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Abstract

Statistical learning from incomplete data is typically performed under an assumption of
ignorability for the mechanism that causes missing values. Notably, the expectation max-
imization (EM) algorithm is based on the assumption that values are missing at random.
Most approaches that tackle non-ignorable mechanisms are based on specific modeling
assumptions for these mechanisms. The adaptive imputation and maximization (AIM)
algorithm has been introduced in earlier work as a general paradigm for learning from
incomplete data without any assumptions on the process that causes observations to be
incomplete. In this paper we give a thorough analysis of the theoretical properties of the
AIM algorithm, and its relationship with EM. We identify conditions under which EM
and AIM are in fact equivalent, and show that when these conditions are not met, then
AIM can produce consistent estimates in non-ignorable incomplete data scenarios where
EM becomes inconsistent. Convergence results for AIM are obtained that closely mirror
the available convergence guarantees for EM. We develop the general theory of the AIM
algorithm for discrete data settings, and then develop a general discretization approach
that allows to apply the method also to incomplete continuous data. We demonstrate the
practical usability of the AIM algorithm by prototype implementations for parameter learn-
ing from continuous Gaussian data, and from discrete Bayesian network data. Extensive
experiments show that the theoretical differences between AIM and EM can be observed
in practice, and that a combination of the two methods leads to robust performance for
both ignorable and non-ignorable mechanisms.

Keywords: incomplete data, missing at random, coarsened at random, expectation
maximization, Bayesian networks

1. Introduction

1.1 Learning from Coarse Data

Learning from incomplete data is a fundamental problem for machine learning. The most
prevalent form of incomplete data is data with missing values. However, data can be
incomplete also in other ways: for example, numeric data values may be given in binned
form, where instead of a precise value x, only an interval [a, b] that x falls into is recorded.
A special case of this is right-censored data, where values exceeding a certain threshold t
are only reported as “> t”. Similarly, grouped observations of categorical attributes can
also occur, for example when in a personal data form the field ’citizenship’ is filled with
’European’ rather than a specific nationality. In the particular case where a class label
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is subject to such set-valued observations, this situation has been considered under the
names of learning from partially labeled data (Jin and Ghahramani, 2003; Cour et al., 2011)
and superset learning (Hüllermeier and Cheng, 2015). For finite sample spaces W , the
coarse data model (Heitjan and Rubin, 1991; Couso et al., 2017) provides a simple and fully
general framework for dealing with all forms of incompleteness. According to this model,
an incomplete (“coarse”) observation can be given by any subset of W . For example, if W
is the set of all countries, then a coarse observation ’European’ is the subset of European
countries. A personal data record (nationality=Belgian,gender=?,education=university)
with a missing value for the gender attribute corresponds to the set of complete data records
{(Belgian, male, university),(Belgian, female, university),(Belgian, non-binary, university)}.

1.2 Imputation: a Brief Survey

Almost all methods that have been developed to deal with incomplete data can be un-
derstood as variations on the theme of imputation: the incomplete data is turned into a
complete data set, and then learning is performed based on this (hypothetical) complete
data. In many approaches it is assumed that incompleteness only occurs in the form of
missing values.

In the simplest type of imputation procedure, data item with missing values is turned
into a complete item by filling in the missing values. This can be done by using average
or mode values as default fill-ins, or in the manner of more sophisticated hot-deck im-
putations, where the imputed values are chosen based on the observed values in similar
(“donor”) data instances (Andridge and Little, 2010). Broadly speaking, many versions
of hot-deck imputation can be understood as filling in missing values by values obtained
from nearest-neighbor predictions. Other classification or regression methods can also be
used for imputing missing values. An empirical comparison of a variety of such methods is
given by Jerez et al. (2010). Single imputation methods are computationally simple, and
quite popular in practice, because they result in a complete data set to which all learning
methods and analysis techniques can be applied. However, theoretical justifications for this
approach can only be given under strong modeling assumptions for the incomplete data,
and for restricted types of statistical inferences on the imputed completion (Andridge and
Little, 2010).

In multiple imputation (Rubin, 1978, 1996) several completions are constructed by sam-
pling missing values from the conditional distribution of the unobserved variables, given
the observed values, and a prior Bayesian model for both the data and the missing-data
mechanism (Rubin, 1996). Inferences about quantities of interest are obtained by averaging
estimates obtained separately from each imputed complete data set. The variance in the
sample of estimates can further be used as a basis to analyze the sensitivity of the inferences
to the missing values, or the choice of the prior model. Furthermore, point estimates can be
replaced by interval estimates reflecting the uncertainty due to incompleteness. The theo-
retical justification of multiple imputation essentially rests on the assumption that the prior
model is correct (however, an analysis in more frequentist terms can also be given (Rubin,
1996)).

Several authors suggest that in the absence of well-justified assumptions on the missing-
ness mechanism one should consider all possible data completions, and only determine
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interval-valued estimates that represent all the estimates that would be obtained from
any of the completions. We refer to this all imputations approach as conservative infer-
ence (Horowitz and Manski, 2001). Conservative inference approaches have received some
attention for parameter learning in Bayesian networks, where it also has been suggested to
refine the conservative interval estimates to point estimates by maximizing entropy (Cow-
ell, 1999), or by taking convex combinations of extremal solutions (Ramoni and Sebastiani,
1998). A robust version of the Naive Bayesian classifier based on conservative interval es-
timates is developed by Corani and Zaffalon (2008). A related type of approach that also
leads to point estimates is to maximize lower or upper bounds on the likelihood functions
that are induced by different data completions (Hüllermeier, 2014; Guillaume and Dubois,
2015).

All approaches mentioned so far can be described in terms of finite collections of im-
puted data completions. Going one step further, one can consider probability distributions
over possible completions. We will refer to such probability distributions as fractional
completions. They are the basis of the EM algorithm (Dempster et al., 1977), where in
the expectation step one (implicitly) considers the expected distribution over completions,
given a current complete data model.

1.3 Missing and Coarsened at Random

As is well known, the EM algorithm is based on the assumption that the missingness mech-
anism is ignorable in the sense that values are missing at random (MAR) (Rubin, 1976).
Exact definitions of MAR that are found in the literature may exhibit some subtle differ-
ences (Jaeger, 2005a; Seaman et al., 2013; Mealli and Rubin, 2015). A rough (but not fully
accurate) intuition is that data is MAR, if whether or not an attribute value is missing
does not depend on the actual value. For the more general coarse data model, the MAR
assumption has been generalized to the coarsened at random ( CAR) assumption (Heitjan
and Rubin, 1991). In spite of its greater generality, the CAR assumption is actually concep-
tually simpler and more transparent than the original MAR assumption. Roughly speaking,
data is CAR, if the coarse observation of the subset U ⊆W is equally likely to happen for
each of the possible underlying complete data points w ∈ U . An in-depth analysis and
characterization of different versions of MAR and CAR is given by Jaeger (2005a).

The MAR or CAR assumptions are quite restrictive, and notoriously difficult to val-
idate (Cator, 2004; Manski, 2005; Jaeger, 2006a; Mohan and Pearl, 2014). When these
assumptions appear unrealistic, one would prefer methods that do not rely on them. One
such approach is to include in the data analysis an explicit model for the mechanism that
causes values to be missing (Little and Rubin, 1987, Chapter 11). This approach has been
rigorously pursued by Mohan et al. (Mohan et al., 2013; Van den Broeck et al., 2015; Mohan
et al., 2018), who use graphical models to represent the joint distribution of the underlying
complete and the observed incomplete data. Using a graph-based concept of MAR that
is somewhat stronger and simpler than the original one by Rubin (1976), the authors de-
velop techniques for efficient estimation under MAR (Van den Broeck et al., 2015), and for
consistent estimation in some non-MAR scenarios (Mohan et al., 2018). Specialized tech-
niques for fitting an explicit model for the missingness mechanism jointly with a complete
data model have also been introduced in the context of collaborative filtering (Steck, 2010;
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Hernández-Lobato et al., 2014) and learning from positive and unlabeled data (Bekker and
Davis, 2018).

A method for dealing with non-CAR data without adding an explicit modeling compo-
nent for the missingness (or coarsening) mechanism is the adaptive imputation and max-
imization (AIM) procedure proposed by Jaeger (2006b). This procedure is structurally
very similar to the EM algorithm, but instead of constructing in an E-step the expected
completion given a current model, one computes in an AI-step the fractional completion
that minimizes the Kullback-Leibler divergence relative to the current model. As shown
by Jaeger (2006b), the resulting procedure maximizes the likelihood function that is free of
any assumptions on the missing data mechanism.

Figure 1 gives an illustration of the analogies and difference between the AIM and
EM procedures. Underlying complete data is generated by a two-dimensional Gaussian
distribution (a). Data sampled from this distribution is subject to a missingness mechanism
such that values in the first component (x-axis in the plots) are likely to be missing if
they fall into one of two narrow bands centered at -0.8 and 0.8, respectively, and second
component values (y-axis) are likely to be missing at the lower end of the value range (an
exact specification is given in Section 7.1.6). This leads to coarsened data (b) consisting
of a distribution of the fully observed cases (shown as a heatmap), and the two marginal
distributions for each of the two components from those cases where the other component
is not observed (shown as two density curves on top of the corresponding axes). Both
EM and AIM impute fractional completions for these incomplete observations, leading to
distributions of imputed completions (c). Combining these imputed completions of the
partially observed cases with the fully observed data cases, leads to the imputed complete
data sets (d) from which then parameters will be estimated (i.e., (d) is simply the sum of
(c) and the fully observed cases of (b)). The E step of the EM algorithm is constrained
to fractional completions that follow the underlying parametric model, so that here the
fractional completion for every missing value will follow a Gaussian distribution. This leads
to an overall rather smooth, “near Gaussian” distribution of the imputed completions ((c)
for EM). The AI imputations of AIM, on the other hand, are not constrained in any form.
The underlying objective in their construction is that the resulting imputed complete data
(d) is consistent with the underlying parametric model of a Gaussian distribution. The
imputed completions ((c) for AIM) are therefore filling in the “gaps” in the fully observed
data cases, such that the combination of the two becomes approximately Gaussian ((d) for
AIM).

In this paper we present an in-depth study of the AIM algorithm, and a detailed compar-
ison with EM. In Section 2 we first establish the foundations of likelihood-based inference
from coarse data, and derive a representation of the likelihood function that incorporates
no assumption on the data coarsening mechanism. This representation leads to the AIM
algorithm. Section 3 then establishes theoretical consistency results for maximum likeli-
hood inference both under the no-assumptions likelihood function, and the likelihood that
incorporates the CAR assumption. The latter result implies a fundamental consistency
guarantee for the EM algorithm, which, to the best of our knowledge, has not been doc-
umented in the literature before. In Section 4 the AIM procedure is formally introduced,
and its relationship with the EM algorithm clarified. This analysis will resolve an apparent
contradiction between our results and earlier work, where the AIM algorithm had already
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Figure 1: AIM and EM imputations

been considered under the name of alternating KL minimization procedure, and where it has
been regarded as just an alternative, equivalent representation of the EM algorithm (Csiszár
and Tusnády, 1984; Gunawardana and Byrne, 2005). Section 5 derives convergence results
for the AIM procedure that closely mirror available convergence guarantees for EM.

The main theoretical results in this paper are for the case of discrete data from a finite
sample space. Extending these results in full generality to the case of numeric data appears
infeasible, since the underlying coarse data model would then involve probability distribu-
tions over the powerset of the reals, for which we even lack the necessary measure theoretic
foundations. Therefore, for dealing with continuous data, we use a suitable restricted no-
tion of coarse data and develop a principled approach for discretizing numeric data, such
that the theoretical guarantees we obtain for the discrete case become applicable also for
continuous data.

In the second part of this paper we conduct an empirical investigation into the practical
performance of the AIM and EM algorithms when learning from CAR and non-CAR data.
We consider the two scenarios of learning the parameters of a Gaussian distribution (as
illustrated in Figure 1), and of learning the parameters of a Bayesian network. For both
scenarios we first develop a suitable implementation of the generic AIM approach. The
evaluation shows that for non-CAR data AIM generally provides more accurate parameter
estimates than EM, whereas the converse holds when data is actually CAR. We will also
see that a simple combination of EM and AIM achieves results that are generally at least
as good as those obtained by EM, and better than EM in non-CAR cases.

This paper is an extended version of (Jaeger, 2006b) which originally introduced the
AIM procedure1. Theorem 3 of the current paper, the general AIM algorithm, and an
initial implementation for parameter learning in Bayesian networks was already presented

1. The author wished he had a good excuse/explanation for the slight delay that occurred in preparing this
extended version, but none could be found.
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in (Jaeger, 2006b). The theoretical results of Sections 3-5 in this paper are new, as are the
extension to numeric data, and the experimental design and analysis.

2. Likelihood Inference for Incomplete Data

We assume that the underlying complete data distribution is represented by a random
variable X with values in a finite state space W = {w1, . . . , wn}. X may be a multivariate
random variable, i.e. X = (X1, . . . , Xm), and W = W (X1) × · · · ×W (Xm), where W (Xi)
is the state space of Xi. We use bold font X to make the multi-variate nature of variables
explicit.

We denote with ∆(W ) = {P = (p1, . . . , pn) ∈ [0, 1]n :
∑

i pi = 1} the set of all probabil-
ity distributions on W . A parametric model for the distribution of X consists of a parameter
space Θ ⊆ Rk and a mapping θ 7→ Pθ ∈ ∆(W ). We write PΘ := {Pθ | θ ∈ Θ} ⊆ ∆(W ). We
are concerned with the problem of learning the true parameter θ∗ of the distribution of X
from incomplete observations of X.

In the general coarse data model incomplete observations of X can be given by any
subset of the state space W . Formally, these observations are the values of a random
variable Y with state space 2W . We denote 2W with Y when we want to emphasize its
nature as the sample space of Y . It is assumed that the observations Y always contain the
true value of X (i.e. the data is incomplete, not incorrect). Therefore, the joint sample
space of X and Y is

Ω(W ) := {(w,U) | w ∈W,U ⊆W : w ∈ U}. (1)

The joint distribution of X and Y then can be parameterized by Pθ and parameters

λw,U = P (Y = U | X = w) ((w,U) ∈ Ω(W )).

Thus, the parameter space of all possible coarsening mechanisms (for the given state space
W ) is

Λsat := {(λw,U )(w,U)∈Ω(W ) | ∀w ∈W :
∑

U :w∈U
λw,U = 1}. (2)

The joint distribution for (X,Y ) given by θ ∈ Θ and λ ∈ Λsat is denoted Pθ,λ, and the

marginal distribution of Y (the observed data distribution) by P ↓Yθ,λ . The parameter space
Λsat represents the saturated (SAT ) coarsening model, i.e. the one that does not encode
any assumptions on how the data is coarsened.

Specific assumptions on the coarsening mechanism can be made by restricting admissible
λ-parameters to some subset of Λsat. The most commonly made assumption is the missing
at random (MAR) assumption for unobserved variables. In the coarse data framework,
this becomes the coarsened at random (CAR) assumption (Heitjan and Rubin, 1991). As
pointed out by Jaeger (2005b), one actually has to distinguish a weak and a strong version
of the CAR assumption. For the context of this paper, the strong version is the more
relevant one, since this is the assumption that justifies the EM algorithm. Formulated as a
restriction on the parameters Λ, (strong) CAR is

Λcar := {λ ∈ Λsat | ∀U∀w,w′ ∈ U : λw,U = λw′,U}. (3)
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Figure 2: Basic Example

Thus, for any possible incomplete observation U : all complete data points w,w′ com-
patible with U are equally likely to be coarsened to U .

Example 1 The simplest class of coarsening mechanisms are those that are captured by
the grouped data model. These models are given by a partitioning U1, . . . , Uk of W , and
a coarse data variable Y with P (Y = Ui | X = w) = 1 for the (unique) Ui containing
w. In particular, grouped data models are always CAR because, by definition then for
w,w′ ∈ Ui : 1 = P (Y = Ui | X = w) = P (Y = Ui | X = w′).

An important special type of grouped data models are latent variable models: in these
models X = (O1, . . . , Ol, L1, . . . , Lm), where variables Oi are always observed, and the
(latent) variables Lj are never observed. The partitioning of W then is defined by the
possible joint observations o of the Oi, i.e. consists of the sets of the form

Uo = {(o, l) | l ∈ ×jW (Lj)}.

The following example will be used for illustration throughout the paper.

Example 2 Figure 2 shows a Bayesian network with two binary nodes A,B, and two ob-
servation nodes obsA,obsB. The distribution of interest here is the joint distribution of A
and B, i.e. in our general terminology: X = (A,B) and W = {t, f}× {t, f}. The distribu-
tion of X is parameterized by Θ = {(θA, θB) | θA, θB ∈ [0, 1]}, where θA := P (A = t), θB :=
P (B = t) (in Figure 2: θA = 0.5, θB = 0.2). The observation nodes have the two possible
values o (observed) and m (missing) and thereby represent a coarsening mechanism: when
obsA= m, or obsB= m, then the value of A, respectively B will be recorded as missing.
According to the model, A always is observed, and B can only be missing when A = t. The
model only allows for four distinct observations. The observations, their representation as
subsets U ⊆W , and their probabilities are shown in Table 1.

Table 2 shows the coarsening model in terms of the λw,U parameters. Entries “nd” mean
that the parameter is undefined because the given (w,U) pair does not belong to Ω(W ). This
data is not CAR, because λw3,U1 6= λw4,U1.

We are interested in learning the parameters θ of the complete data distribution from
the observed values U = (U (1), . . . , U (N)) of iid random variables Y (1), . . . , Y (N). As a
notational convention we use superscripts in parentheses to denote sample indices in order to
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Observation U P (Y = U)

A = t, B =? U1 = {(t, f), (t, t)} 0.45
A = t, B = t U2 = {(t, t)} 0.05
A = f,B = t U3 = {(f, t)} 0.1
A = f,B = f U4 = {(f, f)} 0.4

Table 1: Example 2: Probabilities of observations

w U1 U2 U3 U4

w1 = {f, f} nd nd nd 1
w2 = {f, t} nd nd 1 nd
w3 = {t, f} 1 nd nd nd
w4 = {t, t} 0.5 0.5 nd nd

Table 2: Example 2: λ parameters

avoid confusion with subscripts used for other purposes, notably the indexing of components
in a multivariate variable.

The sample U together in conjunction with assumptions on the coarsening process
expressed as a subset Λ ⊆ Λsat induces a profile likelihood function on the parameter space
Θ by maximizing over λ-values:

LΛ(θ | U) := max
λ∈Λ

N∏
i=1

Pθ,λ(Y = U (i)) = max
λ∈Λ

N∏
i=1

∑
w∈U(i)

Pθ(X = w)Pλ(Y = U (i)|X = w). (4)

We refer to (4) also as the profile(Λ)-likelihood (if Λ is not assumed to be closed, the
supremum should be used instead of the maximum; however, we will only be concerned with
closed Λ). We write LLΛ for the corresponding log-likelihood logLΛ. Also, for Λ = Λsat and
Λ = Λcar we write (L)Lsat and (L)Lcar rather than (L)LΛsat and (L)LΛcar .

The result that under the CAR assumption the coarsening mechanism can be ignored
derives from the fact that the profile(CAR)-likelihood factors as

Lcar(θ | U) = f(U)LFV(θ | U), (5)

where

f(U) := max
λ∈Λcar

N∏
i=1

λU(i) ,

and LFV is the face-value likelihood (Dawid and Dickey, 1977)

LFV(θ | U) :=
N∏
i=1

Pθ(X ∈ U (i)). (6)

We now proceed to give a useful characterization of Lsat that similarly as (5) for Lcar,
provides a more manageable basis for optimization than the generic definition (4).

Definition 1 Let U = U (1), . . . , U (N) be a data set.
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a. A fractional completion of U is a mapping c that assigns to every U (i) ∈ U a probability
distribution c(U (i)) over U (i). We also write c(U (i), w) for c(U (i))(w) (w ∈ U (i)). The
fractional completion c defines a probability distribution Pc := 1/N

∑N
i=1 c(U

(i)) on
W . We denote with C(U) the set of all fractional completions of U . By a slight abuse
of notation, we also use C(U) for the set of induced distributions {Pc | c ∈ C(U)}.

b. Let m(U) denote the empirical distribution of U on Y. If m(U) = m(U ′), then C(U) =
C(U ′). We therefore also write C(m) for the C(U) of any U with empirical distribution
m.

In the following we will be exclusively concerned with fractional completions. To simplify
language, we therefore from now on simply use the term ’completion’, which is always to
be understood as referring to fractional completions.

We use m to denote the empirical distribution of Y in order to point out its possible
interpretation as a basic probability assignment in the sense of Dempster-Shafer theory.
Moreover, the sets C(U) (respectively C(m)) are the sets of compatible probability measures
in the sense of Dempster (1967). A useful characterization of the sets C(m) was given by
Dempster as follows.

Theorem 2 ((Dempster, 1967)) Let m be a probability distribution on Y. Let ΠW be
the set of permutations of W . For π ∈ ΠW and U ∈ Y let minπ(U) be the minimal element
in U according to the ordering π. For π ∈ ΠW define π(m) ∈ ∆W by

π(m)(w) :=
∑

U :w=minπ(U)

m(U) (w ∈W ).

Then

C(m) = conv{π(m) | π ∈ ΠW},
where conv denotes the convex hull.

For probability distributions P,Q, we use H(P ) to denote the entropy of P , and
KL(P,Q) to denote the Kullback Leibler divergence

∑
w P (w) log(P (w)/Q(w)). When P ⊆

∆(W ) is a set of probability distributions, we also write KL(P, Q) for minP∈P KL(P,Q).

We can now characterize the profile likelihood under the saturated coarsening model as
follows.

Theorem 3 Let U = U (1), . . . , U (N) be a data set, and m the empirical distribution defined
by U on Y. Then

1

N
LLsat(θ | U) = −H(m)− min

c∈C(U)
KL(Pc, Pθ). (7)

The proof of this and all following theorems can be found in Appendix A.

Corollary 4 If PΘ ∩ C(U) 6= ∅, then {θ ∈ Θ | Pθ ∈ C(U)} is the set of global maxima of
LLsat.

9



Jaeger

C(U)P ∗

Pθ̂
P1

P2

Figure 3: Example 3: Geometric illustration

Example 3 (Example 2 continued) Suppose we have a large representative sample U for
Y , i.e. the empirical distribution m defined by the sample has the expected values given by
the third column of Table 1: m(U1) = 0.45, . . . ,m(U4) = 0.4.

The set C(U) is the convex hull of the two extreme completions P1 = (0.4, 0.1, 0.45, 0.05)
(all unobserved B are assumed to be false), and P2 = (0.4, 0.1, 0, 0.5) (all unobserved B are
assumed to be true). The probability values in the Pi-tuples here are ordered according to
the enumeration of the wj in Table 2.

Figure 2 illustrates the situation: the set ∆(W ) is a 3-dimensional tetrahedron (embedded
in 4-dimensional space). The parametric model PΘ is a 2-dimensional manifold in ∆(W ).
The set C(U) is a line segment with endpoints P1, P2. As apparent from the figure (and
readily verified analytically), C(U) intersects PΘ in exactly one point P ∗ = (0.4, 0.1, 0.4, 0.1),
corresponding to Pθ∗ for the true parameter θ∗ = (0.5, 0.2). Thus, by Corollary 4, θ∗ is the
unique maximum of LLsat.

Turning to LLcar, it is straightforward to maximize LLFV ≡
∑4

i=1m(Ui)logPθ(Ui) an-

alytically, and find that the maximum is attained at θ̂ = (0.5, 0.2727), corresponding to
Pθ̂ = (0.3636, 0.1363, 0.3636, 0.1363). Thus, for this non-CAR data, maximizing LLsat re-
turns the true parameters, while maximizing LLcar does not.
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3. Consistency

In Example 3 the true parameter θ∗ was found by maximization of the profile likelihood
function that would be induced by a representative sample. That large samples, with
high probability, induce likelihood functions maximized by the true parameter is the con-
sistency property of maximum likelihood estimates, and the perhaps strongest justification
for the maximum likelihood principle. The classic consistency results ((Wald, 1949), see also
(Lehmann and Casella, 1998, Theorems 3.2,3.7)) provide conditions under which a true pa-
rameter γ∗ will be found (with probability 1) in the limit of large sample size N → ∞.
These results, however, require the assumptions that the data is complete, and that the
true parameter γ∗ is identifiable, i.e. Pγ∗ 6= Pγ for all γ 6= γ∗.

Redner (1981) generalizes Wald’s theorem to the non-identifiable case. In this case,
consistency has to be understood as the property that the true parameter is among the
maximizers of the likelihood function (in the large sample limit), but not necessarily the
unique maximum. Redner’s results can be used to analyze the behavior of the sequence
(θ̂N , λ̂N ) of maximum likelihood estimators for (θ∗, λ∗): when a pair (θ, λ) is seen as a
parameterization of the distribution of the observed variable Y , then we obtain a com-
plete data, non-identifiable scenario (because typically distinct parameters (θ, λ), (θ′, λ′)
can induce the same distribution on the observation space Y). Redner’s results, therefore,
establish consistency properties of the full likelihood function Pθ,λ(U) for jointly estimating
θ and λ. Our interest, on the other hand, is to avoid an explicit optimization over λ, and
use profile likelihoods (5) and (7) to directly estimate the parameter of interest θ.

In this section we therefore derive consistency results similar in nature to those of Red-
ner (1981), but directly addressing the maximization of the profile(sat) and profile(car)
likelihood functions. It is clear that the situation of Example 3, where the true parameter
was the unique maximum of LLsat, cannot be expected to be encountered in general. When
data is highly incomplete, then the observed sample U will not contain enough information
to identify the true parameter (in the very extreme case, the data is vacuous, i.e. U (i) = W
for all i. Then C(U) = ∆(W ), and by Corollary 4 LLsat is constant on Θ). The best we can
hope, therefore, is that the true θ∗ is one of the maxima of LLsat. The following theorem
states that this will almost surely be the case in the large sample limit.

We first formulate a couple of assumptions on the complete data parametric model.

Assumption 1 Θ is a bounded subset of Rk for some k ≥ 1.

Assumption 2 The parameterization is continuous: if θi → θ in Θ, then Pθi → Pθ in
∆(W ).

Since we are only considering categorical data, Assumption 1 is almost tautological, and
Assumption 2 is true for any reasonable parameterization. For the statement and proof of
the following theorem we use the convention that for an event α and a distribution P we
also write “α P -a.s” (α holds P -almost surely) instead of P (α) = 1.

Theorem 5 Let U (1), U (2), . . . be observations of iid random variables Y (i), which are dis-
tributed according to m∗ := P ↓Yθ∗,λ∗. Denote by P the joint distribution of all Y (i), and

UN = (U (1), . . . , U (N)).
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A. Let θ̂N maximize LLsat(· | UN ) (N ≥ 1). Then

lim
N→∞

1

N
(LLsat(θ̂N | UN )− LLsat(θ

∗ | UN )) = 0 P -a.s..

B. Assume that Assumptions 1 and 2 hold, and that λ∗ ∈ Λcar.

(i) Let θ̂N maximize LLcar(· | UN ) (N ≥ 1). Then

lim
N→∞

1

N
(LLcar(θ̂N | UN )− LLcar(θ

∗ | UN )) = 0 P -a.s..

(ii) If, furthermore, the system of equations

Pθ(U) = Pθ∗(U) (U : m∗(U) > 0)

has the unique solution θ = θ∗, then

lim
N→∞

θ̂N = θ∗ P -a.s.

Part B of the theorem says that face-value likelihood optimization objective underly-
ing the EM algorithm is consistent when the data is actually CAR. This is certainly not
surprising, and, indeed, an implicit assumption made when using the EM algorithm. To
the best of our knowledge, however, while the convergence behavior of the EM algorithm
to a (local) maximum of LLcar has received much attention, there is a gap in the literature
regarding the consistency of these maxima for identifying the true θ∗. Part A provides the
same guarantee for maxima of LLsat and non-CAR data.

4. The AIM Procedure

According to Theorem 3, an optimal parameter θ̂ for LLsat is equivalently characterized as

θ̂ = arg min
θ∈Θ

min
c∈C(U)

KL(Pc, Pθ).

Based on this characterization, a general procedure for optimizing LLsat is given by the
alternating minimization procedure in Table 1. To simplify notation from now on we also
write KL(c, θ) for KL(Pc, Pθ).

This procedure was proposed by Jaeger (2006a) under the name of Adaptive Imputation
and Maximization (AIM)2, because the AI step imputes a (fractional) data completion
AI(θ,U) that tries to adapt the imputed empirical distribution as closely as possible to
the distribution defined by the current parameter setting θ. The general procedure of
minimizing a KL distance between two sets of distributions by alternating minimization in
the first and second argument has previously been proposed and investigated. An early
and thorough study of this approach was given by Csiszár and Tusnády (1984). Csiszár
and Tusnády also considered maximum likelihood inference from incomplete data as an

2. Actually, it was originally called “Adjusting Imputation and Maximization”. The new name is perhaps
a little less clumsy, while preserving the acronym.
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AIM(U);

1 t := 0;
2 Choose initial θ0 ∈ Θ;
3 repeat
4 ct := AI(θt,U) := arg minc∈C(U) KL(c, θt) /* AI step */

5 θt+1 := M(ct) := arg minθ∈Θ KL(ct, θ) /* M step */

6 t := t+ 1

7 until termination condition applies;
Algorithm 1: The AIM procedure

application of this alternating minimization procedure, and, indeed, in this case identified
it with the EM algorithm. Essentially the same alternating KL-minimization procedure
also is considered by Neal and Hinton (1998), Heskes et al. (2004), and Gunawardana and
Byrne (2005) as an alternative representation of the EM algorithm. As the EM algorithm
maximizes LLcar, whereas AIM maximizes LLsat, and (as we saw in Example 3) these
two maximizations can lead to different results, this may look like a contradiction. In the
remainder of this section we will analyze and resolve this apparent conflict, and explain the
close relationship between AIM and EM from two different perspectives. This material deals
with some rather specific technicalities, and readers mostly interested in the bigger picture
may skip it without loosing relevant background information for the following sections.

4.1 AIM and EM in the Flat Data Model

The resolution of the apparent conflict described above lies in the realization that the
mentioned works are based on special incomplete data models in which the AIM and EM
procedures become equivalent. We next provide a simple condition under which the AI and
E steps are identical, and then analyze why this condition is actually fulfilled for the data
models assumed in the aforementioned papers. In the following theorem we denote with
E(θ,U) ∈ ∆(W ) the expected empirical complete data distribution under Pθ given U , i.e.
E(θ,U)(x) = 1/N

∑
i Pθ(x | U (i)).

Theorem 6 Let U (1), . . . , U (N) be a data set. If for all i, j: U (i) = U (j), or U (i)∩U (j) = ∅,
then

Lsat(·|U) = Lcar(·|U), (8)

and for all θ:

AI(θ,U) = E(θ,U). (9)

Equality (8) is essentially just another instance of the observation in Example 1 that
grouped data always is CAR. In Example 1 we considered a coarse data distribution that is
concentrated on a partition of W . In Theorem 6 we only have a sample that is consistent
with the assumption that the underlying distribution follows a grouped data model. This is
sufficient to make the two profile likelihoods equal. Equation (9) says that not only do the
objective functions of AIM and EM here coincide, but also algorithmically the two methods
are equivalent.
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The following example shows how the E and AI steps are not equivalent when the
conditions of Theorem 6 do not hold.

Example 4 (Example 3 continued) Let U be as in Example 3. Assume that θt = (0.5, 0.2)
(the true parameters). Since Pθt ∈ C(U) (cf. Figure 2), we have that AI(θt) is the comple-
tion ct with Pct = Pθt = (0.4, 0.1, 0.4, 0.1). Then also m(ct) = θt+1 = θt again, i.e. θt is a
fixed point of the AIM procedure.

The expected completion of U under θt is ct with Pct = (0.4, 0.1, 0.36, 0.14), leading to
θt+1 = (0.5, 0.24) in the subsequent M-step.

Neal and Hinton (1998), Heskes et al. (2004) and Gunawardana and Byrne (2005) are
basing their work on an incomplete data model that does not explicitly incorporate repeated
iid samples. In this what we shall call the flat data model, data is represented by a single
complete data variable X (possibly multivariate X = (X1, . . . , Xn)), and a corresponding
incomplete data variable Y (possibly given in the form of a multivariate Y = (Y1, . . . , Yn),
where Yi can be an observed value of Xi, or a missingness symbol). This abstract view
subsumes the case where X is an N × m matrix of N samples of multivariate random
variables (so that n = N ·m). An assumption about the iid nature of the N samples will
then just become part of the overall parametric model for X.

On the basis of the flat data model, inference is based on a single observation U of Y .
Thus, in our notation, N = 1, and the profile likelihood becomes

LΛ(θ | U) = max
λ∈Λ

∑
w∈U

Pθ(X = w)Pλ(Y = U |X = w). (10)

The condition of Theorem 6 then is trivially satisfied, and EM and AIM are the same.
Concretely, both for Λ = Λsat and Λ = Λcar, (10) is maximized by

Pλ(Y = U |X = w) = 1 for all w ∈ U. (11)

If X actually is composed of N independent samples, i.e., X = (X(1), . . . , X(N)) and w =
(w(1), . . . , w(N)), then (10) becomes

LΛ(θ | U) = max
λ∈Λ

∑
w∈U

Pλ(Y = U |X = w)
N∏
i=1

Pθ(X
(i) = w(i)), (12)

which still is maximized by (11) for both Λ = Λsat and Λ = Λcar.

The important observation now is that while (12) incorporates an iid assumption for the
complete data X, it does not incorporate an iid assumption also for the coarsening process,
i.e., the assumption that Pλ(Y = U |X = w) also factors as a product of N iid coarsening
operations applied separately to the N complete data samples. Under that assumption the
solution (11) is not valid (unless the observation U actually factors into N components sat-
isfying the conditions of Theorem 6). In order to also include an iid coarsening assumption
into the flat data model, the space of admissible coarsening parameters has to be restricted
to subsets Λiid

sat ⊂ Λsat, respectively Λiid
car ⊂ Λcar. Maximization over these subsets then gives

the profile likelihood (4), which no longer coincides for SAT and CAR.
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We would argue that when complete data is obtained as a sequence of iid samples
w(1), . . . , w(N), then it is most natural to assume that a coarsening mechanism also applies
independently and uniformly to each individual sample, rather than jointly to the whole
data set. This view is also implicit in (Mealli and Rubin, 2015), but see (Corani and
Zaffalon, 2008) for arguments to the contrary. Under this assumption, EM and AIM are
distinct methods.

4.2 AIM and EM in the Extended Data Model

It is well known that non-CAR data can be turned into CAR data by including an explicit
representation of the coarse observations in the data, and integrating a model for the coars-
ening process into the complete data model. This has mostly been informally observed in
the context of (non-)MAR data (e.g. (Little and Rubin, 1987, Section 11.2), (Koller and
Friedman, 2009, Exercise 19.2)). In this subsection we make this approach precise for the
general CAR framework, and clarify the relationship between the AIM algorithm and the
EM algorithm executed on the extended data model (formally defined below).

In a basic missing-value scenario, as illustrated in Figure 2 and Example 2, the ex-
tended data model is given by the inclusion of the observation variables obsA, obsB into
the complete data model. Thus, an example of a complete data case would now be
A = t, B = f, obsA = o, obsB = m, which then gives rise to the incomplete observation
A = t, B =?, obsA = o, obsB = m. Similar to what we saw in Section 4.1, the mapping
from complete data cases to incomplete observations then follows a simple grouped data
model, and hence is MAR. Since the complete data representation now contains the ob-
servation variables, the parametric complete data model must also include a model for the
missingness mechanism. As already indicated in Section 1.3, this often involves the design
of relatively specific models for the missingness mechanism. For example, in our Example 2
the model for the missingness mechanism may consist of the conditional independence as-
sumptions encoded by the graphical structure of Figure 2, or even be fully specified via
fixed parameters in the conditional probability tables for obsA and obsB.

In the general coarse data setting, we can define the extended data model simply to
be the space Ω(W ) whose elements represent both the underlying complete data w, and
the observed U . In order to emphasize the new role of Ω(W ) as a complete data space,
we now denote it as W+, and write X+ := (X,Y ) for a random variable with values in
W+. As before, the distribution of X+ then is jointly parameterized by θ ∈ Θ and λ ∈ Λ,
where Λ ⊆ Λsat can still encode any kind of assumptions on the coarsening process for
the original complete data variable X (especially non-CAR assumptions: Λ 6⊆ Λcar). A
coarse observation Y = U in the original sense is now interpreted as a coarse observation
Y + = U+ := {(w,U) ∈W+|w ∈ U} in the extended space. The conditional distribution of
Y + given X+ then is

P+(Y + = U+|X+ = (w,U)) = 1 for all w ∈ U, (13)

which is CAR (similar to what we had in (11)). The parameters θ, λ governing the distri-
bution of X+, thus, can be learned by maximizing the face-value likelihood (6), which now
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can be written as

L+
FV(θ, λ|U+) =

N∏
i=1

∑
(w,U)∈U(i)+

Pθ,λ(w,U) =
N∏
i=1

∑
w∈U

Pθ(X = w)Pλ(Y = U |X = w). (14)

Maximizing (14) to obtain an estimate (θ̂, λ̂) ∈ Θ× Λ, and then discarding the “nuisance”
parameter λ̂ is equivalent to maximizing the profile likelihood (4).

For the maximization of (14) the EM algorithm can be used. We then denote it by EM+,
in order to distinguish it from the EM algorithm operating on the original data space. In
particular, for Λ = Λsat, EM+ and AIM then maximize the same objective. In contrast to
what we found in Theorem 6, however, AIM and EM+ are not equivalent algorithmically. A
main difference between AIM and EM+ lies in the fact that the AIM iterations are directly
defined on the parameter space Θ of interest, and only requires the induced distributions
Pc ∈ ∆W . EM+, in contrast, treats parameters θ and λ equally during the execution of
the algorithm, operates on distributions in the larger space W+, and marginalizes to θ
only at the very end. However, if AIM actually maintains C(U) as a completion mapping
c defined on U (as is the case in our implementations described in Section 7), then a
completion c ∈ C(U) corresponds to a parameter λ ∈ Λsat via λw,U = c(U,w)m(U)/Pc(w),
and the domains of optimization for AIM and EM+ become essentially the same. In (Jaeger,
2006b) a comparison between AIM and EM+ for learning Bayesian network parameters (cf.
Section 7.2) is briefly reported. There it was found that EM+ did not scale to larger
Bayesian networks, because exact computations of the E step became intractable. AIM, on
the other hand, was still able to produce consistent estimates using an implementation of
an approximate AI step. For complex models Pθ, both AIM and EM+ will require suitable
approximation strategies for the AI and E steps, respectively (and maybe the M step as
well). AIM has a potential advantage of supporting approximations on smaller parameter
and state spaces. EM+, on the other hand, has the advantage of being applicable to any
model Λ ⊂ Λsat for the (non-CAR) coarsening process, whereas AIM only applies to the
assumption-free case Λsat.

5. Convergence

In this section we analyze the convergence behavior of the AIM procedure. The convergence
behavior of the EM algorithm has been extensively studied (Dempster et al., 1977; Wu, 1983;
Tseng, 2004; Gunawardana and Byrne, 2005). The available theoretical convergence results
for the EM algorithm are not very strong in several regards, and do not guarantee the
convergence of the parameter sequence defined by EM to a local maximum of the face-value
likelihood function (even though such a convergence is mostly observed in practice). In
particular, the theoretical results are subject to the following two limitations:

• Only convergence to stationary points of the likelihood function can be shown. These
stationary points can be local maxima, saddle points, or even local minima. Example 5
below illustrates a case of “convergence” to the global minimum of the likelihood.

• No actual convergence of the parameter sequence θ0, . . . , θi+1 := EM(θi), . . . to some
limit point θ∗ usually can be proven. Convergence of this sequence to a stationary
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Figure 4: Model for Example 5

point (more correctly: to stationary points) is to be understood in the weaker sense
that every accumulation point of the sequence is stationary.

Fortunately, both these limitation of theoretical convergence results are not often ob-
served in practice. Nevertheless, we give the following cautionary example, due to
Gunawardana and Byrne (2005).

Example 5 (Gunawardana and Byrne, 2005, Example 2) Assume a parametric model for
the joint distribution of three binary random variables A,B,C as defined by the Bayesian
Network shown in Figure 4. The distributions of A and B are defined by a shared parameter
θ, and C is deterministic given A and B, so that there is only a single free parameter θ.
Assume there is a single incomplete observation A =?, B =?, C = f . This induces the
face-value likelihood function

LFV(θ) = (1− θ)2 + θ2,

which has two global maxima θ = 0, θ = 1, and one global minimum θ = 0.5. It is easily
verified that θ = 0.5 is a fixed point of EM, so that the EM sequence starting with initial
point θ0 = 0.5 remains stuck at the global minimum.

The story for the AIM procedure here is the same: because N = 1, Theorem 6 applies;
θ = 0.5 also is a global minimum of the profile(sat) likelihood, and also is a fixed point of
the AIM operator.

While showing the possibility of EM/AIM “converging” to the global minimum of the
likelihood function, this example does not indicate a serious problem for these procedures in
practice, since started at any initial parameter value θ0 other than θ0 = 0.5 the procedures
will converge to one of the likelihood maxima θ = 0 or θ = 1. In other words, the pathological
fixed point θ = 0.5 is not an “attractor” for an EM/AIM sequence initialized with some
random parameter θ0.

We now turn to the convergence of the AIM procedure. Since Gunawardana and Byrne
(2005) actually used an alternating KL-minimization interpretation of EM to derive their
convergence results, one might ask whether AIM convergence has not already been proven
in (Gunawardana and Byrne, 2005). This is not the case, because Gunawardana and Byrne
(2005) assume their alternating KL-minimization procedure to operate in the flat sample
space (where EM and AIM are equivalent), and their results are not directly applicable to the
case of our main interest, which is executing AIM over the multi-sample space. Nevertheless
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an appropriate convergence result for AIM could probably be obtained following very closely
Gunawardan and Byrne’s line of argument, which (similarly to (Wu, 1983)) is mainly based
on a very general convergence theorem by Zangwill (1969). However, since the application
of Zangwill’s theorem requires to first establish several technical conditions, we prefer to give
a direct, stand-alone derivation, which may be more transparent without being significantly
more involved. The convergence properties we obtain for AIM are very similar in nature to
those known for EM, and subject to the same caveats as mentioned above for the convergence
results for EM.

We first introduce notation for the effective domain of optimization:

D := {(c, θ) ∈ C(U)×Θ | KL(c, θ) <∞} ⊆ Rn+k

We note that D depends on the data U , and in more complete notation should be written
as D(U). However, here, and for the remainder of this section, we take U as fixed, and
suppress explicit references to U in the notation.

We make the following additional assumption, which essentially is the assumption that
the parametric model PΘ is identifiable.

Assumption 3 For every c ∈ C(U): if there exists θ ∈ Θ with KL(c, θ) < ∞, then there
exists a unique θ∗ minimizing KL(c, ·) (i.e. M(c) is uniquely defined).

Given (c, θ) ∈ D we denote with AIM(c, θ) = (AI(θ),M(AI(θ))) the result of one round
of AI and M updating (thus, AIM(c, θ) does not actually depend on c, but it is convenient
to treat this as an operator on the space D).

Theorem 7 Let (c0, θ0) ∈ D, and (ci+1, θi+1) = AIM(ci, θi) for i ≥ 0. Every accumulation
point (ĉ, θ̂) of the sequence (ci, θi)i then is a fixed point of the AIM operator.

Theorem 7 does not directly answer the question of interest, which is the nature of the
parameter θ̂ in an AIM limit (accumulation) point (ĉ, θ̂) in relation to the profile likelihood
function. To answer that question one has to clarify the relationship between fixed points
of the AIM algorithm and local minima of KL(·, ·) on D, and the relationship between local
KL-minima and maxima of Lsat.

As illustrated by Example 5, there is no guarantee that an AIM fixed point is a local
minimum of KL. However, what one can say is that if (ĉ, θ̂) is a fixed point in the interior
of D, and KL is differentiable on D, then the gradient of KL at (ĉ, θ̂) is zero, i.e. (ĉ, θ̂) is a
minimum, maximum, or saddle-point (cf. also (Gunawardana and Byrne, 2005, Corollary
4)). Moreover, since AIM produces parameter sequences (ci, θi) with non-increasing KL-
values, one can expect that a sequence starting from a random initial point (c0, θ0) is more
likely to be “attracted” by a local KL-minimum, than by a maximum or saddle-point.

Regarding the relationship between KL-minima and Lsat maxima, we obtain the follow-
ing answer.

Theorem 8 If (ĉ, θ̂) ∈ D is a local minimum of KL(c, θ), then θ̂ is a local maximum of
Lsat on Θ.
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It is known that theoretical limitations of the convergence properties of the EM al-
gorithm are not often encountered in practice. The same appears to be true for AIM:
non-convergence (i.e., the existence of multiple accumulation points) is not observed in
reality, and the limit points are in realistic scenarios turn out to be local maxima of Lsat.

6. Dealing with Continuous Spaces

The theoretical results and algorithmic principles developed in the preceding sections are
framed for data in finite sample spaces W only. An extension of the conceptual framework
and theoretical results in their full generality to continuous sample spaces is unrealistic,
since for a real-valued random variable X the state space for the coarsened variable Y
would then be 2R. As already observed in (Gill et al., 1997, p.273), we lack the most
fundamental foundations to deal with such entities, as “there is no natural topology on this
very large space [i.e., 2R], no natural Borel σ-algebra”. We therefore develop in this section
a general framework that allows us to reduce continuous coarse data problems into discrete
ones. For this we first introduce a suitable restricted yet important class of continuous
coarse data models. We then show that the methods and results we have developed are
applicable to suitable discretizations of the continuous coarse data.

6.1 Continuous Coarsening Models

In the continuous case the complete data model consists of a random variable X taking val-
ues in Rn according to a distribution Pθ (θ ∈ Θ). We consider a restricted class of coarsen-
ing models for continuous variables that are induced by finite coarsening variables (Heitjan,
1994) as follows: let F be a random variable with values in a finite space F such that there
exists a mapping

ζ : Rn ×F → 2R
n
.

with x ∈ ζ(x, f) for all x ∈ Rn and f ∈ F . Let Pγ(F |X) be a conditional probability
distribution of F given X defined by a parameter γ from a parameter space Γ.

The following examples show how several canonical cases of coarse continuous data can
be represented by discrete coarsening variables.

Example 6 (Missing values). In the standard missing values case, coarse observations of
a multivariate x ∈ Rn are missing the values for some of the components of x, whereas
the other components are fully observed. Such missingness patterns can be represented by
a missing-data indicator (Rubin, 1976) f = (f1, . . . , fn) ∈ {0, 1}n where fi = 1 means that
the value of xi is not observed. This corresponds to defining

ζ(x,f) = {x̃ ∈ Rn|fi = 0⇒ x̃i = xi}.

A parametric model Pγ(F | X) can, for example, be defined component-wise, by specifying
for each i = 1, . . . , n a measurable function for the missingness probability P (Fi = 1|Xi).

Example 7 (Binned values). In the case of binned measurements, Rn is partitioned into a
set B of n-dimensional intervals B1, . . . , Bk. If for all observations, only the bin containing
the actual measurement is reported, then F can be taken to just consist of a single value f ,
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and f(x, f) = Bj is the bin containing x. This is a continuous version of a grouped data
model (cf. Example 1). If some observations are recorded precisely, and some only in terms
of bin membership, then we can choose F = {f0, f1} with f(x, f0) = {x}, and f(x, f1) equal
to the bin containing x. Examples of where such coarse data patterns can arise include the
use of two different versions of a questionnaire, where one version asks the user to fill in an
’Age’ statement by entering a number, and another version where the user has to check one
of several pre-defined age ranges. Generally, whenever data is obtained by integration from
different sources that record corresponding variables using different conventions and levels
of precision, one may encounter such (and more complex) coarsening patterns.

6.2 Discretization

We aim to analyze numeric coarse data that can be modeled as described in the previous
section by using a discretization approach. We consider discretizations of the real line R
defined by parameters a, b ∈ R with a < b, and g ∈ N. A discretization defined by these
parameters, denoted Da,b,g, partitions R into g equal width intervals between the bounds
a and b, plus the two unbounded intervals ] −∞, a] and [b,∞[. We also allow the case of
the vacuous partition into the single interval R, which we associate with setting g = 0. We
refer to the parameter g as the granularity of the discretization.

Given such partitions defined by parameters ai, bi, gi(i = 1, . . . , n) for each of the n
dimensions, we obtain a finite partition of Rn into n-dimensional cells 3. In order to be
consistent with our notation for finite state spaces, and suppressing in the notation the
parameters defining the discretizations, we denote with W the set of n-dimensional dis-
cretization cells. The discretization space W induces a discretization mapping

d : Rn →W

mapping a point x ∈ Rn to the element w ∈W for which x ∈ w. We extend the discretiza-
tion mapping to subsets A ⊆ Rn as

d : 2R
n → 2W

A 7→ {w ∈W |w ∩A 6= ∅}
(15)

The random variable X with distribution Pθ and the coarsening variable F with con-
ditional distribution Pγ(F |X) now define the joint distribution of the W -valued variable
d(X), and a 2W -valued variable Y as

Pθ,γ(d(X) = w, Y = U) =

∫
U

∑
f∈F :d(ζ(x,f))=U

dPθ(x). (16)

This, now, is a distribution on the finite state space Ω(W ) as in (1). From observations
U = U (1), U (2), . . . of Y we now want to estimate the true parameter θ∗ of the continuous
X. To justify the application of the techniques and consistency results developed in the
previous sections in order to learn θ∗ from the discretized data U , we need to ascertain a
couple of consistency properties between the original and the discretized models.

3. In order to prevent confusion with “bins” as encountered in Example 7, we refer to (multi-dimensional)
intervals constructed for discretization purposes as “cells”.
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First, we note that we can factor Pθ,γ as

Pθ,γ(w,U) = Pθ,γ(w)Pθ,γ(U |w) = Pθ(w)Pθ,γ(U |w), (17)

where the important observation is that the marginal distribution Pθ,γ(w) only depends on
the distribution of the original X, and thus only on the parameter θ (by a slight abuse of
notation, we here use Pθ both for the distribution of X in Rn, and of d(X) in W ). The
conditional distribution Pθ,γ(U |w), on the other hand, depends not only on the parameter
γ of the coarsening process, but also on θ. The following proposition establishes that
the unconstrained coarsening model Λsat defined on the basis of the finite space Ω(W ),
corresponds exactly to the unconstrained class of finite coarsening variable models.

Theorem 9 Let Λsat be as defined by (2) for the discretized space Ω(W ). Then: λ ∈ Λsat iff
there exists a finite set F , and a F-valued random variable F with conditional distribution
Pγ(F |X), such that for all θ ∈ Θ: Pθ,γ(U |w) = λw,U .

Our first observation that Pθ,γ(w) only depends on the parameter of interest θ, in con-
junction with the (trivial) right-to-left direction of Proposition 9 implies the validity of the
assumption of Theorem 5 that the observed data U is sampled according to a distribution
m∗ = P ↓Yθ∗,λ∗ with θ∗ our parameter of interest, and λ∗ ∈ Λsat. The guarantee of Theo-
rem 5 that in the large sample limit the true parameter θ∗ will be among the optimizers
of the profile likelihood LLsat, thus still holds. The converse direction of Proposition 9,
furthermore, shows that the restricted class of finite variable coarsening models in the con-
tinuous space does not imply any limitations on the coarsening model after discretization,
and therefore Λsat is the appropriate coarsening model for the discretized data if for the
original continuous data we make no assumption other than that it can be represented by
a finite coarsening variable.

These results apply to all discretizations Dai,bi,gi . We can even consider the vacuous
discretization with gi = 0 for all i, leading to the single discretization cell R, and hence
completely un-informative discretized observations U = Rn. In this case we then have
C(U) = ∆(W ), and according to Corollary 4 every θ ∈ Θ is a global maximum of LLsat(·|U).
Clearly, a certain granularity of the discretization is needed in order to still capture in the
discretized data information about the distribution Pθ. On the other hand, for a given
continuous coarse data set A(1), . . . , A(N), too fine-grained discretizations lead to empir-
ical distributions m of the discretized data U = d(A(1)), . . . , d(A(N)) that cannot be fit
with {Pθ|θ ∈ Θ} as the underlying complete (continuous) data model. Our optimization
objective minc∈C(U) KL(Pc, Pθ) does not provide a stand-alone tool for the selection of the
discretization granularity: as a consequence of the decomposition property of KL() stated as
Lemma 10 in the appendix, this objective is non-decreasing when moving from discretized
data U to data U ′ that is discretized at a finer level of granularity4. We will introduce in
Section 7.1.1 a practical solution for the choice of discretization granularity by combining
the objective KL(Pc, Pθ) with a penalty for “underfitting” discretizations.

4. In principle, when considering different discretized data sets U ,U ′ the term H(m) in (3) must also be
considered, as it is no longer constant. However, this term, too, is non-decreasing under refinements of
the discretization.
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7. Experiments

Like the EM algorithm, AIM is a general algorithmic paradigm whose application to concrete
parametric models may still require a substantial algorithmic development and implemen-
tation effort. In the following we describe and experiment with AIM implementations for
Gaussian data, and for parameter learning in Bayesian networks.

7.1 AIM for Gaussian Distributions

For our experiments we consider two types of continuous coarse data:

• 1-dimensional binned Gaussian data: the complete data follows a 1-dimensional Gaus-
sian distribution N(µ,Σ) with mean µ and variance Σ, which is coarsened by a random
binning process as in Example 7. In order to obtain a uniform notation with the fol-
lowing 2-dimensional case, we use Σ rather than σ2 to denote the variance. We refer
to this setting as the 1d-b scenario.

• 2-dimensional Gaussian data with missing values: the complete data follows a 2-
dimensional Gaussian distribution N(µ,Σ) with mean µ and covariance matrix Σ,
which is coarsened by randomly missing values as in Example 6. We refer to this
setting as the 2d-m scenario.

7.1.1 Implementation

The implementation of AIM learning for continuous data consists of two distinct parts:
the implementation of AIM for fixed discretizations Da,b,g, and the selection of a suitable
discretization.

The core of the algorithm is the implementation of the AI step. As in generalized versions
of the EM algorithm (Neal and Hinton, 1998), we do not attempt a full minimization of
KL(c, θt) in the AI step (cf. Algorithm 1), but only an update of ct that leads to a reduction
of KL. These updates, in turn, are performed by a sequence of local optimizations.

Let U (1), . . . , U (N) be a data set of discretized observations d(f(x(i), g(i))). Let U1, . . . , UM
be the set of distinct observations in the data set, with empirical probabilities m1, . . . ,mM .
In iteration t of the algorithm, we iterate once over the Ui(1 ≤ i ≤ M), and update the
fractional completion of the current Ui as follows. For w ∈ Ui let

pw :=
i−1∑
j=1

ct(Uj , w) +
M∑

j=i+1

ct−1(Uj , w)

be the probability assigned to w according to the current completions of the observations
other than Ui. Let

p = (pw)w∈Ui (18)

be the corresponding vector of probabilities, and

π :=
∑
w∈Ui

pw (19)

22



The AIM and EM Algorithms

be the total probability mass currently committed to Ui by completions of observations
other than Ui. We now calculate ct(Ui) as the completion that minimizes

KL(
π · p+mict(Ui)

π +mi
, Pθ|Ui). (20)

Thus, we aim to re-distribute the empirical probability mass mi of Ui over Ui, such that
the probability distribution induced by the completions of all Uj(1 ≤ j ≤M) minimizes KL
distance to the conditional distribution defined by the current Pθ over Ui. The minimization
of (20) can be solved exactly (see Appendix B for the details). After termination of the
iteration over all Ui, it is ensured that KL(ct, θt) ≤ KL(ct−1, θt).

The maximization step requires to find the maximum likelihood parameters µ,Σ given
the probabilities assigned to the discretization cells w by the current completion ct. This
problem has no closed-form solution, and we use gradient descent optimization in the im-
plementation of the M step.

For the selection of the discretization we proceed as follows: we only consider candidate
discretizations with the same granularity g in all dimensions (only relevant for the 2d-m
setting). The parameters ai, bi are always set to µ̄i − 3σ̄i and µ̄i + 3σ̄i, respectively, where
µ̄i, σ̄i are the empirical mean and standard deviation obtained from the observed values in
dimension i. We run AIM for a number of candidate granularities g1, . . . , gK . For each
granularity, the AIM procedure is restarted several times with different initial parameter
settings. The number of restarts is denoted #RS. We then evaluate the outcomes for
each granularity based on two criteria: first, we consider the minimal KL-score obtained
across the different restarts. Second, we consider the variance in the parameter estimates
θ1, . . . , θ#RS obtained in the restarts. A high variance is an indication that the discretization
is too coarse, allowing for many different optima of the objective. In order to balance these
two criteria, we perform a 0-1 normalization of the obtained KL and variance values over
the K different granularities. The final score for a given granularity then simply is the
sum of the normalized KL and variance values. The parameter values from the best restart
(according to KL score) at the granularity with minimal score is returned as the estimate.

7.1.2 Data

In all our experiments we generate data from Gaussian distributions with parameters µ =
0.5,Σ = 1.0 in the 1-dimensional case, and µ = (0.5, 0.5),Σ = ((1, 1)(1, 2)) in the 2-
dimensional case. All our coarsening models are defined in terms of coarsening probability
functions cpf : R → [0, 1] that in the 2d-m setting define the component-wise missingness
probabilities cpf(x) = Pγ(Fi = 1|X = x) (cf. Example 6), and in the 1d-b define the binning
probabilities cpf(x) = Pγ(F = f1|X = x) (cf. Example 7). We use two different parametric
families of coarsening probability functions. The first is defined by the parametric model

cpf(x) =
λ2

1 + e(−λ0(x−λ1))
, (21)

where the denominator with parameters λ0, λ1 ∈ R defines a sigmoid-shaped function,
and the numerator λ2 ∈ [0, 1] controls the maximum missingness probability. For λ0 = 0
this becomes a constant missingness probability of λ2/2, leading to CAR models. With
coarsening probabilities of the form (21) one obtains high probabilities for missing values for
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Figure 5: Tail (left) and bi-central (right) coarsening probabilities; λ parameter vectors
shown in the legend

either large values of x, or for small values (when λ0 < 0). We therefore refer to this model
also as tail coarsening. Concrete instances t1, . . . , t4 from this family used in our experiment
are shown in the left plot of Figure 5. They are mostly distinguished by a decreasing slope
of the function, which leads to increasingly near-CAR coarsening mechanisms (perfectly
CAR for t4).

The second form we consider is defined by

cpf(x) = 2 · λ2

1 + e(λ0·(x−λ1)2)
(22)

defined by λ0 ∈ R+, λ1 ∈ R and λ3 ∈ [0, 1]. This gives a bell-shaped coarsening probability
centered on λ1, with a width parameter λ0, and an upper bound λ2. We refer to this model
as central coarsening. In our experiments we use combinations of two central coarsening
functions, which we call “bi-central”, defined by two sets of λ1, λ2, λ3 parameters each. The
two bi-central functions c1, c2 we use are shown in the right plot of Figure 5. In c2 the
coarsening probabilities are more uniform, leading to a near-CAR nature of the resulting
coarse data.

For the 1d-b scenario we also need to specify the bin partitioning of the real line. We
conduct experiments with the very simple partitionings

B1 : ]−∞,∞[,
B2 : ]−∞,−1], ]− 1, 1], ]1,∞[.

The partitioning B1 means that when a value is reported only in binned form, then no
information is provided other than that a measurement has been made (i.e., in this case
the binned value is the same as a missing value). As our experiments will show, the AIM
method can actually exploit such information on the mere existence of completely unob-
served measurements.

For the 2d-m scenario, we first sample missingness indicator variables F1, F2 for the two
components using the tail or bi-central coarsening probabilities. For this data we use a
version of the EM algorithm for incomplete multi-variate Gaussian data that is restricted
to data with at most one missing value in each observation (Little and Rubin, 1987, Section
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8.2.1). In cases where we first obtain F1 = F2 = 1, we therefore randomly pick i ∈ {1, 2}
and reset Fi = 0 (not missing).

The specification of a 1d-b or 2d-m coarse data generation process in conjunction with
a samplesize N constitutes an experimental setting.

7.1.3 Evaluation Metric

We measure the accuracy of an estimate µ̂, Σ̂ for true parameters µ∗,Σ∗ simply by the root
mean squared error over all parameter components, where in the 2-d case we sum only over
one of the two identical off-diagonal elements of Σ.

7.1.4 Experiment Design

We compare the accuracy of parameter estimates computed by EM, AIM, and a combina-
tion of the two. Both EM and AIM are somewhat sensitive to the initial parameter setting
θ0. A simple random initialization will often lead to near-zero probabilities of the data un-
der Pθ0 , and hence to numerical underflow problems. We therefore pick initial parameters
using available case analysis (ACA) on small sub-samples of the data: a random subset
A(i1), . . . , A(il) of the coarse data set A(1), . . . , A(N) is sampled. Then initial parameter val-
ues µ0,Σ0 are obtained as the empirical values from those A(ij) where the relevant statistics
are fully observed. Concretely, in the 1d-b case, empirical mean and variances are obtained
from the exact (non-binned) observations among the A(ij). In the 2d-m case, the compo-
nents of µ0 are obtained from all observations where the respective component is observed,
whereas Σ0 is estimated from the fully observed cases. In order to get a sufficient diversity
in the initial parameter settings, we use small samples of size l = 20 in this process. As a
point of reference, we also report estimation accuracies obtained from ACA on the full data
set.

For a given experimental setting as described in Section 7.1.2, we conduct an experi-
mental run as follows:

• generate data according to the experimental setting.

Then, for a number of restarts (denoted #RS):

• obtain initial µ0,Σ0 by ACA on a subsample of size l = 20

• run EM with initial parameters µ0,Σ0 resulting in estimates µ̂EM, Σ̂EM.

• run AIM with initial parameters µ0,Σ0. For the 1d-b experiments, learning is per-
formed for candidate granularities (g1, . . . , gK) = (3, 5, 10, 20, 50, 100). For the 2-d-m
experiments, the discretization cell count is quadratic in the granularities, and there-
fore we only use (g1, . . . , gK) = (3, 5, 8, 12, 20).

• run AIM with initial parameters µ̂EM, Σ̂EM and the same discretization granularities
as above.

One such run gives us four estimates, denoted ACA, EM, AIM, and EM-AIM, respectively:

ACA: the ACA estimate from the whole data set (identical in all restarts);

25



Jaeger

EM: the µ̂EM, Σ̂EM from the restart that obtained the highest face-value likelihood value;

AIM: from the #RS · K different estimates computed in the run: select the optimal
discretization according to the criterion described in Section 7.1.1, and return for this
discretization the result from the restart obtaining the lowest KL score;

EM-AIM: as for AIM, but with the EM defined parameter initialization.

An experiment for a given experimental setting consists of 10 experimental runs. For
each experiment we report the average errors of the four estimates and their standard
deviations over the 10 runs.

7.1.5 Results for 1d-b

We conduct experiments given by the settings defined by B1 and B2 binning, coarsening
probability functions t1, . . . , t4, c1, c2 as shown in Figure 5, sample sizes N = 100, 1000,
10.000, 100.000, 1.000.000, and #RS=5.

Figures 6 and 7 show the results for 1d-b experiments with B1 and B2 binning, re-
spectively. Each individual plot corresponds to one coarsening probability functions, while
different sample sizes are shown on the x-axes in the plots. The (expected) percentage of
coarsened data items for the respective coarsening probabilities are shown in the headers
of the plots. All plots show the root mean squared errors for the four different estimates,
as well as the discretization granularities selected for the AIM and EM-AIM estimates ac-
cording to our scoring function (all plots show averages and standard deviations over the
10 experimental runs). Tables with the exact numbers underlying these plots are given in
Appendix D.

In the case of B1 binning the ACA estimate also is the unique fixpoint of the EM al-
gorithm. The ACA and EM estimates coincide, and their error curves are on top of each
other in Figure 6. For highly non-CAR data (coarsening probability functions t1, t2, c1),
AIM is significantly more accurate than EM, albeit with a relatively high standard devia-
tion. For t1, t2 the EM-AIM combination achieves some improvement over the initial EM
estimates, but the bias induced by the initial EM driven parameter setting is not fully over-
come by the subsequent AIM iterations, and the results are less accurate than with pure
AIM. When data becomes CAR (or more nearly so) with coarsening probability functions
t3, t4, c2, the ACA/EM estimates become very accurate and outperform the AIM estimates.
Except for the very small sample size N = 100, the EM-AIM combination then is nearly
indistinguishable from ACA/EM.

In the case of B2 binning (Figure 7) the EM algorithm can exploit the limited information
contained in the coarse data items, and now mostly outperforms ACA by a large margin.
For the two highly non-CAR cases t1, t2 AIM still has a small but consistent advantage over
EM for the larger sample sizes. This is not the case for the non-CAR c1. The explanation for
the very strong performance of EM here probably is that even though the EM’s expectation
step here will make “incorrect” imputations for the coarse data items, the relevant statistics
obtained from these imputations are still quite accurate. In all experiments with sample
sizes N ≥ 104 the EM-AIM combination performs at least as good as EM, and in the non-
CAR cases often markedly better (though then sometimes much worse than pure AIM).
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t1 (15%) t2 (17%)

t3 (27%) t4 (45%)

c1 (33%) c2 (38%)

Figure 6: Results for 1d-b with B1. Left y-axis: error for ACA, EM, AIM and EM-AIM
estimates; right y-axis: number of cells; x-axis: sample size in log-scale. Slight
horizontal jitter applied to separate the error bars.
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t1 (15%) t2 (17%)

t3 (27%) t4 (45%)

c1 (33%) c2 (38%)

Figure 7: Results for 1d-b with B2. Left y-axis: error for ACA, EM, AIM and EM-AIM
estimates; right y-axis: number of cells; x-axis: sample size in log-scale. Slight
horizontal jitter applied to separate the error bars.
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Regarding the selected discretization granularity, we observe that in most cases small
granularities g ≤ 20 were sufficient, and our largest candidate value g = 100 was rarely
selected. The granularities for EM-AIM are smaller than for AIM. This is to be expected:
the EM initialization leads to far smaller variance in the initial parameter settings than the
ACA initialization, and therefore also to a smaller variance in the final estimates. Thus,
the term that penalizes higher variance of estimates in coarser discretization plays a smaller
role in EM-AIM than in AIM.

In some experiments we notice an unexpected deterioration of the AIM results at the
maximal samplesize N = 1m. A closer examination of this phenomenon shows that this
can be attributed to sub-optimal choices of the granularities in these cases: the results
obtained for any fixed granularity g improve quite consistently with increasing samplesize
(these results not pictured in the plots). However, for N = 1m our scoring function for the
candidate granularities sometimes led to choices that were too coarse to provide accurate
estimates. This problem can be attributed to the fact that the two signals we use in the
scoring function become more uniform across granularities as the samplesize increases: the
KL score then becomes very small also for large g as the empirical distribution can then be
fitted very precisely over these finer discretizations. Also, the variance component in the
score becomes rather more uniform across granularities, as the likelihood function shows
fewer local optima induced by sampling noise, and thus convergence to one of the global
maxima becomes more consistent. As a result, the selection of the granularity becomes
more “random” for the largest N . This is also visible in the plots by an increase in the
standard deviation of the selected g value at N = 1m compared to N = 100k, especially in
those cases where there is an increase in the AIM error value.

Another noteworthy observation is that the AIM estimates actually become less accurate
as the coarsening probabilities become more CAR: compare, in particular, t1 vs. t4 and
c1 vs. c2 in the B1 experiments. To explain this phenomenon and obtain further insights
into the working of AIM, we show in Figure 8 detailed snapshots of the initial (top row)
and final (bottom row) configurations of AIM for one restart with t1 coarsening, and two
restarts with t4 coarsening. Here the discretization granularity is g = 50, and N = 100k.
The plots show the current estimates Pθ and completions Pc. In all cases there is a near
perfect match (KL(Pθ, Pc) ≈ 0) between Pθ and Pc in the final configuration, rendering the
two distribution curves indistinguishable. The completion Pc is the sum of the discretized
exact observations d({x(i)}), and the completions of the discretized vacuous observations
d(]∞,∞[). The former define a fixed distribution over the discretization cells that the AI
operations cannot alter. This component of Pc is plotted by the yellow curves in Figure 8,
which are identical in the top and bottom plots. The total mass of the binned (vacuous)
observations can be freely distributed by the AI operations over the discretizations cells.
The resulting component of Pc is plotted by the red curves in Figure 8. Roughly speaking,
the AIM algorithm tries to distribute the available mass for the red curve such that the sum
of the red and yellow curves form a Gaussian distribution (cf. Figure 1; the red curves in
Figure 8 correspond to the heatmaps in Figure 1 (c)) . In the t1 case, the yellow curve has
a steeper slope on the left side than the right, because the values x(i) that were coarsened
to ] − ∞,∞[ almost all are in the negative range. The only way to complete the yellow
curve to a Gaussian distribution is to distribute a significant amount of probability mass
over the interval [−2, 0]. This is what consistently happens during the AIM iterations, even

29



Jaeger

t1 t4 t4

Figure 8: Illustration of AIM iterations, n = 100000, m = 50, incompl: 0.339

when the initial completion is concentrated on a very different range, as in the run shown
in Figure 8. For t4 coarsening, the distribution defined by the exact observations already
forms a Gaussian (and, in fact, approximately the true generating Gaussian, making the
ACA/EM estimates very precise in this case). This, in conjunction with the fact that for t4
the percentage of coarse data items is high, leads to many degrees of freedom to complete
the yellow curve to a Gaussian distribution. In the two restarts shown in Figure 8 one
restart distributed the disposable probability mass as another near-Gaussian distribution
shifted to the right of the yellow curve, while the other restart ended with a near-Gaussian
to the left. In both cases, the sum of the yellow and red curves are again a Gaussian, thus
both being optimal solutions for the AIM objective.

A different perspective on essentially the same phenomenon is given in Figure 9. It shows
the outcomes of three experimental runs with settings defined by B1 binning, coarsening
probability functions c1, c2, and sample size N = 1m. Different from our the experiments
pictured in Figure 6, a large number of restarts #RS = 50 was used. The plots show for
each restart in each run (distinguished by red, blue, green colors) the error of the obtained
solution on the x-axis vs. the value of the KL score for that solution on the y-axis. The
results for the restarts with minimal KL score in each run are marked by larger squares. For
the highly non-CAR c1 coarsening there is a clear monotone relationship between the KL
score and the error, and KL score minimization is very successful in identifying low error
solutions. In contrast, for c2 coarsening there is little correlation between KL score and
error. The KL scores are overall much smaller than for c1: the scale on the y-axis is one
order of magnitude smaller in the c2 plot than in the c1 plot, and the values for the points
clustered near the x-axis are several orders of magnitude smaller still. Similar to what we
observed for t4 in Figure 8, this indicates many different near-perfect solutions with widely
varying actual errors (note that for c2 the x-axis is in log-scale, extending to error values
> 1).
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Figure 9: Details for 1d-b with central coarsening and B0, N = 1m. Results from 3 exper-
iments with 50 restarts each. x-axis: error values (log-scale in the right plot),
y-axis: KL score

c1, t1 (13%) c2, t4 (42%)

Figure 10: Results for 2d-m experiment

7.1.6 Results for 2d-m

We conduct experiments with two different coarsening models as described in Section 7.1.2.
We use again the coarsening probability functions shown in Figure 5 to define the proba-
bilities that values are missing. In the first model c1 defines the missingness probabilities
in the first component, and t1 the missingness probabilities in the second component. In
the second model we use c2 and t4, respectively. The intention is that the (c1, t1) model is
highly non-CAR, whereas the (c2, t4) model is near-CAR. Results from one experimental
run with the (c1, t1) model are pictured in Figure 1. For the purpose of a more detailed
visualization, that figure is based on a finer granularity (g = 50) than used in the systematic
experiments.

Figure 10 shows the results for the two coarsening models and the same range of data set
sizes as in the 1d-b experiments. As in the previous experiments, we observe a substantial
advantage of AIM over EM for the highly non-CAR data (c1, t1), and the opposite for the
near-CAR (c2, t4). The range of observed errors (y-axis) is significantly larger in the (c2, t4)
experiments than for (c1, t1), which makes the visual comparison between the plots a bit
difficult. The precise numbers (cf. Table 6 in Appendix D) show that the gap between EM
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Figure 11: Runtimes for 1d-b experiment with B2 bins and t1 coarsening. y-axis: time in
ms, x-axis: data set size.

and AIM is actually a little larger in (c2, t4) than in (c1, t1), and that as already observed
in the 1d-b experiments, the AIM results are actually less accurate for the near-CAR data
(c2, t4) than for (c1, t1), with the converse being true for EM. In these experiments the
EM-AIM combination was particularly successful, almost always being at least as good, or
better than both EM and AIM.

7.1.7 Computation Time

Figure 11 shows exemplary computation times for the experimental setting 1d-b with B2

bins and t1 coarsening and our usual range of data set sizes. The time shows averages
and standard deviations for a single experiment, which includes the 5 restarts, and, for
the AIM case, the iteration over the 6 different candidate granularities. Not least due to
this additional iteration over granularities, AIM generally requires more computation time.
However, for very large data sets, EM suffers from the disadvantage that it iterates over
all data cases, whereas AIM only iterates over the data aggregates associated with the dis-
cretization cells. A closer examination of the operations that dominate the computation
time reveals that these results are of limited significance, however: the AIM procedure
spends about 95-99% of its time in the M step, whereas the KL optimizations of the AI step
are quite fast. The EM algorithm spends most of its time in calculating the final face-value
likelihoods of solutions obtained in the restarts. In both cases, the computational bottle-
necks are operations that require repeated calls to a library function that computes values
of the cumulative distribution function of the Gaussian distribution (in our implementation:
the norm and multivariate normal modules of the scipy.stats library). Thus, the use of
a different, perhaps less accurate, implementation of the Gaussian cumulative distribution
function could lead to a very different picture of the computation times.

7.2 AIM for Bayesian Networks

In a second suite of experiments, we consider Bayesian network models for discrete data,
and coarse data that takes the form of data with missing values.
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7.2.1 Implementation

As in the implementation for the Gaussian case, we implement the AI step only in an
incremental fashion that leads to a reduction of KL(·, θt), rather than a full minimization.
A Bayesian network for discrete variables X = X1, . . . , Xn and associated state spaces
W (Xi) leads to a state space W with cardinality

∏
i |W (Xi)|. Compared to the Gaussian

case, where we could control the cardinality of W via the discretization granularity, this
poses the additional challenge that it becomes infeasible to construct and maintain fractional
completions over the full space W . We therefore bias the AI step towards sparse fractional
completions c(Ui) with a small support allowing for an explicit representation. Similar to
our strategy in the Gaussian case, the reduction of KL(·, θt) is broken down into a sequence
of local KL minimization operations for which simple, exact solutions exist. Details of this
implementation are described in Appendix C.

In our implementation we use the HUGIN system5 for basic datastructures and algo-
rithms for Bayesian networks. In particular, we use the HUGIN implementation of the EM
algorithm to compute EM parameter estimates.

7.2.2 Data

A given Bayesian network complete data model is augmented with a coarsening model as
already seen in Example 2: for each variable Xi ∈ X a binary variable obs Xi with states
o (observed) and m (missing) is introduced (cf. Example 2). The set of Bayesian network
parents of obs Xi is randomly created such that parents of obs Xi can be both original
variables Xh, and other obs Xh variables. Xi always is made a parent of obs Xi, thus
encouraging non-MAR missing data patterns.

For all configurations of the parent nodes of obs Xi a conditional probability value
p = P (obs Xi = m | Pa(obs Xi)) is sampled from a beta-distribution Beta(α, β)(p) ∼ Γ(α+
β)/(Γ(α)Γ(β))pα−1(1 − p)β−1. In order to better control properties of interest, we specify
Beta-distributions directly in terms of their mean µ and variance σ2, rather than their
usual α, β parameters. The mean value of the Beta-distribution determines the expected
proportion of missing values in the data. The variance controls how far the coarsening
process is from being missing at random: σ2 = 0 (which does not correspond to a proper
Beta-distribution) means that P (obs Xi | Pa(obs Xi)) is constant equal to µ, independent
of Pa(obs Xi), and the resulting coarsening mechanism is MAR. Larger values of σ2 lead
to a greater diversity in the P (obs Xi | Pa(obs Xi)) values for different configurations of
Pa(obs Xi), and thereby to potentially more complex missingness patterns (though there is
no guarantee that each coarsening model generated with σ2 > 0 is distinctly non-MAR). At
σ2 = 0.15 (the maximal σ2 value we consider in the experiments) all conditional probabilities
P (obs Xi = m | Pa(obs Xi)) are highly concentrated at the extremes 0 and 1.

An experimental setting now consists of an underlying Bayesian network for the complete
data, a coarsening model defined by the µ, σ parameters of the Beta distribution, and a
data set size.

5. https://www.hugin.com/
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7.2.3 Evaluation Metric

We use a standard indexing scheme for the parameters θ in a Bayesian network and let
θ = (θijk), where θijk is Pθ(Xi = j | Pai = k), i.e. the conditional probability that the
ith variable in the network is in state j, given that its parents are in their (joint) kth
state. The root means squared error over all model parameters would be a very poor error
measure in this case, since different parameters in the Bayesian network may have a very
different impact on the distribution that is defined. A meaningful measure for comparing the
learned parameter θ̂ with the true parameter θ∗ is given by the Kullback-Leibler distance
KL(Pθ0 , Pθ̂). However, this poses some difficulties due to the sensitivity of KL distance
to small deviations at or near zero parameters. For example, when learning parameters
for the Alarm network, a typical outcome that we observed is that for a cpt-row with
true parameters θ∗i•k = (0.01, 0.01, 0.01, 0.97) the parameters learned by EM and AIM are,
respectively, θEMi•k = (1.1 · 10−16, 3.0 · 10−16, 2.0 · 10−16, 1) and θAIM

i•k = (0, 0, 0, 1). While
AIM and EM here seem to agree in their result (very likely, EM was on its way to converge
to (0, 0, 0, 1) when it terminated), an evaluation based on KL() would give very different
results: since AIM here estimates some parameters as zero which in the true model are
non-zero, one obtains KL(Pθ∗ , PθAIM) = ∞. For EM, on the other hand, the difference
between the estimates of ∼ 10−16 and the true values 0.01 here has little influence on the
KL(Pθ∗ , PθEM) distance (which, in particular, remains finite).

In order to avoid these problems with KL distance, we conduct our analysis based on
the following weighted absolute error function:

WAE(θ, θ′) :=
∑
i

∑
k

Pθ(Pai = k)
∑
j

θijk |θijk − θ′ijk | (23)

WAE has a similar structure as KL: by replacing | θijk − θ′ijk | with log(θijk/θ
′
ijk) in

(23) one obtains KL(Pθ, Pθ′). Apart from being more robust with respect to parameter
values near zero, WAE values also have a more intuitive interpretation: WAE(θ, θ′) is
the average absolute difference between true and estimated parameter values, where the
average is weighted according to the frequency with which the parameters are required to
compute the probability of a random sample generated from Pθ. Like KL, WAE also is
not symmetric, and makes sense only when its two arguments have asymmetric roles as the
true/correct parameter (first argument) and its approximation (second argument).

7.2.4 Experiment Design

For a given experimental setting we run 50 experiments along the same lines as described
in Section 7.1.4. In each experiment the number of restarts is 10. We again compare the
four methods ACA, EM, AIM, and EM-AIM.

7.2.5 Results

In a first experiment we test the implementation on the network of Example 2. In this
case we only use the fixed coarsening model described in the example, not the random
construction described in Section 7.2.2. The WAE between the generating model and the
EM solution θ̂ = (0.5, 0.2727) obtained from ideal data (cf. Example 3) is 0.0727/2 =
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Figure 12: Results for Example 2. y-axis: WAE error; x-axis: data set size.

N =
100 1000 10k 100k 1m

EM 8 24 128 982 9908
AIM 32 69 103 191 248

Table 3: Computation times (ms) for Asia at σ2 = 0.1

0.03636. The results shown in Figure 12 show that both ACA and EM converge to this
error, whereas AIM and EM-AIM approach zero error.

We now investigate the performance of EM and AIM depending on the MAR charac-
teristics of the data. For this we use as the underlying complete data model the traditional
“Asia” network used extensively in the Bayesian network literature. This is a network with
8 binary variables, so that |W | = 256. We construct coarsening models defined by Beta
parameters µ = 0.2, and σ2 ranging from 0 to 0.15. Figure 13 shows the WAE scores as
a function of data set size for different σ2. As in the experiments with Gaussian data, we
observe the expected advantage of EM for MAR data (σ2 = 0), which turns into an ad-
vantage for AIM as the data becomes increasingly non-MAR. We do not observe, as in the
Gaussian case, that the AIM values actually are more accurate in the non-MAR settings
(cf. the exact numerical outcomes in Table 7 in the appendix). In spite of the wide and
overlapping standard deviation error bars, most of the differences visible in the plots are
statistically significant (Wilcoxon test, α = 0.01). This is because the errors are highly
correlated: some data sets are “easy” for both methods, some are “hard” for both, and the
methods with the lower errors on average generally perform consistently better across most
data sets.

7.2.6 Computation Time

Table 3 shows the average runtime per restart for the experiment with the Asia network at
σ2 = 0.1. These numbers are somewhat misleading, however, as for AIM they do not include
the transformation of the original raw data set U (1), . . . , U (N) into a sequence of distinct
observations U1, . . . , UM (M ≤ N) with associated empirical probabilities m1, . . . ,mM , over
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Figure 13: Experiments with Asia network. WAE scores (y-axis) vs. samplesize (x-axis)
for different coarsening models defined by σ2 parameter.

which AIM subsequently operates (cf. implementation details described in Appendix C).
The EM algorithm, on the other hand, iterates (as in the Gaussian case) over the raw data,
and thus scales roughly linearly in N . However, the EM algorithm could also be modified so
as to only iterate over the aggregated data Ui,mi. We therefore should only very cautiously
conclude that here the computation times for EM and AIM are somewhat comparable.

This comparable performance does not extend to much larger networks with many more
variables than Asia, and thus a much larger size |W | of the state space. For such models the
size M of the aggregated data will usually not be much smaller than the original N , because
most of the raw observations U (j) will be unique. More importantly, the completions c(Ui)
now have to be constructed over the very large W , which in spite of our bias towards sparse
completions leads to an optimization problem over a combinatorial space. The fundamental
advantage of the EM algorithm over AIM here lies in the fact that when probabilistic
inference in the given Bayesian network is tractable, then EM can directly compute the
expected sufficient statistics required for the subsequent maximization step, and can bypass
an explicit construction of a fractional completion of the data set, thus avoiding that |W |
enters as a relevant complexity parameter. Even though AIM, too, in the end only requires
the same sufficient statistics as EM, there does not seem to be a way to obtain these statistics
of the AIM completions, without actually constructing the completions. This advantage of
EM only holds as long as exact inference in the underlying Bayesian network is tractable.
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When this is not the case, and the E step has to rely on approximate techniques such as
MCMC sampling, then EM, too, has to operate in the space W .

7.3 Summary of Experimental Results

We can summarize the main insights gained from our experiments as follows:

• The theoretical consistency and convergence results for EM and AIM are reflected in
the outcomes: AIM is more accurate than EM for learning parameters from non-CAR
data, whereas the opposite is true for CAR data.

• In some cases AIM actually benefits from a highly non-CAR nature of the data.
Roughly speaking, this is the case when there are few degrees of freedom to com-
plete the coarsened data such that the result complies with the underlying parametric
model.

• The discretization approach for continuous data is effective for accurate parameter
estimates and computationally quite efficient due to the fact that relatively coarse
grained discretizations are sufficient.

• An optimal and efficient choice of discretization granularity is still an open problem.

• Initializing AIM with EM estimates is a quite robust approach to deal with both CAR
and non-CAR data.

8. Conclusion

We have studied in detail theoretical properties of the AIM and EM algorithms, and clarified
their relationship. We have shown that AIM provides consistent and convergent parameter
estimates for non-CAR data. Consistency, here, however has a weaker meaning than in the
usual context of maximum likelihood inference for identifiable models: the likelihood func-
tion Lsat may have multiple maxima, and we are only guaranteed that in the large sample
limit the true parameter will be among them. The number and diversity of such maxima de-
pends on the underlying parametric complete data model: under a saturated complete data
model, every possible data completion corresponds to a distinct likelihood maximum (Corol-
lary 4). Under more restricted models, on the other hand, the true parameters may be the
unique maximum of Lsat, and then are reliably learned by AIM (Example 2). Unlike other
approaches for dealing with non-CAR data, our approach is completely non-parametric with
regard to the unknown coarsening mechanism.

We have developed a concrete instantiation of the AIM paradigm for learning the pa-
rameters of Gaussian distributions from binned data and data with missing values, as well
as for Bayesian network parameter learning. The source code for the experiments of Sec-
tion 7.1 is available at https://github.com/manfred-jaeger-aalborg/aim_for_gauss.
Experimental results demonstrate the differences and respective advantages of AIM and
EM learning from CAR and non-CAR data. The combination of EM and AIM learning
in the EM-AIM version provides a quite robust approach that for CAR data inherits the
accuracy and (to some extent) the computational efficiency of EM, and for non-CAR data
improves on the accuracy of EM.
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The most important problems for future work are to further optimize the discretization
strategy for continuous data, and to answer the question whether it could be possible
for AIM to operate directly in the space of sufficient statistics, rather than concrete data
completions. Progress on the first problem certainly is possible. An obvious improvement
over our current approach would be a more dynamic construction of discretizations instead
of the iteration over a fixed set of candidate granularities. The answer to the second problem
is conjectured to be negative, however.

Appendix A. Proofs

First, we recall a well-known decomposition property of KL (cf. e.g. (Kullback, 1968,
Corollary 3.2)), that we will use repeatedly.

Lemma 10 Let W be a finite space, and V = {V1, . . . , Vk} be a partitioning of W . For a
probability distribution P on W denote by P ↓V the marginal distribution of P on V, and by
P | Vi the conditional distribution on Vi. Then, for any two distribution P,Q:

KL(P,Q) = KL(P ↓V , Q↓V) +
∑
i

P (Vi)KL(P | Vi, Q | Vi). (24)

In particular, if P | Vi = Q | Vi for all i, then KL(P,Q) = KL(P ↓V , Q↓V).

Next, we note a simple lemma regarding continuity of KL:

Lemma 11 Let p, q,pi, qi ∈ ∆(W ) (i ≥ 1) with limi→∞ pi = p, limi→∞ qi = q, and
KL(p, q) <∞, KL(pi, qi) <∞ (i ≥ 1). Then

a. limi→∞KL(p, qi) = KL(p, q)

b. limi→∞KL(pi, q) = KL(p, q)

c. lim infi→∞KL(pi, qi) ≥ KL(p, q)

The proof of a. and b. is elementary. Part c. follows from (Kullback, 1968, Chap-
ter 4, Theorem 2.1). An example where c. does not hold with equality is given by
pi = (1 − 1/i, 1/i), qi = (1 − e−i, e−i). Then limi→∞ pi = (1, 0), limi→∞ qi = (1, 0),
limi→∞KL(pi, qi) = 1 > KL(p, q) = 0.

Theorem 3 Let U = U (1), . . . , U (N) be a data set, and m the empirical distribution defined
by U on Y. Then

1

N
LLsat(θ | U) = −H(m)− min

c∈C(U)
KL(Pc, Pθ). (7)

Proof Throughout this proof, maximizations and minimizations for λ range over Λsat. We
first observe that if m(U) > 0 for some U with Pθ(U) = 0, then both sides of (7) are −∞.
From now on we assume that no such U exists. Then

1

N
LLsat(θ | U) =

1

N
maxλ

N∑
i=1

logP ↓Yθ,λ(U (i)) = maxλ
∑
U⊆W

m(U)logP ↓Yθ,λ(U)

= −H(m)−minλKL(m,P ↓Yθ,λ).
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Let m↑θΩ be the extension of m to Ω defined by m↑θΩ(x, U) = m(U)Pθ(x | U). Thus,
m↑θΩ can be understood as the expected joint distribution of X and Y under Pθ given
observations m (to be distinguished from the expected complete data, which would be
m↑θΩ marginalized on W ). According to Lemma 10 we have for all λ:

KL(m,P ↓Yθ,λ) = KL(m↑θΩ, Pθ,λ),

and
KL(m,P ↓Yθ,λ) ≤ KL(m↑∗Ω, Pθ,λ),

for any (other) possible extension m↑∗Ω of m to Ω. Thus, letting m↑∗Ω range over all possible
extensions of m,

minλKL(m,P ↓Yθ,λ) = minλminm↑∗ΩKL(m↑∗Ω, Pθ,λ) = minm↑∗ΩminλKL(m↑∗Ω, Pθ,λ). (25)

Again by Lemma 10, for a given m↑∗Ω, the minimum over λ at the right-hand side of (25)
is attained for λ̂ defined by λ̂w,U := m↑∗Ω(U | x), and

KL(m↑∗Ω, Pθ,λ̂) = KL(m∗↓W , P ↓W
θ,λ̂

) = KL(m∗↓W , Pθ).

Thus,
minλKL(m,P ↓Yθ,λ) = minm↑∗ΩKL(m∗↓W , Pθ) = min

c∈C(U)
KL(Pc, Pθ),

which concludes the proof.

Theorem 5 Let U (1), U (2), . . . be observations of iid random variables Y (i), which are dis-
tributed according to m∗ := P ↓Yθ∗,λ∗. Denote by P the joint distribution of all Y (i), and

UN = (U (1), . . . , U (N)).

A. Let θ̂N maximize LLsat(· | UN ) (N ≥ 1). Then

lim
N→∞

1

N
(LLsat(θ̂N | UN )− LLsat(θ

∗ | UN )) = 0 P -a.s..

B. Assume that Assumptions 1 and 2 hold, and that λ∗ ∈ Λcar.

(i) Let θ̂N maximize LLcar(· | UN ) (N ≥ 1). Then

lim
N→∞

1

N
(LLcar(θ̂N | UN )− LLcar(θ

∗ | UN )) = 0 P -a.s..

(ii) If, furthermore, the system of equations

Pθ(U) = Pθ∗(U) (U : m∗(U) > 0)

has the unique solution θ = θ∗, then

lim
N→∞

θ̂N = θ∗ P -a.s.
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Proof The proof consists of two distinct parts for parts A. and B. of the theorem, with
little overlap in the arguments. Both parts, however, rely on the strong law of large numbers
applied to the empirical distributions m(UN ), which, in the following, is denoted mN :

lim
N→∞

mN = m∗ P -a.s. (26)

A. By Theorem 3 we have

1

N
(LLsat(θ̂N | UN )− LLsat(θ

∗ | UN )) = KL(C(UN ), Pθ∗)−KL(C(UN ), Pθ̂N ). (27)

By definition of θ̂N , (27) is non-negative. Taking into account that KL() ≥ 0, it is therefore
sufficient to show that

lim
N→∞

KL(C(UN ), Pθ∗) = 0 P -a.s. (28)

We have Pθ∗ ∈ C(m∗), and by Theorem 2 there exists a representation of Pθ∗ as a convex
combination

Pθ∗ =
n!∑
i=1

κiπi(m
∗)

(κi ≥ 0;
∑
κi = 1). From (26) we obtain that for all π ∈ ΠW

lim
N→∞

π(mN ) = π(m∗) P -a.s,

and

lim
N→∞

n!∑
i=1

κiπi(mN ) = Pθ∗ P -a.s. (29)

By definition,
∑
κiπi(mN ) ∈ C(UN ). (29) together with Lemma 11 implies that P -a.s.:

lim
N→∞

KL(C(UN ), Pθ∗) ≤ lim
N→∞

KL(
∑

κiπi(mN ), Pθ∗) = KL(Pθ∗ , Pθ∗) = 0.

B. To simplify notation, from now on we write LLFV(· | mN ) for 1/N LLFV(· | UN ).
The proof is based on the following known relationship between LFV and Λcar (cf. (Gill
et al., 1997, Theorem 1), (Jaeger, 2005b, Theorem 4.7)): for P ∈ ∆(W ) and m ∈ ∆(Y) the
following are equivalent:

(a) P is a global maximum of LFV(· | m) in ∆(W )

(b) There exists λ ∈ Λcar such that P ↓YP,λ = m.

Furthermore, the global maximum of LFV is essentially unique in the sense that

(c) if P, P ′ are global maxima of LFV(· | m) in ∆(W ), then P (U) = P ′(U) for all U with
m(U) > 0.
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According to (5) we have for all θ

LLcar(θ | UN )− LLcar(θ
∗ | UN ) = LLFV(θ | UN )− LLFV(θ∗ | UN ), (30)

and LLcar(· | UN ) and LLFV(· | UN ) are maximized by the same θ̂. Thus, we can prove
B.(i) by showing that

lim
N→∞

1

N
(LLFV(θ̂N | UN )− LLFV(θ∗ | UN )) = 0 P -a.s., (31)

with θ̂N a maximum for LLFV(· | UN ). Equivalently, in shorter notation:

LLFV(θ̂N | mN )− LLFV(θ∗ | mN )→ 0 P -a.s. (32)

where from now on a limit → always is understood to be taken for N →∞.
By the assumption that λ∗ ∈ Λcar, and the equivalence (a)⇔ (b), we have that θ∗ is a

global maximum of LLFV(· | m∗). This means that (32) holds at the limit N = ∞ in the
sense that LLFV(θ̂∗ | m∗)− LLFV(θ∗ | m∗) = 0 where θ̂∗ is any maximum of LLFV(· | m∗).
What is left for the remainder of the proof is to establish that LLFV(· | mN ) is well-behaved
on a suitably defined compact neighborhood of θ∗, so that from the equality at the limit we
can infer the convergence statement (32).

For m ∈ ∆(Y) let support(m) := {U ∈ Y | m(U) > 0}, and define

Θ+ := {θ ∈ Θ | ∀U ∈ Y : U ∈ support(m∗)→ Pθ(U) > 0}.

Then, for θ ∈ Θ+ and all N : LLFV(θ | mN ) > −∞ P -a.s., and with (26): LLFV(θ |
mN ) → LLFV(θ | m∗) P -a.s. To infer (32) from this we show that there exists a compact
subset Θ̃ ⊆ Θ+ containing θ∗, such that for all θ 6∈ Θ̃, and all sufficiently large N :

LLFV(θ∗ | m∗)− LLFV(θ | mN ) > 1 P -a.s. (33)

Then (32) follows, because (33) guarantees that θ̂N ∈ Θ̃ P -a.s. for all sufficiently large
N , and the convergence LLFV(θ | mN )→ LLFV(θ | m∗) is uniform on Θ̃.

It remains to construct a suitable Θ̃. Let

mmin := minU∈support(m∗)m
∗(U),

and
Umin := argminU∈support(m∗)Pθ∗(U).

Then we define

Θ̃ := {θ ∈ Θ+ | logPθ(U) ≥ logPθ∗(Umin)− q for all U ∈ support(m∗)},

where

q :=
mmin − 2

mmin
logPθ∗(Umin) +

2

mmin
.

By assumptions A1 and A2, Θ̃ is compact, and θ∗ ∈ Θ̃ by definition (because q ≥ 0).
It remains to show (33). For this let θ ∈ Θ \ Θ̃, and U ∈ support(m∗) with logPθ(U) <
logPθ∗(Umin)− q. Directly from the definition of LLFV and Umin, we have

LLFV(θ | mN ) ≤ mN (U)logPθ(U) (34)
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and

LLFV(θ∗ | m∗) ≥ logPθ∗(Umin), (35)

and therefore

LLFV(θ∗ | m∗)− LLFV(θ | mN ) ≥ logPθ∗(Umin)−mN (U)logPθ(U) (36)

By the definition of mmin and the convergence mN (U) → m∗(U), we have that mN (U) ≥
mmin/2 P -a.s. for all sufficiently large N . With the definition of U , we can therefore bound
the right-hand side of (36) P -a.s. for all sufficiently large N :

logPθ∗(Umin)−mN (U)logPθ(U) > logPθ∗(Umin)− mmin

2
(logPθ∗(Umin)− q)

= 1.

Part B.(ii) of the Theorem follows directly from (c): under the assumption of B.(ii) it
follows from (c) that θ∗ is the unique maximum of LFV(· | m∗) (or, equivalently, LLcar(· |
m∗)). Together with part B.(i) of the Theorem, the convergence θ̂N → θ∗ then follows.

Theorem 6 Let U (1), . . . , U (N) be a data set. If for all i, j: U (i) = U (j), or U (i)∩U (j) = ∅,
then

Lsat(·|U) = Lcar(·|U), (8)

and for all θ:

AI(θ,U) = E(θ,U). (9)

Proof

In order to maximize Lsat we can set for all (w,U) ∈ Ω(W ): λw,U = 1 if U = U (i) for
some i = 1, . . . , N , λw,{w} = 1 for all w 6∈ ∪Ni=1U

(i) (this specification is just for completeness;
it has no impact on the profile likelihood), and λw,U = 0 for all other (w,U). Due to the
assumptions on the structure of the U (i), this is well-defined, the resulting λ parameters are
in Λcar, and thus (8) holds.

The proof of (9) is another direct consequence of Lemma 10 applied to
V = {U (1), . . . , U (N)} ∪ W \ ∪iU (i), which, according to the assumption of the theorem,
is a partitioning of W . Since for all Vi ∈ V, and all Pc ∈ C(U) we have that Pc(Vi) is just
the empirical probability of Vi in the sample U , we have that the term KL(P ↓V , Q↓V) as
well as the factors P (Vi) in (24) are constant for all P ∈ C(U). KL(C(U), Pθ), therefore,
is minimized by choosing Pc with Pc | Vi = Pθ | Vi, which is obtained by completing each
U (i) ∈ U as Pθ(· | U (i)). The resulting Pc then is just E(θ,U).

Theorem 7 Let (c0, θ0) ∈ D, and (ci+1, θi+1) = AIM(ci, θi) for i ≥ 0. Every accumulation
point (ĉ, θ̂) of the sequence (ci, θi)i then is a fixed point of the AIM operator.
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Proof Let (ĉ, θ̂) be an accumulation point, and (cij , θij )j be a subsequence of (ci, θi)i that

converges to (ĉ, θ̂). Assume that aim(ĉ, θ̂) 6= (ĉ, θ̂). Then either

AI(θ̂) 6= ĉ and KL(AI(θ̂), θ̂) < KL(ĉ, θ̂), (37)

or
AI(θ̂) = ĉ, M(ĉ) 6= θ̂ and KL(ĉ,M(ĉ)) < KL(ĉ, θ̂). (38)

Here the strict inequality in (37) is due to the fact that KL(·, θ̂) obtains a unique minimum
on the convex set C(U); the strict inequality in (38) is due to Assumption 3.

First consider case (37). Since θij →j θ̂, we have by lemma 11 a. and c. and Assumption
2:

KL(AI(θ̂), θij )→j KL(AI(θ̂), θ̂) < KL(ĉ, θ̂) ≤ limjKL(cij , θij )

For the application of lemma 11 we here require assumption Assumption 2, which allows
us to infer from the convergence properties of sequences in ∆(W ) given by lemma 11 these
convergence statements for sequences in Θ. Note, too, that since the sequence KL(cij , θij )
is non-increasing, the lim inf of lemma 11 becomes a limit.

Thus, for sufficiently large j:

KL(AI(θ̂), θij ) < KL(cij+1 , θij+1) ≤ KL(cij+1 , θij ),

which contradicts the definition of cij+1 as AI(θij ). In the case of (38) a contradiction is
obtained in the same manner, using lemma 11 b. instead of a.

Theorem 8 If (ĉ, θ̂) ∈ D is a local minimum of KL(c, θ), then θ̂ is a local maximum of
Lsat on Θ.

Proof If (ĉ, θ̂) is a local minimum of KL(·, ·) on D, then ĉ is a global minimum of KL(·, θ̂) on
C(U) (due to the strict convexity of KL(·, θ̂)). Now assume that θ̂ is not a local maximum
of Lsat. Then there exists a sequence θi → θ̂ with Lsat(θi) > Lsat(θ̂) for all i, and hence by
Theorem 3, KL(ci, θi) < KL(ĉ, θ̂), where ci = AI(θi). We may assume that the sequence
(ci, θi) converges to some limit (c̄, θ̄) ∈ D (otherwise select a convergent sub-sequence).
Then θ̄ = θ̂, and by Lemma 11

KL(ĉ, θ̂) ≥ lim inf
i

KL(ci, θi) ≥ KL(c̄, θ̄) = KL(c̄, θ̂).

Since ĉ uniquely minimizes KL(·, θ̂), we obtain ĉ = c̄. Thus, each neighborhood of (ĉ, θ̂)
contains (ci, θi) with KL(cci , cθi) < KL(ĉ, θ̂), contradicting the assumption that (ĉ, θ̂) is a
local KL minimum.

Theorem 9 Let Λsat be as defined by (2) for the discretized space Ω(W ). Then: λ ∈ Λsat iff
there exists a finite set F , and a F-valued random variable F with conditional distribution
Pγ(F |X), such that for all θ ∈ Θ: Pθ,γ(U |w) = λw,U .
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Proof The right to left direction is trivial: the conditional distribution Pθ,γ(Y |d(X)) is an
element of Λsat by definition. For the converse direction, let λ ∈ Λsat. We obtain a represen-
tation of λ in the form Pθ,γ(Y |d(X)) by a canonical construction: let F = 2W . We identify
elements U ∈ G with the subsets

⋃
U := {x ∈ w : w ∈ U} ⊆ Rn, and define ζ(x, U) =

⋃
U .

Define Pγ(U |x) := λd(x),U if x ∈ ⋃
U , and Pγ(U |x) := 0, otherwise. Then, since Pγ(U |x) is

constant on the cell d(x), we have that for all x ∈ w = d(x): Pθ,γ(U |w) = Pγ(U |x) = λw,U .

Appendix B. Details on the AIM Implementation for Gaussian Data

/* Input: A = (A(1), . . . , A(N)): coarse data cases; */

/* c: number of discretization cells */

AIM(A,c);

1 Discretize A with granularity c to obtain the set U = (U1, . . . , UM ) of distinct

discretized observations d(A(j)) with empirical probabilities m(Ui);
2 Set initial parameters θ0 = (µ0,Σ0) /* using ACA or EM */

3 Initialize c0(Ui, w) = 0 for all i and all w ∈ Ui;
4 t = 0;
5 repeat
6 t = t+ 1;

/* Incremental AI step */

7 for i = 1, . . . ,M do
8 Calculate p and π according to (18) and (19);
9 p∗ =BestCompletion(p, Pθ|Ui);

10 ct(Ui) = 1
1−π (p∗ − p);

11 end
/* M step */

12 Set θt by minimizing KL(ct, ·) by gradient descent;

13 until termination condition applies;
14 return θt
Algorithm 2: Pseudo code for AIM using discretization for coarse continuous data

Algorithm 2 shows the high-level structure of the AIM implementation for Gaussian
data (indeed, this is a completely generic algorithm for learning from coarse numeric data
via discretization). The main loop operates as described in Section 7.1.1. Lines 9 and
10 solve the optimization problem (20) using the BestCompletion algorithm, shown in
Algorithm 3.

BestCompletion takes as input a sub-probability vector p = (p1, . . . , pk), i.e., a vector
of probability values pi ∈ [0, 1] with

∑
i pi ≤ 1, and a probability vector q = (q1, . . . , qk)

of the same length with
∑

i qi = 1. It computes the probability vector p∗ that completes
p into a probability vector (i.e., p∗i ≥ pi for all i, and

∑
i p
∗
i = 1), such that KL(p∗,p)

is minimized for all possible completions. BestCompletion incrementally constructs p∗

by distributing a part of the remaining available probability mass (initially 1 −∑
i pi) as
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/* Input: p = (p1, . . . , pk): sub-probability vector */

/* q = (q1, . . . , qk) probability vector. */

/* Output: probability vector p∗ with p∗ ≥ p that minimizes KL(·, q)
*/

BestCompletion(p, q);

1 remaining= 1−∑
i pi;

2 p∗ = p;
3 while remaining> 0 do
4 let rmin1 and rmin2 be the smallest and second smallest of the ratios p∗i /qi

(i = 1, . . . , k);
5 R = {i : p∗i /qi = rmin1} ;
6 for j ∈ R: dj = rmin2 · qj − p∗j ;
7 D =

∑
j∈R dj ;

8 if D < remaining then
9 for j ∈ R: p∗j = p∗j + dj ;

10 remaining = remaining−D
11 else
12 Q =

∑
j∈R qj ;

13 for j ∈ R: p∗j = p∗j + remaining · qj
Q

;

14 remaining = 0

15 end

16 end
17 return p∗

Algorithm 3: Pseudo code for local optimization routine
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follows: the set R of indices i is determined for which the ratio p∗i /qi is minimal (lines 4,5).
Allocating probability mass to these components is optimal, because the partial derivatives

∂

∂p∗i
KL(p∗, q) = ln

p∗i
qi

+ 1

are monotone in this ratio (the KL function here in a general sense allowing sub-probability
vectors in the first argument), and therefore adding probability mass to these components
decreases KL the most (or increases it the least). Line 6 then determines how much prob-
ability mass dj is required for each component j ∈ R in order to equal the smallest ratio
p∗h/qh for components h 6∈ R. If sufficient remaining probability mass is available to reach
that level for all j ∈ R, then the required probability mass is allocated to the components
in R, the remaining mass updated, and another iteration will be performed (lines 7, 8-10).
Otherwise, the remaining mass is distributed over the components in R such that they
maintain a uniform ratio (lines 11-14).

Appendix C. Details on the AIM Implementation for Bayesian Networks

/* Input: U = (U (1), . . . , U (N)): observed incomplete data items with

empirical probabilities m(Ui) */

/* bnet : Bayesian network structure */

AIM(U , bnet);

/* c: completion mapping U ×W → R with
∑

x∈W c(Ui, x) = m(Ui) */

/* for all Ui θ: Parameter setting for bnet */

1 initialize c ;
2 θ = M(c);
3 while ! terminate do
4 oldce = KL(Pc, Pθ);
5 c = IAI(U , θ, c);
6 θ = M(c);
7 newce = KL(Pc, Pθ);
8 if (oldce− newce < threshold) then
9 terminate = true;

10 end

11 end
12 return θ;

Algorithm 4: AIM for Bayesian Networks

The overall structure of the algorithm is shown in Algorithm 4. We here assume that the
data is already given by the empirical probabilities m(Ui) of M observed distinct incomplete
data items Ui (obtained from some original sample of size N ≥M). A completion c then is
represented as a mapping U ×W → R with

∑
x∈Ui c(Ui, x) = m(Ui). The implementation

maintains a sparse representation of the mapping c consisting of a list of the nonzero values
c(Ui, x) for each Ui.
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The algorithm starts by constructing an initial completion c (the initialization of the
parameters θ then is performed by a first M step, line 2). This first completion can be
constructed in two ways, leading to two different versions of the algorithm:

AIM-ACA (available case analysis): An initial value for the cpt row θi•k = Pθ(Xi | Pai =
k) is obtained from the empirical count in the data cases where Xi and Pai are fully
observed. If there are no such data cases with the parent configuration Pai = k, then
θi•k is initialized as the uniform distribution over W (Xi). In order to obtain diverse
initializations, different small random subsets of U are used in the random restarts
for the computation of the ACA statistics.

EM-AIM (EM guided): First parameters θEM are learned using the EM algorithm. For
each Ui then a unique completion xi is sampled from cθEM (X | Ui). These initial
one-point completions are refined to a fractional completion by performing IAI steps
until convergence to a stable fractional completion.

After initialization, a main loop of IAI and M steps is executed until the decrease in
KL(c, θ) falls below a user-defined threshold.

The most important aspect of the algorithm is the implementation of the IAI step, shown
in Algorithm 5. This IAI procedure receives as an argument the completion c computed
in the previous iteration. This initial c is modified iteratively to further reduce KL(c, Pθ)
with regard to the current θ values. The iterations are over all current completions of all
incomplete data items (lines 1 and 2—support(c(Ui)) denotes the set of all x with c(Ui, x) >
0). For every such pair, Ui, x the completion c is updated by re-allocating some of the weight
c(Ui, x) to another completion x∗ of Ui. This re-allocation is performed by the bestshift sub-
routine shown in Algorithm 6 Since it would be computationally infeasible to consider all
possible alternative completions x∗ (which would be exponentially many in the number of
missing values in Ui), only x∗ are considered that differ from the current x in the value of
exactly one variable (reminiscent of Gibbs sampling). Given such a candidate alternative
completion, the problem is to determine the part of c(Ui, x) that should be reallocated to x∗.
One obtains analytically that for minimizing KL(·, Pθ) one optimally needs to re-allocate
probability mass

bestshiftamount(x, x∗, c, θ) =
Pc(x)Pθ(x

∗)− Pc(x∗)Pθ(x)

Pθ(x) + Pθ(x∗)

from x to x∗. This value can be greater than c(Ui, x) (when other incomplete data items Uj
also assign some weight to x), for which reason in line 4 shiftamount is computed by taking
the minimum of bestshiftamount and c(Ui, x). Furthermore, bestshiftamount can be negative
(one should rather reallocate weight from x∗ to x). This possibility is not considered by
the bestshift routine (because it will then be considered when executing bestshift with x∗

as an argument). Therefore, line 4 also excludes negative values by taking a maximum
with 0. In this way, lines 3-11 determine the optimal way to re-allocate part of the weight
c(Ui, x) to some alternative completion x∗ (differing by one value from x). However, always
performing such a reallocation would quickly lead to intractably large sets of support of
the completion c (the number of pairs Ui, x with c(Ui, x) > 0 could double in each call
of AI). For this reason, the shift of weight from x to x∗ only is performed if either x∗
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already is in the support of U ′is current completion function c(Ui), or the KL-reduction
exceeds a user defined threshold new completion penalty (line 12-14). This threshold can
be used to trade-off time and space requirement against accuracy of the approximate AIM
implementation.

/* Input: U = (U (1), . . . , U (N)): observed incomplete data items */

/* θ: current Bayesian network parameter setting */

/* c: current completion mapping */

IAI(U , θ, c) ;

1 for i = 1, . . . , N do
2 for all x ∈ support(c(Ui)) do
3 c =Bestshift(Ui, x, c, θ);
4 end

5 end
6 return c

Algorithm 5: Incremental AI step

Bestshift(U, x, c, θ);

1 bestcegain=0;
2 bestc = c;
3 for all completions x∗ that differ from x in the value of one variable missing in U

do
4 shiftamount = max(0,min(c(U, x), bestshiftamount(x, x∗, c, θ));
5 cnewcand= the completion that differs from c by allocating:

cnewcand(U, x) = c(U, x)− shiftamount
cnewcand(U, x∗) = c(U, x∗) + shiftamount;

6 cegain = KL(Pc, Pθ)−KL(Pcnewcand, Pθ);
7 if (cegain > bestcegain) then
8 bestcegain = cegain;
9 bestc = cnewcand;

10 end

11 end
12 if bestcegain>new completion penalty or support(bestc(U))=support(c(U)) then
13 return bestc
14 else
15 return c
16 end

Algorithm 6: Local improvement step
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Appendix D. Detailed Experimental Results

Coarsening N ACA EM AIM EM-AIM

t1 100 0.167 ± 0.048 0.167 ± 0.048 0.092 ± 0.045 0.137 ± 0.051
1000 0.145 ± 0.017 0.145 ± 0.017 0.057 ± 0.043 0.104 ± 0.025

10000 0.150 ± 0.006 0.150 ± 0.006 0.032 ± 0.018 0.113 ± 0.013
100000 0.152 ± 0.002 0.152 ± 0.002 0.025 ± 0.022 0.115 ± 0.004

1000000 0.153 ± 0.000 0.153 ± 0.001 0.052 ± 0.031 0.114 ± 0.001
t2 100 0.168 ± 0.078 0.168 ± 0.078 0.158 ± 0.122 0.178 ± 0.121

1000 0.136 ± 0.015 0.136 ± 0.015 0.075 ± 0.026 0.103 ± 0.023
10000 0.136 ± 0.008 0.137 ± 0.008 0.084 ± 0.042 0.114 ± 0.010

100000 0.134 ± 0.002 0.134 ± 0.002 0.084 ± 0.041 0.108 ± 0.004
1000000 0.135 ± 0.001 0.134 ± 0.001 0.087 ± 0.044 0.108 ± 0.001

t3 100 0.129 ± 0.087 0.129 ± 0.086 0.174 ± 0.162 0.172 ± 0.159
1000 0.063 ± 0.016 0.062 ± 0.016 0.056 ± 0.037 0.060 ± 0.015

10000 0.061 ± 0.006 0.061 ± 0.006 0.123 ± 0.088 0.061 ± 0.006
100000 0.061 ± 0.002 0.062 ± 0.002 0.128 ± 0.084 0.062 ± 0.002

1000000 0.061 ± 0.001 0.061 ± 0.001 0.066 ± 0.044 0.061 ± 0.001
t4 100 0.103 ± 0.123 0.102 ± 0.120 0.680 ± 0.598 0.286 ± 0.463

1000 0.007 ± 0.010 0.007 ± 0.009 0.100 ± 0.090 0.008 ± 0.006
10000 0.000 ± 0.000 0.000 ± 0.000 0.113 ± 0.168 0.000 ± 0.000

100000 0.000 ± 0.000 0.000 ± 0.000 0.166 ± 0.314 0.000 ± 0.000
1000000 0.000 ± 0.000 0.000 ± 0.000 0.031 ± 0.016 0.000 ± 0.000

c1 100 0.095 ± 0.092 0.096 ± 0.094 0.222 ± 0.257 0.130 ± 0.140
1000 0.062 ± 0.028 0.062 ± 0.029 0.056 ± 0.065 0.072 ± 0.034

10000 0.047 ± 0.009 0.046 ± 0.008 0.005 ± 0.004 0.047 ± 0.008
100000 0.049 ± 0.003 0.049 ± 0.002 0.001 ± 0.001 0.049 ± 0.002

1000000 0.050 ± 0.001 0.050 ± 0.001 0.031 ± 0.060 0.050 ± 0.001
c2 100 0.078 ± 0.074 0.078 ± 0.076 0.377 ± 0.301 0.193 ± 0.289

1000 0.080 ± 0.027 0.080 ± 0.027 0.426 ± 0.226 0.091 ± 0.042
10000 0.062 ± 0.012 0.061 ± 0.012 0.216 ± 0.161 0.062 ± 0.012

100000 0.060 ± 0.003 0.060 ± 0.004 0.153 ± 0.129 0.060 ± 0.004
1000000 0.060 ± 0.001 0.059 ± 0.002 0.121 ± 0.107 0.059 ± 0.001

Table 4: Results for 1d-b B1 (Figure 6). Sum of squared errors with standard deviation
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Coarsening N ACA EM AIM EM-AIM

t1 100 0.159 ± 0.060 0.043 ± 0.033 0.084 ± 0.109 0.072 ± 0.071
1000 0.160 ± 0.025 0.018 ± 0.010 0.007 ± 0.005 0.008 ± 0.007

10000 0.151 ± 0.007 0.012 ± 0.002 0.001 ± 0.001 0.003 ± 0.004
100000 0.154 ± 0.003 0.013 ± 0.001 0.000 ± 0.000 0.000 ± 0.000

1000000 0.152 ± 0.001 0.013 ± 0.001 0.000 ± 0.000 0.000 ± 0.000
t2 100 0.182 ± 0.067 0.039 ± 0.045 0.093 ± 0.158 0.051 ± 0.058

1000 0.138 ± 0.026 0.011 ± 0.008 0.025 ± 0.027 0.015 ± 0.010
10000 0.132 ± 0.006 0.007 ± 0.001 0.002 ± 0.002 0.003 ± 0.002

100000 0.133 ± 0.002 0.007 ± 0.000 0.002 ± 0.002 0.004 ± 0.003
1000000 0.134 ± 0.001 0.007 ± 0.000 0.001 ± 0.001 0.003 ± 0.003

t3 100 0.081 ± 0.028 0.021 ± 0.027 0.205 ± 0.335 0.117 ± 0.308
1000 0.066 ± 0.017 0.016 ± 0.013 0.086 ± 0.050 0.026 ± 0.021

10000 0.063 ± 0.005 0.008 ± 0.001 0.054 ± 0.057 0.010 ± 0.002
100000 0.062 ± 0.002 0.008 ± 0.001 0.062 ± 0.063 0.011 ± 0.002

1000000 0.061 ± 0.000 0.008 ± 0.000 0.099 ± 0.063 0.009 ± 0.002
t4 100 0.085 ± 0.090 0.117 ± 0.153 0.698 ± 0.963 0.139 ± 0.135

1000 0.007 ± 0.005 0.017 ± 0.014 0.132 ± 0.086 0.017 ± 0.010
10000 0.001 ± 0.001 0.012 ± 0.005 0.067 ± 0.048 0.015 ± 0.005

100000 0.000 ± 0.000 0.012 ± 0.001 0.058 ± 0.065 0.009 ± 0.003
1000000 0.000 ± 0.000 0.012 ± 0.001 0.121 ± 0.173 0.011 ± 0.002

c1 100 0.055 ± 0.038 0.016 ± 0.015 0.050 ± 0.048 0.072 ± 0.117
1000 0.050 ± 0.025 0.011 ± 0.006 0.030 ± 0.025 0.019 ± 0.017

10000 0.052 ± 0.008 0.007 ± 0.002 0.016 ± 0.019 0.004 ± 0.003
100000 0.050 ± 0.002 0.006 ± 0.000 0.002 ± 0.001 0.002 ± 0.001

1000000 0.050 ± 0.001 0.006 ± 0.000 0.010 ± 0.021 0.001 ± 0.000
c2 100 0.105 ± 0.088 0.042 ± 0.032 0.104 ± 0.114 0.033 ± 0.027

1000 0.052 ± 0.020 0.014 ± 0.011 0.034 ± 0.021 0.022 ± 0.021
10000 0.060 ± 0.010 0.016 ± 0.004 0.022 ± 0.012 0.005 ± 0.004

100000 0.058 ± 0.003 0.016 ± 0.001 0.008 ± 0.008 0.004 ± 0.001
1000000 0.059 ± 0.001 0.016 ± 0.000 0.005 ± 0.006 0.002 ± 0.002

Table 5: Results for 1d-b B2 (Figure 7). Sum of squared errors with standard deviation

t1, c1 100 0.652 ± 0.290 0.449 ± 0.205 0.741 ± 0.615 0.671 ± 0.456
1000 0.529 ± 0.140 0.297 ± 0.080 0.231 ± 0.147 0.202 ± 0.127

10000 0.536 ± 0.050 0.307 ± 0.028 0.150 ± 0.054 0.150 ± 0.038
100000 0.541 ± 0.012 0.312 ± 0.010 0.169 ± 0.068 0.137 ± 0.012

1000000 0.544 ± 0.004 0.313 ± 0.012 0.175 ± 0.053 0.153 ± 0.005
t4, c2 100 2.959 ± 4.552 0.357 ± 0.233 1.518 ± 2.674 0.596 ± 0.727

1000 2.231 ± 0.785 0.154 ± 0.021 0.309 ± 0.149 0.139 ± 0.073
10000 1.646 ± 0.251 0.155 ± 0.019 0.361 ± 0.164 0.111 ± 0.031

100000 1.626 ± 0.104 0.147 ± 0.007 0.446 ± 0.560 0.124 ± 0.023
1000000 1.682 ± 0.018 0.149 ± 0.008 0.500 ± 0.874 0.128 ± 0.013

Table 6: Results for 2d-m (Figure 10)
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n (µ, σ2) #RN #RS ACA EM AIM EM-AIM

100 (0.2,0.0) 50 10 0.035± 0.008 0.030± 0.007 0 .042 ± 0 .008 0 .036 ± 0 .009
1000 (0.2,0.0) 50 10 0.010± 0.003 0.009± 0.002 0 .024 ± 0 .007 0 .012 ± 0 .004
10000 (0.2,0.0) 50 10 0.003± 0.001 0.003± 0.001 0 .023 ± 0 .006 0 .003 ± 0 .001
100000 (0.2,0.0) 50 10 0.001± 0.000 0.001± 0.000 0 .025 ± 0 .007 0 .001 ± 0 .000
1000000 (0.2,0.0) 50 10 0.000± 0.000 0.000± 0.000 0 .024 ± 0 .008 0 .000 ± 0 .000

100 (0.2,0.05) 50 10 0.050± 0.019 0.044± 0.020 0 .051 ± 0 .021 0 .047 ± 0 .020
1000 (0.2,0.05) 50 10 0.034± 0.015 0.027± 0.014 0 .039 ± 0 .017 0.027± 0.012
10000 (0.2,0.05) 50 10 0.032± 0.015 0.026± 0.014 0 .039 ± 0 .020 0 .025 ± 0 .014
100000 (0.2,0.05) 50 10 0.029± 0.015 0.026± 0.016 0 .037 ± 0 .021 0 .025 ± 0 .016
1000000 (0.2,0.05) 50 10 0.026± 0.010 0.021± 0.011 0 .032 ± 0 .012 0 .020 ± 0 .009

100 (0.2,0.1) 50 10 0.088± 0.040 0.070± 0.041 0.076± 0.040 0.069± 0.044
1000 (0.2,0.1) 50 10 0.064± 0.036 0.055± 0.038 0.052± 0.036 0.044± 0.032
10000 (0.2,0.1) 50 10 0.059± 0.041 0.054± 0.036 0.048± 0.033 0.044± 0.035
100000 (0.2,0.1) 50 10 0.058± 0.034 0.054± 0.041 0.045± 0.031 0.040± 0.034
1000000 (0.2,0.1) 50 10 0.059± 0.042 0.051± 0.041 0.050± 0.040 0.035± 0.028

100 (0.2,0.15) 50 10 0.132± 0.076 0.103± 0.078 0.094± 0.073 0.096± 0.080
1000 (0.2,0.15) 50 10 0.104± 0.070 0.094± 0.061 0.064± 0.049 0.069± 0.058
10000 (0.2,0.15) 50 10 0.109± 0.074 0.091± 0.070 0.058± 0.056 0.067± 0.066
100000 (0.2,0.15) 50 10 0.122± 0.094 0.101± 0.081 0.083± 0.073 0.083± 0.078
1000000 (0.2,0.15) 50 10 0.119± 0.102 0.090± 0.079 0.065± 0.071 0.069± 0.076

Table 7: Result details for Figure 13. Values in the AIM and EM-AIM columns are printed
in bold when the advantage over EM is statistically significant (Wilcoxon signed
rank test at α = 0.01). Values are printed in italics, when conversely the advan-
tage of EM is statistically significant (in some cases the statistical significance is
computed based on decimals not represented by the number format used in the
table).
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