
Using a Sequence Alignment Algorithm to Identify Specific and Common Code
from Execution Traces

Marcelo de A. Maia, Victor Sobreira, Klérisson R. Paixão, Sandra A. de Amo, Ilmério R. Silva

Computer Science Department
Federal University of Uberlândia

Uberlândia, MG, Brazil

{marcmaia,deamo,ilmerio}@facom.ufu.br, {victor.sobreira,klerissonpaixao}@gmail.com

Abstract

Software product lines are an important strategy to im-
prove software reuse. However, the migration of a single
product to a product line is a challenging task, even when
considering only the reengineering task of the source code,
not mentioning other management challenges. The reengi-
neering challenges are partially due to effort of identifying
common code of similar features, even when we know those
features in advance. This work proposes the alignment of
execution traces in order to discover similar code of similar
features, facilitating the reengineering task. We present the
architecture of our approach and preliminary results that
shows a promising direction.

1 Introduction

Changes are inherent to software systems [4]. Every
successful software goes through continuous evolution ei-
ther to support new user expectations, hardware changes or
operational changes. However, providing software evolu-
tion easily, quickly and correctly is still a major challenge
for software engineers because applications are increasingly
complex. This complexity is consequence of more sophisti-
cated non-functional requirements. Most maintenance tasks
are originated from new user requests, that is, perfective
maintenance tasks [3, 4]. One of the major problems in
software maintenance is related to program comprehension.
The effort of comprehending of what will be modified is
estimated in 40% to 60% of the whole effort of the main-
tenance phase[1]. This situation is aggravated when soft-
ware documentation is either not updated, unintelligible, or
simply does not exist. Another complicating issue is the
software size. Reverse engineering techniques are being de-

veloped with relative success, but their scalability to large
systems is still a challenge.

This work proposes a reverse engineering technique us-
ing a sequence alignment algorithm. Sequence alignment
algorithms have been applied in Molecular Biology to com-
pare two or more sequences of DNA, RNA or protein in or-
der to find out if there exists some similarity between them.
For example, if we have two sequences: ATGGATGCCC and
ATGCATCCC, a possible alignment would result in the fol-
lowing two sequences, respectively: ATG-GATGCCC and
ATGC-AT-CCC. Note that gaps are introduced in the orig-
inal sequences so that an i-th element of the first sequence
can match the i-th element of the second sequence. The idea
of this work is based on aligning similar execution traces in
order to find out where the two traces match (common code)
and where they mismatch (specific code). The technique is
aided by a semi-automated tool to help the identification of
specific and common code of similar features. The traces
should be captured from similar execution scenarios of the
system, otherwise it is not expected to find common code.
It is important that the developer knows what are the com-
monalities and variabilities between two execution scenar-
ios from an observational point of view in order to establish
adequate traces for alignment.

2 The Approach

In Figure 1, a general view of our approach is presented
using an UML activity diagram.

The first activity is to define suitable scenarios that en-
ables extracting relevant information when comparing two
executions traces. This is a manual activity, and informa-
tion used as input for this activity comprehends new user
requests that defines what kind of maintenance will be per-
formed, similar features present in the system and the avail-

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

6

Figure 1. The proposed approach

able documentation of the system. The result of this activity
is the definition of an execution scenario that must be per-
formed, and consequently, the input data that enables the
desired execution of the target system.

The trace extraction activity is automated. Our trace ex-
tractor is implemented in AspectJ. Currently, our target sys-
tem must be implemented in Java. During the execution
of the target system, the extractor intercepts method calls
and writes a text file for each thread launched during the
execution. Each line of the file corresponds to a method
call whose content is the fully qualified name of the called
method.

After the traces are collected, the next step is to perform
an automatic pairwise alignment with two selected traces.
The expected result of the alignment is the information of
what is common to both sequences and what is specific to
each sequence.

This information can be used to focus on the source code
that is important to desired maintenance task.

3 Related Work

Some ideas of this work were inspired in other works in
software maintenance.

Ding and Medvidovic proposes an incremental process
for the evolution of object-oriented systems with poor or in-
existent documentation. [6]. One phase of the process is the
architecture recovery of specific fragments of the system.
There are three assumptions for this phase: definition of the
desired changes, knowledge of the application properties
from the user point of view and the understanding of ba-
sic architectural features of the implementation plataform.
This work was posteriorly revised with the addition of new
heuristics for the phase of identifying components and with
new case studies [9]. Our work relates to this, in the sense
that the result of alignments helps to focus system under-
standing on the desired points of system evolution.

Rajlich and Silva have studied the reuse and the evo-
lution of orthogonal architectures, which are code frag-
ments organized in layers within the same abstraction level

[11]. They have developed an application domain inde-
pendent process aiming at adapting the system architecture
to encompass a new requirement set. The authors have
concluded that such process have application in small and
medium-sized systems, and that the source code modular-
ization was not effective for large scale systems. We expect
that sequence alignment can be applied to large scale sys-
tem in order to help focusing on the most important places
to eventually modularize.

Sartipi et al. developed a work that comprehended in re-
covering system architecture using patterns defined in the
AQL language - Architectural Query Language - and to-
gether with data mining techniques. The system is trans-
lated from source code to a graph model that is suitable for
pattern-matching [13]. In other work[12], a framework that
combines static and dynamic information is proposed. We
also believe that we will need to combine the dynamic in-
formation extracted from sequence alignment and combine
it with static information in order to achieve a more robust
result.

Vasconcelos et al. [15, 16] presents a set of heuristics for
class clustering in object-oriented systems from execution
traces, using a similar idea of combining dynamic and static
information.

Impact analysis techniques are responsible to identify the
parts of the system that will be affected by a change. A well-
known technique is program slicing. Binkley e Gallagher
have presented a survey about this technique[5]. Our work
can be used to provide the slicing criteria for understanding
the impact of a software change.

Clustering is a data mining technique used for classi-
fying related source code entities using similarity metrics.
Wiggerts [17], Anquetil [2] and Tzerpos [14] shows dif-
ferent aspects on the clustering algorithms for source code.
Feature location is a common task in software evolution ac-
tivities. Marcus et al. has presented the application of an in-
formation retrieval method - Latent Semantic Indexing (LSI)
that is used to map concepts written in natural language to
relevant fragments of source code [8]. Our work also aims
at locating source code fragments that are relevant in a soft-

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

7

ware evolution or software restructuring context based on
external point of view of behavior.

In the Bioinformatics field, comparing sequences has be-
came a major activity. The identification of similar regions
in DNA, RNA or protein sequences can help mapping se-
quences to functional, structural and evolutionary charac-
teristics. Several algorithms are presented in [7]. However,
it is still a challenge to define and adapt sequence alignment
algorithms for the software maintenance field. Surprisingly,
at the best of our knowledge, we still could not find the use
of alignment algorithms to detect similarities and common-
alities of execution traces.

4 Sequence Alignment

Sequence alignment is a well-studied problem. Needle-
man and Wunsch have already proposed an algorithm for
analyzing protein sequence in early seventies [10]. Several
algorithms have been proposed since then. Indeed there are
some issues that must be considered when adapting these
algorithms for maintenance purposes.

4.1 Characteristics of Execution Traces

Our execution traces normally can present some patterns
that can provide us with some information. For example,
consider the sequences “XaaaaY” and “XaaaY”. We can
suspect that these sequence may be generated from the same
code, and they are different just because the method “a”
was called inside a loop that executed four times in one trace
and three times in the other. Another example, consider the
sequences “XaaaaY” and “XaabaY”. In this case, we can
suspect that some condition enabled the execution of the
method “b”, possibly inside a conditional command.

4.2 Global Alignment vs Local Alignment

Global alignments attempts to align every element in
the sequences. These strategy is most useful when the se-
quences are similar and of roughly equal size. A general
global alignment technique is the Needleman-Wunsch algo-
rithm that is based on dynamic programming. Local align-
ments are more useful when we are trying to find a smaller
sequence inside a larger one. The Smith-Waterman algo-
rithm is a general local alignment algorithm and is also
based on dynamic programming. There are also hybrid
methods that attempt to find the best possible alignment that
includes the start and end of one and the other sequence.

In this paper, we have chosen to study the alignment of
almost similar sequences. Our goal was to choose similar
features and to find out what is common and what is differ-
ent between them. In such a situation, a global alignment
strategy seems a reasonable alternative.

4.3 Pairwise Alignment vs Multiple
Alignment

Pairwise alignment is used to find local or global align-
ments of two sequences. If it is necessary to compare sev-
eral sequences, the alignment can only occurs with two se-
quences at a time, and the user should proceed with an in-
tegration step with another technique. Multiple sequence
alignment is a generalization of pairwise alignment, in the
sense that the alignment algorithm can take as input several
sequences at a time. However, general multiple alignment
algorithms tend to lead to NP-complete solutions, and thus
are not very practical, unless you provide some heuristics or
use a very small input.

In this paper, we have chosen to study the pairwise align-
ment because execution traces are normally large.

4.4 Identity and Similarity

In Bioinformatics, identity and similarity are related but
different concepts. The identity is a relation of equality in
which a nucleotide or aminoacid of one side must be equal
to its complement to produce a match. This relation is too
restrictive in Biology, so the alignment algorithm may con-
sider to match two different elements, if these elements have
some level of similarity.

In principle, considering that classes may have a reason-
able cohesion, we could consider methods in the same class
or in the same package to have some level of similarity, and
thus apply the same principles of biology. However, in this
work we have chosen to consider only the identity relation-
ship as a prerequisite for matching two method calls.

4.5 Gap Penalty

Because in Bioinformatics is reasonable to accept the
alignment match between two different elements, a ques-
tion may arise when deciding if a match based on similarity
is better or not than a gap that is inserted in one of the se-
quences.

In this work, we have decided not to penalize the intro-
duction of gaps in either of the two sequences for two rea-
sons. The first is that since we work only with identity, it
seems incoeherent to accept an alignment match with two
different elements instead of introducing the gap. The sec-
ond reason is that the misalignment gives us also an impor-
tant information: it may represent specific method calls of
a sequence and thus contribute to identify specific code.

5 Application and Current Results

In this section, we present an application of sequence
alignment to report specific and common code between two

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

8

Traces Length - Prefix Length - Specific to Rectangle Length - Suffix
Rectangle 885 matches and gaps 396 specific to Rectangle 18 matches and gaps
Circle 885 matches and gaps 396 gaps only 18 matches and gaps

Figure 2. Length and Characteristic of Aligned Sequences

features in a small graphical editor shown in Figure 3. The
total lines of code of the editor is 387, the number of classes
is 9, and the total number of methods is 58.

Figure 3. The target system

We have chosen two similar features to execute the sys-
tem: drawing a rectangle and drawing a circle. The exe-
cution traces were collected and two threads were launched
for each execution. Each pair of corresponding threads were
aligned with a Needleman-Wunsch algorithm, considering
only identities and zero gap penalty. Below we present the
results of the alignments.

5.1 Results

The first thread was responsible for drawing the main
frame and there was only 14 method calls perfectly aligned
between each other.

The second thread was more interesting. Although the
system is small and the execution scenarios are fairly sim-
ple, the thread for drawing a rectangle had 1040 method
calls and the thread for drawing a circle had 644 method
calls, and thus manual alignment seems unfairly hard. Af-
ter the gap insertions each sequence had the gaps inserted
and grown to 1299 elements.

In Figure 2, we show the tree main subparts of the traces
and their correspondence. The interesting alignment is in
the first and third part, summing 903 elements. After ana-
lyzing manually the traces, we could find out that the 396 el-
ements in the second part, corresponds to gaps in the thread
of drawing circle, because the size of the drawn rectangle
was greater than the size of the circle and thus demanded
more screen updates. In Figure 4, we summarize the quan-
titative details of the alignment.

After the alignment, we computed the set of common
methods between the two features, the set of methods spe-
cific to the feature of drawing a rectangle and the set of

Before Alignment
Length of Rectangle Trace 1040
Length of Circle Trace 644
Difference Rect-Circle 396

After Alignment
Length of Rectangle Trace 1299
Length of Circle Trace 1299
#Matches 385
#Gaps in Rectangle Trace 259
#Gaps in Circle Trace 655
#Real Gaps in Circle Trace 259
Length of Interesting Alignment 903
%Matches 0.4263
%Interesting Gaps in Rectangle 0.2868
%Interesting Gaps in Circle 0.2868

Figure 4. Quantitative results

methods specific to the feature of drawing a circle. The
results are shown below, respectively. False positives have
arised when finding methods specific to draw a rectangle.
The reason was that it was not possible to align those 396
method calls with a counterpart in the draw circle feature,
as already shown in Figure 2. Nonetheless, the other results
seem promising because no false negative has arised and
all called methods were present in at least one of the above
three sets.

// Common methods
graphicaleditor.MainFrame$1.paint
graphicaleditor.MainFrame.access$0
graphicaleditor.ShapeSet.draw
graphicaleditor.MainFrame.access$1
graphicaleditor.MainFrame.processWindowEvent
graphicaleditor.MainFrame$4.mousePressed
graphicaleditor.MainFrame.drawPanel_mousePressed
graphicaleditor.MainFrame.createShape
graphicaleditor.Point2D.<init>
graphicaleditor.MainFrame$5.mouseDragged
graphicaleditor.MainFrame.drawPanel_mouseDragged
graphicaleditor.Point2D.getX
graphicaleditor.Point2D.getY
graphicaleditor.MainFrame$4.mouseReleased
graphicaleditor.ShapeSet.add
graphicaleditor.MainFrame.drawPanel_mouseReleased
graphicaleditor.MainFrame.jMenuFileExit_actionPerformed

// Methods specific to draw rectangle
graphicaleditor.MainFrame$1.paint
graphicaleditor.MainFrame.access$0
graphicaleditor.ShapeSet.draw
graphicaleditor.MainFrame.access$1
graphicaleditor.Rectangle.<init>
graphicaleditor.Rectangle.setAnchor
graphicaleditor.MainFrame$5.mouseDragged
graphicaleditor.MainFrame.drawPanel_mouseDragged
graphicaleditor.Rectangle.getAnchorX
graphicaleditor.Point2D.getX
graphicaleditor.Point2D.getY
graphicaleditor.Rectangle.getAnchorY
graphicaleditor.Rectangle.draw
graphicaleditor.Rectangle.setDimension
graphicaleditor.Rectangle.getAnchor

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

9

// Methods specific to draw circle
graphicaleditor.Circle.<init>
graphicaleditor.Circle.getAnchorX
graphicaleditor.Circle.setAnchor
graphicaleditor.Circle.setDimension
graphicaleditor.Circle.getAnchorY
graphicaleditor.Circle.getAnchor
graphicaleditor.Circle.draw

6 Final Remarks

In this work, we have shown an approach to identify
commonalities and variabilities in execution traces. The
possibilities of usage of these information are manifold. We
can help the introduction new features in the target software
based on similar characteristics already present providing
information of specific methods that the feature must im-
plement. We can help extracting common components from
source code based on information provied by commonali-
ties between execution traces.

There are many questions that still persist, for instance,
how the approach will scale up for larger systems, how the
extracted information can be more systematically used by
developers, how would be the results when working with
different versions of the system, how much the trace com-
pression would enhance the approach, and how different
alignment methods behave in different situations.

Acknowledgments. We would like to thank CNPq and
CAPES for partially funding this research.

References

[1] A. Abran, P. Bourque, R. Dupuis, and L. Tripp. Guide
to the software engineering body of knowledge (iron-
man version). TR, IEEE Computer Society, 2004.

[2] N. Anquetil, C. Fourrier, and T. Lethbridge. Experi-
ments with clustering as a software remodularization
method. In WCRE ’99: Proceedings of the Sixth Work-
ing Conference on Reverse Engineering, page 235,
Washington, DC, 1999.

[3] K .Bennett. Software evolution: past, present and
future. Information and Software Technology, Vol.
38(11):673–680, November 1996.

[4] K .Bennett and V .Rajlich. Software maintenance and
evolution: a roadmap. In Conference on The Future of
Software Engineering, pages 73–87, New York, NY,
USA, 2000. ACM Press.

[5] D. Binkley and K .Gallagher. Program slicing. Ad-
vences in Computer, 1(43), July 1996.

[6] L .Ding and N. Medvidovic. Focus: a light-weight, in-
cremental approach to software architecture recovery

and evolution. In Software Architecture, 2001. Pro-
ceedings. Working IEEE/IFIP Conference on, pages
191–200, 28-31 Aug. 2001.

[7] D. Gusfield. Algorithms on Strings, Trees, and Se-
quences: Computer Science and Computational Biol-
ogy. Cambridge University Press, January 1997.

[8] A .Marcus, A .Sergeyev, V .Rajlich, and J .Maletic.
An information retrieval approach to concept location
in source code. In WCRE ’04: Proc. of the 11th Work-
ing Conference on Reverse Engineering (WCRE’04),
pages 214–223, Washington, DC, USA, 2004. IEEE
Computer Society.

[9] N .Medvidovic and V .Jakobac. Using software evo-
lution to focus architectural recovery. Automated Soft-
ware Engineering, 13(2):225–256, 2006.

[10] S. Needleman and C. Wunsch. A general method ap-
plicable to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biol-
ogy, 48(3), 1970.

[11] V. Rajlich and J. Silva. Evolution and reuse of or-
thogonal architecture. IEEE Transaction on Software
Engineering, 22(2):153–157, 1996.

[12] K. Sartipi, N. Dezhkam, and H. Safyallah. An orches-
trated multi-view software architecture reconstruction
environment. In Proc. of 13th Work. Conf. on Reverse
Engineering, pages 61–70, Oct. 2006.

[13] K. Sartipi, K. Kontogiannis, and F. Mavaddat. Archi-
tectural design recovery using data mining techniques.
In Proc. of 4th European Conf. on Soft. Maintenance
and Reengineering, pages 129–139, March 2000.

[14] V .Tzerpos and R. Holt. Software botryology: Au-
tomatic clustering of software systems. In Interna-
tional Workshop on Large-Scale Software Composi-
tion, pages 811–818, 1998.

[15] A. Vasconcelos, R. Cêpeda, and C. Werner. An ap-
proach to program comprehension through reverse en-
gineering of complementary software views. In 1st
Intl. Workshop on Prog. Comprehension through Dy-
namic Analysis (PCODA), pages 58–62, 2005.

[16] A. Vasconcelos and C. Werner. Software architec-
ture recovery based on dynamic analysis. In Simpósio
Brasileiro de Engenharia de Software, 2004.

[17] T. Wiggerts. Using clustering algorithms in legacy
systems remodularization. In Proc. of the 4th Working
Conf. on Reverse Engineering (WCRE ’97), page 33,
Washington, DC, 1997. IEEE Computer Society.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

10

