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Abstract

Modern machine learning methods are often overparametrized, allowing adaptation to the
data at a fine level. This can seem puzzling; in the worst case, such models do not need to
generalize. This puzzle inspired a great amount of work, arguing when overparametrization
reduces test error, in a phenomenon called “double descent”. Recent work aimed to under-
stand in greater depth why overparametrization is helpful for generalization. This lead to
discovering the unimodality of variance as a function of the level of parametrization, and to
decomposing the variance into that arising from label noise, initialization, and randomness
in the training data to understand the sources of the error.

In this work we develop a deeper understanding of this area. Specifically, we propose
using the analysis of variance (ANOVA) to decompose the variance in the test error in
a symmetric way, for studying the generalization performance of certain two-layer linear
and non-linear networks. The advantage of the analysis of variance is that it reveals the
effects of initialization, label noise, and training data more clearly than prior approaches.
Moreover, we also study the monotonicity and unimodality of the variance components.
While prior work studied the unimodality of the overall variance, we study the properties
of each term in the variance decomposition.

One of our key insights is that often, the interaction between training samples and
initialization can dominate the variance; surprisingly being larger than their marginal effect.
Also, we characterize “phase transitions” where the variance changes from unimodal to
monotone. On a technical level, we leverage advanced deterministic equivalent techniques
for Haar random matrices, that—to our knowledge—have not yet been used in the area.
We verify our results in numerical simulations and on empirical data examples.
Keywords: Test Error, ANOVA, Double Descent, Ridge Regression, Random Matrix
Theory

1. Introduction

Modern machine learning methods are often overparametrized, allowing adaptation to the
data at a fine level. For instance, competitive methods for image classification—such as
WideResNet (Zagoruyko and Komodakis, 2016)—and for text processing—such as GPT-
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Figure 1: ANOVA decomposition of the variance. The plots show the components of the
variance (as well as the bias) in certain two-layer linear networks studied in the paper, as
a function of the data aspect ratio § = limd/n, where d is the dimension of features and
n is the number of samples. The variance can be decomposed into its contributions from
randomness in label noise (1), training data/samples (s), and initialization (7). Namely, the
variance is decomposed into the main effects V, and the interaction effects Vyy, Ve, where
a,b,c € {l,s,i}. We omit V;,V}; in the figures since they equal zero. The key observation
is that the interaction effects (especially Vs;) dominate the variance at the interpolation
limit where limp/n = 1 (this turns out to correspond to 6 = 1.25 in the Figure) and p
is the number of features in the hidden layer. Left: Cumulative figure of the bias and
variance components. Right: Variance components in numerical simulations. (*: theory,
n*: numerical, averaged over 5 runs, for x = Vj, etc). Parameters: signal strength oo = 1,
noise level o = 0.3, regularization parameter A = 0.01, parametrization level 7 = 0.8. See
Sections 2.2, 4.2 for details.

3 (Brown et al., 2020)—have from millions to billions of explicit optimizable parameters,
comparable to the number of datapoints. From a theoretical point of view, this can seem
puzzling and perhaps even paradoxical: in the worst case, models with lots of parameters
do not need to generalize (i.e., perform similarly on test data as on training data from the
same distribution).

This puzzle has inspired a great amount of work. Without being exhaustive, some of the
main approaches argue the following. (1) Overparametrization beyond the “interpolation
threshold” (number of parameters required to fit the data) can eventually reduce test error
(in a phenomenon called “double descent”). (2) The specific algorithms used in the train-
ing process have beneficial “implicit regularization” effects which effectively reduce model
complexity and help with generalization. These two ideas are naturally connected, as the
implicit regularization helps achieve decreasing test error with overparametrization. This
area has registered a great deal of progress recently, but its roots can be traced back many
years ago. We discuss some of these works in the related work section.

One particular line of work aims to understand in greater depth why overparametriza-
tion is helpful for generalization. In this line of work, Yang et al. (2020) has studied the
bias-variance decomposition of the mean squared error (and for other losses), and pro-
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posed that a key phenomenon is that the variance is unimodal as a function of the level of
parametrization. This was verified empirically for a wide range of models including modern
neural networks, as well as theoretically for certain two-layer linear networks with only the
second layer trained. Moreover, d’Ascoli et al. (2020) proposed to decompose the variance
in a two-layer non-linear network with only second layer trained (i.e., a random features
model) into that arising from label noise, initialization, and randomness in the features of
the training data (in this specific order), arguing that—in their particular model—the label
and initialization noise dominates the variance.

In this work we develop a set of techniques aiming to improve our understanding of
this area; and more broadly of generalization in machine learning. Specifically, we propose
to use the analysis of variance (ANOVA), a classical tool from statistics and uncertainty
quantification (e.g., Box et al., 2005; Owen, 2013), to decompose the variance in the gen-
eralization mean squared error into its components stemming from the initialization, label
noise, and training data (see Figure 1 for a brief example). The advantage of the analysis
of variance is that it reveals the effects of the components in a more clearly interpretable,
and perhaps "unequivocal”, way than the approach in d’Ascoli et al. (2020). The prior
decomposition depends on the specific order in which the conditional expectations are eval-
uated, while ours does not. We carry out this program in detail in certain two-layer linear
and non-linear network models (more specifically, random feature models), which have have
been the subject of intense recent study, and are effectively at the frontier of our theoretical
understanding.

As is well known in the literature on ANOVA, the variance components form a hierarchy
whose first level, the main effects, can be interpreted as the effects of varying each variable
(here: random initialization, features, label noise) separately, while the higher levels can
be interpreted as the interaction effects between them. These are symmetric, which is
both elegant and interpretable, and thus provide advantages over the prior approaches. See
Figure 2 for an example.

Moreover, we study the monotonicity and unimodality of MSE, bias, variance, and the
various variance components in a specific variance decomposition. While Yang et al. (2020)
studied the unimodality of the overall variance, we study the properties the components
individually. On a technical level, our work is quite involved, and leverages some advanced
techniques from random matrix theory, that—to our knowledge—have not yet been used
in the area. In particular, we discovered that we can leverage the deterministic equivalent
results for Haar random matrices from Couillet et al. (2012). These have been developed
for different purposes, for analyzing random beamforming in wireless communications.

After the initial posting of our work, we became aware of the highly related paper Adlam
and Pennington (2020b). This was publicly posted on the arxiv.org preprint server later
than our work, but had been submitted for publication earlier. The conclusions in the two
works are similar, but the techniques and setting are different. We discuss this at the end
of the next section.
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1.1 Related Works

There is an extraordinary amount of related work, as this topic is one of the most exciting
and popular ones recently in the theory of machine learning. Due to space limitations, we
can only review the most closely related work.

The phenomenon of “double descent”, coined in Belkin et al. (2019), states that the
limiting test error first increases, then decreases as a function of the parametrization level,
having a “double descent”, or “w”-shaped behavior. This phenomenon has been studied,
in one form or another, in a great number of recent works, see e.g., Advani et al. (2020);
Bartlett et al. (2020); Belkin et al. (2019, 2018, 2020b); Derezinski et al. (2019); Geiger
et al. (2020); Ghorbani et al. (2021); Hastie et al. (2019); Liang and Rakhlin (2018); Li
et al. (2020); Mei and Montanari (2019); Muthukumar et al. (2020); Xie et al. (2020), etc.

Various forms have also appeared in earlier works, see e.g., the discussion on “A brief
prehistory of double descent” (Loog et al., 2020) and the reply in Belkin et al. (2020a).
This points to the related works Opper (2001); Kramer (2009). The online machine learn-
ing community has engaged in a detailed historical reference search, which unearthed the
related early works! Hertz et al. (1989); Opper et al. (1990); Hansen (1993); Barber et al.
(1995); Duin (1995); Opper (1995); Opper and Kinzel (1996); Raudys and Duin (1998). The
observations on the “peaking phenomenon” are consistent with empirical results on training
neural networks dating back to the 1990s. There it has been suggested that the difficulties
captured by the peak in double descent stem from optimization, such as the ill-conditioning
of the Hessian (LeCun et al., 1991; Le Cun et al., 1991).

Some works that are especially relevant to us are the following. Hastie et al. (2019)
showed that the limiting MSE of ridgeless interpolation in linear regression as a function of
the overparametrization ratio, for fixed SNR, has a double descent behavior. Nakkiran et al.
(2021) rigorously proved that optimally regularized ridge regression can eliminate double
descent in finite samples in a linear regression model. Nakkiran (2019) clearly explained that
“more data can hurt”, because algorithms do not always adapt well to the additional data.
In comparison, the special case of our results pertaining to linear nets allows for certain
non-Gaussian data, while only proved asymptotically. Nakkiran et al. (2020) empirically
showed a double descent shape for the test risk for various neural network architectures
a function of model complexity, number of samples (“sample-wise” double descent), and
training epochs.

d’Ascoli et al. (2020) used the (not fully rigorous) replica method to obtain the bias-
variance decomposition for two-layer neural networks in the lazy training regime. They
further also decomposed the variance in a specific order into that stemming from label
noise, initialization, and training features. Compared to this, our work is fully rigorous,
and proposes to use the analysis of variance, from which we show that the sequential de-
compositions like the ones proposed in d’Ascoli et al. (2020) can be recovered. Moreover,
we are concerned with a slightly different model (with orthogonal initialization), and some
of our results are only proved for linear orthogonal networks (e.g., the forms of the variance
components). However, going beyond d’Ascoli et al. (2020), we also obtain rigorous results
for the monotonicity and unimodality of the various elements of the variance decomposition.

1. The reader can see the Twitter thread by Dmitry Kobak: https://twitter.com/hippopedoid/status/
1243229021921579010.
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Ba et al. (2020) obtained the generalization error of two-layer neural networks when only
training the first or the second layer, and compared the effects of various algorithmic choices
involved. Compared with our work, d’Ascoli et al. (2020); Ba et al. (2020) studied more
general settings and provided results that involve more complex expressions; the advantage
our our simpler expressions is that we can find the variance components and study properties
such as their monotonicity. Our results are simpler mainly because we consider orthogonal
initialization; and, in several results, consider a linear network. We believe that our results
are complementary.

Wu and Xu (2020) calculated the prediction risk of optimally regularized ridge regression
under a general covariance assumption of the data. Jacot et al. (2020) argued that random
feature models can be close to kernel ridge regression with additional regularization. This
is related to the “calculus of deterministic equivalents” for random matrices (Dobriban and
Sheng, 2018). Liang et al. (2020) argued that in certain kernel regression problems one
may obtain generalization curves with multiple descent points. Chen et al. (2020) studied
certain models with provable multiple descent curves.

When the data has general covariance, Kobak et al. (2020) showed that the optimal
ridge parameter could be negative. Thus any positive ridge penalty would be sub-optimal
if the true parameter vector lies on a direction with high predictor variance. Understanding
the implications of this work in our context is a subject of interesting future research.

More broadly viewed, a great deal of effort has been focused on connecting “classical”
statistical theory (focusing on low-dimensional models) with “modern” machine learning
(focusing on overparametrized models).? From this perspective, there are strong analogies
with nonparametric statistics (Ibragimov and Has’ Minskii, 2013). Non-parametric esti-
mators such as kernel smoothing have, in effect, infinitely many parameters, yet they can
perform well in practice and have strong theoretical guarantees. Nonparameteric statistics
already has the same components of the “overparametrize then regularize” principle as in
modern machine learning. The same principle also arises in high-dimensional statistics,
such as with basis pursuit and Lasso (Chen and Donoho, 1994). Namely, one can get good
performance if one considers a large set of potential predictors (overparametrize), and then
selects a small, highly-regularized subset.

Even more broadly, our work is connected to the emerging theme in modern statistics and
machine learning of studying high-dimensional asymptotic limits, where both the sample
size and the dimension of data tend to infinity. This is a powerful framework that allows
us to develop new methods, and to uncover phenomena not detectable using classical fixed-
dimension asymptotics (see e.g., Couillet and Debbah, 2011; Paul and Aue, 2014; Yao
et al., 2015). It also dates back to the 1970s, see e.g., the literature review in Dobriban and
Wager (2018), which points to works by Raudys (1967); Deev (1970); Serdobolskii (1980),
etc. Some other recent related works include Pennington and Worah (2017); Louart et al.
(2018); Liao and Couillet (2018, 2019); Benigni and Péché (2019); Goldt et al. (2019); Fan
and Wang (2020); Deng et al. (2019); Gerace et al. (2020); Liao et al. (2020); Adlam et al.
(2019); Adlam and Pennington (2020a). See also Geman et al. (1992); Bos and Opper

2. The reader can see e.g., the talks titled “From classical statistics to modern machine learning” by M.
Belkin at the Simons Institute (https://simons.berkeley.edu/talks/tbd-65) at the Institute of Ad-
vanced Studies (https://video.ias.edu/theorydeeplearning/2019/1016-MikhailBelkin), and and
other venues.
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(1997); Neal et al. (2018) for various classical and modern discussions of bias-variance
tradeoffs and dynamics of training.

The most closely related work to ours is Adlam and Pennington (2020b), publicly posted
later, but submitted for publication earlier. Both works study the generalization error via
ANOVA decomposition, and show that the interaction effect can dominate the variance.
The conclusions in the two works are similar. For instance, the Vj; term (interaction be-
tween samples and initialization, defined later) dominates the total variance; Vy; and Vy;
(interaction between samples, label noise and initialization) diverge as the ridge regulariza-
tion parameter A — 0. On the other hand, there are many differences between two works.
(1). The mathematical settings are different. Their work studies a two-layer nonlinear
network with Gaussian initialization, while we study both linear and nonlinear networks
with orthogonal initialization. (2). The mathematical tools employed in the two papers
are different. They use Gaussian equivalents and the linear pencil representation, while we
exploit orthogonal deterministic equivalents. (3). The results are different. Beyond the
ANOVA decomposition, they also study the effect of ensemble learning. On our end, we
study optimally tuned ridge regression and prove properties of the bias, variance and MSE.

Another related paper, also publicly posted after our work is by Rocks and Mehta
(2020). They study generalization error in linear regression and two-layer networks by
deriving the formulas for bias and variance. The main techinque they used is the cavity
method originating from statistical physics. Similarly, they also show that the generalization
error diverges at the interpolation threhold due to the large variance. We provide a more
detailed comparison later, after stating our main results.

As already mentioned, our work is related to the one by Yang et al. (2020). The model we
consider is related to theirs, with several key differences. One is the orthogonal initialization,
in contrast to their Gaussian initialization. Also, they assume that the ratio d/n — 0 while
we study the proportional regime where d/n — § > 0 (which can be arbitrarily small,
so our setting is in a sense effectively more general). As for the results, they prov the
unimodality of variance and monotonicity of the bias under their setting. They also make
some conjectures on the variance unimodality that we prove (keeping in mind the different
settings), see the results section for more details.

1.2 Our Contributions

Our contributions can be summarized as follows:

1. We study a two-layer linear network where the first layer is a fixed partial orthogo-
nal embedding (which determines the latent features) and the second layer is trained
with ridge regularization. While the expressive power of this model only captures cer-
tain linear functions, training only the second layer already exhibits certain intriguing
statistical and generalization phenomena. We study the prediction error of this learn-
ing method in a noisy linear model. We consider three sources of randomness that
contribute to the error: the random initialization (a random partial orthogonal em-
bedding), the label noise, and the randomness over the training data. We propose to
use the analysis of variance (ANOVA), a classical tool from statistics and uncertainty
quantification (e.g., Box et al., 2005; Owen, 2013) to decompose and understand their
contribution.
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We study an asymptotic regime where the data dimension, sample size, and number
of latent features tends to infinity together, proportionally to each other. In this
model, we calculate the limits of the variance components (Theorem 2); in terms of
moments of the Marchenko-Pastur distribution (Marchenko and Pastur, 1967). We
then show how to recover various sequential variance decompositions, such as the one
from d’Ascoli et al. (2020) (albeit only for linear rather than nonlinear networks).
We also show that the order in the sequence of decompositions matters. Our work
leverages deterministic equivalent results for Haar random matrices from Couillet et al.
(2012) that, to our knowledge, have not yet been used in the area. We also leverage
recent technical developments such as the calculus of deterministic equivalents for
random matrices of the sample covariance type (Dobriban and Sheng, 2018, 2020).
Proofs are in Appendix B.

. We then study the bias-variance decomposition in greater detail. As a corollary of the
ANOVA results, we study the decomposition of the variance in the order label-sample-
initialization, which has some special properties (Theorem 3). When using an optimal
ridge regularization, we study the monotonicity and unimodality properties of these
components (Theorem 5 and Table 1). With this, we shed further light on phenomena
discovered by Yang et al. (2020), who wrote that “The main unexplained mystery is
the unimodality of the variance”. Specifically, we are able to show that the variance is
indeed unimodal in a broad range of settings. This analysis goes beyond prior works
e.g., Yang et al. (2020) (who studied setting with a number of inner neurons being
much larger than the number of datapoints), or “double descent mitigation” as in
Nakkiran et al. (2021), because it studies bias and variance separately.

We uncover several intriguing properties: for instance, for a fixed parametrization
level m, as a function of aspect ratio or “dimensions-per-sample”, the variance is
monotonically decreasing when 7 < 0.5, and unimodal when 7© > 0.5. We discuss and
offer possible explanations.

We also discuss the special case of linear models, which has received a great deal
of prior attention (Proposition 6). We view the results on standard linear models
as valuable, as they are both simpler to state and to prove, and moreover they also
directly connect to some prior work.

. We develop some further special properties of the bias, variance, and MSE. We report
a seemingly surprising simple relation between the MSE and bias at the optimum
(Section 2.3.1). We study the properties of the bias and variance for a fized (as opposed
to optimally tuned) ridge regularization parameter (Theorem 7). In particular, we
show that the bias decreases as a function of the parametrization, and increases as
a function of the data aspect ratio. In contrast to choosing A optimally, we see that
double descent is not mitigated, and may occur in our setting when we use a small
regularization parameter A that is fixed across problem sizes (going beyond the models
where this was known from prior work). This corroborates that the lack of proper
regularization plays a crucial role for the emergence of double descent.
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We also give an added noise interpretation of the initial random initialization step
(Section 2.3.3). Further, we provide some detailed analysis and intuition of these
phenomena, aided by numerical plots of the variance components (Section 2.3.4).

4. The above results are about ridge regression as a heuristic for regularized empirical
risk minimization. In some settings, ridge regularization is known to have limita-
tions (Derezinski and Warmuth, 2014), thus it is an importat question to understand
its fundamental limitations here. In fact, we can show that ridge regression is an
asymptotically optimal estimator, in the sense that it converges to the Bayes optimal
estimator in our model (Theorem 8). This provides some justification for studying
ridge regression in a two-layer network, which is not covered by standard results.

5. We extend some of our results to two-layer networks with a non-linear activation
function with orthogonal initialization. In particular, we provide the limits of the
MSE, bias, and variance in the same asymptotic regime (Theorem 9). Furthermore, we
provide the monotonicity and unimodality properties of these quantities as a function
of parametrization and aspect ratio (Table 2).

6. We provide numerical simulations to check the validity of our theoretical results
(Section 4), including the MSE, the bias-variance decomposition, and the variance
components. We also show some experiments on empirical data, specifically on
the superconductivity data set (Hamidieh, 2018), where we test our predictions for
two-layer orthogonal nets. Code associated with the paper is available at https:
//github.com/licong-1lin/VarianceDecomposition.

1.3 Highlights and Implications

We discuss some of the highlights and implications of our results.

Beyond bias-variance. Much of the prior work in this area has focused on the funda-
mental bias-variance decomposition. In this work, we demonstrate that it is possible to go
significantly beyond this via the ANOVA decomposition. Specifically, using this method-
ology, one can understand how the random training data, initialization, and label noise
contribute to the test error in more detailed and comprehensive ways than what was previ-
ously possible. We carry out this in certain two-layer linear and non-linear networks with
only the second layer trained (i.e., random features models), but our approach may be more
broadly relevant.

Non-additive test error. A key finding of our work is that in the specific neural net
models considered here, the random training data, initialization, and label noise contribute
highly non-additively to the test error. Thus, when discussing “the effects of initialization”,
some care ought to be taken; i.e., to clarify which interaction effects (e.g., with label noise
or training data) this includes. The interaction term between the initialization and the
training data can be large in our setting.

Beyond double descent: Prevalence of unimodality. While initial work on asymp-
totic generalization error of one and two-layer neural nets focused on the “double descent”
or peaking shape of the test error, our work gives further evidence that the unimodal
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shape of the variance is a prevalent phenomenon. Moreover, our work also suggests the
the unimodality holds not just for the overall variance, but also for specific and variance
components; which was not known in prior work. We show that unimodality with respect to
both overparametrization level and data aspect ratio holds in specific parameter settings for
the variance and certain other decompositions for the optimal setting of the regularization
parameter. In other parameter settings, we obtain monotonicity results for these compo-
nents. This also underscores that regularization and the associated bias-variance tradeoff
plays a key role in determining monotonicity and unimodality.

2. ANOVA for a Two-layer Linear Network
2.1 Setup

In this section, we study the bias-variance tradeoff and ANOVA decomposition for a two-
layer linear network model. Suppose that we have a training data set T containing n
data points (z;,y;) € R x R, with features z; and outcomes y;. We assume the data is
drawn independently from a distribution such that z; = (x;1, i2, ..., ©iq), where x;; are i.i.d.
random variables satisfying

Ex;; =0, Ex?j =1, Ex?f” < 00,

where 7 > 0 is an arbitrary constant. Also, each (x;,y;) are drawn from the model
y=f"(x)+e=x"0+¢, 0 cRY,

where ¢ ~ N (0,02) is the label noise independent of z and o > 0 is the noise standard
deviation. In matrix form, ¥ = X0 + &, where X = (x1,29,...,2,)" € R™ has input
vectors x;, i = 1,2,...,n as its rows and Y = (y1,y2,...,yn) | € R™! with output values y;,
i=1,2,...,n as its entries. Our task is to learn the true regression function f*(z) = z'6 by
using a two-layer linear neural network with weights W e RP*4 3 € RP*! which computes
for an input = € R¢,

flz) = (Wz)'B. (1)

Later in Section 3 we will also study two-layer nonlinear networks. For analytical tractabil-
ity, we assume that the true parameters @ are random: 0 ~ AN(0,a?I;/d). Here a? can
be viewed as a signal strength parameter. This assumption corresponds to performing an
“average-case” analysis of the difficulty of the problem over random problem instances given
by various 6.

We also consider a random orthogonal initialization W independent of 7, so W isapxd
matrix uniformly distributed over the set of matrices satisfying WW T = I, also known as
the Stiefel manifold. This requires that p < d, so the dimension of the inner representation
of the neural net is not larger than the number of input features. To an extent, this can be
seen as a random projection model, where a lower-dimensional representation of the high-
dimensional input features is obtained by randomly projecting the input features into a
subspace. Both training and prediction are based on the lower dimensional representation.
In some works studying the orthogonal initialization of neural networks (e.g., Hu et al.,
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2020), the first layer weights Wy satisfy W' Wy = I, while the last layer weights Wy, satisfy
VVLVV];r = I, so the dimension of the hidden representation is larger than the dimension of
the input features. Similarly, in several recent works on wide neural networks, the number
of inner neurons is large. However, we think that in many applications, the number of
“higher level features” should indeed not be larger than the number of input features. For
instance, the number of features in facial image data such as eyes, hair, is expected to be
not more than the number of pixels.

The model we consider here is related to the one from Yang et al. (2020), with several key
differences. The orthogonal initialization is a key difference, as Yang et al. (2020) assume
that W is a random Gaussian matrix. The expressive power of the two models is the same,
but orthogonal initialization has some benefits (see Appendix A for more information).

During training, we fix W and estimate 5 by performing ridge regression:

. 1 A
_ in —|Y — XT T 2 7~ 2 )
B = arg min oY = (WXT) 813+ 319153 2)
where A > 0 is the regularization parameter. This has a closed-form solution
. WXTXWT TwxTY
BA,T,W = (n + >‘Ip> T (3)

We will often use the notation R = (WX TXWT/n + A\,)~! for the so-called resolvent
matrix of WX T XW . By plugging it into (1), we obtain our estimated prediction function,
for a new datapoint x, projected first via W and thus accessed via Wx:
R WXy
flx)=(Wa) Byrw =2 WIR——. (4)

n
Ridge regression is equivalent to o weight decay, a popular heuristic. We will later show
that ridge has some asymptotic optimality properties in our model, which thus justify its
choice. In contrast, if we follow the approach from Hu et al. (2020) and take p > d with
W W = I, then it is readily verified that we would obtain

flz)=a" <XTX/n + )\Id) - XTY/n.

This means that the prediction function reduces to standard ridge regression. Thus we
assume instead that WV T = I, and this makes our model resemble the “feature extraction”
layers of a neural network.

We will consider the following asymptotic setting. Let {pq, d,nqs}3>, be a sequence such
that py < d and pg, d,ng — oo proportionally, i.e.,

where 7 € (0,1] and ¢ € (0,00). Here 7 € (0, 1] denotes the parametrization factor, i.e., the
number of parameters in 3 relative to the input dimension. Also, 4 > 0 is the data aspect
ratio. We will also use v = d7 = limp/n, the ratio of learned parameters to number of
samples. In Yang et al. (2020), the assumption limg o, d/ng = 0 implies that the number of
samples is much larger than the number of parameters, which is limiting in high dimensional
problems. Thus, we study a broader setting, in which the sample size is proportional to the
model size, with an arbitrary ratio.

10
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2.2 Bias-Variance Decompositions and ANOVA
2.2.1 INTRODUCTION AND THE MAIN RESULT

Now we analyze the mean squared prediction error in our model,

MSE(\) = By, xew(Hrw(z) —y)?
2

=Eo.xew(Hrrwe) —z'0)? + 02

The expectation is over a random test datapoint (x,y) from the same distribution as the
training data, i.e., x € R? has i.i.d. zero mean, unit variance entries with finite 8 4+ 7
moment, y = @'z +¢, and ¢ ~ N (0,02). Tt is also over the random training input X,
the random training label noise £ , the random initialization W, and the random true
parameter . Thus, this MSE corresponds to an average-case error over various training
data sets, initializations, and true parameters. In this work, we will always average over the
random test data point x, as is usual in classical statistical learning. We will also average
over the random parameter 6, which corresponds to a Bayesian average-case analysis over
various generative models. This is partly for technical reasons; we can also show almost
sure convergence over the random 6, but the analysis for general # is beyond our scope.
Thus, we write the MSE as Eg ;Ex ¢ w (fa,7.w(x) — x70)% + 02, and the outer expectation
Eg . is always present in our formulas.

We can study the mean squared error via the standard bias-variance decomposition
corresponding to the average prediction function Ex ¢ w fx 7w (x) over the random training
set 7 (X, &) and initialization W: MSE()) = Bias?()\) + Var(\) + o2, where

BiasQ()\) = EQJ(EX’g,Wf,\,X,&m/(LE) — .Z‘T9)2,

Var()\) = Var[f(2)] = B, Exew(frrw(@) — Exewforw(@))?

A key point is that the variance can be further decomposed into the components due to the
randomness in the training data X, label noise £, and initialization W.

We use s, [, i to represent the samples X, label noise £ and initialization W, respectively.
Their impact on the variance can be decomposed in a symmetric way into their main and
interaction effects via the the analysis of variance (ANOVA) decomposition (e.g., Box et al.,
2005; Owen, 2013) as follows:

Var[f(z)] = Vs + Vi 4 Vi + Vi + Vii + Vis + Vi,

where
Vi, = By, Var,[E_o(f(z)|a)], ac{sli}
Vip = B o Varg [E_op(f(2)]a,0)] — Vi — Vi, a,b € {s,1,i},a #b.
Vabc = Ea,xvarabc[Efabc(fo)’aa b, C)] - Va - ‘/b - ‘/c - Vab - Vac - ‘/bc
= Var[f(2)] = Vo = Vi = Vi = Vi = Vai = Vi, {a,b,c} = {s,1,i}.

Here, E_, means taking expectation with respect to all components except for a. Then
Vo 2 0 can be interpreted as the effect of varying a alone, also referred to as the main
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effect of a. Also, Vy, = Ve = 0 can be interpreted as the second-order interaction effect
between a and b beyond their main effects, and V. > 0 can be seen as the interaction effect
among a, b, ¢, beyond their pairwise interactions. The ANOVA decomposition is symmetric
in a,b,c. We will show how to recover some sequential variance decompositions from the
ANOVA decomposition later. We mention that this decomposition is sometimes referred to
as functional ANOVA (Owen, 2013).

For intuition, consider the noiseless case when the label noise equals zero, so £ = 0 and
the index [ does not contribute to the variance. Then the main effect of the samples/training
data is Vg = IEQJVarS[]E,S(f(:Uﬂs)} = Eg,Vary [Eyw (f(2)|X)]. This can be interpreted as
the variance of the ensemble estimator f (x) :=Ew f (z), the average of models parametrized
by various W-s on the same data set X. Therefore, Vs can be regarded as the expected
variance with respect to training data of the ensemble estimator f ; where the expectation
is over the test datapoint x and the true parameter 8. Furthermore, Vg + V; is the variance
that can be eliminated by ensembling. This is because Vy; + V5 + V; is the total variance of
the estimator f (z); and Vj is the variance of the ensemble, thus Vy; + V; is the remaining
variance that can be eliminated.

Our bias-variance decomposition is slightly different from the standard one in statistical
learning theory (e.g., Hastie et al., 2009, p. 24), where the variability is introduced only
by the random training set 7. Here we also consider the variability due to the random
initialization W; and decompose the variance due to 7 into that due to samples X and
label noise £. The motivation is because randomization in the algorithms, such as random
initialization, as well as randomness in stochastic gradient descent, are very common in
modern machine learning. Our decomposition helps understand such scenarios.

Now, we define the following quantities which are frequently used throughout our paper.
These are “resolvent moments” of the well-known Marchenko-Pastur (MP) distribution F,
(Marchenko and Pastur, 1967). The MP distribution is the limit of the distribution of
eigenvalues of sample covariance matrices n 1 Z " Z of n x p data matrices Z with iid zero-
mean unit-variance entries when n,p — oo with p/n — + > 0 (Bai and Silverstein, 2010;
Couillet and Debbah, 2011; Anderson et al., 2010; Yao et al., 2015).

Definition 1 (Resolvent moments) In this paper, we use the first and second resolvent
moments

010 X) = [ 5Py (@), 01:3) = [ P @) (5)

where F,(z) is the Marchenko-Pastur distribution with parameter ~. Recall that for us,
v =0m. Then 61 := 01(,\) and b := O2(~y, \) have explicit expressions (see e.g., Bai and
Silverstein, 2010, for the first one; and our proofs also contain the derivations):

(A +7 =D+ /(A +7-1)2+4\y 6
2\ ’ (6)
d (y-1) (Y+D-A+(y-1)°

= ——0; = + : 7
PTAT T 2902 T o2 (ca - D)2 1 dny @)

0, =

We further define

~ 1—7m
. 2
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and denote 0 := 61(9, :\), Oy 1= 02(9, :\)

Remark. From (6), it is readily verified that Ay0?+(A—~+1)0;—1 = 0. Taking derivatives
and noting that 6y = —df; /d\, we get 1+ (7 — 1)1 — 2A2v6105 — A(A — v+ 1)02 = 0. These
two equations will be useful when simplifying certain formulas. Then we have the following
fundamental result on the asymptotic behavior of the variance components. This is our
first main result.

Theorem 2 (Variance components) Under the previous assumptions, consider an nxd
feature matriz X with i.i.d. entries of zero mean, unit variance and finite 8 +n-th moment.
Take a two-layer linear neural network f(x) = (Wz)' 3, with p < d intermediate activa-
tions, and p X d matrix W of first-layer weights chosen uniformly subject to the orthogo-
nality constraint WW T = I,. Then, the variance components have the following limits as
n,p,d — 0o, with p/d — m € (0,1] (parametrization level), d/n — 6 > 0 (data aspect ratio).
Here o is the signal strength, o is the noise level, \ is the reqularization parameter, 0; are
the resolvent moments (and \,0; are their adjusted versions).

lim V, = o2[1 — 2)\; + X206 — 7%(1 — M)

d—o0

lim V; =0

d—o00

lim V; = o?7(1 — m)(1 — \0p)?
d—o00

lim Vi = 025(§1 — 5\52)
d—o0

lim Vh =0
d—o0

lim Vi = o?[m(1 — 2001 + A02 + (1 — 7)5(61 — M)

d—o0
— (1 —m)(1 = X01)% — 1+ 2001 — 220,
dhm V:eli = 0'25[71'(91 — )\92) — (51 — :\éz)]
—00

Remark. Theorem 2 shows that the label noise does not contribute to the variance
via a main effect (because limg_,~ V; = 0), but instead through its interaction effects with
the sample and initialization (the terms Vg, Vi;). These can be arbitrarily large if we let
o — oo. In our simulations, we assume a reasonable amount of label noise, e.g., o = 0.3a.

2.2.2 ORDERED VARIANCE DECOMPOSITIONS

Using Theorem 2, we can calculate all six variance decompositions corresponding to the
ordering of the sources of randomness. Namely, suppose that we decompose the variance in
the order (a,b,c), where {a,b,c} = {s,l,i}, i.e., we calculate the following three terms:

Sabe = EG,zEa,b,C[f(x) - Eaf(x)]Q
Egbc = EQ,IEb,C[Eaf a,bf(x)]Q
Ezbc = EQ,mEc[Ea,bf a,b,cf(x)F'

z)—E
E

P

x) —
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We can interpret these as follows: (1) X9, is all the variance related to a. (2) X2, is all
the variance related to b after subtracting all the variance related to a in the total variance.
(3) X¢,. is the part of the variance that depends only on c¢. Then, simple calculations show

gbc = Vo + Vap + Vae + Vabe
Sobe = Vie + Vo
c =V,

abc

In previous work, d’Ascoli et al. (2020) considered the decomposition in the order label
- initialization - sample (I, i, s), which becomes in our case (canceling the terms that vanish)

S = Vis + Vigi + Vi 4+ Vii = Vig + Vi
Elszs:v:?

d’Ascoli et al. (2020) argued that the label and initialization noise dominate the variance.
However, different decomposition orders can lead to qualitatively different results. We take
the decomposition order (I,s,i) as an example. Roughly speaking, in this decomposition,
E%Si and X7, can be interpreted as the variance introduced by the data set given a fixed
initialization (and model), and X} ; is the variance of the initialization alone. Figure 2 (left,

middle) shows the results under these two different decomposition orders.

15 — MSE == X
jac2
Bias?  ..... i
—- 2y
1.0
0.5
oo T ——
0 2 4 6 8 10

&

Figure 2: Bias-variance decompositions in three orders. Left: Decomposition order: label,
sample, initialization ([, s,4); dominated by X7, (“samples”). Middle: Decomposition
order: label, initialization, sample (I,7,s); dominated by ¥V (“initialization”). Right:
Decomposition order: sample, label, initialization (s,[,7); dominated by X%, (“samples”).
Parameters: signal strength a = 1, noise level ¢ = 0.3, regularization parameter A = 0.01,

parametrization level m = 0.8.

Comparing the left (Isi) and middle (lis) panels of Figure 2, we can see that different
decomposition orders indeed lead to qualitatively different results. When § < 2, in [si, the
variance with respect to samples dominates the total variance, while in lis the variance
with respect to initialization dominates. Therefore, to have a better understanding of the
limiting MSE of ridge models, it is preferable to decompose the variance in a symmetric
and more systematic way using the variance components. In fact, the discrepancy between
these two decompositions is due to the term Vj;, which dominates the variance (as discussed
later) and is contained in both 3}, and Zfis. By identifying this key term Vj;, which has
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not appeared in prior work, we are able to pinpoint the specific reason why the variance is
large, namely the interaction between the variation in samples and initialization. Moreover,
the variance with respect to samples is even larger in Figure 2 (right), for the (sli) order,
since X3,; also contains the interaction effect between the randomness of samples and labels.

2.2.3 A SPECIAL ORDERED VARIANCE DECOMPOSITION

Next, we consider a special case of the variance decomposition, in the order of label-sample-
initialization. This is advantageous because it leads to particularly simple formulas, whose
monotonicity properties are particularly tractable, as explained below. The variance de-
composes as Var(\) = Yiapel + Lsample + Linit, Where

Yiabel := Xhy; = BoExwe(frrw (@) — Eefrrw(x))?
Esample = Efsz = EB,IEX,W(ESf)\,T,W(‘T) - EX,:‘)f)\,T,W(x))2
it := iy = EoEw (Exefrrw (@) — Ewxefrrw(z))?

As above, intuitively ¥japel is all variance related to the label noise, Ygample is the variance
related to the samples after subtracting the variance related to the label noise, and i
is the variance due only to the initialization. The decomposition ”label-init-sample” was
studied in (d’Ascoli et al., 2020). Going beyond what was previously known, we can get
explicit expressions not only for the variances (using the ANOVA decomposition), but also
for the bias, and moreover prove some monotonicity and unimodality properties of these
quantities when the ridge parameter A is optimal.

Yang et al. (2020) observed empirically that the variance when fitting certain neural
networks can often be unimodal, and proved this for a 2-layer net similar to our setting, with
Gaussian initialization W and assuming n/d — co. However, they left open the question of
understanding this phenomenon more broadly, writing that “The main unexplained mystery
is the unimodality of the variance”. Our result sheds further light on this problem.

Corollary 3 (Bias & variance in Two-Layer Orthogonal Net—special ordering)
Under the assumptions from Theorem 2, we have the limits

Jim Bias?*(\) =a?(1 — 7 + Amf)?, (8)
Jim Var()) =a?n[l — 7w+ (7 — 1)(2\ — 6)01 — TA20? + A\ — § + 76)0s]+
076 (61 — \s). (9)
More specifically,
Jim Bpapa () = o?m6(61 — As), (10)
Jim Seampie(A) = o [=A20F + N202 + (1 — m)5(61 — N62)] (11)
Jim i () = (1 —m)(1— \y)?, (12)

where 0; := 0;(wd,\), i = 1,2. Therefore
dlim MSE(\) =a? {1-m+m0(1-7+ o?/a?) 0y + A—6(1—m+ 02/a2)] Ay} + o2
—00
(13)
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For any fized 8, , the asymptotic MSE has a unique minimum at \* := §(1 — 7 + 02/a?).
(except when m=1,0 =0).

Remark. Except for the simple formula for the bias, theorem 3 is direct corollary of
theorem 2, since Yjapel; Lsamples 2init and Var are all sums of several variance components.

Almost sure results over random true parameter. Above, we provide average-
case results over the true parameters 6 ~ N(0,a?I;/d). With additional work, we show
below a corresponding almost sure result. For the next result, we assume that X has iid
Gaussian entries.

Theorem 4 (Almost sure result over true parameter ) For each triple (pq,d,ng),
suppose that the true parameter 0 is a sample drawn from N'(0,a?1;/d). Suppose in addition
that each entry of X is iid standard normal. Then as d — oo, Theorems 2 and 3 still hold
almost surely over the selection of 0.

2.2.4 OPTIMAL REGULARIZATION PARAMETER; MONOTONICITY AND UNIMODALITY

In this section, we present some theoretical results about the risks when using an optimal
regularization parameter. Moreover, we study the monotonicity and unimodality of certain
variance components in that setting.

We can find explicit formulas for the asymptotic bias and variance at the optimal \*,
by plugging in the expressions of A\*, #; into equations (8), (9):

lim Bias?’(\*) = o?(1 — 7 + \*76)?

d—o0
2 (6(1 ~o?/a?) — 1+ /(1 T /e + 1) - 47)2 S

20

lim Var(\*) = —o’r + (a? + 0%) (5(27r 1—0%/a”) -1 +2\5/2(6(1 +0%/a?) +1) 7) _
— 00

lim MSE(\*) = a2 [1 — m + \*76] + o

d—o0
. (5(1 —0%/a?) — 1+ /(01 +0%/a?) +1)2 = 47> cot (5)

20

From Theorem 3, we know that the optimal ridge penalty is \* = 6(1 — 7 + 02/a?).
Thus, by plugging the expression of A* into (8)—(13), we are able to study the properties of
the MSE, bias and variance components at the optimal \* as functions of 7, §. Our results
are summarized in Table 1. See Figure 3 for illustration.

As for the monotonicity and unimodality properties, we have the following statement,
where the properties are summarized in Table 1 for clarity.

Theorem 5 (Monotonicity and unimodality) Under the assumptions above, the MSE,
Bias, and components of the sequential variance decomposition in the [ —i—s order have the
monotonicity and unimodality properties summarized in Table 1. For instance, the MSE is
non-increasing as a function of the parameterization level w, while holding ¢ fixed.
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. Variable parametrization m = limp/d | aspect ratio § = limd/n
Function
MSE ¢ /
Bias?® N a
§<2a?/(a?+20%): A, max | T<0.5: .
Var at [2 4+ 6(1 + 20%/a?)] /4. m > 0.5: A, max at
§ >2a%/(a® +202%): 7. 2(2m — 1)/[1 4 202 /a?).
Siabel VA A: max at a?/(a? + o2)
Yinit A N\
Ysample conjecture: 7 or A conjecture: A

Table 1: Monotonicity properties of various components of the risk at the optimal A\*, as
a function of 7w and §, while holding all other parameters fixed. ' non-decreasing. \.:
non-increasing. A: unimodal. Thus, e.g., the MSE is non-increasing as a function of the
parameterization level 7, while holding ¢ fixed.

We provide some observations below.

Consistency with prior work. The MSE result is consistent with optimal regular-
ization mitigating double descent, which was shown in finite samples in a certain two-layer
Gaussian model in Nakkiran et al. (2021). However, our result holds for more general
distributions of data matrices with arbitrary iid entries, while only proven asymptotically.

Variance as a function of §. For fixed parametrization level 7 = lim p/d, as a func-
tion of the “dimensions-per-sample” parameter § = limd/n, the variance is monotonically
decreasing when 7 < 0.5, and unimodal with a peak at 2(2r—1)/[1+202/a?]] when 7 > 0.5.
This prompts the question why 7 = 1/2 is special? The special role of this value was also
noted in Yang et al. (2020). Recall that d is the original dimension, while p is the number
of features in the intermediate layer, and 7 = limp/d. While the role of 7 = 1/2 does not
seem straightforward to understand, qualitatively for large m we keep a lot of features in
the inner layer. This is close to a “well-specified” model. Thus, when we increase the size
of the data set (and thus decrease 6 = limd/n), it is reasonable that the variance decreases.
In contrast, regardless of m, when we severely decrease the size of the data set (and thus
increase § = lim d/n), the optimal ridge estimator will regularize more strongly, and thus it
is possible that its variance may decrease (which is what we indeed observe).

Variance as a function of 7. For small §, the variance is unimodal with respect to .
A possible heuristic is as follows. Recall that 7 = limp/d (d is data dimension, p is number
of features in inner layer) denotes the amount of “parametrization” we allow. When 7 = 0,
the number of features in the inner layer is very small, which effectively corresponds to a
“low signal strength” problem (see also our added noise interpretation below). The optimal
ridge estimator thus employs strong regularization, and acts like a constant estimator, thus
the variance is almost zero. When m = 1, we are using the correct number of features to
estimate 6, thus the variance is also small. The variance is zero when o = 0, and we can
plot it when o > 0 (see Figure 3). The above reasoning also suggests the variance may be
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Figure 3: Perspective plots of the performance characteristics. Top row: Bias? (left), MSE
(right). Bottom row: variance, from two perspectives. As functions of 7, d, at the optimal
A =6(1 -7 +0?/a?), when a = 1 and o = 0.5.

larger for intermediate values of w. Thus, the unimodality of the variance with respect to
7 is perhaps reasonable.

Beyond our results on ¥jpe and Yy, we conjecture based on numerical experiments
that Ygample is unimodal as a function of § and can be either unimodal or monotone as a
function of w. However, this appears more challenging to establish.

Comparison with Rocks and Mehta (2020). In their paper, they suggest that the
training process W should be separated from the sampling of the training data X, e when
studying the variance. Thus, they calculate the variance by fixing 6, W, computing condi-
tional variances (due to X, €), then taking expectation over §, W. This can, in principle, still
be recovered from our general framework, if we look at the variance components conditioned
on O, W. In constrast, we consider the randomness arising from all components together.
Our approach allows us to study some problems that do not easily fall within the scope of
the conditional approach. For instance, we can provide intuition for why ensembling works;
namely that it can reduce the interaction effect V;.

Multiple descent. It has been argued that other possible shapes of the test error,
such as multiple descents, can arise. Liang et al. (2020) study kernel regression under the
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limiting regimes d ~ n¢, ¢ € (0,1). They provide an upper bound for the MSE and show its
multiple descent behavior as ¢ increases. Adlam and Pennington (2020a) study the neural
tangent kernel under the limiting regimes p ~ n¢, ¢ = 1,2 and observe that the MSE has
a triple descent shape as a function of p. To conclude, the MSE may exhibit multiple
descent when considering different asymptotic regimes. However, since we only consider
the proportional limit where p/d — 7,d/n — §, we have not found evidence of multiple
descent in our setting.

Remark: Fully linear regression. The monotonicity of the MSE and bias, and
the unimodality of variance at the optimal A* also appear in the simpler (one-layer) linear
setting. Namely, we consider the usual linear model Y = X6 + &, where X € R™*? is the
data matrix and Y € R" is the response. We fit a linear regression of ¥ on X, which can
be seen as a special case of our two layer setting with W = I; (and d = p). We use the
same assumptions (except the assumptions on W) and notations as in the two layer setting.
In particular, we assume n,p — oo with p/n — ~ > 0, where the aspect ratio 7 is now a
measure of the parametrization level. We have the following result.

Proposition 6 (Properties of the limiting MSE, bias & variance in linear setting)
Under the same assumptions as in the two-layer setting, the limiting characteristics of opti-
mally tuned ridge regression (\* = v/a?) have the following properties as a function of the
degree of parameterization y:

1. MISE(~) is increasing as a function of .
2. Bias’(7) is increasing as a function of .
3. Var(y) is unimodal as a function of ~, with mazimum at v = o?/(a? + 1).

4. At the mazimum, the bias equals the variance: Bias®[a?/(a?+1)] = Var[a?/(a?+1)].

Figure 6 in Liu and Dobriban (2020) shows the MSE, variance and bias at optimal \*.
However, that work only studied it visually, and not theoretically. The result on the MSE
has appeared before as Proposition 6 of Dobriban and Sheng (2020), in a different context.
However, the results on the bias and variance have not been considered in that work.

2.3 Further Properties of the Bias, Variance and MSE

In this section, we report some further properties of the bias, variances and MSE, including
but not limited to the optimal ridge parameter setting.

2.3.1 RELATION BETWEEN MSE AND BiASs AT OPTIMUM

We present a somewhat surprising relation between MSE and bias at the optimal A* =
N(6,m,a%, 0%): Let Bias? := limy_, Bias?(\*), Bias = |VBias?|, and denote MSE:=
limg_, oo MSE(X*). In general for all A\, we have that MSE()\) = Bias?(\) 4+ Var(\) + o2.
Also, in prominent problems such as in non-parametric statistics, optimal rates are achieved
by balancing bias and variance (e.g., Ibragimov and Has’ Minskii, 2013, etc). Thus we are
interested to see if the bias and variance are also balanced at the optimal X\ in our case.
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However, based on the explicit expressions above, the bias and variance are balanced via
the signal strength a? via

Var = Bias - (o — Bias).

This holds for any 7, § and a. Thus, the MSE and bias are linked in a nontrivial way at
the optimal X\. We see that the optimal squared bias and variance are in general not equal
at the optimum. Instead, we have the above relation, which also balances the bias with the
signal strength . We think that this explicit relation is remarkable.

2.3.2 FIXED REGULARIZATION PARAMETER

5
4.50 44
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3 3.00H )
w
2.25 02
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0.00 04
00 02 04 06 08 10 ;
m

Figure 4: Left: Asymptotic MSE of ridge models when A = 0.01, 0 = 0.3, « = 1. Right:
Asymptotic MSE as function of 1/6 when A = 0.01, 0 = 0.3, « = 1. (Note: this figure is
plotted as a function of 1/, instead of § as before. Increasing 1/§ is equivalent to increasing
the number of samples n.)

From Figure 3 and Theorem 5 above, we can see that the MSE is monotone decreasing
with respect to the parametrization level m = lim p/d if we choose the optimal A*. This is
consistent with “double descent being mitigated”, as in the results of Nakkiran et al. (2021)
for a different problem.

Here we provide additional results for a suboptimal choice of A. Specifically, we consider
the simplest case when A is fixed across problem sizes. In contrast, we find that double
descent is not mitigated, and may occur when we use a small regularization parameter (also
referred to as the ridgeless limit). In Figure 4 (left), we fix A = 0.01 and plot a heatmap
of the asymptotic MSE as function of the two variables 7 = limp/d and 0 = limd/n.
Clearly, the MSE is in general not monotone with respect to m or . Note the peak in
the MSE around the curve 7 = dm = 1, or equivalently 6 = 1/7. This corresponds to the
“interpolation threshold” where limp/n = 1, and the number of learned parameters p is
close to the number of samples n. Thus, we fit just enough parameters to interpolate the
data.

Besides, we see in Figure 4 (right) that double descent (which we interpret as a change
of monotonicity, or a peak in the risk curve) with respect to 1/6 = limn/d occurs when 7 is
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suitably large, e.g., m = 0.9, while the MSE is unimodal when 7 is small, e.g., 7 = 0.5. The
intuition is, as in many previous works on double descent (e.g., LeCun et al., 1991; Hastie
et al., 2019), that the suboptimal regularization can lead to a somewhat ill-conditioned
problem, which increases the error (see also section 2.3.4 for more explanation). Thus, we
see that here as in prior works, using a suboptimal penalty A may lead to non-monotone
MSE.

Moreover, we can obtain some quantitative results about the bias and variance with
fixed values of the regularization parameter A.

Theorem 7 (Bias and variance of ridge models given a fixed \) Under the assump-
tions in our two layer setting, we have

1. For any fized A > 0, limy_,~, Bias?()\) is monotonically decreasing as a function of 7
and is monotonically increasing as a function of J.

2. limy_,0 limg_,o, Var(\) = oo on the curve 6 = 1/m (the interpolation threshold where
limp/d = 1). More specifically, when X — 0, Vg, Vg, goes to infinity while other
variance components converge to some finite limits on the curve 6 = 1/m.

The first part implies that more samples or a larger degree of parameterization can always
reduce the prediction bias, which is consistent with our intuition that larger models can, in
principle, approximate any function better.

For the variance components, it is natural to expect that some interaction exists, be-
cause even the expressions W, X in the prediction function f(X) = (WX)'j interact non-
additively. But we do not fully understand why the interaction terms Vj;, Vy; are large.
This can be viewed as a surprising discovery of our paper. One somewhat tautological
perspective is that the interaction terms are the part of variance that are most affected
by “under-regularization”. For instance, the main effect V; comes from the randomness of
initializations. Thus, one has to average—or ensemble—over the choices of initialization
W to reduce V;. However, for V; and Vg, both ensembling and optimally tuned ridge
regularization can reduce their values significantly. Thus, these components seem to be
more affected by the “under-regularization” due to using a sub-optimal ridge parameter.
However, this is still a somewhat circular explanation, because the entire reason that they
diverge is that they are sensitive to under-regularization.

For any fixed A > 0, we conjecture based on numerical results that limg_, ., Var()) is
unimodal as both a function of 7 and a function of . This appears to be more challenging
to show. Here the unimodality would be mainly due to being close to the interpolation
threshold p/n = 1 for § ~ 1/7, which leads to ill-conditioned feature matrices and a large
risk.

2.3.3 ADDED NOISE INTERPRETATION

The random projection step in the initialization can be interpreted as creating additional
noise. Thus, we can find a ridge model without the projection step (i.e. without the first
layer) with larger training set label noise 0’2 and the same test point label noise o2 that has
the same asymptotic bias, variance, and MSE as the model with random projection step
(i.e. with the first layer). To obtain the “effective noise” level 0’2, in equation (14), (15),
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let us equate the formula determining limy .o MSE(A*) = o?[1 — 7 + A*70;] + o2 for two
sets of parameters o?, 02, 7,6 and a?,0%, 7 = 1,6. This leads to the equation

1—7+ N7 = \*0].

After simple calculation, we obtain

o? =0+ A:=c+a*(1-7)

S(1+02/a®)+1++/(6(1+02/a?) +1)2 — 4y
27y '

Note that Variance = MSE — Bias? — 02, hence the random projection model has the same
asymptotic bias, variance and MSE as the ordinary ridge model with additional training
set label noise A. However, the variance components are specific to the two-layer case, and
do not carry over to the one-layer case.

2.3.4 UNDERSTANDING THE EFFECT OF THE OPTIMAL RIDGE PENALTY

In this section, we provide some intuitions for why unimodality and the double descent
shape appears in the MSE of ridge models when using a fixed small penalty A (close to the
ridgeless limit), and how the optimal A* helps eliminate the non-monotonicity of the MSE.
We illustrate this with numerical results.

To qualitatively understand the effect of the optimal penalty A*, we plot the variance
components, variance, bias and the MSE under two different scenarios. In the first scenario,
we use the optimal penaly A* for all ridge models (see Figure 5). It is readily verified that
Vs and V; contribute to a large portion of the variance, while the contributions of Vj; and
Vi are relatively small.

In the second scenario, we choose A = 0.01 for all ridge models. From Figure 6, we see
that, perhaps surprisingly, it is the interaction term Vi; between sample and initialization
that dominates the variance. In particular, we think that it is surprising that this interaction
term can be larger than the main effects V; and V; of sample and initialization. Also, Vs; and
Vsii lead to the modes of the variance on the curve 6 = 1/7 (the interpolation threshold).

Comparing Figure 5 and 6, we can see that V;, V; and Vj; are almost on the same scale
in the two scenarios. However, Vy; and Vy; are much larger when A = 0.01 than when
A = A\*. These two terms are the main reason why the variance is significantly larger when

= 0.01. Moreover, Figure 5g and 6g show that the bias is even relatively smaller when
we use A = 0.01 instead of the optimal A*. Intuitively, the reason is that the optimal
regularization parameter is large, to achieve a better bias-variance tradeoff, and thus makes
the bias slightly larger while decreasing the variance a great amount.

Therefore, we may conclude that, under a reasonable assumption on the label noise
(e.g., 0 = 0.3« here),

1. Using a fixed small penalty A for all ridge models can lead to unimodality /double
descent shape in the MSE. The modes of the MSE as a function of § are close to the
interpolation limit curve § = 1/m.

2. The unimodality /double descent shape of the MSE given a fixed small penalty A is
due to the variance. The bias is typically smaller when using a fixed small penalty A
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Figure 5: Heatmaps of the performance characteristics for the optimal regularization pa-
rameter A = \*. Variance components, variance, bias and the MSE as functions of = and
when a = 1,0 = 0.3. (Var = V, + V; + Vy + Vi; + Vy;. MSE = Bias? + Var + 02.)

instead of the optimal penalty A*. As mentioned, this is because the bias and variance
are balanced out for the optimal A*, and thus we can increase the bias a bit, while
significantly decreasing the variance.

3. Compared with choosing the same small ridge penalty for all models, through using
the optimal penalty A\*, one can reduce the variance significantly, especially along the
interpolation threshold curve. The unimodality /double decent shape of the MSE will
vanish as a result; but the variance itself may still be unimodal.

4. Using the optimal penalty for all ridge models reduces the variance mainly by reducing
the interaction component V;. This component is large in an absolute sense, and thus
a reduction has a significant effect. The component Vy; is also reduced in a relative
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sense; however, because it is of a smaller magnitude, this reduction has a more limited
effect.

5. There is a special region where the bias and variance (for the optimal A\*) change in
the same direction, in the sense that increasing the parametrization = = limp/d or
decreasing the aspect ratio § = limd/n decrease both the bias and the variance. See
Figures 5f and 5g.

This special region is characterized by the “triangle” 0 < 7 < 1, § > 0, with § <
2(2r — 1)/[1 + 202/a?]. In finite samples, this is approximated by the inequality
d/n < 2(2p/d — 1)/[1 + 202 /a?] between the sample size n, data dimension d and
the number of parameters p. This can be interpreted as saying—for instance—that
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the parameter dimension p should be large enough. Thus, in that setting, with more
parametrization we can get simultaneously better bias and better variance. In a sense,
this can indeed be viewed as a blessing of overparametrization.

6. There is a “hotspot” around m = 1/2, where in V;, and Vs; both take large values (see
Figures 5b and 5d). The variance due to initialization is large for intermediate values
of the projection dimension p. Roughly speaking, one can consider an analogy with
Bernoulli random variables, which have large variance for intermediate values of the
success probability.

7. For fixed A, when 6 < 1 (d < n), numerical experiments show that the MSE is
decreasing as 7w increases, which means that more parametrization can always give us
small MSE when we have enough samples. See Figure 6h. It appears that there may
be no double descent for fixed A when ¢ is sufficiently small; however investigating
this is beyond our current scope.

Recall that, in the noiseless case, Vs can be interpreted as the variance of an ensemble
estimator, and V; + V; is the variance that can be reduced through ensembling. Therefore,
the unimodality/double descent shape in the MSE is not intrinsic, and can be removed
through regularization techniques such as ensembling, (consistent with d’Ascoli et al. 2020)
or optimal ridge penalization.

2.4 Ridge is Optimal

We have obtained precise asymptotic results for optimally tuned ridge regression. However,
is ridge regression optimal, or are there other methods that outperform it? In fact, we can
prove that the ridge estimator is asymptotically optimal.

Theorem 8 (Ridge is optimal) Suppose that the samples are drawn from the standard
normal distribution, i.e., x and X both have i.i.d. N(0,1) entries. Given the projection
W, projected matric XW ' and response Y, we define the optimal regression parameter
Bopt as the one minimizing the MSE over the posterior distribution p(O|XW T W,Y) of the
parameter 6,

Bopt + = argming B g vyt wy Ba (W) T8 — (270 + )], (16)

where x ~ N(0,1), e ~ N(0,0%) and , € are independent. We will check that this can be
expressed in terms of the posterior of 0 as

Bopt =W - Epg xw ™ wy)b- (17)

The optimal ridge estimator B = (n " "WX T XW T +XI,) "W X Y/n (Theorem 3) satisfies
the almost sure convergence in the mean squared error

JHim Exw wy |8 — Bopills = 0, (18)

and is thus asymptotically optimal. Here d — 0o means p,d,n — oo proportionally as in
Theorem 3.
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Remark. In Theorem 8, the optimal parameter (., minimizes the mean squared error
over the posterior of @ given the projection W, projected matrix XW T and response Y.
From the proof of Lemmas 12, 13, we know that E||3]|> converges to some positive constant
as d — co. Thus, 8 has a constant scale as d — oo, and the result that HB — Bopt||* — 0 of
Theorem 8 shows that [, is indeed non-trivially well approximated. This result implies
the asymptotic optimality of ridge regression.

In addition, if we are given the original data matrix X instead of XW T, then from the
optimality of ridge regression in ordinary linear regression with Gaussian prior and noise,
we have Bopr = W(n X "X + do?l,/[na?]) "X TY/n and ridge regression over projected
data is not asymptotically optimal. However, in our two-layer model, we only exploit the
information of X through XW T, thus it is reasonable to consider the situation above, in
which we are only given XW .

3. Nonlinear Activation

It is also possible to consider the bias-variance decomposition for a two-layer neural network
with certain scalar nonlinear activation functions o(z) after the first layer. Namely, suppose
that the data are generated through the same process, but instead of using a two-layer linear
network, we use

f@)=o(Waz)Tp (19)

as the predictor. Here o0 : R — R is an activation function applied to Wz entrywise. As
before, we assume W € RP*? has orthonormal rows, so p < d, and we only train 8. This can
be viewed as a random features model. We apply ridge regression to estimate (3, therefore
our prediction function is

f@)=c(Waz) B=c"WT") <0(WXT)U(XWT) -1 M

n

(20)

n

" AIp>

For simplicity, we further assume that Ec(Z) = 0, where Z ~ N(0,1) is a standard normal
random variable. The results for activation functions with arbitrary mean can be obtained
through similar techniques, but are much more cumbersome. This assumption does not
capture the ReLU activation function o4 (z) = max(z,0), but it can handle the function
oy(x) — Eoy(Z), which only differs from the ReLU by a constant. In particular, the
mean of our prediction function f (z) with the current restriction is always zero, i.e., the
prediction function does not have an intercept term. In our model, the true regression
function f*(2) = 6"z does not have an intercept term either; thus we think that the zero-
mean restriction may not be significant in the current setting.

Moreover, we suppose that there are constants c1,co > 0 such that 0,0’ grow at most
exponentially, i.e., |o(x)], |0’ (z)| < c1e®l. Define the moments

w:=EZo(2), v:=Eo*(Z), (21)

where Z ~ N(0,1). Also, we suppose that the samples are drawn from the standard normal
distribution NV(0, I;), i.e., X and x both have i.i.d. N(0, 1) entries. As before, we can write
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down the MSE, bias and variance:

MSE()\) := By, wxe(f(z) —270)? + 02
Bias?(\) := Eg,(Ew,x.e f(2) — 276)?
Var()\) := Eg . wxe(f(z) — Exwef(2))>

Our main result in this section gives asymptotic formulas for their limits.

Theorem 9 (Bias-Variance Decomposition for two-layer nonlinear NN) Under
the previous assumptions (i.e., in the setting of Theorem 2), with the further assumption
that the samples are drawn from N'(0,1,), i.e., x and X have i.i.d. N(0,1) entries, we have
the following limits for the bias, variance, and mean squared error. Recall that we have
an n x d feature matriz X and a two-layer nonlinear neural network f(z) = o(Wz)T3,
with p intermediate activations, and p X d orthogonal matriz W of first-layer weights with
WWT =1,. Heren,p,d — oo and p/d — 7 € (0,1] (parametrization level), d/n — § > 0
(data aspect ratio), with o the signal strength, o the noise level, \ the regularization
parameter, 0; the resolvent moments, and p,v the Gaussian moments of the activation
function o from (21). Then

2
lim MSE(\) = o?n [1 —14+6(1—mb; + A </\'l; —0(1— W)) 0o
d—00 iy v v
1 A A
(v — p?) (791 - Zeg)] + o2y (el - 02> +o?, (22)
v v v v
2 2
lim Bias?(\) = o2 [w“ (1 - Am) - 1] : (23)
d—o0 v v

2 I\ 2 2
lim Var(\) = o’n [2M -1+ (— 2/; +4(1 —7r)> 01 —I—% <);)'U2J —0(1 —7r)> 02

d—oo
mpt A o (v, L1 M 2 A
—— (1—U91> +(v—ﬂ)<1}91+ 92) +07(91—U92>,

v 02
(24)

where 01 := 01(y,\/v), 02 := O2(y,\/v), v = 7. Similar to the linear case, the limiting
MSE has a unique minimum at \* := Z—z [5(1 — 7+ a%/a?) + @} .

Remarks. (1). When expanding the function o(z) in the Hermite polynomial basis, p is
the coefficient of the second basis function x, and /v is o(x)’s norm in the Hilbert space.
Thus v > p? and the equality holds iff o(z) = kx. (2). When o(z) = kx (i.e. v = u?), the
results in theorem 9 reduce to those in theorem 3.

Also, we have monotonicity properties similar to in the linear case (Table 2):

Theorem 10 (Monotonicity and unimodality for non-linear net at optimal \*) Under
the assumptions from Theorem 9, for the optimal A\ = \*, the MSE, Bias, and variance have
the monotonicity and unimodality properties summarized in Table 2. The MSE and bias are
decreasing as a function of the parametrization level m, and increasing as a function of the
data aspect ratio 0. The variance is either monotone or unimodal depending on the setting.
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Variable L . . .
parametrization 7 = limp/d aspect ratio 6 = limd/n
Function
MSE ¢ /
Bias? \ N
2 2
§ <2t 2'u—1>/(1+202/a2):/\,max wg%:\.
v v o
) 2 :
Var :L2+/;)< a>]/4 7r>ﬁ. A, max at
1 12 202 (2mp? fv — 1)
5227 <2U—1 / (1+20%/a?): 7. v(1 + 202/a2)

Table 2: Monotonicity properties of various components of the risk for a two-layer network
with nonlinear activation at the optimal \*, as a function of 7w and ¢, while holding all other
parameters fixed. " non-decreasing. \, non-increasing. A: unimodal. Thus, e.g., the
MSE is non-increasing as a function of the parameterization level 7, while holding ¢ fixed.

Thus, comparing Tables 2 and 1, we see that with stronger Gaussian assumptions on
the data distribution, optimal ridge regularization has similar effects in the nonlinear and
linear cases. For instance, A* can eliminate the “peaking” shape of the MSE.

4. Numerical Simulations

In this section, we perform several numerical experiments, to check the correctness of our
theoretical results.

4.1 Verifying the Theoretical Results for the MSE

To check the correctness of the MSE formula, we estimate the MSE from its definition
directly. For simplicity, we subtract the test point label noise o from the MSE formula.
We randomly generate k = 400 i.i.d. tuples of random variables (x;, 6;,&;, X;, W), 1 <i < k,
from their assumed distributions (we assume X and z have i.i.d. N (0, 1) entries in numerical
simulations), and estimate the MSE by calculating:

k
Zfzxz —Z; 9)

?r\H

where k = 400 and fi(z;) = o(z; W,T) (n Lo (W, X))o (X;W,") + L) ™ n~ Lo (WX, )(Xi0i+
&i), for o(z) both linear and nonlinear. We repeat this process 20 times and plot the mean
and standard error in Figure 7. The regularization parameter A is set optimally or fixed.
We also plot our theoretical MSE formula from (13). The parameters in the experiment
are shown in the captions of the figure. We can see from Figure 7 that our theoretical
prediction of the MSE is quite accurate.
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Figure 7: Numerical verification of the theoretical results for MSE. We display, as a function
of 6 = limd/n, the theoretical formula and the numerical mean and standard deviation over
20 repetitions. Parameters: o = 1,0 = 0.3,7 = 0.8,n = 150,d = |[nd|,p = |d~n]|. Left:
linear, o(z) = =, A = \*(optimal). Right: nonlinear, o(x) = oy (z) — Egupnr0,1)0+(2),
o4 (x) = max(x,0), A = 0.01.
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Figure 8: Left: numerical simulation verifying the accuracy of the bias, variance and MSE
formulas. Right: simulations with variance components. For each ANOVA component,
symbolized by %, we show two curves: *: theory, nx: numerical (averaged over 5 runs).
Parameters: o« = 1,0 = 0.3, 7 = 0.8,n = 150,d = |[nd|,p = |dr].

4.2 Bias-variance Decomposition and the Variance Components

We next study the accuracy of the formulas for the bias, variance and the variance compo-
nents in the linear case. Estimating them directly requires many samples. For example, to
estimate the bias based on the defining formula from Section 2.2, we may need to generate,
say, 100 pairs of (z,0), and for each (z,0) generate 500 triples of i.i.d. (X, W,E). Thus, we
may need to simulate 50,000 samples in total to obtain accurate results. This is beyond
our current scope. Therefore, for simplicity, we check instead the formulas that we have
derived in Appendix B in equations (25)—(27), (32)—(38). We omit the results for V; and
Vi; since they converge to 0. In all experiments, we choose n = 150. For the bias, variance,
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Functional Estimator

Etrf(MMT) | = Z tr(M; MT)

IEM2 H > Mz
Ew|ExM|3 z Z Z M
o
2
1
Ex(Ew M | S5 || > My
]:1 F

Table 3: Empirical estimators of functionals of interest. Here M is a generic matrix that
can be M or M. For the bias, variance and the MSE, we take k& = 100 and M; denotes the
appropriate matrix M obtained from the i-th pair of (X, W). For variance components,
k = 20,50 and M;; denotes the appropriate matrix M obtained from the i-th X and the
j-th W. Estimators of the quantities in (25)—(27), (32)—(38) are obtained by combining
the above.

and MSE, we generate 100 i.i.d. copies of X, W of certain dimensions (we assume X has
i.i.d. MV(0,1) entries in numerical simulations) and estimate the expectations from the proof
of Theorem 3 in Appendix B (25—27) using the Monte Carlo mean. As for the variance
components, we randomly generate k i.i.d. Xj;-s and Wj-s, and use them to form k? pairs of
(Xi, Wj), where k = 20 in Figure 8 (right) and k& = 50 in Figure 1 (left). Similarly, we also
estimate the expectations from the proof of Theorem 2 in (32)—(38) via the Monte Carlo
mean (see the details in Table 3).

Figure 8 shows the results averaged over five runs. We can see that the numerical
results are quite close to the theoretical predictions. Moreover, the standard deviations
over 5 runs are uniformly less than 0.001 in all settings we considered, which implies that
the variance due to the randomness of (X, W) is negligible. The slight discrepancies between
the theoretical predictions and experiments are mostly owing to the bias in our estimators
(e.g., the second, third and fourth estimators in Table 3 are biased, because they are of the
form g(EM), which is estimated by g(k~! Ele M;), and g is nonlinear), and they can be
reduced if we have more samples (X, W).

One may wonder: Why is the standard deviation of different runs of the simulation so
small (e.g., less than 0.001)? The reason is that the Marchenko-Pastur theorem, on which
our theoretical predictions depend, has fast convergence rates (e.g., Bai, 1993; Gotze et al.,
2004). Since the terms we estimated are expectations of various functionals of the eigenvalue
spectrum, we can expect the simulation results to be quite precise.

4.3 General Covariance

Although our theoretical results are proved under an assuming the data distribution is
isotropic, we also study the model under general covariance assumptions numerically. Namely,
we assume the samples are drawn i.i.d. from N(0,%(r)), where X(r);; = rl"=7l is an AR-1
covariance matrix. We numerically study the bias-variance decomposition and the variance
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Figure 9: Bias-variance decomposition and the variance components under an AR-1 co-
variance assumption. Left: numerical simulation of the bias, variance and MSE formu-
las. Right: simulations with variance components. Upper: r = 0.5,A = 0.01. Down:
r =0.9, A\ = 0.001. For each term, symbolized by x, we show n*: numerical (averaged over
5 runs). Parameters: a = 1,0 =0.3,7 = 0.8,n = 150,d = [nd],p = |d~].

components the same way as in Section 4.2. The only distinction is that the formulas we
estimate are slightly different due to the non-identity covariance. More specifically, one can
show that the formulas for the general covariance case are the same as their counterparts
in equations (25)—(27), (32)—(38) with || - |% replaced by tr(- - (r)).

In the experiment, we choose fixed small penalties A = 0.01,0.001 to mimic the ridge-
less limit. Figure 9 shows the numerical results when » = 0.5, 0.9. We see that many
observations in the isotropic case (e.g. monotonic bias, non-monotonicity of the MSE and
variance, the interaction terms dominating the variance at the interpolation threshold) still
hold in the general covariance case. However, the terms contributing the most to the total
variance are Vg and Vy; when r = 0.9, while they are V; when r = 0.5 or in the isotropic
case. We conjecture that this is because the covariance matrix can implicitly change the
ratio between the noise ¢ and signal a. However, more work is needed in the future for
understanding the generalization error under a general covariance assumption.
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4.4 Experiments on Empirical Data

In this section, we present an empirical data example to study several phenomena observed
in our theoretical analysis. We use the Superconductivity Data Set (Hamidieh, 2018) re-
trieved from the UC Irvine Machine Learning Repository in our data analysis.

The original data set contains N = 21,263 superconductors as samples and d = 81
features for each sample. Our goal is to predict the critical temperatures of the supercon-
ductors based on their features. Before doing regression, we preprocess the data set in the
following way. We first randomly shuffle the samples. We then separate the data set into
a training set containing the first 90% of the samples, and a test set containing the rest.
Finally, we normalize the features and responses so that they all have zero mean and unit
variance. Since NN is quite a bit larger than d, we can estimate the variances of the features
quite well; and thus we can standardize new test datapoints from this distribution using
the estimated variances. After these steps, we are ready to start our experiments.

Similar to our theoretical setting, for each experiment setting (p, n), we randomly select
n samples from the training set to form a data matrix X € R™ ¢ map it into a random
p-dimensional subspace multiplying it by a projection matrix W with orthogonal rows and
then perform ridge regression on the p-dimensional subspace. For each setting, we generate
50 i.i.d. sample matrices X;, 1 <14 < 50, and 50 i.i.d. random projections W;, 1 < j < 50,
and combine them to form 2500 sample-initialization pairs (X;, W;), 1 <,j < 50. Denote
by y; the response vector of X;. Then for each (X;, W;), we have the ridge estimator

1<4,j < 50.
n

. WX X, W WX T
f”(x) = .’L‘T (J Zn J + )\Ip> g7 ot yz,

We use these estimators to make predictigrg on the test set and estimate the MSE, bias,
and some of the variance components as MSE := L~! 25:1 E(fij(rk) — yr)?, and:

L L

o1&, - 5 o1&

Var = = S B (fiy(an) - Bfij (@) Bias' ==+ > (Bfij(ak) — w)?,
k=1 k=1

R 1 L ns o o R 1 L n; o o

Vo= o SO (®)fi(zn) — Bfij(xr)?, V= 7 DO (Eifij(ak) — Bfij(wx))?,
5 k=11i=1 i =1 =1

where E denotes the Monte Carlo mean, n; = ng = b0, L is the test set size, and xj, y; are
test features and responses.

Since we have no information about the true noise of the responses, we only study the
variance introduced by the choice of the data matrix X and initialization W. Figure 10
shows the empirically estimated bias, variance and MSE as functions of the number of
samples n given a fixed amount of parameterization (fixed 7 = limp/d). From this figure,
we observe the following:

1. The MSE is unimodal as a function of number of samples n, which corroborates that
increasing the number of training samples can sometimes lower the model’s perfor-
mance when we do not have enough samples and do not regularize well (e.g. use a
small A = 0.01). This unimodality is quite similar to the unimodality we observed in
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Figure 10: Empirically estimated MSE, variance and bias as functions of number of sam-
ples n. We display the mean and one standard deviation of the numerical results over 10
repetitions. Left: m = 0.2, A = 0.01. Right: 7 = 0.9, A\ = 0.01. (Both panels are from the
same simulation.)
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Figure 11: Numerically estimated variance components as a function of the sample size n.
Left: three components of variance (Vi, Vi, and “Rest”: the variance due to interaction
and response noise, Rest := Var — V; — V;). Middle and right: two orders of variance
decomposition. Middle: sample, initialization. Right: initialization, sample. X7, :=
Var — Vb,Egb = Vp,{a,b} = {s,i}. Parameters: 7 = 0.2,A = 0.01. We display the
mean and one standard deviation over 10 repetitions. (All three panels are from the same
simulation.)

Figure 4 in our theoretical setting. It is also consistent with the general phenomenon
of sample-wise double descent (Nakkiran, 2019).

2. The bias is decreasing as a function of n, when n is small, and stays roughly constant
when n is larger. The reason is that the data does not truly come from a linear model,
and thus the linear model that we use has a nonzero approximation bias.

3. The bias is also decreasing as a function of 1/6 = n/d. This suggests that more
samples can reduce the bias of the ridge estimator. Furthermore, the variance is
the main contributor to the unimodality of the MSE. These two observations are also
consistent with our theoretical results from Theorem 7, which suggests that the bias is
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Figure 12: Empirically estimated MSE, variance and bias as functions of degree of parame-
terization gy = p/d. We show the the mean and one standard deviation over 10 repetitions.
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Figure 13: Empirically estimated MSE, variance and bias as functions of number of samples
n using the optimal A*. We display the mean and one standard deviation of the numerical
results over 10 repetitions. Left: 7 = 0.2. Right: 7 = 0.9. (Both panels are from the same
simulation.)

increasing as a function of § and the variance can be very large along the interpolation
threshold ém = 1 when A is small.

Figure 11 (left) shows estimates of three components of variance in our data example.
In this low parameterization setting (7 = 0.2), when n is small (< 100), the variance Vj
due purely to sampling is large, the variance V; due purely to initialization is small, and the
variance Vs due to their interaction and also the response noise is large. Thus, combining
these variances together, we can see from Figure 11 (middle and right) that different orders
of decomposition can indeed lead to different interpretations of the variances introduced by
sampling and initialization.

Figure 12 exhibits empirical estimates of the bias, variance, and MSE as functions of
the degree of parameterization = = limp/d when given enough samples, here n = 1000, so
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that 6q = d/n is small. We see that all three terms decrease as 7 increases, which means
more parameters can improve the estimator’s performance when we have enough samples
(6 is small). This is also close to what we have observed in Figure 6h, i.e., that the MSE is
decreasing as 7 increases when § < 1.

We also study the effect of optimal ridge penalty on the empirical data. For simplicity,
we select the ridge parameter from the set {i x 1077]i = 1,2,5;5 = 0,1,2,3} such that it
minimizes the empirical MSE. Figure 13 shows the MSE, variance and bias obtained using
the optimal ridge penalty. Compared with Figure 10, we see that the optimal ridge penalty
can mitigate the non-monotonicity of MSE and keep the bias decreasing as the number
of sample n increases. These observations are consistent with what we have shown in our
theoretical setting.

To conclude, although our theoretical results are based on quite strong assumptions on
the data distribution, many conclusions and insights still carry over to certain problems
involving empirical data.
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Appendix A. Comparison of Orthogonal and Gaussian Initialization
Models

Here we provide a comparison of the orthogonal and Gaussian initialization models for
linear networks f(z) = (Wz)"3. The expressive power of the two models is the same,
as with probability one we can write a p x d matrix W with iid Gaussian entries, where
p < d, via its SVD as W = UDV, where U is p X p orthonormal, D is p x p diagonal with
nonzero entries with probability one, and V is p x d partial orthonormal with VV T = 1.
Then (W2) '8 =2"WTB=2"VIDUTB=2TW, B,, where W, = UV is a random partial
orthonormal matrix, and 5, = UDU ' 3 is a new regression coefficient. Thus, the two models
have the same expressive power.

The orthogonal model we consider has some advantages over the Gaussian model. In-
deed, considering the case when p = d, in the orthogonal model, we first rotate x orthog-
onally, then take a linear combination of the coefficients. In contrast, in the Gaussian
model we not only rotate x, but also scale it by the singular values of x, which due to the
Marchenko-Pastur law (Marchenko and Pastur, 1967) spread out from zero to two. Thus,
we induce a significant distortion of the input in the first layer. Then, we can expect that
learning may be more challenging due to this additional scaling. Indeed, the regression
coefficients corresponding to the directions with near-zero singular values must be scaled
up asymptotically by unboundedly large values for accurate prediction. On the other hand,
the Gaussian model more closely mimics practical initialization schemes, which can indeed
involve iid weights. We also note that recently, some empirical work has argued about
the benefits of orthogonal initialization (Hu et al., 2020; Qi et al., 2020). For instance, Qi
et al. (2020) argues that orthogonality (or isometry) alone enables training practical >100
layer CNNs on ImageNet without shortcut and BatchNorm, and therefore provides some
justification for orthogonality in our theoretical analysis.

Appendix B. Proofs
B.1 Proof of Theorem 3

Different from the order of the theorems, here we first give the proof of theorem 3 and then
the proof of theorem 2. This is because the proof of theorem 2 is more complicated and
depends on some lemmas in the proof of theorem 3.

In the proofs, we will often refer to the spectral distribution (or measure) a symmetric
matrix M, which is simply the discrete distribution placing uniform point masses on each
of the (real) eigenvalues of M. When the matrix size grows, we will consider settings where
the spectral distribution converges in distribution to a fixed probability distribution.

Let us define

Mxw\) =W (n WX TXWT + L) 'WXT/n

(a d x n matrix), and

Mwi()\) = Mwi()\)X

(a d X d matrix) and omit their dependence on A\, X, W for simplicity. As we will clearly see
below, M can be viewed as a “regularized pseudo-inverse”. Also, EM — I directly controls
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the bias, and M — EM controls part of the variance. The calculations of bias and variance
in terms of M follow those of Yang et al. (2020), and we include them here for the reader’s
convenience. The calculations following them are more novel.

To start, we have f) 7 w(z) = 2T MY, and similar to the proof of theorem 1 in Yang
et al. (2020)

Bias?(\) = E., [EX,W@ (JM& + xTMg) — xTG] ’
~ Ey, [a:T(IE xweM — D)o + ET7W(33T]\;[S)} :

Since £ has zero mean and is independent of x and ]\Zf, we know ExyWﬁ(JZTM(‘:) =0. In
what follows, sometimes we omit the subscript when we take expectation over all random
variables. Thus, using that for any two vectors and a matrix of conformable sizes, (a' Nb)? =
a'Nbb'NTa =tr Nbb' NTaa', the above equals

Eo. [xT(IEM — 99T (EM — I)T:c}

— By tr [xT(EM — 1097 (EM — I)T:c}

— tr [(EM ~IE (eaT) (EM —1)'E ($$T>]
2

(6%
= 2 |BM - 13 (25)

This shows that the average bias is determined by how well the random matrix M (which
depends both on the random data X and the random initialization W) approximates the
identity matrix. .
Similarly, by grouping terms appropriately, and using again that E X7W’5($TM £) =0,
T T T Tren]?
Var(\) = B xve |27 MO+ 2T ME — Exwe(e M0+ T ME)
T T el
= Eoaxwe ¢ (M ~EM)0 + 2" ME|
2 -
= Eoaxwe [o (M —EM)| + (2" NIE)?,

where the interaction term is zero because of the independence between £ and other vari-
ables. Then, using that tr AT A = || A%,

Var()) = B xwe { [:J(M —EM)00T (M — EM)Tx} +a MEETM T a )
= Koo xw {tr [(M —EM)§0T (M — IEM)Txa;T} + o2 tr[:cTMMTx]}
— B tr [(M “EM)E(99")(M — EM)TE(mT)} + o2 tr [MMTE(SCSL‘T)}
2
(6% ~
= FEHM—EMH%JFU%HMH%- (26)

Thus, the variance is determined by how much M varies around its mean, and by how
large M is. Combining results for variance and bias, and using that E|M — I||% = E||M —
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EM|% + E||EM — I||%, we obtain

2 ~
MSE()\) = Var()\) + Bias?(\) + 0% = %EHM —1I|% + 0°E|| M||% + o2 (27)

Similarly, for Yjapel; Xsamples 2init; We have

Siabel = Eg Ew xe[arw (@) — Eeforw(2)]?
=Ko, wxe(r' ME)? = o’E|M|3%.

Thus, the variance due to label noise is determined by the magnitude of M. Also,

Ssample = Eo2Ew,x [Ee fa7w (@) — Ex.efa7w(@)]?
=Egwx|z MO —Ex(z" M)
2
(6%

= LB |M —Ex M.

Finally,

Sinit = EooEw (Exefrarw (@) — Ewx.efarw(z))?
= Ee,x,W[EX (5UTM9) —Ewx (J:TMH)]z
2
a

This shows that in the specific decomposition order: label, samples, initialization, the
variance due to the randomness in the sample X is determined by the Frobenius variability
of M around its mean with respect to X. The respective statement is also true for the
variance due to initialization.

Therefore, to prove theorem 3, it suffices to study the limiting behaviours of EM, Ex M,
M and M. Under the assumptions in Theorem 3, we have characterize their behavior in
the following lemmas.

Lemma 11 (Behavior of EM)
1 1
lim ~Etr(M) =7(1— M), Vi>1. lim —||EM|% = 7%(1 — \0;)2 (28)
d—oo d d—oo d
Lemma 12 (Behavior of the Frobenius norm of M)
1
Jim gEHMH% = [1—2X1 + A0, + (1 — 7)5(61 — Ab,)] . (29)
— 00
Lemma 13 (Behavior of the Frobenius norm of M)
lim E||M|/% = 76(6y — \a). (30)
d—ro0

Lemma 14 (Behavior of the Frobenius norm of Ex M)

1
lim ~Ey||ExM|% = 7(1 — \61)>. (31)
d—oo d
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We put the proof of these lemmas after the proof of theorem 3 and 2 for clarity (see Appendix
B.3). By using Lemmas 11—14, we are able to complete our proof.
Proof [Proof of Theorem 3| Plugging equation (28) into (25), we have
2
Bias2()\) = %HEM —I|Z = a®(n(1 = M0y) — 1)% = a2(1 — 7 + Arfy)%

Plugging equations (28), (29), (30) into (26), we have

2

«@ -
Var(\) = “CE|M ~ EM{} + 0*E| 31}
2

(07

d
— o’ [1 —2X01 4+ N0y + (1 — m)6(01 — N02) — (1 — Ael)ﬂ + o2m8(0; — \o)

[EIM][F — IEM|E] + o[ M||%

=a’r [1 — w4 (m=1)(2X = 8)0; — TAZOF + AN — 5 + 7T(5)92:| +02m8(61 — \s).
Similarly, by Lemmas 12, 13, 14

Elabel = O’%EHMH% — 027T(5(61 — )\(92)

a2

Suanpte = & B x IM — Ex M| = % [BIM|% - By [Bx M
— a1 [=A%07 + A%02 + (1 — m)5(01 — Ab2)] .
Finally,
Sinit = Var(A) — Sgample — Stabel — @m(1 — ) (1 — A1)
MSE()\) = Var()\) + Bias*(\) + o2
— a? {1-m+m6(1- 7T—|—02/a2) 01+ [A—0(1 —7r+a2/oz2)] Ay} + o2
As for the choice of optimal \*, denote 6(1 — 7 4+ 02/a?) by ¢ and calculate

d d
— lim MSE()) = aa2 [1 — 7+ mehy + (N — ¢) Anbs] + o°

d\ d—
d e (A=)
2
= — ——dF. —~———dF.
“ (/a:+)\ 7(3””/ (z + M2 ”($)>
d N+ ex
2
= — ———dF.
i ([t )
o2 (AN—c)z
=2« W/WdF7<I)
If =1 and o =0, then ¢ = 0 and the asymptotic MSE is monotonically increasing since
F.,(x) is supported on [0,400). Therefore the optimal ridge \* = 0, which is outside of
the range (0, 00) that we considered here. Otherwise , the derivative is less than zero when
A < c and larger than zero when A > c. Therefore, the asymptotic MSE as a function of A
has a unique minimum at ¢ = 6(1 — 7 + 02/a?).
|
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B.2 Proof of Theorem 2

In this proof, we will use the same notations as in the proof of theorem 3. Since the main
idea of this proof is quite similar to the proof of theorem 3, we will omit some details in the

derivation for simplicity.
Proof [Proof of Theorem 2| By definition, for Vj,

Vi = By, Varx (Ee w (f(2)| X)) = By x|z (EwM — EM)6)?

Ct2 2
= L Ex|[Bw M — EM]|3.

For V,
Vi = By, Varg(Ex,w (f(2)|€)) = 02| EM |3
For V;,
Vi = By, Vary (Ee x (f(2)|W)) = Eppwlz (ExM —EM)6]?
2
(e}
= FEWHEXM —EM|%.
Similarly,
Vi = Eg . Vare x (Ew (f(2)E, X)) — Vs =V}
=Eorxelr (EwM —EM)0 + 2 By MEP — V, -V,
= 0’ Ex||EwM — EM||%.
Viy = Eg, Varg w(Ex (f(z)|€,W)) = Vi = V}
=Eppewlz (ExM —EM)0+a ExMEP? — Vi -V,
= ’Ew ||[ExM — EM|%
Vii = Eg,Varx w (E-(f(2)| X, W)) - Vs — V;
=Eopuxwlz' (M —EM)0P? -V, -V,
2
«
=7 (E|M |3 — Ex|EwM|% — Ew|ExM|% + |EM|Z) .
And

Vai = Var(f(z)) = (Vs + Vi+ Vi+ Vg + Vs + Vi)

= o*(E|| M7 — Ewl||Ex M||% — Ex|[EwM|[% + [EM|).

(35)

(36)

(37)

(38)

After obtaining the expressions of the variance components, Theorem 2 follows directly by

plugging Lemmas 11—17 into equation (32)—(38).

40



WHAT CAUSES THE TEST ERROR?

Lemma 15 (Behaviour of the Frobenius norm of M)
lim |[EM|% = lim Ew|ExM|% = 0.
d—o0 d—o0

When X is symmetric, by switching the sign of X, clearly E xM = 0. This lemma shows

that the same result still holds asymptotically when X is not symmetric, and simply has
zero-mean entries with finite sixth moment.

Lemma 16 (Behavior of the Frobenius norm of EWM)
lim Ex|[EwM|/% = 6(0; — M\y).
d—o0
Lemma 17 (Behavior of the Frobenius norm of Ey M)
1 .
lim ~Ex||EwM||% = (1 — 2X0; + \26y).
d—oo d
See Appendix B.4 for the proof of the above lemmas.

B.3 Proof of Lemmas 11—14

We first prove these four lemmas under the assumption that X hasi.i.d. standard Gaussian
entries in Appendix B.3.1—B.3.4 to obtain some heuristics for the formulas. Then in
Appendix B.3.5 we generalize the proof to the non-Gaussian case which only requires X to
have i.i.d. zero mean unit variance and finite 8 + 1 moment entries for any n > 0.

Next, we denote R = (WXTXWT/n + )\Ip)_1 for simplicity. In the Gaussian case,
the proof proceeds by moving to the SVD decomposition, and carefully exploiting serveral
properties of the normal distribution and the Marchenko-Pastur law. In the general case,
we use deterministic equivalents properties for covariance matrices to show that all terms
we are concerned with converge to the same limits as in the Gaussian case.

B.3.1 ProOOF OF LEMMA 11 (UNDER GAUSSIAN ASSUMPTION)

Proof By definition,

WXTX

n

EM = EMxw(\) =EW'R

Let V =[WT, WI] be an orthonormal matrix containing an arbitrary orthogonal comple-
ment of W'. Tt will be convenient to write this as W = DVT,~ where the p X d matrix

D = (Ipxp7 OPX(d,p)) selects the appropriate rows of V' T. Denote X := XV, a matrix of the
same size n X d as the original matrix X. Then,

DVTXTXVDT S DVTXTXVVT
EM:EMXVDT< v v +Mp> v Vv
n
~_ o~ —1 ~_ o~
T T T T
&, VDT (DX XD +Mp> DXTXVT
) n n
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By assumption, W is uniformly sampled from the Stiefel manifold, i.e., the manifold of
partial orthogonal p x d (p < d) matrices with orthonormal rows. Thus, we can assume
that V' is also uniformly distributed over orthogonal matrices (i.e. the Haar measure).
Furthermore, since V' is orthogonal, we know that X has independent standard Gaussian
entries and is independent of V because XV has the same distribution for any orthogonal
matrix V. Noting that By, VAV =trA- I;/d when V € R4 follows the Haar measure,
we get

~ ~ —1 ~ ~
T T T T
EM =EzE VD' (DX nXD + )J,,) DX XV

n

~ ~ —1 ~ ~
1 +(DXTXDT DXTX
~ ~ —1 ~ ~
1 DXTXDT DXTXDT
= Egtr <+>\Ip) == == |1,
d n

Further defining X := XDT = XWT which is now of size n x p (while the orlglnal size
was n x d), then X also has 1ndependent standard Gaussian entries. Letting X=0rv’
be the SVD decomposition of X, we have

~ ~ -1 . N -1
1 XTX X'X P A r''r
EM==-Eqt A = )l L =51-SFEptr | —— 4+ ML Iy
d x W ( n + p) n d d( D Fl"( n + p> d

This is determined by the spectral measure of n'XTX. Since X has independent
standard normal entries and limg_,o, p/n = 74, applying the Marchenko-Pastur theorem
(Marchenko and Pastur, 1967; Silverstein, 1995; Bai and Silverstein, 2010), we get

1
gEtr( ( )\/ FEL. )) — (1 — My (76, \)),
||IEM||F S 721 — A1)

This finishes the proof. |

B.3.2 PrROOF OF LEMMA 12 (UNDER GAUSSIAN ASSUMPTION)
Proof By definition of M,

wxTx|?

Bl =& [ R

F
T T T
WX'XX'XW RTW>

= Etr (WTR
n n

TyyT T
:Etr<RWX XX ' XW RT>.

n2
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Let W, = f(W) € R@2)*d be an orthogonal complement of W and define X; := XW T,
Xo =X WI Since X has Gaussian entries, X; and X5 both have Gaussian entries. Since

EX] Xo =EWX ' XW| =n-EWW/ =0,

it follows that X7 and X5 are independent. Noting that XXT = Xle—r + XZX;—, we have

XX X' xw’t XTXo X XWT
EHMH%:Eu(RW 1 Xy XW RT>+Etr<RW 2Xy XW RT).

2 2

n n

=: Cq + Co.

For the first term, we have

XX X xw’ XX XX
Cy = Etr <RW X XW RT> — Etr <R11211RT>.

n n

Let X; = UT, VT be the singular value decomposition of X;. By plugging in the definition

of R, we obtain
DY T\’
(B o) (50 ]
n n

Thus, according to the Marchenko-Pastur theorem,

Chi =Etr

2 2
a 2 €z _ 2 2
For the second term, since X; and X5 are indepedent and noting that

Ex,Xs Xo = Exw(XW] W, X)) =Ey(tr(ly — W W)y = (d - p)I,

we have
Cy =Etr (RWXTXZ)Q(QTXWT RT)  Ey Ex, ir (RXT‘X;‘;%RT>
=Ex, tr (RXFEXQ (?X?T)Xl RT> = %EXI tr <RX1;X1RT) .
Since

X/ X
Ex, tr <R11RT> =Etr
mn

-2
Ty M T
n p n ’

by the Marchenko-Pastur theorem, %202 — a}(1—m)7d [ ﬁdf}tg(l‘) =a?(1—m)78(6, —

A62). Finally, combining the results for Cy and Cs gives

2 2
%EHMH% = %(01 + Cs) = a1 [1 — 2001 + A*05 + (1 — m)5(601 — Ma)]
and this finishes the proof. |
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B.3.3 PrROOF OF LEMMA 13 (UNDER GAUSSIAN ASSUMPTION)

Proof By definition, we have

. xT xT\'
E|M|% = Etr (WTRW ><WTRW )

n n
wxTxw’ wXTXw?’
=Etr (WTR ——— RTW> =Etr <Rn2RT> :

Denote XW T by X; and write X; = UT'V'" for the SVD of X;. Then,

X/ Xy
n

N 1 1
E|M|% = ~Etr ( R R") =-Etr (R - AR?)
F n n

1 rr rr
= —Etr |:( + )\)_1 — )\(7 + )\)_2:| — 7T5(91 — )\02),
n n n

where the last line follows from the Marchenko-Pastur theorem and that p/n — 4. [

B.3.4 PrROOF OF LEMMA 14 (UNDER GAUSSIAN ASSUMPTION)

Proof Similarly, let W, = f(W) € R4=P)*d be an orthogonal complement of W. Denoting
X =XWT, Xy =X WI and combining the fact that X; and X5 are independent, with
EX, = 0, we have

XTX
ExM = IEXWTRL

n
=W Ex (X;Xl +AI >_1 X (XaW + XoW)
- p
n
X7 X XX
=WTEy, ( = Lt )\Ip> L 1] W (39)

Write the SVD of X; as X1 = UT'V " and note that V € RP*P is uniformly distributed over
the set of orthogonal matrices. Then the above equals

T ! A T !
wT [Ip — A\EryV (n + Mp> VI Iw=w'w|1- ;Ep tr (n + Mp> .
Thus,
2
. a? . a? A rr !
dhargo FEWHEXMH%‘ = d]g?go 7 [1 — ;EF tr (n + )\Ip> EW tl”(WTW)
2 T -172
= lim il 4 [1 — éIErtlr (FF + /\Ip> ]
d—oo d P n

— a’m(1 - M\p)?,

where the last line follows directly from the Marchenko-Pastur theorem. |
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B.3.5 PrROOF OF LEMMA 11—14 (GENERAL CASE)

In Appendix B.3.1—B.3.4, we have proved Lemma 11—14 under the assumption that the
entries of X are i.i.d. standard Gaussian. In this part, we will generalize previous proofs to
the non-Gaussian case, i.e., X has i.i.d. zero mean, unit variance entries with finite 8 + 7
moment, and hence complete the proof of Lemma 11—14.

For simplicity, we only present the proof of Lemmas 12, 13 in non-Gaussian case. Lem-
mas 11, 14 can be proved using very similar arguments as Lemma 12.

We recall the calculus of deterministic equivalents from random matrix theory, which
will be used in our proof (Dobriban and Sheng, 2018, 2020). One of the best ways to
understand the Marchenko-Pastur law is that resolvents are asymptotically deterministic.
Let 3 = n X TX, where X = ZXY2 and Z is an n x p random matrix with iid entries
of zero mean and unit variance, and /2 is any sequence of p X p positive semi-definite
matrices. We take n,p,q — oo proportionally.

We say that the (deterministic or random) not necessarily symmetric matrix sequences
Ay, B, of growing dimensions are equivalent, and write

A, < B,
if

lim |tr [C) (A4, — By)]| =0 (40)
n—oo
almost surely, for any sequence C,, of not necessarily symmetric matrices with bounded
trace norm, i.e., such that
lim sup ||Cy |4 < 00.

We call such a sequence C,, a standard sequence. Recall here that the trace norm (or
nuclear norm) is defined by ||M||, = tr((MTM)Y2) = 3. 0;, where o; are the singular
values of M.

Moreover, if (40) only holds almost surely for any sequence C,, € R% > of positive
semidefinite matrices with O(1/d,,) spectral norm, A, and B, are said to be weak de-
terministic equivalents and denoted by A, = B,,. It is readily verified that deterministic
equivalence implies weak deterministic equivalence.

By the general Marchenko-Pastur (MP) theorem of Rubio and Mestre (Rubio and
Mestre, 2011), we have that for any A > 0

(4™ = (g8 + D),
where g, is the unique positive solution of the fixed point equation
1—q= %p tr [S(q,Z + AT
When n,p — oo and the sepctral distribution of ¥ converges to H, ¢, — ¢ and ¢ satisfies
the equation
* dH(t
l—g=7~v|1- )\/ ®) .

We now proceed with the proof.
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Proof [Proof of Lemma 12 (general case)|By definition, recalling that R = (w
M)t
X'X =X
EM —EWT RS X _mwTwx TR (41)
n n

Therefore, letting R = (M + AI,)~! be the resolvent obtained in the other order,
XT
Etr(MM") = Etr [WTWXTR RXWTW}

- —1
Define the regularized resolvent R, = (w + /\In> and
- X
M, =W WXTR,—.
n

Since we have already proved Lemma 12 under the Gaussian assumption, to generalize the
results into the non-Gaussian case, we only need to prove the following two steps:

(1). lim Etr(MMT)/d = lim lim Etr M, M, /d (assuming the limits exist) (42)

(2). hr% dhm Etr M, M, /d exists and is a constant independent of the distribution of X.
7—0 d—o0
(43)

(1). Note that

1
A := lim lim g]Etr(MMT) — Etr M, M|

7—0 d—oc0

1 1
< lim lim S[Eer(M(MT —M]))|+ - }Etr[(M ~ MM

T7—0 d—o00

1 1
< lim lim S|E (MM —M]))|+ - }Etr[MT(MT - MJ)]‘

T7—0d— o0

=: Al + AQ.

Therefore it suffices to prove ALQ — 0. For A1, we have the following argument. Denote
XTRX/n by Ag, X"R.X/n by A, and W W by P. Note that M = PA, and

A = hm lim E- |tr (MAyA.P)| (44)

7—=0d—00

< lim hm IE [||M||F+ | Ao A P||%]

7—=0d—

< lim lim Eﬁ[tr(Ao) —i—tr(AoATAg)]

T—0 d—00
< lim L E 1 ! t XX + ! tr XX '
1m 11m — | —5 I —
T A2 n A4 n

7—0 d—oc0

< lim O(1) =0,
T—0
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where the second line follows from the properties of the Frobenius norm. In the third and
fourth line we use Ag, Ay < X" X/nX and the fact that

tr(My Mo My) =< tr(My MsMy) VM, My, M3 positive semi-definite and My < Mj.

Finally, the last line is due to the finite 8 + 7 moment assumption and some direct caclu-
lations. Using the same techinique, it is not hard to show that As also converges to zero,
and hence we conclude the proof of (1).

(2). We first give an alternative expression for M,. Denote (W'W + 7) by S and let
V=U"=X/yn, C=1I,/Aand A= (W'W 4 7)~! in the Woodbury identity:

(A+Ucv)t=At—Alyct+vatlu)~tva?
— UCT '+ VAU W =A-AV2(1+ A2UCVAY/2)71 412, (45)
We have by left multiplying W W in (45) that, with Rg := (Al; + S5 X521
M, =W WS V2 [1; — ARg] S~1/2. (46)

Fix 7 and suppose that the spectral distribution of R converges in distribution to H, as
d — 0o. Since W TW has p eigenvalues 1 and d — p eigenvalues 0 and S = W'W + 7, it is
clear that H; = w614+ + (1 —7)d,. Also, we have by theorem 1 in Rubio and Mestre (2011)
and some simple calculations, that

R = (245 + M), (47)

where x4 is the unique positive solution of the fixed point equation (where we omit x4’s
dependence on 7 for notational simplicity)

1—zg= % tr[S(xqS 4+ Mg) ™.

When n,p,d — oo proportionally, 4 — = and z satisfies the equation (again omitting =’s
dependence on 7 for notational simplicity)

1—3:—(5(1—)\/ dHT(t)).
0 $t+A

Now, we start to calculate Etr(M, M, ). By definition,

Etr(M, M) = Etr [WTWS—1 (I — ARs) S~' (I; — ARg)
=: A1 + Ay + Ag,
where
A;:=Etr [WTWS_Q}
Ao = —2\E tr [WTWS’QRS}
Ag = A2E tr [WTWS—IRSS—lRS] .
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Since W W has p eigenvalues equal to 1 and d — p eigenvalues equal to 0,
. . . . p
lim lim A{/d = lim lim — = 7. 48
P 2, B0/ = I N G )

Since ||[WTWS~2||5 < 1, using the deterministic equivalent property (47) and the bounded
convergence theorem, we get

lim lim As/d = —2Xlim lim Etr [WTWS—ZRS}

7—0 d—o00 7—0 d—00
= 2\ lim lim Etr [WTW5—2 (zaS + Md)—l}
7—0 d—o0
N 1
=-2)1 1 =
750 doo d [(1+ 7)2[za(l +7) + N
T ™
= 2\ i = —2) lim — 49
750 [(1+ 7)2[z (1 + 7) + \ 750 2y + N (49)

where the third line follows from the fact that W and S = (W W + 7) are simultaneously
diagonizable and W W has p eigenvalues 1 and d — p eigenvalues 0. It can be verified that
the limit in (49) exists and is a constant independent of the distribution of X. Now, it
remains to prove that lim,_,olimgy o, A3/d converges to a constant limit. Note that

)\2
lim lim As/d = lim lim ~ Etr [WTWS*RSS*RS}

7—0 d—o0 7—=0d—oo d

2
— lim lim %Etr [WTWS—I/QRSS—IRSS—V?}

7—0 d—oc0

AT AW TW +

2
= lim lim —Etr
7—0 d—oc0

SXTxs\
n

XTxs\ "
wTw <)\T+)\WTW+ SnS> ]

(50)

For any z € F := C\R™, we have by Lemma 18 that

SXTXS -
<)\WTW 4+ == zld) = —(AWTW +245% — 2I,) 7 2(2)y(2) 8% — 1),  (51)
where for any z € E, x4(z) is the unique solution of certain fixed point equation independent
of X, and a/)(z) := dz4(z)/dz. Furthermore, there exists z(z) such that z4(z) — z(z),
zl(2) — 2/(2). Now, letting z = —A7 and replacing AW W + SXTXS/n — z1,)~2 by
its deterministic equivalent (51), we have from (50) and the bounded convergence theorem
that

2
lim lim As/d = lim lim %Etr

7—0 d—oc0 7—0 d—o0

XTxs\ 2
ww <)\Tld +AWTW + SS) ]

22
= lim lim T/\E tr [WTW(AWTW + 245% + A1) "2 (2},8% — Jd)}

7—0 d—o0

o(1+7)% -1
= lim lim —7\? .
TH0doe A+ zq(1+7)2+ A7)
1—a/(1 2
= lim 7\? r(1+7) = —_—,
0  A+z(1+7)24+A7)2 =0 (A+x)?
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where x := x(—A7),2’ := 2/(=A7). Since in the Gaussian case the limit of the L.H.S. of
(42) exists, by the proof of (42), we know that the limit in (52) also exists, and does not
depend of X. This concludes the proof of (2). [ ]

Lemma 18 (Second order deterministic equivalent) Suppose that X € R™*? has i.i.d.
zero mean, unit variance entries with finite 8 +n moment. Then for any z € C\R™,

XTX -
<)\WTW + ¥ — zId> = —(AWTW +245% — 2I) 7 2(2)y(2)S* — Iy),  (53)

where x4(2) is the unique solutions of a certain fixed point equation independent of X, and
z)(2) := dxq(2)/dz. Furthermore, there exists x(z) such that zq(z) — x(z), z,(z) — 2'(2).

Proof [Sketch of the proof] Since this lemma can be proved following the same steps as
the proof of theorem 3.1 (b) in Dobriban and Sheng (2020), here we only provide a sketch
of the proof.

Step 1. (First order deterministic equivalent) Denote

W) = AW TW 4 248% — 215) ™

T —1
g(z, W, X) := <)\WTW + w — zId> ,

where x4(z) is the unique solution of the fixed point equation
1l—z4= Ld tI‘[SQ()\WTW + $dS2 — Zfd)fl].
n

Then we have from theorem 1 in Rubio and Mestre (2011) that (here we need the finite
8 + 1 moment assumption)

f(z, W) < g(2, W, X).

Furthermore, for a sequence of W and fixed 7, z, when n, p,d — oo proportionally, it can
be verified that x4(z) — x(z) and z(z) satisfies the fixed point equation

oo [ BRI

Step 2. (Second order deterministic equivalent) Using the same technique as in the proof
of theorem 3.1 (b) in Dobriban and Sheng (2020), it can be proved that

f(zW) =< d(z,W,X).

for all z € E.
Step 3. (Explicit expressions for the derivatives) For invertible A(z), we have
dA dA
— =—AT AT
dz dz
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Therefore

(2, W) = — AW TW 4 245? — 21;) " (2)(2)S? — Iy) AW TW + 248% — 2I5) !
= (AW TW + 245 — 21,)72(2/y(2)S? — 1)

and

SXTXS )‘2
22 20 )

n

J(zW,X) = <AWTW -

Also, it can be shown that z/,(z) — 2/(z) as in the proof of theorem 3.1 (b) in Dobriban
and Sheng (2020). [ |

Similarly, we can prove Lemma 11 and 14 in the general case via the two steps in (42), (43).
Since the proofs are almost the same as Lemma 12 (and in fact even simpler), we omit them
for simplicity. Also, here we only mention one difference. When bounding A; from (44),
we need to first replace M by EM (or Ex M) and move the expectation outside the trace
operator, e.g. in the proof of 11,

1
Ay = lim lim - ‘tr[EM(IEMT _ EMTT)]‘

7—=0d—00 d

1
< lim lim -E ‘tr[EM(MT - MJ)]‘.

7—=0d—oo d

Then all results follow the same argument as in (1) of the proof of Lemma 12.
Proof [Proof of Lemma 13 (general case)] By definition, we have

2

~ T
E|M|% = EtrHWTRWX
nolr
XTxwT 1
=Etr [RWHWR] =E_tr[R— AR?]. (54)

Denote WX TXW T /n by Q1 and (WTW)V2XTX(WTW)/2/n by Q. Since Q1 and Qo
have the same non-zero eigenvalues, their Limiting Spectral Distributions (LSD) (if one of
them exists) only differ from a constant scale and a mass at 0, i.e.,

LSD(QQ) = WLSD(Ql) + (1 - 7T)50.

Since the LSD of W W converges to 76, + (1 — 7)dg almost surely, from Silverstein (1995)
theorem 1.1, we know that the LSD of ()2 almost surely weakly converges to a nonrandom
distribution. Therefore, the LSD of ()1 also almost surely weakly converges to a nonrandom
distribution and 1 tr[WX T XW T /n + AL~ for ¢ = 1,2 almost surely converge to some
nonrandom limits. Thus, by the bounded convergence theorem, we know (54) converges
to a nonrandom limit independent of the exact distribution of X (which only requires X
to have i.i.d. zero mean, unit variance entries). Since we have proved Lemma 13 in the
Gaussian case, the general case follows directly. |
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B.4 Proof of Lemmas 15—17
B.4.1 PrROOF OF LEMMA 15
Proof It is clear that [|[EM|% < Ew|ExM]|%. Thus we only need to prove the second

convergence. By definition,

- bdl
ExM :EXWTRW .
n

Since X has i.i.d. rows, by switching the i-th and j-th row of X, it is readily verified
that Ex M = ExW ' (n 'WX " XW T 4+AI,)"'WXT /n has identically distributed columns.
Note that Ex M is a d x n matrix, it is thus enough to prove:

2
u

M 50, (55)

n

n|ExMi|3=n|ExW'R

2

where — denotes convergence uniformly in W. For notational simplicity, we denote the
column vector W(X1.)" by & (formed by taking the first row Xj. of X), X_ W' by X
(formed by taking the complement of the first row Xi. of X) and (X' X/n + AI,) by C.
Let also F' = C~1237C~1/n. Then

+— | i
n n

(55) =

S|

~o o~ -1
X'x zz'
ExW' (Mp + = ) G

B (e - —F Y4
X 1+27C-1z/n

T F ~
v <1+f> ’

where in the second line we used the Sherman-Morrison formula, and the last line follows
from the fact that C~! and # are independent and EZ = 0. Let us denote f = &'C~1%/n.
To prove that (56) — 0, we only need to prove the following:

2
, (56)
2

Si= 3=

2

H]EXWT <Em(1F+f)x> i -0 (57)

o e (550) -2 (g)

(1). For any fixed W, since Z and C~! are independent,

(1).

S|

2
u

— 0. (58)

—_

2

~T—1x T T -1 T—1 -1
E,~ cTi _ E,~ WiCT W)z (W CW)  tr(C ) (59)
n n n n
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Denote 1 + tr(C~')/n by ¢o, and W' C~'W by C. Then

1 F | 1 2
— |E wh—— 3 = Ex—e;Cxx' Cx
n X( E:(1+ f) > n3<XoZ )
1 b1 . i d 1 & i
:E EX Z C—eicijxjkaklxl = Z;
k=1 j=1
d d
(EX% 2 =2
=< Z%Z% ;
: j:l

where the last line follows from the Jensen inequality, Cauchy-Schwartz inequality and the
fact that cg > 1. Summing up all coordinates and noting that 0 < C' < I;/\, we get

EX3 2
( 11) E-

HCHF Z EXH) . d d (IE‘X%I)Qd2 u
n3 X

R | N )

L.H.S. of (57) < VAV

(2). By definition, theL.H.S. of (58) equals

M CARCRIE R

1 T e 2 (f—Esf) 7
X HWTC a0 13”H2'EX [(1 + ) (Ezl +f)]

%EX HC’&:&?TC’tz -E g Var,(z' Cxz/n)

1 T [C ' #2zTCNf —Ezf)] -
3 ||V [ A+ NEL+ ) }

2

IN

IN

For the first term in the last line, note that 0 < C' < I/,

Ex||Caxz'Cz||? = Ex(z' Caa'C?za' Cx) < Ey(z'2)3 /M = 0(n?),
where the last equality is due to the fact that there are O(n3) terms of the form az%%%,
with 1 <4,j,k <din (z'2)3 Now, it is enough to prove E g Var,(z z"Cx/n) - 0.

Lemma 19 Suppose that x = (x1,...,24) has i.i.d. entries satisfying Ex; = 0, Ex? = 1.
Let A € R Then we have (see e.g. Bai and Silverstein, 2010; Couillet and Debbah,
2011 and Mei and Montanari, 2019 Lemma B.6.)

Var(z ' Az) = ZA (Exf — 3) + || A[|% + tr(A?).

Using Lemma 19 above and recalling that 0 < C' < I /A, we have

d
EgVary(x'Cx) =Eg Y Ch(Baf - 3) + ||C||3 + tr(C?)
i=1
R ~vo _ dEzx}—3| 2d
= ZCZ (E$1—3)+2HC||F§T ﬁ:O(n).

s
Il
—
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Therefore E)?Varm(xTC’x/n) = O(1/n) — 0 and we finished the proof. [ |

B.4.2 PROOF OF LEMMAS 16, 17

The results in these two lemmas follow from using matrix identities (e.g., the Woodbury
identity) for the target matrices and deterministic equivalent results for orthogonal projec-
tion (Haar) matrices.
Proof By definition,

WXTXWT . A> TwxT

EwM =Ey W' <
n

n

Let A = XTX/n 4+ A1, where 0 < A1 < )\ is an arbitrary value. The Woodbury matrix
identity states that

(A +UCV) ' =A-AU (CT'+VAU) VA

Define g := A — A\; and take V. =U" =W, C = I/\y, to get

(A*l + WTW/)\2>_1 =A—AWT (AQ n WAWT>_1 WA.

Therefore
WXTXWT -1 -1
C =EyW ' < + A) W = Ey W' ()\2 + WAWT> W
-1
— A ARy (A—l n WTW/)\2> Al
-1
AW T A1/2
= A Y2 I, - Ey (Id + WA W A2, (60)
2
Also,
. XX 1
Ex|EwM|% = Ex tr (c — (JT> :ExﬁtrC(A—)\l)CT. (61)

XTXXTX

2

1 1
—Ex|EwM|% = =Extr(C
JEx B M = Bt (¢

1
CT> = SExtrC(4 - A)2CT. (62)
Now, we define

— -1
Cri=Al— A2 (Ip + 6;7‘4 AL
2

_ —1 —1
Id - <Ip + ed14) - <A + >_\2[d> ;
A2 €d
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where €4 is defined in Lemma 20. Then from Lemmas 20, 21, we know that C' can be
replaced by C; when calculating the limits of (61) and (62). Hence

- 1
. 2 1 _ T
lim Ex|[Ew M|} = lim —Extr (Cl(A A1), )

(A=) <A + 2@) _2]

— 8[01(8,X) — M02(8, N)] = 6(01 — M),

1
= lim —Ex tr
d—oo N

where )\ := A1+ A2/ép is a constant independent of the choice of A1, Ay. The last line follows
from Lemma 23, the definition that A = X T X/n + A; and the Marchenko-Pastur theorem.
Similarly,

: 1 2 _ 7 1 2~T
lim —Ex[[Ew M|} = lim Ex~tr (01(A — )2 )

(A— )2 <A + 231d> _2]

— [1 — 25\(91(5, 5\) + 5\292(5, /N\)} =1- 25\51 + 5\52
This finishes the proof. |

. 1
= lim Exgtr

Lemma 20 (Weak deterministic equivalent for Haar matrices) Under the above as-

sumptions, we have
-1
AVPWTWAZY W eaA\ !
o+ £+ 9 (63)
)\2 )\2

where (&g, eq) is the unique solution of the system of equations

€q = g (ed +1-— edéd)_l

1
€qd = & trA (édA + /\QId)_l.

Proof [Proof of Lemma 20| From properties of sample covariance matrices, we know that
the largest eigenvalue of Ag := X T X/n + \; € R4 converges to Ay + (1 + v/9)? almost
surely as d — oo. Therefore, the sequence of values ||A4]|2 is bounded almost surely. For
a fixed sequence of non-negative symmetric A; with bounded 2-norm, (63) follows from
the proof of theorem 7 (see the sketch of the proof) in Couillet et al. (2012). Since A is
independent of W and the sequence || 442 is bounded almost surely, (63) holds generally. B

Lemma 21 (Replacing C by C1) Under the previous assumptions, we have

lim Ex~ tr(C(A — A)CT) = Tim Ex~ tx(C1 (A — A)CY) (64)
d—o0 n d—oco n

lim EX} tr(C(A—X)2CT) = lim EX1 tr(C1(A — A\ )2C)). (65)
d—o0 d d—o0 d
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Proof [Proof of Lemma 21| Since the proof of two claims is almost the same, for simplicity,
we only present the proof of (65).
For (65), we define (here A, Ay, Ag are different from those in Appendix B.3.5)

A := lim EEX trC(A—\)2CT — 1EX tr C1(A — M\)2CY
d—oo d d

o L _ A2 AT CNAN2( T
= lim _Ex {tr [(c O1)(A - \)2C ] +tr [cl(A AMEC - C) }}
=: Al + AQ.

Also, denote

Go = (Ig+ AVPWTWAY2 /x5) 7!

G = (Id + édA/Az)_l

G = EWGO

Therefore, from Lemma 20, we know that Gy = Gy. Substituting the definition of C, C}
into A1, we have

A = lim %EX tr [A—W(G — G ATV (A = A )2ATVR(L, - G)TA—W}

d—o0
1
= lim ~Ex tr [A‘1/2(A M)AV — ) TATH (G — Gl)} .
d—oo d ’
By Lemma 22, we know A and G are simultaneously diagonalizable. Moreover, it is readily
verified that A=1/2(A — X\)2A~1/2(I; — G)T A~ is symmetric and non-negative. Since
A2 (A= M)AV (I = G TA o = (Ta = G) TATP (A= M2 A2
< AT (A = )22
< NJATH 2N AT o+ 1 < 4,

we have by Lemma 20 and the bounded convergence theorem that Ay — 0. Similarly, we
can prove that Ay — 0 and these conclude the proof of (65).
|

Lemma 22 (Commutativity of A and G) Under the previous definitions, A and G are
stmultaneously diagonalizable, and therefore there are commutative.

Proof [Proof of Lemma 22| Let A = UTU" be the spectral decomposition. By definition
and equation (60),

G =Ew(Ig+ AV2PWTWAY2/)y) 7!
—1
— I, AVEyWT ()\2 + WAWT) W AL?
-1
= Iy — UTY2Ey (WU)T [)\2 + WUP(WU)T} wuUDY2yT

-1
— I, —UT\/? [EWWT (AQ n WFTWT> W] ri2yT,
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where the last line is due to W £ WU. Now it suffices to show that Ey W T (Ag + WTTWT) ' W
is a diagonal matrix.

Write W = (w1, wa, .., wq), where w;, 1 < i < d are the columns of W. Denote the i-th
(1 <i < d) diagonal entry of I' by v; and define W_; := (w1, ..., w;j—1, Wit1...,wq) to be the
matrix obtained by removing the i-th column from W. Then, for any 1 <i # j <d

d —1
Ew (W' (A +WIW )W), = Eypw, (/\2 + Z Vewywy, ) w;
k=1

d ~1
= IEW_jIij‘W_jw;r ()\2 + kawkw;—> w; =0, (66)
k=1

where the last line follows from the symmetry of w;. Therefore, Ew (W T (A4+WIWH~1W)
is a diagonal matrix and hence A and G are simultaneously diagonalizable. |

Lemma 23 (Convergence of ;) Under the previous assumptions and notations, sup-
pose that (€q4(A), eq(A)) is the unique solution of

eq = g (ed +1- edéd)_l (67)
1
ea = trA(ead+ Xolyg) 7t (68)

Then (e4(A),eq(A)) — (€o,e0) almost surely, where (&g, ep) is the unique solution of

€y =T (60 +1- 60@0)_1 (69)
1

0=+ [1 _ Ry, (5, M+ AQ)} | (70)
€0 €0 €0

Furthermore, for any decomposition A = A1 + Ao, we have

1—
A1+/\2/éo:>\+77r[A+1—7+\/(>\+y—1)2+4A}. (71)

We introduce A1, Ay only to ensure the invertibility of A and the uniform boundedness of
|A=1]|]2. Equation (71) shows that different decompositions of A do not affect the results.
Proof Plugging (68) into (67), we obtain

1 A p/d—éd
il = ) 2
dtr (A—I—)Q/éd) 1—eéq (72)

The uniqueness of the solution is guaranteed by theorem 7 in Couillet et al. (2012). Now,

define for = € R,
1 A p/d—x
= 71] - .

g(z) = {1— 22, <5,)\1 +A2>] S
x X

1—=x
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First, we consider the case when 0 < 7 < 1. Noting that g4(0+) = —p/d, g4(1—) > 0 and
ga(x) is increasing on (0, 1), it follows that g4(z) has a unique zero €4 on (0, 1). Similarly,
we can conclude that g(x) has a unique zero ¢ on (0, 1).

Since A =X"X /n+ A1 and p/d — m, by applying the Marchenko-Pastur theorem, we
know that gq4(x) — g(z) for any = € (0,1), almost surely. Since g4(x) are increasing func-
tions on (0, 1), we further have, on any closed interval in (0, 1), g4(z) converges uniformly
to g(x), almost surely.

Due to the uniformly convergence of g4(z) on any closed interval and the fact that the
zeros of g4(x), g(x) are in (0, 1), we conclude that the zeros of g4(z) converge to the zero of
g(z) almost surely, i.e., €4 — €y almost surely, and hence (€4, e4) — (€9, €p) almost surely.

Plugging (69) into (70), we obtain

[1—)\291 <5,)\1+)\2>] = ﬂ-_?o7
€0 €0 1—¢ép

)\2) 1—m
|0+ — ) =—F7F7—. 73
! < ! €0 )\2(1/60 — 1) ( )

Plugging the explicit expression of 01(d, \1 + A2/€p) into (73) and reorganizing the result,
we obtain

Thus,

™ <)\1 + 22)2 —[(14+m)A+ (1 —7)(1—7)] (Al + 25) + AN+ (1 =81 —m)]=0.
Thus, defining
hz) =m2® — [(1+mA+ (1 =71 =]z + AN+ (1= 8)(1 — )],
we get that A; + A2/ is a solution of h(z) = 0. Since & € (0,1), A; + X2/& > A. Note

that h(A\) = —4(1 —7)2)\ < 0. From the properties of quadratic functions, we conclude that
A1 + A2/€g is the larger solution of h(x) = 0. Therefore,

A1+ Aa2/eg :)\+12_77T7T )\+1—’y+\/()\+7—1)2+4)\] =\
If 7 =1, it can be readily verified that the unique solution of (69), (70) is
(€0,e0) = (1,1 — X201 (5, A1 + A2)).
Thus, equation (71) follows directly. As for the convergence of (€4,E;), since gg(z) < 0
for < p/d, the zero of gq(z) (i.e. €g) is larger than p/d and hence converges to 1 as

p/d — m = 1. Therefore, we have shown that é; — €g, and hence e; — eg follows from
equation (68) and the Marchenko-Pastur theorem. This finishes the proof. |
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B.5 Proof of Theorem 5

Proof In the following proof, we will calculate the derivatives of variances and bias sepa-
rately and obtain the results in Table 1 based on them. Throughout the proof, we denote
c:=0(1+ 0?/a?) + 1 for simplicity.

(1) MSE. Plugging the explicit expressions of 0,62, \* into equation (8) and taking
derivatives with respect to m and § separately

d d
— lim MSE(\) = d—[oﬂ(l — 74 N7l + o]

T d—o0 T

ood (20 —cH 24y o?

=a’— =— <0, (74)
dr 26 0274,7

Thus, limg_,.o MSE(X*) is monotonically decreasing as a function of 7. Similarly,

d—o0 d T 262 2 _4

2
4 i MSE()\*) = i[a2(1 — T+ Nl + 02 = — <1 + M) . (75)
) ) ~
Since ¢2 — 4y > ¢ — 4y(c — ) = (c — 2v)?, the derivative is larger than 0. Therefore,
limg oo MSE(X*) is increasing as a function of §.
(2) Bias?. Since (limy_,oo MSE(M*) — 02)% = o2 limy_,, Bias?(\*), the monotonicity of
the MSE implies the monotonicity of Bias?.
(3) Var. Note that Var(\*) = MSE(\*) — Bias?(\*) — o2

4 i Var(\*) = di <lim MSE(\*) — lim Bias?(\*) — 02>

dm d—oco T \d—oo d—00

_d [lim (MSE(\) — 02) <1 1 lim (MSE(X*) — O_z)ﬂ

T |d—oo a? d—oo

B <; . MSE(A*)> (1 - %dligo(MSE(/\*) _02)>

T d—oo
L a? d02/a? +1—+/c2 — 4y
2 — 4y 0 '

Since \/c? — 4~ is decreasing as 7 increases, simple calculations reveal that, as a function
of 7, limy_,o Var(\*) is monotonically increasing when 6 > 2a2/(a? + 20?), while it is
increasing on (0, [2 + 6(1 + 20%/a?)]/4] and decreasing on ([2 + 6(1 + 202/a?)]/4,1] when
§ < 2a?/(a® + 20?). Similarly,

4 i var(y) = (d lim MSE(A*)) (1 ~ 2 Jim (MSE(X") - 02))

dd d—>o dd d—>oo
_oi |+ 2v —c¢ 502/ +1—+/c2 —4vy
- 262 02—47 ) .

From (75), we know the first term in the last line is non-negative. Plugging in the expression
of ¢, it follows from some simple calculations that, as a function of 4, limg_,~, Var(\*) is
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monotonically decreasing when 7 < 0.5, while it is increasing on (0,2(27 — 1) /[1 + 202 /a?]]
and decreasing on (2(27 — 1)/[1 + 202 /a?], +oc) when 7 > 0.5.
(4) Xapel- Plugging the definition of 0, 6 and \* into Xjapel(A*), we obtain

lim Yjapel(A*) = 027601 — N 65)
d—o0

_ 62_47_(74‘1)/\*‘*‘(’7—1)2 _ ok
2X c? — 4y c? — 4y

Therefore, as a function of 7, limg_, o Xiapel(A*) is monotonically increasing on (0, 1]. Since

d 2m02(1 —6(1 + 02 /a?))
2 Jim ¥ ) =
dé dggo label(/\ ) c2 — 4y

)

it follows that limg s S1abel(A*) is increasing on (0, a?/(0? + o?)] and decreasing on
(a?/[o? + a?], +00) as a function of 4.
(5) Xinit- We have

d
4 i Yinit(\*) = d—oc27r(1 —m)(1 = X\*6;)?
7

dm d—oo
= a?(1 = X*01)[(1 — 27)(1 — X*01) — 27(1 — ) (A\*61)]
4613 — 2% + 2

(2 — 4y + c\/ 2 — 4y)\/c® — 4y

= 202(1 — \*01) (

Since f(t) := 40t3 — 2c?t + ¢? satisfies the following properties (a). f(0) = ¢ > 0, (b).
f(1) =46 —c? < —(6(1+0%/a?) —1)2 <0, (c). f(t) has a unique extremum on (0, +00);
we know that f is decreasing and has a unique zero on (0, 1]. Therefore, limg ;oo Zinit(A*)
is unimodal as a function of A\;. Now, taking derivatives with respect to 9,

d . o d x
N dlgrc}o Yinit (A*) = aoﬂﬂ(l — ) (1 — X\*6;)?

= —2a%m(1 —7) (1L — X*01)(\*01)

a? 2y —c

= (1-m(1-N0O) | —L——+1] <
S(l-m - o( c2—47+)—°’

where the last inequality follows from the fact that ¢2—4v > (2y—c)?. Thus, limg_ss0 Zinit (A*)

is monotonically decreasing as a function of 9.
|

B.6 Proof of Proposition 6

Proof [Proof of Proposition 6] It is known that if the design matrix X has independent
entries of zero mean and unit variance, then as n, p — oo proportionally, i.e., p/n — v > 0,
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the MSE converges almost surely to the expression (Tulino and Verdud, 2004; Couillet and
Debbah, 2011; Dobriban and Wager, 2018)

MSE(7) = ym, (=X*) = 01 (7, X*) + o7, (76)

where \* = 7/a? is the limit of the optimal regularization parameters, and m. is the
Stieltjes transform of the limiting eigenvalue distribution F, of S =nlXTX , i.e., the
Stieltjes transform of the standard Marchenko-Pastur distribution with aspect ratio ~.

Furthermore, as shown in the proof of theorem 2.2 in Liu and Dobriban (2020), the
specific forms of the bias and variance are: with 6; := 0;(y,A), i = 1,2

2 X
(a). Bias® = o? / (miwdﬁy(x) = a’)\%,, (b).Var =~ / mdﬂ(x) = (6, — \y).
(77)

Therefore, we can obtain the explicit formulas of the bias, variance and MSE by plugging
A = \/a?, equation (6), (7) into equation (76), (77). All results in Proposition 6 can be
derived by calculating the derivatives as we have done in the proof of theorem 5. However,
since the proofs are simpler in this special case, we present them here for the convenience
of readers. Throughout this proof, we denote 1/a? by c.

MSE: Let 7 := (1/a? — 1)y — 1, substitute (6) into (76) and take derivatives:

d d . d 7+ /72 + 4cry?
S MSE(®Y) = —[y01(7,\*) + 0% = — i

dy dvy dvy 2cy
T+ [T+ 1) + 4] VTR 4 Ay — (T + /T2 4 4ey?)
N 2¢v?

T H T+ 4y -0

2092/ 72 Ay T

Thus, the MSE is strictly increasing as - increases.
Bias: Plugging equation (7) into (77)(a) and denoting 1/ by z , we have

2 1 1 —1)2
BiasQ('y) — Oé2>\*202(’)/, )\*) _ 047 1— =+ 07(7_‘2_ 2) + (7 )
2 v /et )22 20— 1)y +1

_Oﬁ . oz +1)+ (z—1)2 _,0472 N
2 <1 +\/(C+1)2+2(C—1)x+x2) o 2(1+f( ; ))

Thus it is enough to show that f(x,c) is decreasing for # > 0. Taking derivatives with
respect to x, we have after some calculations that

d? _ 6(c+1)3 + 12¢%x
((c+1)242(c—Dz+ x2)g

> 0,Vx > 0.
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Thus, for any fixed ¢ > 0, f(z,c) is a strictly convex function with respect to x on (0, +00).
Furthermore, fixing ¢ > 0 and letting * — oo, we get

c(x+1)+ (z—1)2

lim f(z,c) = lim —x +

@00 @00 Vie+1)2+2(c— 1)z + 22

I clx+1)+(z—1)2—2y/(c+1)2+2(c—1)x + 22
= lim

z—00 Vie+1)2+2(c— 1)z + 22

(:U2—|—(c—2)x+c—|—1)—$(x—|—c—1),/1+(x_~_iic_l)2

= lim

T—»00 T
o (:1:2+(c—2)x+c—i—1)—3:@4—0—1)(1—%—0(33%))
it} z
= lim LO(l) - 1.

T—00 T

Combining the results above and using the fact that a strictly convex function with a finite
limit is strictly decreasing, it follows that f(z,c) is both strictly decreasing and convex.
Therefore, we have proved that Bias?(y) is strictly increasing on (0, +00).

Variance: Similarly, plugging (6), (7) into (77) (b), we get

1 (c+1)y+1
Var(y) = -5 2/(7(1=¢) — )2+ dy%c
1 (c+1)y+1

+ .
2 2y/(c+ )22 +2(c—1)y+1
Let z = (c+1)yand t = 2% Then it suffices to prove the unimodality of

1
gt(x) : = s z € (0,4+00),t € (—1,1).

Va4 2t + 1

Differentiating g;(z) with respect to x gives

d (I—-¢t)(1—2)

d*gt(@“) =

z (22 + 2tz + 1)

Since g;(z) > 0 when 2 < 1, and g;(z) < 0 when 2 > 1, we see that g;(z) is strictly increasing
on (0,1) and strictly decreasing on (1,+00). Correspondingly, by changing x back to =,
c back to 1/a?, we have shown that Var(y) is strictly increasing on (0,a?/(a? + 1)) and
strictly decreasing on [a?/(a? + 1), 4+00). Moreover, noting that

3
2

1 1 1
lim Var(y)= lim —-+ ety +
y—+00 y—=+oo 2 2\/(0 +1)2424+2(c—1)y+1
1 (e+1)y

== l. _—— _—
A T2 a1y
Therefore, we conclude that Var(y) is a unimodal function converges to zero at infinity
with a unique maximum point at a?/(a?+1). Finally, proposition 6(4) can be obtained by
evaluating Var(y) and Bias®(v) at o?/(a? 4 1).
|
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B.7 Proof of Theorem 7

Proof (1). By plugging the expression of #; into equation (8) and taking derivatives with
respect to J in equation (8), we obtain

d d
— lim Bi = —a?(1- 2
7> Jm Bias 2(\) o (1 —7+ Ambq)

A+y-—1
Y — 5 -1 <0,
VEXFy =12+ 40y

where the inequality follows from the facts that 1—7+An6; = [ [A + (1 — 7)z]/(x + N\)dFy(z) >
0and A+ —1)2 = [(=A+7—1)2 +4\y] = —4X < 0. Similarly,

=a?(1 — 7+ \nfy) (

%dlgrgoBlas (A) = (fé 2(1 — 7 + Anfy)?
2 2 _
S R Y € S il el sl ke 0 I
5 VE+Hy = 1)2 4+ 40y

Therefore, the limiting Bias? is monotonically increasing as a function of § and mono-
tonically decreasing as a function of .
(2). Denote \* = 6(1 — 7 + 02/a?) as before. From (9), we have

[ —y+1
fim Var(y) —a?r {1- 7+ 2+ [(r - 1)(ea— )+ 2AZTED 00T g
d—o0 ) 1) a

AMA=d(1 —7r—|—<72/o<2)] 02}

AT A +1
—a 7r{1—7r+  + <27r—2+g+>)\+)\*} 91(1,)\)+)\()\—)\*)62}
Now suppose 6 = 1/m and let A — 0+,
lim lim Var(\) = lim a 71'{17T+ + [<2772+ vt )A+A]91+A(AA*)GQ}
A—0d—oo —0
= lim o?7[1 — 7 + A*(A1(1,\) — Ma(1, A))]

A—0

—limazﬂ[l—ﬂ+)\*< \ )]—limO(l)—oo
A0 (VAZ 4N+ N)2V/A2 14 A=0 AL/2 '

Finally, letting A — 0 in Theorem 2, we obtain after some similar calculations that V; and
Vsii go to infinity while Vy, V; and Vi converge to some finite limits as d — co,A — 0. W

B.8 Proof of Theorem 8

Proof [Proof of Theorem 8] For notational simplicity, we sometimes denote the 2-norm of
vectors and the Frobenius norm of matrices by || - || in this proof. From definition (16), we
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have

Bopt : = argming Ep(glwa,W7y)Ex7g[(Wx)T/B —(z"0+¢))?
= argming Ep(GIXwT7W7y)EI[(Wx)TB — ')

= argming Ep(6|XwT7W7y)Em[(WT/B — ) zxT (WS- 0)]2

= argming E, g xw T wy) W8 —0|3

= WEp(9|XwT’W7y)9.

Thus, we have proved equation (17).
Now, to prove (18), it suffices to do the following:

(1). Calculate the posterior p(|XW ', W,Y).
(2). Bound the difference between f,; and 3.

(1). Let W, = f(W) € R=P)*d e a deterministic orthogonal complement of W, such
that WIWL +WTW = I,. Then we have

p(OIXW T, W,Y) o< p(0)p(XW T, W,Y0) = p(0)p(XW T, W|0)p(Y|XW T, W, 0)

0 2 XWT 2
0 2
aem(—igﬂ>:/MYWMTpﬂVKWﬂyMXWIww”JMwﬂXWT>
[l [V — X635
x exp <_2a2/2d -/exp —Tz p(XWXWT W, 0)dXW]),

where in the second line we used the facts that XW ' and W are independent conditioned
on 6, XW ' hasii.d. N(0,1) entries, and W is uniformly distributed over partial orthogonal
matrices. Denote X' by A and XVVLT by Aji. Then using the fact that A, A; have i.i.d.
N(0,1) entries and A, Ay are independent conditioned on W and 6, we obtain

XWT 2 A 2
p(XWI\XWT, W, 0) o exp (—H;HF> = exp <—H;HF> .

Therefore,
pOYIXWT,W,6) = [ p(V1X,6) - p(XWT [XWT W, 0)d(XWT)

_ _ 2 20412
_ /eXp <_ (Y — AW6) Aﬂ/gﬁﬂz +o HAl”F) A,
20
B 2 20 4112 2 _ T
~exp <_||Y 21:;’[/9”2) /exp{_U [A1[l7 + A WL 0| 2022tr[A1WL9(Y AWE) ]}dAl

Further denote W6 by 6 , W, 0 by 0; and (Y — A9~)9~1T(9~19~1T +02)~! by B. For a fixed Y,
conditioned on A, W, 0, by separating A; into n rows, applying Fubini’s theorem and using
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properties of the p.d.f. of a normal distribution, we get

— AQII12
p(Y’XWT’WQ) X exp <_H1/22WH2> )
g

/eXp {_tr[(A1 — B)(6:16] +02)(A; — B)T] . tr[B(6:0] + 02)BT] } " (79

202 202

|Y — AG|2  tx[B(6:,6] +02)BT]
e 202 + 202

) -det(6,0] + o)~ 2

|V — AQ|>  tr[(Y — A0)8] (6:0] + 02)~10,(Y — A0)T]
- P <_ 202 + 202

> ~det(0:10] +0?)73.

Let §; = UDVT be the SVD of ;. Then

d—p
det(6:10 + 0®) = det(DDT + 0%) = (|61]* + o) [] 0 o< [16a]|* + 0.
=2
0] (016 +02)7'0, =D (DD +0*) 71D = ||61])2(]|61]]* + o).

Thus,

P | GO 52 WP
p(YrXWT,W,e)ocexp{[—1+|191H2<rwlu2+02> 1]”202”}«\\91\\%02) - (s0)

Finally, by substituting (80) into (78), we obtain the posterior:

0113 |y — Af)? ~ _n
O XW T, W,Y) xexp | — 1612 _ _ (1161112 + 02)" %
p(0) ) XP( 202/d " 2|12 + 0?) (1611I* + o2)
1612 [ — A2 16112 Sy g
= J— — - . _ . ) 1
eXP( 202/d - 2(]|61]2 + 0?) xXP(= 9z /g) - (1l +07) (81)

(2). Since Bopt = WEp g xwT wy)f = ]Ep(mwa,Wyy)é, it suffices to calculate the pos-
terior mean of #. In equation (81), we can see that conditioned on 01, 0 follows a normal
distribution. Moreover, using the same technique as in equation (79), it is not hard to verify
that the expectation of 6 conditioned on 6 is

( 4 ATA )‘1 ATY (52)
a? 612+ 02/ [|6u]? + 0
Now changing A, 6 back to X, W, we obtain
~ -1
- IWXTXWT 0112 +0%d| WX'Y
E, o ot v = [ L UaP+ o) | -
L W n nao? n

64



WHAT CAUSES THE TEST ERROR?

Therefore, the conditional expectation of 6 is the ridge estimator with A = A(6) := (|61 |2+
02)d/[na?]. Thus Bop is in fact a weighted ridge estimator. Besides, note that W, 6 has
iid. AN(0,a?/d) entries. Hence letting x?(k) be a chi squared random variable with k
degrees of freedom,

9 d—p Vd 2 2
~ 6] dW 0 d w
”91HQ:HWL9\2:d§:< L ) L8 d-p) S atl-m).  (34)
=1 i

Denote R* = (w + A*)~1. Thus, we may guess that the posterior of ||0;]| is close to
2 . . 1.
a®(1 — ) with high probability and

CwxXTY S WXTY

n n

=5,

WXTXwT
Bopt & | ————

+é(1—7 +02/a2)}

which is the optimal ridge estimator.
We formalize this idea by bounding the difference between 3,,; and 3. Denote the

conditional mean (83) of 6 given ||61|? = ¢ by R(c). Let also Ry = (@ + A(61) 7
Then the optimal ridge estimator is § = R(a?(1 — 7)) and we have

2

/ ROIG2) — R2(1 — )] - p(B | XWT W, Y)dfy

ExwtwyllB — Boptlls = Exwrwy

2

<E R*—R

- LT WXTY
=L xXwT W,Y,0, [ 1}

~ 2
[R(10:]2) = R(02(1 = )| = Exwr s,

n

where we used the Jensen inequality in the second line. Note that A=' — B~! = A=}(B —
A)B~! and omit the subscripts of the expectation. The above equals

WXy H2 (85)

n

E H [ (X = @) Fu

Furthermore, by Cauchy-Schwartz inequality and the fact that |AB||r < ||A|2]|B] F, the
square of this quantity is upper bounded by

wxTy|*

E (A* . /\(51)>4 E H [R* : Rl}

1 wxTy|*

AOD)N
1/2
o)’ () ()

Recall that Y = X6+ € and note that E[|WX " X/n|%, E|WX T //n|k, E|0|5, E|IE/vn|5
are all uniformly bounded (as d — o0) for any non-negative integer k because of the Gaussian
asusmption and the boundeness of moments of Wishart matrices (Muirhead, 2009; Bai and
Silverstein, 2010) etc. It follows directly by several applications of the Cauchy-Schwartz

<E ()\* - )\(él))4 E H

<
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inequality that E||[IW X TY/n|® is bounded as d — oo, i.e., the third term in the R.H.S. of
(86) is bounded.

If ¢ > 0, then A(6;) > A0) = ¢2d/[na?] > 0, and hence the second term in (86) is
bounded. If 0 = 0 and 7 < 1, by the definition of )\(él) and integration in the polar system,
it is readily verified that

1 n® n® d—o0

= — (1 < o0.
AODS @i +ag )P TR (d - p - 2k)

Therefore, the second term in the R.H.S of (86) is also bounded. Also
L\ 4
d—o0 S

. . d b 2.2 ! 5 5 \14
SC?'}E&([A _ﬁ(l_EJFU /o )} + E[\(01) — EX(61)] > =0,

where C, (s are some finite constants and the last equality follows from equation (84) and
properties of the chi-square distribution.

Therefore, we have proved that E[3 — Bopt||> — 0 and the optimal ridge estimator 3 is
asymptotically optimal. |

B.9 Proof of Theorem 4

Proof [Proof of Theorem 4] We only need to make small changes in the proof of theorems
2 and 3 to prove theorem 4. We first take limg oo BiasQ()\) as an example. Similar to (25)

Bias?()\) = E, [EXW@ (:JM@ + :JMs) - :Je} ’
~E, [a:T(EXWM - 1)9] B, te((EMT — Do (EM — 1)007)
=tr(EM"T — I)(EM —1)687). (87)

Note that we have shown EM is a multiple of identity in Lemma 11 (under Gaussian
assumption), therefore

(87) = [(EMT ~ I)(EM — 1)} tr(007) = étr EMT — I)EM —I)| -tr(607).  (88)

From Lemma 11, we know the first term in the R.H.S. of (88) converges to w2(1—A01 (76, \))?.
Note that tr(60 ") 4 aQ(Z?zl x?)/d, where z; ~ N'(0,1). By the Borel-Cantelli lemma and
the concentration inequality for y2-variables, we have tr(97) %3 o2

Thus, (88) almost surely converges to a?72(1 — 61(7d,\))? and the same asymptotic
result for bias as in theorem 3 holds almost surely over the randomness in 6.

From this example, we can see that the results in theorem 2 and 3 will automatically
hold in the non-random setting if we can separate 6 from other variables (e.g. EM) in (25)
—(27), (32)—(38) by showing that the matrices which are multiplied by #0T are in fact a
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multiple of identity. For instance, in (25), since 80" is multiplied by a multiple of identity
(EMT — I)(EM — I), the same result follows.

To generalize other results in theorem 2 and 3 to the almost sure setting, from (25)—
(27), (32)—(38), we can see that it is enough to show the following matrices are all multiples
of the identity:

(a). EM "M, (b). Ew(ExM "ExM), (¢). Ex(EwM "Ey M).
(a). EMTM. We will denote R = (WXTXWT /n+AL,)"" in what follows. By

the definition of M and the fact that XW " and X (I — W'W) (denoted by X3) are two
independent matrices with Gaussian entries for any fixed W with orthogonal rows

T T T
EMTM:EX XW RQWX X
n n
T T T T T
:EW WXTXW RQWX XWTw (89)
n n
XTXwT WXTX
+EZ2 - R? - 2, (90)

For (89), note that W and XW " are independent, so

X' xw’ X'xw’T
1% WRQW nW}W

(89) = Eyy W ' [EXWT

Since Ey W T AW = tr(A) - I;/d for any constant matrix A, it follows directly that (89)
is a multiple of identity. For (90), note that XW ' and X(I — WTW) are independent
conditioned on W, thus

xXw’ B2 wx'’

90) = EwE X, |E
(90) WX2|W2[XWTn -

] Xo. (91)

Let XWT =UDVT be the SVD. Since XW ' has i.i.d. N(0,1) entries, we can assume U
follows the Haar measure and is independent of DV T. Therefore, with Xo = X (I — W TW)

-2

DvV"T /vD'DVT
(91) = EwEx, Xy (

EU,D,VU n + /\Ip>

DVT /vDTDVT 2ypT
+ AL

1
= EWEXQ‘WX;— {ntr [ED,V

=co EwExuuwXy Xo=c1 - Ew(I—W'W) =cz- I,

where cg, ¢1, ¢ are some constants. Combining (89) and (90), we have proved EM "M is a
multiple of identity.
(b). Ey (ExM "TExM). Since W and XW T are independent, similarly

WX xw’ wXxXTxw’
ExM = EXWTRfW =w' [IEXWUWRTL} w
DD DD
= W'EyVEp ( + Mp> - VIW =ceW W,
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where ¢ is a constant (different from previous constants) and the last line follows from the
fact that Ey VAV T = tr(A)/p - I, for any constant matrix A. Therefore

Ew (ExM "ExM) =EwW WW'W = - EyW'W = ¢ - I,
where ¢ is a constant.

(c). Ex(EwwM "EywM). Let X" X = UT'U" be the spectral decomposition of X " X. By
the definition of M, we have

XTX
Ey M = Ey [WTRW]
WUYD(WU)T ! Nl
= EwU (WU)T<( )n( ) +A1p> WUl ——
wrw'T ol roT uru’T
=Ew WT< - +Mp) Wi——=cl) li-——,

where ¢(T") is a constant depending on T', the second line is due to W L WU and the last
line follows from the proof of Lemma 22 (see (66)). Finally, note that U follows the Haar
distribution and is independent of I'. Thus,

Urzy’

1‘\2
Ex(Ew M "Eyw M) = Er yeo(T)? - =EyU (EFCO(F)Z : n) Ul =¢; - I,

where ¢; is a constant and the last equality follows again from the fact that EpUAU T =
tr(A)/d - I; for any constant matrix A.
|

B.10 Proof of Theorem 9

Proof By definition, we have

MSE()) := Eg,w.x.c(f(z) —270)* + o?
=Eyowxef(@)? — 2B wxef(@) 270+ Egu(x0)* + o
Bias?()\) := E97x|Ew,X,gf(:E) —2'0?
=Eoo(Bwxef(2)® — 2Bgowxef(z) 270+ Egu(x'6)?
Var()) := Eg o w x| f(2) — Exwef ()
=Epowxef(@)? —Eoo(Bwxef(x))?.

To prove equation (22), (23) and (24), it is thus enough to calculate Eemw’x,gf(x)Q,
EQ@’W,X@f(SU) .26 and Eg’m(meygf(x )2. In Lemma 24, 25 and 26, we calculate these
three terms separately. Equation (22), (23) and (24) follow directly from these three lemmas
and the fact that Eg,(2760)? = 2.
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Using the same technique as in the proof of theorem 3, it can be shown that the limiting

MSE as a function of A has a unique minimum at A\* := Z—z (1 —7m+ g—z) @}

Furthermore, results in Table 2 can be proved in the same way as results in Table 1. For
simplicity, we omit the proof of optimal A\* and Table 2 here. |

Lemma 24 (Asymptotic limit of EQ@(ijX’gf(l‘))Q) Under assumptions in theorem 9

4 2
: ¢ 2 _ 2 aH A
Jim By (Bw x.e f(2))” = a’n" 5 (1 - 091> ) (92)
where 61 := 01 (v, \/v).

Lemma 25 (Asymptotic limit of Eg}x,w,xff(x) -x'0) Under assumptions in theorem
9

. 2 A
lim Eg’x’W7X7gf($) . .%'TG = 0427T'LL (1 - 91) ) (93)
d—00 v v
where 01 := 01(y, \/v).

Lemma 26 (Asymptotic limit of Eg}wi,xﬁf(x)z) Under assumptions in theorem 9 we
have

v

" 2(v — p? 212 A [ Ap?
lim Egpwxef(@)? = a2n [1 JAv=p) (p<1 Ly P ) o+ 2 (/; (1 - m) 0,
d—o0 v v v

—u? A A
Jrv ’Ulu <1 + 6, — :92)] +O’2’7 <91 — 1}02> , (94)

where 61 := 01(y, A\/v) and 03 := 03(y, A/v).

The proofs of these lemmas proceed by applying the leave-one-out technique and the
Marchenko-Pastur law (refer to Lemmas 27—29), and by leveraging properties of the or-
thogonal projection matrix and the normal distribution.

-1
Proof [Proof of Lemma 24| Different from previous sections, we will denote R = (w + )\)

in the proof of Lemmas 24—26. By definition,

A c(WXT)Y1?
BB f(0)* = e [Ewcxeoe W HRZY)
WwxT)Xx601°
=Epq [EW,XU(fCTWT)RU(n)]
a? cWXDX|P a2
= 2B, [Ewxo W HRZEIE) = G, (95)
n P d
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For 11, we continue
o(WXT)
n

o(WXT)

Ty =Ewxo(z"WTR (XWTW + XTI —-WTW)]

=Ewxo(z WHR Xw'w

WX’
= Eyo(z W )Ey [RU(n)XWT] W, (96)
where the second line follows from the fact that XW T and X (I — W W) are independent
and Ex X (I — WTW). Denote

o(WXT)

D1 = EX [R
n

XWT] ,

then D is a constant matrix independent of W since WX has i.i.d. AN(0,1) entries for
any W with orthonormal rows. We can write the vector x as z = U(1/dy,0, ...,0)T Uis a
random orthogonal matrix following the Haar distribution. Denoting the i-th column of W
by W.; and substituting = into (96), we get

= Ewo(z' W)DiW = Ewo((v/d1,0,....,00U W YDyWUU "
= Ewo((+/d1,0,...,00W ) DyWU T
where the last line follows from W < WU. We can further write this as
Ewo(\/diW ] )Dy(Wa, ... Wa)U "
- (EWU(\/aWI)Dﬂ/V.l,O, 0) Ut
- (EW.I tr[Wao(\/di W) D], 0, o) UT
- (EWH[WHU(\/CEWH)]tr(Dl),o, o) uT, (97)

where the second line follows from the symmetry of W;(i > 2) conditional on W.; and the
last line is due to the fact that Ey, W.io(v/ leVI) is a multiple of identity since W;; is
symmetric conditional on Wj 1, j # i. Therefore,

2
A «
EG@(EW,X,gf(x))Q = gEarnTlngf

a? 2
= jEdl |:]EW11W110’(\/d1W11):| tr(Dl)Q. (98)

Denote v/d; W1, by . Noting that @ — N(0,1) and dy/d = ||z||*/d £ 1, we obtain

o 5]
a5

2 A 2 4 A 2
e (1 - U91) [Ean01yo(a)a)® = o?n?ts (1 - 091) ;

2

. o (6%
lim E@}x(EW,Xﬁgf( )) = hm thr(Dl) ]Ed1
d—o0 o d

2 2
= lim o?7? 5 (1 — >\91> Eq, /4

d—o0
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where the third line can be rigorously justified using the concentration inequality for @ and
dy/d:

P(lw] >1t) < 2¢~(d-2)t?/d (Levy’s lemma), P(|di/d—1]>1t) < 2¢~ /8 (concentration for x?).

the fact that |o(x)|,|0’(z)| < c1e®?!, integration by parts and the bounded convergence
theorem. Here Levy’s lemma refers to usual concentration of the Haar measure (Boucheron
et al., 2013). |

Proof [Proof of Lemma 25| By definition,

c(WXT)Y
n

]EQJ(EX,W,gf(l‘)@TZ‘) = ng |:EVV,X750'($TWT)R QTSL'

n
U(WXT)XCL'] a?

XX
=Egp, [Ewyxa(xTWT)RU(Wv)QHTJU]

2

=2E, [EWXU(:L*TWT)R

d =—E, tr(TliL'),

n d

where T is defined in equation (95) in the proof of Lemma 24. Let us again write x =
U(y/d1,0,...,0)" for an orthogonal U, and denote 1 = V/dW1i;. Then from equation (97)
and the fact that @ — N(0,1), di/d *> 1 we have

2
. a2 . (6%
lim Eg(Exwef(2)6Ta) = lim =B, (EWH[W11O'<\/d1W11)]tr(Dl),O, o) UTU(/d1,0,..,0)"
2
. [0
= lim Ftr(Dl)EdlEWu[V d1W110'(\/ d1W11)]

d—o0
~ lim a2rP (122 S o (P
_dlggoa b <1 1)91) Eq, aBwy, dwo( T

2 M A o 1 A
am < 091> a~N(0,1)[a0(a)] = o » < 1)91) ,

where the third line follows from similar arguments as in the proof of Lemma 24. |

Proof [Proof of Lemma 26| By definition,

2

i c(WXT)(X0+€E
EG,w,W,X,Sf(:ZJ)2 =Eozwx.e O‘(I’TWT)R ( 21( )
i WXT)X||” wxTY2
= %E O—(xTWT)RU(n) + 0'2E U(%TWT)RU(H) = TQ + T3
2 2
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For T5, we further have that it equals

2 2

cWXXWT|? c(WXXT - WTW) |

o o
TEwxa o@WHR=—— t g Bwxe [o@TWR - 2
2 XT X T2 2 XT I, — T 2
_ v B x HRU(W )XW N v By x HRO(W Y(Ig—W'W)
d n F d n .
2 wxXHXWT | 2(d — wx|?
= Ew,x HRU( ) TR S A ( p)EW,X HRU( ) =: Ty + 15,
d n o d P

where the first and third equations follow from the fact that XW ' and X (I — W W) are
independent, conditional on W and Ex X (I — W TW)(I;— W W)X T = tr(Iy— WTW) =
d — p. Also, we used that Wx ~ N(0,I,) given any orthgonal W, E, xr1y0(a) = 0,
definition (21) and the independence of Wz, XW T and X (I — W W) conditional on W.

Also, due to the independence of Wz, XW T conditional on W, we have
cWxT) | o2d

= — Ts.

r o*(d—p)

T3 = JQUEWX HR

n

Finally, substituting Lemma 28, 29 into Ty, 715 , we get

¢ o2d
Egowxef(®)? =Ts+Ty+Ts =Ty + <1 n 2) o
a?(d —p)

2d_ XT 2
CTE I N P2
n I d n P

—>a7r[1—2(U;'LL2)—|—<p(1—7r) 22" )91 )\<);)'L;2—p(l—7r)>92

— 2 A A
42 E (1 + 701 — 792)] + 0%y (91 - 92)
v v (¥

va? WXT)XVV—r
=g x| A

|
Lemma 27 (Asymptotic behavior of Dy) Under assumptions in theorem 9, we have
X7 A
lim loytr R"(W)XWT] =t (1 - 91> , (99)
d—oo d n v v

where 01 := 01(y, \/v).

Proof [Proof of Lemma 27| Since WW ' = I,, WX has iid. N(0,1) entries and the

L.H.S. of (99) (if exists) is a constant independent of . Denote X := XWT for notational
simplicity. Also, let X.; be the i-th column of X, X. _; be the matrix obtained by deleting
the i-th column of X. By symmetry of X it suffices to compute the first diagonal entry of
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the matrix in the L.H.S. of (99). Namely, we have

RU()}T))N(]

“Ext —Pg_
Xt n d-X

1 |:RO'(WXT)

XWT] D

-1
+>\In> Xq|. (100)

Define C := [0(X._1)o (X ,)/n+A,], u := X.; and @ := (X ;). By the Sherman-Morrison
formula, the above equals

T —1~T =1
Ppu_ C_liC’ i C ~/n "y
d n 1+a'C1la/n

o C u' O aaCu/n
E —E . 101
[ n < n+ua'Cla )} (101)

QI

Since u = a()?.l) has i.i.d. zero mean v variance entries, by theorem 1 in Rubio and
Mestre (2011), the proof of theorem 2.1 in Liu and Dobriban (2020) , we know that C ¢ are
determinstically equivalent to certain multiples of the identity matrix. Also, the multiples
will converge to certain limits, which can be determined by the Marchenko-Pastur law.
Thus, we have after some calculations that

~ ~ —1
X 1)o(XT 1, (1 1-
o1 (a( Do(XT)) +Mn> Ly, <A> I = %91 <% 2) L7 (102)

Therefore, it remains to calculate the limit of (101).
Since u ~ N(0, I,,), we have by the strong law of large numbers that

= lim sup uTu/n <q.s5. 00.
tr

: uu’
limsup || —
n

Note that C is independent of u, thus we have by (102) that almost surely for a sequence
of ug, k=1,2, ...

T,—1 T
lim M = lim tr <(UU)C_1>
n

d—o0 n d—o0
A 1-— T A 1-—
= lim 191 Y, — + i tr (uu ) = 101 Y, — + 77 , &.8.
d—soo | v ) A n v v A
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Similar results also hold for other terms: (i = 1,2)

-
ulCTU o [ < >+ ] (104)
n v
aT
7C“£> [ < )+ ] (105)
n v
NT 7/L‘~
& ™ L5 0 [VZ i ( )‘> + ] (106)
n v
Therefore, simple calculations give
ARG u! C~raaC 1 u/n? ,u A
W (IO e )

Now, we only need to show that the expectation of the L.H.S. of (107) also converges to its
pointwise limit.
To prove this, we start with bounding the mean squared error of (104).

T—1 1— 2 T -1 Tr—-1,, 12 Tr—1 1— 2
gt _[2p Lo cp|e @ g e O pg L O (T 10
n v A n n n v A
1
ZEEC Z + Z + Z + Z Cgle_llEuiujukul—tr(C*l)Q
imj—k=l i=jtk=l i=ltj=k i=ktj=k
tr(C~! 1—~]1
L [791 N v]
n A

This can be further bounded by

2
— 0,

-1
%Kluc—lufm +E tr(i ) _ Bal + 1A]
where K7 is a constant independent of n. This follows from some simple calculations, and
the convergence is due to C~1 < A\ ! and the bounded convergence theorem.

Similarly, we can prove the same results for the other five terms corresponding to equa-
tion (104), (105) and (106). With the mean squared error converging to zero, we are now
able to show that the expectation of the L.H.S. of (107) also converges to the pointwise
constant limit.

For notational simplicity, we further denote a := u'C~'d/n,b := @' C~ta/n,c =
uTC_lu/ n and define constants A := limy_, a, B := limgy_,-, b. Now, for the second term
in the L.H.S. of (107), we have

gk |-C — A | < i EleA A-a A5 —b)
o T4 b 1+ B| dbee | 140 16| |[I+B)(1+b)
a |2 2 A2 2
< — )2 —q)2 _p)2
<\/E(A—a)’E 5 +4/E(A—a)’E 1 +4/E(B b)E‘(1+b)(1+B)
< VEQE(A —a)? + /K3E(A — a)?2 4+ /EK4E(B—b)2 =0, (108)
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where Ko, K3, K4 are some constants independent of n. The existence of Ko, K3, K4 is clear,
and here we only take K5 as an example. Since

2

¢ | <Ea? <Ebe <

1+0

2
Eu'ui'a — ptv

1
s ‘ AZn? A2

we can choose Ky := sup, Eu'uii'/n?\? < co. (The second inequality can be proved by
comparing each term in the expression of a® and be and noting that C;; 1C’j_j1 > (Cl;l)2
holds for any 1, j.)

Finally, noting limg_,o, Ea = limg oo Eptr(C~1)/n — A and using (108), we obtain
that the expectation of L.H.S. of (107) satisfies

2 2
im PE(a— - V(a2 Yoot -2 (52
dlggodE(a 1+b>_W(A 1—|—B>_7Tv [1 001(7’11)}

This finishes the proof. |

Lemma 28 (Asymptotic behavior of 7)) Under assumptions in theorem 9, we have

2

1 XHxwT
lim LBy | RZOVEXW
d—oo d ’ n F
20v — p?)  2au? A2 12 —u? A
v v v2 v3 v v

where 61 := 01 (v, A\/v), 02 := O2(v, \/v).

. —1
Proof [Proof of Lemma 28| Denote R = (M + /\) . By definition,

L HRU(WXT)XWT S o(WXT) o XWT 2

-Ew x = -Ewx

d n o d vn NI
1 - -

— Ryytr [WXTRXWT] ~ A By tr [WXTRQXWT} — M — A\Ms.
nd nd

Using the same notations and techniques as in the proof of Lemma 27, after some similar
calculations, we get

1T =1\ "
lim M; = lim “EaT (01 - C W C N, i=1,2.
d—soo d—oo N n+a'Cla

More specifically,

w'Clu w'Claa" Ctu/n?
lim M; =« lim E - . 11
Jim = i B (2 Crarc i) (o)
) ) u O~ 2 w' C2aa " Cu/n?  w'Clan' C2aa O u/n?
lim My =x lim E — — ~ = -
d—o0 d—o0 n 1+a'C1la/n (1+a'C—1a/n)?
(111)
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Substituting equation (104), (105) and (106) into (110), (111), we can see that the random
variables on the R.H.S. of (110), (111) almost surely converge to some constant. Using a
similar argument as in the proof of Lemma 27, it can be shown that the expectations on
the R.H.S. of equation (110), (111) both converge to their corresponding pointwise constant
limits.

Therefore, denoting the R.H.S. of (104) by k;(i = 1,2) and replacing the R.H.S of (110),
(111) by their pointwise constant limits, we obtain

k2 2112k ko pPok2ko
— AT k’g — .
1+ vk, 1+vks (14 vkp)?

lim M1 - )\MQ =T (k‘l - (112)
d—o0

From the remark after definition 1, it is readily verified that 1/(1 4+ vk1) = A0;/v. Thus

(112) is a polynomial function of ; 2. Finally, canceling the high order (> 2) terms in (112)
using the equations in the remark after definition 1, we have after some calculations that

200 —p®)  22?,  A? — 1 A
1imM1—AM2:”[1— w=p7) Lo+ 2t g, 4“1 <1+791—792>]
d—oo v v v v v

v
|
Lemma 29 (Asymptotic behavior of T5) Under assumptions in theorem 9, we have
x|
lim By, x HRJ(W) =2 <91 - Aeg) : (113)
d—o0 F v v

where 01 := 01(y, A\/v), 02 := 2(v, A/v).
Proof [Proof of Lemma 29| By definition,

Zyo(WXo(XWT)
2

L.H.S. of (113) = Epyx tr [R ] =Ew,x tr [R] — A\Ew,x tr [R?] .

n

Note that ¢(XW ') has ii.d. zero mean v variance entries, by the Marchenko-Pastur
theorem and similar methods in the proof of theorem 3, we get

A A A
L.H.S. of (113) = %91 <% > - 7%92 <% v) :

(
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