analysis (TACIFA) that includes uncertainty in
time alignment through an unknown warping function. We provide theoretical support
for the proposed model, showing identifiability and posterior concentration. The structure
enables efficient computation through a Hamiltonian Monte Carlo (HMC) algorithm. We
show excellent performance in simulations, and illustrate the method through application
to a social mimicry experiment.
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1. Introduction

Many fields are routinely collecting matrix-variate data and asking questions about the
similarity between subsets of those data. As the collection of these types of data expands,
so does the need for new statistical methods that can capture the shared and individual-
specific structure in multiple matrices, especially when matrices in a collection consist of
multivariate observations collected over time. Here, we are motivated by the particular
challenge of measuring the coordination between two people interacting dynamically. Many
scientific questions require measurements of how similar the movements and expressions of
two people are in these cases, because such similarity has been shown to be related to many
interested phenomena and behaviors, including much people like each other or cooperate
(Lakin and Chartrand, 2003; Johnston, 2002; Marsh et al., 2016). To address these ques-
tions, videos of social interactions are typically recorded, and the coordinates of different
facial and body features from each individual in the pair are extracted over time. The
data for each individual form a matrix, with the columns corresponding to different time
points. One component of the variability in the two matrices will be attributable to shared
structure, such as the patterns in which lips tend to move during conversation. Another
component will be attributable to variability specific to each individual, such as differences
in smile shapes, camera placements, sitting postures, and head sizes. When people inter-
act, they often subconsciously imitate each other, but who initiates the imitation and the
speed at which the imitation occurs varies over time. Thus, modeling the similarity in these
paired dynamic matrix-variate data requires a strategy that can accommodate: 1) complex
multivariate dependence among variables, and 2) dynamic time-varying lags between the
two multivariate time series. Although our motivating example is from human social in-
teractions, similar challenges are posed by other types of paired multivariate data, such as
that collected in animal behavior studies, cellular imaging studies, finance, or handwriting
recognition where there is interest in how similar the behaviors of two mice, the spiking of
two cells, the rates of two stocks, or samples of two signatures are.

The individual-specific spaces will account for the variations due to camera placements,
sitting postures, head size/shape, etc. Likewise, the time lag between the two participants
may also change depending on the change in the direction of mimicry, complexity of the
gesture, etc. In one of our real data illustrations, we have participants switching their
roles as leader and follower in the middle of their mimicry session. Thus, analyzing these
paired dynamic matrix-variate data requires a strategy that can accommodate two signif-
icant challenges: 1) complex multivariate dependence among variables, and 2) dynamic
time-varying lags between the two multivariate time series. Here, dynamic time-varying lag
refers to the situation when the lag dependency order between the two multivariate time
series changes over time. Although our motivating example is from human social interac-
tions, similar challenges are posed by other types of paired multivariate data, such as that
collected in animal behavior studies, cellular imaging studies, finance, or speech, gesture,
and handwriting recognition.

Joint and Individual Variation Explained (JIVE) (Lock et al., 2013) and Common and
Individual Feature Analysis (CIFA) (Zhou et al., 2016) were developed to capture shared and
individual-specific features in pairs of multivariate matrices. In the case of JIVE, the data
Xi’s are decomposed into three parts: a low-rank approximation of joint structure Ji, a low-
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rank approximation of individual variation Si, and an error Ei under the restriction JSTi = 0
for all i. Here J is the matrix stacking Ji’s on top of each other. The CIFA decomposition
defines a matrix factorization problem: minA,Ai,Bi,B̃i

‖Yi − (A,Ai)
T (Bi, B̃i)‖2F under the

restriction that ATAi = 0 for all i, with ‖ · ‖F denoting the Frobenius norm. Thus, the
shared subspace of the data matrix Yi in the CIFA decomposition is ABi and the individual
specific subspace is characterized by AiB̃i. Due to the assumed orthogonality between
the columns of A and Ai, the shared and individual-specific spaces become orthogonal.
Extensions of these methods are proposed in Li and Gaynanova (2018) and Feng et al.
(2018). Related approaches have been used in behavioral research (Schouteden et al., 2014),
genomic clustering (Lock and Dunson, 2013; Ray et al., 2014), railway network analysis
(Jere et al., 2014), etc. In most cases, frequentist frameworks are used for inference, the
methods are not likelihood-based, and the focus is on static data. De Vito et al. (2021)
developed a method for multigroup factor analysis in a Bayesian framework, which has some
commonalities with these approaches but does not impose orthogonality.

One way to accommodate time-varying lags is to temporally align the features in a shared
space, avoiding the need to develop a complex model of lagged dependence across the series.
However, time alignment is a hard problem. Typically, alignment is done in a first stage,
and then an inferential model is applied to the aligned data (Vial et al., 2009). However,
such two-stage approaches do not provide adequate uncertainty quantification. Trigeorgis
et al. (2017) also considered a problem of time aligned image analysis. Their proposed loss
function combines costs for non-linear discriminant analysis and dynamic time warping.
They further modelled the unknown non-linear functions using deep neural-nets. Unlike
our approach, their method does not adjust for individual-specific variations.

Several approaches have been proposed to model warping functions. Tsai et al. (2013)
used basis functions similar to B-splines with varying knot positions, using stochastic search
variable selection for the knots. This makes the model more flexible, but at the cost of very
high computational demand. Kurtek (2017) put a prior on the warping function based
on a geometric condition and developed importance sampling methods. Extending their
geometric characterization to the multivariate case is not straightforward; hence it is difficult
to extend their method to our setting. Lu et al. (2017) use a similar structure in placing a
prior on the warping function.

Bharath and Kurtek (2017); Cheng et al. (2016) put a Dirichlet prior on the increments
of the warping function over a grid of time points. Thus, the estimated warping function
is not smooth. Also, when the warping function is convolved with an unknown function,
computation becomes inefficient due to poor mixing. The concept of warplets of Claeskens
et al. (2010) is very interesting. Nevertheless, this method also suffers from a similar
computational problem.

For multivariate time warping, Listgarten et al. (2005) proposed a method based on a
hidden Markov model. Other works propose to use a warping based distance to cluster
similar time series (Orsenigo and Vercellis, 2010; Che et al., 2017). Unfortunately, these
algorithms require the two time series to be collected at the same time points. In addition, it
is difficult to avoid a two-stage procedure, since there is no straightforward way to combine
a statistical model with the warping algorithms.

Gervini and Gasser (2004) modeled the warping function as M(t) = t +
∑

j sjfj(t),
where fj(t)’s are characterized using B-splines with the sum of the sj ’s equal to zero. For
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identifiability, they assumed restrictive conditions on the spline coefficients and did not
accommodate multivariate data. Telesca and Inoue (2008) developed a related Bayesian
approach, but their structure makes it difficult to apply gradient-based MCMC, and finding
a good proposal for efficient sampling is problematic.

We propose to estimate the similarity between two multivariate time series with time-
varying lags using a Bayesian dynamic factor model that incorporates time warping and
parameter estimation in a single step. Our proposed dynamic factor model is different
from traditional state-space models (Aguilar and West, 2000). Instead of assuming any
Markovian propagation of the latent factors, we assume the latent factors to vary smoothly
over time t. We further assume the multivariate time series have both time-aligned shared
factors and individual-specific factors. Estimating the shared factors is to assess similarity
between the time series, while the main goal of the individual factors is to ensure the in-
ference is robust. The resulting model reduces to a CIFA-style dependence structure, but
unlike previous work, we accommodate time dependence and take a Bayesian approach to
inference. Key aspects of our Bayesian implementation include likelihood-based estima-
tion of shared and individual-specific subspaces, incorporation of a monotonicity constraint
on the warping function for identifiability, and development of an efficient gradient-based
Markov chain Monte Carlo (MCMC) algorithm for posterior sampling.

We align the two time series by mapping the features of the shared space using a
monotone increasing warping function M : [0, 1] → [0, 1]. If we have two univariate
time-varying processes a(t) and b(t), then the warping function M is generally computed
as the minimizer of d(a(t), b(M(t))) for some distance metric d. To ensure identifiability
of M in this minimization problem, we need to further assume that M(0) = 0,M(1) = 1
and M(t) is monotone increasing. This flexible function M(t) can accommodate situations
where the time lags between the multivariate time series change sign and direction. Our
monotone function construction differs from previous Bayesian approaches (Ramsay et al.,
1988; He and Shi, 1998; Neelon and Dunson, 2004; Shively et al., 2009; Lin and Dunson,
2014), motivated by tractability in obtaining a nonparametric specification amenable to
Hamiltonian Monte Carlo (HMC) sampling.

In general, posterior samples of the loading matrices are not interpretable without
identifiability restrictions (Seber, 2009; Lopes and West, 2004; Ročková and George, 2016;
Fruehwirth-Schnatter and Lopes, 2018). To avoid arbitrary constraints, which complicate
computation, one technique is to post-process an unconstrained MCMC chain. Aßmann
et al. (2016) post-process by solving an Orthogonal Procrustes problem to produce a point
estimate of the loading matrix, but without uncertainty quantification. We consider to post-
process the MCMC chain iteratively so that it becomes possible to draw inference based on
the whole chain. Apart from the computational advantages, we also show identifiability of
the warping function in our factor modeling setup both in theory and simulations. More-
over, our identifiability result is more general than the result in Gervini and Gasser (2004)
as we do not assume any particular form of the warping function other than monotonicity
and also it has been derived in a multivariate setting.

In section 2 we discuss our model in detail. Prior specifications are described in Section 3.
Our computational scheme is outlined in Section 4. Section 5 discusses theoretical properties
such as identifiability of the warping function and posterior concentration. We study the
performance of our method in two simulation setups in Section 6. Section 7 considers
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applications to human social interaction datasets. We end with some concluding remarks
in Section 8. Supplementary Materials have all the proofs, additional algorithmic details,
and additional results.

2. Modeling

We have a pair of p dimensional time varying random variables xt and yt. We propose to
model the data as a function of time varying shared latent factors, η(t) = {η1(t), . . . , ηr(t)},
and individual-specific factors, ζ1(t) = {ζ11(t), . . . , ζ1r1(t)} and ζ2(t) = {ζ21(t), . . . , ζ2r2(t)}.
We do time alignment through the shared factors in η(t) using warping functions M1(t), . . . ,
Mr(t). Here Mi is the warping function for the latent variable ηi.

Latent factor modeling is natural in this setting in relating the measured multivariate
time series to lower-dimensional characteristics, while reducing the number of parameters
needed to represent the covariance. Since we are using the warping function to align the
time-varying factors of the shared space, to ensure identifiability, the individual-specific
space and the shared space are required to be orthogonal. Thus, the corresponding loading
matrices of the two orthogonal subspaces are assumed to have orthogonal column spaces.
Let Λ be the loading matrix of the shared space. Then the shared space signal belongs to
the span of the columns of Λ with weights as some multiple of the shared factors η(t) =
{η1(t), . . . , ηr(t)}. An element from the time-varying shared space can be represented as∑r

j=1 ajΛ.jηj(t) for some constant (a1, . . . , ar) ∈ Rr where Λ.j is the j-th column of Λ.
Alternatively it can also be written as ΛΞ1β(t), where Ξ1 is a diagonal matrix with entries
(a1, . . . , ar). The individual-specific space is assumed to be in the orthogonal subspace of the
column space of Λ. Thus we use the orthogonal projection matrix Ψ = 1−Λ(ΛTΛ)−1ΛT

to construct the loading matrix of the individual-specific part of each signal. The loading
matrix for the individual-specific space xt is assumed to be ΨΓ1 for some matrix Γ1 of
dimension p×r1, where r1 is the rank. The corresponding loading matrix for the individual-
specific space of yt is ΨΓ2, with Γ2 being a p × r2 matrix with r2 the rank. The shared
signals of xt and yt are Λη(t) and Λη1(t). In order to align the two shared spaces, we
further assume that the factors in η1(t) are a warped version of the factors in η(t). For
simplicity, we assume that there is a single warping function that holds for all the latent
factors.

The warping function M : [0, 1] → [0, 1] is assumed to be monotone increasing, which
is important for identifiability. As motivation, consider the case of social interactions.
People often imitate each other subconsciously. In a normal conversation, people take turns
mimicking each other without knowing it. Let us assume that A and B are playing a game
where they take turns mimicking each other so that sometimes A mimics B and sometimes
B mimics A. This motivates us to model this mimicry to assess how similar A and B’s
gestures are. By the definition of a warping function, if person A makes a gesture at time t,
person B does the same gesture at M(t). If one person mimics the other almost instantly,
we must have t = M(t). Hence, in Figure 1, the dashed line through the origin with slope
one corresponds to the case when there is no lag among the participants. However such
instantaneous mimicry is often unrealistic. Thus it might be either t < M(t) or t > M(t)
depending on whether individual A or B makes the gesture for the first time. A method
that models this mimicry would need to be able to account for the fact that the roles change
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dynamically over time. In Figure 1, we illustrate behavior of the warping function in two
possible experimental situations that we consider in our real data illustration. Hence, panel
(a) shows the warping function when one individual is mimicking the other for the first
part of the experiment, and then the leader shifts. In the panel (b) experiment, the leader
remains the same throughout. Both of these functions are estimated based on real data.

(a) The direction of mimicry changes (b) The direction of mimicry does not change

Figure 1: Estimated warping functions for two social mimicry experiments (solid lines). The
dashed line is when individual 1 has perfectly aligned behaviors as individual 2.

To model a smooth monotone increasing warping function bounded in [0, 1] such that
M(0) = 0 and M(1) = 1 we use a B-spline expansion with J many bases as follows,

M(t) =
J∑
j=1

γjBj(t), γij =

∑j
`=2 exp(κ`)∑J
k=2 exp(κk)

, γ1 = 0,

where Bj(·)’s are B-spline basis functions and κk ∈ (−∞,∞). To restrict M(t) to be
monotone increasing and bounded between [0, 1], it is sufficient to have the B-spline coef-
ficients {γj}Jj=1 be monotone increasing in index j and bounded between [0, 1] (De Boor,
1978). This construction restricts M to be a smooth monotone increasing function such
that M(0) = 0 and M(1) = 1. These are the desired properties of a warping function. A
short review on B-splines is provided in Section 1 of the supplementary materials.
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For simplicity, we consider a single warping function for all the shared latent variables.
The complete model that we consider is

xt =ΨΓ1ζ1(t) + ΛΞ1η(t) + ε1t, (1)

yt =ΨΓ2ζ2(t) + ΛΞ2η(M(t)) + ε2t, (2)

ζij(t) =

Ki∑
j=1

βiljBj(t), i = 1, 2; j = 1, . . . ri, (3)

ηi(t) =
K∑
j=1

βijBj(t), (4)

M(t) =

J∑
j=1

γjBj(t), (5)

γj =

∑j
l=2 exp(κl)∑J
k=2 exp(κk)

, γ1 = 0, (6)

εit ∼N(0,Σi), Σi = diagonal(σ2
i1, . . . , σ

2
ip), (7)

where Λ, Γ1,Γ2 are static factor loading matrices of dimension p × r,p × r1 and p × r2,
respectively, with Ψ = Ip −Λ(ΛTΛ)−1ΛT ; Ξ1 and Ξ2 are r× r diagonal matrices; r is the
number of shared time varying latent factors and r1, r2 are the number of individual-specific
latent factors for the 1st and 2nd individual, respectively; the error variances are given by Σ1

and Σ2. In (1) and (2), we define η(t) = {ηi(·) : 1 ≤ i ≤ r} as the vector of shared time-
varying factors. Similarly, we define the individual-specific array of time-varying factors
ζ1(t) = {ζ1j(·) : 1 ≤ j ≤ r1} and ζ2(t) = {ζ2j(·) : 1 ≤ j ≤ r2}. In (3), we denote the
number of B-spline bases to model individual-specific factors of the i-th individual by Ki.
To model the shared time-varying latent factors, ηi(·)’s, we use K B-spline bases in (4). The
number of bases to model the warping function in (5) is J . The constraint γ1 = 0 ensures
M(0) = 0 and the softmax type reparametrization ensures monotonicity. Under the above
characterization, we have ηi(M(t)) =

∑K
j=1 βijBj{

∑J
`=1 γ`B`(t)}.

A schematic representation of our proposed model is shown in Figure 2. We project the
individual-specific loading matrices on the orthogonal space of the shared space spanned
by columns of Λ using Ψ. The data are collected over T time points longitudinally for
individual 1 and 2 respectively, and X and Y are p × T and p × T dimensional data
matrices. Correspondingly, ΨΓ1ζ and ΛΞ1β are the individual-specific mean and shared
space mean of X, respectively. The columns of these two matrices are orthogonal due to
the orthogonality of Ψ and Λ. Since ζ1(t) and η(t) are modeled independently, the rows of
the two means are also independent in probability. A similar result holds for Y . Thus, this
model conveniently explains both joint and individual variations.

The loading matrix Λ identifies the shared space of the two signals. We assume a single
shared set of latent factors η(t) for both Xt and Yt. The warping function M(t) aligns those
for the Yt series relative to the xt series. Then we have individual-specific factors ζ1(t), ζ2(t)
and factor loading matrices ΨΓ1,ΨΓ2 that can accommodate within series covariances in
x(t) and y(t). We call our proposed method Time Aligned Common and Individual Factor
Analysis (TACIFA).
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Figure 2: A schematic representation of our proposed model where the dimensions of
the matrices are illustrated at the bottom right corner, and η(M) stands
for time aligned factors from η using the warping function M(t) and Ψ =
Ip − Λ(ΛTΛ)−1ΛT . The dimensions of the individual matrices, Λ, Γ1,Γ2 are
p×r,p×r1 and p×r2 respectively. The other two matrices Ξ1 and Ξ2 are r×r di-
agonal matrices. Additionally, in the Figure, X = [x1; · · · ; xT ],Y = [y1; · · · ; yT ],
ζ1 = [ζ1(1); · · · ; ζ1(T )],ζ2 = [ζ2(1); · · · ; ζ2(T )] and η = [η(1); · · · ;η(T )]

3. Prior specification

We use priors similar to those in Bhattacharya and Dunson (2011) for Λ, Γ1 and Γ2 to
allow for automatic selection of rank. We try to maintain conjugacy as much as possible
for easier posterior sampling. For clarity, we define κ = {κj : 2 ≤ j ≤ J} and β = {βij :
1 ≤ j ≤ ri, 1 ≤ i ≤ 2, } The detailed prior description for κ,β,Λ,Ξ1,Ξ2,Γ1,Γ2,σ1 and σ2

is described below,

Λlk|φ1,lk, τ1k ∼ N(0, φ−1
1,lkτ

−1
1k ), 1 ≤ l ≤ p, 1 ≤ k ≤ r, (8)

φ1,lk ∼ Gamma(ν1, ν1), τ1k =
k∏
i=1

δmi, 1 ≤ l ≤ p, 1 ≤ k ≤ r, (9)

δ1,1 ∼ Gamma(α1, 1), δ1,i ∼ Gamma(α2, 1), 1 ≤ i ≤ r, (10)

Γ1,lk|φ11,lk, τ11k ∼ N(0, φ−1
11,lkτ

−1
11k), 1 ≤ l ≤ p, 1 ≤ k ≤ r1, (11)

φ11,lk ∼ Gamma(ν1, ν1), τ11k =

k∏
i=1

δmi (12)

δ11,1 ∼ Gamma(α111, 1), δ11,i ∼ Gamma(α112, 1), (13)

Γ2,lk|φ12,lk, τ12k ∼ N(0, φ−1
12,lkτ

−1
12k), 1 ≤ l ≤ p, 1 ≤ k ≤ r2, (14)

φ12,lk ∼ Gamma(ν1, ν1), τ12k =

k∏
i=1

δmi, (15)

δ12,1 ∼ Gamma(α121, 1), δ12,i ∼ Gamma(α122, 1), (16)

σ−2
1l ∼ Gamma(α1, α1), σ−2

2l ∼ Gamma(α2, α2), 1 ≤ l ≤ p (17)

Ξ1,ll,Ξ2,ll, κj , βqkβsiKs ∼ N(0, ω), (18)
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for 1 ≤ k ≤ K,q = 1, . . . , r 1 ≤ j ≤ J , i = 1, . . . , rs,s = 1, 2 and l = 1, . . . , r. Higher values
of αm2 ensure increasing shrinkage as we increase rank.

We initially set the number of factors to a conservative upper bound. Then the multi-
plicative gamma prior will tend to induce posteriors for τ−1

k in the later columns that are
concentrated near zero. Those columns in Λ will tend to zero. Thus, the corresponding fac-
tors are then effectively deleted. The extra factors in the model may either be left, as they
will have essentially no impact, or may be removed via a factor selection procedure which
will remove the columns having entries within ±ζ of zero. We follow the second strategy,
motivated by our goal of obtaining a few interpretable factors. In particular, we apply the
adaptive MCMC procedure of Bhattacharya and Dunson (2011) with ζ = 1× 10−3.

4. Computation

We use Gibbs updates for all the parameters except for Λ and κ; details are provided in
Section 2 of Supplementary Materials. For Λ and κ, we propose an efficient gradient-based
MCMC algorithm. For our proposed model, we can easily calculate the derivative of the log-
likelihood with respect to κ using derivatives of B-splines (De Boor, 1978). This parameter
κ is only involved in the model of yt. The negative of that log-likelihood function including
the prior on κ is

L(κ) =
T∑
t=1

p∑
i=1

1

σ2
2i

[
Yit −Ψ2iζ2(t)− Λ2iη

{ J∑
j=1

∑j
l=2 exp(κl)∑J
k=2 exp(κk)

Bj(t)
}]2

+

∑J
j=2 κ

2
j

2ω2
.

For simplicity in expression of the derivative, let us denote Ait

= Λ2iη
(∑J

j=1

∑j
l=2 exp(κl)∑J
k=2 exp(κk)

Bj(t)
)

and M(t) =
∑J

j=1

∑j
l=2 exp(κl)∑J
k=2 exp(κk)

Bj(t), as defined earlier.

Then the derivative is given by

L′(κj) =−
T∑
t=1

p∑
i=1

1

σ2
2i

(Yit −Ψ2iζ2(t)−Ait)Ait

[
J∑
l=j

Bl(t)

−M(t)

]
exp(κj)/

J∑
k=2

exp(κk) + κj/ω
2.

Let us denote L′(κ) = (L′(κ2), . . . , L′(κJ))′.

Now, we discuss the sampling for Λ. To update the j-th column of Λ, we first rewrite
the orthogonal projection matrix using the matrix inverse result of block matrices as

Ψ = (1−P1)(1−P2)(1−P1)

where P1 = Λ.−j(Λ
T
−jΛ−j)

−1ΛT
.−j and P2 = Λ.j(Λ

T
j (1 − P1)Λj)

−1ΛT
.j . Here Λ.−j is the

reduced matrix after removing the j-th column of Λ and Λ.j is the j-th column. The
negative log-likelihood with respect to Λ.j is
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L1(Λ.j) =
∑
t

p∑
i=1

(X−ΨΓ1ζ1(t)−ΛΞ1η(t))2/(2σ2
1)

+
∑
t

p∑
i=1

(Y −ΨΓ2ζ1(t)− λΞ2η(t))2/(2σ2
2) +

∑
k

Λ2
kj/(2φ1,kjτj),

and the derivative is

L′1(Λkj) =
∑
t

p∑
i=1

(Xti −ΨΓ1ζ1(t)−ΛΞ1η(t))(Bti − η(t))/(σ2
1) +

∑
t

p∑
i=1

(Yti−

ΨΓ2ζ2(t)−ΛΞ2η(M(t)))(Bti − η(t))/(σ2
2) + Λkj/(φ1,kjτj),

where

B =− (1−P1)Q(1−P1)

Q =

{(
(Λ.je

T
k + ekΛ

T
.j)Λ

T
.j(1−P1)Λ.j

− 2ek(1−P1)ΛT
.jΛ.j(1−P1)ΛT

.j

)
/(ΛT

.j(1−P1)Λ.j)
2

}
,

with ek a vector of length p having 1 at the k-th position and zero elsewhere.
Relying on the above gradient calculations we use HMC (Duane et al., 1987; Neal et al.,

2011). We keep the leapfrog step fixed at 30. We tune the step size parameter to maintain
an acceptance rate within the range of 0.6 to 0.8. If the acceptance rate is less than 0.6,
we reduce the step length and increase it if the acceptance rate is more than 0.8. We do
this adjustment after every 100 iterations. We also incorporate removal of columns of Λ,
Γ1 and Γ2 if the contributions are below a certain threshold as described in Section 3.2 of
Bhattacharya and Dunson (2011).

4.1 Post-MCMC inference

Here we discuss the strategy to infer the loading matrix Λ1 = ΛΞ1. The loading matri-
ces are identifiable up to an orthogonal right rotation. This implies that (Λ1,η(t)) and
(Λ1R,R

Tη(t)) for some orthonormal matrix R have equivalent likelihood. In our mod-
eling framework, we may write η(t) = βBt, where β = ((βij))1≤i≤r,1≤j≤K is the coefficient
matrix and Bt = (B1(t), . . . , BK(t)) is the array of K B-spline bases evaluated at t. Thus,
RTη gives us a new array of latent factors with coefficient matrix RTβ. However, the same
likelihood is obtained for values of (Λ1,η(t)) or (Λ1R,R

Tη(t)), implying non-identifiability.

Let Λ
(1)
1 , . . . ,Λ

(m)
1 be m post burn-in samples of Λ1. To address the non-identifiability

problem, we post-process the chain successively moving from the first sample to the last.

First Λ
(2)
1 is rotated with respect to Λ

(1)
1 using some orthonormal matrix R1 such that

‖Λ(1)
1 −Λ

(2)
1 R1‖2F is minimized, where ‖‖2F denotes the Frobenius norm. This minimization

criterion rotates Λ
(2)
1 to make it as close as possible to Λ

(1)
1 . The solution of R1 is obtained

in Theorem 1. Then we post-process Λ
(3)
1 with respect to Λ

(2)
1 R1 and so on.

10
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Theorem 1 The minimizer R1 of the objective function ‖Λ(1)
1 − Λ

(2)
1 R1‖2F is given by

R1 = Q2Q
T
1 , where Q1DQT

2 is the singular value decomposition (SVD) of (Λ
(1)
1 )TΛ

(2)
1 .

The proof of the theorem is in the Section 1.1 of Supplementary Materials. Intuitively,

the columns of Q1 and Q2 are the canonical correlation components of Λ
(1)
1 and Λ

(2)
1 ,

respectively. Thus the rotation matrix R1 rotates Λ
(2)
1 towards the least principal angle

between Λ
(2)
1 and Λ

(1)
1 . For instance, Λ

(2)
1 could be an exact right rotation of Λ

(1)
1 . Thus

before starting to post-process the MCMC chain, we transform Λ
(1)
1 as Λ

(1)
1 U2 such that

U1EUT
2 is the SVD of the residual (xt−Ψ(1)Γ

(1)
1 ζ(t)(1))TΛ

(1)
1 in the same way and here E is

the diagonal matrix with elements in decreasing order. This initial transformation ensures
that the higher order columns of the loading matrix are lower in significance in explaining
the data. Then following the above result, we post-process the rest of the MCMC chain of
the loading matrix on the post burn-in samples successively. In general, SVD computation
is expensive. However, in most applications, the estimated rank is very small. Thus the
computation becomes manageable. After the post-processing, we can construct credible
bands for the parameters. We apply this post-processing step for all the loading matrices.

4.2 Measure of similarity

It is of interest to quantify similarity between paired time series. We propose the following
measure of similarity,

Syn(X,Y)

= 1− 1

pT

∑
l

∣∣∣∣∣∑
t

[
(ΛlΞ1η(t))2

(ΨlΓ1ζ1(t))2 + (ΛlΞ1η(t))2 + σ2
1l

− (ΛlΞ2η(M(t)))2

(ΨlΓ2ζ2(t))2 + (ΛlΞ2η(M(t)))2 + σ2
2l

]∣∣∣∣∣,
where Λl, Ψl denote the lth row of the corresponding matrices and p,T denote number of
features and time points respectively. The measure ‘Syn’ is bounded between [0, 1]. Here,
the difference in relative contribution of each feature on the two shared spaces is considered
as a measure of dissimilarity. Then as a measure of similarity, we consider the difference
of the average dissimilarity from one. Smaller Syn-value would suggest that the warping
function is not able to align the shared space perfectly.

5. Theoretical support

In this section, we provide some theoretical justification for our model. Identifiability of the
warping function is a desirable property as well as posterior consistency.

5.1 Identifiability of the warping function

The following result shows that the warping function M(t) is identifiable for model (2).

Theorem 2 The warping function M(t) is identifiable if η(t) is continuous and not con-
stant at any interval of time.

The proof is by contradiction. Details of the proof are in Section 1.2 of Supplementary
Materials. The assumptions on η(t) are very similar to those assumed for the ‘structural
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mean’ in Gervini and Gasser (2004). The continuity assumption of η(t) can be replaced
with a ‘piecewise monotone without flat parts’ assumption (Gervini and Gasser, 2004). The
proof is still valid with minor modifications for this alternative assumption. In our model
η(t) is varying with time smoothly. Thus M(t) is identifiable.

5.2 Asymptotic result

We study the posterior consistency of our proposed model. Our original model is

xt =ΨΓ1ζ1(t) + ΛΞ1η(t) + ε1t, ε1t ∼ N(0,σ2
1),

yt =ΨΓ2ζ2(t) + ΛΞ2η(M(t)) + ε2t, ε2t ∼ N(0,σ2
2). (19)

We first show posterior concentration of a simplified model that drops Ξ1 and Ξ2. Then
using that result we show posterior concentration of model (19) in Corollary 4. We rewrite
ζ1(t) = ΨΓ1ζ1(t), ζ2(t) = ΨΓ2ζ2(t) and η(t) = Λη(t). Based on the constructions, ζi(t)
and η(t) are orthogonal for i = 1, 2. We consider the following simplified model,

xti =ζ1(ti) + η(ti) + ε1ti , ε1t ∼ N(0,σ2
1ti),

yti =ζ2(ti) + η(M(ti)) + ε2, ε2t ∼ N(0,σ2
2),

for 0 ≤ ti ≤ 1 and i = 1, . . . , n. We study asymptotic properties in the increasing n and
fixed p regime. We need to truncate the B-spline series after a certain level or place a
shrinkage prior on the number of B-splines as Π[K = k] = b′1 exp[−b′2k(log k)b

′
3 ],Π[J = j] =

b1 exp[−b2j(log j)b3 ], Π[Ki = j] = bi1 exp[−bi2j(log j)bi3 ] for i = 1, 2, with b1, b2, b12, b22b
′
1,

b′2, b11, b21 > 0 and 0 ≤ b3, b
′
3, b13, b23 ≤ 1. For b3 = 0 we obtain a geometric distribution

and for b3 = 1, a Poisson distribution.
To study posterior contraction rates, we consider the empirical `2-distance on the regres-

sion functions. The empirical `2-distance for the two sets of parameters (ζ11, ζ21,η1,M1)
and (ζ12, ζ22,η2,M2) is given by

d2((ζ11, ζ21,η1,M1), (ζ12, ζ22,η2,M2))

=
1

n

n∑
i=1

[
‖ζ11(ti)− ζ12(ti)‖22 + ‖ζ21(ti)− ζ22(ti)‖22 + ‖η1(ti)− η2(ti)‖22

+ ‖η1(M1(ti))− η2(M2(ti))‖22
]
.

The smoothness of the underlying true functions ζ10, ζ20, β0 and M0 plays the most
significant role in determining the contraction rate. The fixed dimensional parameters σ1

and σ2 do not have much impact on the rate. The constants b13, b23, b3 and b′3 appearing
in the prior for the number of B-spline coefficients K1,K2,K, J have a mild effect.

Theorem 3 Assume that the true functions ζ10, ζ20,η0 and M0 belong to Hölder classes
of smooth functions and are of regularity levels ι1, ι2, ι and ι′ on [0, 1]. Then the posterior
contraction rate is given by

n−ῑ/(2ῑ+1)(log n)ῑ/(2ῑ+1)+(1−b̄3)/2,

where ῑ = min{ι, ι1, ι2, ι′} and b̄3 = min{b3, b′3, b13, b23}.
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The proof is based on the general theory of posterior contraction as in Ghosal and Van der
Vaart (2017) for non-identically distributed independent observations and results for finite
random series priors (Shen and Ghosal, 2015). Details of the proof are in Section 1.3 of
Supplementary Materials.

Let the parameter space for dynamic latent factors ζ1, ζ2,η be F , which is the class of
real-valued smooth continuous functions on [0,1], and for the warping function M be the
class of [0, 1] bounded smooth monotone continuous functions on [0,1]. Let X̃, X̃, L̃, G̃1, G̃2

be the priors for the matrices Ξ1,Ξ2,Λ,Γ1,Γ2, respectively, and X ,L,G1,G2 are the pa-
rameter spaces of X̃, L̃, G̃1, G̃2, respectively.

Assumption 1: For the true loading matrices and functions, we have

{Ξ10,Ξ20,Λ0,Γ10,Γ20, ζ10, ζ20, β0,M0} ∈ X 2 × L× G1 × G2 ×F3 ×M.

Similarly we can define empirical `2-distance d2
1((Ψ1,Λ1,Γ11,Γ12,Ξ11,Ξ12, ζ11, ζ21,η1,M1),

(Ψ2,Λ2,Γ21,Γ22,Ξ21,Ξ22, ζ12, ζ22,η2,M2)) as d2 for the full model and we have following
consistency result.

Corollary 4 Under the above assumption, the posterior for parameters in the model (19)
is consistent with respect to the distance d1.

For the full model in (19), the test constructions will remain the same as in the proof of
Theorem 3. We only need to verify the Kullback-Leibler prior positivity condition. Within
our modeling framework, Assumption 1 trivially holds. Details of the proof are in Section
1.4 of Supplementary Materials. The posterior contraction rate of this full model will be the
same as the given rate of Theorem 3 as the loading matrices can at most be p×p-dimensional
and we assume p is fixed.

6. Simulation Study

We run two simulations to evaluate the performance of TACIFA on pairs of multivariate time
series. We evaluate TACIFA by: (1) ability to retrieve the appropriate number of shared
and individual factors, (2) accuracy of the estimated warping functions and accompanying
uncertainty quantification, (3) out of sample prediction errors, and (4) performance relative
to two-stage approaches for estimating shared and individual-specific dynamic factors. In
the first simulation, we generate data from the proposed model. In the second simulation, we
analyze two shapes changing over time, data that does not have any inherent connection to
our proposed model. We add two more simulations in Section 4 of Supplementary Materials.
One of these two simulations focus on the case where direction of mimicry is changed. The
other one corresponds to the case where there is no mimicry.

To assess out of sample prediction error, we randomly assign 90% of the time-points to
the training set and the remaining 10% to the test set. Thus, the training set contains a
randomly selected 90% of the columns of the data and the remaining 10% columns will be
in the test set. The two-stage approaches we compare our method to apply JIVE on the
training set in the first stage to estimate the shared space and warp the shared matrices, and
then apply multivariate imputation algorithms (missForest, MICE, mtsdi) in the second
stage to make predictions on the testing data set. We evaluate the performance of naive
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dynamic time warping (based solely on minimization of Euclidean distance), derivative dy-
namic time warping (based on local derivatives of the time data to avoid singularity points),
and sliding window based dynamic time warping. Since our model is the only approach with
a mechanism for uncertainty quantification, we can compare the prediction performance of
TACIFA to two-stage approaches, but we cannot compare uncertainty estimation.

The individual-specific loading matrices are ΨΓ1 and ΨΓ2. The shared space loading
matrices are ΛΞ1 and ΛΞ2. For the (i, j)-th coordinate of a loading matrix A, we define
a summary measure SPi,j(A) =

(
|0.5 − P (A[i, j] > 0)|

)
/0.5 quantifying the “importance”

of the element. Here P (A[i, j] > 0) is the posterior probability estimated from the MCMC
samples of A after performing the post-processing steps defined in Section 4.1. These scores
help to quantify the importance of the factors and to estimate the number of important
factors retrieved by the model.

6.1 Simulation case 1

We generate data from a factor model with the following specifications: ζ1k(t) = sin(kt),
ζ2k(t) = cos(kt) and M0(t) = t0.5, with k varying from 1 to 10. The shared latent factors
ηk(t)’s are set to k-th degree orthogonal polynomials using the R function poly. The factor
loading matrices are of dimension 15×3, with the elements of Γ1,Γ2 generated independently
from N(0, 0.12). The entries in the true Λ are structured as a block diagonal matrix as shown
in the first image of Figure 4, where the non-zero entries are generated from N(15, 0.12). We
vary t from 1/500 to 1 with an increment of 1/500. The data Xt and Yt are generated from
N(Ψζ1+Λη(t), 1) and N(Ψζ2+Λη(M(t)), 1), respectively, where β(t) = (η1(t), η2(t), η3(t))
and Ψ = 1−Λ(ΛTΛ)−1ΛT .

The choices of hyper parameters are ω = 100, αi1 = αi2 = 5 for i = 1, 2. We set
K1 = K2 = J = K and fit the model for 4 different choices of K = 6, 8, 10, 12. The choice
K = 10 yields the best results among all the candidates. The hyperparameters of the
inverse gamma priors for the variance components are all 0.1 which is weakly informative.
We collect 6000 MCMC samples and consider the last 3000 as post burn-in samples for
inferences. We start the MCMC chain setting the number of shared latent factors r = p
as a very conservative upper bound.

First, we evaluate whether our model retrieves the appropriate number of factors. The
true dimension of Λ is 15× 3. Figure 3 suggests that TACIFA retrieves 3 important shared
space factors, as expected. The individual-specific loading matrices in Figure 3 also suggest
approximately three important factors.

Figure 4 illustrates estimated shared loading matrices along with the true loading ma-
trix. The estimated loading matrices roughly match with the true loading structure. The
individual specific loadings, however, are not reliably distinguishable as they are constructed
as (Ip−Λ(ΛTΛ)−1ΛT )Γi. Thus, we only present our results for the shared loading matrix.
Figure 3, however, shows that the ranks of the individual specific loading matrices and the
shared loading matrices are all roughly accurate using the proposed importance measures.
Next, we evaluate the accuracy of our estimated warping function and accompanying un-
certainty quantification. The estimated warping function in Figure 5 is for the training set.
The estimate by TACIFA is clearly the best among all methods tested. In Table 1, we
compare the prediction MSE results of our method with two-stage methods, and show that
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TACIFA has the best performance. Furthermore, Figure 6 illustrates estimated warping
curves for a different true warping function M0(t) = {(0.33 sin(2πt))2 + t2}0.5 which incor-
porates change in direct of mimicry. The TACIFA based estimate is again the best among
all the other competing methods.

Figure 3: Estimated importance measures SP for loading matrices of shared and individual
spaces of Series 1 and 2 in Simulation Case 1. Each column represents each factor.
The columns with higher proportion of red correspond to the factors with higher
importance.

Finally we measure the similarity of the simulated data using the measure described
in Section 4.2. If ζ1k(t) = sin(kt) as above, the similarity is 0.95. To confirm that this
measure is sensitive to the similarity between two time series, as intended, we change the
first multivariate time series relative to the other multivariate time series by changing the
first individual specific latent factors ζ1k(t) systematically, and recalculating the similarity.
When ζ1k(t) = kt, similarity drops from 0.95 to 0.89. When ζ1k(t) = (kt)2, similarity
further reduces to 0.79. The warping function estimated for each of these pairs of time
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Figure 4: Estimated shared loading matrices along with the true loading structure in Sim-
ulation Case 1.

Figure 5: Estimated warping function for simulated data in Simulation Case 1. The black
curve is the true warping function M0(t) = t0.5, the green curve is the estimated
function, 95% credible bands are shown in red. Naive DTW and Sliding win-
dow DTW curves are indistinguishable. Of all the methods tested, the TACIFA
estimated warping function is closest to the true warping function.
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Figure 6: Estimated warping function for simulated data in a setting similar to Simula-
tion Case 1, but with different true warping function. The black curve is the
true warping function M0(t) = {(0.33 sin(2πt))2 + t2}0.5, the green curve is the
estimated function, 95% credible bands are shown in red. Naive DTW and Slid-
ing window DTW curves are indistinguishable. Of all the methods tested, the
TACIFA estimated warping function is closest to the true warping function.

Table 1: Prediction MSEs of the first and second time series in Simulation 1. using two-
stage methods. The top row indicates the R package used to impute, and the
first column indicates the warping method. The two-stage prediction MSEs are
all greater than the TACIFA prediction MSEs (1.01, 1.02).

missForest MICE mtsdi

Naive DTW (6.12, 9.66) (8.65,9.70) (1.03,1.03)
Derivative DTW (6.37, 9.49) (8.06,9.80) (1.03,1.03)
Sliding DTW (7.15, 10.55) (9.61,10.39) (1.03,1.03)
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series deteriorates as the two multivariate time series become more distinct as expected.
Two stage methods do much worse in these cases (Figure 5 of the Supplementary Materials).

6.2 Simulation case 2

In Simulation Case 2, each series reflects a circle changing into an ellipse over time, similar to
a mouth gaping and subsequently closing. The area of the shape is kept fixed by modifying
the major and minor axis appropriately. The area of an ellipse, with a and b as the lengths
of the major and minor axes, is given by πab. Thus to have the area remain fixed we need
ab=constant. We maintain the constant to be 2. With the same true warping function
M0(t) as in the previous simulation, the values for major and minor axes are linked over
time across the two individuals. We let ax(t) = 2(t + 1) where t’s are 500 equidistant
values between 1/500 and 1 and bx(t) = 2/(t + 1); here ax(t) and bx(t) are major and
minor axes of the ellipse at time t corresponding to Xt. At t = 0, it is a circle. For the
second series we then have ay(t) = 2(t0.5 + 1) and by(t) = 2/(t0.5 + 1). We consider the
pair of Cartesian coordinates of 12 equidistant points across the perimeter of the ellipse as
features (yielding 24 features in total). The features correspond to 12 equidistant angles
in [0, 2π). Let θ1, . . . , θ12 be those angles. Then Xit = (ax(t) sin(θi), bx(t) cos(θi)) and
Yit = (ay(t) sin(θi), by(t) cos(θi)).

The choices of hyperparameters and the number of MCMC iterations are all the same
as in the previous simulation case. We again set K1 = K2 = J = K and fit the model
for 4 different choices as before. The best choice based on the out of sample prediction for
this case is K = 8. We have a pair of 24 dimensional time series. The X or Y coordinate
is zero for the following four features θi = 0, π and θi = π/2, 3π/2. Thus, the warping
should not have any effect on these features and should not contribute to the individual-
specific space. The remaining 20 features represent 10 features and their mirror images
with respect to either the major or minor axis. Thus, we might predict that the shared
space should have 10 independent factors, which is consistent with the results displayed in
Figure 6 of the Supplementary Materials. As there are 12 features, the individual-specific
space should ideally have around two important factors. This is the case for one of the
two individual-specific plots in Figure 6 of the Supplementary Materials. For the other
individual, there is one more moderately important factor if we set a threshold of 0.9 on
the importance measure SP. Figure 8 compares the estimates of the warping function when
signal-to-noise ratio is low. Although our estimates perform much better than the rest, the
width of credible bands expands with increasing error variance. Since the magnitudes of
the features are very small, even noise with variance 1 or 1.52 is large.

We plot the estimated warping functions in Figure 7, and plot the estimated shapes in
Figure 9. Figure 7 illustrates that the TACIFA-estimated warping function is once again the
most accurate of the tested approaches. The TACIFA-estimated warping function is almost
identical to the true curve, and has tightly concentrated credible bands. Figure 9 confirms
that the TACIFA-estimated Cartesian coordinates of the 12 equidistant features are almost
perfectly aligned with the true Cartesian coordinates. Quantifying these accuracies, we
calculate the prediction TACIFA MSEs, which are 1.34 × 10−6 and 4.99 × 10−6 with 95%
and 96% frequentist coverage within 95% posterior predictive credible bands for X and
Y coordinates, respectively. In Table 2, we compare the results of our method with two-
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stage methods, and show that TACIFA again has the best performance, this time much
more dramatically than in the first simulation. The method mtsdi gives similar prediction
error to our method in the first simulation setup but fails to impute at any of the missing
time points for the second simulation. MICE could impute in the first simulation, but
only partially for the second simulation. Only missForest could produce results for both of
the two simulations. Nonetheless, its prediction MSEs are much higher than those of our
method.

Table 2: Prediction MSEs of the first and second time series in Simulation 2 using two-
stage methods. The top row indicates the R package used to impute, and the
first column indicates the method used to warp. mtsdi could not impute at any of
the testing time points in this simulation. The two-stage prediction MSEs are all
greater than the TACIFA prediction MSEs (1.34× 10−6, 4.99× 10−6).

missForest MICE mtsdi

Naive DTW (0.12,0.07) (0.18,0.09) (-,-)
Derivative DTW (0.12,0.07) (0.15,0.07) (-,-)
Sliding DTW (0.12,0.07) (0.14,0.05) (-,-)

Figure 7: Estimated warping functions for Simulation case 2. The black curve is the true
warping function M0(t) = t0.5. The green curve is the TACIFA estimated func-
tion, with the 95% credible bands shown in red. Naive DTW and Sliding window
DTW curves are indistinguishable. Of all the methods tested, the TACIFA esti-
mated warping function is closest to the true warping function.
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(a) The noise follows N(0,12) (b) The noise follows N(0,1.52)

Figure 8: Estimated warping functions for Simulation case 2 with more noise added to the
data.

Figure 9: Results for simulation case 2. The first row corresponds to the co-ordinates
(ax(t) sin(θ), bx(t) cos(θ)) for four choices of t, evaluated on a grid of θ. Likewise,
the second row shows the co-ordinates of (ay(t) sin(θ), by(t) cos(θ))’s for the same
choices of t and the θ-grid. Here ax(t) = 2(t + 1), bx(t) = 2/(t + 1) and ay(t) =
2(t0.5 + 1), by(t) = 2/(t0.5 + 1). The black dashed lines represent true curves at
four time points and the red dashed lines are the estimated curves. The fit is
excellent so that they almost lie on top of each other. At t = 1, X and Y both
have the same shape.
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7. Human Mimicry Application

We apply TACIFA to data from a simple social interaction in which one participant was
instructed to imitate the head movements of another. The interaction occurred over Skype,
and the videos of both participants were recorded. OpenFace software (Baltrusaitis et al.,
2018) was used to extract regression scores for the X and Y coordinates of facial features
around the mouth, as well as the pitch, yaw, and roll of head positions, from each frame
of each video. These facial features are extracted and normalized before comparing the
corresponding time series. Here, we analyze a session where one individual was instructed
to imitate the other participant’s head movement throughout the interaction. We also
apply our method to two related sessions where the role of imitator/imitate changes during
the session, with results in Section 3 of Supplementary Materials. Although these social
interactions were intentionally constrained to help assess the current methodology under
consideration, they represent the types of dynamic social interactions that are of interest
to psychologists, autism clinicians, and social robotics developers.

The duration of the experiment is rescaled into [0, 1]. The choices of hyperparameters
for estimation are kept the same as in the two simulation setups above except for the
number of B-splines. We again run a similar cross validation procedure, and set the
number of bases at 8. We collect 5000 MCMC samples after 5000 burn-in samples. We
truncate the columns of the loading matrices that have mean absolute contribution less than
0.0001. We plot the estimated warping function along with credible bands and the values
of SP (ΨΓ1), SP (ΨΓ2), SP (ΛΞ1), and SP (ΛΞ2) as in the simulation analyses. Recall
that SPi,j(A) =

(
|0.5 − P (A[i, j] > 0)|

)
/0.5 where P (A[i, j] > 0) stands for the posterior

probability estimated from the MCMC samples of A after performing the post-processing
steps defined in Section 4.1.

We apply TACIFA to the time courses of 20 facial features from around the mouth and
chin, along with three predictors of head position. We begin by evaluating the loading
matrices of the shared and individual factors. There should be a large shared space in this
experiment, as we know one person was imitating the head movements of the other, and all
of the features examined were related to the head. We plot SP (ΨΓ1), SP (ΨΓ2), SP (Λ),
and SP (ΛΞ2) in Figure 10. Half of the 20 facial features examined in this experiment
were roughly the mirror image of the others, due to facial symmetry. As a consequence, we
might predict that the shared space should not have more than 13 factors. Consistent with
this hypothesis, there are 13 important shared features in Figure 7. In addition, all of the
features examined in this experiment are related to head movement, so we might predict
very little individual variation in the time courses. This prediction is consistent with the
low importance of all the individual-specific factors shown in Figure 10.

Next, we examine the TACIFA estimated warping function and accompanying uncer-
tainty quantification. Figure 11 shows that the estimated warping function is below the
M(t) = t line throughout the experiment. This indicates that the TACIFA approach cor-
rectly estimated that one individual was following the other individual in time through the
experiment. Derivative DTW was the only other method that achieved that. Furthermore,
all these methods also suggest that the participants switched leadership roles multiple times,
which is not true.
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Next, we compare the TACIFA out of sample prediction MSEs to those of two-stage
approaches, and compute the similarity. The TACIFA MSEs are 4.25 and 2.21, with 95%
and 98% frequentist coverage within 95% posterior predictive credible bands, relative to the
estimated variances 4.34 and 2.61 for the first and second individuals, respectively. These
MSEs are lower than those of the two stage approaches, which are around 9. A detailed
table is in the Supplementary Materials.

Finally, we assess the similarity of the two time series and test whether greater num-
bers of features influence the similarity measure. Let Xm and Ym denote the paired time
series with m set of features (maximum of 10) around the chin along with the three pre-
dictors on head position. We have a total of 10 possible features in this analysis. We
get Syn(X3,Y3)=0.80, Syn(X6,Y6)=0.85 and Syn(X10,Y10)=0.85. These high values are
reasonable, since all the features examined will be influenced by head movement and head
movements were intentionally coordinated. The results also indicate that similarity values
increase as the number of relevant features increases.

8. Discussion

There are many possibilities of future research building on TACIFA. It is natural to gen-
eralize to D many matrices, which would require D different individual-specific loadings
Γ1, . . . ,ΓD along with D − 1 different warping functions. In addition, in settings such as
our motivating social mimicry application, there may be data available from n pairs of
interacting individuals. In such a case, it is natural to develop a hierarchical extension of
the proposed approach that can borrow information across individuals and make inferences
about population parameters. Another direction is to build static Bayesian models to esti-
mate the joint and individual structures under the orthogonality assumption by dropping
the warping function from our proposed model to accounting for group differences. The
current implementation for updating Λ prohibits its use for large p as the computational
complexity in updating a p × r dimensional Λ at each iteration is of order rp2. Thus,
developing computationally efficient posterior computation algorithms is another direction
to ensure broader applicability of our proposed method. Future work will also consider the
cases where the data matrices X and Y have an unequal number of time points. Although
theoretically our proposed model can accommodate this case, the computational complexity
may be high.

A further important and challenging direction is to generalize the proposed methods
to allow for more complex types of interactions. Two individuals who are interacting may
not simply imitate each other, but have more nuanced and diverse types of coordination.
For example, one individual may nod their head or laugh in response to the funny facial
expressions another individual intentionally makes, or one individual may close their eyes
when the other individual sticks out their tongue. Accommodating such complexity will
require a more complex dynamic latent structure than that described here.
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Figure 10: Plot of the summary measure as evidence of importance of the entries of loading
matrices in human mimicry dataset (A). Each column represents one factor.
The columns with higher proportion of red correspond to the factors with higher
importance.
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Figure 11: Estimated warping function in human mimicry dataset (A). The green curve is
the estimated function along with the 95% pointwise credible bands in red. The
estimated curve is always below the dashed line, indicating the second person is
mimicked throughout the experiment
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