
On the Use of Execution Trace Alignment for Driving Perfective Changes

Luciana Lourdes Silva, Klérisson Ribeiro Paixão, Sandra de Amo, Marcelo de Almeida Maia
Computer Science Department

Federal University of Uberlândia
Uberlândia, Brazil

luciana.lourdes@gmail.com, deamo@ufu.br, marcmaia@facom.ufu.br

Abstract — Perfective changes in well-established software
systems are easier to perform when the development team
has a solid understanding of the internals. However, it is
reasonable to assume that the use of an open source system
to incorporate new features and obtain a new software
product is an appealing approach instead of coding a new
product from scratch. Considering this scenario, and
considering that it is not uncommon that systems are poorly
documented, there is no widely accepted approach to guide
the perfective maintenance for developers with low
understanding of the system. This work proposes a new
method based on the analysis of execution traces for locating
evolution points in the source code where changes should be
performed. The proposed method was evaluated with three
open source systems and the conclusion suggests a significant
impact on effort reduction.

Keywords – software evolution; execution traces; reuse;
software maintenance

I. INTRODUCTION
The available source code for development teams is a

rich asset for developing new products, either in open-
source environments or in a proprietary industrial context.
Nonetheless, it is also well-known that most of this
software lacks adequate documentation, or when it exists
there is no guarantee that it is either updated, or completed
[8].

Most of the effort in changing software systems to add
a new feature (perfective maintenance) relies on the
comprehension of requirements and code artifacts. One of
the most significant problems in current experiences of
software evolution is the difficulty of the maintainer to
find parts in the source code where new features have to be
inserted or where changes have to be done. The
traceability among requirements and code artifacts still is a
major challenge in perfective maintenance [2].

Several attempts to facilitate understanding software
systems have emerged based on the hypothesis that the
source code itself is the only reliable source of
information about the available software [15]. However,
techniques for program comprehension are rather
insufficient to developers rapidly grasp the
implementation of a software feature. Recent IDEs
provide powerful debugging tools for comprehending the
system behavior but provide only simplified views to find
easily locations where the implementation of new feature
should be located in the source code.

This work intends to contribute in the following
scenario. Suppose the existence of a software system with
available source code. Suppose the precondition that the

typical developers responsible for introducing a new
feature in this software have not participated in the
development process and have no previous knowledge of
its internals. Suppose also that either the documentation is
inexistent or developers do not want to use the existing
documentation because it is not reliable. For instance,
suppose that developers want to evolve a UML modeling
tool with more than one hundred thousand lines of code to
enable the creation of a new kind of diagram. This
scenario imposes a major challenge to the team. One
would not expect to carry out this task with one or two
man-day effort.

Currently, the traditional approaches to perform this
evolution task include the understanding of the system by
means of documentation analysis and/or debugging similar
features as an alternative for initial understanding of the
system. One hypothesis of this work is that the insertion of
a new feature can be performed with low effort with the
analysis of similar artifacts existent in the system. The
hypothesis supposes that it is possible to discover where
the new artifacts will be inserted or changed and also the
initial form of these artifacts.

The approach proposed to discover this information is
based on the sequence alignment of summarized execution
traces. This technique enables the separation of common
parts of source code from specific parts related to
important features that will drive the addition of the new
one. The main contribution of this work is the evaluation
of this approach to verify if it helps to locate potential
elements of code that can guide the development of a new
feature. The evaluation was conducted with real-world
systems and with meaningful evolution tasks.

This paper is organized as follows. Section II presents
an overview of the approach. This section describes how
the execution traces are captured, represented,
summarized and aligned. It also shows how the result of
the alignment should be used. Section III presents the
evaluation of the approach in the three different systems
in order to determine how the approach improves the
development practice when performing perfective changes
in a software system. Section IV presents the discussion
about the results. Section V presents the related works.
Finally, the last section presents the conclusion and future
work.

II. THE PROPOSED APPROACH
The goal of the approach is to retrieve important

information from the source code that could guide the
comprehension of systems in order to reduce the effort in
evolution tasks. For this purpose, an alignment approach of

2011 15th European Conference on Software Maintenance and Reengineering

1534-5351/11 $26.00 © 2011 IEEE

DOI 10.1109/CSMR.2011.28

220

2011 15th European Conference on Software Maintenance and Reengineering

1534-5351/11 $26.00 © 2011 IEEE

DOI 10.1109/CSMR.2011.28

221

Figure 2. Example of scenarios to detect common and specific code

that implement the features

execution traces is executed in target systems to find
common and variant points in the source code. Thus, the
approach is applicable to similar features in a system.

Figure 1 provides an overview of the proposed
approach, which has three main phases:

A. Definition and Execution of Scenarios
B. Summarization and Alignment of Execution

Traces
C. Definition of the Implementation Plan

A. Definition and Execution of Scenarios
In the first phase, the definition of execution scenarios

is based on searching features in the system that have some
relationship to the new feature, but that should have some
specificity among them. The information obtained from
this specificity should guide the implementation plan.

1) Choosing Suitable Pairwise Features
In order to reuse, modify, or insert new features in a

system, firstly the developer needs to know which basic
features the system executes. For instance, suppose that the
system is an email client. The developer needs to know
that send message, receive message, save draft, and login
with a user id are basic features of the system. The
developer can define which features are related to each
other. Consider the following example of a simple figure
editor. Suppose that the features Draw Rectangle and
Draw Circle are already implemented in the system and
the developer needs to implement the feature Draw
Triangle. Figure 2 shows an example of a pair of execution
scenarios A and B in order to detect common and specific
code which implements the features Draw Rectangle and
Draw Circle. Some common method calls, those used to
create the item menus, are expected to be related to the
task Initialize the System. Also, during the execution of
Draw a Rectangle and Draw a Circle, there may be some
methods calls that are common to both tasks. Specific
method calls to draw each kind of figure are expected to be
related to the respective tasks in scenarios A and B. Figure

2 also shows tasks, Copy Rectangle and Copy Circle, that
may help to understand how to introduce Copy Triangle in
the system.

Nonetheless, it is possible to try to compare the trace
data that contains the execution of a feature F1 of interest
with the trace data that contains the execution of a totally
different feature F2 used just for control. A important
decision in the definition of the execution scenarios is that
the developer introduces common tasks in the same order
in both scenarios, possibly surrounding the execution of
F1 and F2 to control where those traces have methods
related to F1 and F2, respectively, that can be captured by
the alignment algorithm that will be described in the next
subsection.

2) Instrumentation of the System
To capture execution traces, the target system should

be woven with an internal instrumentation tool based on
AspectJ that collects the executed methods. The developer
needs to mark the beginning of a new task, and when the
execution of this task ends, the developer also marks such
event. This process repeats until all the features in the
scenario have been executed. During the execution of
each scenario, a trace file is created for each started
thread. Each line of the trace file corresponds to a method
call, which has the qualified method name and the
corresponding level of the call in the execution stack. The
collected information enables to reconstruct the method
call tree for each feature executed in the defined scenario.

B. Summarization and Alignment of Execution Traces
In the second phase, the traces are compressed,

summarized and aligned. An execution trace is a large file
because it contains loops and recursive method calls. An
alternative to reduce this large size is the elimination of
these repetitions [4]. Nonetheless, even after the
compression of the trace, preliminary results have shown
that the alignment result of the execution traces can result
in a quantity of information extremely large that may make
the approach unfeasible [9, 12].

1) Trace Summarization Algorithm
The goal of this algorithm is to summarize the

execution traces that are typically very large, even after the
compression process using the algorithm [4]. To make
feasible the application of the alignment approach [9, 12],
we propose the combination of trace compression with a
summarization approach based on the elimination of
method calls with low granularity. The granularity of a
method call is the total number of other calls that have
occurred during the execution of that call. In other words,
considering a method call tree, the granularity of a call
node n is N-1, where N is the size of the sub-tree with root
n. So, method calls with greater granularity are expected to
be more relevant. The user has to select the minimum
granularity of method calls in the summarization process.

Figure 1. The proposed approach.

221222

Figure 3. (a) A compressed trace, where the loops and recursion were eliminated and (b) the respective summarized trace.

The lower is the chosen granularity, the lower is the
number of removed methods from the trace, producing
possibly more useless information to analyze. If the
selected minimum granularity is 1, then only method calls
with no nested method calls (leaf nodes) will be removed
from the trace. On the other hand, low granularity discards
less methods calls and the chance of discarding relevant
methods is lower. In order to find the most suitable
granularity, the user can start the summarization process
with granularity 1 and analyze the corresponding result. If
there is still too much information to analyze, the
granularity can be increased, and so on. If a greater
granularity eliminates relevant method calls identified with
a lower granularity then the previous granularity is
preferred. The Figure 3.a shows as example a fragment of
a compressed real trace. The gray arrows show the method
calls that will be pruned during the summarization
algorithm if the minimum granularity is 2. Figure 3.b
shows the summarized trace.

2) Alignment of Summarized Execution Traces
The algorithm proposed in [11] was adapted for our

special purposes. The first adaptation is about the
characteristic of an execution trace. The traces can contain
noises. For instance, in the sequences “XaaaaY” and
“XaaaY”, one can suppose that these sequences were
produced by the same source code. The difference could
be caused by a loop that executed the method “a” four
times in the first sequence and three in the other. That is
the reason for compressing the traces. After the
compression process, then the summarization algorithm is
performed on compressed traces, as shown Figure 3.

In the trace alignment process, the traces are already
compressed and summarized, that is, loops, recursions and
method calls with low granularity were removed from the
traces. The input to the alignment tool is two traces of

possibly different sizes. At the end of alignment
execution, two new traces with the same size are
produced, containing blanks inserted such that aligned
methods are exactly at the same position in both traces.

A pair of aligned traces can be analyzed in segments.
Trace segments are groups of consecutively aligned
elements and also groups of consecutively misaligned
elements. The aligned result of a pair of traces is better
represented in a tree view, because it shows the nesting of
method calls. The misaligned segments are shown in
different colors, where nodes with the same color are from
the same sequence. Figure 4 illustrates an example of the
trace alignment. Two traces are presented containing
several method calls (b, c, d, e, f, g, h, i) and their
respective level in the execution stack. The sequence
<(b,1), (c,2)> indicates that the method c was called from
the method b. In the alignment tree, the first segment
presents the calls b and c, where the call c is a child of the
call b. The second segment contains a misalignment
indicating that the call to method b in trace T1 does not
have a counterpart in trace T2. The next alignment
segment presents the calls d and e, where the method call
e is a child of the call d. After that, the misaligned
segment, containing only the method call g in trace T1,
does not have the counterpart in trace T2. Finally, the last
misaligned segment indicates that the method call
sequence f, h, and i in trace T2 does not have the
counterpart in trace T1 at same position.

One hypothesis of this work is that misaligned
segments in the sequences indicate method calls that are
specific to the different features executed in each trace.
Therefore, misaligned segments suggest methods that
should be analyzed to complete the implementation of the
new feature. Nonetheless, the misalignments also can
represent noise in the execution trace such as mouse
events.

It also may be useful to analyze aligned method calls
that were executed just before or after the misaligned calls
because those methods have possibly driven the variation.

C. Definition of the Implementation Plan
The third phase consists of a visual analysis of the

alignment trees obtained from the previous phase. Some
threads and some misaligned segments in which method
names are not closely semantically related with the
execution scenario can be discarded. During the scenario
execution, the developer marked the beginning of each
scenario step. This information allowed producing the

Figure 4. The trace alignment process.

222223

summarized trace files separated for each scenario task. If
the scenario execution starts more than one thread then it
is possible to know which threads executed a task. Thus,
in order to understand how a task is implemented, the
developer selects only the threads that contain method
calls executed for the current task being analyzed.

The design of the implementation plan starts by
selecting methods that would help to understand how a
feature is implemented in the source code. Relevant
methods to execute a task are selected from the alignment
trees in order to guide in the implementation of a new
feature. The methods are elected as important by a simple
inspection of package, class and method names in the
alignment tree.

An important question in the evaluation of this
approach is the quality of the list of methods for the plan.
In our study, we defined the control to assess the quality
of the list of methods, the Actual Positive (AP) methods,
during the actual implementation of the new feature.

The methods included in the set AP are those that were
necessary to understand the required change and those
that were effectively changed. Using the methods in the
set AP and in the implementation plan it is possible to
know the following values:

TP: True Positives. Methods pointed out by our
approach that were effectively used.

FP: False Positives. Methods pointed out by our
approach that were not used.

FN: False Negatives. Methods that were necessary but
were not pointed out by our approach.

These values are used to evaluate the approach in terms
of precision and recall.

III. EVALUATION
The goal of the evaluation is to determine how the

approach improves the developer practice when
performing perfective changes in the software system. As
a matter of fact, a reasonable measure that would assess
the hypothetical improvement is the necessary effort to
perform the task of understanding the target system and
implementing the required changes. This option would
require an experimental study with a reasonable number
of developers performing the task using a traditional
approach and using our approach. As a first study we have
decided to understand how the proposed approach would
help the developer in potentially providing precise and
sufficient information that would guide the execution of
change tasks. The choice should analyze the precision and
recall of the information provided by the proposed
approach. Three studies with different systems have
applied the execution trace alignment approach to drive
the evolution of them.

The selected systems and perfective changes are
described below:
1. ArgoUML 0.30 is a UML modeling tool (161 KLOC)

with 92 packages, 2122 classes, 156 interfaces, 2314
attributes, 1914 static attributes, 13918 methods, and
669 static methods. In the above numbers, libraries
such as, the framework GEF - Graph Editing
Framework and the OMG metamodel are not

included. The chosen perfective change for this
system is the addition of a new kind of diagram:
Object Diagram.

2. Llama Chat is a chat server/client pair for use on the
web (2260 KLOC). The chosen perfective change for
this system is the addition of Speech Synthesis,
possibly, for accessibility purposes.

3. Columba is an email client written in Java (101
KLOC) with 336 packages, 1475 classes, 225
interfaces, 2963 attributes, 957 static attributes, 7924
methods, and 453 static methods. The chosen
perfective change for this system is the addition of a
new way of sending messages: Send Scheduled
Message.

The selected systems are open source software
available in a public repository in reasonably different
application domains. The authors did not contribute in the
past in the maintenance of these systems. The perfective
changes were selected to be meaningful ones and not just
cosmetic changes, such as, changing a property of the
GUI.

The studies include several phases to define a set of
suggested methods that the developers should consider in
order to get the perfective change done. The assessment of
this set of methods requires effectively implementing the
changes and recording the methods that were actually
used in the implementation, and then the result set of
methods can be evaluated in terms of precision and recall.

A. ArgoUML- Experimental Results
The following 3 phases were performed in order to get

a suggested set of methods to plan the implementation of
the changes.

1) Definition and Execution of Scenarios
The scenarios were specified searching for existing

diagrams that were similar to the required new diagram.
The class diagram and the component diagram are similar
because they are both based on nodes and links between
them. Nonetheless, the kind of nodes and links may be
specific for each one. The selected scenarios, shown in
Table I, have a direct relation between their steps.

2) Summarization and Alignment of the Traces
 During the execution of each scenario, six trace files

were collected, one for each started thread. The
compressor was executed to remove loops and recursive
calls. Then, the trace summarizer reduced the size of
compressed traces, eliminating method calls with low
granularity. Methods with granularity 2 were removed. An
attempt to remove methods with granularity greater than
or equal to 3 was discarded because the resulted traces
had a major influence in the results of the alignment,
pruning specific methods that were clearly related to the

TABLE I. PAIR OF SCENARIOS FOR ARGOUML

A. Draw Class Diagram B. Draw Component Diagram
1. Initialize the system 1. Initialize the system
2. Create Class Diagram 2. Create Component Diagram
3. Add class C1 3. Add component D1
4. Add class C2 4. Add component D2
5. Insert an association between
C1 and C2

5. Insert a dependency between
D1 and D2

223224

TABLE II. COMPRESSION AND SUMARIZATION RESULTS OF THE ARGOUML’S EXECUTION TRACES

Scenarios Task
Trace Size
(Method

Calls)

Compressed Trace Size/
Compressing Ratio /
Elapsed Time (ms)

Summarized-Compressed Trace Size /
Summarization Ratio /

Elapsed Time (ms)

Compressed-Summarized-
Compressed Trace Size /

Comp-Summ Ratio /
Elapsed Time (ms)

A 5 238.107 181.608 / 23,73% / 26607 43.146 / 81,88% / 4531 36.733/ 84,57% / 3305
B 5 277.720 216.277 / 22,12% / 43087 52.701 / 81,02% / 5375 41.305 / 85,13% / 4157

executed task. An adequate selection of the granularity
parameter will be discussed in the next section. Finally,
the compressor was applied again on summarized traces
to remove possible loops that were not detected on the
first compression. Table II shows the result of each step to
reduce the traces of the selected scenarios. The trace
reduction ratio is related to the original size. During the
scenario execution, the developer must inform the
beginning of each scenario step. This information allows
producing summarized trace files separated for each
scenario step. For instance, 2 trace files have been created
for the step “Create Class Diagram”, one that was
obtained from the trace of Thread 2 and another from the
trace of Thread 6. These 2 trace files contain only method
calls executed to create the class diagram.

After summarization, the alignment algorithm was
executed in the summarized traces obtained from the
previous phase. Each alignment was obtained between ith
thread of the scenario A and ith thread of the scenario B.
The result of each alignment was represented in one
separated alignment tree used in the next phase.

3) Definition of the Implementation Plan
The first step in this phase is a visual analysis of the

alignment trees in order to define the selected methods
that would be relevant to the implementation of the
feature Object Diagram. The methods were selected by a
simple inspection of package, class and method names.

Before starting method selection, some threads and
some misaligned segments whose methods are not closely
semantically related to the execution scenario are elected
to be discarded. The main semantics of the threads could
be analyzed by visual inspection of the alignment tree. For
instance, the result alignment of the Thread 2 between the
scenario A and B has shown 73 misalignment segments.
After analyzing these segments, 4 misaligned segments
were discarded. For instance, mouseExited is a mouse
event that is not closely semantically related to any
important action of the execution scenario, so its
corresponding segment was discarded. Indeed, there is
some room for subjectivity in this criterion and it is
possible that the developer could have an aggressive

discard criterion, eliminating important methods. Instead,
our approach was quite conservative because only 5% of
misaligned segments were discarded. Thread 1 and
Thread 2 contained method call names related directly
with the initialization of the system as shown in Figure 5.
Thread 2 also contained method call names related to the
creation of the class diagram, the addition of classes in the
diagram and the addition of an association. Figure 6
shows a fragment of the tree, illustrating a misalignment
occurred during the creation of class and component
diagram. The attentive reader may notice that the methods
called when drawing a component diagram are called
from the class ActionDeploymentDiagram. The reason is
that the deployment diagram palette was used to create the
component diagram. Thread 3 contained method calls of
classes which draw class figures (FigClass) and
component figures (FigMNode). The semantics of these
classes was inferred by their names, but confirmed only
with source code inspection. The conclusion was that
Thread 3 was responsible for rendering graphics. Since,
Thread 2 also contained FigClass and FigMNode, then
Thread 3 was discarded because it had no other relevant
task. After this point, we concluded that a class named
FigObject was necessary. A search for classes with the
name Fig* has revealed that this class already existed and
should be considered for reuse, if possible. Thread 4
contained method calls related to critics. For the sake of
simplicity, we did not include critics in the
implementation of the feature Object Diagram, so this
thread could also be discarded. Thread 5 has been
discarded because all method calls have been aligned, and
they were also related to critics. Finally, the methods of
Thread 6 were related to OCL and critics, and so, the
thread was discarded for the same reason.

The implementation plan of the new diagram has been
designed by just analyzing the method calls in Thread 1
and Thread 2. The implementation plan has been guided
by the several features that need to be added in the

Figure 6. Fragment of the tree that illustrate the specific call sequence

for each scenario.

Figure 5. Fragment of the tree that contains the initialization.

224225

TABLE III. NUMBER OF ELEMENTS INSERTED INTO ARGOUML

Kind of Element Quantity.
Packages 2
Classes 6
Methods 13
Properties 3
Total Inserted LOC 606

software. A feature is an element observable from the user
point of view. The designed features are 1) menu item to
Create Object Diagram, 2) buttons to Add Objects in
Diagrams and c) events to Add an Association between 2
Objects. The implementation plan consists in the
following 3 steps describing how each feature has to be
implemented.

Step 1: Create Object Diagram. The first point is to
find where menu items are created and then introduce a
new menu item for creating object diagrams. The
hypothesis is that the aligned segments in thread 1 show
common elements of the initialization. Therefore, some
of these elements, for instance, the menubar, should be
adapted to support the new diagram. The search for the
relevant method calls started with the expansion of the
first node of the tree, which has two children. The
method call initializeSubsystems of the class Main
was the one selected. This node was expanded – to level
2 – and the method initializeGUI of the class Main was
selected among 11 nodes because the goal is to
understand the GUI initialization. The process of
navigation was the same until level six, where we found
the method createApplicationMenuBar of the class
MenuBarFactory – the first node in Figure 5. In this
method call, the constructor of the class MenuBar14 –
level 7 – was selected after a confirmation of its
semantics by inspection of the source code. Changes that
should to be done to insert the menu “New Object
Diagram” were supposed to be in method
MenuBar14.initMenuCreate, also shown in Figure 5.
This method has been inserted in the plan for creating the
item menu. As shown in the tree, there is an
instantiation of the class ActionUseCaseDiagram.<init>
for the use case diagram, so this class and method have
also been added to the plan because we assumed that a
class/method ActionObjectDiagram.<init> should
also be implemented.

The necessary methods to handle the event “Create
Object Diagram” have been found in the alignment
between the scenario A and B (Thread 2). The
hypothesis is that the misaligned segments during
drawing each diagram contain specific fragments of the
class and component diagrams and, these fragments
should be also added for the new diagram. The Figure 6
shows a piece of the tree, distinguishing the specific calls
of each scenario. The methods of each scenario were
presented in the tree with different colors, being easier to
locate them. For instance, the class
ActionDeploymentDiagram contains the methods
actionPerformed, findNamespace, isValidNamespace,
createDiagram and the class ActionClassDiagram
contains the same method names. So, we inserted these
methods in the plan for creating the object diagram. The
method create presented in the ActionClassDiagram’s
segment has been inserted as well.

Step 2: Add Objects in Diagrams. The selection of
methods that would help to understand how to add
objects in diagrams was based on the hypothesis that
misaligned segments that contain method calls related

semantically with “3. Add Class C1” and “3. Add
Component D1”, should provide relevant information to
Add Object. The search for these methods has been
achieved in the same way as in step 1. The methods that
were evaluated to be semantically related to the addition
of the object in a diagram were addNode,
addElementListener, createDiagramElement,
getFigNodeFor, canAddNode, createDiagram, and
doesAccept.

Step 3: Add Association between 2 Objects. The
hypothesis for this step was the same as for the previous
step. The misaligned segments containing method calls
related with “4. Insert Composition between C1 and C2”
and “4. Insert Dependency between D1 and D2” were
analyzed because the misalignment should provide
relevant information to Add Association between Object
O1 and O2. The methods selected in the plan were
addEdge, canAddEdge, getFigEdgeFor,
createAssociation, connect,
createAssociationEnd, createDependency,

buildConnection, paint, paintClarifiers, and
buildAssociation, buildDependency.

4) ArgoUML – Analysis of Results
After the design of the implementation plan, a set of

31 methods were listed by our approach as being
important in conducting of the perfective change.

The control to assess the quality of this set is the
Actual Positive (AP) methods that were discovered during
the implementation of the new diagram. A set of 32
methods were really necessary to add the feature. The
methods included in this set are those that were necessary
to understand the required change and those that were
effectively changed. The object diagram was implemented
in ArgoUML with approximately 606 lines of code,
including insertions made by the Eclipse IDE such as
imports, stub constructors, added methods automatically
after inserting the clause implements, and so on. Table III
shows the number of inserted elements in the source code.

Table IV shows an analysis of the result in terms of
TP (True Positives: methods pointed out by our approach
that were effectively used), FP (False Positives: methods
pointed out by our approach that were not used) and FN
(False Negatives: methods that were necessary but were
not pointed out by the approach).

B. Llama Chat’s Experimental Results
This study evaluates the approach with a case where

the perfective change also includes the reuse of one
system to enhance a feature of the other. In this case, the

TABLE IV. PRECISON AND RECALL IN ARGOUML

System TP FP FN Precision% Recall %
ArgoUML 19 6 12 76 61.29

225226

TABLE VII. PRECISON AND RECALL IN LLAMA CHAT

System TP FP FN Precision% Recall %
Llama Chat 4 0 1 100 80

TABLE VI. COMPRESSION AND SUMARIZATION RESULTS OF THE LLAMA CHAT’S EXECUTION TRACES

Scenarios Task
Trace Size
(Method

Calls)

Compressed Trace Size/
Compressing Ratio /
Elapsed Time (ms)

Summarized-Compressed Trace Size /
Summarization Ratio /

Elapsed Time (ms)

Compressed-Summarized-
Compressed Trace Size /

Comp-Summ Ratio /
Elapsed Time (ms)

C 3 262 145 / 30,29% / 106 27 / 89,69% / 41 20/ 92,37% / 30
D 3 116 93 / 19,83% / 60 22 / 81,03% / 41 21 / 81,89% / 21

speech synthesizer system FreeTTS1 has been reused to
enhance the Llama chat with speech synthesis capability.
The fundamental API of FreeTTS was understood using
the documentation. The following 3 phases were
performed in order to get a suggested set of methods that
would help to understand where the feature of FreeTTS
should be introduced in Llama Chat.

1) Definition of the Execution Scenarios
This case is different from the ArgoUML approach

because we could not find two similar features that would
be useful to implement a third feature. In this case, the
scenarios can be specified with the search for two
features, such that one or both would be related to the
methods that potentially should be updated to support the
new feature. In this case study, the goal was the
composition of two systems. In Llama chat, a user A
sends a private text message to a user B and this user B
receives and listens the speech of the text message. Thus,
the relevant point of change is the part of code that
receives a message, which should be modified to
introduce speech synthesis. The selected scenarios, shown
in Table V, contain the features Receive Message and
Send Message.

2) Summarization and Alignment of Traces
During the execution of each scenario, four trace files

were captured, one for each started thread. After, the
process of compression and summarization was started.
This process was the same as the previous study. Table VI
shows the result of each step to reduce the traces of the
selected scenarios.

The alignment method has been performed on
summarized traces obtained from the last step. Alignment
trees were obtained in the same way as in the previous
study.

3) Definition of the Implementation Plan
 Firstly, a visual analysis of alignment trees helped to

select methods that would be relevant to the composition
of the independent systems. The methods were selected
by a simple inspection of package, class and method
names. The first study of alignment trees showed which
threads contained method calls related to send private
message and receive message. Threads 2 and 3 could be
discarded because Thread 2 contained only method calls
to initialize the system and Thread 3, methods to queue
the messages. The implementation plan was specified

1 http://freetts.sourceforge.net/docs/index.php

with the analysis of alignment trees of Thread 1 and
Thread 4. The implementation plan consisted in the
following 2 steps.

Step 1: Send Message. The selection of methods that
would help to understand how a message is sent was
based on the single misaligned segment of Thread 1. The
selected methods, semantically related to the “3. Send
Message to User B”, were sendPrivate and
newPrivate. They were inserted in the plan for adding
the new feature.

Step 2: Receive Message. The hypothesis for this step
was the same as in the previous step. The alignment of the
thread 4 contained three misaligned segments. The
selected methods, semantically related to “3. Receive
Message From User A”, were privateMessage,
recievePrivate shown in Figure 7. They were inserted in
the plan.

4) Llama Chat – Analysis of Results
The implementation plan was based on a set of 4

methods. The Actual Positive (AP) methods were
discovered during the implementation of communication
of the two systems. A set of 5 methods were really
necessary to insert the new feature, including all the four
methods of the implementation plan. The methods
included are those that were necessary to understand the
required change. Only one method was effectively
changed. Twelve lines of code were necessary in order to
incorporate the speech recognition feature of FreeTTS
into Llama Chat. Table VII shows an analysis of the result
in terms of TP , FP, and FN.

C. Columba’s Experimental Results
This study evaluates the approach with a case that

required the approach to be applied twice: to understand
where the maintenance should take place, and how to
reuse other parts of the system, instead of replicating the
feature. The 3 phases of the approach were applied as
follows in order to retrieve a suggested set of methods for

Figure 7. Fragment of the tree that illustrates the specific call

sequence to receive a private message in Llama Chat.

TABLE V. PAIR OF SCENARIOS FOR LLAMA CHAT

C. Send a Private Message D. Receive a Message
1. Initialize the system 1. Initialize the system
2. Change Channel 2. Change Channel
3. Send Message to User B 3. Receive Message From User A

226227

TABLE X. COMPRESSION AND SUMARIZATION RESULTS OF THE COLUMBA’S EXECUTION TRACES

Scenarios Task Trace Size
(Method Calls)

Compressed Trace Size/
Compressing Ratio /
Elapsed Time (ms)

Summarized-Compressed Trace Size /
Summarization Ratio /

Elapsed Time (ms)

Compressed-Summarized-
Compressed Trace Size /

Comp-Summ Ratio /
Elapsed Time (ms)

E 3 132.872 29.521 / 77,78% / 5376 7.025 / 94,71% / 904 5.788/ 95,64% / 571
F 3 89.871 25.107 / 72,06% / 3464 6.012 / 93,31% / 778 5.218 / 94,19% / 645
G 3 116.825 30.887 / 73,56% / 3831 6.785 / 94,19% / 834 5.788/ 95,22% / 358

guiding the implementation of the new feature Send
Scheduled Message.

1) Definition of the Execution Scenarios
 Two scenarios were specified in order to search for
existing features that were similar to the new feature. One
can notice a close correspondence between the steps of the
selected scenarios presented in Table VIII.
 Another pair of scenarios has been selected in order to
reuse some implemented tasks in the system, shown in
Table IX. The scenario “New Appointment” has been
selected to guide how to reuse some methods that insert a
new appointment in the Calendar.

2) Summarization and Alignment of Traces
During the execution of each scenario, seventeen trace

files have been captured, one for each started thread. The
process of compression and summarization were the same
as the previous studies. Table X shows the result of each
step to reduce the traces of the four scenarios selected.

The alignment method on summarized threads was
executed in the same way as in the previous studies to
produce the alignment trees.

3) Definition of the Implementation Plan
After a visual analysis of the alignment trees, methods

were selected by examining carefully their package, class
and method names. Threads that contained method calls
related to “Send Now”, “Send Later”, and “Insert New
Appointment” were identified and the others were
discarded. Several misaligned segments and threads could
be discarded because they had no method names
semantically related to any of their features. For instance,
the methods getBorderInsets, mouseEntered were not
considered semantically related to Send Now or Send
Later features. Indeed, subjectivity is a matter and this
decision could reduce the recall metric. We adopted a
conservative approach, such that, in the case of doubt we
preferred not to discard.

The implementation plan of the new feature has been
specified analyzing the method calls in the threads 3, 4, 5,
8, 16, and 18. The implementation plan is guided by the
required features to be added and reused in the software.
The implementation plan consists of the following 3 steps

describing how each feature has to be added.
Step 1: Add Button in the Tool Bar. The selection of

methods that would help to understand how a button is
added in the toolbar was based on the misaligned
segments of Thread 3. This thread contained the method
calls executed to write a new message, and so, it was a
candidate to inform where the new button had to be
added. The buttons and panels in Columba are built using
XML files. Then, we should use some specific methods
recovered from the alignment tree to toggle breakpoints in
a debug session in order to identify which file was read
during the creation of the new message window. The
methods considered to be semantically related to the
creation of the frame and toolbar were
createCustomViewItem, initComponents, createButton,
and actionPerformed belonging to the class
NewMessageAction. These methods were inserted in the
plan for adding the name of the new button in the XML
file.

Step 2: Send Message. The selection of methods that
would help to understand how a message is sent was
based on the hypothesis that misaligned segments
containing method calls semantically related to “3. Send
Now” and “3. Send Later” should provide relevant
information. The methods that were evaluated to be
semantically related to sending a message were
considered in the implementation plan as shown in Table
XI.

Step 3: New Appointment. The selection of methods
that would help to comprehend how an appointment is
created was based on the misaligned segments that
contain methods semantically related to “Insert New
Appointment”. The selected methods, semantically related
to the feature, were inserted in the implementation plan.
These methods were createButtonPanel, createPanel,
actionPerformed of the class NewAppointmentAction,
and CalendarPicker.init.

4) Columba – Analysis of Results
A set of 14 methods and 1 class were selected and

inserted in the implementation plan by our approach as
being important for conducting the perfective change.

The Actual Positive (AP) methods were discovered
during the implementation of the new feature in the

TABLE VIII. PAIR OF SCENARIOS FOR UPDATING COLUMBA

E. Send Message Now F. Send Message Later
1. Initialize the system 1. Initialize the system
2. Write New Message 2. Write New Message
3. Send Now 3. Send Later

TABLE IX. PAIR OF SCENARIOS FOR COLUMBA FOR REUSING

E. Send Message Now G. New Appointment
1. Initialize the system 1. Initialize the system
2. Write New Message 2. Create Calendar
3. Send Now 3. Insert New Appointment

TABLE XI. SET OF METHODS OF THE IMPLEMENTATION PLAN FOR THE
TASK SEND MESSAGE IN COLUMBA

Class Name Method Name
SendAction actionPerformed
SendLaterAction actionPerformed
SendMessageCommand Process
SendMessageCommand Execute
SaveMessageCommand Process
SaveMessageCommand Execute
CachedMboxFolder addMessage

227228

TABLE XII. NUMBER OF ELEMENTS INSERTED INTO COLUMBA

Kind of Element Quantity.
Classes 2
Methods 7

Insertion in Properties and XML files 3
Total Inserted LOC 256

system. A set of 11 methods were really necessary during
the process of adding the new feature. The scheduled
message has been implemented in Columba with
approximately 256 lines of code. Table XII shows the
number of inserted elements in the source code. Table
XIII shows an analysis of the result in terms of TP, FP,
and FN.

IV. DISCUSSION
One fundamental step of the approach proved to be

the summarization process. The summarization process is
based on filtering methods with low granularity, i.e.,
methods with primitive operations or methods that call
other few methods with low granularity. The greater the
granularity value, the greater the number of pruned
methods of the trace. Excessive pruning is undesirable
because the alignment would not provide enough
information for helping in the definition of the
maintenance plan, so a more conservative approach would
be preferable at the price of having more false positives. If
the result of alignment provides excessive information,
then the developer can use greater granularity values to
reduce the size of traces and consequently, the number of
alignment segments. Previous experiments have shown
that the alignment approach without the summarization of
execution traces results in a large number of misaligned
segments [9, 12]. This situation would introduce a large
number of false positives in the approach, especially if we
consider a conservative approach to discard unrelated
method names.

An important question that we should try to answer is
“Can our approach be considered actually effective in
reducing the effort necessary to perform perfective
maintenance?”. Suppose that a developer needs to insert a
diagram in ArgoUML by debugging the source code. How
many thousands of lines should be debugged? Of course,
there is no definitive answer to this question because this
would depend on the ability of the programmer in
“stepping over” uninteresting method calls until they
reach the important methods that are necessary to
understand and implement the changes. However, the
tables that depict the size of the execution traces show that
even for summarized traces the number of method calls is
still too large and would impose a significant challenge on
the ability of the programmer in finding the relevant
information. On the other hand, if we consider the results
of our approach, we have reached high levels of precision
in the three studies presented, 77%, 100% and 79%,
respectively. These results mean that almost all methods
indicated to be important in the perfective maintenance

were actually important. Besides that, the recall of the
studies, 63%, 80% and 100%, respectively were also
significant, because even if not all information is
provided, the missing important methods would be easier
to find after the developer has gained better understanding
of the system using the true positives methods suggested
by the approach.

V. RELATED WORK
To best of our knowledge, there is no application of

sequence alignment algorithms to analyze execution
traces, except those developed by the authors [9]. They
have shown and introduced the use of execution trace
alignment. However, in that study they did not assessed
the approach with a detailed application in software
evolution.

Other approaches to analyze execution traces have
been extensively used in the comprehension of software
[1, 17]. A seminal work is the Software Reconnaissance
approach that also compares code executed in traces with
and without the features [16] but without an alignment
algorithm. Some authors [10, 14] suggest the integrated
use of static and dynamic views of the software system.
The dynamic views are obtained by means of profiling of
the most used features in the system. Nonetheless, the
primary goal is to obtain the system architecture to reduce
the effort of comprehension of the system. In our
approach, we have not focused on the most used features
for comprehending the system in an overall manner. We
have focused on well chosen features in order to provide
direct information customized for the process of software
evolution. This requires less effort to make needed
changes in the source code.

In [5], another approach to summarize traces was
designed using fan-in and fan-out metrics, which are
different from the granularity metric proposed in this
work.

The IDE’s debugging and search tools help to
understand how that objects interact with each other.
Nonetheless, usually it is not possible to extract a precise
view of interdependency among several classes involved
in the implementation of a feature, as our approach has
demonstrated to extract. The approach of software
evolution presented in this work guides the developer in a
precise manner. Consequently, this reduced drastically the
effort of implementation.

A work that in certain way is similar to ours is based
on the premise that the insertion of new similar features in
a system is seen as the practice of include clones [7].
Other studies show that from 7% to 23% of source code in
typical systems are cloned [13]. Partly, these studies
corroborate to our hypothesis of that evolving source code
using similar fragments is useful.

VI. CONCLUSIONS
In this paper, we have proposed an approach based

on the analysis of summarized execution traces in order to
reduce the effort of software evolution tasks. Our work
has shown how to retrieve important information from the
source code to help to conduct perfective maintenance.

TABLE XIII. PRECISON AND RECALL IN COLUMBA

System TP FP FN Precision% Recall %
Columba 11 3 0 78.6 100

228229

One of our working hypotheses that we worked was
that the misalignment of execution traces are points of
specific implementation of a particular feature. Based on
this hypothesis, we have evaluated our approach in the
evolution of three different open source software systems.
Firstly, we implemented in the UML modeling tool
ArgoUML the object diagram. Secondly, we implemented
the speech recognition in the chat server/client pair for use
on the web Llama Chat. Thirdly, we implemented the
schedule message in the email client Columba. The
experimental results have shown a considerable quality of
the list of methods produced by our approach as being
important to conducting the perfective changes. Our
results suggested that the example scenario described in
Section I, in which a developer unfamiliar with the target
system, should introduce a new kind of diagram in a UML
editing tool with a one or two man-day effort is actually
feasible, as one could hardly believe.

ACKNOWLEDGMENT
We acknowledge the Brazilian agencies FAPEMIG,

CNPq and CAPES for partially funding this research, and
the members and previous members of the Software
Engineering Lab at the Computer Science Department of
Federal University of Uberlândia for the collaboration on
Reverse Engineering projects.

REFERENCES
[1] B. Cornelissen, A. Zaidman, A. van Deursen, A Controlled

Experiment for Program Comprehension through Trace
Visualization, IEEE Trans. on Software Engineering, vol. 99, no.
PrePrints, 2010

[2] A. de Lucia, R. Oliveto, G. Tortora, Assessing IR-based
traceability recovery tools through controlled experiments,
Empirical Software Engineering, 14 (1), Springer, Netherlands,
2009, pp. 57-92.

[3] D. Gusfield. Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, 1997.

[4] A. Hamou-lhadj and T.C. Lethbridge. Compression Techniques to
Simplify the Analysis of Large Execution Traces. In Proc. of
IWPC, 2002, pages 159-168.

[5] A. Hamou-Lhadj, T. Lethbridge. Summarizing the Content of
Large Traces to Facilitate the Understanding of the Behaviour of a
Software System, In Proc. of IEEE ICPC, pp.181-190, 2006.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W.G.
Griswold. An Overview of Aspect J. In Proc. of ECOOP, 2001.

[7] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic
study of copy and paste programming practices in OOPL. In IEEE
Intl. Symp. on Empirical Software Engineering, pp. 83–92, 2004.

[8] T. C. Lethbridge, J. Singer, and A. Forward, How Software
Engineers use Documentation: The State of the Practice, IEEE
Software, vol. 20, no. 6. CA, USA: IEEE Computer Society Press,
2003, pp. 35–39.

[9] M. Maia, V. Sobreira, K. Paixão, S. de Amo, I. Silva. Using a
Sequence Alignment Algorithm to Identify Specific and Common
Code from Execution Traces. 4th Intl. Workshop on Program
Comprehension through Dynamic Analysis. Antwerp, pp. 6-11.
2008.

[10] M. Mit and M. Ernst. Static and Dynamic Analysis: Synergy and
Duality. In Proc. of ICSE, pp 24-27, 2003.

[11] S. B. Needleman and C. D. Wunsch. A general method applicable
to the search for similarities in the amino acid sequence of two
proteins. Journal of Molecular Biology, (48):443–453, 1970.

[12] Paixão, K.R. Using execution trace alignment to understand
variation points in source code (in portuguese). Master´s
Dissertation. Federal University of Uberlândia. 2009. 78pp.

[13] C.K. Roy and J.R. Cordy, An Empirical Study of Function Clones
in Open Source Software Systems, in: Proc. of the 15th Working
Conference on Reverse Engineering, WCRE 2008, pp. 81-90, 2008.

[14] K. Sartipi, and N. Dezhkam. An Almalgamated Dynamic and
Static Architecture Reconstruction Framework to Control
Component Interactions. In Proc. of WCRE, pp 259-268, 2007.

[15] V. Sobreira, and M. Maia. A Visual Trace Analysis Tool for
Understanding Feature Scattering. In Proc. of WCRE, pp.337-338,
2008.

[16] Wilde, N., and Scully, M.. Software reconnaissance: mapping
program features to code. Journal of Software Maintenance:
Research and Practice. 7 (1), pp. 49–62, 1995.

[17] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman.
DiscoTect: A System for Discovering Architectures from Running
Systems. In Proc. of ICSE, pp. 470-479, 2004.

229230

