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Abstract

Bayesian multinomial logistic-normal (MLN) models are popular for the analysis of se-
quence count data (e.g., microbiome or gene expression data) due to their ability to model
multivariate count data with complex covariance structure. However, existing implemen-
tations of MLN models are limited to small datasets due to the non-conjugacy of the
multinomial and logistic-normal distributions. Motivated by the need to develop efficient
inference for Bayesian MLN models, we develop two key ideas. First, we develop the class of
Marginally Latent Matrix-T Process (Marginally LTP) models. We demonstrate that many
popular MLN models, including those with latent linear, non-linear, and dynamic linear
structure are special cases of this class. Second, we develop an efficient inference scheme
for Marginally LTP models with specific accelerations for the MLN subclass. Through
application to MLN models, we demonstrate that our inference scheme are both highly
accurate and often 4-5 orders of magnitude faster than MCMC.
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1. Introduction

Motivated by the growing need for efficient inference for a wide class of multinomial logistic-
normal (MLN) models, in this article we develop two key ideas. First, we introduce the class
of Marginally Latent Matrix-T Process (Marginally LTP) models. As the name suggests,
Marginally LTP models are defined by a shared canonical marginal form which is a multi-
variate generalization of Student-t processes (Shah et al., 2014) and allow for non-Gaussian
likelihoods. We show that this class is extremely flexible, encompassing many useful models
including generalized linear models, generalized Gaussian process models, and generalized
dynamic linear models. Second, we develop a general inference scheme for Marginally LTP
models (which we term the collapse-uncollapse sampler) with specific accelerations (namely
a marginal Laplace approximation) for the subclass of MLN models. Through both simula-
tions and analyses of real datasets using MLN models, we show that our inference schemes
are both highly accurate and often 4-5 orders of magnitude faster than MCMC.

MLN models are used for the analysis of compositions measured through multivariate
counting. In contrast to multinomial Dirichlet models, MLN models permit both positive
and negative covariation between multinomial categories (Aitchison and Shen, 1980). While
multinomial logistic-normal topic models have been used in natural language processing for
some time (Blei and Lafferty, 2006; Glynn et al., 2019), more recently these models have
been adopted for regression and time-series modeling of microbiome data (Grantham et al.,
2017; Silverman et al., 2018a; Äijö et al., 2017).

Yet, inference in MLN models is challenging due to lack of conjugacy between the
multinomial and the logistic normal. Early work with MLN models used Metropolis within
Gibbs samplers (Cargnoni et al., 1997; Billheimer et al., 2001) and could scale to just
a small number multinomial categories (i.e., less than 5). Recently, Pólya–Gamma data
augmentation was proposed as a means of inference in MLN regression by augmenting
Pólya–Gamma random variables between the multinomial and logistic normal components
of a model. Yet for MLN models, the number of Gibbs sampling steps scales linearly with
the number of multinomial categories (Polson et al., 2013). Numerous authors have found
this approach too computationally intensive to scale to large multinomial models and have
instead developed augmentation methods based on a stick-breaking representation of the
multinomial (Linderman et al., 2015; Zhang and Zhou, 2017). However, this stick breaking
representation does not maintain the logistic-normal form of the model and is sensitive
to the labeling of multinomial categories (Linderman et al., 2015). Most recently, several
authors (Silverman et al., 2018a; Äijö et al., 2017; Grantham et al., 2017) have shown that
Hamiltonian Monte Carlo (HMC) provides for a more efficient and scalable approach to
inference in MLN models. In particular, Grantham et al. (2017) used a HMC within a
Gibbs sampler whereas both Silverman et al. (2018a), and Äijö et al. (2017) found that the
No-U-Turn-Sampling algorithm provided by the Stan Modeling language (Gelman et al.,
2015), provided more scalable inference. However, both these approaches are still limited
in the number of categories or samples that they can handle. Silverman et al. (2018a)
analyzed approximately 800 samples each with only 10 multinomial categories; Äijö et al.
(2017) analyzed 36 multinomial categories but had to run their model over the dataset using
a sliding window of 60 samples at a time; and Grantham et al. (2017) analyzed 166 samples
and 2662 categories but had to impose low rank structure on the logistic normal model
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for computational tractability. In this work we show that our inference methods scale to
hundreds to thousands of categories and samples and permit inference for a wide variety
of models including non-linear regression models (as in Äijö et al. (2017)), dynamic linear
models (as in Silverman et al. (2018a)), and linear regression models (as in Grantham et al.
(2017)).

The layout of this article is as follows. In Section 2 we introduce a common motiva-
tion for the use of MLN models. In Section 3 we introduce the class of Marginally LTP
models which encompasses many useful MLN models. In Section 4 we develop inference
methods for Marginally LTP Models as well as developing specific acceleration for MLN
models. In Section 5 we demonstrate our approaches through extensive simulation studies
of MLN models. Finally, in Section 6 and 7 we demonstrate the utility of our approaches
by developing both linear and non-linear regression models for microbiome sequence count
data. Finally, we close with a discussion in Section 8.

2. Multinomial Logistic-Normal (MLN) Models

Our primary motivation in this work was to develop efficient inference for a class of models
we refer to as multinomial logistic-normal (MLN) models. Consider a dataset Y consisting
of N observations of D-dimensional count vectors; where the counting process for each
observation is modeled as multinomial. For example, in the analysis of microbiome data we
may consider Y·j to be a count vector with a total of nj =

∑
i Yij counts, representing the

number of DNA molecules observed for each of D different bacterial taxa in sample j. Yet,
in many such datasets, multinomial count variation is just one source important variation.
Consider the task of modeling a hypothetical dataset of N political polls each collected in a
different year and each counting the number of polled individuals who identify with one of
D different political parties. In such a setting we may wish to develop a model of the form:

Y·t ∼ Multinomial(nt, π·t)

π ∼ f(θ)

where f(θ) represents a time-varying stochastic process with parameters θ. Often, a logistic
normal model represents an appealing form for f as it, in contrast to Dirichlet models, allows
for both positive and negative covariation between the political parties (Aitchison and Shen,
1980). Furthermore, if φ represents a log-ratio transform such as the ALRD transform, with
inverse given by:

ALR−1
D (η·j) =

(
eη1j

1 +
∑D−1

i=1 eηij
, · · · , eη(d−1)j

1 +
∑D−1

i=1 eηij
,

1

1 +
∑D−1

i=1 eηij

)
, (1)

then we can write a multinomial logistic normal (MLN) model as a multinomial transformed-
multivariate normal model:

Y·t ∼ Multinomial(nt, π·t)

π·t = φ−1(η·t)

vec(η) ∼ N(µ,Σ).
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This relationship between the logistic-normal and the multivariate normal demonstrates
another appealing property of logistic-normal models: They can often be easily formulated
as a transformation of existing multivariate normal models.

In what follows, we develop efficient inference methods for a class of models we term
Marginally Latent Matrix-T (Marginally LTP) models. We show that the class of Marginally
LTP models encompasses many useful MLN models such as linear regression models, non-
linear regression models, and time-series models.

3. Modeling Overview

In this section we will introduce Marginally Latent Matrix-T Process (Marginally LTP)
models as a flexible class of models capable of describing a wide variety of linear regression,
non-linear regression, and time-series models.

3.1 Matrix-Normal and Matrix-T, Distributions and Processes

To build the class of Marginally LTP models we first review matrix-normal distributions
and processes as well as matrix-t distributions and processes, highlighting properties we
will make use of in this article.

Matrix-Normal Distribution The matrix-normal distribution is a generalization of the
multivariate normal distribution to random matrices. We describe a random m× n matrix
X as being distributed matrix-normal Y ∼ N(M,U, V ) if vec(Y ) ∼ N(vec(M), V ⊗ U)
where ⊗ denotes the Kronecker product, U is a m×m covariance matrix and V is a n× n
covariance matrix.

Matrix-Normal Process We define a stochastic process Y as a matrix-normal process
on the set X = X (1) × X (2) and denoted Y ∼ GP(M,K,A) if Y evaluated on any two

finite subsets x(1) = (x
(1)
1 , . . . , x

(1)
P ) ∈ X (1) and x(2) = (x

(2)
1 , . . . , x

(2)
N ) ∈ X (2) is distributed

as Y ∼ N(M,K,A) where Mij = M(x
(1)
i , x

(2)
j ), Kij = K(x

(1)
i , x

(1)
j ), Aij = A(x

(2)
i , x

(2)
j )

for matrix function M and kernel functions K and A. The requirement that K and A be
kernel functions implies that the matrices K and A are covariance matrices (i.e., they are
symmetric positive definite).

Matrix-t Distribution The matrix-t distribution is a generalization of the multivariate-t
distribution to random matrices. Like the multivariate-t, the matrix-t can be defined con-
structively through its relationship to the matrix-normal and inverse Wishart distributions.
Let Σ denote a random covariance matrix such that Σ ∼ IW (Ξ, υ) where Ξ represents a pos-
itive semi-definite scale matrix and υ > 0. Also suppose that X ∼ N(0, I, V ). If CCT = Σ
then the distribution of Y = CX is denoted as matrix-t such that Y ∼ T (υ, 0,Ξ, V ). For a
random matrix η ∼ T (υ,B,K,A) the log density of η may be written

log TP×N (η | υ,B,K,A) = log ΓP

(
υ +N + P − 1

2

)
− log ΓP

(
υ + P − 1

2

)
− NP

2
log π

− N

2
log |K| − p

2
log |A| − υ +N + P − 1

2
log
∣∣Ip +K−1[η −B]A−1[η −B]T

∣∣ (2)
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where Γa(b) refers to the multivariate gamma function. These results follows directly from
Gupta and Nagar (2018, p. 134).

Matrix-t Process Through analogy to our definition of matrix normal processes, we
define a matrix-t process through its relationship to the matrix-t distribution. We define
a stochastic process Y ∼ TP(υ,B,K,A) defined on the set X = X (1) × X (2) as a matrix-

t process if Y evaluated on any two finite subsets x(1) = (x
(1)
1 , . . . , xP (1)) ∈ X (1) and

x(2) = (x
(2)
1 , . . . , x

(2)
N ) ∈ X (2) is distributed as Y ∼ T (υ,B,K,A) where υ is a scalar strictly

greater than zero, Bij = B(x
(1)
i , x

(2)
j ), Kij = K(x

(1)
i , x

(1)
j ), and Aij = A(x

(2)
i , x

(2)
j ) for matrix

function B, and kernel functions K and A. Matrix-t processes can be alternatively seen as
a multivariate generalization of Student-t processes which have found widespread use in
statistical analysis (Shah et al., 2014).

3.2 Latent Matrix-t Processes (LTPs)

To generalize matrix-t processes to a more flexible set of data types, e.g., count data, we
now define LTPs as a generalization of a matrix-t processes. We accomplish this by defining
a stochastic process Y as a hierarchical process formed by a process F having parameters
that, with appropriate transformation φ, follow a matrix-t process. Additionally, we now
explicitly denote dependence on model hyper-parameters which we collectively refer to as
δ.

Definition 1 Latent Matrix-t Process We define a stochastic process Y as a latent
matrix-t process Y ∼ LTP(F, φ, υ,B,K,A, δ) on the set X = X (1) × X (2) if Y evaluated on
any P dimensional finite subset x(1) ∈ X (1) and any N dimensional finite subset x(2) ∈ X (2)

is distributed

Y ∼ f(π, δ) (3)

π = φ−1(η) (4)

η ∼ T (υ,B(δ),K(δ), A(δ)). (5)

where η denotes a P ×N real valued matrix, B(δ) a P ×N dimensional real valued matrix

function of parameters δ defined by [B(δ)]ij = B(x
(1)
i , x

(2)
j , δ), K(δ) is a P × P covariance

matrix defined as [K(δ)]ij = K(x
(1)
i , x

(1)
j , δ), A(δ) is an N ×N covariance matrix defined as

[A(δ)]ij = A(x
(2)
i , x

(2)
j , δ), υ is a scalar subject to υ > 0, π is an element of a space Π defined

via the one-to-one mapping φ−1 : RP×N → Π, and f denotes a probabilistic model for the
observed data (a likelihood model), with parameters π and δ, which is itself an evaluation
of the process F evaluated on a finite subset of the set Π.

3.3 Marginally LTP Models

To allow us to represent latent processes beyond LTPs, we next introduce a generalization
of LTPs to a larger class which we term Marginally LTP models. This definition is straight-
forward, we define Marginally LTP models as those models which have a marginal that is
an LTP.
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Definition 2 Marginally LTP models If a model described by the joint distribution
p(η,Ψ, Y ) may be written as p(Ψ | η, Y ) p(η, Y ) where p(η, Y ) is an LTP, we refer to
p(η,Ψ, Y ) as a Marginally LTP model and p(η, Y ) as the model’s collapsed representation.

In the next three subsections we demonstrate that Marginally LTP models provide
a rich class of models. We give three examples of Marginally LTP models: (1) a class
of multivariate generalized linear models; (2) a flexible class of models for inference in
multivariate non-Gaussian time-series; and (3) a flexible class of multivariate generalized
non-linear regression models.

3.3.1 Generalized Multivariate Conjugate Linear (GMCL) Models

First we develop generalization of Bayesian multivariate linear regression with conjugate
priors which permits non-Gaussian observations (Rossi et al., 2012, p. 32). As in Section 2,
let us consider Y to represent N independent D-variate measurements and consider X to
represent N sets of Q-dimensional covariates. We define generalized multivariate conjugate
linear (GMCL) models as

Y·j ∼ f(π·j) (6)

π·j = φ−1(η·j) (7)

η·j ∼ N(ΛX·j ,Σ) (8)

Λ ∼ N(Θ,Σ,Γ) (9)

Σ ∼ IW (Ξ, υ). (10)

We may describe the joint density of this model as p(Λ,Σ, η, Y ) which can be factored as
p(Λ,Σ | η, Y ) p(η, Y ). Therefore, to parallel to the definition of Marginally LTP models we
may equate Ψ = {Λ,Σ}. In Appendix A we prove that p(η, Y ) is an LTP with parameters

B = ΘX

K = Ξ

A = IN +XTΓX

and with {Θ,Γ,Ξ} ∈ δ. This result demonstrates that all GMCL models are Marginally
LTP models. Further, by letting f denote the multinomial distribution and φ−1 denote the
inverse ALR transform, we can build multinomial logistic-normal linear models as a special
case of GMCL models.

3.3.2 Generalized Multivariate Dynamic Linear Models (GMDLMs)

We develop a flexible class of multivariate time-series models for non-Gaussian observations.
We term this class of models generalized multivariate dynamic linear models (GMDLMs).
GMDLMs represent an extension of the multivariate dynamic linear models introduced in
Quintana and West (1987) and developed further in West and Harrison (1997, Ch. 16) to
non-Gaussian observations. Using notation from West and Harrison (1997, Ch. 16), let ηTt
denote a row-vector (i.e., the transpose of the t-th column of η). We define the GMDLM
as

Y·j ∼ f(π·j) (11)
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π·j = φ−1(η·j) (12)

ηTt = F Tt Θt + νTt , νt ∼ N(0, γtΣ) (13)

Θt = GtΘt−1 + Ωt, Ωt ∼ N(0,Wt,Σ) (14)

Θ0 ∼ N(M0, C0,Σ) (15)

Σ ∼ IW (Ξ, υ) (16)

where Θt represents a Q × P matrix describing the state of the time-series at time t, Gt
denotes the Q×Q state transition matrix at time t, Ft denotes a Q× 1 vector describing a
linear model relating the latent space to the parameters ηt, Σ is a P ×P covariance matrix
specifying the covariation between the P dimensions of the time-series, Wt is a Q × Q
covariance matrix describing the covariation of the perturbations affecting latent states,
and γt is a scalar allowing an analyst to weight the importance of select observations (γt is
typically equal to 1).

The joint model for the GMDLM can be written p(Θ,Σ, η, Y ) which can be factored as
p(Θ,Σ | η, Y ) p(η, Y ). To parallel the definition of Marginally LTP models, here we have
Ψ = {Θ,Σ}. In Appendix B we prove that p(η, Y ) is an LTP with parameters

B =

α1 · · · αt · · · αT


αt = (F Tt Gt:1M0)T

K = Ξ

At,t−k =

γt + F Tt

[
Wt +

∑2
`=t Gt:`W`−1GT`:t + Gt:1C0GT1:t

]
Ft if k = 0

F Tt

[
Gt:t−k+1Wt−k +

∑2
`=t−k Gt:`W`−1G

T
`:t−k + Gt:1C0G

T
1:t−k

]
Ft−k if k > 0

where we have introduced Gt:` as a short hand notation for the product Gt · · ·G` and where
we have hyper-parameters {Ξ,M0, C0,W1, . . . ,WT , γ1, . . . , γT , G1, . . . , GT , F1, . . . , FT } ∈ δ.
This result demonstrates that GMDLMs are a special case of Marginally LTP models.

3.4 Generalized Multivariate Gaussian Process (GMGP) Models

Finally, we develop a flexible class of generalized multivariate non-linear models based on the
matrix normal processes discussed in Section 3.1. These models utilize a separable kernel
structure to allow modeling of vector valued data as seen, for example, in coregionalization
models Álvarez et al. (2012). As a motivating example, suppose that we wish to model a
microbiome time-series. In particular, suppose we wish to predict the relative abundance
of an unobserved taxa at an unobserved time-point. Let us consider X to encompass
available temporal metadata for observed samples, e.g., time-indices as well as other relevant
covariates influencing composition at each observed time-point. Further, let us consider Z
to encompass available metadata regarding each observed bacterial taxa, e.g., 16S sequence
as well as whether the bacteria is aerobic or anaerobic. In this section we describe a flexible
class of models which we term Generalized Multivariate Gaussian Process (GMGP) models
which are capable of performing this, as well as many other, analysis tasks.
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To enable GMGP models to make predictions regarding unobserved multinomial cate-
gories (e.g., unobserved taxa) we must first define Inverse Wishart Processes. These pro-
cesses can be defined constructively in a similar manner to the matrix normal and matrix-
t processes we defined in Section 3.1. Given a set Z with P -dimentional finite subset
Z = [Z·1, . . . , Z·P ], a scalar ν > 0, and a kernel function Ξ such that Ξij = Ξ(Z·i, Z·j), we
define a stochastic process Σ ∼ IWP(Ξ, ν) as an Inverse Wishart Process on the set Z if Σ
evaluated on any subset Z is distributed as Σ ∼ IW (Ξ, ν+p). In words, an Inverse Wishart
Process is a probability distribution over kernel functions.

Using the above construction of Inverse Wishart Processes, we can now define the GMGP
model form:

Y·j ∼ f(π·j) (17)

π·j = φ−1(η·j) (18)

η·j ∼ N(Λ(X·j),Σ(Z)) (19)

Λ ∼ GP(Θ,Σ, Γ) (20)

Σ ∼ IWP(Ξ, ν) (21)

where Θ is a mean function and Γ as well as Ξ are kernel functions.
We may describe the joint density of the above model as p(Λ,Σ, η, Y,X) which can be

factored as p(Λ,Σ|η, Y,X)p(η|Y,X). In Appendix C, we prove that p(η|Y,X) is an LTP
with parameters B = Θ, K = Ξ, and A = I + Γ where I represents the identity kernel defined
by:

I(xi, xj)

{
1 if xi = xj

0 otherwise
.

It should be noted that the LTP form of GMGP models is very similar to that of GMCL
models; the major difference between GMGP and GMCL models being the use of mean and
kernel functions in place of mean and covariance matrices. Still, we discuss these models
separately as they will often be used in very different ways – GMCL models for inferring
linear effects of covariates, GMGP models for non-linear smoothing and prediction. We
demonstrate examples of both of these models using real data in Sections 6 and 7.

4. Inference in Marginally LTP Models

Our overarching goal was to develop efficient and accurate posterior inference for MLN
models, many of which are a special case of Marginally LTP models. In this section, we
demonstrate how the canonical LTP form of Marginally LTP Models can be exploited for
efficient inference of this larger model class. types of parameters, η which are distributed
matrix-t and of a model to produce a LTP form. The sampling η on η and observed data
(p(Ψ | η, Y )). In Section 4.1 we introduce a sampling scheme for Marginally LTP models
which we refer to as the collapse-uncollapse (CU) sampler which exploits the hierarchical
structure of Marginally LTP models to improve computational efficiency for various types
of inference. In Section 4.2 we further build on the CU sampler by introducing a Laplace
approximation as a means of accelerating a bottleneck step in the CU sampler. In Sections

8



Bayesian Multinomial Logistic Normal Models through Marginally LTPs

4.3 we discuss the CU sampler in the context of the GMCL, GMDLM and GMGP models
introduced in the last section. In Section 4.4, we discuss error bounds for the Laplace
approximation. In Section 4.5, we discuss inference of hyperparameters. Finally, in Section
4.6 we discuss the fido software package which implements a number of MLN models using
the CU sampler with Laplace approximation based on these models Marginally LTP form.

4.1 The Collapse-Uncollapse (CU) Sampler

Consider the task of sampling from the posterior distribution of a Marginally LTP model
with joint density p(Ψ, η, Y ). The corresponding posterior density can be decomposed as

p(η,Ψ | Y ) = p(Ψ | η, Y )
p(η, Y )

p(Y )
.

This decomposition implies that, given a Marginally LTP model with joint probability
p(η,Ψ, Y ), we may sample from the posterior by first sampling from the posterior of the
collapsed (LTP) model p(η, Y ) and then given that sample of η and the observed Y we
may then sample Ψ from the conditional p(Ψ | η, Y ). Together the sample of η and Ψ then
represents a single sample from the posterior of the Marginally LTP model, p(Ψ, η | Y )
(Algorithm 1).

Algorithm 1: The Collapse-Uncollapse (CU) Sampler for Marginally LTP Models

Data: Y, υ,B,K,A
Result: S samples of the form {Ψ(s), η(s)}
Sample {η(1), . . . , η(S)} ∼ p(η | Y ) where p(η | Y ) is an LTP;
for s in {1, . . . , S} do in parallel

Sample Ψ(s) ∼ p(Ψ | η(s), Y );

Our rationale for focusing on the CU sampler for inference in Marginally LTP models
is as follows. We expect that many Marginally LTP models (such as those introduced in
Section 3) have partial conjugacy. Exploiting this partial conjugacy is central to many pop-
ular methods such as Metropolis-within-Gibbs (Cargnoni et al., 1997). Yet, by embedding
MCMC steps within a Gibbs sampler techniques such as adaptation (Gelman et al., 2015)
or approximate methods such as Laplace approximations may not make sense as they would
have to be recomputed at each step. In contrast, the CU sampler allows the non-conjugate
sampling to occur up front (in the sampling of p(η | Y )) so that such techniques can be used.
Moreover, after multiple samples of η have been produced, uncollapsing the model can be
done in parallel for each sample of η. Therefore, the CU sampler may be advantageous as it
permits the use of adaptive or approximate methods for sampling the non-conjugate model
components and permits a degree of parallelism not allowed by Metropolis-within-Gibbs.

The CU Sampler for Marginally LTP Models therefore requires two features for efficient
inference. First, we require an efficient means of producing samples from the collapsed
(LTP) form p(η | Y ). As we will show in Section 5, sampling p(η | Y ) can be more efficient
than sampling p(Ψ, η | Y ) just by virtue of the fact that the former has fewer dimensions.
Therefore the CU sampler alone can be more efficient than sampling the full (uncollapsed)
model. Still, in Section 4.2 we develop a Laplace approximation for p(η | Y ) which can
further improve efficiency. Second, we require an efficient means of sampling from the
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posterior conditional p(Ψ | η, Y ). In Section 4.3 we discuss efficient means of sampling
p(Ψ | η, Y ) for the GMCL, GMDLM, and GMGP model classes.

4.2 Laplace Approximation for the Collapsed Form

Sampling p(η | Y ) is often the major computational bottleneck when inferring Marginally
LTP models via the CU sampler. To accelerate this step, we developed a Laplace ap-
proximation for the density p(η | Y ). This approximation is defined as q(η | Y ) =
N(vec η̂, H−1(vec η̂)) where η̂ denotes the maximum a posteriori (MAP) estimate of p(η | Y )
and H−1(vec η̂) denotes the inverse Hessian matrix of log p(η | Y ) evaluated at the point
vec η̂. That is, η̂ is defined as the solution to the following optimization problem

η̂ = argmin
η∈RP×N

[− log p(η | Y )] . (22)

The solution to this optimization problem is discussed in Appendix F.

While the accuracy of our Laplace approximation will depend on a number of factors
including the choice of likelihood, prior, and link function, we hypothesized that such a
Laplace approximation would provide an accurate approximation to an LTP posterior in a
number of common settings. First, all exponential family likelihoods are log-convex with
respect to their natural parameters (Jordan, 2010). Therefore, we expect the Laplace ap-
proximation to be particularly useful with any choice of likelihood f from the exponential
family (e.g., the multinomial distribution) and with a corresponding choice of φ such that η
represents the natural parameters of f (e.g., the ALR transform). Second, with regards to
the matrix-t prior, the matrix-normal can provide a good approximation for the matrix-t
for suitably large υ (Gupta and Nagar, 2018, p. 137) as it is both globally symmetric and
log-convex about the MAP estimate. We hypothesized that even though the matrix-t is not
globally log-convex except as υ →∞, in practice the log-convexity about the MAP estimate
coupled with its global symmetry would be enough to provide a useful approximation even
for small values of υ. We note that both our simulation studies in Section 5 and analyses of
real data in Section 6 suggest this hypothesis is reasonable. Finally, specifically for models
parameterized by probabilities (such as the Multinomial logistic-normal), MacKay (1998)
showed that the softmax parameterization can produce more accurate Laplace approxima-
tions than the more traditional simplex basis. Notably, the inverse ALR parameterization
we choose is a linear transformation of the softmax transform (Pawlowsky-Glahn et al.,
2015) and therefore has identical accuracy to a Laplace approximation using the softmax
parameterization (MacKay, 1998). Together, these features led us to hypothesize that a
Laplace approximation could provide a useful and accurate approximation for the the pos-
terior of an LTP.

Developing an efficient Laplace approximation for LTP models required closed form
solutions for the gradient and Hessian of LTPs. To develop these tools note that, by Bayes
rule, we may write

− log p(η | Y ) ∝ − log f(Y | φ−1(η))− p(η). (23)
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By linearity of the derivative operator we may write the gradient and Hessian of − log p(η |
Y ) as

−d log p(η | Y )

dvec(η)
= −d log f(Y | φ−1(η))

dvec(η)
− d log p(η)

dvec(η)
(24)

− d2 log p(η|Y )

dvec(η)dvec(η)T
= −d

2 log f(Y | φ−1(η))

dvec(η)dvec(η)T
− d2 log p(η)

dvec(η)dvec(η)T
. (25)

Thus we find that calculating the gradient and Hessian of LTPs reduces to calculating the
gradient and hessian of log f(Y | φ−1(η)) and the matrix-t density log p(η | X) separately.
The additive structure of the gradient and Hessian are central to generalizing this approach
to a variety of different observation distributions f and transformations φ−1. In Appendix
D we provide the gradient and Hessian for the matrix-t density. With these results, to
derive a flexible class of multinomial logistic-normal models, we only need to provide the
gradient and Hessian for the logit-parameterized multinomial which we give in Appendix
E. We describe the implementation of the Laplace Approximation for an LTP in Appendix
F.

4.3 Efficient Sampling from Posterior Conditionals

The second step of the CU sampler involves sampling from the density p(Ψ | η, Y ). While
the density of p(Ψ | η, Y ) is specific to the particular Marginally LTP model, we develop
efficient means of sampling from this density for the GMCL, GMDLM, and GMGP models
in Appendices A, B, and C respectively. In particular, for all three of these model classes we
make use of the fact that Ψ is conditionally independent of Y given η, that is p(Ψ | η, Y ) =
p(Ψ | η). This conditional independence also reduces sampling from the conditionals to
computing the posterior distribution of standard Bayesian multivariate linear regression
for GMCL and GMGP model and conjugate multivariate dynamic linear models for the
GMDLM model. That is, for all three of these model classes, sampling the conditionals
reduces to posterior inference for equivalent Bayesian Gaussian models that have been well
described previously and have efficient closed form solutions.

4.4 Error Rate for a Laplace Approximation to the Collapsed Form

The inference scheme we propose above for Marginally LTP models has two parts: First,
sample from the collapsed LTP representation of the model; Second, uncollapse those sam-
ples to produce samples from the full Marginally LTP model. If, as we discuss above, we use
a Laplace approximation to sample from the collapsed LTP representation, then the only
error induced by this inference scheme is due to the Laplace approximation. We wanted
to develop intuition regarding the error rate of this approximation when the observation
distribution is a logit-parameterized multinomial. In Appendix K, we prove that for large
υ this error rate is Op((D − 1)

∑N
j=1 n

−1
j ). That is, the error is stochastically bounded by

the sum of the inverse of the average number of counts in each sample. This result follows
from theory recently proposed by Ogden (2018) and provides a more general error bound
than those used by Kass and Steffey (1989) or Rue et al. (2009). In particular, this bound
accounts for not only the number of observed multinomial samples (N) but the number
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of counts in each multinomial sample (nj) and the dimension over which those counts are
spread (D).

This error bound is intuitive in a number of ways. First, a multinomial sample j with
nj counts can be thought of as nj independent observations; it is therefore intuitive that
our error bound is proportional to n−1

j . Second, the number of dimensions in the Laplace
approximation to a multinomial sample grows linearly with one minus the number of multi-
nomial categories; intuitively, our error bound is proportional to D− 1. Third, the number
of dimensions in the Laplace approximation to the collapsed LTP form grows linearly with
the number of observed samples; intuitively, our error bound grows (approximately) linearly
with the number of observed samples. Finally, based on the observation that the multino-
mial parameterized by log-ratio coordinates is globally log-convex (Jordan, 2010) whereas
the matrix-t distribution is only log-convex near the mean; it makes intuitive sense that a
stronger likelihood (implied by larger values of nj) would decrease the error of the Laplace
Approximation.

This error bound also sheds light on when this Laplace approximation in the CU sam-
pler will provide a useful, accurate inference method for MLN models. For example, this
error bound suggests that an ideal dataset for this Laplace approximation is one that has
many non-zero counts and lower data-sparsity. In contrast, it suggests that the Laplace
approximation should not be used for high-dimensional classification problems, where there
are many multinomial categories but only a single non-zero entry per sample. Still, as we
demonstrate in the next section, the Laplace approximation can handle substantial data
sparsity and many small counts with only minimal error.

4.5 Hyperparameter Inference

Until this point we have not considered the presence of unknown hyperparameters in the
LTP form (i.e. we have considered δ or ν as given). Yet, for a number of Marginally LTP
models, we expect estimation of such hyperparameters will be of interest. For example,
within the GMDLM model we anticipate researchers may want to allow the terms Wt to
be subject to their own stochastic model. This would in turn require that some portion of
δ is unknown. Alternatively, for GMCL models, analysts may want to infer the degree-of-
freedom parameter ν empirically rather than setting it based on subjective prior information.
Overall, we leave inference of ν and δ as future work but note a few potential avenues for
practitioners looking to infer these parameters. When the hyper-parameter set {ν, δ} is
small, these parameters may be efficiently selected by cross-validation (Rasmussen, 2003).
In contrast, when the set is large (i.e., when δ is high-dimensional), alternative approaches
are likely needed. In particular, we note that Type-II MAP estimation can provide an
efficient means of empirically setting hyper-parameters in a variety of hierarchical Bayesian
models (Riihimäki et al., 2014).

4.6 Software for Marginally LTP models with Multinomial Observations

For inference of Marginally LTP models with multinomial observations and log-ratio link
functions, we developed the R package fido (Silverman, 2019). Fido implements the CU
sampler with Laplace approximation described above using optimized C++ code. Esti-
mation of η̂ is performed using the L-BFGS optimizer which we have found provides ef-
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ficient and stable numerical results. Additionally all code required to reproduce the re-
sults of the next two sections, including the alternative implementations of multinomial
logistic-normal linear models discussed in Section 5 is available as a GitHub repository at
github.com/jsilve24/fido paper code.

5. Simulations

We performed a series of simulation studies to evaluate the CU sampler both with and with-
out the Laplace Approximation in terms of accuracy and efficiency of posterior inference
of multinomial logistic-normal models. The only portion of our inference algorithm that
is approximate is the Laplace approximation to the LTP form. As this form is shared by
all marginally LTP models, we focus our simulations only on multinomial logistic-normal
linear models for simplicity (e.g., Equations (6)-(10) where f is the multinomial distribution
and φ is the ALRD transform). To evaluate the utility of the CU sampler we compared
Hamiltonian Monte Carlo (HMC) of the full model (HMC Uncollapsed) to the CU sampler
where sampling of the collapsed (LTP) form was performed using HMC (HMC Collapsed).
Both HMC implementations were inferred using the highly optimized No-U-Turn-Sampler
provided in the Stan modeling language (Gelman et al., 2015) which has been frequently
used for the analysis of MLN models (Äijö et al., 2017; Silverman et al., 2018a). To further
evaluate the utility of the Laplace approximation to the collapsed form in the CU sampler
(LA Collapsed), we used the function pibble from the fido software package described in
Section 4.6. Finally, to compare LA Collapsed to an alternative scheme for approximate
inference, we included two mean-field automatic-differentiation Variational Bayes (VB) im-
plementations (Kucukelbir et al., 2015). The first was a VB approximation to the full
form (VB Uncollapsed), the second was a VB approximation to just the collapsed form
of the CU sampler (VB Collapsed). VB Uncollapsed was unstable in practice and often
resulted in error during optimization (likely due to the increased number of parameters in
the uncollapsed model). As a result, only the results form VB Collapsed could be shown
below.

In order to compare these implementations, we created a series of simulations based
on the corresponding likelihood model (Appendix H).We identified three key parameters,
the sample size (N), the observation dimension (D), and the number of model covariates
(Q) which we varied in order to test each implementation over a wide range of conditions.
By varying these parameters in different simulations we were able to vary the error bound
for the Laplace approximation introduced in Section 4.4 (Figure S1). We designed these
simulations to span a wide range of sparsity (Figure 1, Column 1). We choose the tuple
{N = 100, D = 30, Q = 5} as our base condition and independently varied each simulation
parameter from that base condition (N from 10 to 1000, D from 3 to 500, and Q from 2
to 500). Each panel in Figure 1 shows a different simulation metric (e.g., percent of data
matrix Y that were zero counts or the performance of a given inference method on each
simulation) for a given tuple when a particular element of the tuple (N,D,Q) is varied from
the base condition. For example, the top left panel shows the sparsity of each dataset for
N = 100, Q = 5, and where D is varied (x-axis). Additionally, to account for the stochastic
nature of the simulations, three simulations were performed for each tuple {N,D,Q}. For
each simulation, each of the five implementations were fit and allowed a maximum of 48
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hours to produce 2000 samples. Prior hyper-parameters were chosen to reflect common
default choices, e.g., mean parameters set to zero, and covariance parameters set to the
identity matrix. The prior degrees-of-freedom parameter ν is defined on the range ν > D,
this parameter was chosen as ν = D + 10. Further details of the simulation and model
fitting procedure can be found in Appendix H.

To quantify the accuracy and efficiency of each implementation we defined the follow-
ing performance metrics. As a measure of efficiency, we calculated the average number of
seconds needed for the implementation to produce one independent sample from the target
posterior (i.e., Seconds per Effective Sample - SpES). Specifying independent samples is
important as HMC samplers produce autocorrelated samples. In contrast, both LA Col-
lapsed and VB Collapsed produce independent samples from the approximate posterior, as
a result, for these two methods, SpES equals the number of samples per second. To quantify
the accuracy of point estimates from each implementation (i.e., either the posterior mean
or MAP estimates) we used the root mean squared error of the point estimate for Λ from
its true simulated value. Notably, given finite N we do not expect that any implementation
will be able to perfectly reconstruct the true simulated value for Λ; rather, this metric pro-
vides a means of comparing the relative performance of each implementation. Finally, to
quantify the accuracy of uncertainty quantification from each implementation we compared
posterior intervals against those of the HMC Collapsed model which was taken as a gold
standard. In particular, we define the root mean squared error of standard deviations as the
average difference between the estimated posterior standard deviations, sd(Λij), compared
to the estimates produced by HMC Collapsed.

Beyond our error bound for the Laplace approximation, we hypothesized that the pro-
portion of zero values in the dataset would impact the accuracy of both the Laplace and
variational approximations. In particular, we hypothesized that datasets with higher than
30% zero values would see a substantial degradation in approximation accuracy. As hy-
pothesized we found that the proportion of zero values (the sparsity) of the dataset closely
resembled approximation accuracy (Figure 1). Yet, we found that in practice, LA collapsed
performed far better than expected: LA Collapsed provided nearly identical estimates of
posterior uncertainty to both HMC implementations up to over 90% data sparsity. Addition-
ally, LA Collapsed provided nearly identical point estimates to both HMC implementation
over the full spectrum of simulations. Finally, LA Collapsed was often up to 5 orders of
magnitude faster than HMC and often 1-2 orders of magnitude faster than VB.

5.1 Computational Efficiency

Overall, the CU sampler with a Laplace approximation (LA Collapsed) provided the most
efficient inference across all tested conditions. More specifically LA Collapsed displayed
speed-ups of between 1 to 5 orders of magnitude in comparison to HMC Collapsed and
HMC Uncollapsed and often between 1-2 order of magnitude compared to VB Collapsed.
Notably, HMC Uncollapsed failed to complete sampling within 48 hours for D > 100.

Beyond the high efficiency of LA Collapsed, our results also demonstrate that the CU
sampler can improve inference in HMC without the use of approximate inference methods.
These results likely stem from the smaller number of dimensions in HMC for the collapsed
versus uncollapsed implementations. Most noticeably, the collapsed representation com-
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D

N

Q

HMC Uncollapsed HMC Collapsed VB Collapsed LA Collapsed

Figure 1: Simulation study comparing multinomial logistic normal linear model
implementations. Each row of plots depicts simulation results for varying a
different simulation parameter (D, the number of multinomial categories; N , the
number of samples; and Q, the number of covariates). The percent of counts that
were zero in each simulation is given in the first column. The error bound of the
Laplace approximation, which was developed in Section 4.4, is shown in Figure
S1. Implementations were compared in terms of efficiency (measured SpES),
accuracy of point estimation (measured by RMSE of Regression Coefficients), and
accuracy of uncertainty quantification (measured by RMSE of Standard Deviation
of Regression Coefficients). For VB Collapsed and LA Collapsed, the number of
effective samples is taken to be equal to the total number of samples as both
methods produce independent samples from an approximation to the posterior.
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pletely removes dependency on Q from HMC run-times as Λ is marginalized out of the
collapsed representation. However, for large N the HMC Uncollapsed is more efficient than
HMC Collapsed. This later result may reflect that the heavy tails of the matrix-t distribu-
tion produce a more challenging geometry for HMC than the expanded matrix normal and
inverse Wishart forms. Such a finding has been well described previously for both univariate
and multivariate-t distributions (Stan Development Team, 2018, Section 20).

5.2 Point Estimation

Overall point estimation using LA Collapsed (i.e., MAP estimates) was nearly identical to
point estimation using either HMC Collapsed or HMC Uncollapsed (i.e., mean estimates).
In contrast, point estimation using VB Collapsed produced substantially larger errors, es-
pecially for large values of D. Overall these results demonstrate that the CU sampler
maintains accuracy in point estimation and that MAP estimation provides an excellent
approximation to the mean in multinomial logistic normal models.

5.3 Uncertainty Quantification

Beyond accuracy of point estimates, we also wanted to study the accuracy of estimates of
uncertainty from each implementation. We consider the HMC Collapsed implementation
to be the gold standard on which we based our performance metric (RMSE of standard
deviations). Except for values of Q greater or equal to 250 (where the proportion of zero
values is >90%), the uncertainty estimates of LA Collapsed were nearly identical to those
of both HMC implementations. Yet, at larger values of Q, when sparsity is >90%, we
observed differences not only between LA Collapsed and HMC but between the two HMC
implementations themselves. There are two possible explanations for this. First, that LA
Collapsed had a slightly better point estimation accuracy in these same large Q simula-
tions could point to the fact that LA Collapsed is correct and instead HMC estimates of
uncertainty were incorrect due to the often small effective sample size for large Q. Alter-
natively, this could support our previous hypothesis that the Laplace approximation had
higher error in uncertainty quantification with higher data sparsity. Given the ergodicity
of HMC it seems more likely that the Laplace approximation is in error in these regions
of high sparsity. Yet, that the approximation only began to show substantial error when
sparsity is >90% is notable. Beyond LA Collapsed and the HMC implementations, VB
Collapsed consistently demonstrated higher error in uncertainty quantification as compared
to the other implementations.

Finally, to provide context regarding the size of the differences in uncertainty quantifi-
cation, we provide direct visualizations of posterior intervals for all four implementations
in Figure S3 and S4. These two simulations were chosen to highlight a case in which LA
Collapsed was highly accurate (Figure S3) in terms of uncertainty quantification and a case
in which it differed from HMC estimates (Figure S4). Notably, visualization of posterior
intervals consistently demonstrated that the posterior mean was centered symmetrically
in the 95% credible regions. This symmetry suggested that our metric RMSE of stan-
dard deviations captures much of the discrepancies in uncertainty quantification without
higher order moments. Additionally, for context, we include a fifth implementation, PCLM
(pseudo-count augmented linear model). The PCLM uses a pseudo-count based estimate
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of η which ignores the multinomial count variation. Such approximations are common in
the analysis of microbiome sequence count data (Silverman et al., 2017; Gloor et al., 2016).
Unsurprisingly, this PCLM implementation demonstrated substantially higher error rates
than any of the other implementations (Figure S5).

6. Identifying Biomarkers of Crohn’s Disease Using Microbiome Data

Crohn’s Disease (CD) is a type of inflammatory bowel disease that has been linked to
aberrant immune response to intestinal microbiota (Jostins et al., 2012; Khor and Hibberd,
2012; Gevers et al., 2014). To demonstrate that LA Collapsed (from the R package fido)
provides an accurate and efficient means of modeling real microbiome data, we reanalyzed
a previously published study comparing microbial composition in the terminal ileum of
subjects with CD to healthy controls (Gevers et al., 2014). Only LA Collapsed could
efficiently scale to this data size (49 taxa, 250 samples, 4 covariates). To allow us to compare
to alternative implementations we randomly subset the data to contain 83 samples. On
this subset HMC Uncollapsed and VB Collapsed repeatedly failed to run due to numerical
instability. In addition, LA Collapsed produced posterior estimates nearly identical to HMC
Collapsed but more than 1000 times faster.

Using the four model implementations introduced in Section 5, a Bayesian multinomial
logistic normal linear model was fit to investigate the relationship between bacterial compo-
sition and CD. For both the full data-set and the subset, our regression model was defined
for the j-th sample by the covariate vector

xj = [1, xj(CD), xj(Inflamed), xj(Age)]
T

where xj(CD) is a binary variable denoting whether the j-th sample was from a patient
with CD or a healthy control, xj(Inflamed) a binary variable denoting inflammation at time
of sample collection, xj(Age) denoting age of the subject, and the preceding 1 represents a
constant intercept. To evaluate the impact of using small values for the degree-of-freedom
parameter ν in model priors, we set ν = D+ 3. A full description of our prior assumptions
is given in Appendix I and results of posterior predictive checks are shown in Figure S6.

Even though all four implementations were initialized identically, both the HMC Uncol-
lapsed and VB Collapsed implementations repeatedly resulted in errors due to numerical
instability. Thus only LA Collapsed and the HMC Collapsed implementations could fit this
model for even the subset dataset. Whereas the HMC Collapsed model took approximately
30 minutes, LA Collapsed took only 3 seconds. Thus LA Collapsed is over 1000 times faster
than HMC Collapsed on real data. Additionally, posterior estimates of Λ produced by both
the HMC Collapsed and LA Collapsed implementations are nearly identical (Figure S7).
These results demonstrate that in real data scenarios LA Collapsed can provide efficient
and accurate posterior inference.

By modeling the full dataset we found the centered log-ratio (CLR) coordinates corre-
sponding to 12 genera to be associated with CD status (95% credible interval not covering 0;
Figure 2). These results are in general agreement with prior analyses (Gevers et al., 2014).
As in prior analyses, we find a substantial increase in the abundance of proteobacteria in
CD versus healthy controls. Similarly, we find that the families Pasteurellaceae and Enter-
obacteriacaeae, Gemellaceae, and Fusobacteriaceae are highly enriched and that the class
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Figure 2: Posterior mean and credible intervals for Λ of fido::pibble (LA Col-
lapsed) applied to Crohn’s disease data. Only the 12 families found to be
associated with Crohn’s Disease (CD) (i.e., Posterior 95% credible region not cov-
ering zero) are shown. Taxa are denoted as clr [class] [family]. Λ is represented
in centered log-ratio (CLR) coordinates rather than additive log-ratio (ALR) so
that each coordinate could be identified with a different bacterial taxa.

Clostridia are depleted in CD. Notably, Fusobacteria has been independently suggested as
a marker of IBD (Strauss et al., 2011; Kostic et al., 2012). These findings serve to validate
our results and build confidence in our methods.

In contrast, our results differ from prior analyses of this data in certain respects. We find
that the family Peptostreptococcaceae is likely decreased in CD versus healthy controls and
we find no association for Veillonellaceae. Three factors support our results. First, our anal-
ysis accounts for count variation and compositional constraints whereas prior analyses have
not. It is well known that the handing of count variation and compositional constraints can
have substantial impact on conclusions in the analysis of sequence count data (McMurdie
and Holmes, 2014; Silverman et al., 2020; Gloor et al., 2017). Second, Peptostreptococ-
caceae has been found to be decreased in CD based on the analysis of independent data
(Imhann et al., 2018). Third, in visualizing the count data for Peptostreptococcaceae and
Veillonellaceae (Figure S8) we find no visual difference in Veillonellaceae but a notable dif-
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ference in Peptostreptococcaceae. Therefore, we conclude that our approach has revealed
novel associations in this data and excluded potentially spurious conclusions.

7. Inferring Microbial Trajectories in an Artificial Gut Model

Artificial gut models provide a powerful in vitro approach to studying microbial communi-
ties. To demonstrate the generality of our inference methods for Marginally LTP models,
we reanalyzed a previously published high-resolution longitudinal study of 4 artificial gut
models using a GMGP model (Silverman et al., 2018a). Each of the 4 artificial gut models
represent a closed system that were maintained in nearly identical conditions and inocu-
lated with an identical fecal slurry. Following Silverman et al. (2018a), We therefore chose
to model each of the four vessels (r ∈ 1, . . . , 4) as independent but with a shared covariance
structure using the following GMGP model:

Y·tr ∼ Multinomial(ntr, π·tr)

π·tr = ALR−1
D (η·tr)

η·tr ∼ N(Λ(X·tr),Σ(Z))

Λ ∼ GP(Θ,Σ, Γvessel ◦ Γtime)

Σ ∼ IWP(Ξ, ν)

where Ξ is a kernel based on sequence similarity between bacterial taxa, Γtime is a squared
exponential kernel based on the time between samples, Γvessel is a block identity kernel,
and ◦ denote the element-wise multiplication of kernel functions. To evaluate the impact of
using small values for the degree-of-freedom parameter ν in model priors, we set ν = D+ 2.
Details on these kernels as well as the matrix functions Θ are described further in Appendix
J. The above GMGP model was inferred using the function basset from the R package fido.
While there are differences between the generalized dynamic linear model used in Silverman
et al. (2018a) and the above GMGP model, it is notable that the model used in Silverman
et al. (2018a) took on the order of 5 hours while the GMGP model above, using CU sampler
with Laplace approximation, ran in just 4 seconds.

Our results are in general agreement with those of Silverman et al. (2018a). Notably, we
found a distinct decrease in the relative amount of the family Bacteroidaceae immediately
after the introduction of a B. ovatus probiotic at hour 60. Still, our analyses revealed a
number of features unappreciated in prior analyses. Most notably, our GMGP analyses
suggests that the degree to which the community was undergoing sub-daily oscillations
was far greater than was appreciated in Silverman et al. (2018a). Silverman et al. (2018a)
noticed that the relative amount of Enterobacteriaceae displayed distinct, unsyncronized,
sub-daily oscillations in all four artificial gut vessels. We too found evidence of unsyn-
cronized sub-daily oscillations in all four vessels. However, we also found such oscillatory
dynamics in numerous other dimensions including the CLR coordinates corresponding to
the Lachnospiraceae, Desulfovibrionaceae, and Synergistaceae. We suspect that the flex-
ibility provided by the non-linear GMGP model allowed these oscillatory patterns to be
more easily revealed than the random walk dynamics originally modeled in Silverman et al.
(2018a).
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Figure 3: Posterior mean and credible intervals for Λ of fido::basset applied to
artificial gut data. Following Silverman et al. (2018a) we analyze the data
from 4 independent artificial guts at the bacterial family level. The posterior
mean as well as 50% and 95% credible regions for Λ are depicted. The posterior
is depicted with respect to centered log-ratio (CLR) coordinates so that each
coordinate could be identified with a different bacterial family.

8. Conclusion

In this work we have developed efficient inference for the analysis of a large class of multi-
nomial logistic-normal models through the use of a shared marginal representation. We
demonstrated that, in comparison to HMC, the CU sampler with a marginal Laplace ap-
proximation improved sampler efficiency by up to 5 orders of magnitude while preserving
accuracy of point estimation and uncertainty quantification. Yet, the performance of our
Laplace approximation under observation distributions beyond the log-ratio parameterized
multinomial is more uncertain. We hypothesize that our results could generalize to other
exponential family distributions parameterized by natural parameters since such distribu-
tions are globally log-concave. Yet, we expect that there are other observation distributions
where a Laplace approximation to the LTP form may be sub-optimal. Rather than resort-
ing to using MCMC to infer the collapsed model form, we suggest that methods of particle
refinement of the initial Laplace approximation (e.g., parallel MCMC steps for each sample
from the LTP form, or sequential importance resampling) may be more efficient. We believe
such extensions are prime areas for future work.
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Here we have compared the CU sampler with marginal Laplace approximation against
HMC and VB for inference of MLN models, yet many other comparisons are possible. In
particular, both the Integrated Nested Laplace Approximation (INLA) (Rue et al., 2009)
and Pólya-gamma data-augmentation (Polson et al., 2013) are popular approaches for in-
ferring Bayesian logistic models. Like INLA, our approach uses Laplace approximations to
posterior marginals; yet INLA’s requires that the number of hyper-parameters is small (e.g.,
≤ 6) which proves limiting in inferring MLN models with potentially dense co variation be-
tween multinomial categories as we address here. In contrast to INLA, Pólya-gamma data
augmentation uses a Gibbs sampling algorithm with augmented Pólya-gamma random vari-
ables. Yet numerous authors have found that Pólya-gamma data augmentation is too slow
for scalable inference of MLN models due to two key limitations (Linderman et al., 2015;
Glynn et al., 2019; Zhang and Zhou, 2017). First, MLN models do not permit block updates
to Pólya-gamma random variables and as a result, the number of Gibbs steps required for
each posterior sample scales linearly with the number of multinomial categories (Polson
et al., 2013; Linderman et al., 2015; Zhang and Zhou, 2017). Second, when the number of
multinomial categories is large, sampling Pólya-gamma random variables can become rate
limiting (Glynn et al., 2019). Rather than INLA or Pólya-gamma data augmentation, we
believe that the most fruitful comparisons involve alternative approximations for sampling
the collapsed representation of Marginally LTP models. Notably, for inference of hierarchi-
cal Bayesian Gaussian processes, multiple authors have found expectation propagation to be
more accurate, albeit an order of magnitude slower than, Laplace approximation (Jylänki
et al., 2011; Nickisch and Rasmussen, 2008; Kuss et al., 2005). Overall, further compar-
isons will both help to clarify the use cases for the CU sampler with marginal Laplace
approximation and point to potential future improvements.

One limitation of this work is that our derived error bound required the assumption
that ν →∞. This assumption was required so that the Matrix-t distribution was globally
log-convex – a requirement of the theory introduced in (Ogden, 2018). In practice however,
we expect practitioners to use finite values of ν and in these cases our error bound serves
only as a tool for building intuition regarding the error rate of our Laplace approximation.
Despite this limitation, our analyses of both simulated and real data suggest that the
Laplace approximation provides accurate inference even when ν is small. Still, we expect
some degradation of the accuracy of the Laplace approximation for smaller values of ν
compared to larger values of ν.
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Appendix A. Generalized Multivariate Conjugate Linear (GMCL)
Models

Here we prove that the GMCL models defined in Equations (6)-(10) are Marginally LTP
models, and in so doing, derive their collapsed (LTP) form. Additionally, we demonstrate
that uncollapsing the LTP form can be done efficiently. Our proof relies on the following
affine transformation property of the matrix normal distribution. Given matrices A, B, and
C, as well as a random matrix X ∼ N(M,U, V ); then for a random matrix Z = A+BXC
we have Z ∼ N(A+BMC,BUBT , CTV C) (Gupta and Nagar, 2018, p. 64).

Proposition 3 The GMCL Models, as defined in Equations (6)-(10), are a type of Marginally
LTP models.

Proof We prove this proposition by showing that the marginal p(η, Y,X) of GMCL models
is an LTP. By Definition 2, if p(η, Y,X) is an LTP, then p(η,Λ,Σ, Y,X) is a Marginally LTP
model.

To begin, we note that equations (8)-(10) can alternatively be written as

η = ΛX + Eη Eη ∼ N(0,Σ, IN ) (26)

Λ = Θ + EΛ EΛ ∼ N(0,Σ,Γ) (27)

Σ ∼ IW (Ξ, υ). (28)

Using this form, in combination with the affine transformation property of the matrix
normal distribution stated above, it is straightforward to marginalize over Λ producing the
following form:

η = ΘX + EΛX + Eη Eη ∼ N(0,Σ, IN ) EΛ ∼ N(0,Σ,Γ)

= ΘX + E∗ E? ∼ N(0,Σ, IN +XTΓX). (29)

Thus we may rewrite Equations (26)-(28) as

η = ΘX + E∗ E? ∼ N(0,Σ, IN +XTΓX) (30)

Σ ∼ IW (Ξ, υ). (31)

By using the definition of the matrix-t given in Section 3.1 we can marginalize over Σ in
Equations (30) and (31) to get

η ∼ T (υ,ΘX,Ξ, IN +XTΓX).

Finally, incorporating equations (6) and (7) allows us to write the marginalized form of
GMCL models, p(η, Y,X), as an LTP

Y ∼ f(π)

π = φ−1(η)

η ∼ T (υ,B,K,A)

where B = ΘX, K = Ξ, and A = IN +XTΓX.
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Next, we demonstrate that for GMCL models, the conditional posterior p(Λ,Σ|η, Y,X)
can be computed and sampled efficiently: That the collapsed model can be uncollapsed
efficiently. As Λ and Σ are conditionally independent of Y given η in GMCL models, we
may write

p(Λ,Σ | η, Y,X) = p(Λ,Σ | η,X) = p(Λ | Σ, η,X) p(Σ | η,X).

The right hand side of the above equation represents the posterior of a multivariate conju-
gate linear model that can be sampled efficiently using the following relations (Rossi et al.,
2012, p. 32):

υN = υ +N

ΓN = (XXT + Γ−1)−1

ΛN = (ηXT + ΘΓ−1)ΓN

ΞN = Ξ + (η − ΛNX)(η − ΛNX)T + (ΛN −Θ)Γ−1(ΛN −Θ)T

p(Σ|η,X) = IW (ΞN , υN )

p(Λ|Σ, η,X) = N(ΛN ,Σ,ΓN ).

Appendix B. Generalized Multivariate Dynamic Linear Model
(GMDLM)

Here we prove that the GMDLMs defined in Equations (11)-(16) are Marginally LTP models.
Additionally we provide a recursive procedure for uncollapsing an LTP to a GMDLM.

B.1 Derivation of Collapsed Form

Proposition 4 The GMDLMs defined in Equations (11)-(16), are a type of Marginally
LTP models.

Proof As in Proposition 3, we show that GMDLMs are Marginally LTPs by showing that
a marginal of the GMDLMs, p(η, Y ), is an LTP.

We begin by deriving the marginal distribution p(η, Y ) in terms of the quantities Ft,
Gt, Wt, Σ, M0 and C0. As all densities involved are multivariate or matrix-variate normal,
the result must also be multivariate or matrix-variate normal and thus fully described by
the mean and covariance of η. To derive the mean and covariance we first derive a useful
alternative representation of ηTt with respect to Θt−k−1 for some positive integer k < t.

Substituting Equation (14) into Equation (13) allows ηTt be expressed with respect to
Θt−1 as

ηTt = F Tt GtΘt−1 + F Tt Ωt + νTt . (32)

Repeated substitution of Θt−k leads to the following form for ηTt in terms of Θt−k−1

ηTt = F Tt Gt:t−kΘt−k−1 + F Tt Ωt +
t−k−1∑
`=t

F Tt Gt:`Ω`−1 + νTt (33)
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where Gt:t−k is shorthand for GtGt−1 · · ·Gt−k. Using the affine transformation property of
the matrix normal given in Appendix A in combination with (15) we can marginalize over
the random variables Ωt, . . . ,Ω1, νt in Equation (33) giving

ηTt ∼ N

(
F Tt Gt:1M0, γt + F Tt

[
Wt +

2∑
`=t

Gt:`W`−1GT`:t + Gt:1C0GT1:t

]
Ft,Σ

)
. (34)

Next we calculate Cov(ηTt , η
T
t−k). In parallel to Equation (32) we may write ηTt−k as

ηTt−k = F Tt−kGt−kΘt−k−1 + F Tt−kΩt−k + νTt−k. (35)

Using Equation (33) and (35) along with the fact Cov(AX1 + BX2, Y ) = ACov(X1, Y ) +
BCov(X2, Y ) and that Cov(Θs, ν`) = Cov(Θs,Ω`) = Cov(Ω`, νs) = 0 for all s and `, we
can write

Cov(ηTt , η
T
t−k) = F Tt Gt:t−kV ar(θt−k−1)GTt−kFt−k + F Tt Gt:t−k+1V ar(Ωt−k)Ft−k (36)

where V ar(Θt−k−1) can be written recursively as

V ar(Θt−k−1) = Gt−k−1V ar(Θt−k−2)GTt−k−1 + V ar(Ωt−k−1)

and where V ar(Ωt−k−1) = Σ⊗Wt−k−1. Combining this recursive form with equation (36)
gives

Cov(ηTt , η
T
t−k) = F Tt Gt:t−k+1(Σ⊗Wt−k)Ft−k +

2∑
`=t−k

F Tt Gt:`(Σ⊗W`−1)GT`:t−kFt−k

+ F Tt Gt:1(Σ⊗ C0)GT1:t−kFt−k. (37)

Together Equations (34) and (37) characterize the marginal distribution of ηTt in terms
of Ft, Gt, Wt, Σ, M0 and C0. Noting that if X ∼ N(M,U, V ) then XT ∼ N(MT , V, U), it
follows that

η ∼ N(B,Σ, A)

B =

α1 · · · αt · · · αT


αt = (F Tt Gt:1M0)T

At,t−k =

γt + F Tt

[
Wt +

∑2
`=t Gt:`W`−1GT`:t + Gt:1C0GT1:t

]
Ft if k = 0

F Tt

[
Gt:t−k+1Wt−k +

∑2
`=t−k Gt:`W`−1G

T
`:t−k + Gt:1C0G

T
1:t−k

]
Ft−k if k > 0

Finally, using the marginalization property of the matrix normal and the inverse Wishart
used in our definition of the matrix-t distribution and incorporating Equations (11), (12)
and (16) it follows that

Y ∼ f(π)
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π = φ−1(η)

η ∼ T (υ,B,Ξ, A).

B.2 Efficient Form for Uncollapsing

Here we provide an efficient means of sampling from the conditional density p(Θ,Σ | η, Y )
for the GMDLM. First we recognize that Θ is conditionally independent of Y given η.
Therefore, our task simplifies to sampling from p(Θ,Σ | η). The problem is identical to the
standard filtering and simulation smoothing problem solved by West and Harrison (1997,
p. 603-604). Again, the problem is defined by the following model (which we will refer to
as the MDLM model)

ηTt = F Tt Θt + νTt , νt ∼ N(0, γtΣ) (38)

Θt = GtΘt−1 + Ωt, Ωt ∼ N(0,Wt,Σ) (39)

Θ0 ∼ N(M0, C0,Σ) (40)

Σ ∼ IW (Ξ, υ). (41)

Following West and Harrison (1997), below we restate the filtering and retrospective
recursions needed to sample from p(Θ,Σ | η). Note that all densities in this subsection are
conditional on the parameters Ft, Gt, Wt, Σ, M0 and C0 but that this dependence has been
suppressed for notational simplicity. Let us introduce υt and Ξt as filtering parameters at
step t. Further, we define υ0 = υ and Ξ0 = Ξ. As a final piece of notation we introduce HT

t

as a shorthand for the set {ηTt , . . . , ηT1 }

B.2.1 Filtering Recursions for MDLM Model

(1) Posterior at t− 1:

p(Σ | HT
t−1) ∼ IW (Ξt−1, υt−1)

p(Θt−1 | Σ, HT
t−1) ∼ N(Mt−1, Ct−1,Σ)

(2) Prior at t:

At = GtMt−1

Rt = GtCt−1G
T
t +Wt

p(Σ | HT
t−1) ∼ IW (Ξt−1, υt−1)

p(Θt | Σ, HT
t−1) ∼ N(At, Rt,Σ)

(3) One-step ahead forecast at t:

fTt = F Tt At

qt = γt + F Tt RtFt

25



Silverman, Roche, Holmes, David, and Mukherjee

p(Σ | HT
t−1) ∼ IW (Ξt−1, υt−1)

p(ηt | Σ, HT
t−1) ∼ N(ft, qtΣ)

(4) Posterior at t:

eTt = ηTt − fTt

St =
RtFt
qt

Mt = At + Ste
T
t

Ct = Rt − qtStSTt
υt = υt−1 + 1

Ξt = Ξt−1 +
ete

T
t

qt
(42)

p(Σ | HT
t−1) ∼ IW (Ξt, υt)

p(Θt | Σ, HT
t ) ∼ N(mt, Ct,Σ)

Equation (42) differs slightly from the presentation in West and Harrison (1997) as the
parameterization of the inverse-Wishart we employ throughout this paper differs from that
source. Throughout this work we use the following parameterization for a random matrix
Σ ∼ IW (Ξ, υ):

p(Σ) ∝ |Σ|−(P+υ+1)/2 exp
(
− 1

2
tr
(
ΞΣ−1

))
.

B.2.2 Simulation Smoothing Recursion

The recursions provided here follow directly from Prado and West (2010, p. 268)
(1) Sample Σ ∼ IW (ΞT , υT ) and then ΘT ∼ N(Mt, Ct,Σ).
(2) For each time t from T − 1 to 0, sample p(Θt|Θt+1, H

T
T ) ∼ N(M∗t , C

∗
t ,Σ) where

Zt = CtG
T
t+1R

−1
t+1

M∗t = Mt + Zt(Θt+1 − at+1)

C∗t = Ct − ZtRt+1Z
T
t .

Appendix C. Generalized Multivariate Gaussian Process (GMGP)
Models

Here we prove that the GMGP models defined in Equations (17)-(21) are marginally LTP
models, and in so doing, derive their collapsed (LTP) form. Additionally, we demonstrate
that uncollapsing the LTP form can be done efficiently. Finally, we provide a closed form
algorithm for predicting and smoothing using GMGP models.

To facilitate this discussion we must first expand our notation to explicitly denote which
quantities are inferred via smoothing versus prediction. In the context of Gaussian Pro-
cesses, smoothing refers to inferring the value of the latent processes Λ and Σ over the finite
set (Xo, Zo) corresponding to observed data (Y ). In contrast, prediction refers to inferring
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the value of the same latent processes over finite sets that do not correspond to observed
data (Xu, Zu). We therefore introduce the following expanded notation:

X =
[
Xo Xu

]
(43)

Z =
[
Zo Zu

]
(44)

Σ =

[
Σoo (Σuo)T

Σuo Σuu

]
(45)

Λ =
[
Λo Λu

]
(46)

Γ =

[
Γoo (Γuo)T

Γuo Γuu

]
. (47)

Additionally, let P = Po + Pu and N = No + Nu denote the number of dimensions of the
observed and unobserved sets, i.e., Σuo is a Pu × Po matrix and Γou is an Nu ×No matrix.

Proposition 5 The GMGP models defined by Equations (17)-(21) are Marginally LTP
models.

Proof The proof of this proposition follows directly from Proposition 3 noting that the
finite evaluation of a GMGP model on any finite sets Xo = (X·1, . . . , X·No) and Zo =
(Z·1, . . . , Z·Po) can be written as a GMCL model given the following identifications: υo =
ν+Po, Ξoo = Ξ(Zo), Σoo = Σ(Zo) Γoo = Γ(Xo), Θo = Θ(Xo), and Λo = Λ(Xo). With these
identifications the GMGP model reduces to the following GMCL model

Y·j ∼ f(π·j)

π·j = φ−1(η·j)

η·j ∼ N(ΛoIN ,Σ
oo)

Λo ∼ N(Θo,Σoo,Γoo)

Σoo ∼ IW (Ξoo, υo)

which – by Proposition 3 – is a Marginally LTP model.

Based on the identifications provided in the above proposition, it is straightforward
to develop an efficient means of sampling p(Λo,Σoo|η, Y,Xo, Zo) (uncollapsing the GMGP
model):

υoNo = ν + P o +No

ΓooNo = (I + (Γoo)−1)−1

ΛoNo = (η + Θo (Γoo)−1)ΓooNo

ΞooNo = Ξoo + (η − ΛoNo)(η − ΛoNo)
T + (ΛoNo −Θo) (Γoo)−1 (ΛoNo −Θo)T

p(Σoo|η,X) = IW (ΞooNo , υ
o
No)

p(Λo|Σoo, η,X) = N(ΛoNo ,Σ
oo,ΓooNo).

So far we have described GMGP models for inferring the value of the latent stochastic
processes Λ and Σ on the finite set corresponding to observed data (smoothing). Next we
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address the challenge of sampling from the posterior distribution of the latent stochastic
process over a finite set corresponding to both observed and unobserved points (simultane-
ously smoothing and predicting).

As described above, the CU sampler can be used to produce samples of p(Λo,Σoo|η, Y,Xo, Zo).
Conditioned on those samples we now describe a method of sampling p(Λ,Σ|Xo, Zo, Y,Xu, Zu).
Letting Σou/oo = (Σoo)−1 (Σuo)T and Σuu·oo = Σuu − ΣuoΣou/oo, and using the conditional
properties of the inverse Wishart distribution (Gupta and Nagar, 2018, pg. 112), we can
sample Σ conditioned on Σoo:

Σuu·oo ∼ IW (Ξuu·oo, ν + po + pu)

Σou/oo|Σuu·oo ∼ N(Ξou/oo, (Ξoo)−1 ,Σuu·oo)

Σ =

[
(Σoo)−1 + Σou/oo (Σuu·oo)−1 (Σou/oo

)T −Σou/oo (Σuu·oo)−1

− (Σuu·oo)−1 (Σou/oo
)T

(Σuu·oo)−1

]
.

Finally, we can sample Λu conditioned on Λo and Σ:

Γou/oo = (Γoo)−1 Γou

Γuu·oo = Γuu − ΓuoΓou/oo

M = Θu + (Λo −Θo)Γou/oo

Λu|Λo,Σ ∼ N(M,Σ,Γuu·oo).

Appendix D. Gradient and Hessian Calculations for the Matrix-T
Distribution

Here we are concerned with calculating the gradient and Hessian of

log p(η) ∝ −υ +N + P − 1

2
log
∣∣IP +K−1(η −B)A−1(η −B)T

∣∣ .
Letting S = IP + K−1(η − B)A−1(η − B)T we concern ourselves with calculating the

quantities d log |S|
dvec(ηT )

and d log |S|
vec(dη)vec(dη)T

. We will use the identity d log |S| = Tr(S−1dS) from

matrix calculus (Minka, 2000, pg. 1):

d log |S| = Tr(S−1dS)

dS = d(IP +K−1(η −B)A−1(η −B)T )

= d(K−1(ηA−1ηT − ηA−1BT −BA−1ηT ))

= K−1(dηA−1ηT + ηA−1dηT − dηA−1BT −BA−1dηT )

= K−1(dη(A−1ηT −A−1BT ) + (ηA−1 −BA−1)dηT )

= K−1(dηC + CTdηT )

where in the last line we have defined the N × P matrix C = A−1(ηT − BT ). Further
simplifying and using the identities Tr(A) = Tr(AT ) and Tr(AB) = Tr(BA) for matrices
A and B we get

d log |S| = Tr(S−1K−1(dηC + CTdηT ))
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= Tr(S−1K−1dηC) + Tr(S−1K−1CTdηT )

= Tr(CS−1K−1dη) + Tr(CK−1S−Tdη)

= Tr(C(S−1K−1 +K−1S−T )dη)

= vec([C(S−1K−1 +K−1S−T )]T )Tvec(dη)

d log |S| = vec((S−1K−1 +K−1S−T )CT )Tvec(dη) (48)

d log |S|
vec(dη)

= vec((S−1K−1 +K−1S−T )CT )T

The Hessian H = d2 log |S|
vec(dη)vec(dη)T

can then be calculated from equation (48) by taking the

differential again and manipulating the result into the following canonical form d2 log |S| =
vec(dη)THvec(dη). In particular we make use of the following identities vec(ABC) =
(CT ⊗ A)vec(B) and d(S−1) = −S−1dSS−1. We also make use of the vec-transposition
matrix defined by Tm,nvec(A) = vec(AT ) where A is an m × n matrix and Tm,n is an
mn × mn permutation matrix. The vec-transposition matrix also satisfies the following
properties Tm,n = T Tn,m = T−1

n,m. Therefore we can write:

d2 log |S| = vec((S−1K−1 +K−1S−T )dCT + d(S−1)K−1CT +K−1d(S−T )CT )Tvec(dη)

=
[
vec((S−1K−1 +K−1S−T )dCT )T + vec(d(S−1)K−1CT )T + vec(K−1d(S−T )CT )T

]
vec(dη)

= [#1 + #2 + #3] vec(dη)

#1 = vec((S−1K−1 +K−1S−T )dηA−1)T

= ((A−1 ⊗ (S−1K−1 +K−1S−T ))vec(dη))T

= vec(dη)T (A−1 ⊗ (S−1K−1 +K−1S−T ))T

#2 = −vec(S−1dSS−1K−1CT )T

= −((CK−1S−T ⊗ S−1)vec(dS))T

= −vec(dS)T (S−1K−1CT ⊗ S−T )

vec(dS)T = vec(K−1(dηC + CTdηT ))T

= vec(K−1dηC)T + vec(K−1CTdηT )T

= ((CT ⊗K−1)vec(dη))T + ((ID−1 ⊗K−1CT )vec(dηT ))T

= vec(dη)T (C ⊗K−1) + vec(dηT )T (IP ⊗ CK−1)

#2 = [−vec(dη)T (C ⊗K−1)− vec(dηT )T (IP ⊗ CK−1)](S−1K−1CT ⊗ S−T )

= −vec(dη)T (CS−1K−1CT ⊗K−1S−T )− vec(dηT )T (S−1K−1CT ⊗ CK−1S−T )

= −vec(dη)T (CS−1K−1CT ⊗K−1S−T )− vec(dη)TTN,P (S−1K−1CT ⊗ CK−1S−T )

#3 = vec(K−1d(S−T )CT )T

= −vec(K−1S−TdSTS−TCT )

= −((CS−1 ⊗K−1S−T )vec(dST ))T

= −vec(dST )T (S−TCT ⊗ S−1K−1)

vec(dST )T = vec((dηC + CTdηT )TK−1)T
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= ((K−1CT ⊗ IP )vec(dη))T + ((K−1 ⊗ CT )vec(dηT ))T

#3 = [−vec(dη)T (CK−1 ⊗ IP )− vec(dηT )T (K−1 ⊗ C)](S−TCT ⊗ S−1K−1)

= −vec(dη)T (CK−1S−TCT ⊗ S−1K−1)− vec(dη)TTN,D−1(K−1S−TCT ⊗ CS−1K−1)

d2 log |S| = vec(dη)T [(A−1 ⊗ (S−1K−1 +K−1S−T ))T − (CS−1K−1CT ⊗K−1S−T )

− (CK−1S−TCT )⊗ S−1K−1)

− TN,D−1((S−1K−1CT ⊗ CK−1S−T ) + (K−1S−TCT ⊗ CS−1K−1))]vec(dη)

Summarizing the above results we obtain

S = IP +K−1(η −B)A−1(η −B)T

C = A−1(η −B)T

R = S−1K−1

d log |S|
vec(dη)

= vec((R+RT )CT )T

L = (CRCT ⊗RT )

d2 log |S|
vec(dη)vec(dη)T

= (A−1 ⊗ (R+RT ))− (L+ LT )− TN,D−1[(RCT ⊗ CRT ) + (RTCT ⊗ CR)].

Finally, we note a computational trick which makes evaluation of this Hessian far more
computationally efficient. We may quickly calculate Tm,nX = X∗ for an m × m matrix
X having already computed X by noting that for i ∈ 1 . . .m and j ∈ 1 . . . n we can write
X∗(i−1)n+j,· = X(j−1)m+i,· where Xl,· denotes the l-th row of the matrix X.

Appendix E. Gradients and Hessians for the Log-Ratio Parameterized
Multinomial

Unfortunately we cannot provide a general form for the gradient and Hessian of all possible
likelihoods f(Y | φ−1(η)). For the purposes of this article, here we derive the gradient and
Hessian for the case where f is multinomial and φ−1 is the inverse ALR transform:∑

j

log Multinomial(Y·j | nj ,ALR−1
D (η·j))

which for notational simplicity we will refer to as g. Thus our goal is to find efficient

forms for calculating g, dg
dvec(η) and d2g

dvec(η)dvec(η)T
. Using the fact that log Multinomial(Y·j |

nj , π·j) ∝ Y1j log π1j + · · ·+ YDj log πDj and Equation (1) we can write

g =
N∑
j=1

(
D−1∑
i=1

ηijYij − nj log

(
1 +

D−1∑
i=1

eηij

))
.

Differentiating with respect to ηij gives

dg

dηij
= Yij − nj

eηij

1 +
∑

i e
ηij
.
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Differentiating again with respect to ηk` gives

d2g

dηijdηk`
=


−nj

(
eηij

1+
∑
i e
ηij − e2ηij

(1+
∑
i e
ηij )2

)
if ` = j, i = k

nj

(
eηij e

ηkj

(1+
∑
i e
ηij )2

)
if ` = j, i 6= k

0 if ` 6= j.

These results directly imply the following matrix forms.

O = exp η

m = 1N +OT 1D−1

ρ = vec(O)� vec(1D−1m
T )

n = 1TDY

g = −vec(η)Tvec(Y/D·)− n� log(m)

dg

dvec(η)
= (vec(Y/D·)− vec(1Dn)� ρ)T

W (j) = nj(ρ(j)ρ
T
(j) − diag(ρ(j)))

d2g

dvec(η)dvec(η)T
= diag

(
W (1), . . . ,W (N)

)
where expX and logX refers to the element-wise exponentiation and logarithm of a matrix
X, � and � refer to element-wise product and division respectively, Y/D· refers to the first
D − 1 rows of the matrix Y , ρ(j) denotes elements (j − 1)(D − 1) + 1 to j(D − 1) in the
vector ρ, and diag(X1, . . . , XD) refers to a block diagonal matrix where the i-th block is Xi.

Appendix F. Implementing the Laplace Approximation to an LTP

Implementing this Laplace approximation for an LTP requires three steps: finding the MAP
estimates for η using optimization; calculating the hessian at the MAP estimate, and then
sampling from the approximating normal distribution.

F.1 Finding the MAP estimate

The MAP estimate for η (denoted η̂) is defined as the solution to the following optimization
problem:

η̂ = argmin
η∈RP×N

[− log p(η | Y )] (49)

where log p(η|Y ) is the sum of the log-matrix-t prior and log-likelihood densities as shown
in Equation (23):

− log p(η | Y ) ∝ − log f(Y | φ−1(η))− p(η).

The form of p(η) is given in Appendix D. In contrast, the form of log f(Y | φ−1(η)) depends
on the choice of likelihood (f) and link function (φ). When f and φ are given respectively
by the multinomial and ALR transformation, the resulting form of log f(Y | φ−1(η)) can
be found in Appendix E.
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As we expect the dimension of η to be large in most applications, we recommend using
gradient based optimization methods such as L-BFGS over methods that require repeated
calculation or inversion of a hessian matrix such as Newton-Raphson (Sun et al., 2019). Be-
yond calculating log p(η | Y ), gradient based optimization additionally requires calculating

the gradient −d log p(η|Y )
dvec(η) , which is given by Equation (24):

−d log p(η | Y )

dvec(η)
= −d log f(Y | φ−1(η))

dvec(η)
− d log p(η)

dvec(η)
.

The form of d log p(η)
dvec(η) is given in Appendix D. For added computational efficiency when N <

P , we provide an alternative method of calculating the gradient d log p(η)
dvec(η) using Sylvester’s

determinant identity in Appendix G. In contrast, the form of d log f(Y |φ−1(η))
dvec(η) depends on the

choice of likelihood (f) and link function (φ). When f and φ are given respectively by the

multinomial and ALR transformation, the resulting form of d log f(Y |φ−1(η))
dvec(η) can be found in

Appendix E.

F.2 Calculating the hessian at the MAP estimate

Once the MAP estimate η̂ has been found, the hessian H at the MAP estimate (denoted
H(vec η̂) can be calculated using Equation (25):

H =
d2 log f(Y | φ−1(η))

dvec(η)dvec(η)T
+

d2 log p(η)

dvec(η)dvec(η)T
.

The form of d
2 log f(Y |φ−1(η))
dvec(η)dvec(η)T

is given in Appendix D. In contrast, the form of d
2 log f(Y |φ−1(η))
dvec(η)dvec(η)T

depends on the choice of likelihood (f) and link function (φ). When f and φ are given re-

spectively by the multinomial and ALR transformation, the resulting form of d
2 log f(Y |φ−1(η))
dvec(η)dvec(η)T

can be found in Appendix E.

F.3 Sampling from the approximating normal distribution

The Laplace approximation to the density p(η|Y ) is defined as q(η|Y ) = N(vec η̂, H−1(vec η̂)).
While there are numerous ways of sampling from q(η|Y ) explicit inversion of H−1 can be
avoided using a Cholesky decomposition. Letting U denote the upper Cholesky factor of
the matrix H−1(vec η̂) such that H−1(vec η̂) = UTU we may sample a random variable
vec η(s) ∼ q(η|Y ) by first sampling a vector of standard normal variables z and then trans-
forming that sample as:

vec η(s) = vec η̂ + U−1z.

In practice, it is often more computationally efficient to directly calculate U−1z by back-
solving rather than directly computing the term U−1.

Appendix G. Accelerated Matrix-T Gradients via Sylvester’s
Determinant Identity

Sylvester’s determinant identity states that for matrices A and B of size m× n and n×m
respectively, |Im +AB| = |In +BA|. This relationship can be used to speed up calculation
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of the log-likelihood and gradient of the matrix-t distribution when N < P as the the
log determinant or inverse of the matrix S can dominate computational time. To take
advantage of this speed up we note that we can replace the relations given in Appendix D
with

S = IN +A−1(η −B)TK−1(η −B)

C = K−1(η −B)

R = S−1A−1

d log |S|
dvec(η)

= vec(C(R+RT ))
T
.

While this result can greatly accelerate inference for matrix-t gradients when P � N , this
result provides only minimal improvement for calculating the corresponding Hessian terms.
Therefore we suggest that, for simplicity, the Hessian form provided in Appendix D be used
even if P � N .

Appendix H. Simulations and Model Fitting

To compare the performance of the multiple multinomial logistic-normal linear model imple-
mentations described in Section 5 over a range of sample sizes (N), observation dimensions
(D), and covariate dimensions (Q), we created the following simulation scheme. For each
evaluated triple (N , D, Q), three simulated data-sets were created based on the multinomial
logistic-normal linear model with the following specified likelihood:

Y·j = Multinomial(nj , π·j)

π·j = ALR−1
D (η·j)

η·j = N(ΛX·j ,Σ).

Additionally X, Λ, and Σ were simulated as

Λ ∼ N(0, I, I)

Σ ∼ IW (I,D + 10)

X ∼ N(0, I, I).

The percent of zero counts naturally increased with large D or large Q relative to other
parameters. We took advantage of this behavior to study the performance of all implemen-
tations in sparse data regimes.

For all model fits, priors parameter values for υ, Ξ, and Θ and values for hyperparameter
Γ were chosen as their simulated values. All implementations were compiled and run using
gcc version 6.2.0, R version 3.4.2, and Intel(R) Math Kernel Library version 2019 where
possible. All replicates of the simulated count data were supplied to the various implemen-
tations independently and the models were fit on identical hardware, allotted 64GB RAM,
4 cores, and restricted to a 48-hour upper limit on run-time.
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Appendix I. Priors for Crohn’s Disease Data

Sequence count data was obtained from the R package MicrobeDS (github.com/twbattaglia/MicrobeDS).
Only samples from the terminal ileum from healthy donors and patients with Crohn’s Dis-
ease, who had no recent history of steroids, antibiotics, or biologics were included in the
analysis. Samples with a sequencing depth below 5000 counts were excluded from analy-
ses. Only families seen with at least 3 counts in at least 10% of samples were retained for
subsequent analyses.

The regression model required that 4 hyper-parameters Γ, Θ, Ξ, and υ be specified.
We set Θ to a D × Q matrix of zeros representing our prior assumption that, on average,
there was no association between each covarariate and microbial composition. We specified
Γ = IQ to constrain associations between microbial composition and covariates to remain
small. We specified υ = D + 3 and Ξij = (υ − D) if i = j and Ξij = (υ − D)/2 if
i 6= j to reflect our weak prior assumption that the log absolute abundance of each taxa is
uncorrelated (Aitchison, 1986, p. 208-214).

Appendix J. Priors for Artificial Gut Data

Sequence count data was obtained from the R package Fido (github.com/jsilve24/fido).
Only samples from the high-resolution hourly sampling period were included in the analysis.

The the developed GMGP model required that 4 hyper-parameters be specified: Θ,
Γtime,Γvessel, Ξ, and ν. Per the default in fido, these hyper-parameters were specified with
respect to ALRD coordinates. We specified Θ = 0 which centered our prior about the
neutral element of the simplex. We specified Γtime as a squared exponential kernel

Γtime(ti, tj) = exp
−|tj − ti|2

2ρ2
t

where ρt was set to the median temporal distance between samples. To induce independence
between vessels, letting ri denote the vessel sample i was taken from, we specified Γvessel as

Γvessel(ri, rj) =

{
1 if ri = rj

0 otherwise
.

Next, following prior reports, we assumed that more evolutionary similar bacterial taxa
would behave more similarly (Silverman et al., 2017). We encoded this prior information in
a phylogenetic kernel for Ξ as follows. Let hij denote the Hamming distance between the
16S sequence of taxa i (si) and j (sj). We created a squared exponential kernel based on
these distances:

Ξ∗(si, sj) = exp
−h2

ij

2ρ2
s

where ρs was set as the median hamming distance between sequences. To project the kernel
Ξ∗(si, sj) into ALRD coordinates, we created a kernel Ξ which was specified as the projection
of the Gram matrix of Ξ∗. Letting G denote the contrast matrix for ALRD (G = [ID−1,−1])
and letting Ξ∗ represent the Gram matrix of the kernel Ξ∗ and Ξ represent the Gram matrix
of the kernel Ξ, we specified the kernel Ξ implicitly as

Ξ = corr(GΞ∗GT )
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where corr represents the normalized correlation matrix corresponding to a symmetric pos-
itive definite matrix. Finally, we specified ν = D + 2 to reflect the fact that our prior
knowledge regarding Ξ was weak.

Appendix K. Laplace Approximation Error

In this section we provide an analysis of the error rate of Laplace approximation used in
Section 4.2.

Given an integral of the form

L =

∫
Rd
e−g(u)du (50)

Ogden (2018) examined conditions and rates for order-k Laplace approximations of the
above integral. There were two regularity and convexity conditions required in the analysis.

Condition 1 g(·) is a smooth function with a unique minimum.

Condition 2 Denote the unique minimum of g(·) as û and Hij as the ij-th element of
the Hessian of g evaluated at û. For a collection of normalizing terms α1, ..., αd > 0 the
normalized derivatives are

kij =
hij

α
1/2
i α

1/2
j

.

For a d × d matrix A we denote A = O∗p(1) if for each i, j ∈ 1, ..., d
∑

j |Aij | = Op(1) and∑
i |Aij | = Op(1).
The second condition is there exist normalizing terms α1, ..., αd such that k−1 = O∗p(1).

The main result we will use is (Ogden, 2018, Theorem 1) which states if Condition 1
and 2 are met then the error rate of the order-1 Laplace approximation to L is given by
ε = Op(

∑d
j=1 α

−1
j ) where αj are determined by Condition 2.

To prove the error rate of our Laplace approximation we will need the following Lemmas.

Lemma 6 Let λmin(X) denote the minimum eigenvalue of a matrix X. Assuming A and
B denote Hermitian matrices. Then λmin(A+B) ≥ λmin(A) + λmin(B).

Proof H is Hermitian so all eigenvalues must be real. For a Hermitian matrix A and
non-zero vector x we have xTAx ≥ λmin(A)xTx such that xTAx = λmin(A)xTx if and only
if x ∈ Span(xmin(A)) where xmin(A) denotes the set of eigenvectors corresponding to the
minimum eigenvalue of A. It therefore follows that

xT (A+B)x = xTAx+ xTBx

≥ (λmin(A) + λmin(B))xTx

and this minimum bound is achieved if and only if x ∈ Span(xmin(A)) ∩ Span(xmin(B)). It
follows that λmin(A+B) ≥ λmin(A) + λmin(B) and equality is achieved only if there exists
an x such that x ∈ Span(xmin(A)) ∩ Span(xmin(B)).
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Lemma 7 For Hermitian matrices A and B, λmin(A ◦ B) ≥ λmin(A)λmin(B) where ◦
denotes the Hadamard (element-wise) product.

Proof The Hadamard product A ◦ B is a principle sub-matrix of the Kroneker product
A ⊗ B. We may define the principle sub-matrix using a selection matrix E such that we
may write A ◦ B = ET (A ⊗ B)E. Letting A = UDAU

T and B = V DBV
T denote the

eigen-decompositions of A and B respectively, we can then write

A ◦B = ET (UDAU
T ⊗ V DBV

T )E

= ET [(U ⊗ V )(DA ⊗DB)(U ⊗ V )T ]E

Therefore the eigenvalues of A ◦ B represent of subset of the eigenvalues of A ⊗ B. As
the eigenvalues of A ⊗ B are given by every pairwise product between one eigenvalue of
A and one eigenvalue of B it is therefore clear that the minimum eigenvalue of A ⊗ B is
λmin(A)λmin(B). Therefore λmin(A ◦B) ≥ λmin(A)λmin(B).

Lemma 8 For a d × d symmetric positive definite matrix H, H = O∗p(1) if λmax(H) =
Op(1) where λmax(.) denotes the maximum eigenvalue operator.

Proof If H is symmetric then H = HT and therefore
∑

j |Hij | = Op(1) for all j ∈
{1, . . . , d} if and only if

∑
i |Hij | = Op(1) for all i ∈ {1, . . . , d}. For a vector x we have

xTHx ≤ λmax(H)xTx with equality only if x ∈ Span(xmax(H)) where xmax(H) denotes
the set of eigenvectors corresponding λmax(H). Letting r denote a D-vector with elements
defined by rj =

∑
j Hij it is clear that r = H1D. Therefore, rT r = 1TdHH1d ≤ dλ2

max(H).

Thus rT r ≤ dλ2
max(H). As d is a constant and given that λmax(H) = Op(1) it follows that

rT r = Op(1). Noting that rT r =
∑

i

∑
j |Hij |2 we can conclude that

∑
j |Hij | < rT r for all

j ∈ {1, . . . , D}. Therefore since rT r = Op(1) we must have that
∑

j |Hij | = Op(1) for all j
and therefore, by definition, that H = O∗p(1).

Lemma 9 For a d × d symmetric positive definite matrix H, if λmin(H) = Ωp(1) then
H−1 = O∗p(1), where Ωp(1) a stochastic lower-bound of order at least 1.

Proof Denoting the eigen-decomposition of H as H = V DV T we can write H−1 =
V D−1V T where D−1 is a diagonal matrix with elements D−1

ii = 1/Dii. It follows then
λmax(H−1) = λmin(H)−1. If H is symmetric positive definite then all eigenvalues of H are
positive. Therefore if λmin(H) is lower bounded such that λmin(H) = Ωp(1) then we can
conclude that λmax(H−1) is upper bounded by λmax(H−1) = Op(1). Using Lemma 8 it
follows that H−1 = O∗p(1).

Lemma 10 The function g(η) =
∑

j log Multinomial(Y·j |nj ,ALR−1
D (η·j)) is strictly con-

cave.
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Proof Let gj denote the j-th element in the sum such that

gj(η·j) = log Multinomial(Y·j |nj ,ALR−1
D (η·j)).

gj can then be equivalently written as

gj(η·j) =
D−1∑
i=1

ηijYij − nj log

(
1 +

D−1∑
i=1

eηij

)
. (51)

As the sum of concave functions is itself concave, our proof relies on showing that each gj
is concave.

Denoting the natural exponential family as log p(x|γ) ∝ γ · T (x) − A(γ) we can see
that gj corresponds to a natural exponential family density with natural parameters γ = η,

sufficient statistic T (x) = Y·j and log-partition function A(γ) = nj log
(

1 +
∑D−1

i=1 eηij
)

.

The hessian log p(x|γ) is
d2 log p(x|γ)

dγidγj
= −d

2A(γ)

dγidγj
.

Furthermore, for all natural exponential family densities, the log-partition function A(η) is
strictly convex Jordan (2010). Therefore the hessian of gj with elements d2gj(η·j)/dηijdηkj
is positive definite for all values of η·j and we can therefore conclude that gj is strictly
concave. Since g is the sum of strictly concave function we can conclude that g is strictly
concave.

Proposition 11 Let Y denote the finite realization of a D-dimensional LTP evaluated on
an N × (D − 1) finite set such that Y has the following form:

Y·j ∼ Multinomial(nj , πj)

π·j = ALR−1
D (η·j)

η ∼ T (υ,B(δ),K(δ), A(δ)). (52)

Assuming that A(δ) and K(δ) are symmetric positive definite and do not vary with any nj.
In the limit as υ → ∞ the error for the order-1 Laplace approximation to

∫
pY(Y, η)dη is

ε = Op((D − 1)
∑N

j=1 n
−1
j ).

Proof Without loss of generality we may redefine K(δ) → υK(δ) such that (52) can be
written as η ∼ T (υ,B(δ), υK(δ), A(δ)). Given such a form, Theorem 4.3.4 of Gupta and
Nagar (2018) proves that as υ →∞, η converges in distribution to η ∼ N(B(δ),K(δ), A(δ))
such that in the limit we may write Y as

Yi ∼ Multinomial(ni, πi)

πi = ALR−1
D (ηi)

η ∼ N(B(δ),K(δ), A(δ)).
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In this limit, we may write∫
pY(Y, η)dη =

∫
p(η)p(Y |η)dη

=

∫
N(η|B(δ),K(δ), A(δ))

∏
j

Multinomial(Y·j |nj ,ALR−1
D (η·j))dη

=

∫
exp

− logN(η|B(δ),K(δ), A(δ))−
∑
j

log Multinomial(Y·j |nj ,ALR−1
D (η·j))

 dη

=

∫
RP (D−1)

exp{−g(η)}dη

The above integral therefore has the form studied by Ogden (2018) and our goal is to prove
that Conditions 1 and 2 hold for some choice of normalizing constants α1, . . . , αP (D−1).

To show that Condition 1 holds, we must show that g(η) is smooth with unique optima.
g(η) can be represented as a sum g(η) = −(gN (η) + gM (η)) where

gN (η) = logN(η|B(δ),K(δ), A(δ))

gM (η) =
∑
j

log Multinomial(Y·j |nj ,ALR−1
D (η·j)).

It is clear that g(η) is smooth for all ε ∈ RP (D−1). We prove that g(η) has a unique optima
by showing that g(η) is strictly convex. As K(δ) and A(δ) are positive definite it follows
from the properties of the matrix-normal that gN (η) is strictly concave. Furthermore, in
Lemma 10 we proved that gM (η) is strictly concave. Therefore g(η) is the sum of two strictly
convex functions and is therefore strictly convex. As g(η) is strictly convex it therefore has
a single unique optima.

To show that Condition 2 holds we chose normalizing constants αi×j for i ∈ {1, . . . , P}
and j ∈ {1, . . . , D − 1} such that αi×j = nj . We do this by bounding the minimum
eigenvalue of the Hessian h = g′′(η̂) and using Lemma 9. Based on the linearity of the
derivative operator we can write h = −(hN + hM ) where hN and hM are defined as the
Hessian of gN and gM respectively evaluated at the optima η̂. If A(δ) and K(δ) do not
depend on n1, . . . , nj then gN and therefore hN has no dependence on n1, . . . , nj . Noting
that hN = A(δ)⊗K(δ) we can then write

kN = (A(δ)⊗K(δ))� (α⊗ αT )

where � denotes Hadamard (element-wise) division and α denotes the vector of normalizing
constants. Note that α ⊗ αT is strictly positive rank-1 matrix and therefore λmin(α ⊗
αT ) ≥ 0. Similarly, since A(δ) and K(δ) are both symmetric positive definite we have that
λmin(A(δ)⊗K(δ)) ≥ 0. Noting that A�B = A ◦ (1�B) we can use Lemma 7 to conclude
that λmin(kN ) ≥ 0. Moving onto hM , we use results in Appendix E to represent hM as a
block diagonal matrix

hM = diag
(
n1C

(1), . . . , nNC
(N)
)
.

It follows that
kM = diag

(
C(1), . . . , C(N)

)
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where the blocks C(j) are (D − 1) × (D − 1) symmetric positive definite matrices of full
rank. Therefore the minimum eigenvalue of kM is greater than zero and does not vary with
n1, . . . , nN . We now have shown that λmin(kN ) ≥ 0 and λmin(kH) > 0, the latter we have
also shown has no dependence on n1, . . . , nN . Combining these results with Lemma 6 we
can conclude that λmin(k) ≥ c > 0 where c is a constant defined by c = λmin(kM ). It follows
that λmin(k) = Ωp(c) = Ωp(1) and therefore from Lemma 9 that k−1 = O∗p(1).

We now have shown that
∫
pY(Y, η)dη is of the form (50), that Condition 1 and Condi-

tion 2 hold with normalizing constants αi×j for i ∈ {1, . . . , P} and j ∈ {1, . . . , D − 1} such

that αi×j = nj . Therefore we have ε = Op((D − 1)
∑N

j=1 n
−1
j ).
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