
Journal of Machine Learning Research 23 (2022) 1-47 Submitted 7/21; Revised 3/22; Published 8/22

On Constraints in First-Order Optimization: A View from
Non-Smooth Dynamical Systems

Michael Muehlebach MICHAELM@TUEBINGEN.MPG.DE
Learning and Dynamical Systems Group
Max Planck Institute for Intelligent Systems
72076 Tübingen, Germany

Michael I. Jordan JORDAN@CS.BERKELEY.EDU

Department of Electrical Engineering and Computer Sciences
Department of Statistics
University of California
Berkeley, CA 94720, USA

Editor: Prateek Jain

Abstract
We introduce a class of first-order methods for smooth constrained optimization that are based on
an analogy to non-smooth dynamical systems. Two distinctive features of our approach are that (i)
projections or optimizations over the entire feasible set are avoided, in stark contrast to projected
gradient methods or the Frank-Wolfe method, and (ii) iterates are allowed to become infeasible,
which differs from active set or feasible direction methods, where the descent motion stops as soon
as a new constraint is encountered. The resulting algorithmic procedure is simple to implement even
when constraints are nonlinear, and is suitable for large-scale constrained optimization problems in
which the feasible set fails to have a simple structure. The key underlying idea is that constraints
are expressed in terms of velocities instead of positions, which has the algorithmic consequence
that optimizations over feasible sets at each iteration are replaced with optimizations over local,
sparse convex approximations. In particular, this means that at each iteration only constraints that
are violated are taken into account. The result is a simplified suite of algorithms and an expanded
range of possible applications in machine learning.
Keywords: Convex optimization, nonconvex optimization, constrained optimization, non-smooth
dynamical systems, gradient-based optimization, convergence rate analysis

1. Introduction

Optimization has played an essential role in machine learning in recent years, providing a concep-
tual and practical platform on which algorithms, systems, and datasets can be brought together at
unprecedented scales. This joint platform has led to high-impact applications, the discovery of new
phenomena, and the development of new theory. One of the major themes that have catalyzed the
interplay between optimization and learning is that “simple is good.” Whereas classical optimiza-
tion has tended to focus on relatively complex schemes for determining update directions and step
sizes, the recent focus of research at the learning/optimization interface has been on algorithms that
use simple, stochastic approximations to first-order operators and employ step sizes that are set via
simple averaging schemes, or even use constant step sizes. The simplifications have worked well in
practice and have triggered the development of commodity software systems that are increasingly

c©2022 Michael Muehlebach and Michael I. Jordan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v23/21-0798.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0798.html

MUEHLEBACH AND JORDAN

general and robust. They have also, appealingly, created new challenges for theoreticians, who have
begun to develop new tools to fill in the gaps that the absence of strong assumptions has opened up.

Somewhat overlooked in all of these developments is the treatment of constraints in machine-
learning problems. Machine-learning practitioners often handle constraints on parameters and pre-
dictions via simple, adhoc reparameterizations. This reflects the “simple is good” dictum, but it
also creates a need to develop special-case reparameterizations in many cases and it poses addi-
tional challenges for theory, as convergence rates can be affected by the reparameterizations. More
significantly, it overlooks the broader potential role that constrained optimization can play in ma-
chine learning. Moving beyond pattern recognition, emerging problems involving decision-making
in real-world, multi-agent settings often involve contextual-driven constraints. Control-theoretic
problems generally involve interactions with physical, biological, and social systems, whose laws
are often expressed in terms of fundamental constraints. Mathematically, constraints can simplify
statements of existence and uniqueness, simplify the specification of sets of solutions, and allow
duality principles to be brought to bear.

There is a nascent thread of research on constrained optimization in machine learning that has
aimed to build on the success of first-order methods. It has focused primarily on projected gradient
algorithms and the Frank-Wolfe method. Both of these methods involve an inner loop that is nested
inside of the overall procedure—in the former case the optimization of a quadratic function and
in the latter case the optimization of a linear function. In both cases the optimization is over the
entire feasible set. From a theoretical point of view, these are relatively simple methods, providing
hooks such that convergence analyses from the unconstrained case can be readily brought to bear.
Moreover, they can be easy to implement when the feasible set has a simple structure, such as a
norm ball or a low-dimensional hyperplane. In these cases it is often possible to obtain closed-form
expressions for the inner loop. This simplicity can disappear entirely, however, when the feasible
set fails to have a simple structure. In such cases, optimizing a quadratic or linear function over
the entire feasible set becomes prohibitive, and the “simple is good” dictum provides no clear path
forward.

Important machine learning examples where nonlinear constraints are key includes reinforce-
ment learning, where autonomous agents are often required to plan trajectories that avoid obsta-
cles and satisfy the laws of physics (Karaman and Frazzoli, 2011). Obstacle avoidance constraints
are generally nonconvex and cannot be easily handled with projections. Similarly, minimax prob-
lems that arise in generative adversarial networks or robust learning problems, for example, can
be reformulated as constrained optimization problems, leading to semi-infinite and nonconvex con-
straints (Robey et al., 2021). Machine learning applications in chemistry and physics often ben-
efit from incorporating prior knowledge, for example in the form of symmetries and invariants.
While much of the recent work has focused on reparametrizing convolutional layers in neural net-
works (Schütt et al., 2018; Weiler et al., 2018), these symmetries and invariants are described by
nonconvex and nonlinear constraints.

When the structure of the feasible set fails to enable closed-form projections or closed-form
solutions for Frank-Wolfe updates, optimization theorists often turn to interior point or sequential
quadratic programming methods. The idea of interior point methods is to reduce the constrained
optimization problem to an unconstrained one by using barrier functions that assign a high cost to
points close to the boundary of the feasible set. In sequential quadratic programming, the underlying
nonlinear problem is approximated by a series of quadratic programs. While both classes of methods
have been proposed for applications in machine learning (see, e.g., Koh et al., 2007; Ferris and

2

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

Munson, 2003; Domahidi et al., 2012), they are significantly more complex than the stochastic-
gradient methods that have been so successful in unconstrained machine learning. There remains a
need for a learning-friendly approach to constrained optimization.

In the current paper, we present a class of first-order methods that are applicable to a wide range
of problems in machine learning. A notable simplification of these methods, relative to classical
constrained optimization methods, including projection methods and Frank-Wolfe, is that our meth-
ods rely exclusively on local approximations of the feasible set. These local approximations are
a natural generalization of Clarke’s tangent cone and are well defined for feasible and infeasible
points. Moreover, as we will show, they make possible a key algorithmic simplification—they yield
algorithms that converge even with a constant step size. Technically, they handle the case when
the iterates become infeasible. This makes the resulting algorithmic procedure simple to implement
and also ensures that the descent motion is not necessarily stopped as soon as a new constraint is
violated. Finally, while the entire feasible set might be described by a very large (or even infinite)
number of nonlinear constraints, the local approximation typically only includes a small number
of linear constraints, which substantially reduces the amount of computation required for a single
iteration.

We believe that these simplifications make our approach a natural candidate for large-scale con-
strained machine-learning problems. Our main goal in the current paper is to provide a theoretical
foundation to support such a claim. We also present results from a preliminary set of numerical ex-
periments, which include, for example, randomly generated high-dimensional quadratic programs.
Comparing the new methods to the interior point solver CVXOPT of Andersen et al. (2011), we find
that the complexity of the new methods scales roughly with n2 (where n is the problem dimension),
whereas the complexity of the interior point solver scales with n3. When n is large, this may lead
to speedups of several orders of magnitude.

As our discussion has hinted, while our methods are relatively simple to specify and deploy,
their analysis brings new challenges. Our treatment builds on recent progress in using continuous-
time dynamical systems tools to analyze discrete-time algorithms in gradient-based optimization (Su
et al., 2016; Wibisono et al., 2016; Diakonikolas and Jordan, 2021; Krichene et al., 2015; França
et al., 2020; Betancourt et al., 2018; Muehlebach and Jordan, 2019, 2020, 2021). Much of the
work in this vein is focused on understanding accelerated first-order optimization methods, such
as Nesterov’s algorithm, where the understanding arises by exposing links between differential and
symplectic geometry, dynamical systems, and mechanics. These links, which supply a mechanical
interpretation of accelerated methods and provide a rigorous interpretation of concepts such as “mo-
mentum,” are often easiest to derive in continuous time, making use of variational, Hamiltonian, and
control-theoretic perspectives. Indeed, the most complex part of these analyses often arises in the
conversion from continuous time to discrete time.

In line with this recent literature, our treatment of constrained optimization also straddles the
boundary between continuous time and discrete time. As in the unconstrained setting, the contin-
uous case is relatively straightforward and the major challenges arise in the conversion to discrete
time. Indeed, the key novelty is that in our constrained setting, the discrete-time function that maps
one iterate to the next is discontinuous. Thus, tools such as smooth Lyapunov functions or the
theory of monotone operators that have been widely employed in the unconstrained setting are not
applicable in our setting, and a new analysis framework is needed. We develop such a framework
by making use of ideas from non-smooth mechanics. Indeed, as we will discuss in the following

3

MUEHLEBACH AND JORDAN

section, the closest point of contact with existing literature is the notion of Moreau time-stepping in
non-smooth mechanics.

Related work: In the following paragraphs we highlight some of the connections of our ap-
proach to the existing literature. Due to the wealth of work on constrained optimization over the
last several decades, a comprehensive summary seems out of reach. We will therefore focus on
ideas that are most closely related to our approach and refer to the textbooks of Bertsekas (1999),
Nesterov (2004), Nocedal and Wright (2006), or Luenberger and Ye (2016) for a broader overview.

Our approach is in the spirit of projected gradient methodology. The basic idea of the projected
gradient method is to compute a step along the negative gradient of the objective function and to
project the resulting point back to the feasible set (see, e.g., Bertsekas, 1999, Ch. 2.3). From a
theoretical point of view, the analysis of projected gradients strongly parallels that of unconstrained
gradient descent. Indeed, by generalizing the notion of the gradient to the “gradient mapping” (Nes-
terov, 2004, p. 86), arguments can be readily translated from the unconstrained to the constrained
case. More generally, projected gradients can be viewed as an instance of a proximal point algo-
rithm (Parikh and Boyd, 2013), which itself can be elegantly described with the theory of monotone
operators (Bauschke and Combettes, 2011; Rockafellar, 1976).

The key difference between our approach and classical projected gradients is that our approach
is based on a local approximation of the feasible set. This local approximation includes only the
active constraints1 and is guaranteed to be a convex cone even if the underlying set is nonconvex.
Our approach can be viewed as an inexact projected gradient method, and as such has similarities
to the work of Wang and Liu (2006) and Birgin et al. (2003). However, in contrast to this work,
we do not impose a monotone decrease of the cost function by an appropriate line search. In fact,
our approach converges even with a constant step size, whereby the objective function fails to be
monotonically decreasing (in general).

While projected gradient approaches have been successfully applied in various machine learning
problems (see, e.g., Beck and Teboulle, 2011; Bloom et al., 2016), an even simpler algorithm—the
Frank-Wolfe algorithm—has also received considerable attention in recent years (Jaggi, 2013). At
each iteration of the Frank-Wolfe algorithm, a feasible descent direction is computed by maximizing
the inner product with the negative gradient. This reduces to the minimization of a linear objective
function over the feasible set, which, compared to projected gradients, can lead to considerable
simplification. The simplification is in accord with the “simple is good” dictum of machine learn-
ing, and indeed it has been found that the Frank-Wolfe algorithm provides a unified theoretical
framework for many greedy machine learning algorithms, including support vector machines, on-
line estimation of mixtures of probability densities, and boosting (Clarkson, 2010). Recent results
extend the Frank-Wolfe algorithm to the stochastic setting (Hazan and Kale, 2012; Zhang et al.,
2020), or improve on its relatively slow convergence rate (Combettes and Pokutta, 2020; Garber
and Hazan, 2015).

In some cases, constraints can be handled very effectively by mirror descent (Nemirovski and
Yudin, 1983, Ch. 3). The underlying idea of mirror descent is to introduce a non-Euclidean met-
ric for adapting gradient descent to the specific type of objective function or the specific type of
constraints at hand (Beck and Teboulle, 2003). While mirror descent relies on projections on the
feasible set, the non-Euclidean metric can improve on problem-specific constants and lead to algo-

1. We say that the ith constraint is active at the iterate xk if gi(xk) ≤ 0, where the smooth function g : Rn → Rng

describes the feasible set as {x ∈ Rn | g(x) ≥ 0}. It is important to note that this definition of active constraints
does not require the corresponding dual multipliers to be nonzero.

4

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

rithms whose complexity scales mildly in the number of decision variables. A prominent example
is the optimization of linear functions over the unit simplex, which has important applications in
online learning and online decision making (see Bubeck and Cesa-Bianchi, 2012, Ch. 5).

As we have already discussed, alternatives to projected gradients, mirror descent, and Frank-
Wolfe include interior point methods and sequential quadratic programming. Interior point meth-
ods provide practical solutions to many problems in constrained optimization, and they are guar-
anteed to return approximate solutions to many convex nonlinear programming problems in poly-
nomial time (Nesterov and Nemirovskii, 1994). They can be particularly efficient if the under-
lying Karush-Kuhn-Tucker system is sparse, which can be exploited for simplifying the Newton
updates (Domahidi et al., 2012). Similarly, in sequential quadratic programming, the underlying
Karush-Kuhn-Tucker system resembles the Newton update of interior point methods. There are
many different flavors of sequential quadratic programming, depending on the type of line search,
whether only approximate second order information is used, or whether equality constraints are
eliminated. An implementation that is widely used to solve complex optimal control and planning
problems is presented in Gill et al. (2005). Recent advances in sequential quadratic programming
share some similarity with our approach; see, for example, Torrisi et al. (2018) and Häberle et al.
(2021). Both of these methods involve linearizing both the active and inactive constraints. The
fact that all constraints are taken into account at each iteration enables the algorithms to anticipate
constraint violations and distinguishes these approaches from the methods that will be discussed
herein.

Finally, a main goal of the current paper is to bring to the fore an analogy between constrained
optimization and non-smooth mechanics. Indeed, from a certain point of view, finding station-
ary points of a constrained optimization problem is equivalent to computing equilibria of a cor-
responding non-smooth mechanical system. The classical approach to simulating such systems is
event-based integration, which is a relatively complex algorithm that switches between smooth and
non-smooth motion. An alternative is Moreau time-stepping (Moreau, 1988), which is based on the
discretization of a measure-differential inclusion that captures the smooth and non-smooth parts of
the motion. Moreau’s algorithm can handle multiple (or even an infinite number of) discontinuities
that may all happen within one time step. Further background can be found in the texts of Glocker
(2001) and Studer (2009). Recent work in this area includes extensions to continuum mechanics
(Capobianco and Eugster, 2018) and higher-order integration schemes (Acary, 2012).

Although we will exploit analogies to the simulation of physical systems, the focus of our the-
oretical analysis is in developing algorithms that efficiently compute approximate local minima of
constrained nonlinear programming problems. In this setting, it will be crucial to consider large
time steps, to handle constraint violations (which are often ignored when simulating non-smooth
mechanical systems), and to provide convergence guarantees in discrete time. Our continuous-time
analysis is also related to the theory of gradient inclusions, which are gradient flow dynamics on
nonsmooth convex functionals (see, e.g., Aubin and Cellina, 1984, Ch. 3). These have been exten-
sively studied in the mathematical community due to their numerous applications, for example in
the calculus of variations (Cellina and Vornicescu, 1998). Our gradient flow formulation relies on
local approximations of the feasible set. These approximations evolve over time, and as such, the
dynamics can be viewed as a generalization of a sweeping process (Moreau, 1999).

Compared to classical treatments of constrained optimization, our treatment exhibits a key fea-
ture that arises directly from the physical analogy. Rather than expressing constraints in the language
of positions or configurations, as is standard in optimization, our constraints will be expressed in

5

MUEHLEBACH AND JORDAN

terms of velocities. Thus, we will distinguish between constraints on the “position level” and con-
straints on the “velocity level.” Our focus on the latter will be seen to lead directly to a local, convex
approximation of the feasible set. By a constraint on velocity level, we mean a constraint on the for-
ward increment limdt↓0(x(t+dt)−x(t))/dt in continuous time or the difference (xk+1−xk)/T in
discrete time, where T is the step size. In continuous time, a given position constraint can (in most
cases) be reformulated as an equivalent velocity constraint. However, this equivalence breaks down
in discrete time, which necessitates a careful analysis of the resulting discrete-time algorithms. We
also note that there are (many) mechanical systems that have velocity constraints which cannot be
formulated as position constraints. For example, while ice skater can move to any position in a
skating rink, their velocity is constrained to lie parallel to the blades of the skates.

Notation: We follow standard notation from convex analysis. In particular, R denotes the real
numbers, R≥0 the nonnegative real numbers, R≤0 the nonpositive real numbers, and Z the set of all
integers. The notation | · | is reserved for the Euclidean norm or the cardinality of a set. The gradient
of a function h : Rn → Rm is denoted by ∇h : Rn → Rn×m and the indicator function of the set
C is referred to as ψC : Rn → R ∪ {∞}, that is, ψC(x) takes the value zero for x ∈ C and ∞
otherwise. The subgradient of a convex function g : Rn → R evaluated at x ∈ Rn is denoted by
∂g(x) and is defined as the set {v ∈ Rn | vT(y − x) ≤ g(y)− g(x), ∀y ∈ Rn}. The tangent cone
(in the sense of Clarke) at any point x ∈ C is referred to as TC(x), that is, δx ∈ TC(x) if there exist
two sequences xj → x, xj ∈ C, tj ↓ 0, such that (xj − x)/tj → δx. The corresponding normal
cone is denoted by NC(x) := {λ ∈ Rn | λTδx ≤ 0,∀δx ∈ TC(x)}. We will consider trajectories
x : R≥0 → Rn that are absolutely continuous and have a piecewise continuous derivative. Absolute
continuity means that x(t)−x(0) can be expressed as the Lebesgue integral over the velocity ẋ; that
is, x(t) = x(0)+

∫ t
0 ẋ(τ)dτ for all t ≥ 0. The assumption that ẋ is piecewise continuous means that

on any finite interval, ẋ is continuous except at a finite number of points, where left and right limits,
denoted by ẋ(t0)− and ẋ(t0)+, are well-defined. The value ẋ(t0) at the discontinuity t0 is of no
interest and may or may not exist. Finally, we use subscripts to denote both single components of a
vector and the iteration number of a discrete algorithm. The distinction will be made from context
(we usually reserve the subscript k for the iteration number).

2. Overview of the Results

We consider the following optimization problem:

min
x∈C

f(x), where C := {x ∈ Rn | g(x) ≥ 0, h(x) = 0}, (1)

and where f : Rn → R defines the objective function. The functions g : Rn → Rng and h : Rn →
Rnh define the constraints, and n, ng, and nh are positive integers. The functions f , g, and h are
continuously differentiable and have a Lipschitz continuous gradient. Moreover, f is assumed to
be such that f(x) → ∞ for |x| → ∞ and C is assumed to be non-empty and bounded, which
guarantees that the minimum in (1) is attained.

Brief summary of the main contributions: In mathematical optimization constraints are typi-
cally treated by direct reference to positions, meaning that xk or x(t) are constrained to lie in C for
all k ≥ 0 or all t ≥ 0, respectively. We adopt a fundamentally different point of view—instead of
constraining x(t) or xk, we constrain the forward velocity ẋ(t)+ = limdt↓0(x(t+ dt)−x(t))/dt or
forward increments (xk+1− xk)/T . At a given position x ∈ Rn, the set of all admissible velocities

6

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

will be denoted by Vα(x) ⊂ Rn. When x ∈ C, the set Vα(x) corresponds to the tangent cone of the
set C at x. We will introduce an appropriate generalization of Vα(x) in order to also capture cases
in which x 6∈ C. The two different point of views on constraints are illustrated in Figure 1.

In continuous time, the resulting velocity constraint is equivalent to the original position con-
straint, assuming constraint qualification. However, this equivalence breaks down in discrete time,
and may lead to infeasible iterates over the course of the optimization. One of our main results is
a guarantee that the resulting discrete algorithm nonetheless converges to stationary points, despite
the possibility of infeasible iterates and despite the discontinuous nature of the map from xk to
xk+1. In addition to providing such a guarantee, we derive rates of convergence and we show that a
formulation of constraints on the velocity level can lead to computational advantages. In particular,
we show that at each iteration, only a linear and convex approximation of the original nonlinear
and nonconvex feasible set needs to be considered. Moreover, the linear approximation includes
only the constraints that are active at x(t) or xk. On randomly generated dense quadratic programs,
for example, the complexity of the proposed method scales with n2 (empirically), which contrasts
with state-of-the-art implementations of an interior-point method, which scale with n3. Moreover,
in many practical problems (for example, support vector machines) the proposed algorithm greatly
reduces the number of constraints that must be considered at each iteration.

In summary, the purpose of this article is twofold: (i) we highlight that “position” constraints
can be reformulated as “velocity” constraints, which leads to a new perspective on constrained op-
timization that has connections to non-smooth mechanics, and (ii) we exemplify and showcase this
new point of view on gradient flow and gradient descent, which is arguably one of the simplest,
but also most relevant, use cases for machine learning. This is done by providing formal conver-
gence guarantees in continuous and in discrete time, deriving rates, and studying the behavior of the
algorithms in numerical experiments.

Detailed summary of the main contributions: In order to discuss the results in greater detail,
we introduce the following definition and assumption, which will hold throughout the remainder of
the article.

Definition 1 The point x ∈ Rn satisfies the Mangasarian-Fromovitz constraint qualification if
the columns of ∇h(x) are linearly independent and if there exists a vector w ∈ Rn such that
∇h(x)Tw = 0 and ∇gi(x)Tw > 0 for all i ∈ Ix, where Ix denotes the set of active inequality
constraints at x, i.e., Ix := {i ∈ Z | gi(x) ≤ 0}.1

Assumption 1 (standing) The Mangasarian-Fromovitz constraint qualification is satisfied for all
x ∈ Rn.

From the definition of TC(x) it follows that every δx ∈ TC(x) satisfies ∇h(x)δx = 0 and
∇gi(x)Tδx ≥ 0, for all i ∈ Ix. Assumption 1 ensures that the converse is also true, which guaran-
tees that all stationary points of (1) satisfy the corresponding Karush-Kuhn-Tucker conditions. We
further introduce the set

Vα(x) := {v ∈ Rn | ∇h(x)Tv + αh(x) = 0, ∇gi(x)Tv + αgi(x) ≥ 0, ∀i ∈ Ix}, (2)

1. We would like to emphasize that our definition of active constraints does not require constraints to have corresponding
dual multipliers that are nonzero.

7

MUEHLEBACH AND JORDAN

position constraint velocity constraint velocity constraint

x(t)

ẋ+(t)

x(t)

x(t)

ẋ+(t)

Figure 1: The figure contrasts position constraints with velocity constraints. The leftmost sketch
illustrates the position constraint, where x(t) is constrained to the feasible set as indicated
by the shaded region. The center and right figures illustrate the induced constraints on
the velocity ẋ(t)+ (which will be precisely defined below). If x(t) is in the interior of
the feasible set, there are no restrictions on the forward velocity, as indicated with the
shaded ball without border (center). The figure on the right illustrates the case where
x(t) lies on the boundary of the feasible set. As a result, ẋ(t)+ is constrained to lie in
the cone indicated by the shaded region. In the discrete-time case ẋ(t)+ is replaced with
(xk+1 − xk)/T .

where α ≥ 0 is a positive scalar. The role of α will be discussed below. As a result of the constraint
qualification, the set Vα(x) reduces to the tangent cone TC(x) of the setC for any x ∈ C. Moreover,
for a fixed x ∈ Rn, Vα(x) is a convex polyhedral set, involving only the active constraints Ix.

For some of the results we will require convexity:

Assumption 2 Let C be convex and f strongly convex with strong convexity constant µ > 0.

We will explicitly state when Assumption 2 will be needed.
With the notation in place, we are ready to state our main results. We start with a general

framework based on a continuous-time gradient flow which will be used as a starting point for our
discrete algorithm. The following proposition highlights that trajectories satisfying the continuous-
time gradient flow converge to stationary points, even when the objective function f or the set C
are nonconvex, or when the initial condition x(0) is infeasible. The discrete algorithm that we
investigate subsequently will be a simple Euler discretization of the continuous-time gradient flow.
Thus the analysis of the continuous-time flow will be important for understanding the algorithm’s
behavior for small step sizes in addition to its intrinsic interest.

Proposition 2 (constrained gradient flow) Let x : [0,∞)→ Rn be an absolutely continuous trajec-
tory with a piecewise continuous derivative. Then, for any x(0) ∈ C, the following are equivalent:

ẋ(t) = −∇f(x(t)) +R(t), −R(t) ∈ NC(x(t)), ∀t ∈ [0,∞) a.e., (3)

ẋ(t)+ = −∇f(x(t)) +R(t), −R(t) ∈ ∂ψVα(x(t))(ẋ(t)+), ∀t ∈ [0,∞), (4)

ẋ(t)+ = argmin
v∈Vα(x(t))

1

2
|v +∇f(x(t))|2, ∀t ∈ [0,∞), (5)

8

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

where ẋ(t)+ denotes the right-hand derivative of x at t.
For any x(0) ∈ Rn, (4) and (5) are equivalent and lead to a unique trajectory x(t) (if it exists)

which is guaranteed to converge to the set of stationary points of (1) (for α > 0); that is, x(t)→ C
as t→∞ and

lim
t→∞
| − ∇f(x(t)) +R(t)| = 0,

where R(t) is defined in (4). Moreover, if the stationary points are isolated, the trajectory x(t)
converges to a single stationary point.

If Assumption 2 (convexity) is satisfied and α ≤ 2µ, the trajectory satisfying (4) and (5) con-
verges exponentially:

(h(x(0)),min{0, g(x(0))})Tλ∗e−αt ≤ f(x(t))− f∗ ≤ (f(x(0))− f∗)e−2µt, (6)

for all x(0) ∈ Rn, where f∗ is the value of the minimizer in (1) and λ∗ is a multiplier that satisfies
the Karush-Kuhn-Tucker conditions of (1).

We make the following remarks:

• We note that the differential inclusion (3) is also known as a gradient inclusion, since its right-
hand side amounts to the negative subgradient of f + ψC . It has been extensively studied in
the mathematical community (see, e.g., Aubin and Cellina, 1984, Ch. 3). If C is convex,
the subgradient of f + ψC is maximally montone (see, e.g., Bauschke and Combettes, 2011,
p. 354, Theorem 20.25) and as a result, existence and uniqueness of absolutely continuous
trajectories satisfying (3) can be guaranteed (see, e.g., Aubin and Frankowska, 1990, Theo-
rem 10.3.1, p. 399).

• The additional assumptions on ẋ are used for establishing the equivalence between (3) and
(4). Convergence results for (4) and (5) similar to those of Proposition 2 can still be obtained
when the restrictions on ẋ are relaxed. We also note that by applying the theory of Filippov
(1988), (4) and (5) can be extended to a differential inclusion that is guaranteed to have an
absolutely continuous solution. We refer the reader who is interested in existence results to
the work of Filippov (1988) and Aubin and Cellina (1984). The equivalence between (3) and
(4) under weaker assumptions on ẋ is discussed in Brogliato et al. (2006), which also provides
a short existence proof (requiring, however, that C is convex).

• The variableR(t) in (3) can be regarded as a reaction force that imposes the constraint x(t) ∈
C for all t ∈ [0,∞) (by definition, the normal cone is empty if x(t) 6∈ C). We therefore say
that (3) includes the constraint on the position level. In contrast, the reaction force R(t) in (4)
enforces ẋ(t)+ ∈ Vα(x(t)) for all t ∈ [0,∞), which reduces to ẋ(t)+ ∈ TC(x(t)) for x(t) ∈
C. The condition ẋ(t)+ ∈ Vα(x(t)) can be viewed as an extension of ẋ(t)+ ∈ TC(x(t)) to
allow also for x(t) 6∈ C. Interpreting (4) as a stationarity condition for ẋ(t)+ yields (5). We
therefore say that (4) and (5) impose the constraints on the velocity level.

• The intuition behind the equivalence of (3), (4), and (5) can be summarized in the following
way. For an absolutely continuous trajectory x(t), the constraint x(t) ∈ C for all t ∈ [0,∞)
is equivalent to ẋ(t)+ ∈ Vα(x(t)) for all t ∈ [0,∞), x(0) ∈ C (Moreau, 1988, Remark
2.5).1 If we think of x(t) as the position of a point mass, and ẋ(t)+ as its velocity, this can

1. Constraint qualification is needed for the equivalence to hold.

9

MUEHLEBACH AND JORDAN

be stated as follows: A constraint on the position of the point mass induces a constraint on
its velocity. Conversely, the constraint ẋ(t)+ ∈ Vα(x(t)) on the velocity ensures that the
position constraint is satisfied for all times t ≥ 0, provided that x(0) ∈ C.

• The reformulation (5) emphasizes that at each point in time, the velocity is chosen to match
unconstrained gradient flow as closely as possible, subject to the velocity constraint ẋ(t)+ ∈
Vα(x(t)). This can be seen as an analogue of the principle of least constraint in mechanics
(Glocker, 2001, Ch. 9).

• Imposing ẋ(t)+ ∈ Vα(x(t)) for all t ∈ [0,∞), yields, by definition of the set Vα(x) and by
applying Grönwall’s inequality,

gi(x(t)) ≥ gi(x(0))e−αt, i ∈ Ix(0), h(x(t)) = h(x(0))e−αt, (7)

for all t ∈ [0,∞). Consequently, the constant α controls how quickly the constraint violations
decay. We note that there are two competing objectives: reducing the objective function
and converging to the feasible set. The variable α controls the tradeoff between these two
objectives; for small α, the emphasis is on reducing the objective function, for large α, the
emphasis is on converging to the feasible set. We will also see that in discrete time, α is
required to satisfy αT ≤ 1 for guaranteeing convergence (T is the step size).

• By reformulating the constraint on the velocity level as in (4) and (5), the velocity ẋ(t)+

can by computed by relying on a local and linear approximation of the set C via ẋ(t)+ ∈
Vα(x(t)), which includes only the active constraints Ix(t). Hence, even for a nonconvex
optimization problem such as (1), the optimization given by the right-hand side of (5) is
convex.

By replacing x(t)+ with (xk+1 − xk)/T and x(t) with xk in (4) or (5), we obtain the following
discrete algorithm:

xk+1 = xk − T∇f(xk) + TRk, −Rk ∈ ∂ψVα(xk)((xk+1 − xk)/T), k = 0, 1, 2, . . . , (8)

which for any x0 ∈ Rn, leads to well-defined (unique) iterates, as long as the Mangasarian-
Fromovitz constraint qualification is satisfied for all x ∈ Rn. As in the continuous-time setting,
the discrete algorithm relies on a local approximation of the feasible set at each iteration, which
includes only the active constraints Ixk . Projections or optimization over the entire feasible set C
(at each iteration) are therefore avoided. While this reduces computation, it also complicates the
analysis.

It is important to note that (8) can be reformulated in a number of equivalent ways. The choice
made in Algorithm 1 is particularly suitable for numerical implementation.

The following definitions will be useful for characterizing the behavior and the convergence rate
of (8). We start by introducing the function v : Rn → Rn, which assigns the velocity v(x) to each
x ∈ Rn:

v(x) := argmin
v∈Vα(x)

1

2
|v +∇f(x)|2. (9)

Clearly, in continuous time, (4) and (5) evolve as ẋ(t)+ = v(x(t)), whereas in discrete time, (8)
imposes (xk+1 − xk)/T = v(xk). As a result of the constraint qualification, strong duality holds

10

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

Algorithm 1 Implementation of the gradient descent scheme (8).
Require: x0 ∈ Rn, TOL, MAXITER, T > 0, αT ∈ (0, 1]
k = 0
while k < MAXITER do

Determine the set of closed constraints Ixk
Define Wk := (∇h(xk),∇gi(xk)i∈Ixk) and Dk := Rnh × R|Ixk |≥0

Define ḡk := (h(xk), gi(xk)i∈Ixk)

Find λk ∈ Dk such that −λk ∈ ∂ψDk(WT
k Wkλk −WT

k ∇f(xk) +αḡk) (see Section 7, (26))
Perform the update xk+1 = xk − T∇f(xk) + TWkλk
if |xk+1 − xk| ≤ T · TOL then

return xk+1

end if
k ← k + 1

end while

(see Lemma 5 in Section 3 for details) and we obtain the following dual (the dual corresponds to (9)
and is not directly related to (1)):

d(x) := max
λ∈Dx

l(x, λ)− 1

2α
|∇xl(x, λ)|2, (10)

where∇x denotes the gradient with respect to x, and the Lagrangian l : Rn× (Rnh ×Rng
≥0)→ R is

defined as
l(x, λ) := f(x)− λTḡ(x), (11)

with ḡ(x) := (h(x), g(x)). The set Dx in (10) is given by

Dx := {λ ∈ Rnh × Rng
≥0 | λnh+i = 0, ∀i 6∈ Ix},

and includes only multipliers λi 6= 0 that correspond to equality constraints or active inequality
constraints, defined by i ∈ Ix. The multipliers λnh+i, which correspond to inactive inequality
constraints, i.e., i 6∈ Ix, are set to zero, and can therefore be eliminated from the outset when
solving (10) (as is done in Algorithm 1). In general, there might be multiple λ ∈ Dx that attain the
maximum in (10). We will denote any one of them by λ(x). As a consequence of Lagrange duality,
λ(x) is related to the minimizer of (9) by

v(x) = −∇xl(x, λ(x)) = −∇f(x) +∇ḡ(x)λ(x). (12)

We note that the variable R(t) in (4) or Rk in (8) can therefore be expressed as ∇ḡ(x(t))λ(x(t))
and ∇ḡ(xk)λ(xk), respectively.

In general, the multipliers λ(x) that result from (10) are different than the multipliers λ∗ that
arise from the Karush-Kuhn-Tucker conditions of (1) and only agree when x = x∗.

The function d as defined in (10) will be important for the analysis of (8) and it will be shown that
under suitable assumptions, d(xk) is monotonically increasing in k and converges to f∗. Moreover,
if Assumption 2 (convexity) holds, f∗ is an upper bound on d(x) and f∗ − d(x) bounds |x− x∗|2,
the distance of x to the optimizer of (1). A proof of this fact is included in Appendix A along with
other properties of d. This makes d a natural choice for evaluating the progress of (8). We note that

11

MUEHLEBACH AND JORDAN

neither f(xk) nor ḡ(xk) alone are suitable, since these are not monotonic in k. Indeed, since we
allow for infeasible iterates, f(xk) might increase over the course of the optimization and different
constraints in ḡ(xk) might turn on and off.

The maximum curvature of f (the Lipschitz constant of ∇f) limits the maximum admissible
step size of gradient descent in the unconstrained case. We will see that the maximum curvature
of l(·, λ) (for a fixed λ) will play a similar role for (8). We denote by µ̄l(λ) and L̄l(λ) the strong
convexity and smoothness constant of l(·, λ) : Rn → Rn (for a fixed λ). In case C is convex
and f is strongly convex, the strong convexity constant µ of f is a natural lower bound for µ̄(λ),
λ ∈ Rnh × Rng

≥0, which is attained for λ = 0.
With this notation in place, we are now ready to state the main results that characterize (8).

Proposition 3 (constrained gradient descent) Let Assumption 2 (convexity) be satisfied. Then, for
any x0 ∈ Rn, the iterates xk of (8) are well-defined (unique) and guaranteed to converge to the
minimizer of (1) for

T ≤ 2

Ll + µ
, α < µ,

where Ll is such that Ll ≥ L̄l(λ(x)) for all x ∈ Rn.1 The sequence d(xk) is monotonically
increasing in k and converges to f∗.

The velocity (xk+1 − xk)/T converges with

min
j∈{0,1,...,k}

| − ∇f(xj) +Rj |2 ≤
f∗ − d(x0)

c1(k + 1)
, ∀k ≥ 0, ∀x0 ∈ Rn,

where c1 = T (µ/α− 1)(1− µT/2) > 0 is constant, and for every x0 ∈ Rn there exists a constant
N large enough such that

| − ∇f(xk) +Rk|2 ≤
2

c1
(1− c2T)k−N (f∗ − d(xN)),

where c2 = 2α(1− µT/2)(µ− α)/(Ll − α) > 0 is constant. Similar bounds hold for the iterates
xk, that is,

min
j∈{0,1,...,k}

|x∗ − xj |2 ≤
Ll/α− 1

c1(µ− α)

f∗ − d(x0)

k + 1
, ∀k ≥ N,

and

|x∗ − xk|2 ≤
2(Ll/α− 1)

c1(µ− α)
(1− c2T)k−N (f∗ − d(xN)), ∀k ≥ N.

The following remarks are important:

• Algorithm (8) does not anticipate any constraints that could potentially be violated at future
iterations (since Vα(x) is a local approximation of C, see Figure 1, that involves only i ∈ Ix).
Unlike in the continuous-time case, where constraint violations decrease exponentially over
time (see (7)), a constraint may therefore open up, and close again a few iterations later.
Nevertheless, the algorithm is guaranteed to converge at nearly a linear rate, which we find
remarkable.

1. In case g is affine, Ll = L, where L is the smoothness constant of f .

12

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

• The convergence rate is dimension independent, which distinguishes the algorithm from
interior-point methods, for example, where O(

√
ng) Newton-iterations are required to de-

crease the value of the objective function by a constant factor.

• In the important special case where constraints are affine, all the above results hold for Ll =
L, where L is the smoothness constant of f . The constant Ll is related to the maximum
curvature of the Lagrangian, which seems a natural generalization from the unconstrained to
the constrained case.

• Another important special case is given for a single nonlinear inequality constraint (ng = 1,
nh = 0). We then obtain

λ(x) =

{∇g(x)T∇f(x)−αg(x)
|∇g(x)|2 for g(x) ≤ 0, ∇g(x)T∇f(x)− αg(x) ≥ 0,

0 otherwise.

In this case, the constant Ll is given by the largest eigenvalue of the Hessian d2l/dx2 =
d2f/dx2 − λ(x) d2g/dx2 over all x ∈ Rn.

• The restriction α < µ on the constant α is likely to be conservative. We observed in numerical
experiments that a choice αT close to unity yields faster convergence. The restriction αT ≤ 1
is, however, necessary for convergence.

• The convergence analysis will point to immediate extensions and variants of (8), which in-
clude line-search strategies, or alternations between gradient updates of the Lagrangian with
fixed multipliers (which are computationally inexpensive) and updates of the multipliers ac-
cording to (10). These extensions will be discussed in Section 5.1.

• The results show that velocity and position converge at an exponential rate for large k. In
fact, more detailed exponential convergence results that also apply to small k will be derived
in Section 5. However, as a result of the discontinuities in (8) (constraints are not anticipated),
these are more complicated to state and will require additional notation.

• When choosing α = µ/2, for example, the exponential rate of convergence, c2T , scales with
(µ/Ll)

2 for large Ll/µ. This is in contrast to projected gradient descent, where the rate scales
with µ/L for large L/µ, where L is the smoothness constant of f . This is, however, an
artefact of the analysis and a simple argument (see Appendix E) provides a tighter asymptotic
rate of convergence of (8), which scales in fact with µ/Ll for large Ll/µ.

• By following the analysis of Appendix D, we conclude that for a single strongly concave
constraint function g, the constant Ll is of the form L(1 + Lg/µg const), where µg denotes
the strong convexity constant of−g, Lg the smoothness constant of−g, and const is indepen-
dent of L, µ, µg, and Lg. This means that Ll is affected by the ratio Lg/µg, which matches
our intuition, since for larger Lg/µg, the approximation quality of our local, sparse convex
approximations of the feasible set deteriorates.

The remainder of the article is concerned with proving Proposition 2 and Proposition 3, pro-
viding context for both algorithms, discussing a particular implementation of Algorithm 1, and
illustrating the algorithms with numerical examples.

13

MUEHLEBACH AND JORDAN

3. The Continuous-Time Case

The following section is concerned with proving Proposition 2. This will be done in several smaller
steps, which are presented in the following subsections. Each part will be important to understand
the continuous-time gradient flow (5) and its discrete-time counterpart (8).

3.1 Equivalences between position and velocity constraints in continuous time

As mentioned in Section 2, the constraint x(t) ∈ C for all t ∈ [0,∞) can be reformulated as a
constraint on the velocity, i.e., ẋ(t)+ ∈ Vα(x(t)). This forms the basis for the equivalence between
(3) and (4):

Proposition 4 (Similar to Moreau (1988, Prop. 5.1), Glocker (2001, Ch. 7)) Let x : [0,∞)→ Rn,
x(0) ∈ C, be an absolutely continuous trajectory that has a piecewise continuous derivative. Then,
x(t) satisfies (3) if and only if it satisfies (4):

ẋ(t)+ = −∇f(x(t)) +R(t), −R(t) ∈ ∂ψVα(x(t))(ẋ(t)+), ∀t ∈ [0,∞).

Proof The proof is adapted from Moreau (1988, Prop. 5.1). We start by assuming that x(t) satisfies
(4). The fact that the subdifferential of the indicator function is non-empty implies that ẋ(t)+ ∈
Vα(x(t)) for all t ∈ [0,∞). Combined with x(0) ∈ C, we therefore have x(t) ∈ C for all t ∈
[0,∞), and Vα(x(t)) = TC(x(t)). This follows by contradiction: Let t be such that ḡi(x(t)) < 0.
Then, by continuity of ḡi(x(t)) and the fact that x(0) ∈ C, there exists 0 ≤ t0 < t such that
ḡi(x(t0)) = 0 and ḡi(x(s)) < 0 for all s ∈ (t0, t]. This also means that

ḡi(x(t)) =

∫ t

t0

∇ḡi(x(s))Tẋ(s)+ds ≥ 0,

since, by virtue of ẋ(s)+ ∈ Vα(x(s)) for all s ∈ [t0, t], the integrand is guaranteed to be non-
negative. This leads to the desired contradiction and ensures that x(t) ∈ C for all t ∈ [0,∞).
In addition, it follows from the definition of the subdifferential that −R(t)T(v − ẋ(t)+) ≤ 0 for
all v ∈ TC(x(t)). Due to the fact that TC(x(t)) is a cone, this implies −R(t)Tv ≤ 0 for all
v ∈ TC(x(t)) (otherwise we could derive a contradiction by scaling an appropriate v ∈ TC(x(t))),
or in other words, −R(t) ∈ NC(x(t)). This shows that any x(t) with x(0) ∈ C satisfying (4) also
satisfies (3).

In order to show the converse we start by assuming that x(t) satisfies (3). We consider any
interval (t0, t1) where ẋ(t) is continuous. By definition of the tangent cone, we have limdt→0(x(t+
dt) − x(t))/dt = ẋ(t) ∈ TC(x(t)) and limdt→0(x(t − dt) − x(t)) = −ẋ(t) ∈ TC(x(t)) for all
t ∈ (t0, t1). Thus, from −R(t) ∈ NC(x(t)) it follows that −R(t)Tẋ(t) ≤ 0 and R(t)Tẋ(t) ≤ 0,
which implies that −R(t)Tẋ(t) = 0 for all t ∈ (t0, t1). In addition, by definition of the normal
cone, it follows that −R(t)Tv ≤ 0 for all v ∈ TC(x(t)). Combining these two facts results in
−R(t)T(v − ẋ(t)) ≤ 0 for all v ∈ TC(x(t)) and all t ∈ (t0, t1). Hence, −R(t) ∈ ∂ψTC(x(t))(ẋ(t))
for all t ∈ (t0, t1), which implies (4) for any time interval where ẋ(t) is continuous. By taking the
right-limit t ↓ t0, we conclude that −R(t0)+ ∈ ∂ψTC(x(t0))(ẋ(t0)+), ẋ(t0)+ = −∇f(x(t0)) +
R(t0)+, since x(t) is continuous. Thus, (4) holds for t = t0, and therefore also at any other time
instant where ẋ(t) is discontinuous.

Three important points are worth mentioning:

14

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

• The piecewise continuity assumptions on ẋ are only used for showing that (3) implies (4);
absolute continuity of x is enough for the converse to hold (provided the constraint qualifica-
tions are satisfied).

• When the solution x(t) slides along the boundary of the constraint (ẋ(t) is continuous), the
reaction force is necessarily orthogonal to the velocity. From the point of view of classical
mechanics, this means that the constraint reaction forces are passive and do not exert any
power (at almost every time instant). This directly implies that the function f(x(t)) necessar-
ily decreases along the trajectories of (3).

• The condition (4) describes the forward evolution of x(t) by prescribing the right-hand deriva-
tive of ẋ at each point in time. An equivalent formulation for the backwards evolution also
exists. We will concentrate on the forward evolution, since we are interested in minimizing
f .

The above proposition proves the equivalence between (3) and (4) as stated in Proposition 2. For
proving the convergence results of Proposition 2, the following intermediate steps will be useful.

3.2 Intermediate results

The first result establishes strong duality between (9) and (10) and summarizes the stationarity
condition of (10), while the second result points to an important property of the multipliers λ(t).

Lemma 5 Strong duality holds for (9). For α ≥ 0, the dual of (9) can be restated as

max
λ∈Dx

−1

2
|∇ḡ(x)λ−∇f(x)|2 − αλTḡ(x), (13)

and as a result, λ(x) satisfies the following stationarity conditions:

∇ḡ(x)T∇ḡ(x)λ(x)−∇ḡ(x)T∇f(x) + αḡ(x) ∈ ∂ψDx(λ(x)). (14)

Proof We start by showing that Slater’s condition holds for Vα(x) as a consequence of the constraint
qualification; i.e., for any x ∈ Rn, there exists a v ∈ Rn such that ∇h(x)Tv + αh(x) = 0 and
∇gi(x)Tv + αgi(x) > 0 for all i ∈ Ix.

We pick a v̄ ∈ Rn such that ∇h(x)Tv̄ = −αh(x). Due to the fact that the columns of ∇h(x)
are linearly independent (see Assumption 1), such a v̄ exists. Thus, for a sufficiently large constant
ξ > 0, we have that ∇h(x)T(v̄ + ξw) = −αh(x), ∇gi(x)T(v̄ + ξw) > −αgi(x) for all i ∈ Ix,
where w ∈ Rn satisfies ∇h(x)Tw = 0 and ∇gi(x)Tw > 0 for all i ∈ Ix. By assumption (see
Assumption 1) such a w exists. Thus, v = v̄ + ξw satisfies the required conditions.

Strong duality follows from the fact that (9) is convex and Slater’s condition holds. The rest is
immediate.

The following lemma establishes that λ(t) is a feasible candidate for the dual (10) (or (13)) at
time t0 > t provided that t is close enough to t0. A similar discrete-time result will be derived in
Section 5. These result are fundamental for the convergence analysis of our algorithms.

Lemma 6 Let the assumptions of Proposition 2 be satisfied. Then, for every t0 > 0, there exists
δ > 0 such that λ(t) ∈ Dx(t0) for all t ∈ (t0 − δ, t0).

15

MUEHLEBACH AND JORDAN

Proof We fix t0 > 0 and consider the set of inequality constraints that are inactive at t0; that is,
gi(x(t0)) > 0. Due to the continuity of x and g there exists an interval (t0 − δ, t0), where δ > 0
is small enough, such that gi(x(t)) > 0 for all t ∈ (t0 − δ, t0) and for all i 6∈ Ix(t0). As a result,
Ix(t) ⊂ Ix(t0) for all t ∈ (t0 − δ, t0) and the result follows.

3.3 Convergence results

The following section provides the remaining statements of Proposition 2; i.e., showing the equiv-
alence between (4) and (5), showing that the solutions of (3), (4), and (5) converge to stationary
points of (1) and deriving convergence rates if C is convex and f is strongly convex.

Claim 1 Let the assumptions of Proposition 2 be satisfied. For any x(0) ∈ Rn, (4) and (5) are
equivalent and lead to a unique trajectory x(t), which is guaranteed to converge to the set of sta-
tionary points of (1) (for α > 0). Moreover, if the stationary points are isolated, the trajectory x(t)
converges to a single stationary point.

Proof The equivalence between (4) and (5) follows from the fact that (4) corresponds to the station-
arity condition of (5), which, by strong convexity and non-emptiness of Vα(x(t)), uniquely defines
ẋ(t)+ for each t ∈ (0,∞). This implies that x(t) is unique.

We argue next that x(t) → C for t → ∞, and that, as a result, x(t) and λ(t) are bounded.
According to (7), the constraint violations at time t can be bounded by gi(x(t)) ≥ gi(x(0))e−αt for
all i ∈ Ix(0) and |h(x(t))| ≤ |h(x(0))|e−αt. We therefore conclude that x(t)→ C for t→∞. The
fact that C is bounded and x is continuous implies that x(t) is bounded for all t ≥ 0. As a result,
there exist bounded dual variables λ(t) satisfying (13).

The stationarity condition (14) implies that

λ(t)T∇ḡ(x(t))T [∇ḡ(x(t))λ(t)−∇f(x(t))] + αλ(t)Tḡ(x(t)) = 0,

due to complementary slackness. This can be restated as −R(t)Tẋ(t)+ = αλ(t)Tḡ(x(t)), which,
in view of (4), yields

d

dt
f(x(t))+ = −|ẋ(t)+|2 − αλ(t)Tḡ(x(t)). (15)

We further note that f(x(t)) is bounded below, which, by taking the integral of the right-hand side
of (15), implies ∫ ∞

0
−|ẋ(t)+|2 − αλ(t)Tḡ(x(t))dt > −∞. (16)

We note that the integrand is closely related to the objective function in (13), which we denote as
ξd(t):

ξd(t) := −1

2
|ẋ(t)+|2 − αλ(t)Tḡ(x(t)).

From the fact that λ(t) is bounded and that −λ(t)Tḡ(x(t)) decays exponentially, we conclude that
lim supt→∞ ξd(t) ≤ 0. From (16) it also follows that the integral of ξd over R≥0 is bounded below.

We will now establish that limt→∞ ξd(t) = 0 by applying a variant of Barbalat’s lemma; see
Lemma 12 in Appendix B. We start by observing that λ inherits the continuity properties of ẋ+,
due to the fact that∇ḡ(x(t))λ(t) = ∇f(x(t)) + ẋ(t)+. This means that λ is piecewise continuous,

16

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

and for each time t0 > 0, λ(t0) = limt↓t0 λ(t). The same applies for ξd. We now characterize the
discontinuities of ξd and provide a lower bound on its derivative, whenever it exists. We fix t0 > 0.
By virtue of Lemma 6, we conclude that λ(t) is a feasible candidate for (13) at time t0 as long as
t ∈ (t0 − δ, t0) for sufficiently small δ > 0. This means

ξd(t0) ≥ −1

2
|∇ḡ(x(t0))λ(t)−∇f(x(t0))|2 − αḡ(x(t0))Tλ(t),

≥ ξd(t)− r1(t0)|x(t0)− x(t)| − r2(t0)|x(t0)− x(t)|2, (17)

for all t ∈ (t0 − δ, t0), where r1(t0) ≥ 0 and r2(t0) ≥ 0 are related to the remainder terms of a
first-order Taylor expansion of ∇xl(x, λ(t)) and λ(t)Tḡ(x) with respect to x at (x(t), λ(t)). The
fact that x(t) and λ(t) are bounded implies that r1(t0) and r2(t0) are likewise bounded (uniformly)
for all t0 > 0. Furthermore, ẋ(t)+ is bounded, which implies the existence of a constant r̄1 > 0
(independent of t0) such that

ξd(t0) ≥ ξd(t)− r̄1δ,

for sufficiently small δ and all t ∈ (t0 − δ, t0). We can now distinguish two cases, depending on
whether ξd is continuous at t0 or not. If ξd is discontinuous at t0, we obtain ξd(t0) ≥ ξd(t0)−. The
other case yields ξd(t2) ≥ ξd(t1)− r̄1(t2−t1), for all t2 ≥ t1, as long as ξd is continuous on (t1, t2).

We are now ready to apply Lemma 12 (see Appendix B), which implies that limt→∞ ξd(t) = 0.
As a result of the exponential convergence of λ(t)Tḡ(x(t)), we obtain limt→∞ |ẋ(t)+| = 0. Let
x̄ ∈ C be an accumulation point of x(t), which means that there exists a sequence x(tj), j > 0 with
x(tj) → x̄. From the analysis of ξd(t) we infer that d(x(tj)) → f(x̄), and from the fact that the
function d is upper semicontinuous (see Rockafellar and Wets, 1997, Thm. 1.17, p. 16) we conclude
f(x̄) = limj→∞ d(x(tj)) ≤ d(x̄) = f(x̄)− |v(x̄)|2/(2α). This implies v(x̄) = 0 and shows that x̄
is a stationary point of (1).

It remains to show that x(t) converges to a single stationary point in case that the stationary
points are isolated. To that end, we consider the sequence x(k), k > 0. Due to the fact that ẋ(t)+

converges, we can find, for every ε > 0, an integer N > 0 such that |x(k + 1) − x(k)| < ε for
all k > N . Choosing ε small enough implies that x(k) necessarily converges to a single stationary
point, which we denote by xs (this would otherwise contradict the fact that the stationary points are
isolated). Moreover, |x(t)−xs| ≤ |x(t)−x(kt)|+ |x(kt)−xs|, where kt is the largest integer such
that kt < t. We conclude limt→∞ x(t) = xs by observing that |x(t) − x(kt)| is bounded by the
supremum of |ẋ(τ)+| over τ ∈ (kt, t), which becomes arbitrarily small for large t.

Claim 2 Let the assumptions of Proposition 2 be satisfied including Assumption 2 (convexity) and
let α ≤ 2µ. Then the following holds:

(h(x(0)),min{0, g(x(0))})Tλ∗e−αt ≤ f(x(t))− f∗ ≤ (f(x(0))− f∗)e−2µt,

for all x(0) ∈ Rn, where x(t) satisfies (4) and (5), f∗ is the optimal cost in (1) and λ∗ is a
corresponding multiplier that satisfies the Karush-Kuhn-Tucker conditions of (1).

Proof We will use (15) as a starting point for deriving the upper bound. From (28) (see Lemma 10,
Appendix A) we conclude that

−|ẋ(t)+|2 ≤ −2µ(f(x(t))− f∗) + 2µλ(t)Tḡ(t).

17

MUEHLEBACH AND JORDAN

Thus, inserting the upper bound on −|ẋ(t)+|2 in (15), we obtain

d

dt
f(x(t))+ ≤ −2µ(f(x(t))− f(x∗)) + (2µ− α)λ(t)Tḡ(x(t)).

For α ≤ 2µ, the term (2µ− α)λ(t)Tḡ(x(t)) is certainly negative (or vanishes completely if x(0) ∈
C), which readily proves the upper bound.

The lower bound follows from a perturbation analysis. For a given x(0) ∈ C, we define

f∗(t) := min
z∈Rn

f(z), s.t. h(z) = h(x(0))e−αt, g(z) ≥ min{0, g(x(0))}e−αt,

which is of the form (1), with the sole difference that the right-hand side of the constraints has been
replaced with the vector (h(x(0)),min{0, g(x(0))}) exp(−αt). The trajectory x(t) is guaranteed
to be feasible with respect to these modified constraints, which implies that f∗(t) ≤ f(x(t)). The
minimum is attained for all t ∈ [0,∞), due to the fact that f is bounded below and the modified
set of feasible points is closed. A multiplier λ∗ satisfying the Karush-Kuhn-Tucker conditions of
(1) captures the sensitivity of the cost function with respect to perturbations of the right-hand side
of the constraints. More precisely, −λ∗ is guaranteed to satisfy the following inequality (see, e.g.,
Rockafellar, 1970, p. 277):

f∗(t)− f∗ ≥ (h(x(0)),min{0, g(x(0))})Tλ∗ exp(−αt).

The lower bound of (6) in Proposition 2 then follows from the fact that f(x(t)) ≥ f∗(t) for all
t ∈ [0,∞).

4. A First Example

In this section we present an example that illustrates the behavior of (4) and (8). We consider the
following problem:

min
x∈R

1

10
(x+ 1)2, s.t. x ∈ [0, 2], (18)

which has the unique minimum x∗ = 0. The function f is therefore given by (x+ 1)2/10, whereas
g1(x) = x and g2(x) = 2− x. It will be instructive to plot the function ∇xl(x, λ(x)) = ∇f(x)−
R(x), where the multiplier λ(x) is obtained from (13). This yields a continuous-time gradient flow
that is given by ẋ(t)+ = −∇xl(x(t), λ(t)), whereas the discrete-time version is given by xk+1 −
xk = −T∇xl(xk, λk), where λ(t) and λk are implicitly dependent on x(t) and xk, respectively.
Furthermore, we can interpret ∇xl(x, λ(x)) as the gradient of a continuous function Fα : R → R,
with Fα(0) = f∗. We also plot the function d(x) as defined in (10).

The plots are shown in Figure 2 for two different α. The left column is prototypical for α ≤ 1/5,
the right column for α > 1/5, where 1/5 amounts to the Hessian of f . It is important to note
that ∇xl is discontinuous at the origin, but nonetheless unique. In the continuous-time case, the
discontinuity at the origin is less of an issue, since the solutions to ẋ(t)+ = −∇xl(x(t), λ(t))
approach the origin either from x(t) > 0 or from x(t) < 0 and never cross the origin. When
the solution approaches the origin from negative values, x(t) < 0, the velocity ẋ(t) continuously
reduces to zero for t→∞. If the solutions approach the origin from positive values, x(t) > 0, the

18

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

-4 2

−0.5

0.21
5α−1

x

∇xl
∇xl
∇f
αx

α(x− 2)

−4 −2 2

0.5

1

1.5

x

FαFα
f

−4 −2 2

−1.5

−1

−0.5

xd

-2 -1 1 2 2α+1/5
α−1/5

−1

0.2 x

∇xl∇xl
∇f
α(x− 2)

−2 −1 1 2 3

1

2

x

Fα Fα
f

−2 −1 1 2 3

1

2

x

d

Figure 2: This figure shows the values of ∇xl, Fα, and d for α = 1/10 (left column) and α = 4/5
(right column). Top row: The solid thick black line represents ∇xl, which is discon-
tinuous at the origin, where it takes the value zero (the origin is the minimizer of (18)).
For values x ≤ 0, ∇xl is given by min{∇f(x), αx} and for values x ≥ 2, ∇xl is
given by max{∇f(x), α(x − 2)}, which is represented by the lines in blue and in red.
Middle row: The solid thick black line represents Fα, which is continuous and has its
minimum at the origin (the origin is the minimizer of (18)). The objective function f
is indicated with dashed lines. Last row: The function d is discontinuous at the origin
for α 6= 1/5, unbounded below for α < 1/5, and unbounded above for α > 1/5. For
α < 1/5, d(x) is upper bounded by f∗Ix , that is, d(x) ≤ f∗ = f∗{1} = 0.1 for x ≤ 0 and
d(x) ≤ f∗{} = f∗{2} = 0 for x > 0, where g1(x) = x and g2(x) = 2 − x. As we will
show in Section 5, this holds more generally provided that f and C are convex.

19

MUEHLEBACH AND JORDAN

velocity continuously reduces to ẋ(t)− = −0.2 at which point it instantly drops to zero. Hence,
if x(t) approaches the origin from positive values, the convergence is in finite time. The origin is
therefore a stable and attractive equilibrium in the sense of Lyapunov.

In discrete time, the situation changes drastically. Starting from a generic initial condition, x0 >
0, the solution to xk+1 = xk − T∇xl(xk, λk) crosses the origin and eventually always approaches
the origin from xk < 0 (provided that α and T are small enough). For small α and T , the origin
can therefore be viewed as a semi-permeable membrane; solutions cross from xk > 0 to xk+1 < 0,
but not vice versa. The origin is not a stable equilibrium, since trajectories starting arbitrarily close
to the origin will jump to a negative x1, such that |x1| ≥ |0.2T − (1 − 0.2T)x0| ≈ 0.2T . (Hence,
no matter how small we choose δ > 0, there exists an initial condition x0 with |x0| < δ such that
|xk| ≥ 0.1T for some k ≥ 0.) We therefore conclude that any attempt to find a continuous Lyapunov
function for proving convergence in discrete time is doomed to fail. Indeed, as we will show in the
following, proving convergence of (8) hinges on the analysis of the discontinuous function d(x),
which can be shown to be monotonically increasing along trajectories xk for small enough α and T .
The analysis can also be interpreted as choosing an appropriate sequence of nested invariant sets,
which generalizes the above discussion of the origin acting as a semi-permeable membrane. Each
of these invariant sets can then be shown to be attractive, whereby trajectories traverse most of these
invariant sets in finite time.

We would like to emphasize that even though the origin is not stable in the sense of Lyapunov
(in discrete time), it is still attractive; that is, xk converges to origin for small enough α and T .
From Figure 2, it follows that αT ≤ 1 is necessary for ensuring that trajectories approach the origin
from xk < 0 for large k. If αT > 1, we observe oscillations about the origin. We further note
that already the analysis of a two-dimensional problem with multiple linear constraints appears to
be very challenging due to the discontinuity of ∇xl and the discrete nature of (8), which results
in a multitude of different constraints that may or may not become active over the course of the
optimization.

5. The Discrete-Time Case

This section analyzes the convergence of algorithm (8) to stationary points of (1). In contrast to the
continuous-time setting, where a trajectory starting from x(0) ∈ C is guaranteed to remain feasible,
a discrete trajectory xk may become infeasible in the course of the optimization, even if x0 ∈ C.
This is due to the finite length of each step of the discrete algorithm and the fact that only the active
constraints Ixk are taken into account. While this potentially saves computation and distinguishes
our algorithm from other methods, it also complicates the analysis. As we discussed in the previous
section, while trajectories still converge to the minimizer of (1) (assuming convexity and appropri-
ately chosen parameters T and α), the minimizer may not correspond to a stable equilibrium in the
sense of Lyapunov.

In Section 4, we saw that for αT ≤ 1, the solutions xk of algorithm (8) cross the origin from
xk > 0 to xk+1 < 0, but not vice versa. The property is crucial for guaranteeing convergence, as
it excludes oscillations about the origin. We can therefore visualize the boundary of the feasible set
as a semi-permeable membrane; trajectories can pass from the feasible to the infeasible region, but
not the other way. The following lemma will be the first step in making this observation precise.

20

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

Lemma 7 Let C be convex. Provided that αT ≤ 1, the inequality constraints at time k for which
the corresponding λki is nonzero will remain active at time k + 1. In other words, λki > 0 implies
gi(xk+1) ≤ 0.

Proof The stationarity condition (14), which applies in the same way to the discrete algorithm
(8) (it suffices to replace x(t) with xk, λ(t) by λk, and ẋ(t)+ = (xk+1 − xk)/T), implies that
λki∇ḡi(xk)T(xk+1 − xk) = −αT ḡi(xk)λki for all i ∈ {1, 2, . . . , nh + ng} (complementary slack-
ness). Due to the fact that C is convex, there exist linear functions h and concave functions g which
describe C. Thus, it follows that

h(xk+1) = h(xk) +∇h(xk)
T(xk+1 − xk),

g(xk+1) ≤ g(xk) +∇g(xk)
T(xk+1 − xk).

Combined with the fact that λk ∈ Rnh × Rng
≥0, this implies

λkiḡi(xk+1) ≤ (1− αT)λkiḡi(xk),

for any i ∈ {1, 2, . . . , nh + ng}. The result follows by noting that λkiḡi(xk) ≤ 0 and 1− αT ≥ 0.

Lemma 7 implies that λk ∈ Dxk+1
, ensuring that λk is a feasible candidate for (10), or (13), at

time k + 1. Lemma 7 can therefore be viewed as the discrete-time version of Lemma 6. As in the
continuous-time case, Lemma 7 will be of paramount importance for proving convergence.

We are now ready to prove Proposition 3. We will divide the proof into several smaller claims:

Claim 3 Let the assumption of Proposition 3 be satisfied. Then, the sequence d(xk) is monotoni-
cally increasing and bounded above by f∗.

Proof The fact that d(xk) is bounded above by f∗ follows from Lemma 10 (see Appendix A). We
note that due to Lemma 7, the multiplier λk is a feasible candidate for the dual (13) (or (10)) at time
k + 1; that is, λk ∈ Dxk+1

. This means that

d(xk+1) ≥ l(xk+1, λk)−
1

2α
|∇xl(xk+1, λk)|2.

Due to the strong convexity of l(·, λk), for a fixed λk, it follows that

l(xk+1, λk) ≥ l(xk, λk) + T∇xl(xk, λk)Tvk +
µ

2
T 2|vk|2 = l(xk, λk)− T |vk|2 +

µ

2
T 2|vk|2.

Moreover, by using Taylor’s theorem, we can relate the gradient ∇xl(xk+1, λk) to the gradient
∇xl(xk, λk) in the following way:

∇xl(xk+1, λk) = ∇xl(xk, λk) + T∆xl(ξk, λk) vk,

where ∆xl denotes the second derivative of l with respect to x, and ξk lies between xk and xk+1.
Hence, we obtain the following lower bound for d(xk+1):

d(xk+1) ≥ d(xk) +
T

α
vTk ∆xl vk −

T 2

2α
vTk (∆xl)

2 vk − T |vk|2 +
µ

2
T 2|vk|2,

21

MUEHLEBACH AND JORDAN

where the arguments of the Hessian ∆xl(ξk, xk) have been omitted to simplify notation. We note
that the Hessian ∆xl is positive definite due to the convexity of l(·, λk) and has eigenvalues that
are lower bounded by µ and upper bounded by Ll. Moreover, the matrix (∆xl)

2 has the same
eigenvectors as ∆xl, which means that

vTk

(
∆xlT −

1

2
∆xl

2T 2

)
vk ≥ |vk|2 min

s∈[µT,LlT]
s− s2/2.

It can be shown that this minimum is lower bounded by µT (1−µT/2) as long as T ≤ 2/(Ll+µ).1

This yields

d(xk+1) ≥ d(xk) + T

(
1− µT

2

)(µ
α
− 1
)

︸ ︷︷ ︸
=c1

|vk|2. (19)

From T ≤ 2/(Ll + µ) and α < µ we conclude that c1 > 0, which proves the claim.

Claim 4 Let the assumptions of Proposition 3 be satisfied. The velocity (xk+1 − xk)/T is guaran-
teed to converge and satisfies

min
j∈{0,1,...,k}

| − ∇f(xj) +Rj |2 ≤
f∗ − d(x0)

c1(k + 1)
, ∀k ≥ 0, ∀x0 ∈ Rn,

where c1 = T (µ/α− 1)(1− µT/2) > 0 is constant.

Proof The result follows from Claim 3 by expanding d(xk+1) as a telescoping sum,

f∗ ≥ d(xk+1) = d(x0) +

k∑
j=0

d(xj+1)− d(xj)

≥ d(x0) + c1

k∑
j=0

|vj |2,

where (19) has been used for the last step. The fact that the sum of squares of |vk| is bounded
implies convergence of vk to zero for large k. We further obtain

f∗ ≥ d(x0) + c1(k + 1) min
j∈{0,1,...,k}

| − ∇f(xj) +Rj |2,

which implies the desired inequality.

In order to prove convergence of xk to x∗, we will consider modifications of (1), where some
inequality constraints are removed. The resulting optimal costs are denoted by

f∗I := min
x∈Rn

f(x) s.t. h(x) = 0, gi(x) ≥ 0, i ∈ I, (20)

where I is any subset of {1, . . . , ng}. The minimum in (20) is guaranteed to be attained, due to the
assumptions on f and C. It is clear that f∗{} ≤ f

∗
I ≤ f∗ and we will use x∗I to denote any minimizer

of (20) with λ∗I the corresponding multipliers that satisfy the Karush-Kuhn-Tucker conditions of
(20).

1. The choice T = 2/(Ll + µ) corresponds to the maximizer of mins∈[µT,LlT] s− s2/2 with respect to T .

22

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

Claim 5 Let the assumptions of Proposition 3 be satisfied. Each level set {x ∈ Rn | d(x) ≥ f∗I },
where I is any subset of {1, 2, . . . , ng}, is closed, invariant and attractive.

Let these level sets be labelled in the order S0 ⊃ S1 ⊃ · · · ⊃ Sq, where q ≤ 2ng and where S0 =
Rn, S1 corresponds to d(x) ≥ f∗{} and Sq to d(x) ≥ f∗. We further denote the f∗I corresponding to
Sj by f∗j for j = 1, . . . , q, and therefore f∗1 = f∗{} < f∗2 < · · · < f∗q = f∗. On each of these level
sets, the velocity converges at a linear rate, that is, for any integer j with 0 ≤ j < q,

|v(xk)|2 ≤
1

c1
(1− c2T)k−k0(f∗j+1 − d(xk0)), ∀k ≥ k0 : xk, xk+1 ∈ Sj \ Sj+1,

where c1 = T (µ/α− 1)(1− µT/2) > 0 and c2 = 2α(1− µT/2)(µ− α)/(Ll − α) are constant,
and 0 < c2T < 1.

Proof We conclude from Rockafellar and Wets (1997, Theorem 1.17, p. 16) that d is upper semi-
continuous, which means that the level sets {x ∈ Rn | d(x) ≥ f∗I } are closed. The fact that these
are invariant follows directly from Claim 3. For proving attractiveness and obtaining the linear rate,
we start from (19) and apply the lower bound on d(xk) provided by Lemma 10 (see Appendix A).
This yields

d(xk+1) ≥ d(xk) +
c1

Ll/(2α2)(1− α/Ll)
(f∗Ixk

− d(xk)). (21)

We consider the dynamics on one of the level sets Sj , that is, xk ∈ Sj \ Sj+1, where 0 ≤ j < q.
From Lemma 10 and the fact that v(xk) 6= 0 we infer that

f∗j ≤ d(xk) < f∗Ixk
⇒ f∗Ixk

≥ f∗j+1,

as long as xk remains on Sj \ Sj+1, where f∗0 is defined as −∞. This follows from the fact that
there are only finitely many f∗i and therefore f∗Ixk can only take on a finite number of values. As a
result, we obtain from (21) that

d(xk+1) ≥ d(xk) +
c1

Ll/(2α2)(1− α/Ll)
(f∗j+1 − d(xk)) = d(xk) + c2T (f∗j+1 − d(xk))

as long as xk ∈ Sj \ Sj+1, where we have used the definition of c2 in the second step. Subtracting
f∗j+1 on both sides and rearranging terms results in

(f∗j+1 − d(xk)) ≤ (1− c2T)k−k0(f∗j+1 − d(xk0)),

where k0 refers to the first time instant for which xk ∈ Sj . We verify that c2T < 1 by noting that
c2T is monotonically increasing for 0 < T ≤ 2/(Ll + µ) and therefore

c2T = 2αT (1− µT/2)
µ− α
Ll − α

≤ 4α

Ll + µ

Ll
Ll + µ

µ− α
Ll − α

≤ 4αµ

(Ll + µ)2
<

4µ2

(Ll + µ)2
≤ 1,

where we have repeatedly used the fact that 0 < T ≤ 2/(Ll + µ), 0 < α < µ, and 0 < µ ≤ Ll.
This shows attractivity of the set Sj+1. In addition, we conclude from (19)

c1|v(xk)|2 ≤ d(xk+1)− d(xk) ≤ d(xk+1)− f∗j+1 + f∗j+1 − d(xk) ≤ f∗j+1 − d(xk),

(as long as xk, xk+1 ∈ Sj \ Sj+1) which, in view of the exponential convergence of f∗j+1 − d(xk),
implies the desired result.

23

MUEHLEBACH AND JORDAN

The last claim provides a geometrical picture of the convergence of (8). At each iteration k the
iterate xk is contained in one of the level sets Sj = {x ∈ Rn | d(x) ≥ f∗j } and converges to the
next smaller level set, Sj+1. Claim 5 already guarantees that the convergence happens at least at the
linear rate 1− c2T . The next claim ensures that except for the level set Sq = {x ∈ Rn | d(x) ≥ f∗}
(which contains only of the single point x∗), the convergence in fact happens in finite time.

Claim 6 Provided that the assumptions of Proposition 3 are satisfied, the iterates xk converge to
the minimizer of (1). Moreover, there exists an integer N , large enough, such that

min
j∈{0,1,...,k}

|x∗ − xk|2 ≤
Ll/α− 1

c1α(µ− α)

f∗ − d(x0)

k + 1
, ∀k ≥ N.

Proof As in the proof of Claim 5 we order the level sets corresponding to f∗I as follows S1 ⊃ S2 ⊃
· · · ⊃ Sq, where q ≤ 2ng and where S1 corresponds to d(x) ≥ f∗{} and Sq to d(x) ≥ f∗. We start
by proving that for any j < q − 1, xk traverses Sj \ Sj+1 in finite time.

For the sake of contradiction, we assume that xi ∈ Sj , but xi 6∈ Sj+1 for all i > k. This implies
d(xi) < f∗j+1 and d(xi) ≥ f∗j for all i ≥ k, where f∗j and f∗j+1 are defined in Claim 5. According to
Claim 5, |v(xi)| converges to zero at an exponential rate for all i > k, since xi stays in Sj \Sj+1 for
all i > k. Hence, xi is a Cauchy sequence and has therefore a limit in Rn, which we call x̄. Since
v(xi) ∈ Vα(xi) for all i ≥ 0 and v(xi)→ 0, we conclude by continuity of g and h that x̄ ∈ C. The
same reasoning as in the proof of Claim 1 (continuous-time case) implies by upper semi-continuity
of d that f(x̄) = limi→∞ d(xi) ≤ d(x̄) = f(x̄)−|v(x̄)|2/(2α). This means that v(x̄) = 0, x̄ = x∗,
and therefore d(xi)→ d(x∗) = f∗, which leads to the desired contradiction.

Thus, there exists a finite time instant N where xk enters Sq−1, that is xk ∈ Sq−1 for all k ≥ N .
According to Claim 5, the velocity converges at an exponential rate for k > N . We infer that xk is
a Cauchy sequence, repeat the same arguments as above, and conclude that xk converges to x∗.

We further note that Lemma 10 and Lemma 11 (see Appendix A) imply the following bound

|xk − x∗Ixk |
2 ≤ 2

µ− α
(f∗Ixk

− d(xk)) ≤
2

µ− α
Ll/α− 1

2α
|vk|2,

which implies that x∗Ixk converges to x∗. However, Ixk can only take on a finite number of values
and therefore Ixk → Ix∗ in finite time. This means that

|xk − x∗|2 ≤
Ll/α− 1

α(µ− α)
|vk|2, ∀k ≥ N,

where N is a sufficiently large integer. Applying the result from Claim 4 concludes the proof.

We note that Lemma 10 and Lemma 11 (see Appendix A) relate the velocity |vk| of the iter-
ates to the distance |xk − x∗|. As a result, a similar argument as used for Claim 6 ensures that
the convergence of |xk − x∗| occurs asymptotically at a linear rate. The details are included in Ap-
pendix E. Furthermore, we believe that with a more careful analysis the dependence of the integerN
in Claim 6 on problem specific parameters, such as f∗j , j = 1, 2, . . . , q, can be explicitly quantified.

24

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

With this geometrical picture in mind, we will discuss two extensions of (8). The resulting
trajectories can be shown to converge to the minimizer of (1) with the same arguments as used for
Claim 3 - Claim 6.

5.1 Extensions

The convergence proof hinges on the following two properties of (8): (i) the multiplier λk is fea-
sible for the dual (13) at time k + 1, and (ii) the function l(xk, λk) − |∇xl(xk, λk)|2/2α increases
sufficiently from xk to xk+1 (for a fixed λk). We can therefore extend (8) by including the following
line-search mechanism:

T := argmax
τ>0,ατ≤1

l(xk + τvk, λk)−
1

2α
|∇xl(xk + τvk, λk)|2, xk+1 = xk + Tvk,

where the velocity vk is determined by solving (9), as before. As an alternative, we can alternate
between updating λk via (13) and applying gradient steps (with λk fixed):

xj+1 = xj − T∇xl(xj , λk), j = k, k + 1, . . . ,

as long as gi(xj+1) ≤ 0 for all i ∈ Ixk with corresponding multipliers λik > 0 (constraints that
were active and had a nonzero multiplier λk at time k are not allowed to open up). As is immediate
from the arguments of Claim 3, each of these gradient steps increases l(x, λk)−|∇xl(x, λk)|2/(2α)
by c1|∇lx(xj , λk)|2. Evaluating ∇xl for a fixed λk is computationally cheap and requires only the
evaluation of∇f and ∇ḡ(x).

6. Motivation and Background

The continuous-time formulation given in Proposition 2 can be motivated by drawing analogies
to non-smooth mechanics. This not only provides additional intuition for the algorithms that are
discussed herein, but also allows for generalizations to accelerated first-order methods or Newton-
type methods when constraints are incorporated on a velocity level. We will start by viewing the
stationarity conditions of (1) as the static equilibrium of a mechanical system. We will then apply
d’Alembert’s principle (see, e.g., Lanczos, 1952), which relates this variational characterization of
equilibria to the variational characterization of motion. In the context of optimization, this leads to
the algorithm (3). We further note that the equivalence between (3) and (4) can be related to the
equivalence between the principle of virtual work and the principle of virtual power in the context
of mechanics.

We consider a mechanical system that consists of a point mass located at x ∈ Rn on which the
external force F := −∇f(x) acts. The point mass is constrained to the set C.1 For a given x̄ ∈ C
we start by investigating whether the point mass is in static equilibrium; i.e., it does not move
under the influence of the external force and the constraint x ∈ C. In order to do so, we isolate the
point mass and replace the interaction with the constraint by a (constraint) force,−R ∈ NC(x̄). The
corresponding graphical procedure, often referred to as free-body diagram, is illustrated in Figure 3.
The principle of virtual work, which is the fundamental postulate of classical mechanics, can now
be stated.

1. From a physical perspective the constraint can be thought of as a second rigid body with infinite mass that consists
of all points Rn \ C. We seek to model the interaction between the point mass and the constraint.

25

MUEHLEBACH AND JORDAN

−∇f(x1)
−∇f(x1)

−∇f(x2)

x1

x2

R1 ∈ −NC(x1)

R2 ∈ −NC(x2)x1

x2
g(x) = 0

−∇f(x2)

Figure 3: The figure illustrates the concept of a free-body diagram, where the geometric boundary
condition g(x) ≥ 0, as shown on the left, is replaced by the constraint forces, −R ∈
NC(x), as shown on the right. We note that x1 is in static equilibrium, since −∇f(x1)
and R1 cancel, whereas x2 is not.

Postulate 1 The point mass is in static equilibrium if and only if the virtual work vanishes for any
virtual displacement δx ∈ Rn. The virtual work is defined as (F +R)Tδx, where F is the external
force and R ∈ −NC(x) the constraint force.

Due to the fact that arbitrary virtual displacements are allowed, Postulate 1 concludes that the point
mass is in static equilibrium at x̄ ∈ C if the following conditions are fulfilled:

−∇f(x̄) +R = 0, −R ∈ NC(x̄). (22)

By virtue of the constraint qualification, these are equivalent to the Karush-Kuhn-Tucker conditions
of (1). Thus, with our choice F := −∇f(x), we can relate the stationarity conditions of (1) to the
static equilibrium of a mechanical system, as characterized by the principle of virtual work.

The connections to optimization are even more explicit when restricting ourselves to admissible
virtual displacements; i.e., δx ∈ TC(x̄). By definition, constraint forces satisfy −RTδx ≤ 0
for all δx ∈ TC(x̄) or, in the language of classical mechanics, constraint forces are such that their
contribution to the virtual work is nonnegative.1 This leads to the principle of d’Alembert-Lagrange,
which represents the cornerstone of Lagrangian mechanics.

Corollary 8 If the point mass located at x̄ ∈ C is in static equilibrium, the virtual work of the
external forces satisfies FTδx ≤ 0 for all admissible variations δx ∈ TC(x̄).

Through the lens of optimization, this means that −δf = −∇f(x̄)Tδx ≤ 0 for all admissible
variations δx ∈ TC(x̄), or equivalently, f(x̄) ≤ f(x) for all x in an open neighborhood of x̄ with
x ∈ C. The relations are summarized in Figure 4 (left).

The important insight from classical mechanics (essentially due to d’Alembert) is that the prin-
ciple of virtual work, Postulate 1, and the principle of d’Alembert-Lagrange, Corollary 8, naturally
extend from the static equilibrium to the dynamic equilibrium that characterizes the motion of a

1. In most classical textbooks only equality constraints are considered. In that case, constraint forces perform no virtual
work.

26

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

optimization mechanics (static eq.)

stationarity p. of d’Alembert-Lagrange

−∇f(x̄) + R = 0
−R ∈ NC(x̄)

p. of virtual work

KKT

optimization mechanics (static eq.)

stationarity p. of d’Alembert-Lagrange

−∇f(x̄) + R = 0
−R ∈ lim sup

x→C x̄
NC(x)

p. of virtual work

KKT

Figure 4: The figure summarizes the analogies between constrained optimization and non-smooth
mechanics. On the left, constraint qualifications are assumed to hold ensuring that the set
C is regular in the sense of Clarke. On the right, the set C fails to be regular, for example
due to a reintrant (inward facing) corner. In that case, the notion of equilibrium needs to
be extended by an appropriate closure of NC(x); see, for example, Rockafellar and Wets
(1997, Ch. 6). The resulting equilibrium condition is no longer sufficient for stationarity
and its equivalence to the Karush-Kuhn-Tucker conditions breaks down (Rockafellar and
Wets, 1997, Thm. 6.14). Moreover, the principle of d’Alembert-Lagrange is no longer
a consequence of the principle of virtual work and therefore fails to characterize static
equilibria when C is not regular (May and Panagiotopoulous, 1985). There are important
examples of mechanical systems where C fails to be regular; see, for example, Glocker
(2001, Ch. 11).

mechanical system. It suffices to add the “forces of inertia,” which for the point mass amounts to
adding −mẍ to the external forces F (Lanczos, 1952, Ch. 4). We will apply these ideas to gradient
flow, where the “forces of inertia” are given by −ẋ. This yields (3), which we restate as follows:

ẋ(t) = −∇f(x(t)) +R(t), −R(t) ∈ NC(x(t)), ∀t ∈ [0,∞) a.e.

The condition (3) can still be viewed as a force balance between ẋ(t) + ∇f(x(t)) and R(t),
whereby the reaction force R(t) ensures that x(t) remains feasible. Moreover, when the system is
at rest, ẋ vanishes and (3) reduces to the Karush-Kuhn-Tucker conditions of (1) (see (22)). If x(t)
happens to be in the interior of C, the reaction force R(t) vanishes, and x(t) evolves according
to unconstrained gradient flow. The almost everywhere quantifier is clearly needed—if x(t) ap-
proaches the boundary of the set C, an instantaneous velocity jump might be required for ensuring
that x(t) remains in C (at the time instant of the velocity jump, ẋ is no longer defined).

Thus, the analogy to non-smooth mechanics not only motivates (3), which is used as a starting
point for all the derivations in this article, but also enables different choices for the “forces of
inertia.” As a result, by applying the principle of virtual work, as stated in Postulate 1, one could
derive momentum-based or Newton-type algorithms that include constraints on velocity level. A
thorough exploration of these extensions is an important topic for future work.

27

MUEHLEBACH AND JORDAN

7. Computational Aspects

This section highlights two important aspects of the implementation of the discrete-time algorithm
(8): (i) the computation of the constraint force Rk = ∇ḡ(xk)λk, and (ii) control of round-off errors
and inaccuracies.

7.1 Computing the constraint force Rk
The constraint forces are determined by the dual problem (13), which can be solved with various al-
gorithms. The simple nature of the set Dxk makes (accelerated) projected gradient descent schemes
appealing. In the following, we present a procedure that is inspired by the method of successive
over-relaxation which solves (13) very efficiently. The procedure is useful for solving large linear
complementary problems and is commonly used in the non-smooth mechanics community (see,
e.g., Studer, 2009). For completeness, we give a rough overview of the main points and refer the
reader to the work of Cottle et al. (2009) for further details. The stationarity conditions of (13) are
given by

WT
k Wkλk −WT

k ∇f(xk) + αḡ(xk) + ∂ψDxk (λk) 3 0, (23)

where we use the notation introduced in Algorithm 1.1 The underlying idea relies on a suitable
splitting of the matrix WT

k Wk that enables fixed-point iteration. We introduce λj as the approxima-
tion of λk at iteration j, j = 0, 1, . . . and further suppress the subscript k for ease of notation. We
denote the strictly upper triangular part ofWTW by U and the diagonal byD. The matrixWTW is
therefore given by UT +D+U , where the diagonal elements are guaranteed to be strictly positive.2

We can split the matrix WTW into UT + ω−1D and U + (1 − ω−1)D, where ω ∈ (0, 2) is fixed,
leading to

(UT + ω−1D)λj+1 + ∂ψDx(λj+1) + (U + (1− ω−1)D)λj −WT∇f(x) + αḡ(x) 3 0, (24)

where we have omitted the subscript k; hence, x = xk, W = Wk, etc. The role of the variable ω as
a tuning parameter will become apparent below. We note that (24) reduces to (23) for λj+1 = λj .
As a result of the fact that UT is strictly lower triangular, (24) reduces to the following inclusion for
a single component: λj+1

i

ω−1Diiλ
j+1
i + ∂ψR(λj+1

i) + ∗i 3 0, or ω−1Diiλ
j+1
i + ∂ψR≥0(λj+1

i) + ∗i 3 0, (25)

depending on whether i ≤ nh or i > nh, where ∗i is a placeholder for all remaining terms that are
constant or only depend on λj and λj+1

1 , . . . λj+1
i−1 . The inclusion in (25) can be seen as a stationarity

condition for λj+1
i , which uniquely determines λj+1

i from λj and λj+1
1 , . . . , λj+1

i−1 . We can therefore
express (24) as

λj+1 = proxDx
(
λj − ωD−1(UTλj+1 + (D + U)λj −WT∇f(x) + αḡ(x))

)
, (26)

where proxDx : Rnh × R|Ix| → Rnh × R|Ix|≥0 is defined as

(proxDx(ξ))i = ξi, i = 1, . . . , nh,

(proxDx(ξ))i = max{ξi, 0}, i = nh + 1, . . . nh + |Ix|,

1. Compared to the notation in (13), for example, we exclude all multipliers λi that correspond to inactive inequality
constraints; that is, i 6∈ Ixk .

2. The diagonal elements of D are given by |∇hi(x)|2, i = 1, . . . nh and |∇gi(x)|2, i ∈ Ix. Due to the constraint
qualification, these are are guaranteed to be strictly positive.

28

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

and where we have used the fact that ω−1Dii > 0. It is important to note that (26) provides an
explicit rule for computing λj+1 from λj , since UT is strictly lower triangular. In particular, by sub-
stituting the newly computed elements λj+1 directly in the right-hand side of (26), i.e., overwriting
λji with λj+1

i as soon as it becomes available, the expression on the right-hand side of (26) reduces
to

proxDx
(
λj − ωD−1(WTWλj −WT∇f(x) + αḡ(x))

)
,

which becomes very convenient for algorithmic implementation. The expression (26) can there-
fore be viewed as an extension of the method of successive over-relaxation that accounts for the
complementary slackness induced by the inequality constraints. The method reduces to a variant of
the Gauss-Seidel method for ω = 1. The following proposition due to Cottle et al. (2009, p. 400)
ensures convergence of the λj → λk as long as ω ∈ (0, 2). The proof follows Cottle et al. (2009,
p. 400) and is included in Appendix D for completeness.

Proposition 9 Cottle et al. (2009, p. 400) The sequence λj , defined according to (26), converges
for ω ∈ (0, 2). The resulting multiplier limj→∞ λ

j = λk satisfies (23) and therefore maximizes
(13).

In our numerical experiments, the choice ω = 1 (the Gauss-Seidel variant) yielded good results.

7.2 Dealing with round-off errors and inaccuracies in the computation of Rk
In Section 4 and Section 5 we noted that the minimizer of (1) is typically not a stable equilibrium
in the sense of Lyapunov for (8). If we revisit the example of Section 4 we realize that a trajectory
initialized at x0 = ε > 0, where ε > 0 is arbitrarily small, will make a relatively large step to x1 < 0
before approaching the origin from xk < 0. Thus, if we set the constraint forceRk to be slightly too
large by mistake, when approaching the origin from xk < 0, this might push xk again to positive
values (xk > 0), at which point the cycle would start again. For a practical implementation of (8), it
is therefore important to address and discuss the effect of round-off errors and inexact computations
of Rk.

We can address the problem with a combination of the following two strategies:

(i) Slightly extending the infeasible set: We extend the set Ix to {i ∈ Z | gi(x) ≤ εg}, where
εg > 0 is a user-specified tolerance for constraint satisfaction. Provided that x∗, the minimizer of
(1), lies on the boundary of the feasible set, this has the effect that in a neighborhood about x∗

inequality constraints are treated as equality constraints, which prevents xk from cycling even in the
presence of round-off errors and inexact computations of Rk. We illustrate the situation with the
example of Section 4, where Figure 5 shows the gradient ∇xl. The introduction of the parameter
εg slightly extends the infeasible region, and moves the discontinuity of ∇xl from x∗ to x∗ + εg.
This renders the origin stable in the sense of Lyapunov and therefore mitigates the effect of small
round-off errors and slight inaccuracies in the computation of Rk.

(ii) Adapting the stopping criteria of (26): In continuous time, the complementary slackness
states that λi > 0 implies dgi(x(t))/dt + αgi(x(t)) = 0 (constraint i remains active), whereas
dgi(x(t))/dt + αgi(x(t)) ≥ 0 for λi = 0 (constraint i might open up). Since we are solving the
complementary slackness conditions only approximately, it might happen that even for λi > 0,
dg(x(t))i/dt becomes too large such that the constraint incorrectly opens up in the next iteration

29

MUEHLEBACH AND JORDAN

-4 2εg

−0.5

0.21
5α−1

x

∇xl
∇xl
∇f
αx

α(x− 2)

-2 -1 εg 1 2 2α+1/5
α−1/5

−1

0.2 x

∇xl∇xl
∇f
α(x− 2)

Figure 5: This figure shows the values of ∇xl (solid thick line) for α = 1/10 (left) and α = 4/5
(right), where εg = 0.2. We note that the discontinuity of ∇xl is now at εg > 0, which
means that the origin is an asymptotically stable equilibrium in the sense of Lyapunov.
The parameter εg has no effect on the constraint x ≥ 2. The original gradient∇f is again
shown in blue (dotted) and the functions αx and α(x− 2) are shown in red (dashed).

of our discrete approximation. This can be avoided by stopping the iteration (26) only if for each
inequality constraint i with λi > 0, we have

(WT
k Wkλ−WT

k ∇f(xk))i︸ ︷︷ ︸
≈dgi(x(t))/dt

+αgi(xk) ≤ εgα/2. (27)

For convex constraints (g is concave) this inequality ensures that

gi(xk+1) ≤ (1− αT)gi(xk) + εgαT/2,

for all constraints where the corresponding multiplier λi is strictly positive. The fact that gi(xk) ≤
εg (see point (i) above) and 0 < αT ≤ 1 guarantees that gi(xk+1) < εg, which means that the
constraint remains active.

Algorithm 2 summarizes the discussions of the two previous sections. The next section will be
concerned with the empirical evaluation of Algorithm 2 on various examples. The exact implemen-
tation in Python and C++ is available as supplementary material.

8. Numerical Examples

The following section illustrates the application of Algorithm 2 to the following problems: (i) ran-
domly generated quadratic programs, (ii) trust-region optimization, (iii) ν-support vector machines,
and (iv) the computation of a catenary subject to nonlinear constraints. The examples (i)-(iii) lead
to convex quadratic programs or convex second-order cone programs, whereas the last example is a
nonconvex problem. Algorithm 2 is implemented in C++ and we use pybind11 (Jakob et al., 2017)
as a Python interface. The experiments were conducted on a Dell Precision Tower 3620 that runs
Ubuntu 20.04LTS and is equipped with an Intel Core i7-6700 processor (8x3.4GHz) and 64GB of
random access memory. All matrices were stored in compressed row storage for exploiting sparsity.
The parameters of Algorithm 2 which were used for the experiments are summarized in Table 1.

30

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

Algorithm 2 Implementation of the gradient descent scheme (8).
Require: x0 ∈ Rn, T > 0, αT ∈ (0, 1], εg > 0, ω ∈ (0, 2),

TOL, MAXITER, MAXITER PROX, TOL PROX
k = 0
while k < MAXITER do

Determine the set of closed constraints Ik = {i ∈ Z | gi(xk) ≤ εg}
Define Wk := (∇h(xk),∇gi(xk)i∈Ik) and Dk := Rnh × R|Ik|≥0

Define ḡk := (h(xk), gi(xk)i∈Ik)

j = 0, λ0 = 0 . initialization with λk−1 is also possible
while j < MAXITER PROX do

λj+1 = proxDk
(
λj − ωD−1(UTλj+1 + λj −WT

k ∇f(xk) + αḡk)
)

if |λj+1 − λj | ≤ TOL PROX and ∀i > nh : λi > 0,
(WT

k Wkλ
j+1 −WT

k ∇f(xk))i + αḡki ≤ εgαT/2, then
break

end if
end while
λk = λj+1

Perform the update xk+1 = xk − T∇f(xk) + TWkλk
if |xk+1 − xk| ≤ T · TOL then

return xk+1

end if
k ← k + 1

end while

Parameters 1) Rand.QP 2) Trust region 3) ν-SVM 4) Catenary
T 2/(L+ µ) 2/(L̄l + µ) 2/(L+ µ) 2/n

αT 0.4 0.4 0.4 0.8
εg 1e-6 1e-6 1e-6 1e-6
ω 1 1 1 1
TOL 1e-6 1e-6 1e-6 1e-6
MAXITER 1000 1000 1000 10000
MAXITER PROX 200 200 200 10000
TOL PROX 1e-6 1e-6 1e-6 1e-8

Table 1: Parameters of Algorithm 2 used for the experiments, whereL and µ refer to the smoothness
and strong convexity constants of f . The variable n denotes the number of chain links of
the catenary, as defined in Section 8.4.

31

MUEHLEBACH AND JORDAN

We compare Algorithm 2 with the state-of-the-art interior-point solver CVXOPT (Andersen
et al., 2011) for larger problem instances. We also show comparisons to projected gradients and
Frank-Wolfe, where the projections and Frank-Wolfe updates are computed with the standard op-
timization library in Python’s scientific computing library (scipy.optimize, Virtanen et al., 2020).
This is motivated by the fact that the scipy optimization library is standard in Python and can solve
optimization problems with nonlinear constraints, which parallels the capabilities of Algorithm 2.
For the projected gradients implementation we used the same step size as for Algorithm 2, see Ta-
ble 1, whereas the Frank-Wolfe implementation follows Jaggi (2013), Algorithm 1. We further note
that our stopping criterion ensures | − ∇f(xk) +Rk| ≤ TOL; analogous stopping criteria are used
for Frank-Wolfe and projected gradients. We also found that the resulting function values for the
different algorithms agree with each other.

8.1 Randomly generated quadratic programs

We generate quadratic programs of the following form:

min
x∈Rn

1

2
xTQx+ cTx, s.t. A1x+ b1 ≥ 0, A2x+ b2 = 0,

where the entries of A1 ∈ Rn/2×n, A2 ∈ Rn/4×n and b1 ∈ Rn/2, b2 ∈ Rn/4 are independent sam-
ples from a normal distribution with zero mean and unit variance, the entries of c are independent
samples of a uniform distribution supported on [−1, 1], and Q is a diagonal matrix. The first two
diagonal elements of Q are set to 1/20 and 1, respectively, whereas the remaining elements are
independent samples of a uniform distribution in [1/20, 1]. The condition number of Q is therefore
fixed to 20. The problem dimension n is chosen such that n/4 (the number of equality constraints)
and n/2 the number (of inequality constraints) are integers. We initialize Algorithm 2 with x0 = 0,
λ0 = 0.

The results for a randomly generated quadratic program of size n = 1000 are shown in Figure 6.
We observe very little difference between different randomly generated programs. We also observe
little change when increasing n; even though the computational complexity increases, the number
of iterations required for convergence remains at about 35, the maximum number of iterations that
are required for computing λk remains at about 70, and only about 50% of the inequality constraints
are active. Figure 7 compares the runtime of Algorithm 2 to the interior-point solver CVXOPT,
projected gradients and Frank-Wolfe.1 The runtime of both Frank-Wolfe and projected gradients is
comparably large and as a result, we ran these methods on smaller sized problems with n ≤ 1000.
Moreover, we stopped Frank-Wolfe after 1000 iterations even though the specified tolerance settings
of 1e − 6 were not reached. Compared to CVXOPT, the execution time of Algorithm 2 scales
favorably in the problem dimension n (see Figure 7, right panel). For n = 20, 000 the execution
time is roughly reduced by a factor of five compared to CVXOPT; even larger improvements seem
possible when increasing n further.

1. We ran CVXOPT by exploiting sparsity of the Hessian and standard tolerance settings. We also used the default
settings in scipy.optimize.

32

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

100 101

10−7

10−5

10−3

10−1

101

iterations

er
ro

rs

|x− x∗|
|λ− λ∗|
|gIxk (xk)|
|h(xk)|

0 10 20 30

20

40

60

pr
ox

ite
ra

tio
ns

0 10 20 30
0.49

0.5

0.51

0.52

0.53

iterations

|I
x
k
|/
n

g

Figure 6: Trajectories for a single randomly generated convex quadratic program with n = 1000.
The figure on the left indicates linear convergence of the iterate xk, the multiplier λk, and
the constraint violations. The figures on the right display the number of iterations of the
inner loop of Algorithm 2 (top) and the ratio of constraints that enter |Ixk | (bottom). The
solution x∗ is computed (approximately) with CVXOPT and a tolerance of 1e− 8.

102 103 104

10−3

10−1

101

103

n

ex
ec

ut
io

n
tim

e
[s

]

Alg. 2
CVXOPT
PGD
FW

103 104

100

101

102

103

n

ex
ec

ut
io

n
tim

e
[s

]

Alg. 2
CVXOPT
c1n

2.1

c2n
2.9

Figure 7: This plot shows the results obtained for randomly generated quadratic programs. The
figure on the left includes runtime comparisons to CVXOPT, projected gradients, and
Frank-Wolfe. The figure on the right includes a detailed comparison between CVXOPT
and Algorithm 2 for n ≥ 1000. Algorithm 2 seems to achieve a better scaling with respect
to the problem size n (an exponent of 2.1 instead of 2.9), leading to a speedup of a factor
of roughly 5.5 for n = 2 · 104.

33

MUEHLEBACH AND JORDAN

0 5 10 15 20 25

0

20

40

60

80
pr

ox
ite

ra
tio

ns

0 10 20

0

0.5

1

iterations

|x
k
|

102 103 104

10−2

10−1

100

101

102

103

104

n

ex
ec

ut
io

n
tim

e
[s

]

Alg. 2
CVXOPT
PGD
FW

Figure 8: The left panel shows a trajectory of Algorithm 2 for the trust-region problem. The top left
indicates the number of iterations required in the inner loop for computing the multiplier
λk, which decreases steadily. The constraint |xk| ≤ 1 is initially not active, leading to
a violation at the fourth iteration. The violation then decreases at a linear rate, which
parallels the continuous-time case. The right graph shows the execution times for the
trust-region problem, where we again ran projected gradients and Frank-Wolfe only on
smaller sized problems with n ≤ 1000. Compared to CVXOPT, Algorithm 2 achieves a
speedup of roughly two orders of magnitude for large n; the scaling with n seems similar.

8.2 Trust-region optimization

In order to demonstrate that Algorithm 2 can efficiently handle nonlinear constraints, we extended
the example of the previous section and considered the trust-region optimization

min
x∈Rn

1

2
xTQx+ cTx, s.t. A1x ≥ 0, A2x = 0, |x|2 ≤ 1,

where the matrices Q and A1 ∈ Rn/2×n, A2 ∈ Rn/4×n and the vector c are generated as in Sec-
tion 8.1. According to Appendix C, the constant Ll can be upper bounded as

Ll ≤ L̄l := α+ L(2 + |Q−1c|
√

2/2).

We choose T = 2/(L̄l + µ) and αT = 0.4, which parallels the previous section. Figure 8 (left)
shows the number of iterations needed for computing λk and the evolution of |xk| on an example
with n = 1000. The iterations of the inner loop are comparable to Section 8.1. The constraint |xk| ≤
1 is initially not active leading to a violation at the fourth iteration. At this point, the constraint enters
the set Ixk and its violation decreases linearly over the remaining iterations. Figure 8 (right) shows
how the execution time scales with the problem size n. Compared to CVXOPT, a speedup of up to
two orders of magnitude is achieved.

34

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

8.3 ν-support vector machine

We used the support vector machine formulation suggested by Schölkopf et al. (2000), which leads
to the following quadratic program:

min
x∈Rns

1

2

ns∑
i=1

ns∑
j=1

xixjliljk(ri, rj) +
ν1

2
|x|2

s.t. 0 ≤ xi ≤ 1/ns,

ns∑
n=1

xili = 0,

ns∑
i=0

xi ≥ ν2,

where ri ∈ R2 are the training samples with labels li ∈ {−1, 1}, i = 1, . . . , ns, the integer ns > 0
denotes the number of training samples, ν1 and ν2 are regularization parameters, and k : R2 → R2

is the kernel function. The kernel is chosen to be a radial basis function kernel with unit standard
deviation. We set ν1 = 0.1µk and ν2 = 0.1, where µk denotes the smallest eigenvalue of the kernel
matrix k(ri, rj). The parameter ν1 improves the conditioning of the Hessian, whereas the parameter
ν2 can be interpreted as an upper bound on the fraction of margin errors; i.e., the training samples
which lie on the “wrong” side of the boundary. It is clear that Algorithm 2, which is based on
gradient descent, has difficulties with ill-conditioned objective functions (its rate scales with µ/L).
The purpose of the regularization with ν1 is to reduce these effects.

We generated the training samples in the following way: The points with label +1 were gen-
erated in polar coordinates where the radius is sampled from a normal distribution with mean two
and standard deviation 0.5, and the angle was uniformly sampled in [0, 2π). The points with label
-1 were generated in polar coordinates where the radius was sampled from a normal distribution
with mean zero and standard deviation 0.5, and the angle was uniformly sampled in [0, 2π). As an
example, the training data and the resulting classifier are shown in Figure 9 for ns = 1000. Due
to the nature of the problem, only very few inequality constraints tend to be active at the optimum
(in this case just one). The numerical results indicate that Algorithm 2 can indeed take advantage
of this fact and identifies the correct active inequality constraint after very few iterations (in this
case just one). The number of constraints that enter the computation of the reaction force Rk is
therefore significantly reduced after the first iterations enabling rapid convergence of the inner loop
of Algorithm 2.

Figure 10 shows how the execution time scales with the problem dimension ns. Compared
to CVXOPT, we observe a speedup of a factor of five across all problem instances. The scaling
with ns seems similar for the two methods. Compared to projected gradients and the Frank-Wolfe
implementation a speed-up of several orders of magnitude is obtained. Furthermore, Algorithm 2
also works out-of-the-box for nonconvex constraints, as is highlighted with the next example.

8.4 Catenary

We consider an idealized chain of length two, which has n chain links and is suspended at the
points (0, 0) and (1, 0) (in a two-dimensional coordinate system). The aim is to solve the following

35

MUEHLEBACH AND JORDAN

−2 0 2

−2

0

2

classifier
data points (-1)
data points (+1)

0 10 20 30 40

0

0.5

1

1.5

·10−2

λ
k

0 10 20 30 40

0

0.2

0.4

iterations

|I
x
k
|/
n

g
Figure 9: This figure shows the training data and the resulting classifier (left), as well as the dual

variables λk (top right) and the percentage of constraints that are active (bottom right).
Only two dual variables are nonzero: The first one corresponds to the equality constraints
(blue line, triangular marks), whereas the second one corresponds to the support con-
straint (green line, square marks). All remaining constraints are inactive.

102 103 104

10−2

100

102

n

ex
ec

ut
io

n
tim

e
[s

]

Alg. 2
CVXOPT
PGD
FW

Figure 10: This figure shows the execution times for the different optimization algorithms on the
ν-support vector machine problem.

36

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

x

y

initial
k = 100
k = 1000

final

100 101 102 103
10−17

10−9

10−1

iterations

|h
(x
k
)|

0 1,000 2,000 3,000 4,000

−3

−2

−1

0

iterations

co
st

Figure 11: This figure shows the evolution of the solution of the catenary problem (left) as well
as the violation of the equality constraints and the evolution of the cost (right). We
can clearly see that the symmetric shape (roughly corresponding to the solution at time
k = 1000) is suboptimal, and unstable from a physics perspective. Thus, the chain slides
to the right and reaches a lower energy state. (We suspect that the random initialization
and the finite precision breaks the symmetry.)

problem:

min
(x,y)∈Rn+1×Rn+1

9.81

n+ 1

n∑
i=2

yi

s.t. |xi − xi+1|2 + |yi − yi+1|2 = 4/n2,

|xi − 0.5|2 + |yi + 0.8|2 ≥ 0.52, i = 1, . . . , n

(x1, y1) = (0, 0), (xn+1, yn+1) = (1, 0).

The position of the ith joint is described by the tuple (xi, yi) and we have included the nonlinear
constraint that each joint is required to lie outside a circle centered at (0.5,−0.8) with radius 0.5
(the chain therefore lies on a circular object). The cost function captures the potential energy of the
chain. We found that a time step of T = 2/n works well, which can be motivated by the fact that
Ll is roughlyO(n) (considering the continuous limit of the chain). The results for a chain of length
n = 40 can be found in Figure 11. Starting from a random initialization that violates the equality
constraints (see Figure 11 (left, black)) the solution evolves and finds a local minimum that satisfies
all the constraints. We note that the cost has a plateau at about iteration 1000, which corresponds
to a symmetric shape, where the chain lies on top of the round object (see Figure 11 (left, green
crosses)). This corresponds to an unstable equilibrium, since the slightest deviation will cause the
chain to slide down either to the left or the right. This is precisely what we observe in our numerical
results, leading to the final solution shown in red (square marks).

37

MUEHLEBACH AND JORDAN

9. Conclusions

We have presented a new class of primal first-order algorithms for smooth constrained optimization.
The key feature of these algorithms is that at each iteration, a low-dimensional, local, and convex
approximation of the feasible set is constructed and used for computing the next iterate. The local
approximation is a natural generalization of the tangent cone (in the sense of Clarke) to include
infeasible points. It can be motivated by drawing analogies to non-smooth mechanical systems
and can be viewed as a reformulation of constraint optimization on the velocity level. That is, the
algorithm imposes a constraint on xk+1 − xk rather than on xk. While in our continuous-time
formulation constraints on the position level and the velocity level are equivalent, this is no longer
true for the resulting discrete-time algorithms. We found that a formulation of constraints on the
velocity level leads to efficient first-order algorithms that avoid projection or optimization over the
entire feasible set at each iteration. This simplification requires a more complex theoretical analysis,
but, as we have shown, that analysis can be carried out with a blend of ideas from dynamical systems
and mathematical optimization.

We have aimed to highlight and explicate the philosophical and conceptual novelty of our ap-
proach to constrained optimization. Many aspects of the general approach deserve a more thorough
treatment. For example, we have not discussed existence of solutions to the non-smooth differen-
tial equations or the differential inclusions that we have introduced. Similarly, the strong convexity
assumptions on the objective function for proving convergence of our discrete algorithm can most
likely be relaxed, and the numerical experiments do not include an extensive comparison to different
state-of-the-art solvers. We also acknowledge that there are software packages that are tailored to,
for example, support vector machines, which would most likely outperform our method.

There are many opportunities for further research in this vein. In particular, the analogies to
non-smooth mechanical systems that are made throughout the article enable extensions to Newton-
type methods or accelerated first-order methods. We hope that our perspective helps to trigger
further developments at the intersection between non-smooth dynamics, constrained optimization,
and machine learning.

Acknowledgments

We thank the German Research Foundation and the Branco Weiss Fellowship, administered by ETH
Zurich, for the generous support. We also thank the Office of Naval Research under grant number
N00014-18-1-2764.

Appendix A. Properties of d

We recall from Section 5 that f∗I denotes the optimal function value that arises when considering
modifications of (1), where some inequality constraints are removed. We recall the definition of f∗I
by restating (20):

f∗I := min
x∈Rn

f(x) s.t. h(x) = 0, gi(x) ≥ 0, i ∈ I,

where I is any subset of {1, . . . , ng}. We further note that f∗{} ≤ f∗I ≤ f∗ and that x∗I denotes
any minimizer of (20) with λ∗I the corresponding multipliers that satisfy the Karush-Kuhn-Tucker
conditions of (20).

38

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

Lemma 10 Let Assumption 2 (convexity) be satisfied. For 0 ≤ α ≤ µ and any x ∈ Rn the following
upper and lower bounds on d(x) hold

f∗Ix −
1

2α

Ll
α

(
1− α

Ll

)
|v(x)|2 ≤ d(x) ≤ f∗Ix −

1

2α

(
1− α

µ

)
|v(x)|2,

where Ll ≥ L̄l(λ∗Ix).

Proof We start by deriving the upper bound. We conclude from the strong convexity of l that

f∗ ≥ f∗Ix ≥ inf
z∈Rn

l(z, λ) ≥ l(x, λ)− 1

2µ
|∇xl(x, λ)|2, ∀λ ∈ Dx. (28)

By rearranging terms we obtain

f∗Ix −
1

2α

(
1− α

µ

)
|∇xl(x, λ)|2 ≥ l(x, λ)− 1

2α
|∇xl(x, λ)|2, ∀λ ∈ Dx,

which yields the desired upper bound for λ = λ(x).
In order to obtain the lower bound, we first note that the smoothness of l(·, λ∗Ix) (where λ∗Ix is

fixed) implies

f∗Ix = inf
z∈Rn

l(z, λ∗Ix) ≤ l(x, λ∗Ix)− 1

2Ll
|∇xl(x, λ∗Ix)|2. (29)

We further consider the modified primal and dual problems (where α is replaced by Ll):

vm(x) = argmin
v∈VLl (x)

1

2
|v +∇f(x)|2, λm(x) ∈ argmax

λ∈Dx
l(x, λ)− 1

2Ll
|∇xl(x, λ)|2,

and note that v(x)Ll/α ∈ VLl(x), hence v(x)Ll/α is a feasible candidate for minimization over
VLl(x). This means that

1

2
|vm(x)|2 + vm(x)T∇f(x) ≤ 1

2

L2
l

α2
|v(x)|2 +

Ll
α
v(x)T∇f(x).

Complementary slackness implies that v(x)T∇f(x) = −|v(x)|2 − αḡ(x)Tλ(x) and similarly
vm(x)T∇f(x) = −|vm(x)|2 − Llḡ(x)Tλm(x), and yields therefore

−1

2
|vm(x)|2 − Llḡ(x)Tλm(x) ≤ 1

2

Ll
α

(
Ll
α
− 2

)
|v(x)|2 − Llḡ(x)Tλ(x).

Dividing by Ll and adding f(x) on both sides implies that

max
λ∈Dx

l(x, λ)− 1

2Ll
|∇xl(x, λ)|2 ≤ d(x) +

1

2α

(
Ll
α
− 1

)
|v(x)|2.

The left-hand side includes a maximum over λ, which means that for λ∗Ix ∈ Dx, we have:

l(x, λ∗Ix)− 1

2Ll
|∇xl(x, λ∗Ix)|2 ≤ d(x) +

1

2α

(
Ll
α
− 1

)
|v(x)|2.

Combining the previous inequality with (29) yields the desired lower bound.

39

MUEHLEBACH AND JORDAN

Lemma 11 Let Assumption 2 (convexity) be satisfied. For 0 ≤ α < µ and any x ∈ Rn the following
holds

d(x) ≤ f∗Ix −
µ− α

2
|x− x∗Ix |

2, d(x) ≤ f∗ − µ− α
2
|x− x∗|2.

Moreover, d(x) = f∗ if and only if x = x∗.

Proof We conclude from strong duality that

d(x) = f(x)− 1

2α
|∇f(x)|2 +

1

α
min

v∈Vα(x)

1

2
|v +∇f(x)|2.

Furthermore, α(x∗Ix − x) ∈ Vα(x) due to the fact that C is convex. Hence, α(x∗Ix − x) is a feasible
candidate in the above minimization, which yields

d(x) ≤ f(x) +
α

2
|x∗Ix − x|

2 +∇f(x)T(x∗Ix − x) ≤ f∗Ix +
α− µ

2
|x∗Ix − x|

2,

where the strong convexity of f has been used in the second step. Rearranging terms yields the first
inequality. The second inequality follows from the same reasoning (we simply replace x∗Ix with x∗).
This also implies d(x) = f∗ if and only if x = x∗.

Appendix B. Barbalat’s lemma

Lemma 12 (Variant of Barbalat’s lemma) Let ξ : R≥0 → R be piecewise continuous, such that

−∞ <

∫ ∞
0

ξ(τ)dτ, ξ(t)+ ≥ ξ(t)−, ξ(t2)− ξ(t1) ≥ −r̄(t2 − t1),

for any t2 ≥ t1 > 0 such that ξ is continuous on (t1, t2) and any t ≥ 0. If ξ̄ : R≥0 → R≥0, with
ξ̄(x) := max{ξ(x), 0}, is integrable and such that limt→∞ ξ̄(t) = 0, then limt→∞ ξ(t) = 0 holds.

Proof The proof follows a standard argument, which is also used for proving Barbalat’s lemma (see,
e.g., Sastry, 1999, p. 204). We start by assuming that ξ(t) does not converge to zero and show that
this leads to a contradiction. This means that there exists an ε > 0 and a sequence tk ≥ 0, such that
ξ(tk) < −ε for all k > 0 (taking into account that limt→∞ ξ̄(t) = 0). However, since ξ(t)+ ≥ ξ(t)−
at every t where ξ is discontinuous, we conclude that ξ(t) ≤ ξ(t1) + r̄(t1 − t) for all t ≤ t1, where
t1 > 0 is arbitrary (looking backwards in time, the function increases by a slope of at most r̄). For
each tk, we thus conclude ξ(t) < −ε/2 as long as t ∈ (tk − ε/(2r̄), tk). This means that for any
subsequence tkj , j = 1, 2, . . . such that tk(j+1) > tkj + ε/(2r̄),∫ ∞

0
ξ(τ)dτ =

∞∑
j=1

∫ tkj−ε/(2r̄)

tk(j−1)

ξ(τ)dτ +

∫ tkj

tkj−ε/(2r̄)
ξ(τ)dτ ≤

∫ ∞
0

ξ̄(τ)dτ −
∞∑
j=1

ε2/(4r̄),

where tk0 is defined as tk0 = 0 for notational convenience. The right-hand side is unbounded below
leading to the desired contradiction.

40

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

Appendix C. Nonlinear constraints

When estimating the constant Ll, a bound on λ is often useful. The following proposition, which
can be generalized to multiple constraints by a similar argument, establishes such a bound.

Proposition 13 Let g : Rn → R be a scalar Lg-smooth and µg-strongly concave function. Then,
in the absence of any other constraints, the corresponding multiplier λ > 0 is bounded by

λ ≤ 1

µg

(
α+ L(1 + |xf − xg|

√
Lg/(2g(xg)))

)
,

where xf is the (unconstrained) minimizer of f , xg the (unconstrained) maximizer of g, and L the
smoothness constant of f .

Proof It follows from (5) that

1

2
|W (x)λ|2 =

1

2
|v(x) +∇f(x)|2 ≤ 1

2
|vf +∇f(x)|2,

for any vf ∈ Vα(x). In particular, we can set vf = α(xg − x), which satisfies vf ∈ Vα(x), due to the
concavity of g. Moreover, from W (x) = ∇g(x) and the strong concavity of g we conclude

µg|x− xg|λ ≤ |α(xg − x) +∇f(x)| ≤ α|x− xg|+ L|x− xf|,

where λ > 0 by definition of λ. This yields the following bound on the dual variable

λ ≤ sup
g(x)≤0

1

µg

(
α+

L|x− xf|
|x− xg|

)
,

which can be further simplified to

λ ≤ 1

µg

(
α+ L+ L|xg − xf| sup

g(x)≤0

1

|x− xg|

)
.

Due to the strong concavity of g, it follows that g(x) ≥ g(xg)−Lg|x−xg|2/2 for all x ∈ Rn. As a
consequence, Lg|x− xg|2/2 ≥ g(xg), for all x ∈ Rn such that g(x) ≤ 0, which means that the last
supremum is bounded by

√
Lg/(2g(xg)).

Appendix D. Proof of Proposition 9

Proof The proof follows the presentation of Cottle et al. (2009, p. 400). In order to simplify
the notation we define G := WT

k Wk, q := −WT
k ∇f(xk) + αḡ(xk), B := UT + ω−1D, C :=

U + (1− ω−1)D, and omit the subscript k. We can therefore express (23) concisely as

Gλ+ q + ∂ψDx(λ) 3 0.

Furthermore, by virtue of the conjugate subgradient theorem, (24) is equivalent to

λj+1 ∈ Dx, −Bλj+1 − Cλj − q ∈ D∗x, λj+1T(−Bλj+1 − Cλj − q) = 0, (30)

41

MUEHLEBACH AND JORDAN

where D∗x := {0}nh ×R|Ix|≤0 is the polar cone of Dx. We further introduce the function d̃ : Dx → R,
d̃(λ) = λTGλ/2 + λTq. Due to the fact that G is positive semi-definite, d̃ is convex and can be
shown to be bounded below for λ ∈ Dx. We further have that

d̃(λj)− d̃(λj+1) = (λj − λj+1)T(q +Gλj+1) +
1

2
(λj − λj+1)TG(λj − λj+1).

As a consequence of (30) and some elementary manipulations, the decrease in d̃ can be expressed
as

d̃(λj)− d̃(λj+1) = λj
T

(q +Bλj+1 + Cλj) +
1

2
(λj − λj+1)T(B − C)(λj − λj+1)

≥ 1

2
(λj − λj+1)T(B − C)(λj − λj+1).

For the last inequality we have used −Bλj+1 − Cλj − q ∈ D∗x and λj ∈ Dx, which ensures that
(q + Bλj+1 + Cλj)Tλj ≥ 0. The symmetric part of B − C is given by (2ω−1 − 1)D, which is
guaranteed to be positive definite for ω ∈ (0, 2) (the elements of D are given by |∇gi(x)|2 > 0).
This concludes that d̃(λj) is a monotonically decreasing sequence, which therefore converges. Thus,
the above inequality implies, in the limit as j →∞,

0 = lim
j→∞

1

2
(λj − λj+1)T(B − C)(λj − λj+1),

which, due to the positive definiteness of the symmetric part of B − C, implies that λj converges.
Moreover, limj→∞ λ

j satisfies (23) by construction.

Appendix E. Asymptotic rate of convergence

Proposition 14 Let Assumption 2 (convexity) be satisfied and let T ≤ 2/(Ll + µ), α < µ, where
Ll ≥ L̄l(λ(x)) for all x ∈ Rn. Then, for every x0 ∈ Rn there exists constants N > 0 and c3 > 0,
such that

1

2
|v(xk+1)|2 ≤ (1− 2µT (1− µT/2))

1

2
|v(xk)|2 + c3(1− αT)k−N , ∀k ≥ N. (31)

In particular, for T = 1/Ll, α = µ/2, there exists a constant c4 such that

|xk − x∗|2 ≤ c4(1− µ/(2Ll))
k, ∀k ≥ N. (32)

Proof We first note that the assumptions of Proposition 3 are satisfied and that as a consequence, xk
converges to x∗, Ixk is constant for large k, and xk and λk are bounded. By Lemma 10 we conclude
that λk is a feasible candidate for the dual (13) at iteration k + 1. As a result,

1

2
|v(xk+1)|2 + αλTk+1ḡ(xk+1) ≤ 1

2
| − ∇f(xk+1) +∇ḡ(xk+1)λk|2 + αλTk ḡ(xk+1)

≤ 1

2
|v(xk)−∆xl(ξk, λk)Tv(xk)|2 + αλTk ḡ(xk+1),

42

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

where ∆xl denotes the second derivative of l with respect to x, and ξk lies between xk and xk+1

(we applied Taylor’s theorem in the second step). By the same reasoning as in the proof of Claim 5
we conclude

1

2
|v(xk+1)|2 + αλTk+1ḡ(xk+1) ≤ (1− 2µT (1− µT/2))

1

2
|v(xk)|2 + αλTk ḡ(xk).

We further note that λTk ḡ(xk) is negative, which leads to

1

2
|v(xk+1)|2 ≤ (1− 2µT (1− µT/2))

1

2
|v(xk)|2 − αλTk+1ḡ(xk+1).

For large k, Ixk is constant, see Claim 6 in Section 5, and |ḡ(xk)| is therefore decaying at the rate
1− αT (see Lemma 7). This yields (31).

The second part follows from unrolling the recursion in (31) and noting that by Lemma 10 and
Lemma 11, |xk − x∗|2 is bounded by a multiple of |v(xk)|2.

References

Vincent Acary. Higher order event capturing time-stepping schemes for nonsmooth multibody sys-
tems with unilateral constraints and impacts. Applied Numerical Mathematics, 62(10):1259–
1275, 2012.

Martin Andersen, Joachim Dahl, Zhang Liu, and Lieven Vandenberghe. Interior-point methods for
large-scale cone programming. In Optimization for Machine Learning, pages 55–79. The MIT
Press, 2011.

Jean-Pierre Aubin and Arrigo Cellina. Differential Inclusions. Springer, 1984.

Jean-Pierre Aubin and Hélène Frankowska. Set-Valued Analysis. Birkhäuser, 1990.

Heinz H. Bauschke and Patrick L. Combettes. Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. Springer, 2011.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Amir Beck and Marc Teboulle. Gradient-based algorithms with applications to signal-recovery
problems. In Convex Optimization in Signal Processing and Communications, pages 42–88.
Cambridge University Press, 2011.

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 1999.

Michael Betancourt, Michael I. Jordan, and Ashia C. Wilson. On symplectic optimization.
arXiv:1802.03653v2, pages 1–20, 2018.

Ernesto G. Birgin, José Mario Martı́nez, and Marcos Raydan. Inexact spectral projected gradient
methods on convex sets. IMA Journal of Numerical Analysis, 23:539–559, 2003.

43

MUEHLEBACH AND JORDAN

Veronica Bloom, Igor Griva, and Fabio Quijada. Fast projected gradient method for support vector
machines. Optimization and Engineering, 17(4):651–662, 2016.

Bernard Brogliato, Aris Daniilidis, Claude Lemaréchal, and Vincent Acary. On the equivalence
between complementarity systems, projected systems and differential inclusions. System and
Control Letters, 55(1):45–51, 2006.

Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundation and Trends in Machine Learning, 5(1):1–122, 2012.

Giuseppe Capobianco and Simon R. Eugster. Time finite element based Moreau-type integrators.
International Journal for Numerical Methods in Engineering, 114(3):215–231, 2018.

Arrigo Cellina and Mihai Vornicescu. On gradient flows. Journal of Differential Equations, 145:
489–501, 1998.

Kenneth L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM
Transactions on Algorithms, 6(4):1–30, 2010.

Cyrille W. Combettes and Sebastian Pokutta. Boosting Frank-Wolfe by chasing gradients. Pro-
ceedings of Machine Learning Research, 119:2111–2121, 2020.

Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone. The Linear Complementarity Problem.
Society for Industrial and Applied Mathematics, 2009.

Jelena Diakonikolas and Michael I. Jordan. Generalized momentum-based methods: A Hamiltonian
perspective. SIAM Journal on Optimization, 31(1):915–944, 2021.

Alexander Domahidi, Aldo U. Zgraggen, Melanie N. Zeilinger, Manfred Morari, and Colin N.
Jones. Efficient interior point methods for multistage problems arising in receding horizon con-
trol. Proceedings of the International Conference on Decision and Control, pages 668–674, 2012.

Michael C. Ferris and Todd S. Munson. Interior point methods for massive support vector machines.
SIAM Journal on Optimization, 13(3):783–804, 2003.

Aleksei Fedorovich Filippov. Differential Equations with Discontinuous Righthand Sides. Springer,
1988.

Guilherme França, Jeremias Sulam, Daniel P. Robinson, and René Vidal. Conformal symplectic
and relativistic optimization. Journal of Statistical Mechanics: Theory and Experiment, 2020
(12):1–30, 2020.

Dan Garber and Elad Hazan. Faster rates for the Frank-Wolfe method over strongly-convex sets.
Proceedings of Machine Learning Research, 37:541–549, 2015.

Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: an SQP algorithm for large-scale
constrained optimization. SIAM Review, 47(1):99–131, 2005.

Christoph Glocker. Set-Valued Force Laws. Springer, 2001.

44

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

Verena Häberle, Adrian Hauswirth, Lukas Ortmann, Saverio Bolognani, and Florian Dörfler. Non-
convex feedback optimization with input and output constraints. IEEE Control Systems Letters,
5(1):343–348, 2021.

Elad Hazan and Satyen Kale. Projection-free online learning. Proceeding of the International
Conference on Machine Learning, pages 1–8, 2012.

Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. Proceedings of
Machine Learning Research, 28(1):427–435, 2013.

Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – seamless operability between
C++11 and Python, 2017. https://github.com/pybind/pybind11.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning. The
International Journal of Robotics Research, 30(7):846–894, 2011.

Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point method for large-scale
`1-regularized logistic regression. Journal of Machine Learning Research, 8:1519–1555, 2007.

Walid Krichene, Alexandre M. Bayen, and Peter L. Bartlett. Accelerated mirror descent in continu-
ous and discrete time. Advances in Neural Information Processing Systems 28, pages 2845–2853,
2015.

Cornelius Lanczos. The Variational Principles of Mechanics. Oxford University Press, second
edition, 1952.

David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming. Springer, fourth edition,
2016.

H. May and Panagiotis D. Panagiotopoulous. F. H. Clarke’s generalized gradient and Fourier’s
principle. Journal of Applied Mathematics and Mechanics, 65(2):125–126, 1985.

Jean Jacques Moreau. Unilateral contact and dry friction in finite freedom dynamics. In Nonsmooth
Mechanics and Applications, pages 1–88. Springer, 1988.

Jean Jacques Moreau. Numerical aspects of the sweeping process. Computer Methods in Applied
Mechanics and Engineering, 177:329–349, 1999.

Michael Muehlebach and Michael I. Jordan. A dynamical systems perspective on Nesterov accel-
eration. Proceedings of Machine Learning Research, 97:4656–4662, 2019.

Michael Muehlebach and Michael I. Jordan. Continuous-time lower bounds for gradient-based
algorithms. Proceedings of Machine Learning Research, 119:7088–7096, 2020.

Michael Muehlebach and Michael I. Jordan. Optimization with momentum: Dynamical, control-
theoretic, and symplectic perspectives. Journal of Machine Learning Research, 22(73):1–50,
2021.

Arkadi S. Nemirovski and David B. Yudin. Problem Complexity and Method Efficiency in Opti-
mization. John Wiley & Sons, 1983.

45

MUEHLEBACH AND JORDAN

Yurii Nesterov. Introductory Lectures on Convex Optimization - A Basic Course. Springer Sci-
ence+Business Media, LLC, 2004.

Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in Convex Program-
ming. Society for Industrial and Applied Mathematics, 1994.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations
Research, second edition, 2006.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1
(3):123–231, 2013.

Alexander Robey, Luiz F. O. Chamon, George J. Pappas, Hamed Hassani, and Alejandro Ribeiro.
Adversarial robustness with semi-infinite constrained learning. Advances in Neural Information
Processing Systems 34, pages 1–18, 2021.

Ralph Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

Ralph Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on
Control and Optimization, 14(5):877–898, 1976.

Ralph Tyrrell Rockafellar and Roger J-B Wets. Variational Analysis. Springer, 1997.

Shankar Sastry. Nonlinear Systems. Springer, 1999.

Bernhard Schölkopf, Alex J. Smola, Robert C. Williamson, and Peter L. Bartlett. New support
vector algorithms. Neural Computation, 12(5):1207–1245, 2000.

Kristoff Schütt, Huziel Sauceda, Peter-Jan Kindermans, Alexandre Tkatchenko, and Klaus-Robert
Müller. SchNet – A deep learning architecture for molecules and materials. The Journal of
Chemical Physics, 148(24):241722, 2018.

Christian Studer. Numerics of Unilateral Contacts and Friction. Springer, 2009.

Weijie Su, Stephen Boyd, and Emmanuel J. Candès. A differential equation for modeling Nesterov’s
accelerated gradient method: Theory and insights. Journal of Machine Learning Research, 17
(153):1–43, 2016.

Giampaolo Torrisi, Sergio Grammatico, Roy S. Smith, and Manfred Morari. A projected gradient
and constraint linearization method for nonlinear model predictive control. SIAM Journal on
Control and Optimization, 56(3):1968–1999, 2018.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020.

46

ON CONSTRAINTS IN FIRST-ORDER OPTIMIZATION

Changyu Wang and Qian Liu. Convergence properties of inexact projected gradient methods. Op-
timization, 55(3):301–310, 2006.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3D steerable
CNNs: Learning rotationally equivariant features in volumetric data. Advances in Neural Infor-
mation Processing Systems 31, pages 1–12, 2018.

Andre Wibisono, Ashia C. Wilson, and Michael I. Jordan. A variational perspective on accelerated
methods in optimization. Proceedings of the National Academy of Sciences, 113(47):E7351–
E7358, 2016.

Mingrui Zhang, Zebang Shen, Arzan Mokhtari, Hamed Hassani, and Amin Karbasi. One sample
stochastic Frank-Wolfe. Proceedings of Machine Learning Research, 108:4012–4023, 2020.

47

	Introduction
	Overview of the Results
	The Continuous-Time Case
	Equivalences between position and velocity constraints in continuous time
	Intermediate results
	Convergence results

	A First Example
	The Discrete-Time Case
	Extensions

	Motivation and Background
	Computational Aspects
	Computing the constraint force Rk
	Dealing with round-off errors and inaccuracies in the computation of Rk

	Numerical Examples
	Randomly generated quadratic programs
	Trust-region optimization
	-support vector machine
	Catenary

	Conclusions
	Properties of d
	Barbalat's lemma
	Nonlinear constraints
	Proof of Proposition 9
	Asymptotic rate of convergence

